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Abstract: We present an analysis of the propagation properties of a recently introduced class of
conjugate mode partially coherent beams (called “double-H" beams) in a turbulent atmosphere
using the extended Huygens-Fresnel integral. We investigate how the phase constant φ0 between
the modes plays a role in controlling the evolution of the intensity distribution and resisting the
degradation effects of the atmosphere. Our results indicate that this new class of structured
beams provides a new degree of freedom for controlling the shape of the beams and improves
turbulence resistance, with potential application in free-space optical communications.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Spatial coherence is one of the fundamental properties of a light field and it affects numerous
propagation characteristics of such fields, including their directionality [1], spectrum [2], and
degree of polarization [3,4]. Optical coherence theory has been well developed over the past few
decades [5] and laser beams with decreased spatial coherence, labeled partially coherent beams
(PCBs), have found advantages in many applications [6,7]. Free-space optical communications is
one of the leading applications, and it is now recognized that using PCBs as a carrier in optical
communications is an effective means to suppress turbulence-induced negative effects, and that
PCBs can perform better than their fully coherent counterparts [8,9].

Studies of PCBs in atmospheric turbulence date back to the invention of the laser, but it is only
in recent decades that they have become an intense focus of research. In 2002, G. Gbur and E.
Wolf theoretically studied the mean squared width of PCBs in a random medium and their results
suggested that there are circumstances where PCBs perform better than comparable coherent
beams [8]. Subsequent experiments by A. Dogariu and S. Amarande confirmed this conclusion
[10]. These reports, among others, greatly promoted research into the propagation characteristics
of PCBs in turbulence. The resistance of PCBs to turbulence can be explained physically
by use of the coherent mode representation, which indicates that light is sent simultaneously
through distinct non-interfering channels, increasing the average light at the detector and reducing
interference-based fluctuations [8,11].

Since the turn of the century, numerous reports have been published on how various classes
of PCBs propagate, both in free space and in turbulence. Such beams are usually categorized
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as conventional or non-conventional; for a conventional beam, the degree of coherence (DOC)
has a homogeneous Gaussian distribution [12]. The propagation characteristics of beams of the
conventional class in turbulence are similar, although the short range propagation of the beam can
depend strongly on the initial beam profile, phases and state of polarization. However, when the
beam propagates over a long range in free-space or turbulence, the intensity distribution gradually
degenerates into a Gaussian distribution, independent of the initial intensity distribution.

Because of the restrictive behavior of conventional PCBs, lots of recent effort has focused
on investigating the propagation characteristics of non-conventional PCBs. In 2007, Gori et al.
proposed a new method for designing a wide variety of PCBs with novel and non-conventional
correlation structures [13]. These beams can display a number of unusual characteristics at short
propagation distances, such as self-focusing and transverse acceleration. Over long propagation
distances in turbulence, the intensity profile of a non-conventional PCB still gradually degenerates
into a Gaussian distribution; nevertheless, it can exhibit stronger turbulence resistance than a
conventional PCB or coherent beam [12].

Though many new classes of beams have been developed using the formalism of Gori et al.,
investigations have still not exhausted all the possibilities that the formalism has made available.
To understand this, we note that the cross-spectral density (CSD) of a non-conventional PCB
may be written in the source plane, according to Ref. [13], as

W(r1, r2) =

∫
p(ν)H∗(r1, ν)H(r2, ν)dν, (1)

where p(ν) is a non-negative probability density and H(r, ν) represents a kernel of the integral.
Equation (1) may be interpreted as an average over an ensemble of coherent fields H(r, ν), where
ν is a random variable (or set of random variables) and p(ν) is the probability density of the
ensemble. Different combinations of p(ν) and H(r, ν) can be used to generate various PCBs with
different correlation structures [13–15]. However, in all of these examples, the choice of H(r, ν)
was limited to the simple form,

H(r, ν) = τ(r) exp[ig(r)ν], (2)

with g(r) being a real function and τ(r) an amplitude envelope; this form is commonly used
because it is straightforward to generate experimentally [16–19]. For this class of PCBs, the
kernel consists of a single term, and we refer to this as the class of “single-H PCBs.”

It is clear that there are many other possibilities for kernels, including sums of distinct kernels
that represent different coherent field modes. We refer to the class of PCBs using a sum of two
kernels as “double-H PCBs,” and focus in particular on a sum of two modes that are complex
conjugates of each other,

H(r, ν) = τ(r) {exp[ig(r)ν + iφ0] + exp[−ig(r)ν − iφ0]} , (3)

where φ0 is a constant phase parameter. This class was recently introduced in Ref. [20], which
focused on the theoretical and experimental generation of such beams but did not discuss their
propagation characteristics. The use of conjugate mode pairs in a kernel may be thought of as a
rough analogy to the use of cylindrical vector beams in atmospheric propagation [21], where
coherent combinations of beams with opposite orbital and spin angular momentum showed
improved turbulence resistance.

In this paper, we report what is to our knowledge the first research discussing the propagation
properties of the new beams, with emphasis on the effect of the new initial beam parameter, the
phase constant φ0, on the beam evolution and its resistance to turbulence.
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2. Cross-spectral density of double-H PCBs propagating in turbulence

We now restrict ourselves to the case g(r) = r2 and p(ν) is a Gaussian distribution. As shown in
Ref. [20], the CSD of double-H PCBs in the source plane can be evaluated to the form,

W(r1, r2) = τ
∗(r1)τ(r2) exp

[︄
−

(︁
r2
1 − r2

2
)︁2

4δ4g

]︄ [︄
1 + exp

(︄
−

r2
1r2

2

δ4g

)︄
cos (2φ0)

]︄
, (4)

where r1 and r2 are two transverse position vectors in the source plane. The amplitude function
τ(r) is taken to be a Gaussian, τ(r) = exp(−r2/w2), where w is the beam width. The quantity δg
represents the correlation length of the field and φ0 is a phase constant.

As seen in Ref. [20] or Eq. (4), different choices of the phase constant φ0 (limited 0 ≤ φ0 ≤ π/2,
due to the periodicity of the cosine function) result in different classes of sources. When φ0 = π/4,
the sources reduce to a well know single-H source, the non-uniformly correlated (NUC) class,
introduced by Lajunen et al. in 2011 [22], and reduce to the cosh- and sinh-type NUC sources of
Ref. [20] when φ0 = 0 and φ0 = π/2, respectively. Hereafter, we will focus on discussing the
second-order propagation characteristics of such sources on propagation and how they depend
on the phase constant φ0. Of course, this discussion is not limited to the comparison of NUC
sources, cosh-type NUC sources and sinh-type NUC sources, but all cases of double-H sources.

To study the propagation characteristics of the field in turbulence, we assume paraxial
propagation along the z-axis. Then, the CSD of a PCB traveling through a turbulent medium can
be described by the extended Huygens-Fresnel integral [23],

W (ρ1, ρ2, z) =
1
λ2z2

∬ ∞

−∞

W0 (r1, r2) exp
[︃
−

ik
2z

(r1 − ρ1)
2 +

ik
2z

(r2 − ρ2)
2
]︃

× ⟨exp [Ψ (r1, ρ1) + Ψ
∗ (r2, ρ2)]⟩ d2r1d2r2,

(5)

where k = 2π/λ is the wavenumber and λ the wavelength. The vectors ρ1 and ρ2 are two arbitrary
transverse position vectors in the target plane, W0(r1, r2) denotes the CSD of the beam in the
source plane, and Ψ(r, ρ) is the complex phase perturbation induced by the refractive-index
fluctuations of the turbulent medium between r and ρ. The brackets < · · · > denote an ensemble
average over the turbulence, and the average can be expressed as [23]

⟨exp [Ψ (r1, ρ1) + Ψ
∗ (r2, ρ2)]⟩ =

exp
{︃
−

(︃
π2k2z

3

)︃ [︁
(ρ1 − ρ2)

2 + (ρ1 − ρ2) · (r1 − r2) + (r1 − r2)
2]︁ ∫ ∞

0
κ3
Φn (κ) d2κ

}︃
,

(6)

where Φn(κ) is the spatial power spectrum of the refractive-index fluctuations of the turbulent
medium. For brevity, we set

T =
∫ ∞

0
κ3
Φn (κ) d2κ. (7)

We choose the von Karman power spectrum as the turbulence model, which can describe both
Komogorov (α = 11/3) and non-Kolmogorov (α ≠ 11/3) turbulence with inner and outer scales
[24],

Φn (κ) = A (α)C2
n

(︂
κ2 + κ20

)︂−α/2
exp

(︂
−κ2/κ2m

)︂
. (8)

With this turbulence spectrum, T can be expressed in the following form [24],

T =
A(α)

2(α − 2)
C2

n

[︂
βκ2−αm exp

(︂
κ20/κ

2
m

)︂
Γ1

(︂
2 − α/2, κ20/κ

2
m

)︂
− 2κ4−α0

]︂
, 3<α<4, (9)

where C2
n is a generalized refractive-index structure parameter, β = 2κ20 − 2κ2m +ακ2m, κ0 = 2π/L0

with L0 being the outer scale of turbulence, κm = c(α)/l0 with l0 being the inner scale of
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turbulence, Γ1(·) is the incomplete Gamma function, and

A(α) =
1

4π2 Γ(α − 1) cos (απ/2) , c(α) =
[︃
2πA(α)

3
Γ

(︃
5 − α

2

)︃]︃1/(α−5)
, (10)

with Γ(·) denoting the Gamma function.
We may derive the CSD of double-H PCBs in the receiver plane using the above equations.

However, it is too difficult to integrate directly by inserting Eq. (4) into Eq. (5). Expressing the
beam model in the form of Eq. (1) and then interchanging the orders of the integrals, we obtain
the formula

W (ρ1, ρ2, z) =
∫

p(ν)P (ρ1, ρ2, ν, z) dν, (11)

where P (ρ1, ρ2, ν, z) is defined as

P (ρ1, ρ2ν, z) =
(︃

k
2πz

)︃2 ∬ ∞

−∞

H∗ (r1, ν)H (r2, ν) exp
[︃
−

ik
2z

(r1 − ρ1)
2 +

ik
2z

(r2 − ρ2)
2
]︃

× ⟨exp [Ψ∗ (r1, ρ1) + Ψ (r2, ρ2)]⟩ d2r1d2r2,
(12)

and H (r, ν) is the arbitrary kernel and p(ν) is the weighting function as shown in Eq. (3) above
and Eq. (5) in Ref. [20].

After a lengthy integration, one obtains

P (ρ1, ρ2, v, z) =
(︃

k
2πz

)︃2
exp

[︃
−

ik
2z

(︂
ρ2

1 − ρ2
2

)︂]︃
exp

[︁
−T ′ (ρ1 − ρ2)

2]︁
Θ, (13)

where

Θ = π2 exp

(︄
ℜ2

1
4Ω1
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)︁2

4
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1
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+

1
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1
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(︄
ℜ2

1
4Ω2
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1
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exp
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2 /4
)︁2

4
(︁
Ω∗
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2
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+

1
ξ∗3

exp
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∏︁
Ω−1

2 /4
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(14)
with

T ′ =
1
3
π2k2zT;

∏︂
=

4ikT ′ρ1
z

− 4T ′2 (ρ1 − ρ2) ; (15)

Ω1 =
1

w2 +
ik
2z
+ iv + T ′; Ω2 =

1
w2 +

ik
2z

− iv + T ′; (16)

ℜ1 =
ik
z
ρ1 − T ′ (ρ1 − ρ2) ; ℜ2 = −

ik
z
ρ2 + T ′ (ρ1 − ρ2) ; (17)

ξ1 =

(︃
1

w2 + T ′

)︃2
−

(︃
ik
2z
+ iv

)︃2
− T ′2; (18)

ξ2 =

(︃
1

w2 + T ′

)︃2
−

(︃
ik
2z

− iv
)︃2
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ξ3 =

(︃
1

w2 + T ′ + iv
)︃2

−

(︃
ik
2z

)︃2
− T ′2. (20)

Thus, we obtain the CSD of double-H PCBs after propagation in turbulence by evaluating the
integral in Eq. (11). We then obtain the spectral intensity of such beams in the target plane from
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the definition,
S(ρ, z) = W (ρ, ρ, z) . (21)

The spectral DOC in the target plane is obtained from

µ(ρ1, ρ2, z) =
W(ρ1, ρ2, z)√︁

W(ρ1, ρ1, z)W(ρ2, ρ2, z)
. (22)

We may now explore the propagation properties of double-H PCBs in turbulent atmosphere by
using the above formulas. In the limiting case T = 0, our formulas reduce to the case of beam
propagation in free space.

3. Propagation factor and beam wander of double-H PCBs

The physics of PCB propagation in turbulence is complicated, and there are a wide variety
of properties that one can analyze to assess the effect of the turbulence on PCBs. The most
straightforward approach is to study global parameters of the beam, such as the propagation
factor M2 and the beam wander

⟨︁
r2
c
⟩︁
; these can be calculated from the CSD of the source and

can be expressed in terms of the second-order moments of the beams. In this section, we first
derive the analytical expressions for the second-order moments of double-H PCBs in turbulence,
and then derive the expressions for the propagation factor and beam wander of such beams in
turbulence. These global parameters give an overall picture of the effect of turbulence on the
beam propagation, which we then study in more detail in the following sections.

The second-order moments of the beams in turbulence in the target plane are obtained from
the expressions [25], ⟨︁

r2⟩︁ = ⟨︁
r2⟩︁

0 + 2 ⟨r · θ⟩0 z +
⟨︁
θ2

⟩︁
0 z2 +

4
3
π2Tz3, (23)⟨︁

θ2
⟩︁
=

⟨︁
θ2

⟩︁
0 + 4π2Tz, (24)

⟨r · θ⟩ = ⟨r · θ⟩0 +
⟨︁
θ2

⟩︁
0 z + 2π2Tz2, (25)

where r = (x, y) and θ = (θx, θy), r = |r| and θ = |θ |. The quantities
⟨︁
r2⟩︁

0, ⟨r · θ⟩0 and
⟨︁
θ2

⟩︁
0

denote the second-order moments of a PCB in source plane and they can be obtained by the
integrals [26], ⟨︁

r2⟩︁
0 =

1
I

∫ 2π

0

∫ ∞

0
r3W(r, θ, r, θ)drdθ, (26)

⟨︁
θ2

⟩︁
0 =

1
k2I

∫ 2π

0

∫ ∞

0

{︄
∂2W(r1, θ1, r2, θ2)

∂r1∂r2

|︁|︁|︁|︁|︁r1=r2=r

θ1=θ2=θ

+
1
r2
∂W(r1, θ1, r2, θ2)
∂θ1∂θ2

|︁|︁|︁|︁|︁r1=r2=r

θ1=θ2=θ

}︄
rdrdθ,

(27)

⟨r · θ⟩0 =
1

ikI

∫ 2π

0

∫ ∞

0

{︃
r1
∂W(r1, θ1, r2, θ2)

∂r1
− r2
∂W(r1, θ1, r2, θ2)

∂r2

}︃ |︁|︁|︁|︁|︁r1=r2=r

θ1=θ2=θ

rdrdθ. (28)

In these expressions, I represents the integrated intensity of the beams, i.e.,

I =
∫ 2π

0

∫ ∞

0
W(r, θ, r, θ; 0)rdrdθ. (29)

The second-order moments mentioned above allow us to evaluate the beam quality parameter,
defined as [27]

Q =
⟨︁
ρ2

⟩︁ ⟨︁
θ2

⟩︁
− ⟨ρ · θ⟩2 (30)

This parameter is related to the beam propagation factor M2 through the expression M2 =
√

Q.
A better beam quality is associated with a smaller beam divergence and a consequently smaller
M2, for a fixed beam width at the source plane.
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The beam wander may also be used to characterize the effects of turbulence on PCB propagation.
It can described statistically as the variance of the displacement of the instantaneous center of the
beam as it propagates through turbulence. A model of beam wander valid under all turbulence
conditions is given by Andrews and Phillips as [28]⟨︁

r2
c
⟩︁
= 4π2k2W2

FS

∫ L

0

∫ ∞

0
κΦn(κ)HLS(κ, z)

{︃
1 − exp

[︃
−
ΛLκ2(1 − z/L)2

k

]︃}︃
dκdz, (31)

where L is the total propagation path length, and z is the distance of an intercept point from the
input plane. Λ = 2L/kW2

FS with WFS is the beam width at the receiver plane in the absence of
turbulence. The quantity HLS(κ, z) = exp(−κ2W2

LT ) is a large-scale filter function and WLT is the
long-term beam width in the presence of turbulence.

Using a geometrical optics approximation in which diffraction effects are neglected, and the
model of turbulence chosen in Eq. (8), we can integrate Eq. (31) and obtain a formula for the
beam wander in turbulence,⟨︁

r2
c
⟩︁
=

4π2C2
nA(α)L2

(α − 2)
κ−α0

∫ L

0

(︂
1 −

z
L

)︂2
{︃
−2κ40 + κ

α
0 κ

2
m

(︂
W2

LT + κ
−2
m

)︂α/2
×

(︂
1 + κ2mW2

LT

)︂−2 [︂
2κ20

(︂
1 + κ2mW2

LT

)︂
+ (α − 2)κ2m

]︂
exp

[︄(︃
κ0
κm

)︃2
+ κ20W2

LT

]︄
× Γ

[︄
2 −
α

2
,
(︃
κ0
κm

)︃2
+ κ20W2

LT

]︄}︄
dz.

(32)

It is worth noting that the beam wander depends on the source parameters – the only parameters
we can control – only through the long-term beam width WLT . Any change to the source
parameters that affects WLT will consequently affect beam wander, and WLT can depend on these
parameters in a non-trivial way. The quantity WLT can be described as the mean-squared beam
width

⟨︁
r2⟩︁ of a laser beam propagating in turbulence [26], which can be obtained from Eq. (23)

above.
Therefore, in general, we can study the properties of propagation factor and beam wander by

using Eqs. (23–25) and Eq. (30) and Eq. (32).

4. Statistical properties of double-H PCBs

Using the formulas we derived in above section, we next study the statistical properties of
double-H PCBs in source plane and after propagation in free space and in turbulence. In the
following calculations, we use the following beam and turbulence parameters: λ = 632.8nm,
w = 3cm, L0 = 1m, l0 = 1mm, α = 11/3 and C2

n = 10−15m−2/3.

4.1. In the source plane

The spectral intensity distributions for different choices of the phase constant φ0 and correlation
length δg of the proposed double-H sources are shown in Fig. 1 . One can see that the beam
profile varies significantly with changes to the two initial beam parameters, the phase constant
φ0 and the coherence length δg. Figures 1(a1-5) show that when φ0<π/4, the spectral density
displays a bright, axially symmetric core, and the size of the bright core decreases with increasing
phase constant. Figures 1(b1-5) illustrate how the correlation length affects the core behavior.
While the spectral density exhibits the the dark core when φ0>π/4, it becomes deeper and
narrower with increasing phase constant and/or decreasing coherence. The beam profile remains
Gaussian distribution and is independent of the value of coherence parameter δg when phase
constant φ0 = π/4; in this case, the double-H source is reduced to a conventional NUC source,
which was discussed in detail in Ref. [22,29].
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Fig. 1. Density plot of the normalized intensity and the corresponding cross-line of
double-H source for different phase constants φ0 and coherence lengths δg. In Figures
(a1-5), δg = 1.0cm.

Figure 2 shows the density plot of the modulus of the DOC and corresponding cross-lines of
double-H sources for different values of the phase constant φ0. We find that the coherence of
double-H sources also exhibits striking effects. Figure 2(a) shows the high-coherence area of such
sources is confined to the center and on two diagonal lines in the source plane. When the value
of phase constant increases to π/4, the coverage of the high-coherence area in center reduces and
evolves into an “X” distribution, after which the high-coherence area in center increases gradually
to a rectangular like distribution. It is worth mentioning that the value of the DOC on both lines
(r1 = 0 and r2 = 0) is 0 (except the point DOC(r1 = r2 = 0) = 1) when φ0 = π/2. This feature is
difficult to see in the cross-sectional plots, so Figs. 2(b) and 2(c) show the cross-lines |µ | (r2 = 0)
and |µ | (r2 = δg). We confirm that the high-coherence area decreases first and then increases
versus the increasing phase constant. We therefore have a class of double-H sources with distinct
correlation functions and the spatial coherence develops extreme changes as φ0 → π/2.

Fig. 2. (a) Density plot of the modulus of the DOC and corresponding cross-line (b)
|µ | (r2 = 0), (c) |µ | (r2 = δg) of double-H sources for different phase constant φ0.
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4.2. Propagation in free space

Figure 3 shows the normalized intensity and corresponding cross-line of double-H PCBs at
different distances in free space with different phase constants φ0. The evolution of spectral
density shows that such beams all display self-focusing properties, just as the conventional NUC
beams (φ0 = π/4) do. When the phase constant φ0<π/4, the size of the bright core decreases at
short propagation distances, and increases at long propagation distances. In the case of φ0>π/4,
double-H PCBs evolve in a non-trivial way. A new extremely small bright core appears in the
center of the beams and the small bright core grows in size and intensity during propagation,
gradually evolving to a Gaussian beam profile, while the outside ring diminishes and disappears.

Fig. 3. The normalized intensity of double-H PCBs upon propagation in free space for
different phase constant with coherence length δg=1cm.

We may interpret this result by looking again at the definition of the double-H kernel, Eq. (3).
When g(r) = r2, our kernel consists of a coherent superposition of terms with positive and
negative wavefront curvatures, which causes them to converge at different focal distances given
by the expression z = 1/2v. On propagation, the positive curvature contribution will tend to
diverge, while the negative curvature contribution will focus. With φ0>π/4, these two fields are
out of phase, resulting in the beam’s dark core. In essence, our double-H beams represent a new
form of dark hollow beam [30] which is partially coherent, and whose propagation characteristics
depend on the statistical properties of the beam.

In order to show more clearly the effects of the phase constant φ0 and coherence length δg on
the self-focusing properties of such beams, we characterize the ratio of the maximum intensity
of double-H PCBs on the axis on propagation to the intensity on the axis at the source plane,
i.e. Smax(0, z)/S(0, 0). We determine from Fig. 4 that the ratio increases slowly over small phase
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constant ranges, but when the value of phase constant φ0 is larger than about π/3, the ratio
increases sharply, and it approaches infinity as the phase constant φ0 is π/2, which is because
such beams with φ0 = π/2 at source plane have a perfect dark hollow core, making S(0, 0) = 0.
One confirms that the self-focusing property (ratio value) of double-H PCBs with larger phase
constant φ0 and lower coherence is stronger.

Fig. 4. The intensity ratio Smax(0, z)/S(0, 0) versus phase constant for different coherence
length.

Figure 5 shows the evolution of the distribution of the DOC of double-H PCBs propagation in
free space. In the source plane, the high-coherence area of double-H PCBs is confined to the
center and two diagonal lines. As the beam propagates, the coverage of the high-coherence area
reduces in the center region of the plots and increases on the two diagonals, forming side lobes.
The distribution of the DOC becomes stable in the far field and it is determined by the initial
beam parameter phase constant φ0. Furthermore, the side lobes become more pronounced with
large phase constant.

4.3. Propagation in turbulent atmosphere

Based on the summary of previous reports on PCBs propagation in turbulence, we can readily
predict the evolution of the intensity and the DOC of double-H PCBs on propagation in the
turbulent atmosphere. Such beams exhibit free-space diffraction properties over short distances,
while at long ranges, they all degrade to a Gaussian profile eventually. The distribution of the
DOC degrades to spatially quasi-homogeneous in the far field. We have verified these evolution
behaviors of the intensity and the DOC of such beams with different initial beam parameters
are similar, and for brevity, we just consider double-H PCBs with phase constant φ0 = 0 and
δg=1cm; results are shown in Fig. 6. We confirm from this figure that such beams still exhibit
self-focusing in turbulence and eventually evolve to a Gaussian intensity profile. The coverage
of the high-coherence area reduces gradually along one diagonal (around ρ1 = −ρ2) and the
distribution of the DOC becomes spatially quasi-homogeneous, nearly constant along the diagonal
lines (ρ2 − ρ1=constant) with increasing propagation distance.

With an eye towards looking at the limits of such beams for applications, we compare the
effects of different initial beam parameters on the degeneration of the intensity and the DOC
distributions at propagation distance z = 4 km in turbulence in Fig. 7. We confirm that it is
difficult to judge the effect of the phase constant from the perspective of evolution of the intensity
and the DOC from Fig. 7, although we seem to observe that with larger phase constant, the
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Fig. 5. Density plot of the absolute value of the DOC of double-H PCBs for different phase
constants on propagation in free space.

Fig. 6. The evolution of the intensity and the DOC of double-H PCBs on propagation in
turbulence for φ0 = 0 and δg=1cm.

size of the beam spot decreases slightly and the distribution of DOC degenerates to spatially
quasi-homogeneous slightly slower. It cannot completely convince readers that double-H PCBs
with large phase constant propose better turbulence resistance. Thus, we need to look for other
perspectives to analyze the effect of phase constant on turbulence resistance.

Finally, we return to looking at the global parameters of double-H PCBs on propagation through
turbulence. Figure 8 shows the evolution of the normalized propagation factor of double-H PCBs
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Fig. 7. Distributions of the intensity and the DOC of double-H PCBs for different phase
constant at propagation distance z = 4km in turbulence.

on propagation in turbulence for different phase constants, and for different values of spatial
coherence at a fixed propagation distance z = 3km. One confirms from Fig. 8(a) that the variation
of the propagation factor on propagation in turbulence is significantly influenced by the phase
constant, and the propagation factor increases more rapidly with small phase constant, which
suggests that the double-H PCBs with large phase constants are less affected by turbulence.
Furthermore, we confirm from Fig. 8(b) that the propagation factor is significantly affected by
the coherence length, and that double-H PCBs with low coherence possess a smaller propagation
factor. Therefore, we conclude from Fig. 8 that double-H PCBs with small phase constant and
low coherence are less affected by turbulence when the propagation factor is used as a measure.

Fig. 8. Normalized propagation factors of double-H PCBs (a) versus propagation distance
for different phase constant with δg = 1cm and (b) versus phase constant for different
coherence length with propagation distance z = 3km.

Figure 9 shows the beam wander of double-H PCBs on propagation in turbulence for different
phase constant, and the beam wander versus the phase constant for different coherence lengths at
certain propagation distance at z = 3km. It is found that the evolution of the beam wander curve
is similar to that of propagation factor. The double-H PCBs with large phase constant and low
coherence experience smaller beam wander. Therefore, from the perspective of beam wander,
we once again find that double-H PCBs with large phase constant and low coherence are less
affected by turbulence.
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Fig. 9. Beam wander of double-H PCBs (a) versus propagation distance for different phase
constant and (b) versus phase constant for different coherence length with certain propagation
distance z = 3km.

5. Summary and observations

We have studied the statistical properties of double-H PCBs in the source plane and on propagation
in free space and turbulence. It is found that the statistical properties of such beams are quite
different from those of single-H PCBs. We have shown that the beam profile of double-H
PCBs in the source plane can be modulated by adjusting the phase constant and coherence.
Double-H PCBs display self-focusing propagation properties both in free space and in turbulence.
Furthermore, such beams with large phase constant and low coherence are less affected by
turbulence than such beams with small phase constant and high coherence.

It is worthwhile to say a few words about the physics that leads such beams to have their unusual
statistical properties. As seen by Eq. (4), double-H sources can be viewed as a superposition of
two sources, one is a NUC source and another one is a modulated NUC source. Therefore, the
intensity distribution of double-H sources is either the constructive or destructive combination of
these two sources when φ0<π/4 and φ0>π/4, respectively; the phase constant plays a critical
role in the behavior of the field. NUC beams display a self-focusing property both in free space
and in turbulence, which had been discussed in Ref. [22,29], while modulated NUC beams
diverges rapidly on propagation. Therefore, double-H PCBs gradually exhibit the characteristics
of NUC beams, i.e. self-focusing property, on propagation. We can also explain the evolution of
propagation factor and beam wander of such beams in turbulence from this perspective. The
influence of the modulated NUC beams on the propagation factor and beam wander are negative
and reductive when phase constants increase from 0 to π/4, and they are positive and incremental
when phase constants increase from π/4 to π/2. Therefore, double-H PCBs with large phase
constant display better turbulence resistance.

Our results of the study on the propagation properties of this new class of double-H PCBs
shows that beams with a superposition of two or more beam modes have new degrees of freedom,
such as the phase constant, and that we can adjust the weight of the beam modes to show
novel propagation properties and better turbulence resistance, which can be tailored for the
individual application needs. This flexibility can be used to improve the characteristics of beams
in free-space optical communications.
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