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Abstract

We investigate changes in human c-type lysozyme flexibility upon mutation via a Distance Constraint Model, which gives a
statistical mechanical treatment of network rigidity. Specifically, two dynamical metrics are tracked. Changes in flexibility
index quantify differences within backbone flexibility, whereas changes in the cooperativity correlation quantify differences
within pairwise mechanical couplings. Regardless of metric, the same general conclusions are drawn. That is, small structural
perturbations introduced by single point mutations have a frequent and pronounced affect on lysozyme flexibility that can
extend over long distances. Specifically, an appreciable change occurs in backbone flexibility for 48% of the residues, and a
change in cooperativity occurs in 42% of residue pairs. The average distance from mutation to a site with a change in
flexibility is 17–20 Å. Interestingly, the frequency and scale of the changes within single point mutant structures are
generally larger than those observed in the hen egg white lysozyme (HEWL) ortholog, which shares 61% sequence identity
with human lysozyme. For example, point mutations often lead to substantial flexibility increases within the b-subdomain,
which is consistent with experimental results indicating that it is the nucleation site for amyloid formation. However,
b-subdomain flexibility within the human and HEWL orthologs is more similar despite the lowered sequence identity. These
results suggest compensating mutations in HEWL reestablish desired properties.
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Introduction

Protein dynamics are intimately related to functional mecha-

nisms [1], and changes therein can lead to observable phenotypes

and disease [2]. These changes can be subtle. For example, a

change in the amplitude of dynamical signatures upon ligation can

lead to observable allosteric differences, even in the absence of

global conformational changes [3]. While comparative assessment

of structure and function is a long-standing paradigm within

proteins (e.g. [4,5,6]), comparisons of dynamics across orthologous

proteins are rare because experiments are labor intensive and

costly. In spite of these difficulties, the importance of such

comparisons has resulted in a small number of experimental

assessments [7,8]. Similarly, in their seminal paper, Lee et al. used

sidechain order parameters to assess the degree of conservation

across three PDZ domains [9], which identified nontrivial

conservation greater than expected by sequence similarity.

Therein, they further conclude that sidechain dynamics are

affected by nonlocal events, including correlated motions.

Unfortunately, the technical difficulties of performing these

experiments make comprehensive comparisons prohibitive.

Computational methods are promising alternatives to charac-

terize and compare protein dynamics across protein families

[10,11,12,13,14,15]. In addition to being much less costly than

experimental interrogations, computational methods are generally

able to characterize protein backbone and sidechain dynamics in

more detail than experimental means (depending upon the level of

coarse-graining). Nevertheless, the computational expense associ-

ated with traditional simulations methods continues to make

comprehensive analyses impractical [16]. To circumvent the cost

of simulation, we have developed an ensemble-based Distance

Constraint Model (DCM) [17,18] that is based on a Gibbs

ensemble of topological networks, where each network encom-

passes all atomic geometries that are accessible under the same set

of local constraints. Efficient rigidity graph algorithms [19,20,21]

characterize network flexibility when applied to a single network.

The DCM then averages over the thermodynamic ensemble to

characterize equilibrium properties. While the details can be found

elsewhere [17,18,22], the process of ensemble averaging requires

an accurate estimate of the free energy associated with each

network, which is based on a free energy decomposition approach

that explicitly takes into account nonadditivity within conforma-

tional entropy components [23,24]. The output of the DCM

provides quantified stability/flexibility relationships (QSFR)

[25,26], which is a high dimensional description of protein

thermodynamics, dynamics and their interrelationships. In all

works to date considering protein QSFR, we have employed a

minimal DCM (mDCM) that considers hydrogen bonds (H-bonds)

and native torsion forces as fluctuating interactions.

Much of our recent work has focused on development and

application of methods for comparing QSFR across protein

families. Across a mesophilic/thermophilic RNase H pair [26],
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four bacterial periplasmic binding proteins [27] and nine oxidized

thioredoxins [28], our results reveal an intriguing mix of

conservation and variation within protein flexibility, consistent

with experimental trends. As one might expect based on fold

conversation, we observe general conservation within backbone

flexibility. Conversely, pairwise residue-to-residue couplings are

highly sensitive to small protein differences. Going a step further,

we have also recently developed a perturbation method that

identifies allosteric sites based on changes to QSFR upon residue

confinement that also revealed a nuanced mix of conservation and

variation [29].

Using human c-type lysozyme as a model system, we now

establish how much a single mutation affects protein flexibility. We

analyze a dataset of 14 different point mutants that have been

characterized under a narrow window of experimental conditions

[30]. Somewhat surprisingly, we find that changes in flexibility

upon mutation are very common. In fact, the number of positions

with significant changes in flexibility characteristics is similar to the

number of positions without change. Additionally, these changes

can occur over relatively long distances, meaning they are

frequently allosteric in nature. Changes that lead to increased

backbone flexibility are slightly more common than changes that

lead to increased rigidity. This asymmetry primarily occurs

because many mutations lead to increased flexibility within

lysozyme’s b-subdomain. This result is noteworthy because several

investigations have concluded that amyloid forming mutations

lead to local unfolding in this region [31,32,33,34,35], which is the

site of amyloid nucleation.

Results

Intrinsic Flexibility of Wild-Type Lysozyme
Lysozyme, which is abundant in egg whites and secretions, is a

small (,130 residues) globular enzyme that hydrolyzes cell wall b
(1,4) glycosidic linkages. Human c-type lysozyme is a common

model system for protein structure/function investigations because

it is relatively easy to express and biophysically characterize. The

dataset of lysozyme mutants considered in this report was

constructed previously, where we used the mDCM to predict

mutant melting temperatures with an average error of 4.3% [30].

Going further, the primary goal of this investigation is to critically

evaluate the consequences of single point mutations on lysozyme

flexibility. However, before doing so, we must first quantify

wild-type lysozyme’s intrinsic flexibility characteristics to be used

as our reference point.

We define an average flexibility profile using a set of 7 different

human wild-type lysozyme structures. Therein, differences in

flexibility solely arise from differences in the X-ray crystal

structures. Moreover, the variability across the dataset establishes

a baseline precision for the calculated properties. Values within

61 standard deviation (61 s) from the mean of the wild-type set

are taken to be within background noise, and are thus deemed

equivalent. Fig. 1a plots the flexibility index (FI), which is an

mDCM output that characterizes local flexibility. Positive values

quantify flexible regions, whereas negative values quantify rigidity.

Additionally, the variability within FI across the 7 wild-type

structures is also shown. Fig. 1b maps the average flexibility

profile to structure (blue = rigid, whereas red = flexible). In general,

helices are mostly rigid, whereas spanning loop regions are mostly

flexible. The b-subdomain is marginally rigid, with some

interspersed flexibility. Lysozyme is composed of an a+b structure,

where the b-subdomain is attached to the core via a known hinge

region that is identified by the mDCM [18]. The flexible hinge

region and lysozyme’s two catalytic residues are also highlighted.

Most of the other flexible regions correspond to loops connecting

secondary structure elements.

A higher order description of protein dynamics is provided by

cooperativity correlation (CC), which characterizes correlated

motions and co-rigidity. Specifically, CC plots identify all pairwise

residue-to-residue mechanical couplings. Fig. 1c plots the CC for

the 2NWD structure, which is the closest to the geometric center

of the wild-type set. Blue coloring identifies co-rigid residue pairs

(meaning residue pairs with high probability of occurring within

the same rigid cluster), whereas red coloring identifies flexibly

correlated pairs (residue pairs within a correlated motion).

Mechanically decoupled regions are colored white. The per-pixel

variation across the wild-type set is plotted in Fig. 1d. Within

Fig. 1c, two prominent rigid clusters can be identified. The first is

composed of helices a1, a2, a4 and a5, whereas the second spans

the b-subdomain region (cf. Fig. 1e). The active site and

accompanying hinge motion corresponds to the cluster interface,

which allows the enzyme to close around its carbohydrate

substrate.

Changes in Backbone Flexibility upon Mutation
The primary goal of this report is to investigate changes in

lysozyme dynamics upon mutation. To that end, we analyze

changes in FI and CC that occur upon mutation. The profiles

defined above establish when a change in flexibility is significantly

above background noise. That is, a change in flexibility is

identified when the FI and/or CC value of a mutant position

occurs beyond the 61 s cutoff, otherwise no change is said to

occur. Fig. 2a plots the normalized change in FI (DFIn) for each

mutant where red indicates increased flexibility, and blue indicates

increased rigidity. Some common responses are identified

regardless of the details of the mutation. Interestingly, flexibility

increases frequently occur within the b-subdomain regardless of

mutation position, while an increase in rigidity within the b-

subdomain almost never occurs. Changes in the a -subdomain are

slightly less frequent with the most common responses having

increased rigidity within the a 1/a 2 loop and a 3-residue segment

of the a 4/a 5 loop.

Despite the above trends, many site-specific differences are

obvious. Binning the D FIn values across a collapsed dataset of all

14 mutants underscores this point. Fig. 3a indicates that the

dynamics are appreciably changed in 48.0% of the residues upon

mutation. Interestingly, the percentage of residues with increased

Author Summary

The functional importance of protein dynamics is univer-
sally accepted, making the study of dynamical similarities
and differences among proteins of the same function an
intriguing problem. While some metrics are likely to be
conserved across family, differences are also very common.
In previous works we have used a Distance Constraint
Model to quantify flexibility differences across sets of
orthologous proteins, which reproduce this diversity. In
the same manner, this work investigates changes occur-
ring upon individual point mutations. Somewhat surpris-
ingly, the small structural perturbations caused by
mutation lead to changes throughout the protein. These
changes can be quite large, actually surpassing the scale
for differences between ortholog pairs. Moreover, changes
in flexibility frequently occur at sites far from the mutation
site. These results underscore the sensitivity of protein
dynamics in connection with allostery, and help explain
why differences across protein families are so common.

Changes in Lysozyme Flexibility upon Mutation
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flexibility (28.0%) is slightly more than the percentage with

increased rigidity (20.0%). This result makes intuitive sense

because all but one of the mutants decreases structural stability.

We segregate moderate flexibility changes from large changes

using a cutoff of 62 s. Percentages of large increases in flexibility

are slightly more than large increases in rigidity (11.8 vs. 7.0%).

Based on the 61 s definition of the ‘‘no change’’ background

profile, the null expectation is that 68.2% of the positions should

have ‘‘no change.’’ Further, moderate changes within 1 to 2

standard deviations, and large changes greater than 2 standard

deviations, have null expectations of 13.6% and 2.3%, respective-

ly. Fig. 3a clearly indicates that we observe more changes in FI

than this random expectation. Using the chi-square statistic, the

differences within the observed and random expected histograms

are strongly significant (cf. Table 1). That is, changes in flexibility

upon mutation are more common than the background variation

across the set of wild-type structures.

Using the same coarse-grained color scheme as Fig. 3a, the first

column in Figs. 4–5 color-codes the mutant lysozyme structures

by D FIn values. In each, the structures are shown in nearly

identical orientations, and the mutated residue, Glu35 and Asp53

are rendered in spacefill view to orient the viewer. In addition to

highlighting the frequency of changes in flexibility or rigidity upon

mutation, this figure emphasizes that changes can be quite long-

ranged. For example, the I59S mutation, which occurs within the

b-subdomain portion of the active site cleft, affects the most distant

portions of the structure. Even more pronounced is the P71G

mutation. The mutation site is located on the outmost reach of the

b-subdomain, yet it causes helix a 4 at the hinge and the a 4/a 5

loop within the main core of the protein to significantly rigidify.

Concurrently, the b-subdomain and helix a 5 become much more

flexible.

Changes in Cooperativity Correlation upon Mutation
Going further, Fig. 6 shows the normalized changes in

cooperativity correlation (DCCn) upon mutation, which reveals a

much more rich and interesting set of changes in flexibility. Again,

we characterize the degree of change with respect to the mean

wild-type CC values using the same standard deviation ranges as

above. Across all mutants, an increased correlated flexibility is

observed in 42.7% of the CC values. Interestingly, the bias

towards increased correlated flexibility observed in D FIn is not

present. Rather, D CCn results are skewed in the opposite

direction (cf. Fig. 3a). Specifically, increased rigidity correlation is

Figure 1. Intrinsic flexibility characteristics for lysozyme are shown. (a) The average flexibility index (FI) across a set of seven wild-type
lysozyme structures is plotted versus residue number (solid line). The dashed lines indicate 61 s, which defines the noise range within the quantity.
(b) Lysozyme is color-coded according to average FI values in panel (a), where red regions indicate flexibility (FI.0) and blue indicates rigidity (FI,0).
(c) The cooperativity correlation profile of 2NWD identifies all pairwise mechanical couplings. Red indicates residue pairs within the same correlated
motion, whereas blue indicates residues within the same rigid cluster. White indicates no mechanical coupling. Panel (d) shows the relative per pixel
standard deviation across the wild-type set where darker color represents a greater value. There are two large rigid clusters identified in panel (c),
which are highlighted in panel (e). The first (green) is defined by helices a1, a2, a4 and a5, whereas the second (red) corresponds to the b-subdomain.
The active site is located at the cluster interface, and the hinge motion indicated in panel (b) allows the enzyme to close around its substrate.
doi:10.1371/journal.pcbi.1002409.g001

Changes in Lysozyme Flexibility upon Mutation
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observed in 29.5% of the D CCn values, whereas only 13.2% have

increased flexibility correlation. This asymmetry stresses the

physical distinction between the two metrics. While the D FIn

results describe changes in backbone flexibility within a localized

region, D CCn identifies changes in pairwise mechanical couplings

that uncover cooperative effects. The results from our dataset

indicate that most of the increases in backbone flexibility are

localized, frequently within the b-subdomain (with Y45F and

V74A being the primary exceptions). Put otherwise, the local

increases in flexibility identified by DFIn are largely decoupled

from other motions, which is why D CCn does not show a large

increase in correlated flexibility. Conversely, the increased rigidity

correlation across the dataset indicates that most of the increases in

backbone rigidity are frequently coupled to other rigid regions

throughout structure.

As with DFIn, the differences in DCC and the null expectation

are strongly significant (cf. Table 1). Another key deviation from

the DFIn results is the high variability across the set of mutants. For

example, the Y54F mutant has little overall affect on the set of

mechanical couplings within lysozyme. Conversely, the same

mutation at position 45 leads to a large increase in flexibility

correlation, whereas the YRF mutations at positions 38, 63, and

124 slightly increase co-rigidity. A similar juxtaposition occurs

within the VRA mutations. V74A drastically increases correlated

flexibility; however, V2A has the opposite affect by drastically

increasing correlated rigidity. While these cases represent nearly

homogenous changes in CC, most of the remaining mutants have

a mix of both increased correlated flexibility and correlated

rigidity. Taken together, the large and diverse mutant-specific

changes within the DCCn results underscore the high sensitivity of

the metric, which we have discussed previously [26,27,28].

It is technically difficult to exhaustively compare all changes

because the two-dimensional nature of the data precludes linear

descriptions along the lysozyme sequence. As such, we extract for

further analysis strips of DCCn values from the full plot for a single

residue point of reference. Here, we examine DCCn with respect

to the mutation site and the two catalytic residues. These results

are reported alongside the DFI values just discussed in Figs. 2–5,

which underscores the richness within DCCn. For example,

changes in CC with respect to Glu35 are common. Moreover,

they can be quite large and frequently propagate over long

distances. The same is true for DCCn with respect to the mutation

site. On the other hand, changes with respect to Asp53 are

somewhat suppressed, yet still statistically significant. These cases

emphasize that the extent and location of changes within the

mechanical couplings is dependent upon the reference point.

Similar types of differences are observed when examining DCCn

from other points of reference.

Flexibility Is Distinct from Mobility
Protein dynamics can be quantified in many ways. Therefore, it

is important to distinguish flexibility from mobility. From rigidity

theory, flexibility indicates that a network is deformable, but it

need not be mobile. For example, a stationary pivot of a swinging

Figure 3. Flexibility response histograms are shown. Across a
collapsed dataset constructed from all 14 mutant structures, each
residue is binned based on changes to QSFR properties. The bins are
color-coded by: green = no change, cyan and blue = moderate and large
increases in rigidity, and orange and red = moderate and large increases
in flexibility. In each panel, the bin order is conserved and indicated at
the right. Panel (a) plots the null expectation histogram (highlighted
with diagonal hashing) alongside the overall changes in flexibility index
and cooperativity correlation. Panel (b) plots changes in cooperativity
correlation with respect to specific residues: the mutation site, Glu35
and Asp53. Finally, panel (c) re-plots the null expectation alongside
changes in B-factors (with and without median normalization).
doi:10.1371/journal.pcbi.1002409.g003

Table 1. Statistical significance of the observed histograms.

Flexibility metric p-value

DFIn 9.1E-212

DCCn (all positions) 0.00

DCCn (Glu35 only) 1.6E-122

DCCn (Asp53 only) 2.7E-4

DCCn (mutation site) 1.8E-237

DBm 2.6E-24

DBr 2.4E-22

Bin sizes within the expected histograms are defined from the variation across
the set of wild-type structures: large changes .62 s, moderate changes are
61–2 s, and no change is between 61 s, from which background bin
probabilities are calculated. The chi-square statistic is use to compare the
expected and observed histograms, and the reported p-values quantify the
probability that the histograms are equivalent. In all cases, the histograms are
determined to be statistically distinct from the null expectation.
doi:10.1371/journal.pcbi.1002409.t001

Figure 2. Comparison of backbone flexibility and changes across the dataset are shown. Panel (a) plots changes in DFIn for each mutant
relative to the wild-type structure. In the same manner, changes in cooperativity correlation (CC) with respect to the mutation site, Glu35 and Asp53
are respectively plotted in panels (b), (c) and (d). Panel (e) plots changes in the median normalized B-factors across the dataset.
doi:10.1371/journal.pcbi.1002409.g002

Changes in Lysozyme Flexibility upon Mutation
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pendulum is highly flexible, but not mobile. On the other hand,

the end of the pendulum can simultaneously be rigid and highly

mobile [22]. Because of this physical distinction, it is useful to

benchmark how mobility changes upon mutation. To that end, we

compare changes in a-carbon atomic displacement parameters (B-

factors) of each mutant structure to the wild-type profile. However,

before doing so, it should be stressed that caution must be

employed when analyzing B-factors in terms of mobility because

protein crystals are not homogeneous. That is, protein structure B-

factors reflect both temporal (i.e., mobility) and spatial disorder

across the crystal lattice. B-factors are quantitatively affected by

occupancies. Occupancies less than one can be an indication of

disorder, but lead to improved R-factors [36]. As such, even when

multiple structures have the same space group, direct comparisons

of B-factors reflect substantially more than just differences in

mobility. Thus, using B-factors to reflect mobility is only truly

accurate when all other error sources have been removed. To help

mitigate some of these caveats, we normalize B-factors using the

median-based method of Smith et al. [37].

After normalization of the a-carbon B-factors within each

structure, we calculate the wild-type background profile in the

same way as above. Subsequently, normalized B-factors from each

mutant structure are compared to the normalized wild-type profile

using the same s ranges as above in order to classify no change,

compared to moderate and strong changes. Surprisingly, the

histogram of median normalized B-factor changes (DBm) (Fig. 3c)

is substantially different from the flexibility changes. Specifically,

there are fewer changes in B-factors than one would expect based

on the wild-type profile. This suppression of changes is statistically

significant (cf. Table 1). Moreover, there is no correlation

between the DFIn quantities and DBm values (results not shown),

underscoring the differences between flexibility and mobility.

Despite the cautionary note above about B-factor comparisons, we

also compare the raw B-factor changes (DBr) to determine if

normalization is biasing the results. Fig. 3c also shows that there

are no appreciable differences between the DBm and DBr

histograms. For completeness, the DBm values are reported

alongside the DFIn and DCCn results in Figs. 2–5. No correlation

is found using raw data as well.

Structural Considerations of the Flexibility Changes
Table 2 counts the number of residue responses that occur for

a given solvent accessibility and distance separation (mutation a-

carbon to response a-carbon) range. The collapsed dataset of all

residues is stratified by solvent accessibility for both the response

(top) and mutation (bottom) sites. In each case, exposed, moderate,

and buried respectively corresponds to the top, middle, and

bottom thirds of all relative solvent accessibilities, which maintains

similar observations in each stratum for the response and mutation

sites. The DFIn bins again correspond to those in Fig. 3.

Interestingly, in both cases solvent accessibility has little effect on

the response rate. In all cases but one, the ratio of changes to no

change is approximately one. That is, a change in flexibility is

generally as frequent as no significant change. Note that we focus

on the ratio of changes because this normalizes out the size

discrepancies — the strata corresponding to larger distances will

naturally have bigger counts simply because there are fewer

residues close to the mutation compared to farther away. The one

noticeable exception to this general trend is when the mutant

residue is solvent exposed, for which there is a significant decrease

in flexibility changes. This relative lack of effectiveness in causing a

change in flexibility makes intuitive sense because solvent exposed

positions are naively expected to be more tolerant to mutation due

to reduced steric constraints.

Table 2 additionally provides statistics comparing structural

features of the response and mutation sites. First, the dataset is

stratified by secondary structure. As discussed above, there is a

slight reduction in the relative response rate for a-helical positions.

Conversely, there is slight increase in the b-strand positions, which

is strongly skewed towards increases in flexibility. Table 2 also

provides statistics for the a- and b-subdomains, which parallels the

secondary structure results. That is, the b-subdomain is highly

susceptible to increased flexibility upon mutation. Conversely, a

mix of changes in the a-subdomain commonly occurs, albeit at a

rate slightly lower than no change. Interestingly, the ratios are

more similar (,1) across secondary structure and subdomain

boundaries when focusing on the mutation site, with coil residues

being the sole exception. Mutation of coil residues tends to have a

decrease in the relative response rate, which simply reflects the

same observation above for mutation of solvent exposed residues.

The ratios for DCCn are qualitatively similar, albeit slightly less

across the entire dataset. The average ratio for DCCn is ,0.7,

meaning a lack of change in CC is more common than a change.

Nevertheless, changes in CC that have been observed as general

trends in prior work [26,27,28] are observed here as evident in

most cases within Fig. 6, where drastic changes usually appear

within a small number of strips. However, there are certain cases

(i.e., V2A, Y45F, and V74A) where virtually the whole CC plot is

affected.

Discussion

Changes in Flexibility upon Mutation Are Common and
Large

In previous reports, we have investigated how familial

divergence affects protein dynamics and, as a consequence,

allostery. Our initial work along these lines compared a mesophilic

and thermophilic RNase H pair [26], which reproduced

experimental conclusions regarding the balance between molec-

ular flexibility and thermodynamic stability [38,39,40,41]. Subse-

quently, we expanded our comparisons to 4 bacterial periplasmic

binding homologs [27] and 9 oxidized thioredoxin structures [28].

Taken together, our collective results suggest an intriguing mix of

conservation and variability within stability and flexibility.

Pairwise mechanical couplings that provide a higher order

description of flexibility and rigidity are generally sensitive to

small differences. The latter result highlights how small structural

variations are amplified into global differences as mechanical

couplings propagate through the network.

In addition, we have linked mechanical and thermodynamic

response to allostery, where a perturbation method is used to

identify putative allosteric sites [29]. Therein, we introduce a small

number of constraints to mimic the effect of ligand binding, from

which new QSFR properties are calculated using the same

structure. Large changes in QSFR metrics indicate an allosteric

response. Application of this method to 3 CheY orthologs indicates

Figure 4. The affects of mutation on protein flexibility are mapped to structure. The five columns correspond to DFIn, DCCn with respect to
Glu35, DCCn with respect to Asp53, DCCn with respect to the mutation site, and DBnorm. In all cases, the histogram bins in Fig. 3 define the coloring
schemes. The orientation of each protein is nearly identical across the figure. In each structure the catalytic pair (Glu35 and Asp53) and the mutated
residue is rendered in spacefill. Importantly, this figure emphasizes the long-range nature of the response.
doi:10.1371/journal.pcbi.1002409.g004

Changes in Lysozyme Flexibility upon Mutation
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Figure 5. Continuation of Fig. 4 using the same coloring scheme and structural orientation.
doi:10.1371/journal.pcbi.1002409.g005
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that the most conserved response occurs within the b4/a4 loop,

which is known to be important to propagation of the CheY

phosphorylation signal [42,43], yet residue-level response is quite

variable, leading to the conclusion that allosteric response is both

variable and conserved across the CheY family. The variability in

DCC observed above further demonstrates diversity and sensitivity

of allosteric response, which is consistent with observed variations

within allosteric response across protein families (cf. [44] and

references therein).

The ubiquity of differences observed across sets of orthologous

proteins, which is consistent with myriad experimental results,

leads one to wonder about the origins of the familial divergence.

That is, how many mutations are needed to observe significant

differences in protein dynamics? As such, using human c-type

lysozyme as a model system, this paper quantitatively assesses the

differences in protein flexibility that occur upon individual point

mutations. In spite of the rather small structure differences, it is

common for changes in flexibility to occur throughout structure,

including at locations remote from the mutation site. As indicated

by the histograms in Fig. 3a, changes in both flexibility metrics

are common. Specifically, while no change is the most frequent

response, 42–48% of the residues undergo an appreciable change

upon mutation. These distributions are obtained by sampling a

collapsed dataset composed of all residues for each protein in the

dataset (or as a variant to the method, across the entire protein

except for a local window centered on the mutation site). This

means that it is not the case that one particular mutant will make

virtually no change, whereas another will make a large change.

Rather, a typical mutant includes many sites with increased

flexibility and increased rigidity throughout the protein. Exactly

where the changes occur has a great variance in general, but the

statistical expectation of having compensation between one part of

the protein increasing in rigidity while another part of the protein

increases in flexibility seems very consistent across our dataset.

The percentage of positions leading to increased backbone

flexibility (27.9%) is slightly greater than the percentage increasing

rigidity (20.0%). In summary, changes in backbone flexibility upon

mutation are common, where local changes across the protein are

typically composed of comparable amounts of an increase and

decrease in flexibility distributed throughout the protein. Essen-

tially, the protein is maintaining a global level of marginal

mechanical stability within the native state at the melting

temperature of the mutant. Changes in CC are also common;

however, the differences between increased flexibility and

increased rigidity are more asymmetrical. As discussed above, it

is found that flexibility increases upon mutation tend to be

localized, whereas increases in rigidity are likely to be coupled to

remote structural sites. This result is not a matter of simple

statistical chance that as more regions become rigid, the tendencies

of these regions to coalesce into larger rigid regions increase.

Rather, the increase in co-rigidity is counter-intuitive based on this

reasoning, since there is an overall decrease in rigidity across the

protein upon most mutations. This simultaneous effect suggests

sparse and ramified rigid pathways are carved out by the

mutations, which is critical to maintain marginal mechanical

stability within the protein at its melting temperature. Here,

critical means that further degradation of this pathway is likely to

lead to unfolding as rigidity in the protein is lost [45].

To further support the conclusion that changes in flexibility

upon mutation are common, we also assess the flexibility

differences between human wild-type and hen egg white lysozyme

(HEWL). Fig. 7a compares changes in HEWL backbone

flexibility (relative to human wild-type) to the mutant changes

summarized above. Surprisingly, the number of differences

between the two orthologs is generally slightly less than observed

within the mutant dataset. While, on average, 48.0% of the

mutant positions have a change in FI, only 41.1% of the HEWL

positions changes. Although there is relative decrease in number of

flexibility differences, the number of changes that do occur is

statistically significant (p = 2.0E-7). Moreover, the scale of the DFI

values for HEWL falls within the variation across the human

mutant dataset despite the fact that the pairwise sequence identity

is only 61%. That is, even with a significantly reduced sequence

identity, there are no wholesale differences in flexibility. Put

otherwise, the changes in backbone flexibility within the mutant

structures are clearly large since they are on the same scale as the

much more divergent HEWL ortholog. Similarly, the HEWL

DCCn results (Fig. 7b) are also easily within the mutant dataset

range established in Fig. 6.

It is worth noting that our dataset composition is inherently

biased towards rigidity. That is, the studied mutations are all

amendable to crystallography, which eliminates many possible

mutations that destabilize the structure so much that it is too

flexible to form a crystal lattice. As such, our conclusions regarding

the frequency and extent of flexibility changes would be even

greater if it were feasible for us to study all possible mutations

because extreme increases in flexibility upon mutation are actually

underrepresented in our dataset.

Changes in Flexibility Can Be Long-Ranged
We have segregated responses into moderate and large changes

(cf. Fig. 3). As expected, moderate changes are the most common,

but large changes in FI and CC also occur frequently (respectively,

18.3 and 13.5% of the time). While the definition distinguishing

between moderate and large is somewhat arbitrary, the ubiquity of

large changes is clearly shown in Fig. 2. Moreover, large changes

in backbone flexibility can occur anywhere in structure, but some

clustering is evident. Specifically, large increases in rigidity are

more likely to occur within the a1/a2 and a4/a5 loops, whereas

large increases in flexibility tend to occur within the b-subdomain.

Conversely, there is little clustering of CC response. These two

opposing observations further emphasize our previous results that

FI is strongly related to overall structural topology, whereas CC is

highly sensitive to small differences within the H-bond network

[27].

The visual survey of the first column in Figs. 4–5 shows that

changes in flexibility are rarely localized around the mutation site,

but rather generally propagates over long distances. This

observation is confirmed by the counts in Table 2. However,

skewness in raw counts can be expected by the increased number

of sites that are present in the strata corresponding to larger

distances. Interestingly, the ratio of changes to no change for short,

medium and long distances are all nearly equal to one (with the

two exceptions explained above in the results section). The

similarity in the ratios is somewhat surprising because the naı̈ve

expectation is that short-range changes would be much greater

Figure 6. Cooperativity correlation (CC) difference plots show the differences in pairwise mechanical couplings between each
mutant structure and the wild-type reference. Red indicates increased correlated flexibility within the mutant structure, whereas blue indicates
increased correlated rigidity. Juxtaposed to the DFI results that show significant uniformity within their response, the DCCn values are highly variable
across the set of mutants.
doi:10.1371/journal.pcbi.1002409.g006
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than long-ranged due to dampening effects. As such, these results

indicate that changes in protein flexibility upon mutation can be long-ranged.

Upon further statistical analysis, it is found that the ratios are not

regimentally affected by solvent accessibility of the mutation or

response site. In addition, the distance between the mutation-

response pair has no systematic affect, meaning that neither

Table 2. Residue response statistics.

Large rigidity
increase

Moderate rigidity
increase No change

Moderate flexibility
increase

Large flexibility
increase Ratio

Distance from response site = 0 to 8 Å

Buried 3 7 26 7 17 1.31

Moderate 1 5 30 10 12 0.93

Exposed 1 3 21 8 12 1.14

Union 5 15 77 25 41 1.12

Distance from response site = 8 to 16 Å

Buried 24 38 130 28 31 0.93

Moderate 9 31 130 35 27 0.79

Exposed 9 9 81 36 18 0.89

Union 42 78 341 99 76 0.87

Distance from response site$16 Å

Buried 25 41 155 53 23 0.92

Moderate 23 49 174 49 29 0.86

Exposed 32 54 200 68 46 1.00

Union 80 144 529 170 98 0.93

Structural characterization of response site

Helix 95 170 553 117 45 0.77

Strand 1 4 51 30 26 1.20

Coil 31 63 343 147 144 1.12

a-Subdomain 115 220 693 177 69 0.84

b-Subdomain 12 17 254 117 146 1.15

Mutant residue is buried

0–8 Å 4 9 33 9 16 1.15

8–16 Å 32 52 145 41 25 1.03

$16 Å 28 37 153 41 25 0.86

Union 64 98 331 91 66 0.96

Mutant residue moderately exposed

0–8 Å 0 4 23 14 17 1.52

8–16 Å 5 18 108 39 40 0.94

$16 Å 22 58 175 78 49 1.18

Union 27 80 306 131 106 1.12

Mutant residue is exposed

0–8 Å 1 2 21 2 8 0.62

8–16 Å 5 8 88 19 11 0.49

$16 Å 30 49 201 51 24 0.77

Union 36 59 310 72 43 0.68

Structural characterization of mutant residue

Helix 25 40 133 33 29 0.96

Strand 28 45 180 84 53 1.17

Coil 74 152 634 177 133 0.85

a-Subdomain 65 120 408 108 79 0.91

b-Subdomain 62 117 539 186 136 0.93

Each cell counts the number of residue responses (DFI) that correspond to a given solvent accessibility range (or structural element) for a given distance to the mutation
site. The collapsed dataset of all residues is stratified by response residue solvent accessibility in the top half of the table, whereas the collapsed dataset is stratified by
mutation site solvent accessibility in the bottom half. The ratio value in the last column is the number of residues with altered flexibility divided by the number of
residues with no change.
doi:10.1371/journal.pcbi.1002409.t002
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structural distance nor solvent accessibility has a large biasing

affect on the results. The sole exception being that mutations at

solvent exposed positions is less likely to lead to changes in

flexibility. Note that there are insufficient data to perform a

statistically significant two-dimensional stratification that considers

both response residue and mutant accessibilities.

Relating Computational and Experimental Observations
Our results collectively indicate that point mutants cause a rich

and diverse set of flexibility changes throughout structure.

Generally, changes in both flexibility and rigidity within the

protein upon mutation occur concurrently to maintain marginal

mechanical stability at the new melting temperature. Many

changes are localized, but significant portions propagate over

surprisingly long distances. While we cannot make a direct

quantitative comparison to experimental results because the

observed response properties are fundamentally distinct, changes

in NMR order parameters show similar response richness. For

example, many reports have used N-H S2 order parameters to

demonstrate that changes in backbone dynamics can be quite

large upon mutation (e.g., see [46,47,48,49,50]), yet the magnitude

of the changes are generally within the scale wild-type order

parameter distributions [51]. The observed changes in backbone

flexibility are qualitatively equivalent (cf. Fig. 7). Moreover,

localized increases in dynamics have been observed despite

globally similar average structures [52] and stabilities [53] between

the wild-type and mutant proteins. Particularly noteworthy are

experimental results that mirror the complexity that we uncover

on lysozyme on two additional small model-system proteins. First,

concurrent increases in dynamics and rigidity have been

demonstrated in the V54A Eglin c mutant [54], which epitomizes

the changes in lysozyme flexibility within in Figs. 2 and 4–5.

Second, long-ranged changes in dynamics have been observed

within the F22L and A20V mutants of protein L [55], which is

again shown for changes in lysozyme flexibility in Table 2.

Methyl sidechain S2 order parameters characterize ps-ns

timescales, whereas backbone S2 order parameters characterize

slower motions. While the DCM does not model dynamical

timescales per se, experimental investigations that probe both

further underscore the complexity and long-range nature of

changes in protein dynamics upon mutation. For example,

Igumenova et al. demonstrated that calmodulin backbone

dynamics are largely unchanged upon mutation [56]. However,

sidechain motions are significantly altered by the D58N mutation

in the Ca+-binding loop, which are spread over long distances.

Interestingly, the pseudosymmetric D95N mutation has no

appreciable affect on sidechain dynamics. Similarly, Clarkson

and Lee characterized two valine-to-alanine eglin c mutants [57].

Large dynamical changes were observed as much as 13 Å from the

mutation site. The V54A actually causes a network of residues to

increase in rigidity despite the fact that the mutation is

thermodynamically destabilizing. Changes in the V14A mutant,

which is also buried in the core of the protein, were much less.

This diversity of response led the authors to conclude, ‘‘…dynamical

responses will be context-dependent,’’ which is epitomized by our

lysozyme dataset. That is, the affects of mutation are quite varied

and highly dependent upon the local details of the perturbation,

which propagate in complex and unexpected ways.

The Dobson lab has characterized dynamical changes in

lysozyme, with a special focus on mutant amyloidogenicity. In

particular, changes in I56T and D67H were studied using

hydrogen/deuterium exchange NMR and mass spectrometry

[58]. (Note that the I56T mutation is included within our dataset.)

They showed that b-subdomain dynamics in the D67H mutant

are changed extensively, whereas changes occur much less in the

I56T mutant. This result broadly agrees with our results, which

indicate that I56T dynamics are changed much less than mutants

with the biggest responses (e.g., Y45F, I59S, V74A, and V100A).

Taken together, our conclusions are therefore in line with many

experimental characterizations of changes in protein dynamics

upon mutation.

Amyloid Formation and the b-Subdomain
Based on our previous investigations, we believe the above

results could be generalized to most globular proteins. In addition,

our results also reveal an interesting effect specific to lysozyme.

That is, a large number of mutations, regardless of location or

type, cause increased flexibility within the b-subdomain, which in

many cases can be thought of as local unfolding. This point is

noteworthy for two reasons. First, this result again highlights the

Figure 7. Mutational affects on flexibility. (a) Lysozyme backbone dynamics are characterized by a flexibility index (FI). Positive FI values
measure flexibility, whereas negative values measure rigidity. The structure is isostatically (marginally) rigid when FI = 0. The black solid line indicates
the average human wild-type lysozyme profile, whereas the dashed lines indicate 61 s. The mutant sites that moderately score beyond the
background are indicated using the same coloring scheme as Fig. 3. The green solid line indicates hen egg white lysozyme backbone flexibility
(HEWL), which is generally more similar to the wild-type profile than the human mutants. (b) The difference between human wild-type lysozyme and
HEWL cooperativity correlation is shown. The coloring scheme is the same as in Fig. 5.
doi:10.1371/journal.pcbi.1002409.g007
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long-range nature of dynamical changes because many of the

mutations occur outside of the b-subdomain. Second, several

experimental reports have suggested that mutations leading to

amyloid in lysozymes and the related a-lactalbumins are due to

structural changes, which may include local unfolding, in the b-

subdomain [31,32,33,34,35]. As such, the partially unfolded b-

subdomain may serve as a nucleation site for amyloid growth. Of

course, our results do not address this issue, but they do parallel

the earlier experimental conclusions. For example, DFI clearly

indicate that the amyloidogenic I56T mutation has increased

flexibility within b-subdomain (cf. Figs. 4–5). Similarly, our

results indicate that several other mutants display at least as much

flexibility therein, including K1A, Y38F, Y45F, Q58G, I59S,

P71G, V74A, V100A and P103G. As such, it is tantalizing to

consider that they might also be amyloidogenic. We have searched

the literature and, to the best of our knowledge, these mutants

have not been characterized. We therefore present them as blind

predictions, and hope that others will consider characterizing their

amyloidogenicity.

Relating the Observed Changes to Protein Family
Evolution

Across the dataset, changes in protein flexibility upon mutation

are common, large and can be long-ranged. That is, the stark

variation in dynamics observed across protein families unexpect-

edly occurs early in the divergence process through a combination

of flexibility increases and decreases. However, the observed

changes seldom significantly alter global flexibility. The relative

similarity in positive and negative DFIn values suggest that as

divergence occurs, marginal mechanical stability is generally

maintained because only incremental overall changes will be

typically encountered by any given mutation. In other words, a

single mutation will typically not overwhelmingly rigidify the

protein nor overwhelmingly increase flexibility. Rather, structure

subtly rearranges in response to the mutation to maximize

enthalpy-entropy compensation. That is, a global increase in

rigidity creates a large reduction of conformational entropy that is

unfavorable, and a global increase in flexibility creates a large loss

in enthalpy (weakened native contacts) that is unfavorable. Thus,

the native state ensemble of the protein seeks to find the lowest free

energy that typically requires a balance between flexible and rigid

structural regions, suggesting that a mixture of rigidity and

flexibility is typical at physiological conditions.

These results suggest that global increases in rigidity or

flexibility upon mutation are rare because the local responses are

derived in the noise (random fluctuations) around overall being

neutral, with only a slight advantage towards increased flexibility

in this case. The implication of the above is that successive

mutations during the evolutionary process are generally necessary

to substantially alter global flexibility characteristics. Viewed from

a dynamics point of view (excluding selection in maintaining

function), the process is a random walk capable of nudging the

protein towards global increases in rigidity or flexibility. However,

conservation of function is likely to select against systematic drift

that leads to large differences in flexibility with respect to the

function and stability of the wild-type protein. In that vein, the

suppressed flexibility differences observed in HEWL actually

suggest that additional compensating mutations can reestablish

desired dynamical properties. For example, the similarity between

human wild-type and HEWL b-subdomain flexibility is very

persuasive given how susceptible this region appears to be to

increased flexibility within the point mutants. This may, in part,

explain why our prior results have shown backbone flexibility to be

so well conserved across protein families.

On the other hand, our prior works also establish that CC is

generally varied across a protein family due to differences in the

underlying H-bond network [27]. Nevertheless, it appears that

wholesale differences are not tolerated across protein families. The

changes observed in Fig. 6 indicate that a single mutation is

sufficient to significantly alter global CC properties, where the

accumulative effect of a few mutations should be sufficient to go

beyond the range of differences we have observed across protein

families. As successive mutations appear, conservation of function

again provides the selection bias for proteins to maintain globally

similar dynamics while evolving to varying stability characteristics.

This scenario explains the considerable diversity in detailed

dynamical changes occurring from a single point mutation, while

general statistical characteristics remain robust.

Conclusions
In this report we demonstrate that changes in human c-type

lysozyme flexibility upon mutation are frequent, large, and can be

long-ranged. Depending upon metric tracked, residue-specific

flexibility is changed 42–48% of the time across the dataset. The

mutation-induced structural perturbations propagate over long

distances. In fact, the average distance between the mutant and

affected residue is 17–20 Å. While direct quantitative comparisons

to experiment are impossible due to different physical response

characteristics studied and lack of experimental characterizations

on most of the dataset, the frequency, scale and complexity that we

find in flexibility changes are principally consistent with multiple

NMR characterizations of mutant dynamics in a variety of

proteins, including lysozyme. Intriguingly, we have shown that

changes in flexibility upon single site mutation are generally larger

than differences between hen egg white lysozyme (HEWL)

ortholog to the human wild-type. In particular, most mutants

lead to increased b-subdomain flexibility; however, b-subdomain

flexibility within the human and HEWL ortholog remains

conserved. Based on a random selection of mutations, this result

is highly improbable because the human and HEWL lysozymes

only have 61% sequence identity. As such, we hypothesize that

evolutionary compensating mutations in HEWL have reestab-

lished desired properties.

Methods

The Distance Constraint Model
Network rigidity graph algorithms are commonly used to study

protein stability and dynamics [20,45,59,60,61,62,63,64]. Therein,

a topological framework (graph) is used to describe a set of

geometric conformations. Atomic locations are described as

vertices and chemical interactions are modeled as distance

constraints (edges) that fix the relative position between atom

pairs. From an input framework, pebble game (PG) algorithms

quickly identify mechanical properties of the network. Starting

from a completely disconnected graph (no edges), all vertices are

assigned 6 ‘‘pebbles,’’ corresponding to the 6 trivial degrees of

freedom (DOF) of a rigid body. Distance constraints are

recursively added to the network, and pebbles are used to ‘‘cover’’

each independent constraint. That is, constraints that restrict the

internal DOF are identified by the ability to remove an internal

DOF. Frequently, especially as the PG progresses, pebbles are not

immediately present within the considered atom pair due to the

presence of other distance constraints on one or both of the

vertices. In these cases, a pebble search is launched in attempt to

collect free pebbles from remote locations. If pebbles can be found

elsewhere, then the distance constraint is covered in the same way

as before. If not, the constraint is said to be redundant and has no
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effect of the internal DOF of the network because the constraint

has been placed in an already rigid region of the network. This

process is repeated till all constraints have been added. Once the

PG is complete, all rigid and flexible regions within the network

can be identified.

While the computational speed of the PG is attractive, the

approach is limited by its athermal formulation. That is,

fluctuations within the presence of chemical interactions are not

modeled. While this blunt approach is suitable in some situations

(i.e., glass systems [21,65,66,67,68]), it is clearly problematic in

protein structures where noncovalent interactions continually

break and reform. To that end, the DCM was developed as a

statistical mechanical model that introduces fluctuations into the

network rigidity paradigm. Specifically, the DCM considers a

Gibbs ensemble of network rigidity frameworks, each appropri-

ately weighted based on its free energy. The free energy of each

framework is calculated using free energy decomposition (FED).

That is, each constraint is associated with a component enthalpy

and entropy, and the total enthalpy of a given framework is simply

the sum over the set of distance constraints. However, entropy

components are nonadditive due to correlations within the

dynamics, thus simple sums result in drastic overestimations of

the total entropy. Entropy components are additive only over the

set of independent DOF [23,24]. As such, the DCM uses the PG

to restore the utility of FED by summing entropy components only

over the set of independent constraints. Introducing distance

constraints based on their order of entropy (from smallest to

largest) provides a rigorous lowest upper bound estimate of the

total entropy [17].

Covalent bonds are quenched, meaning they are ever present,

thus they do not need to be parameterized since the set is uniform

across the ensemble. Conversely, topological differences arise due

to fluctuating noncovalent interactions. For example, H-bonds can

be present or not (salt bridges are modeled as a special case of H-

bonds). Treating each interaction as independent, the number of

different frameworks in the ensemble that would arise solely from

H-bonds is 2Nmax
hb , where Nmax

hb is the maximum number of H-

bonds. The basin depth and amount of accessible phase space

associated with each interaction type are respectively given by the

enthalpy and entropy parameters (our convention is that enthalpic

parameters are given Roman characters, whereas entropies are

assigned Greek). In the mDCM, two types of fluctuating

interactions are considered: H-bonds and torsion angle forces.

The enthalpy of each H-bond (uhb) is calculated based on local

geometrical considerations within the input structure using a

modified [29] empirical potential [69], whereas its entropy (chb) is

assumed and parameterized to be a linear function of its energy.

For simplicity, torsion forces are segregated into native and

disordered states, where the enthalpy and entropy of the native

state is less than the disordered (vnat,vdis and dnat,ddis).

A maximal graph is identified from the input structure where all

Nmax
hb possible H-bonds and Ntor possible torsion forces are

identified. The mDCM ensemble is then constructed by

perturbing away from the maximal graph. The number of

frameworks within the ensemble is astronomical

(2Ntor 2Nmax
hb &2750for lysozyme). As such, the partition function

cannot be exhaustively summed. In response, the process of

solving the mDCM for proteins is based on heterogeneous mean

field theory [17]. A free energy landscape is defined by order

parameters that specify the number of H-bonds (Nhb) and native

torsions (Nnat) within a given macrostate. Within the macrostate,

several hundred frameworks that satisfy the macrostate (Nnat, Nhb)

are sampled using Monte Carlo, from which average properties

are calculated. The free energy of a given macrostate is given by

the free energy functional:

G Nnat,Nhbð Þ~SuhnTNhb{usolNhbzvnatNnat

{T Sconf Nnat,Nhbð ÞzSmix Nnat,Nhbð Þ
� � ð1Þ

Most of the variables in Eq. 1 have already been defined, with the

exception of usol. When a H-bond breaks, there is an enthalpic

compensating interaction with solvent that is described by usol. The

mixing entropy term, Smix, arises from the various combinations

that can satisfy the order parameters. The total conformational

entropy, Sconf, is appropriately attenuated by the probability of a

distance constraint to be independent:

Sconf (Nnat,Nhb)~

R
X
t[hb

qtct

" #
z qnatdnatNnat½ �z qdisddis(Ntor{Nnat)½ �

( )
ð2Þ

That is, the PG algorithm is applied to each sampled framework in

order to identify the set of independent and redundant constraints.

From which, the conditional probability, qi, for constraint i to be

independent when present is determined. The first term in the

equation is a sum over all H-bond constraints due to large

heterogeneity within their strength. The way Eq. 2 is written, qnat is

equal to fraction of native torsion constraints identified as

independent using the PG algorithm, and qdis is the fraction of

disordered torsion constraints identified as independent. The

values of vdis, ddis and the empirical linear relationship between ct

and energy have been fixed in prior works [18], whereas usol, vnat,

and dnat are fitting parameters. Note that the DCM would revert

back to an additive FED scheme if the qi conditional probabilities

were not present in Eq. 2.

The 2D free energy landscape is calculated over a grid to

include all possible values of the order parameters, (Nnat, Nhb) that

control the number of native torsions and number of H-bonds

present in the protein. For temperatures near the melting

temperature, two free energy basins separated by a saddle form.

The basin that has greater numbers for Nnat and Nhb correspond to

the native state. Conversely, the basin that has smaller numbers for

Nnat and Nhb is associated with the unfolded state. At the melting

temperature, Tm, defined where the heat capacity is a maximum,

the lowest free energy in the native basin is given by

Gnat~G(N�nat,N
�
hb) where (N�nat,N

�
hb) locates the specific point

on the grid where the free energy is a minimum in the basin. At

any grid point, an ensemble of constraint topologies can be

generated because the probability for each type of constraint is

known from the process of solving the free energy functional in Eq.

(1) as previously detailed [17]. Then, for the mechanical property,

Q, an ensemble average over many networks is made, which is

denoted as �QQ(Nnat,Nhb). Then, the full average over the native

basin is given by:

SQTnat~
X

j

X
k

�QQ(jzN�nat,kzN�hb)p(j,k) ð3Þ

where the sum over {j,k} is over a local neighborhood around

(j = 0, k = 0) corresponding to the minimum point of the native

basin. Beyond a certain range in the 2D free energy landscape, the

probability p(j,k) is negligible. In all the proteins studied here, a

well-defined local neighborhood is found that is confined to a

region before the saddle is reached. In other words, two state

folding is observed. The probability function p(j,k) is normalized
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over the neighborhood that spans the native basin, and is given as:

p(j,k)~
exp {bmG(jzN�nat,kzN�hb){Gnat

� �
P

j

P
k

exp {bmG(jzN�nat,kzN�hb){Gnat

� � ð4Þ

where bm~(RTm){1 is the inverse thermal energy at the melting

temperature. The probability p(j,k) is the Gibbs probability for a

protein in its native state to be in a specific macrostate making up

the native basin at the melting temperature.

Flexibility Index and Cooperativity Correlation
The flexibility index (FI) and cooperativity correlation (CC) are

ensemble-averaged quantities over the native basin in the free

energy landscape at the melting temperature. For a given

macrostate, a sample constraint network is constructed using the

probabilities for individual constraints to be present as described

previously [17]. When no native torsions are present and no H-

bonds are present, all the rotatable-bonds in the network are

labeled from 1 to N. As constraints are added to the network, some

of these bonds will become part of rigid regions. Then, for a given

constraint network, a rigidity analysis is performed, and each a

priori rotatable bond is identified as being: (i.) flexible because it is

part of an under-constrained region, (ii.) locked because it is part of

an isostatically rigid region, or (iii.) locked because it is within an

over-constrained region. These three types of regions define

clusters within the protein. No other possibility can occur [66], and

all rotatable bonds are assigned to 1, and only 1, cluster. If the

cluster is over-constrained, this means there are more constraints

in the region than is necessary to make it rigid. If the cluster is

isostatic, then the region is rigid, but there are just enough

constraints to make it rigid. If there are not enough constraints

within a certain region, it will be flexible.

Each bond is assigned a flexibility index, fi, that is defined based

on a single constraint network as follows. If the bond in question is

part of an isostatically rigid region, fi = 0. If the bond in question is

part of a flexible region, the number of rotatable bonds within that

flexible region is counted, and is denoted as H. The number of

independent disordered torsions within that same flexible region is

counted, and is denoted as A. To represent the density of

independent DOF within the flexible region, the value fi = A/H is

assigned to all bonds within this cluster. Finally, if the bond in

question is found to be in an over-constrained region, the total

number of a priori rotatable bonds are counted, and denoted as D.

Furthermore, the total number of redundant constraints within

that region are counted, and is denoted as B. The value fi = B/D

represents the density of redundant constraints within this over-

constrained region, and it is assigned to all the bonds within this

cluster. Once this counting is complete for every cluster, every a

priori rotatable bond in the protein will have a flexibility index

assigned to it. To distinguish between densities of DOF versus

redundant constraints, the fi values corresponding to flexible

regions are positive, whereas the above fi values in over-

constrained regions are multiplied by 21. We focus our analysis

herein on just the backbone a priori rotatable bonds that comprise

the Q and y angles of all residues (except proline, for which there is

just a y angle).

In the final stages of the process, we typically average over 1000

or more realizations to obtain averaged mechanical properties for

a given macrostate, (j,k). Then, for the i-th a priori rotatable bond,

we have FI(ijj,k)~�ffi(j,k), where the bar is used to indicate an

arithmetic mean over all samples randomly generated by Monte

Carlo sampling subjected to the given macrostate (j,k). The

reported FI for the i-th a priori rotatable bond is given as:

SFI(i)T~
P

j,k
�ffi(j,k)p(j,k):

We employ a similar procedure to calculate the average value of

CC. The main difference is that CC represents a pair correlation

so the end result is a symmetric square matrix rather than a one-

dimensional array. The variable cm,n is equal to fm if the m-th and

n-th a priori rotatable bonds are simultaneously found to be in the

same flexible, isostaticaly rigid or over-constrained region. This is

because the same value is assigned to all a priori rotatable bonds

within a given cluster type. The correlation becomes apparent

whenever two distinct types of clusters are identified. For example,

if the m-th and n-th rotatable bonds are both found to be in rigid

clusters, but these clusters are distinct, then cm,n is equal to 0. In

general, cm,n~0 if the m-th and n-th a priori rotatable bonds belong

to distinct clusters (whether of the same type or not). Thus, it

should be noticed that no distinction is made between two a priori

rotatable bonds being simultaneously found in the same isostatic

rigid cluster versus in two different rigid clusters. It turns out that

the relative frequency of two bonds being in an isostatic rigid

region is very low. The distinction for why cm,n~0 was initially a

concern, and different measures have been considered. However,

it was found that the reported average CC plots provide ample

information regarding how flexibility and rigidity propagate

through a protein [17,18,25,26,27,28,29]. We prefer to use the

CC plot based on the density information as described here

because it directly connects to the FI. In the next stages of the

calculations, CC(m,njj,k)~�ccm,n(j,k) is the conditional average for

a given macrostate, and the reported CC is given as

SCC(m,n)T~
P

j,k�ccm,n(j,k)p(j,k). Using this procedure, CC plots

identify all pairwise residue-to-residue couplings across the

structure (cf. Fig. 1c). Consequently, correlated motions associ-

ated with a high density of DOF show up in red, while a high

density of redundant constraints show up in blue. Regions that are

marginally mechanically stable or simply uncoupled show up as

white.

Assessing Changes in Flexibility
Perhaps the most critical aspect of the presented work is

determination of what constitutes a change in flexibility and what

does not. That is, what degree of precision is present with the

mDCM flexibility measures? This point is particularly important

in this work because, using normal structure comparison metrics,

the mutant dataset considered here is very similar to the wild-type

structure. To address this point, we establish a baseline of ambient

flexibility changes across a set of 7 wild-type structures

[70,71,72,73,74], such that differences within the background

profile arise from subtle differences in the wild-type X-ray

structures (cf. Table 3). The baseline flexibility profile for each

residue position for each residue FI value or pixel for CC is

calculated as the average value over the set 61 s, where the

standard deviation, s, is respectively calculated over each data set

at the corresponding residue or pixel. Then, any mutant flexibility

metric within one standard deviation is considered ‘‘no change.’’ A

value falling in the range between one and two standard deviations

away from the mean defines ‘‘moderate’’ changes, whereas ‘‘large’’

changes are defined as greater than 2 standard deviations from the

mean. As discussed above, Fig. 1a plots FI versus residue number

for the wild-type baseline profile.

The difference data presented in Figs. 3 and 4–5 has been

discretized into bins based on the above s ranges. However,

difference data in Figs. 2 and 6 retain quantitative relative

differences by setting the response in the change of flexibility to

zero when it is within the noise level, and only allowing the signals

to show up. In DFIn and DCCn the data is normalized in the
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following way:

xn~

min x{s
2s ,1

� �
if xws

max xzs
2s ,{1

� � if xj jƒs

if xv{s

8><
>: ð5Þ

The outcome of the above equation is that all values within the

background profile are colored white, whereas continuous color

schemes are used for the moderate change bins. The min() and

max() functions are employed to threshold the coloring such that

all ‘‘large’’ changes are colored the same maximum shade of red or

blue. Further, because the values are normalized by context

dependent standard deviations they in essence provide a degree of

statistical significance for the observed change. That is, a change

could be quantitatively large in raw values, but appear weak if the

background variability was large. On the other hand, for

extremely small standard deviations, the change will appear

disproportionally large. However, this concern is largely unfound-

ed as the per-pixel standard deviations in both DFIn and DCCn are

relatively uniform (data not shown). In fact, plotting the raw

differences actually makes changes appear roughly twice as

frequent as we observe with the normalized scores, which would

only strengthen the main conclusions of this paper. In other words,

the normalized plots filter out response that does not have a signal

large enough to distinguish against the background noise.

Model Parameterization
The mDCM is parameterized by finding values of {usol, vnat,

dnat} that best reproduce the experimental Cp data using the same

simulated annealing protocol previously employed [30]. Across

the dataset, the resultant best-fit parameters are very similar.

Nevertheless, we checked how the observed sensitivity is

dependent on model parameterization. That is, a change in

model parameters might change the nature of the FI and CC

results, and potentially change the conclusions. To explore this

concern, we first applied individual 3-parmater fits, and then fit

the Cp data using 2-free parameters per mutant while keeping the

entropic parameter dnat fixed across the dataset (cf. Table 3).

Note that we used a similar strategy in prior works since the

value of dnat is related to protein fold [17,18,26,29]. Encourag-

ingly, the Cp curves are again accurately reproduced (cf. Fig. S1),

and the FI and CC values are both quantitatively consistent with

the 3-parameter model. Furthermore, quantitatively similar FI

and CC results are also obtained using a constant {usol, vnat, dnat}

parameter set taken as the average over the 3-parameter best-fits

(results not shown). For simplicity, the data presented throughout

the report is solely based on the 2-parameter model, keeping in

Table 3. Structural and thermodynamic characterization of the dataset.

Protein PDBID Resol. (Å) R-value RMSD (Å) Tm (K) Max Cp Total # of HB usol vnat

WT 1JWR 1.4 0.18 0.7 339 15.6 244 22.13 20.31

WT 1LZ1 1.4 0.18 0.6 339 17.5 240 21.85 20.14

WT 1LZR 1.5 0.14 0.5 339 15.5 250 21.86 20.21

WT 1LZS 1.6 0.17 0.7 339 16.3 244 22.35 20.37

WT 1REX 1.5 0.19 0.8 339 15.5 234 22.00 20.24

WT 1REY 1.7 0.17 0.8 339 15.1 229 21.89 20.12

WT 2NWD 1.0 0.13 – 339 15.5 238 21.78 20.19

Average 1.4 0.17 0.68 339.0 15.9 239.8 21.98 20.23

Variation 15.4% 13.4% 17.1% 0.0% 5.1% 2.9% 10.1% 39.7%

K1A 1C45 1.8 0.17 0.9 337 13.1 245 21.66 20.18

V2A 1OUG 1.8 0.17 0.8 333 16.8 229 21.78 20.26

Y38F 1WQO 1.8 0.17 0.8 338 18.8 229 21.72 20.20

Y45F 1WQP 1.8 0.17 0.8 337 18.5 231 21.79 20.28

Y54F 1WQQ 1.8 0.16 0.8 337 17.3 229 21.86 20.29

I56T 1OUA 1.8 0.15 0.8 325 14.8 243 21.84 20.28

Q58G 1B7R 1.8 0.16 0.7 345 19.0 235 21.90 20.30

I59S 2MEG 1.8 0.15 0.8 326 14.4 239 21.96 20.40

Y63F 1WQR 1.8 0.17 0.7 338 18.5 239 21.86 20.24

P71G 1LHI 1.8 0.16 0.8 336 20.3 240 22.10 20.33

V74A 1OUH 1.8 0.16 1.0 337 18.8 235 21.76 20.23

V100A 1OUB 1.8 0.16 0.7 337 18.2 232 21.91 20.36

P103G 1LHJ 1.8 0.15 0.8 339 18.2 231 21.73 20.18

Y124F 1WQM 1.8 0.16 0.8 338 19.0 230 21.92 20.32

Average 1.8 0.16 0.80 335.9 17.6 234.8 21.84 20.28

Variation 0.0% 4.8% 9.8% 1.5% 11.8% 2.4% 6.2% 23.9%

Note that all structures come from the same P 21 21 21 space group. In the fifth column, the a-carbon RMSD of each structure is compared to the 2NWD wild-type
structure after minimization, which is the structure closest to the centroid of the wild-type set. Maximum Cp value in units of kcal/(mol?K). In all cases, dnat is equal to
1.24.
doi:10.1371/journal.pcbi.1002409.t003
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mind that the similar quantitative results arise from the other

two-parameter sets.

The parameter differences observed in Table 3 phenomeno-

logically reflect physical differences between the mutants that are

not explicitly considered by the model. For example, as we have

demonstrated previously [26], parameter variation is expected to

account for differences in hydrophobic interactions. The extent of

parameter variation observed here is relatively small, generally

within the variation expected for multiple equally good fits.

Moreover, while thermodynamic quantities (i.e., Tm) are somewhat

sensitive to parameterization and input structure resolution, we

have consistently demonstrated that mechanical FI and CC

quantities are quite robust to parameter differences [26,29,30]. As

such, the parameter differences have negligible affect on the

presented results.

Structure Preparation
In this work, we analyze X-ray crystal structures of 7 wild-type

human c-type lysozymes and 14 spatially and chemically distinct

point mutants. Each structure has been solved to high resolution

(average = 1.8 Å), and all R-values are less than or equal to 0.19.

PDBID’s and all relevant structural information are provided in

Table 3. There are ,15 wild-type human lysozyme structures

within the PDB. However, the series of cryogenic structures by Joti

et al. [75] have extremely atypical properties, so we do not

consider them here. In addition, the 1REZ [73] structure with a

bound carbohydrate ligand also resulted in flexibility properties

that were completely distinct from the remaining wild-type

structures (and mutants for that matter). As such, it was also

excluded, leaving the 7 considered structures. There are many

more lysozyme point mutant structures present in the PDB than

the 14 considered here; however, this dataset has been carefully

selected so that the Cp characterizations have been done under

nearly identical experimental conditions [76,77,78,79,80,81,82].

Specifically, they have all been experimentally characterized using

differential scanning calorimetry (DSC) under similar buffer

conditions (pH = 2.7 to 2.8) and salt concentration (0.05 M). If

this were not the case, model parameters would also reflect

differences within the solvent conditions, thus obfuscating our

direct comparisons. Moreover, full Cp curves must also be available

in the literature for us to fit to. Finally, the Cp curves were

generated by the same research group, which is important because

DSC is a finicky technique that has systematic errors depending on

differences in protocol and instrument. At the time of the writing

of this paper, the 14 mutants studied here are the only ones that

satisfy all of these criteria.

In all cases, hydrogen atoms are added using H++ server to

ensure proper ionization [83] at the pH of the DSC experiments.

The electrostatic parameters used are 0.05 M salinity and

external/internal dielectrics of 80 and 6, respectively. Subsequent-

ly, the all-atom structures are minimized using the Molecular

Operating Environment software using the Amber force field [84],

which are then input into the mDCM.

Supporting Information

Figure S1 Heat capacity best-fits for each structure using the

employed 2-parameter (usol, vnat) model. The native torsion

entropy, dnat, is determined by the average value from the 3-

parameter best-fits, which is applied uniformly to all structures (cf.

Table 3). Solid lines are model results, whereas points are

experimental data.

(PDF)
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