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Abstract

Le Châtelier’s principle is the cornerstone of our understanding of chemical equilibria. When a system at equilibrium
undergoes a change in concentration or thermodynamic state (i.e., temperature, pressure, etc.), La Châtelier’s principle
states that an equilibrium shift will occur to offset the perturbation and a new equilibrium is established. We demonstrate
that the effects of stabilizing mutations on the rigidity u flexibility equilibrium within the native state ensemble manifest
themselves through enthalpy-entropy compensation as the protein structure adjusts to restore the global balance between
the two. Specifically, we characterize the effects of mutation to single chain fragments of the anti-lymphotoxin-b receptor
antibody using a computational Distance Constraint Model. Statistically significant changes in the distribution of both
rigidity and flexibility within the molecular structure is typically observed, where the local perturbations often lead to distal
shifts in flexibility and rigidity profiles. Nevertheless, the net gain or loss in flexibility of individual mutants can be skewed.
Despite all mutants being exclusively stabilizing in this dataset, increased flexibility is slightly more common than increased
rigidity. Mechanistically the redistribution of flexibility is largely controlled by changes in the H-bond network. For example,
a stabilizing mutation can induce an increase in rigidity locally due to the formation of new H-bonds, and simultaneously
break H-bonds elsewhere leading to increased flexibility distant from the mutation site via Le Châtelier. Increased flexibility
within the VH b4/b5 loop is a noteworthy illustration of this long-range effect.
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Introduction

The relationship between protein stability and dynamics is

complex. Protein structures are highly cross-linked with nearly

optimized H-bond networks [1], yet they are decidedly dynamic

[2]. This dichotomy makes it very difficult to predict the effects of

individual mutations on protein thermodynamics and dynamics

[3,4,5,6]. For example, it is common to view mutations that

stabilize proteins as also making them more rigid due to improved

packing [7,8]; however, there are important examples of

stabilizing mutations that increase dynamics through entropic

stabilization [9]. Moreover, the effects of mutations on protein

dynamics can propagate through the molecular network, leading

to unexpected long-range changes [10,11,12,13,14]. Other

changes that affect protein stability can similarly reveal the

complex relationships between rigidity and thermodynamics. For

example, reduced pH destabilizes the serine protease inhibitor

eglin c, but makes the structure more compact [15], underscoring

that rigidity and stability do not always correlate in a naı̈ve way.

Recently, we quantified the complex character of thermody-

namic and mechanical response in a comparative study of 14

chemically and structurally diverse point mutations on human C-

type lysozyme stability [16] and flexibility [4] relative to the wild

type using the Distance Constraint Model (DCM) [17]. We

demonstrated that the mutations have frequent, large, and long-

ranged effects on protein flexibility. Therein, the mutants were

both stabilizing and destabilizing with melting points, Tm, within

66 K of the wild type. Over 40% of the residues had significant

changes in flexibility, and, surprisingly, the average distance

between mutant and effected residue was greater than 17 Å.

Interestingly, each mutant exhibited changes in rigidity and

flexibility along the backbone that typically were distributed in

roughly equal proportions, indicating that the residue-specific

responses occurred in such a way as to restore the global balance

between rigidity and flexibility.

In this report, we focus exclusively on the effects of a set of

stabilizing mutants within an antibody single chain Fv (scFv)

fragment system, specifically an anti-lymphotoxin-b receptor

(LTbR) antibody [18]. Using an experimental library-screening

assay, Miller et al. [19] identified the set by selecting for mutants

that increase stability. The five mutants considered here have

increases in Tm ranging from 4 to 18 K based on combinations of

changes in one to four amino acids (cf. Table 1). Importantly, all

the mutants were demonstrated to conserve the wild type binding
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affinity. The mutation locations are shown in Figure 1. Similar to

our results on lysozyme, we observe a rich mixture of increased

rigidity and flexibility along the backbone, and many of these

changes are significantly long-ranged. In many instances the

mutations lead to local strengthening of the H-bond network. The

accompanying loss of conformational entropy due to this increase

in rigidity near the mutation site is an enthalpy-entropy

compensation mechanism [20] that the DCM captures well

through network rigidity [21,22].

While global rigidification of the native state ensemble can

increase thermodynamic stability, it can also be deleterious to

function [23]. While not commonly considered, increased

flexibility can also entropically stabilize the native state ensemble.

However, enthalpy-entropy compensation mechanisms [20] make

either extreme improbable. Indeed, across five stabilizing mutant

antibody fragments compensating changes in both rigidity and

flexibility always occurs because the rigidityu flexibility equilibria

adjust via Le Châtelier to restore the global balance of rigidity and

flexibility that is typical within functioning protein structures [24].

This report further establishes enthalpy-entropy compensation

frequently occurs far from the mutation site, where weakening the

H-bond network in the native state ensemble is compensated by a

corresponding increase in flexibility. Our results also indicate that

balancing rigidity and flexibility along the backbone is essential for

preserving function. These results are consistent the rigidity/

flexibility known to occur in a pair of mesophilic/thermophilic

RNase orthologs [24,25], suggesting that this principle has broad

applicability.

Methods

The Distance Constraint Model
Changes in rigidity are characterized using the DCM, which is

based on an all-atom free energy decomposition (FED) scheme

combined with constraint theory. Atomic structure is mapped onto

constraint topology, where vertices of a graph represent atomic

positions and edges describe intramolecular interactions that fix

the distance between atomic positions. For a single constraint

topology, a Pebble Game (PG) algorithm identifies all rigid and

flexible regions [26,27], which can provide statistically significant

explanations of intramolecular couplings [28]. Extending the

model, the DCM is based on an ensemble of PG graphs so that

fluctuations in constraint topologies due to the breaking and

forming of H-bonds and packing interactions are accounted for via

a statistical mechanical framework. Specifically, the DCM

considers a Gibbs ensemble of PG graphs, each appropriately

weighted based on its free energy. The free energy of each graph is

calculated from the FED where each constraint is associated with a

component enthalpy and entropy. The total enthalpy of a given

graph is the sum over the enthalpy contributions from all distance

constraints present. However, as described below, the total

entropy is calculated in a way that explicitly accounts for

nonadditivity [21,22].

Within the DCM currently applied to proteins [29,30], the

number of native-like torsion constraints, Nnat, and number of H-

bond constraints, Nhb, specify a macrostate. Native torsion states

have lower energies and entropies relative to disordered torsion

states, meaning they correspond to good packing interactions. As a

result, protein stability is described in terms of both intramolecular

packing and the H-bond network (note: salt bridges are considered

to be a special case of H-bonds). The two order parameters, (Nhb,

Nnat), define a macrostate of a protein in terms of its constraint

topology, from which a free energy functional is constructed as:

G(Nhb,Nnat)~U(Nhb){usolNhbzvnatNnat

{T Sconf (Nhb,NnatDdnat)zSmix(Nhb,Nnat)
� � ð1Þ

where U is the intramolecular H-bond energy, usol is an average H-

bond energy to solvent that occurs when an intramolecular H-

bond breaks, vnat is the energy associated with a native-like torsion,

Sconf(Nhb, Nnat) is the conformational entropy and Smix(Nhb, Nnat) is the

mixing entropy of the macrostate associated with the number of

Table 1. Dataset statistics.

anti-LTbR scFv mutants Experimental Tm (K) Total # of clusters # conformations in 10 largest clusters

Wild Type 336 18 1802

VH V55G 341 19 1642

VH P101D 345 19 1669

VH S16E; VL S46L 346 19 1906

VH S16E, V55G; VL S46L 351 19 1666

VH S16E, V55G, P101D; VL S46L 354 21 1540

doi:10.1371/journal.pone.0092870.t001

Figure 1. Mutation positions are shown within the anti-
lymphotoxin-b receptor (LTbR) antibody single chain Fv
fragment (scFv) structure. The wild type structure is shown with
VH and VL domains respectively colored green and orange. The
complementarity determining regions are labeled and the mutation
positions are shown in spacefill with the each mutation labeled
adjacently.
doi:10.1371/journal.pone.0092870.g001

Flexibility Redistribution in Antibody Mutants

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e92870



ways of distributing Nnat native-torsions and Nhb H-bonds within

the constraint topology. There are three phenomenological

parameters, {usol, vnat, dnat}, in the DCM that effectively account

for hydrophobic interactions, structural diversity and solvent

conditions.

To account for nonadditivity in conformational entropy, Sconf is

calculated over the set of independent constraints identified by the

PG using:

Sconf (Nhb,Nnat)~

R
X
t[hb

qtctzqnatdnatNnatzqdisddis(Ntor{Nnat)

" #
ð2Þ

where the index t spans over all H-bond constraints in the input

structure, and Rct is the entropy contribution when the constraint

is independent. Similarly, Rdnat and Rddis respectively describe the

entropy of a native-like and disordered torsion angle, and Ntor is the

total number of torsion angles. The various q-values in Eq. (2)

represent ensemble averages over constraint topologies for a given

macrostate. Within a given constraint topology, each H-bond and

torsion constraint has a qi of either (1 or 0), indicating that the PG

identifies the constraint as (independent or redundant). The

average q-values in Eq. (2) are the conditional probabilities for the

constraints to be independent when present. That is, q-values are

attenuating factors that prevent the DCM from overestimating

Sconf. For example, if the PG only identified half of the native

torsions as independent across the ensemble of PG graphs, then

qnat=0.5. In the scFv fragment examples characterized here, the

total number of possible PG graphs is greater than 21300, making

an exhaustive characterization impossible. As such, Monte Carlo

sampling is used to sample networks at each macrostate value (Nhb,

Nnat). Typically, less than 200 samples per macrostate are required

for good statistics. Lastly, there is a critically important step that

must be executed when determining if a constraint is independent

or redundant. When the PG is used to calculate qi during a

recursive process of building the PG graph one constraint at a time

[26], the constraints are placed in preferential order from lowest to

highest component entropies. With this preferential ordering, the

calculation of conformational entropy provides a rigorous lowest

possible upper bound. In other words, total conformational

entropy reflects the minimal set of the most constrictive yet

independent interactions.

Solvation free energy contributions are modeled by the

phenomenological usol and vnat parameters [25] that are conjugate

to the intramolecular H-bonds and packing order parameters

respectively. While mutations are known to quantitatively affect

solvation free energies [31], the same usol and vnat parameters are

used throughout because the changes are not expected to be large

here due to the overall structural similarity across the dataset.

Consequently, the solvation free energy differences that do occur are

reflected in the Tm predictions. We demonstrate below (cf. Results

and Discussion) that our Tm predictions are very good, thus

indicating that our single parameter set assumption is reasonable.

Molecular Dynamics Sampling
In prior works, we have used both single [25,32,33,34,35] and

multiple [4] x-ray crystal structural as input to the DCM. The

advantage of using multiple structures is that sensitivity to

structural artifacts is diminished and uncertainties can be

estimated. In this work – for the first time – we employ molecular

dynamics (MD) simulations to generate an ensemble of confor-

mations for subsequence DCM analysis. Each mutant and wild

type protein is simulated for 100 ns. The MD simulation is done

using Gromacs 4.5.5 [36,37] in the NVT ensemble with the

AMBER99SB-ILDN force field [38]. The proteins are solvated by

adding 10.0 Å of TIP3P water [39] in a cubic box (counter ions

are also added to neutralize charge). Before production, the

systems are minimized till convergence or 5,000 iterations,

followed by 1 ns of NPT and 1 ns of NVT equilibration. Pressure

(1 atm) is regulated using the extended ensemble Parrinello-

Rahman approach [40] and temperature (300 K) is controlled by

a Nose-Hoover temperature coupling [41,42]. A nonbonded cutoff

of 10.0 Å is used, and Particle-Mesh-Ewald [43] accounts for long-

range electrostatic interactions. All bonds to hydrogen atoms in

proteins are constrained using LINCS [44], whereas bonds and

angles of water molecules are constrained by SETTLE [45],

allowing for a time step of 0.002 ps.

Figure 2A plots the root mean square distances (RMSD) for all

six MD trajectories. In all but two cases, the trajectories appear

perfectly stable. The exceptions are the double (VH S16E; VL

S46L) and quadruple (VH S16E, V55G, P101D; VL S46L)

mutants. Curiously, despite the increased mobility, the latter has

the highest Tm across the dataset. In both cases, the increased

conformational rearrangements are due to ‘slippage’ along the

domain interface. That is, the relative orientations of the VH and

VL domains are continually rearranging (Figure 2B), which

inflates the per residue root mean square fluctuations (RMSF) for

these two examples (cf. Figure 3A). Conversely, the fluctuations

within the constituent VH and VL domains are relatively minor

compared to the global rearrangements (cf. Figure S1). Note that

the double mutant has one residue change at the domain interface,

whereas the quadruple mutant has two, presumably contributing

to the conformational frustration. While several studies support the

idea that the orientation between the VH and VL domains can

affect antigen-binding properties [46,47,48], the binding activity of

the quadruple mutant is conserved, indicating a functional

tolerance for such conformational diversity.

A total of 2,000 evenly spaced frames from each trajectory are

clustered using the KCLUST module [49] from the MMTSB tool

set [50] based on the RMSD of all CA and CB atoms, except those

in the linker. Excluding the highly mobile linker focuses our

analysis on core structural rearrangements. Figure S2 and

Table 1 summarize the number of conformations represented

by each cluster. We adjust the cluster radii to maintain around 20

total clusters, where the ten largest represent 77 to 95% of the total

conformations. A representative structure is identified as the

structure closest to the centroid from each of these ten largest

clusters. Each of the ten representative structures is then

subsequently energy minimized and used as DCM input. A

weighted average of all DCM properties is taken over the ten

representative structures, where the total number of structures

within the cluster containing a given representative structure

defines its weight.

Quantitative Stability/Flexibility Relationships
In addition to thermodynamic response, the DCM calculates a

number of mechanical properties for each framework that describe

Quantitative Stability/Flexibility Relationships (QSFR) of the

protein. The Boltzmann weights from the partition function adjust

with temperature, leading to appropriate thermodynamic averag-

ing of the mechanical quantities. For example, folded and rigid

structures, punctuated by flexible loops, are prevalent at low

temperatures, whereas the protein is primarily flexible in the

denatured ensemble at temperatures greater than the melting

temperature, Tm, defined by the heat capacity peak. The backbone

Flexibility Index (FI) and the Cooperativity Correlation (CC) serve

Flexibility Redistribution in Antibody Mutants
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as useful QSFR metrics for characterizing mechanical properties

within a protein [51].

The FI indicates whether a rotatable bond is flexible – because

it can rotate as a mechanical hinge, or rigid – because it is locked due

to network constraints. FI is calculated by ensemble averaging over

the quantity fi= (hi – li) defined based on a single constraint

topology as follows. When the i-th rotatable bond can rotate

within a flexible region, the number of rotatable bonds that can

rotate (distinct hinge motions) within that flexible region is

counted, and denoted as H. The number of independent

disordered torsions within that flexible region is also counted,

and denoted as A. The value hi=A/H represents the density of

independent DOF within that flexible region, and it is assigned to

all H rotatable bonds within. Conversely, if the i-th rotatable bond

is locked within an over-constrained region, the total number of

rotatable bonds that are locked are counted and denoted as L. The

number of redundant constraints within that over-constrained

region is also counted, and denoted as B. The value li=B/L

represents the density of redundant constraints within that over-

constrained region, and it is assigned to all L locked bonds within.

In the special case that B= 0, the locked bond is called isostatic,

but this distinction is lost in FI due to ensemble averaging. Note

that all constraint networks are treated with equal weight within a

given macrostate, but because Boltzmann factors weight macro-

states differently within the free energy landscape, the most

probable constraint networks depend on temperature. In this

report, we average over the macrostates corresponding to the

native basin to focus on equilibrium fluctuations in the folded

protein at T=Tm.

The CC matrix is calculated similarly to FI; however,

mechanical couplings are being tracked. That is, for a given

constraint topology, the decomposition of regions as described

above also yield which pair of rotatable bonds are in the same

flexible region or same rigid region. If the i-th and j-th rotatable

bond are in the same flexible region, the matrix element CCij= hi
(recall hi= hj). If they are in the same rigid region, the matrix

element CCij=– li (recall li= lj). If the pair of rotatable bonds are

not within the same distinct region, the matrix element CCij=0

and this pair of rotatable bonds are not correlated. The size of the

CC matrix representing the backbone is nominally 2N62N

because both Q and y torsions are tracked along the backbone, but

generally it is smaller because proline only has one rotatable bond.

Note that the backbone rotatable bonds within a residue can be

averaged to arrive at an N6N matrix, but the CC matrix that we

typically use, which is the case herein, show all rotatable angles. As

a final note, the CC matrix derives from an ensemble average over

constraint networks in the same way FI is averaged. Thus, we will

focus on CC in the native state of the protein at T=Tm.

Structure Preparation and Model Parameterization
The initial anti-LTbR scFv structures are modeled from the

wild type Fab structure (PDB ID: 3HC0). The Fv and Fc

fragments are severed, and the VH and VL domains are joined via

a (Gly4Ser)3 linker using SWISS-MODEL [52]. The side chain

prediction program SCWRL4 [53] is used to model the side

chains of the mutants. After MD simulation and clustering,

hydrogen atoms are added back to each representative structure

using H++ [54] to ensure proper ionization by considering residue

pKa values followed by a final minimization.

The phenomenological parameters, {usol, vnat, dnat}, are obtained
by fitting to experimental heat capacity curves from DSC. In a

recent report [55], we established parameter ranges for various

antibody fragment sizes. Similar to prior work [16,35], we fit the

representative structure corresponding to the largest cluster of the

VH P101D mutant to its Cp curve [19]. The model fits the

experimental curve very well (cf. Figure S3), which gives

parameter values of {usol =22.71 kcal/mol, vnat =20.89 kcal/

mol, dnat = 1.89}. The same model parameters are then applied

to all representative structures for the wild type protein and for all

mutants.

Comparative Analyses
Note that in this report, residue numbering is based on the

Kabat scheme [56]. The QSFR properties are calculated for each

representative structure, and a second average over the 10

representative structures is performed with a weighting that is

based on cluster size. To compare mutant QSFR properties to the

wild type, we use a Z-score (Eq. 3) to discern differences between

Figure 2. Molecular dynamics trajectories. (A) Root mean square deviations (Ca) are provided for each of the molecular dynamics trajectories.
All of the simulations appear well equilibrated, except the quadruple mutant exhibits a continuous change in the orientation between the two
domains across the interface. This observation is particularly interesting because the quadruple mutant is the most stable of the five mutants. The
slippage along the domain interface is indicated in panel (B), where different colors represent snapshots occurring at: 10 ns (red), 40 ns (blue), and
70 ns (green).
doi:10.1371/journal.pone.0092870.g002
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the wild type (w) and mutant (m) results across the 10

representative structures.

Z~(�xxm{�xxw)

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2m
10

z
s2w
10

r
ð3Þ

The averages (�xx) and standard deviations (s) are obtained using

the same cluster weightings. The value of 10 corresponds to the

number of representative structures considered. Using a very

conservative Z-score cut-off, changes in rigidity are deemed to

occur when |Z-scores| are greater than 2.33, corresponding to a

p-value of 0.01. Further, large changes are deemed to occur when

|Z-scores| are greater than 3.33, which corresponds to a p-value

of 0.0005. That is, the odds of a moderate change occurring by

random chance are 1 in 100, and the odds of a large change

occurring by random chance are less than 1 in 2300. No change is

assigned when Z-scores are between 62.33. It is important to

note, that compared to the Z-score thresholds of 61 used in our

lysozyme work where a Z-score [4], these cut-offs are much more

conservative.

Results and Discussion

Melting Point Prediction
Previously we demonstrated that the DCM is able to reproduce

experimental Tm values with an average error of 4.3% (Pearson

correlation= 0.64) across a dataset of 14 lysozyme point mutants

[16] based on a single parameterization using experimental heat

capacity data from any mutant or the wild type. Due to the

phenomenological nature of the model, we also have shown that

the parameters usol and vnat are linearly correlated in their variation

across proteins. The range for the {usol, vnat} parameters has

marked consistency that holds up across diverse proteins that span

SCOP class and size variations, including hierarchical complexes

of antibody fragments [55]. Encouraged by the overall consistency

in DCM parameters, and especially when limited to similar

proteins, we again apply a single parameter set across all structures

considered.

In this work, we apply the DCM to 10 representative structures

generated by molecular dynamics. As such, perturbations within

the {usol, vnat} parameters must take place to account for solvation

free energy changes as the protein conformation changes.

Nevertheless, we maintain fixed parameters for all conformations

and all mutants and the wild type. The fixed parameters enforce

model consistency across the sampling, so that errors related to

solvation effects caused by not perturbing usol and vnat are reflected

in the predicted Tm values. Finally, there is uncertainty in the

experimental Tm values themselves. This is because three of the

scFv proteins (wild type, double and quadruple mutants) thermally

unfold with two transitions corresponding to the VH and VL

domains [19]; however, in each case the DCM predicts a single

transition. For these three proteins, a single Tm was defined as the

target by averaging the two Tm values reported. Moreover, while

some of the experimental data is available for the scFv fragments,

others are only available for the Fv fragment without the linker,

which is what is used here. With these caveats in mind, the DCM

predicts the Tm values with an average error of 1.1% and a

Pearson correlation of 0.72 (cf. Figure S4) corresponding to an

error of ,4 K. As such, we are obtaining good accuracy from the

DCM despite its mean field description of solvation effects, where

molecular details of solvation are combined into two parameters.

Interestingly, the error in Tm is greatest in the wild type protein (cf.

Figure S5), where the DCM predicts it to be too stable.

Figure 3. Per residue characteristics. (A) Residue root mean square
fluctuations (RMSF) are provided for the six molecular dynamics
trajectories. The increased fluctuations within the double and
quadruple mutant trivially reflect the VH/VL global rearrangements at
the dimer interface. Note that the linker region, indicated by the short
tick marks along the x-axis, is ignored because the fluctuations therein
obfuscate the rest. The dashed vertical lines indicate where mutations
occur. (B) The average flexibility index is provided for each case.
Reported values correspond to the appropriate weighted average
(defined in methods) over 10 representative structures sampled from
the MD trajectory. Changes in flexibility relative to the wild type are
both structurally local (as observed at the two highlighted mutant
locations) and remote from the mutation site. (C) Differences in H-bond
between wild type and each mutant. The total H-bond counts (donor
and acceptor) are averaged across the MD simulation for each residue.
Note that there is no wild type (black) series in panel (C) because the
reported values are differences.
doi:10.1371/journal.pone.0092870.g003
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Sensitivity of Results on the Number of Representative
Structures
The Tm results indicate that the employed hybrid has utility.

However a natural question arises about the sensitivity on the

number of representative structures (Nrep) used to calculate the

weighted average QSFR properties, including Tm. Uncertainties

are greatest when only a few representative structures are used.

Recall that as Nrep increases the effect of subsequent representative

structures successively becomes less as the weight decreases

following the rank ordered decreasing cluster sizes. Therefore,

Figure 4A plots the weighted average Tm prediction as a function

of Nrep, which shows Nrep$6 is sufficient to obtain converged results

that agree markedly well with experimental values.

The sensitivity in the predicted FI and CC properties as a

function of Nrep is benchmarked. However, unlike with the Tm

values, we do not have an experimental standard to compare in

these cases. As such, consistency is monitored in the FI and CC

values across all possible pairs of representative structures as Nrep

goes from 2 to 10. Note that this assessment treats all

representative structures equally, whereas the actual averaging

approach used by the hybrid method is averaged based on

occupancy. Nevertheless, the pairwise comparisons provide a

straightforward assessment of the QSFR variability within the

representative structure sets, corresponding to an upper bound on

the probabilistic variability. Figure 4B–C plots the distributions

of pairwise Pearson correlations between all pairs of structures for

the various Nrep values. While low similarities do occur as rare

events for larger values of Nrep, the medians (61 quartile) of the

distributions are very robust, especially for Nrep$3. Taken

together, the above results demonstrate that Tm is robust at

Nrep$6, whereas the mechanical properties are robust at much

smaller values of Nrep, which is consistent with our earlier results

[25]. Upon careful inspection, low similarity pairs are more

frequent in CC, relative to FI, which is also consistent with our

prior results [25,33,34,35,57,58,59]. Good convergence to consis-

tent results is obtained when representative structures are selected

from each cluster at random (data not shown). Moreover,

insensitivity to rigidity properties over an ensemble of PG graphs

has been recently verified independently, and exploited through an

empirical protein independent parameterization [60] used to

characterize protein flexibility. Taken together, these results

indicate that an average over the most weighted ten representative

structures reduces the statistical variance in mean QSFR

properties to a point that is far less than the level of accuracy

that can be expected from the employed phenomenological DCM

underlying the calculations.

It is important to stress that the primary goal of this work is not

to predict Tm values, which are sensitive to the relative

probabilities of the native and unfolded basins. Rather, we want

to characterize the mechanical response within the native basin

across the set of proteins. However, while the DCM allows

thermodynamic and mechanical response to be directly linked,

solvent penetration as it relates to changes in the H-bond network

(HBN) is not modeled in molecular detail. Therefore, we mitigate

these concerns by using representative structures from the all-atom

MD simulation in explicit solvent, which gives ample opportunity

to capture the formation and breaking of intramolecular H-bonds

as solvent interacts with the protein. Holding the DCM

parameters constant across all proteins and their representative

structures provides a means to assess sensitivity in thermodynamic

stability as fine details in structure fluctuate at the all-atom level.

Indeed, the marked consistency in Tm predictions described above

strongly suggests that the change in mechanical response upon

mutation can be ascribed to equilibrium shifts within the native

state influenced primarily through conformational entropy com-

pensation.

Rigidity Changes in Anti-LTbR Mutants
Comparisons of mesophilic and thermophilic orthologs pairs

have been used extensively to reveal how stability and flexibility

are related [61,62]. While increased rigidity in thermophilic

proteins has been reported [7,8], there are instances where no

correlation or inverse correlation is found [63]. The latter case

demonstrates increased stability of the native state can be achieved

with an increase of conformational entropy by increasing

flexibility. Presumably, functional constraints require there to be

a balance between stability and flexibility at relative temperatures

(e.g., organismal optimal growth temperatures) [24,25] to conserve

critical catalytic mechanisms. Compared to mesophilic/thermo-

philic orthologs pairs, where the sequence identity typically ranges

Figure 4. The effects of the number of representative
structures on the QSFR results are considered. In panel (A), the
accuracy of the Tm predictions are plotted versus number of
representative structures used, where accuracy is described the Pearson
correlation between the predicted and experimental sets. In panels (B)
and (C), the similarity between the backbone flexibility index and
cooperativity correlation plots, respectively, are compared for each pair
of representative structures with the same sequence. These values are
collapsed across the six proteins and their distributions are compared
using box plots. The medians and first/third quartiles are very
consistent, indicating that mechanical predictions are robust.
doi:10.1371/journal.pone.0092870.g004
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between 40 and 80%, the stabilizing mutant proteins in our

dataset differ by only one to four residues. As a consequence, the

complexity of the problem is reduced because a separation

between local and spatially long-range effects relative to the point

mutation sites is possible.

The MD results reveal the most stable quadruple mutant is very

mobile (Figure 2B). To understand why, the FI for the wild type

and mutant scFv structures are shown in Figure 3B. While it

could be expected that FI is well conserved, there are interesting

and significant differences. Many of the differences are local to the

mutation. For example, the VH P101D mutation is present as a

single mutant and is also part of the quadruple mutant, causing

significant local rigidity changes relative to the four structures

without it. There are also widespread nonlocal changes that

primarily modulate intensity without necessarily causing a switch

from rigid to flexible (or vice versa). This is perhaps best

exemplified by the flexibility within the linker region. However,

there are a small number of cases with wholesale differences (e.g.

serine L50 in CDR L2).

To better assign significance to the observed changes, we recast

the differences between the wild type and each mutant as Z-scores.

The Z-scores for each mutant are plotted against residue number

in Figure S6 where all rigidity/flexibility differences are classified

as no significant change (|Z-score| ,2.33), moderate change

(2.33, |Z-score| ,3.33) and large change (|Z-score|.3.33).

Table S1 counts the number of residues with altered rigidity.

Across the dataset the overall number of residues with increased

rigidity (42%) is similar to increased flexibility (58%). These

percentages show that the expectation that stabilizing mutations

rigidify a protein is naı̈ve. Rather, the naı̈ve expectation is but one

possible route of stabilization. Interestingly, each mutant is skewed

in one direction or the other, where the average in the absolute

value of the percent difference between increased rigidity and

flexibility is 35%. The triple mutant (VH S16E, V55G; VL S46L)

has the greatest skew, where 82% of the changes are increased

flexibility.

Mechanical response is conveyed in Figure 5, which maps the

Z-score classification of rigidity changes on ribbon renderings of

the protein structures. Moderate and large increases in rigidity are

respectively colored cyan and blue corresponding to p-values of

0.01 and 0.0005; conversely, moderate and large increases in

flexibility are respectively colored orange and red (corresponding

to the same p-values). Green indicates no statistically significant

change is rigidity/flexibility. Note that changes tend to occur

primarily in loop regions. Consider the VH V55G mutant, which

is in the H2 complementarity-determining region (CDR). While

there is some local rigidification of H2, most of the rigidity changes

occurring are far removed from the mutation that propagate into

the VL domain. Moreover, the response to VH V55G includes a

nearly equal mix of both increased rigidity and flexibility.

Conversely, the VH P101D mutant primarily rigidifies the protein,

whereas the triple mutant primarily increases flexibility, punctu-

ated by relatively few local rigidity increases. In addition to being

more slightly more frequent, increases in flexibility are more likely

to occur far from the mutation site. Figure 6 plots histograms

summarizing the distances at which the mechanical responses

occur. While the vast majority of increases in rigidity occur within

a local neighborhood to the mutation site (the average distance

from the closest mutation to a residue with increased rigidity is

13.6 Å), the distribution is noticeably shifted to longer distances for

increased flexibility (average distance is 17.9 Å).

H-Bond Network Differences Affect Rigidity
Hydrogen bonds play an important role in protein stability

because they stabilize secondary structure and provide critical

cross-links that organize the tertiary structure [64]. Since the HBN

is a critical component to constraint topology and fluctuations

therein, characterizing the HBN changes in response to mutation

is critical to understand the observed rigidity differences.

Differences in the HBN were previously analyzed in terms of

total number present, total energy and corresponding regions

between structures to identify where H-bonds break and reform

[33,35]. We also compare densities of H-bonds present along the

backbone by invoking the MD trajectories to track H-bonds

flickering. HBNs for the wild type and five mutant structures are

provided in Figure S7.

The HBN differences are greater outside of secondary

structures, while secondary structure H-bonds are more robust.

This suggests that the preservation of secondary structure H-bonds

are largely responsible for backbone flexibility to be well

conserved, and why FI aligns well with secondary structure

elements. Conversely, the largest H-bond differences involving

side chains elucidate significant differences in rigidity properties.

That is, a change in a handful of critically placed side chain H-

bonds can drastically alter mechanical linkage properties. Some of

these differences are visually apparent when comparing the wild

type structure to the mutants. For example, the region surrounded

by the red circles in Figure S7 show changes in H-bond densities

in the region of the VH P101D mutants. These changes directly

lead to local increases in rigidity. More interestingly, owing to their

ability to span long stretches of sequence, long-range changes in

flexibility should be expected.

While increases in rigidity and flexibility are nearly equal

globally, one of the most important observations from our results is

that within this dataset increased rigidity is significantly more

common than increased flexibility within the CDRs. That is, when

there is a response within a CDR, increased rigidity occurs 90% of

the time. In stark contrast, the converse is true for non-CDR loops,

where increased flexibility is the predominant response (80%).

Increased rigidity occurs within CDR H2 in all three mutants with

the VH V55G mutation. Similarly, the VH P101D mutation

parallels the increased rigidity within H3. In contrast, several non-

CDR loops on the distal face of the antibody tend to become more

flexible upon mutation.

Using the quadruple mutant as an example, Figure 7 clearly

demonstrates how the constituent VH V55G and VH P101D

mutants lead to increased rigidity within CDRs H2 and H3,

respectively. The H-bond network for the mutant structure is

shown in the upper-right, and the indicated regions correspond to

H-bond density increases therein, relative to wild type, thus

rigidifying those regions. Within the H-bond network, color

indicates how frequent the H-bond is observed across the full MD

trajectory, black.90% occupancy, 90%$blue.70%, and 70%$

green.50% (H-bonds with less than 50% occupancy are not

shown). Mutations tend to locally optimize HBNs, causing a more

tightly connected structure. As indicated, there are four new high

probability H-bonds in H3 and three new H-bonds in H2. The

increased rigidity in CDR H3 is due to the VH P101D change.

This response is particularly noteworthy because one might

naively assume that loss of the cyclic proline would cause an

increase in flexibility. However, in this example, the strain

imposed by proline prevents two of the new H-bonds from

forming, while two others arise from new interactions with the

introduced carboxylate group. The sharp peaks at H98 and H101

in Figure 3C correspond to these new H-bonds. A similar

response in H3 occurs in the P101D single mutant. Regarding the
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increased rigidity in CDR H2, Jordan et al. [18] argues that the

VH V55G mutation removes unfavorable Q and y torsion angle

strain within the loop. In agreement, we observe pronounced

structural rearrangements in that loop that are stabilized by the

new H-bonds.

On the polar opposite end of the scFv fragment, two non-CDR

loops in the same structure show significant flexibility increases.

First, the VH b2/b3 loop highlighted in yellow in Figure S8
(residues H12–H17) that includes the VH S16E mutation, leads to

the loss of a strong H-bond between serine H16 and lysine H13.

Likewise, the VH b4/b5 loop (residues H39–H45) becomes

significantly more flexible. Again, HBN comparisons reveal the

origins of the rigidity changes (cf. Figure S9). Specifically, the
increased flexibility is strongly associated with the loss of H-bonds,

where a H-bond between glutamine H43 and alanine H40 and a

bifurcated H-bond between glutamate H46 and arginine H38 are

lost (cf. Figure 3C). The observed flexibility increases in the b4/
b5 loop are particularly interesting for two reasons. First, increased

flexibility occurs in all five mutants, representing the only strictly

conserved response across the dataset. Second, these changes

cannot simply be ascribed to local events. That is, the observed

changes must reflect long-range changes propagating through the

molecular networks because none of the mutants occur in this

region.

Changes in Mechanical Couplings
The CC plots characterize mechanical couplings between

residue pairs, providing a snapshot of allostery. It is worth

pointing out that a particular rigid cluster can itself be very mobile,

indicating the motion of residues therein are highly correlated

through the rigid body movement. When a pair of residues is

flexibly correlated, random thermal motions of one residue are

readily channeled into pathways dictated by how flexibility

propagates through the protein to affect conformational change

of the other residue, and vice versa. The rigidity network analysis

highlights pathways defined by the native state ensemble of

constraint topologies, but the mobility of atoms is not determined.

Note, however, that molecular contacts can decrease mobility

within flexible regions. As an analogy, a rigidity analysis would

characterize the wiggling of fingers on a single hand as partly

correlated, whereas the finger motions from two separate hands

are uncorrelated. However, if the hands are clasped, the mobility

of all fingers is greatly diminished due to being packed in an

interlaced fashion. Thus, the CC-plot highlights channels of

communications that are intrinsic to the skeletal structure of the

protein, but the amplitude of motions that run through these

channels are not quantified. In other words, thermodynamics and

mechanics is quantified, not kinetics.

The CC plots for all six scFv structures are provided in Figure
S10. In all cases, the VH domain is primarily composed of one

large rigid cluster, punctuated by several flexible loops. There is

more variability within the VL domains, which ranges from being

mostly rigid in the wild type and VH P101D mutants to

intrinsically flexible in the triple mutant. Moreover, the VH and

VL domains are flexibly coupled to one other. The CDRs within

each domain can be highly correlated as well, especially the H1/

H2 and L1/L3 pairs.

Changes within CC highlight the sensitivity of rigidity

properties to mutation, which is consistent with a number of our

prior works [4,25,33,34,35]. Figure 8 plots DCC values, using Z-

scores per pixel, for each of the mutant structures. Blue coloring

indicates residue pairs that are more likely to be rigidly correlated,

whereas red indicates residue pairs more likely to be flexibly

correlated. These results highlight the connection between

backbone flexibility and pairwise couplings. Most of the increases

in backbone rigidity occur at locations where increased rigidly

correlations also occur. For example, the frequently rigidified

CDR H2 shows increased rigidly correlations in all cases where

the constituent VH V55G mutation occurs. The connection is

even stronger for CDR H3 and its VH P101D mutation. Although

more complicated, residues with increased flexibility show an

Figure 5. Changes in rigidity within the mutant structures relative to wild type are indicated by color: green=no change; cyan and
blue=moderate and large rigidity increases; and orange and red=moderate and large increases in flexibility. In each case, the color
represents a certain z-score range for differences that are defined within Figure S6.
doi:10.1371/journal.pone.0092870.g005

Flexibility Redistribution in Antibody Mutants

PLOS ONE | www.plosone.org 8 March 2014 | Volume 9 | Issue 3 | e92870



analogous effect. For example, correlated flexibility increases are

observed in all of the b4/b5 loops.

Effects of Rigidity and Stability Changes on Antigen
Affinity
The five mutant scFv fragments are composed of various

combinations of four constituent mutations, two of which (VH

V55G and VH P101D) are located in CDRs. These two mutations

lead to significant rigidity increases, yet antigen-binding experi-

ments indicate that all mutants considered retain full antigen-

binding affinity [18,19]. Interestingly, this indicates that the loss of

the flexibility in CDR H2 and H3 is not critical for the antigen

binding affinity. This observation is consistent with antibody

evolution experiments that show, from germline to affinity-mature,

somatic mutations constrain conformational heterogeneity to

preorder the antigen-binding site to favor association [65,66].

Thus, there is a degree of plasticity within the constraints imposed

on antibody rigidity vis-à-vis antigen binding, including within

CDRs. However, it is also worth noting that the flexibility changes

observed herein are milder than those that occur during the

affinity maturation process (unpublished results).

Enthalpy-Entropy Compensation upon Mutation
The molecular structure in the local neighborhood of a

mutation will accommodate the new residue while respecting

local geometrical constraints and network constraints imposed by

the protein. These structural constraints are reflected in the native

state ensemble of constraint topologies, where only certain

modifications to the constraint topologies are thermodynamically

accessible. For example, for local optimization of interactions to

take place, flexibility may need to be created that was not present

in the wild type protein by breaking H-bonds remotely from the

mutation. From a thermodynamic point of view, the nature of the

most probable constraint topologies will shift through enthalpy-

entropy compensation.

It is common to imagine that stabilizing mutations will decrease

both enthalpy and entropy because rigidity will increase through

favorable enthalpic interactions, which causes a decrease in

conformational entropy. However, tied to this process, we find

that flexibility often increases with a commensurate weakening of

the HBN far from the mutation, thus providing a counteracting

enthalpy-entropy compensation mechanism where both enthalpy

and conformational entropy increase. Similar observations have

been made by NMR spectroscopy [67]. The molecular details that

involve rearrangement of H-bonds and other constraint types may

be complicated, but it is pleasing to view this counteracting effect

in terms of Le Châtelier’s principle applied to the native state

ensemble, where the equilibrium adjusts in a way to counteract the

perturbation.

Actually, the change in protein stability must be determined by

comparing differences is free energy changes due to mutation

between the native and denatured states [68]. However, the native

state changes discussed here remain valid because this equilibrium

shift is confined to be within an ensemble of conformations

comprising the native state. Moreover, Le Châtelier’s principle will

equally apply to destabilizing mutants, which is demonstrated

simply by looking at the mutations in the reverse direction.

Starting with one of the mutants in the dataset considered herein,

and mutating it back to the wild type, reveals that local flexibility

increase with less favorable enthalpic interactions will cause

rigidification far from the mutant. In this context, Le Châtelier’s

principle indicates that counteracting changes in rigidity and

flexibility will occur at remote sites to globally restore the balance

between rigidity and flexibility within protein structures.

It is worth stressing that the five mutants considered herein are

not independent. That is, the triple mutant is composed of the two

residue changes within the double mutant plus one more (VH

V55G). Similarly, the quadruple mutant is composed of the three

changes within the triple mutant plus one more (VH P101D). Both

of these ‘‘plus one more’’ residue changes correspond to the two

characterized single mutants. As such, this dataset provides an

interesting opportunity to characterize how much the rigidity/

flexibility properties change as subsequent mutations are intro-

duced. Using the same coloring scheme as Figure 5, Figure 9
compares the changes in rigidity/flexibility that occur on each

additional mutant to the changes within that structure relative to

wild-type, which reveals some interesting observations. There is a

mix of both strengthening and reversing the changes in the double

with respect to wild type when the VH V55G mutation is added to

form the triple mutant. For example, the flexibility within VH

S16E is increased, whereas the increased rigidity in the b-hairpin
near VL S46L becomes flexible relative to wild type. The increase

in flexibility that occurs in the double mutant VH b4/b5 loop is

maintained in both the triple and quadruple mutants. The

increased rigidity at VH V55G that occurs in the triple mutant

is similarly maintained in the quadruple, although it is intensified.

Figure 6. Statistically significant changes in rigidity (p,0.01)
are tabulated based on the distance between them and the
closest constituent mutation. Note that the average distance in the
increased rigidity response (A) is significantly less than increased
flexibility (B), 13.6 Å vs. 17.9 Å, respectively.
doi:10.1371/journal.pone.0092870.g006
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The size, scale and frequency of these effects are similar to what

is observed in the two single mutants. Across this mutational

scheme, the changes in CC are consistent with the presented

changes in FI (results not shown). Taken together, these results

further underscore how sensitive dynamical properties are to

minimal perturbations, which is the chief conclusion of one of our

recent reports [58]. Moreover, they demonstrate that in some

instances the effects of individual mutations are largely indepen-

dent from each other, whereas in other instances a single mutation

can completely reverse the change at a distal position.

Conclusions

Predicting how proteins will respond to mutation remains an

important open problem. Stabilizing mutations may rigidify local

regions through optimized enthalpic interactions. On the other

hand, over rigidification can be entropically destabilized [15]. To

better understand the relationships between structure and

thermodynamics, we characterize the flexibility changes that

occur over a set of stabilizing mutants in the scFv fragment of the

anti-LTbR antibody. This dataset is ideal because the number of

mutations is relatively small, stability gains are significant, and all

five mutants structures conserve function by retaining antigen-

binding affinity.

Backbone flexibility is qualitatively conserved across the mutant

antibodies, but there are statistically significant changes 24% of the

time. Interestingly, increases in flexibility are more common than

increases in rigidity, and these changes tend to occur at greater

distances from the mutation(s). Individual mutants exhibit

tendencies that are significantly skewed towards increased rigidity

or flexibility. For example, increased flexibility is most common in

the VH V55G single mutant and the triple mutant, whereas

increased rigidity is predominant in the VH P101D single mutant

and the quadruple mutant. Increased rigidity and flexibility are

more balanced in the double and quadruple mutants. Further-

more, consistent with our prior works [4,25,33,34,35], the way

flexibility propagates through the protein network via mechanical

couplings is more variable due to the sensitivity within allosteric

mechanisms [51,69]. An important component underlying these

observations is the role the HBN plays. We found the HBN largely

controls molecular mechanisms responsible for the redistribution

of flexibility upon site directed mutation, albeit in complex and

unexpected ways due to the nonadditive and long-range nature of

network rigidity.

We examined the HBNs for each mutant and wild type to

identify specific molecular origins of the mechanical response. In

the three antibodies where the VH V55G mutation is observed, a

local rigidification occurs within CDR H2 based on the formation

of new H-bonds relative to wild type. Similarly, new H-bonds

within CDR H3 occur in the two instances of the VH P101D

mutation. Against the naı̈ve expectation, loss of the proline

actually locally rigidifies the structure through optimization of the

HBN. All of these mutations also lead to long-range effects related

to weakening of the HBN as H-bonds are lost elsewhere,

corresponding to increased flexibility. In particular, this is most

prominent in the VH b2/b3 and b4/b5 loops on the polar

opposite side of the scFv structure. While differences in the HBN

between a mutant and wild type provides mechanistic insight

behind the changes that occur in rigidity and flexibility, there is no

direct correlation between any of the three quantities: H-bond

density, FI (rigidity/flexibility) or RMSF (dynamics). The lack of

direct correlations between backbone metrics characterizing

structure, mechanical response and dynamics underscores that

their interrelationships are (at least in part) intrinsically related to

Figure 7. Regions that exhibit large increases in rigidity within the quadruple mutant are identified. The effects of the quadruple
mutation (VH S16E, V55G, P101D; VL S46L) on protein flexibility are displayed in the lower left panel. The hydrogen bond network (HBN) is displayed
in the upper right panel. Color indicates H-bond frequency across the full MD trajectory, black.90% occupancy, 90%$blue.70%, and 70%$green.
50% (H-bonds with less than 50% occupancy are not shown). The two red circles emphasize two regions in the HBN with increased number of
hydrogen bonds relative to the wild type, leading to an increase in rigidity. That is, the new hydrogen bonds highlighted in yellow dashed lines
locally rigidify the corresponding regions, which correspond to complementary determining regions H2 and H3.
doi:10.1371/journal.pone.0092870.g007
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Figure 8. Cooperativity correlation difference plots highlight differences in pairwise mechanical couplings between the wild type
and each mutant. Red indicates increased correlated flexibility within the mutant structure, whereas blue indicates increased correlated rigidity.
White indicates no change. Notice in most mutants (i.e., triple mutant), changes in cooperativity correlation occur throughout the Fv structure,
whereas they are primarily isolated to the VH domain in the quadruple mutant.
doi:10.1371/journal.pone.0092870.g008

Figure 9. Using the same coloring scheme as Figure 5, rigidity/flexibility changes that occur as additional mutations are added are
described. The top row compares, from left to right, the double mutant to the wild type, the triple mutant to the double, and the quadruple to the
double, which corresponds to the fewest number of per residue changes. The bottom row re-plots the corresponding structures from Figure 5,
which are relative to wild type, so the per residue effects can be compared to the global changes.
doi:10.1371/journal.pone.0092870.g009
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subtle long-range collective properties, which can be sensitive to

even single mutations.

In summary, the redistribution of flexibility in stabilizing

mutations within the scFv fragment of the anti-LTbR antibody

will generally involve long-range effects that do not trace to a

single structural perturbation, but rather enthalpy-entropy com-

pensation linked to rigidity u flexibility equilibrium shifts.

Although the molecular mechanisms underlying these shifts are

largely controlled by alterations within the H-bond network, the

link between structure, network rigidity and dynamics remains

nebulous, presumably due to the nonadditive and long-range

nature of network rigidity. Nevertheless, Le Châtelier’s principle

can be applied as a rule of thumb to make credible predictions of

long-range effects on protein flexibility upon mutation that might

otherwise seem counterintuitive.

Supporting Information

Figure S1 Root mean square deviations (Ca) for the VH
S16E; VL S46L double mutant molecular dynamics
trajectory. Shown are the global RMSD for the full scFv

structure and the two constituent domains considered indepen-

dently. The small fluctuations within the domains highlight that

the global fluctuations are caused by frustration along the domain

interface, where the two domains are continually rearranging

relative to each other.

(TIF)

Figure S2 Cluster size of the ten representative struc-
tures sampled from the MD simulations. The values

provided in the legend are the total number of frames represented

by the top ten clusters.

(TIF)

Figure S3 The DCM is parameterized by fitting to
experimental heat capacity curves. The best-fit curve for the
VH P101D mutant is shown as a black solid line, whereas black

circles correspond to the experimental values.

(TIF)

Figure S4 Scatter plot of the cluster-weighted average
Tm values compared to the experimental values. The

Pearson correlation is 0.72 and the regression R2 is 0.51.

(TIF)

Figure S5 Computational predictions of Tm values. (A)
The predicted (red) and experimental (black) Tm values are

compared. The unfilled circles correspond to the ten representa-

tive structures, whereas the solid red circles correspond to the

cluster-weighted averages. As discussed in the text, the error in the

wild type prediction is greatest, which corresponds to the only case

where the experimental value does not fall within the represen-

tative structure range. The percent error for each representative

structure and the cluster-weighted averages are presented in panel

(B).

(TIF)

Figure S6 Differences in backbone flexibility are indi-
cated by z-scores using Eq. (3) from above. Positive values
correspond to increased flexibility within the mutant, whereas

negative values correspond to increased rigidity. Values within the

range of 62.33 are considered to have no change; values of

6(2.33–3.33) are considered to have moderate changes; and

values beyond 63.33 define large changes. The z-score represen-

tation of differences in backbone flexibility quantifies the

significance of the observed changes that include both local and

non-local changes in rigidity or flexibility.

(TIF)

Figure S7 The H-bond networks for the wild type and
mutant structures are indicated. White nodes denote H-

bond donor and acceptor atoms, and colored edges represent H-

bond occupancy across the molecular dynamics simulation

trajectory. Black corresponds to H-bonds present greater than

90% of the simulation; blue corresponds to 70–90%; and green

corresponds to 50–70%. Because we are primarily interested in

stronger H-bonds, those present less than 50% of the time are not

shown. The red circle highlights the interfacial region around

proline 104 where there are significant changes in the H-bond

network within the two structures that include the P104D

mutation.

(TIF)

Figure S8 Sequence of the wild type anti-LTbR single
chain Fv fragment with key features indicated. Mutant

positions are highlighted in red. Complementarity determining

regions (CDRs) are highlighted in yellow, the two VH loops with

increased flexibility are highlighted in green, and the single chain

linker is highlighted in cyan. Residue numbering is based on the

Kabat scheme.

(TIF)

Figure S9 Regions that exhibit large increases in
flexibility within the quadruple mutant are identified.
The effects of the quadruple mutation (VH S16E, V56G, P104D;

VL S46L) on protein flexibility are displayed the upper right panel.

The hydrogen bond network (HBN) within the wild type antibody

is displayed in the lower left panel. The two red circles emphasize

two regions with significant decreases in the mutant HBN

compared to wild type, corresponding to increased flexibility.

That is, the loss of the hydrogen bonds highlighted in yellow

dashed lines cause the corresponding regions to become more

flexible.

(TIF)

Figure S10 Cooperativity correlation plots reveal intra-
molecular couplings within structure. That is, blue

corresponds to residue pair correlated rigidity, whereas red

correspond to correlated flexibility. White indicates no mechanical

coupling between a pair of residues irrespective if the residues are

flexible or rigid. For each case, the presented values represent the

appropriate weighted average values over each set of ten

representative structures sampled from the molecular dynamics

trajectory.

(TIF)

Table S1 Frequency of increased rigidity vs. increased
flexibility. Across the dataset the overall number of residues with

increased rigidity (42%) is similar to increased flexibility (58%).

(DOCX)

Acknowledgments

Key to the distance constraint model is the use of graph-rigidity algorithms,

claimed in U.S. Patent 6,014,449, which has been assigned to the Michigan

State University Board of Trustees. Used with permission.

Author Contributions

Conceived and designed the experiments: DJJ DRL. Performed the

experiments: TL. Analyzed the data: TL DJJ DRL. Contributed reagents/

materials/analysis tools: DRL DJJ. Wrote the paper: TL MBT SU JCF

DRL DJJ.

Flexibility Redistribution in Antibody Mutants

PLOS ONE | www.plosone.org 12 March 2014 | Volume 9 | Issue 3 | e92870



References

1. Fleming PJ, Rose GD (2005) Do all backbone polar groups in proteins form

hydrogen bonds? Protein Sci 14: 1911–1917.

2. Livesay DR (2010) Protein dynamics: dancing on an ever-changing free energy
stage. Curr Opin Pharmacol 10: 706–708.

3. Tokuriki N, Tawfik DS (2009) Stability effects of mutations and protein

evolvability. Curr Opin Struct Biol 19: 596–604.
4. Verma D, Jacobs DJ, Livesay DR (2012) Changes in lysozyme flexibility upon

mutation are frequent, large and long-ranged. PLoS Comput Biol 8: e1002409.

5. Yutani K, Ogasahara K, Sugino Y (1985) Effect of amino acid substitutions on
conformational stability of a protein. Adv Biophys 20: 13–29.

6. Studer RA, Dessailly BH, Orengo CA (2013) Residue mutations and their

impact on protein structure and function: detecting beneficial and pathogenic
changes. Biochem J 449: 581–594.

7. Rader AJ (2009) Thermostability in rubredoxin and its relationship to

mechanical rigidity. Phys Biol 7: 16002.

8. Radestock S, Gohlke H (2011) Protein rigidity and thermophilic adaptation.
Proteins 79: 1089–1108.

9. van den Burg B, Eijsink VG (2002) Selection of mutations for increased protein

stability. Curr Opin Biotechnol 13: 333–337.

10. Lee HJ, Yoon YJ, Jang do S, Kim C, Cha HJ, et al. (2008) 15N NMR relaxation
studies of Y14F mutant of ketosteroid isomerase: the influence of mutation on

backbone mobility. J Biochem 144: 159–166.

11. Liu J, Song J (2009) Insights into protein aggregation by NMR characterization
of insoluble SH3 mutants solubilized in salt-free water. PLoS One 4: e7805.

12. Mulder FA, Hon B, Muhandiram DR, Dahlquist FW, Kay LE (2000) Flexibility

and ligand exchange in a buried cavity mutant of T4 lysozyme studied by
multinuclear NMR. Biochemistry 39: 12614–12622.

13. Wen Y, Li J, Xiong M, Peng Y, Yao W, et al. (2010) Solution structure and

dynamics of the I214V mutant of the rabbit prion protein. PLoS One 5: e13273.
14. Yuan X, Werner JM, Lack J, Knott V, Handford PA, et al. (2002) Effects of the

N2144S mutation on backbone dynamics of a TB-cbEGF domain pair from

human fibrillin-1. J Mol Biol 316: 113–125.
15. Hu H, Clarkson MW, Hermans J, Lee AL (2003) Increased rigidity of eglin c at

acidic pH: evidence from NMR spin relaxation and MD simulations.

Biochemistry 42: 13856–13868.
16. Verma D, Jacobs DJ, Livesay DR (2010) Predicting the melting point of human

C-type lysozyme mutants. Curr Protein Pept Sci 11: 562–572.

17. Jacobs DJ (2012) An interfacial model for protein stability. In: Misra AN, editor.
Biophysics: Intech. 91–132.

18. Jordan JL, Arndt JW, Hanf K, Li G, Hall J, et al. (2009) Structural

understanding of stabilization patterns in engineered bispecific Ig-like antibody
molecules. Proteins 77: 832–841.

19. Miller BR, Demarest SJ, Lugovskoy A, Huang F, Wu X, et al. (2010) Stability

engineering of scFvs for the development of bispecific and multivalent
antibodies. Protein Eng Des Sel 23: 549–557.

20. Dunitz JD (1995) Win some, lose some: enthalpy-entropy compensation in weak

intermolecular interactions. Chem Biol 2: 709–712.

21. Vorov OK, Livesay DR, Jacobs DJ (2009) Helix/coil nucleation: a local
response to global demands. Biophys J 97: 3000–3009.

22. Vorov OK, Livesay DR, Jacobs DJ (2011) Nonadditivity in conformational

entropy upon molecular rigidification reveals a universal mechanism affecting
folding cooperativity. Biophys J 100: 1129–1138.

23. Frankel AD (1992) The importance of being flexible. Proc Natl Acad Sci U S A

89: 11653.

24. Hollien J, Marqusee S (1999) A thermodynamic comparison of mesophilic and
thermophilic ribonucleases H. Biochemistry 38: 3831–3836.

25. Livesay DR, Jacobs DJ (2006) Conserved quantitative stability/flexibility

relationships (QSFR) in an orthologous RNase H pair. Proteins 62: 130–143.
26. Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF (2001) Protein flexibility

predictions using graph theory. Proteins 44: 150–165.

27. Jacobs DJ, Thorpe MF (1995) Generic rigidity percolation: The pebble game.
Phys Rev Lett 75: 4051–4054.

28. Istomin AY, Gromiha MM, Vorov OK, Jacobs DJ, Livesay DR (2008) New

insight into long-range nonadditivity within protein double-mutant cycles.
Proteins 70: 915–924.

29. Jacobs DJ, Dallakyan S (2005) Elucidating protein thermodynamics from the

three-dimensional structure of the native state using network rigidity. Biophys J
88: 903–915.

30. Livesay DR, Dallakyan S, Wood GG, Jacobs DJ (2004) A flexible approach for

understanding protein stability. FEBS Lett 576: 468–476.

31. Loladze VV, Ermolenko DN, Makhatadze GI (2002) Thermodynamic
consequences of burial of polar and non-polar amino acid residues in the

protein interior. Journal Of Molecular Biology 320: 343–357.

32. Jacobs DJ, Livesay DR, Hules J, Tasayco ML (2006) Elucidating quantitative
stability/flexibility relationships within thioredoxin and its fragments using a

distance constraint model. J Mol Biol 358: 882–904.

33. Livesay DR, Huynh DH, Dallakyan S, Jacobs DJ (2008) Hydrogen bond
networks determine emergent mechanical and thermodynamic properties across

a protein family. Chem Cent J 2: 17.

34. Mottonen JM, Jacobs DJ, Livesay DR (2010) Allosteric response is both
conserved and variable across three CheY orthologs. Biophys J 99: 2245–2254.

35. Mottonen JM, Xu M, Jacobs DJ, Livesay DR (2009) Unifying mechanical and

thermodynamic descriptions across the thioredoxin protein family. Proteins 75:

610–627.

36. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4:

Algorithms for highly efficient load-balanced, and scalable molecular simulation.

J Chem Theory Comput 4.

37. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, et al. (2005)

GROMACS: fast, flexible, and free. J Comput Chem 26: 1701–1718.

38. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, et al. (2010)

Improved side-chain torsion potentials for the Amber ff99SB protein force field.

Proteins 78: 1950–1958.

39. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983)

Comparison of simple potential functions for simulating liquid water. J Chem

Phys 79: 926–935.

40. Nose S (1984) A Molecular-Dynamics Method for Simulations in the Canonical

Ensemble. Molecular Physics 52: 255–268.

41. Hoover WG (1985) Canonical dynamics: Equilibrium phase-space distributions.

Phys Rev A 31: 1695–1697.

42. Nose S (1985) A molecualr dynamics method for simulations in the canonical

ensemble. Molecular Physics 52.

43. Darden TA, York DM, Pedersen LG (1993) Particle mesh Ewald: an N log (N)

method for Ewald sums in large systems. J Chem Phys 98: 10089–10092.

44. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: A linear

constraint solver for molecular simulations. Journal of Computational Chemistry

18: 1463–1472.

45. Miyamoto S, Kollman PA (1992) Settle - an Analytical Version of the Shake and

Rattle Algorithm for Rigid Water Models. Journal of Computational Chemistry

13: 952–962.

46. Banfield MJ, King DJ, Mountain A, Brady RL (1997) VL:VH domain rotations

in engineered antibodies: crystal structures of the Fab fragments from two

murine antitumor antibodies and their engineered human constructs. Proteins

29: 161–171.

47. Nakanishi T, Tsumoto K, Yokota A, Kondo H, Kumagai I (2008) Critical

contribution of VH-VL interaction to reshaping of an antibody: the case of

humanization of anti-lysozyme antibody, HyHEL-10. Protein Sci 17: 261–270.

48. Narayanan A, Sellers BD, Jacobson MP (2009) Energy-based analysis and

prediction of the orientation between light- and heavy-chain antibody variable

domains. J Mol Biol 388: 941–953.

49. Karpen ME, Tobias DJ, Brooks CL 3rd (1993) Statistical clustering techniques

for the analysis of long molecular dynamics trajectories: analysis of 2.2-ns

trajectories of YPGDV. Biochemistry 32: 412–420.

50. Feig M, Karanicolas J, Brooks CL 3rd (2004) MMTSB Tool Set: enhanced

sampling and multiscale modeling methods for applications in structural biology.

J Mol Graph Model 22: 377–395.

51. Jacobs DJ, Livesay DR, Mottonen JM, Vorov OK, Istomin AY, et al. (2012)

Ensemble properties of network rigidity reveal allosteric mechanisms. Methods

Mol Biol 796: 279–304.

52. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL

workspace: a web-based environment for protein structure homology modelling.

Bioinformatics 22: 195–201.

53. Krivov GG, Shapovalov MV, Dunbrack RL Jr. (2009) Improved prediction of

protein side-chain conformations with SCWRL4. Proteins 77: 778–795.

54. Gordon JC, Myers JB, Folta T, Shoja V, Heath LS, et al. (2005) H++: a server

for estimating pKas and adding missing hydrogens to macromolecules. Nucleic

Acids Res 33: W368–371.

55. Li T, Verma D, Malgorzata BT, Casas-Finet J, Livesay DR, et al. (In press)

Thermodynamic and stability characteristics of antibody fragment complexes.

Prot Pept Lett.

56. Johnson G, Wu TT (2001) Kabat Database and its applications: future

directions. Nucleic Acids Res 29: 205–206.

57. Li T, Verma D, Tracka MB, Casas-Finet J, Livesay DR, et al. (2013)

Thermodynamic Stability and Flexibility Characteristics of Antibody Fragment

Complexes. Protein and peptide letters.

58. Verma D, Jacobs DJ, Livesay DR (2012) Changes in Lysozyme Flexibility upon

Mutation Are Frequent, Large and Long-Ranged. PLoS Comput Biol 8:

e1002409.

59. Verma D, Jacobs DJ, Livesay DR (2013) Variations within class-A beta-

lactamase physiochemical properties reflect evolutionary and environmental

patterns, but not antibiotic specificity. PLoS Comput Biol 9: e1003155.

60. Pfleger C, Gohlke H (2013) Efficient and robust analysis of biomacromolecular

flexibility using ensembles of network topologies based on fuzzy noncovalent

constraints. Structure In press.

61. Fields PA (2001) Review: Protein function at thermal extremes: balancing

stability and flexibility. Comp Biochem Physiol A Mol Integr Physiol 129: 417–

431.

62. Jaenicke R, Zavodszky P (1990) Proteins under extreme physical conditions.

FEBS Lett 268: 344–349.

63. Kamerzell TJ, Middaugh CR (2008) The complex inter-relationships between

protein flexibility and stability. J Pharm Sci 97: 3494–3517.

Flexibility Redistribution in Antibody Mutants

PLOS ONE | www.plosone.org 13 March 2014 | Volume 9 | Issue 3 | e92870



64. Nisius L, Grzesiek S (2012) Key stabilizing elements of protein structure

identified through pressure and temperature perturbation of its hydrogen bond
network. Nat Chem 4: 711–717.

65. Manivel V, Sahoo NC, Salunke DM, Rao KV (2000) Maturation of an antibody

response is governed by modulations in flexibility of the antigen-combining site.
Immunity 13: 611–620.

66. Zimmermann J, Oakman EL, Thorpe IF, Shi X, Abbyad P, et al. (2006)
Antibody evolution constrains conformational heterogeneity by tailoring protein

dynamics. Proc Natl Acad Sci U S A 103: 13722–13727.

67. Stone MJ (2001) NMR relaxation studies of the role of conformational entropy

in protein stability and ligand binding. Acc Chem Res 34: 379–388.

68. Fu H, Grimsley G, Scholtz JM, Pace CN (2010) Increasing protein stability:

importance of DeltaC(p) and the denatured state. Protein Sci 19: 1044–1052.

69. Livesay DR, Kreth KE, Fodor AA (2012) A critical evaluation of correlated

mutation algorithms and coevolution within allosteric mechanisms. Methods

Mol Biol 796: 385–398.

Flexibility Redistribution in Antibody Mutants

PLOS ONE | www.plosone.org 14 March 2014 | Volume 9 | Issue 3 | e92870


