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ABSTRACT This paper presents a novel data-driven approach for predicting lightning-related outages
that occur in power distribution systems on a daily basis. In order to develop an approach that is able to
successfully fulfill this objective, there are two main challenges that ought to be addressed. The first challenge
is to define the extent of the target area. An unsupervised machine learning approach is proposed to overcome
this difficulty. The second challenge is to adequately identify characteristics of lightning-related outages and
to explore the relationship between these outages and weather-related variables (thunderstorm events). In this
paper, these outages are clustered into a few manageable groups. Then, a probabilistic model is presented
to estimate the likelihood of each group of outages. Finally, a machine learning classification algorithm that
can handle the imbalanced problem is developed to predict what group will the outage belong to on a specific
day in a specific area of the system under study. Actual outage data, obtained from a major utility in the U.S.,
in addition to radar weather forecast data are utilized to build the proposed approach. Also, three case studies
are provided to show several issues associated with predicting lightning-related outages, and to demonstrate
how the proposed approach can address those problems adequately.

INDEX TERMS Data analytics, lightning-related outage, machine learning classification, outage prediction,

power distribution systems, statistical modeling.

I. INTRODUCTION

Lightning is a major cause of outages in power distribution
systems [1]. Transient over-voltages caused by direct or indi-
rect lightning strikes may inflict severe damages to the sus-
ceptible equipment and can produce detrimental effects on
power quality and reliability of the system. With upward
trends in extreme weather and climate events in recent years,
the intensity and frequency of the lightning activities are
expected to increase, leading power utilities to be confronted
by a growing problem with regards to this weather-related
phenomena [2]-[4].

In order to reduce the destructive effects of lightning on
distribution systems, a common strategy is to implement
a proper lightning protection design, i.e., installing surge
protective devices and shielding wires [1]. While taking
such preventive actions appear to be effective for protect-
ing the system against severe damages, momentary outages
caused by the activation of these protective devices can exert
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secondary effects on the system. On the other hand, should the
lightning effect exceeds the designed levels of the protection
system, permanent faults may occur, leading the system to
experience a sustained interruption [5]. Therefore, besides
implementing preventive measures, it is important for utilities
to take an appropriate response to these outages either by
identifying them immediately after they occur or by predict-
ing them.

By looking at historical outage data, analyzing electrical
characteristics of the system, and tracking lightning activity
in an area immediately after an outage occur, the utility com-
panies are able to identify and distinguish lightning-related
outages from other causes. Moreover, multiple studies have
been carried out to develop models for identifying this source
of outages [6], [7]. Opposed to that, predicting lightning-
related outages has been left relatively unattended. This might
stem from the complex nature of this type of outages, lack of
enough information pertaining to them, and shortcomings of
classical mathematical models.

However, with the technological advancement in data
gathering through the smart grid framework and due to
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tremendous improvements in weather forecasting efforts,
a massive amount of outage and weather data has become
available in recent years. This could shed light on the dif-
ferent characteristics of lightning-related outages. Moreover,
advanced data analytics techniques are now being developed
and combined with mathematical methods, creating pow-
erful tools that can noticeably enhance predictive abilities.
Adopting these predictive approaches will enable effective
and timely decision-making actions by operators as well
as planners, ultimately improving operational integrity and
resiliency of the system.

By this time, several studies have been carried out to
explore different aspects of lightning-related outages and to
ultimately predict some characteristics of these outages.

The authors in [8] propose an approach for estimating
the number of wind and lightning-related outages combined
together on a daily basis. In order to carry out this task, they
develop a machine learning regression model based on an
ensemble boosting algorithm. In [9], the authors propose a
method for forecasting the cumulative number of outages
during a storm condition. They first create empirical models
for different types of storms and then develop an exponential
model for the forecasting purpose. They employ the model
to predict lightning-related outages that may have occurred
during several summer storms.

Another study [10] presents a Monte Carlo simulation
model to study the reliability indices under lightning storm
condition. Their model is based on the storm parameters and
the outage rate. Therefore, first, the authors build a statistical
model to explain the storm intensity and duration and then
utilize that model as well as a data-driven approach to cal-
culate the lightning-related outage rate. The performance of
the proposed model is evaluated by conducting a case study
using data collected from lightning storm weather conditions
that occurred in an area in the Midwest United States in the
span of five years. In [1], the authors carry out an experi-
mental study to investigate significant factors that influence
the frequency of lightning strike flash-overs. Moreover, they
develop a probabilistic model for estimating the number of
lightning-related outages on an annual basis.

The authors in [11], [12], and [13] present comprehensive
studies on predicting hurricane and storm-related outages by
addressing important issues such as the presence of a high
imbalance in the response variable, engineering informative
predicting variables, and building multi-stage models. It is
worth mentioning that the focus of the aforementioned studies
is not necessarily on lightning-related outages but rather on
storm-related that could include various causes of outages
(and their combination) such as wind, vegetation, and light-
ning, to name a few.

Even though some approaches, including [1], [8], [9],
[10], are proposed to predict the rate or trend of lightning-
related outages, they could be identified with several short-
comings. As a matter of fact, a majority of these approaches
are developed based on the combination of weather-related
outages and therefore cannot to be used for predicting only
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lightning-related outages. Moreover, they mostly consider
the entire distribution system under study for the predic-
tion task; hence, do not provide the ability to make the
prediction for a specific area within the system. Further-
more, a majority of these approaches make the prediction for
a long-term horizon (i.e., yearly) and consequently cannot
be utilized for making predictions on a short-term horizon
(i.e., daily or weekly). Additionally, most of these approaches
focus on estimating the outage rate, which is usually defined
as outages/100 km/year. While estimating this rate is
extremely useful for planning purposes, it would not provide
much helpful information for taking short-term proactive
measures. Last but not least, approaches that attempt to pre-
dict the exact number of outages are expected to deliver a
poor performance when the number of outages is large. This
argument would be fully supported later on.

In this paper, we propose a novel approach to predict
lightning-related outages that occur in power distribution sys-
tems. In particular, we build an approach that is able to predict
whether zero outage, one outage, or two or more outages will
occur on a specific day that experiences thunderstorm events
in a particular area in the system. The proposed approach
overcomes the aforementioned shortcomings and provides
the ability to make the prediction on a short-term horizon (i.e.,
daily basis) for a specific area within the service territory.

The proposed approach seeks to provide a meaningful
knowledge about risks and locations of lightning-related
outage problems. Hence, it can present a succinct view of
the current system status to the operators, which enables
effective and timely decision-making actions with regards to
lightning-related problems. By providing a preliminary but
accurate prediction, the proposed approach allows operators
to effectively utilize advanced satellite imagery or sophisti-
cated lightning detection systems to find the exact locations
in the system that could have a high risk of a lightning-related
outage. Moreover, the proposed approach enables electric
utility companies to more intelligently allocate and dispatch
crew members, as opposed to simply putting crews on alert
when thunderstorms are expected, and dispatching them to
wherever permanent outages require attention.

The main contributions of the proposed approach are sum-
marized below:

1) We offer a workable solution to address the challenges

posed by the extent of the prediction’s target area.

2) We demonstrate that to obtain the best possible predic-
tive performance, lightning-related outages should be
clustered into a few manageable groups, which in this
study, are three main groups, namely zero outage, one
outage, and two or more outages.

3) We provide a probabilistic model to calculate the like-
lihood of each group of outages and validate the model
using statistical tests.

4) We develop a machine learning classification algorithm
that can handle the imbalanced problem and utilize it
to predict the specific group of outages that will likely
occur using the likelihood values as input.
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The rest of this paper is organized as follows. In Section II,
the outage and weather data used in the analysis is described.
In Section III, an approach is presented to address the chal-
lenges brought about by the extent of the prediction’s tar-
get area. In Section IV, a statistical analysis is provided
to cluster the outages. In Section V, a probabilistic model
is provided for calculating the likelihood of each group of
outages. In Section VI, a machine learning algorithm is pre-
sented for predicting the outages. In Section VII, three case
studies are provided to show some practical issues associated
with predicting lightning-related outages, and to demonstrate
the effectiveness of the proposed approach to address those
issues. Finally, in Section VIII, conclusions are provided.

Il. DATA DESCRIPTION

The input data for the proposed approach is obtained from
two main sources: 1) historically recorded outages, and
2) radar weather forecasts. Outage data is collected by a major
investor-owned utility company serving the southeastern US.
The data includes information on the time and locations
of sustained lightning-related outages that occurred around
approximately 85 substations located in the states of North
Carolina and South Carolina between the years 2010 and
2014. The data is comprised of almost 800 samples of out-
ages. The radar weather forecast data is collected from several
external sources for weather stations located close to power
substations over the span of the aforementioned years and
includes the number of thunderstorm events that occurred on
a daily basis for each weather station. In order to calculate the
number of thunderstorm events, the hourly weather forecast
for the entire 24 hours is considered and the summation value
of the logical variable that shows whether or not each hour
might experience a thunderstorm is calculated. The logical
variable is available in almost any weather forecast platform.

Ill. AGGREGATING SUBSTATIONS

As mentioned, one challenge with developing the proposed
approach is defining the extent of the prediction target area.
In fact, if one intends to point-predict the number of lightning-
related outages at the location of any given substation, one
might encounter serious difficulties. These difficulties lie in
the fact that 1) the lightning can occur at the location of a
substation; however, it may travel and hit a location thatis at a
large distance from the substation, and vice versa, 2) accurate
radar weather forecasts may not be available at the exact
location of each substation, and 3) the degree of randomness
for the number of outages that occur for each substation is
relatively large, making it difficult to predict.

In order to provide a workable solution to this challenge,
we propose to aggregate substations and to build larger areas,
in which, each area includes multiple substations and local
weather stations, where the weather forecast for each sub-
station is obtained from its closest weather station. Such
clustering can solve the aforementioned issues because by
aggregation, instead of examining a single substation and
a single weather station, we examine a broader area that
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contains multiple weather stations, and calculate the average
number of thunderstorm events in the area. By doing this,
we obtain a better weather forecast. Moreover, if the lightning
is created within the area, even if it travels, it is highly likely
that it ultimately hits a point within the area. Also, aggre-
gation reduces the considerable randomness in the data and
helps to see the patterns more clearly. In addition to the afore-
mentioned reasons, clustering substations based on their loca-
tion and proximity has other justifications. In fact, location
data could be an indicator of several important variables. For
example, substations close to each other might have similar
geographical characteristics, weather patterns, and etc. These
are factors that affect the exposure and vulnerability of the
system to thunderstorms and, hence, it would be reasonable
to cluster substations based on proximity.

In order to define the aforementioned areas, k-means clus-
tering algorithm is utilized in this paper. This algorithm is a
widely used unsupervised machine learning algorithm, which
aims at clustering a given dataset into a certain number (k) of
groups. In this paper, this algorithm is used to cluster sub-
stations into different groups where each group represents an
area. The main idea of this algorithm is to define k centroids
at random, one for each cluster, and then to minimize the
squared error function represented in (1) [14].

1 m k
Jrow) =5 30 i i = il M

i=1 j=1

where m is the number of data points, k is the number of clus-
ters, 7;; is an indicator, which is 1 if, and only if, x; is assigned
to cluster j, x; is data point, p; is the centroid for cluster j, and
II.I> denotes the Euclidean distance. In this study, data points
are locations of substations (approximately 85 data points),
which are represented by latitude and longitude in a two-
dimensional space.

One major challenge with this algorithm is the need to
specify the number of clusters. In fact, there is no global
theoretical method to find the optimal value of this parameter;
however, a few approaches are common to deal with this
problem. One most used approach is to run k-means clus-
tering for a range of different k values and to calculate the
aforementioned squared error function for each value. In this
case, the error tends to decrease toward zero as k increases;
however, after a certain k£ value is reached, the decrease in
error would be very gradual. Therefore, analyzing different
values of k and finding the aforementioned threshold could
help in deciding a reasonable number of clusters [15].

Applying k-means clustering algorithm and using the
aforementioned method to calculate the proper number of
clusters for grouping substations will result in 14 areas. These
areas define the extent of the prediction. Fig. 1, illustrates
these areas. It is worth mentioning that although there are
other clustering approaches, we believe that the approach
adopted here is the most suitable for this study. In fact, since
the goal is to cluster a two-dimensional data (i.e., latitude and
longitude) and to work with distances, the k-means approach
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TABLE 1. A sample of the dataset under study.

Time Area | Thunderstorm Events | Number of Outages
2011-08-13 5 0 0
2012-08-22 3 3 1
2012-05-22 12 30 2
2012-09-02 8 26 3
2013-07-17 8 50 4
2014-07-03 12 38 5
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FIGURE 1. Demonstration of different areas.

makes the most sense. Moreover, considering the size of
clustering data which is small, there would be no need for
utilizing more sophisticated algorithms.

IV. CLUSTERING THE OUTAGES

By conducting various analyses we have reached the con-
clusion that predicting the exact number of outages in days
that have thunderstorm events may not be possible. In fact,
we argue that an increase in the number of thunderstorm
events does not necessarily translate into an increase in the
number of outages. In what follows we provide statistical
support to our argument. In particular, we postulate that
lightning-related outages may be clustered into a few man-
ageable groups. In this study, these groups are 1) zero outage,
2) one outage, and 3) two or more outages.

Before providing the rationale behind our argument,
we first look at a sample of the dataset under study.
Table 1 shows a sample of the dataset that includes six
observations. As seen, each observation is associated with
four attributes of time, area, number of thunderstorm events,
and the number of outages. The complete dataset contains
the aforementioned information for all fourteen areas shown
in Fig. 1 for the years 2010 to 2014 on a daily basis.

The research question that we are examining is the rela-
tionship between the number of thunderstorm events and the
number of outages. The maximum number of outages which
has been recorded in the available data is five. As a result,
the number of outages has a limited number of outcomes
and therefore could be considered as an ordered categorical
variable. This consideration is reasonable because it would
be highly unlikely that an area experiences a large number of
lightning-related outages on a specific day.

In order to investigate the relationship between the afore-
mentioned variables, and especially to realize whether or not
there is a difference between the number of thunderstorm
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TABLE 2. Results of ANOVA.

Source DF SS MS F P
Regression 5 389018 77804 | 403 | <2e-16
Residuals | 20126 | 3885367 193

events among different values of outages (including days
with zero outage), we carry out a one-way ANOVA test.
The ANOVA may be used to determine whether there are
any statistically significant differences between the means of
two or more independent groups regarding a specific explana-
tory variable [16]. In this study, the null hypothesis in the test
would be that the mean number of thunderstorm events is the
same across different values of outages. On the other hand,
the alternative hypothesis would be that at least one pair of
mean values are different from each other.

This analysis is conducted and the results are provided
in Table 2. It is worth mentioning that the necessary analysis
is carried out to make sure that the ANOVA assumptions [16]
hold for this study and the available data can be analyzed
using this test. According to the table, the p-value is almost
zero; hence, we can reject the null hypothesis in favor of the
alternative hypothesis and conclude that the average number
of thunderstorm events is not equal for different values of
outages.

A follow-up question, which could shed more light on the
differences between values of outages with regards to the
number of thunderstorm events is to investigate the difference
in a pairwise manner and to quantify it. To carry this out,
we conduct a post-hoc test, Tukey’s HSD. This test allows
answering which means are different and by how much and
whether or not the difference between outages in a pairwise
manner is statistically significant. It is worth mentioning that
since the ANOVA and Tukey’s HSD are very well-established
methods whose formulations are readily available [16], their
details are not discussed in this paper.

The results of the Tukey’s HSD are provided in Table 3.
The pair column shows the combination of days with two dif-
ferent numbers of outages. The difference column represents
the differentiation between the average number of thunder-
storm events between pairs. The lower and upper columns
demonstrate the limits of the 95% confidence interval for the
difference in the average value, and finally, the p-value shows
the results of the hypothesis that there is not any statistically
significant difference in the population of the average number
of thunderstorm events for each pair. A p-value of less than
0.05 shows that the results are significant.

According to the table, it can be inferred that for days with
zero outage, compared to days with one or more outages,
the average number of thunderstorm events is smaller and
the difference is statistically significant. This is because the
confidence interval does not include zero (i.e., equivalently,
the p-value is zero). The same argument could be made
for days with one outage compared to other days. How-
ever, for days with two or more outages, as seen in the
table, the confidence interval ranges from negative to positive
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TABLE 3. Results of Tukey’s HSD test.

Pair | Difference | Lower | Upper | p-value
1-0 28.8 26.2 31.5 0.0
2-0 40.9 355 46.3 0.0
3-0 43.7 36.3 51.0 0.0
4-0 45.6 36.3 55.0 0.0
5-0 51.7 39.1 64.2 0.0
2-1 12.1 6.1 18.1 0.0
3-1 14.9 7.0 22.7 0.0
4-1 16.8 7.1 26.5 0.0
5-1 22.8 10.0 35.6 0.0
3-2 2.7 -6.4 11.9 0.9
4-2 4.7 -6.1 15.5 0.8
5-2 10.7 2.9 244 0.2
4-3 1.9 -9.9 13.8 0.9
5-3 8.0 -6.5 22.5 0.6
5-4 6.0 -9.6 21.7 0.9

values (i.e., it includes zero), and the p-value is greater than
0.05. As a result, we fail to reject the hypothesis that there is
no difference between these pairs with regards to the number
of thunderstorm events and therefore can conclude that there
is sufficient evidence that the average number of thunder-
storm events is the same for days that have two or more
outages.

The aforementioned analysis creates the foundation for
clustering the outages. Considering the facts that 1) there
is a causal relationship between thunderstorm events and
lightning outages and that 2) there is a significant differ-
ence between the days with zero outage compared to other
days, and days with one outage compared to other days, and
3) the observation that days with two or more outages do
not show distinguishable characteristics with each other with
regards to the number of thunderstorm events, we cluster
the outages into three groups: 1) zero outage, 2) one outage,
3) two or more outages.

Considering the aforementioned clustering, the ultimate
objective would be to predict which group of outages will
occur on a certain day in a specific area. Such clustering is
necessary to obtain the best possible predictive performance.
Therefore, we believe models that attempt to predict the exact
number of outages (some of which were mentioned in the
literature review), are expected to deliver a low degree of
accuracy especially when the number of outages is large.
A quantitative result is provided in Section VII for this
argument.

V. LIKELIHOOD OF OUTAGES

Based on the preceding methodology, we concluded that
during days with thunderstorm events, there could be three
possible outcomes with regards to the number of outages. The
next step would then be to determine the likelihood of the
occurrence of each group of outages on a given day with a
given number of thunderstorm events at a specific area. For
this purpose, we propose that the binomial distribution model
would be an appropriate model to calculate the likelihood of
lightning-related outages. The rationale behind our proposed
model is three-fold:
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FIGURE 2. Calculating the likelihood of groups of outages using binomial
probability model.

1) Each thunderstorm event results in one of two possible
outcomes (outage or no outage). This is confirmed by
the data.

2) The probability of the outage is the same for each
thunderstorm event (because it depends on the geo-
graphical characteristics of the area which is expected
to more or less remain the same)

3) The thunderstorm events are independent, meaning that
the fact that a thunderstorm event results in an outage
does not impact the probability of an outage in another
thunderstorm event. We assume that after an outage,
the responsible dispatched crew is able to repair the
protective devices (such as fuses and surge arresters)
that were impacted and therefore they will operate as
expected. It is worth mentioning in cases that the outage
is adequately dealt with automatic reclosing devices,
crews need not be dispatched and the system will con-
tinue operating normally.

The aforementioned properties indicate that the assumption
of a binomial model holds; therefore, it is a valid candidate
model for our purpose at hand.

Using the binomial model, one may calculate the likeli-
hood of the occurrence of each group of outages. In order
to clarify this, suppose that the weather forecast for the next
day for a specific area demonstrates a total number of n thun-
derstorm events. Let’s assume, by using the historical data,
we have realized the probability that a thunderstorm event
leads to an outage in that area is p. Considering this infor-
mation, the likelihood of having no outage, having exactly
one outage, and finally having two or more outages can be
calculated as illustrated in Fig. 2.

In order to quantitatively examine whether or not the bino-
mial model is an appropriate model, we devise a hypothesis
test. The null hypothesis would be that the occurrence of
outages arises from a binomial model with the probability
of p. The alternative hypothesis would be that the data does
not come from a binomial distribution. We could base the
test on the differences between the observed and expected
numbers of outcomes. This could be carried out by the Chi-
square test [17]. It is worth mentioning that the critical value
of the test is chosen based on 99% confidence interval.

The Chi-square values for all possible values of thunder-
storm events (i.e., n) are calculated and plotted in Fig. 3.
For a significant majority of the number of thunderstorm
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FIGURE 4. Pyytqge Vvalues for different areas within the system.

events, the Chi-square values fall below the critical value.
This demonstrates that the assumption of the binomial proba-
bility model is reasonable. In fact, only 12.8% data points fall
out of the range for the 99% confidence level and especially
the cases with a high number of thunderstorm events are all
represented accurately, with only one data point with over
50 thunderstorm events falling out of the 99% confidence
level area. We can now, with great confidence, argue that the
binomial distribution would be an adequate model to find the
likelihood of groups of outages (i.e., 0, 1, 2+) occurring given
a certain number of thunderstorm events.

In order to calculate the likelihood values, we follow the
following procedure. First, for a given day and given area,
we calculate the number of thunderstorm events, n, from
the weather data. This was explained in Section II. Then,
by using the historical data, we calculate the probability that
a thunderstorm event leads to an outage, p, for each area.
In order to compute this value, we calculate the total number
of outages that occurred in each area divided by the total
number of thunderstorm events experienced by that area.
This probability value is called Poyqg. from this point and is
demonstrated in Fig. 4. As seen in the figure, Py qge for some
areas is considerably higher compared to others. This may be
explained by the geographical characteristics of that area and
its exposure to lightning strikes or the lightning protection
level of each area. We believe Pyyqge can summarize such
information into a single number. By knowing these values
and employing the binomial probability model as illustrated
in Fig. 2, we can calculate the likelihood of each group of
outages.

VI. PREDICTING OUTAGES

By calculating the likelihood of groups of outages for a
given day, weather condition, and a given area in the system
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using the aforementioned methodology, one may make a final
prediction on what group of outages will occur. It should be
noted that due to small Pyyge values, the likelihood values
obtained for two or more outages group would be generally
smaller than one outage group, and for one outage would
be smaller than zero outage group (albeit small, it could be
critical). Therefore, simply using the largest likelihood value
for making the prediction would be impractical.

In order to provide an appropriate means of predict-
ing which outage group will occur, we define the prob-
lem as a machine learning multiclass classification prob-
lem. In fact, by using the binomial model, we can calcu-
late three likelihood values for zero outage, one outage, and
two or more outages. The actual group of outages is also
known from the historical data. As a result, we would have
a supervised machine learning problem, in which the vari-
ables are the likelihood values, and the label is the class of
outages (i.e., 0, 1, 2+).

With the aforementioned context, the main objective
here would be to predict different classes of outages cor-
rectly while the minimum number of alarms is issued.
An alarm is issued when the model predicts either one out-
age or two or more outages. Since the occurrence of lightning-
related outages is not very frequent, the majority of the alarms
turn out to be false. Therefore, it is crucial to build a classifier
that minimizes the false alarm ratio while enabling the outage
instances, especially, two or more outages to be detected
correctly as much as possible. Hence, the metric that we
use to build and evaluate our classifier would be the outage
detection rate. This metric, which is also known as recall

. . tp .
value, is defined as o For each class of outage, the p is

the number of true positives (i.e., outages detected correctly)
and fn is the number of false negatives (i.e., misclassified
outages).

Therefore, there is a trade-off between the outage detection
rate score for different classes. In other words, if one intends
to predict all of the two or more outages correctly (i.e.,
maximizes the outage detection rate for that class), one might
get less accurate results on one outage class and one needs to
issue a great number of false alarms (i.e., outage detection
rate for two other classes decreases). On the other hand, one
can obtain very good results for one outages; however, one
might see an increase in false alarms for zero outages and
two or more outages. In order to deal with this trade-off
problem, we suggest setting different threshold values for
the outage detection rate of different classes. For example,
we could assume that the classifier should be able to deliver
an outage detection rate of greater than 0.7 for two or more
outages and a detection rate of greater than 0.5 for one outage.
These values could be customized by the user.

One challenge with regards to the classification problem
defined here is the presence of imbalanced classes. The
majority class of outages is zero outages. The occurrence
of one outage class is significantly smaller and the occur-
rence of two or more outages is rather infrequent. While the
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occurrence of one or two or more outages is considerably
small, they are of interest to the utility company, and there-
fore an appropriate model should be able to identify them
correctly as much as possible. Such a difference between the
occurrence of classes is known as an imbalanced problem.
Imbalanced class distribution of a data set is problematic as
it can result in biased predictions and misleading accuracy
for most classification learners [18]. A quantitative result is
provided in Section VII to demonstrate the impact of the
imbalanced problem.

In order to address the imbalanced problem, a variety
of methods has been proposed. These methods could be
categorized under three well-established approaches of data-
level, algorithm-level, and cost-sensitive learning [18]. In this
study, we employ the algorithm-level approach to tackle the
imbalanced problem. In this approach, a bias is introduced in
the objective function of classifiers to give different weights
to the majority and minority classes. In fact, the level of
imbalance is very significant; as a result, data-level approach,
especially generating synthetic data, won’t be practical.
Moreover, we would like to develop a classifier that has the
ability to be customized by the user. In other words, we would
like the user to have the ability to give customized importance
to different classes with a flexible degree and desired outage
detection rate. This is perfectly possible in the algorithm-level
approach.

In order to carry out the classification task, we use the
logistic regression as our baseline model. Logistic regres-
sion is among the most well-established classifier algorithms.
While there could be several other choices; considering the
size of the data set and the number and type of features,
logistic regression would suffice for this problem. Especially,
the loss function of the logistic regression could be easily
modified to tackle the imbalanced problem. It is worth men-
tioning that some other models such as neural networks have
the same ability and therefore the analyst should examine
which algorithm suits the problem the best.

In logistic regression, the assumption is that all classes
(i.e., primarily two classes) are equally important and hence
have the same weight (i.e., importance) and the objective is to
minimize a log loss function (formulation available in [15]).
However, in a weighted logistic regression, the importance of
the classes is different and therefore different classes have dif-
ferent weights associated with them. Considering the weight,
w, the generic log loss function of the logistic regression can
be re-written as (2):

n—1
logLoss = — Z[w -yi - log(f (i) + (1 —w)
i=0

(L =yi) - log(1 = fxi)]  (2)

where, y; is the actual class, f(x;) is the predicted class, and n
is the number of observations.

It should be noted that logistic regression is a binary
classifier, meaning that it cannot handle target vectors with
more than two classes. To make the multi-class classification
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FIGURE 5. Procedural flowchart of the proposed classifier.

possible, the logistic regression should be used in a procedure
known as one-vs-all [19]. Moreover, in order to avoid the
over-fitting problem, the L2 regularization terms, with the
rate of A [14], should be added to the aforementioned loss
function.

The weighted logistic regression would be the cornerstone
of our classifier. However, to build a robust model, general
steps such as data pre-processing, creating training and test-
ing sets, tuning hyper-parameters through cross-validation,
etc. have to be performed as well. The complete procedure
for building the classifier is demonstrated in the flowchart
shown in Fig. 5. Several points should be made regarding the
procedure as follows:

1) Data pre-processing includes handling missing data
and outliers and normalizing the data, if necessary.

2) The data is split into training and testing sets in a way
that the proportion of classes in both sets is similar
(A.K.A,, stratified splitting)

3) The hyper-parameters of the logistic regression model
include three weights (w) for classes as well as regular-
ization rate (1), and are tuned through cross-validation.
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TABLE 4. Results of case study 1.

Model / Outage 0 1 2 3 4 5
RF 099 | 003 | 02 | 025 ] 02 |0
NB 097 | 02 | 026 | 0.25 0 0
LR 094 | 0.39 | 0.27 | 0.25 0 0

4) The threshold value for the outage detection rate for
different classes could be customized by the user to
satisfy the desired outage detection rates. If the outage
detection rate for the critical classes (i.e., two or more
outages and one outage) is greater than the desired
thresholds, the hyper-parameters would be stored.

5) The best model is the one which satisfies the desired
thresholds for the critical classes and has the highest
outage detection rate for class 0.

6) The ability of the model to generalize is evaluated using
k-fold cross-validation as well as its performance on the
testing set.

The proposed algorithm allows predicting outages with a
desired detection rate for critical classes. The effectiveness of
the proposed approach is demonstrated through a case study
(third case study) in the next section.

VII. CASE STUDIES

In order to quantitatively show the practical issues that were
discussed with regards to predicting lightning-related out-
ages and to demonstrate the effectiveness of the proposed
approach, we will provide three case studies as follows.

A. CASE STUDY 1 (BENCHMARK RESULTS)

As explained earlier, clustering outages into a few manage-
able groups (three groups in this study) seems necessary
to obtain the best possible predictive performance. In fact,
we showed that attempts to predict the exact number of
outages could lead to a low degree of performance especially
when the number of outages is large. We, also, argued that this
problem exacerbates because of the imbalanced problem.

In order to show the impact of the aforementioned issues,
we will carry out a case study. In case study 1, we do
not cluster the outages; additionally, we skip the proposed
probability model for calculating the likelihood of outages.
We utilize three well-known machine learning classifiers:
Random Forest (RF), Naive Bayes (NB), and Logistic
Regression (LR) (not weighted) and feed them two main
inputs of area number (categorical variable) and the num-
ber of thunderstorm events on a daily basis. We, then, tune
necessary hyper-parameters through 10-fold cross-validation.
The objective is to predict the exact number of outages (i.e.,
zero to five). In order to explore the performance of the
model, we again utilize a 10-fold cross-validation procedure
and obtain the average outage detection rate for each class
(i.e., zero to five in this case study), in which the results are
provided in Table 4.

The results clearly highlight the impact of the aforemen-
tioned issues. In fact, as seen, the outage detection rate for
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TABLE 5. Results of case study 2.

Model / Outage 0 1 2+
RF 099 | 0.15 | 0.36
NB 096 | 0.31 | 0.40
LR 096 | 0.17 | 0.53

large values of outages is very low, even in some cases is
zero. Moreover, due to the imbalanced problem, the models
are biased toward the majority class (i.e., zero outage) and
therefore deliver very low outage detection rate for minority
classes (i.e., outage instances).

B. CASE STUDY 2 (IMBALANCED PROBLEM)

In this case study, we cluster outages to three groups (i.e., 0,
1, 2+) and we calculate the likelihood values for each group
of outages. We, then, utilize the likelihood values and feed
them to the three aforementioned classifiers to predict the
class of outages. However, in order to show the impact of the
imbalanced problem, we do not take any action to deal with
that problem. Tuning the hyper-parameters and assessing the
performance of the model are carried out through the 10-fold
cross-validation again. The results (i.e., outage detection rates
for three classes) are provided in Table 5.

As seen in the table, clustering the outages improves the
outage detection rates compared to the first case study. How-
ever, still, the models are biased toward the majority class
(i.e., zero outage) and therefore deliver poor results for one
outage and two or more outage classes.

C. CASE STUDY 3 (PROPOSED APPROACH)

In this case study, we implement the proposed approach and
demonstrate its success in addressing the aforementioned
issues. We again cluster outages to three groups (i.e., 0, 1,
2+) and we calculate the likelihood values for each group of
outages. We, then, utilize the likelihood values (i.e., outage
likelihood dataset) and feed those to the proposed classifica-
tion algorithm illustrated in Fig. 5. The threshold values that
we consider for our most important class (i.e., two or more
outages) is 0.85 and for our second important class (i.e., one
outage) is 0.55. This means that we tune the weights such that
we make sure to obtain those outage detection rate values on
the cross-validation. The performance of the model (outage
detection rates) is also evaluated on 10-fold cross-validation
as well as on the testing set (30% of the whole data), where
the results are provided in Table 6.

As seen in the table, by optimally tuning the weight values
(w) for different classes, we are able to obtain outage detec-
tion rates that satisfy defined threshold values. As mentioned,
there is a trade-off between outage detection rate values of
different classes. In this case study, we placed the highest
importance to two or more outage class (i.e., outage detection
rate of 0.85) and lower importance to one outage class. As a
result, some of the one outage instances are misclassified in
favor of two or more outages, as the model is intentionally
biased towards two or more outages, which represent the
severest of outages.
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TABLE 6. Results of case study 3.

Set / Outage 0 1 2+
CV 0.82 | 0.57 | 0.85
Test 0.81 | 0.55 | 0.86

One important observation that demonstrates the remark-
able performance of the proposed approach is the outage
detection rate obtained for zero outage instances. In fact,
even though the classifier is intentionally biased to outage
instances, it is able to detect zero outage observations with a
high score of 0.82. This means that the number of false alarms
issued by the model is significantly small. Another obser-
vation that proves the superior performance of the proposed
approach is high outage detection rates that are obtained on
the testing set (unseen data while developing the model). The
values obtained on the testing set are significant and very
similar to those obtained on cross-validation, demonstrating
that the model is tuned properly. This indicates that the model
is not over-fitting or under-fitting and is able to generalize
very well.

VIil. CONCLUSION

A data-driven approach was proposed for predicting
lightning-related outages in power distribution systems on a
daily basis. Based on this study, the following conclusions
can be drawn.

1) Inorder to develop a practical approach, records of out-
ages and weather-related factors (thunderstorm events)
should be obtained and processed.

2) A key step in building a realistic approach is to ade-
quately define the extent of the predictions’ target area.
Aggregating substations and creating broader geo-
graphical areas by using clustering algorithms seems
a workable solution for this purpose.

3) In order to obtain the best possible predictive perfor-
mance, lightning-related outages should be categorized
into a few manageable groups.

These groups exhibit distinguishable characteristics
with regards to the number of thunderstorm events.

4) To find the likelihood of groups of outages (i.e., 0, 1,
2+) given a certain number of thunderstorm events and
a specific area in the system, the binomial probability
model is an adequate model.

5) An important issue that should be addressed to build a
successful predictive model is the imbalanced problem.
The weighted logistic regression model can handle this
problem and can deliver an appropriate classification
of different groups of outages.

Although many different pieces of information pertaining
to lightning-related outages were examined in this study,
we did not account for all possible factors due to lack
of access to related data. Therefore, the performance of
the proposed approach may be improved by the inclusion
of additional climatological and geographical information
(e.g., satellite data for more accurate identification on
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thunderstorm events, or some electrical characteristics of
lightning and its intensity, or protection level of the system).
In fact, all the advantages of the proposed approach are built
upon generic outage data collected by utilities, and typical
daily weather forecast data, which is publicly available. This
fact makes the implementation of the approach easily attain-
able within a great level of performance. It should be noted
that the results presented in this study are system dependent.
Different distribution systems may experience different pat-
terns of lightning-related outages. Nevertheless, the proposed
approach can be applied to any distribution system.
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