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Abstract

The effects of somatic mutations that transform polyspecific germline (GL) antibodies to
affinity mature (AM) antibodies with monospecificity are compared among three GL-AM Fab
pairs. In particular, changes in conformational flexibility are assessed using a Distance Con-
straint Model (DCM). We have previously established that the DCM can be robustly applied
across a series of antibody fragments (VL to Fab), and subsequently, the DCM was com-
bined with molecular dynamics (MD) simulations to similarly characterize five thermostabi-
lizing scFv mutants. The DCM is an ensemble based statistical mechanical approach that
accounts for enthalpy/entropy compensation due to network rigidity, which has been quite
successful in elucidating conformational flexibility and Quantitative Stability/Flexibility Rela-
tionships (QSFR) in proteins. Applied to three disparate antibody systems changes in
QSFR quantities indicate that the VH domain is typically rigidified, whereas the VL domain
and CDR L2 loop become more flexible during affinity maturation. The increase in CDR H3
loop rigidity is consistent with other studies in the literature. The redistribution of conforma-
tional flexibility is largely controlled by nonspecific changes in the H-bond network, although
certain Arg to Asp salt bridges create highly localized rigidity increases. Taken together,
these results reveal an intricate flexibility/rigidity response that accompanies affinity
maturation.

Author Summary

Antibodies are protective proteins used by the immune system to recognize and neutralize
foreign objects through interactions with a specific part of the target, called an antigen.
Antibody structures are Y-shaped, contain multiple protein chains, and include two anti-
gen-binding sites. The binding sites are located at the end of the Fab fragments, which are
the upward facing arms of the Y-structure. The Fab fragments maintain binding affinity
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by themselves, and are thus often used as surrogates to student antibody-antigen interac-
tions. High affinity antibodies are produced during the course of an immune response by
successive mutations to germline gene-encoded antibodies. Germline antibodies are more
likely to be polyspecific, whereas the affinity maturation process yields monoclonal anti-
bodies that bind specifically to the target antigen. In this work, we use a computational
Distance Constraint Model to characterize how mechanical properties change as three dis-
parate germline antibodies are converted to affinity mature. Our results reveal a rich set of
mechanical responses throughout the Fab structure. Nevertheless, increased rigidity in the
VH domain is consistently observed, which is consistent with the transition from polyspe-
cificity to monospecificity. That is, flexible antibody structures are able to recognize multi-
ple antigens, while increased affinity and specificity is achieved—in part—by structural
rigidification.

Introduction

The variable region of an antibody is composed of a structurally conserved fold that contains
six complementarity-determining regions (CDRs), also known as hypervariable regions. The
six CDRes, three on the light chain (L1, L2 and L3) and three on the heavy chain (H1, H2 and
H3), are known to be responsible for the majority of antibody-binding interactions. Antibody
evolution starts with the assembly of germline (GL) antibodies in B and T cell progenitors
through the recombination of V, D, and J gene segments [1]. Theoretically, V-(D)-J recombi-
nation could generate 2.3 x 10'* antibody variable domains [2], which is far less than the num-
ber of epitopes on foreign antigens to which one could be exposed. Therefore, the GL
antibodies undergo further cycles of somatic mutations for affinity maturation (AM) and speci-
ficity improvement as the immune response proceeds, which can produce an astronomical
number of unique antibodies.

A variety of biochemical and structural studies reveal that the same germline gene-encoded
antibodies allow promiscuous binding to diverse antigens, and even the same antigens by quite
different somatic mutations [3-5]. Structural diversity in the antigen-binding site accounts for
the immense breadth of binding of the antibody repertoire. Two hypotheses, conformational
flexibility and the induced-fit models, are commonly invoked to explain the conformational
changes of antibodies during affinity maturation. Conformational flexibility assumes GL anti-
bodies retain a degree of structural plasticity in their backbone in order to bind a number of
different unrelated antigens, a capacity referred to here as polyspecificity [3, 6]. In contrast, the
induced-fit model supposes that conformational changes are induced as antigens binding to
the Ab [7-9]. Regardless of the explanation, it is clear that flexibility/rigidity is changed, which
is closely related to the binding affinity and specificity of antigens [4, 5, 10-13].

There is much evidence to suggest that mature antibodies, especially within the CDRs, are
inherently more rigid than their GL precursors. Lipovsek et al. [14] demonstrated that con-
stricting the flexibility of CDRs with inter-loop disulfide bonds enhanced the affinity of immu-
noglobulin interactions. Schmidt et al. [15] studied a broadly neutralizing influenza virus
antibody using long-scale molecular dynamics and demonstrated that maturation rigidifies the
initially flexible heavy-chain CDRs, which accounts for most of the affinity gain. Jorg et al. [16]
applied three-pulse photon echo spectroscopy and molecular dynamic to explore the flexibility
of mature 4-4-20 antibody and found that the binding site of the mature antibody is signifi-
cantly rigidified compared to that of the GL, and that the increased rigidity occurs via increased
coupling within and between CDR loops and the antibody framework. Finally, Manivel et al.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004327 July 1,2015 2/23



©PLOS

COMPUTATIONAL

BIOLOGY

Rigidity Emerges during Antibody Evolution

[17] proposed that more unfavorable entropy changes are associated with ligand binding
within GL antibodies compared to AM.

Although genetic and biochemical studies have revealed the nature and origin of the
sequence diversity of antibodies, the mechanisms by which the somatic mutations change the
flexibility of the antibody-binding site is not well understood. Accurate assessment of the flexi-
bility of the CDRs might be particularly important to further understand the thermodynamics
of immunoglobulin binding. Flexibility of the CDRs is related to the polyspecificity by provid-
ing the capacity of a single binding site to bind different ligands. Molecular dynamics (MD) is
commonly used to quantify protein “flexibility” at a very detailed level. However, quantifying
protein motions characterized by MD trajectories using standard metrics such as root mean
squared fluctuations (RMSF) or assessing essential dynamics by principal component analysis
capture atomic motions with large amplitudes. While the phrase “flexibility” is often used
interchangeably with mobility, there is a technical difference. For example, an o-helix consti-
tutes a rigid substructure, yet it can simultaneously be highly mobile if its position as a rigid
body undergoes large fluctuations. Conversely, a flexible region may serve as a hinge point to
facilitate relative motions, but the hinge itself need not be mobile. Although flexibility and
mobility are distinct properties, this distinction is typically not made in the literature.

Flexibility is characterized by network rigidity as a direct mechanical property of molecular
structure. The Distance Constraint Model (DCM) characterizes protein flexibility in a thermo-
dynamically appropriate way [18, 19]. The DCM has been successfully applied for many pro-
tein systems such as RNase H [20], periplasmic binding proteins [21], thioredoxin [22],
lysozyme [23, 24], and B-lactamase [25]. Collectively, these results reveal that conformational
flexibility is very sensitive to perturbation (e.g., mutation and ligand binding). Moreover, these
flexibility changes frequently propagate over long distances. Recently, we characterized the
effects of mutation to single chain Fv (scFv) fragments of the anti-lymphotoxin-f receptor
antibody using the DCM [26]. Statistically significant changes in the distribution of both rigid-
ity and flexibility within the molecular structure is typically observed, where the local perturba-
tions often lead to distal shifts in flexibility and rigidity profiles.

In this report, we similarly characterize the effects of somatic mutations on the flexibility/
rigidity changes by analyzing three GL-AM antigen-binding fragment (Fab) pairs. Interest-
ingly, CDR H3 loop is rigidified after affinity maturation in all three cases. We observe a rich
mixture of increased rigidity and flexibility along the backbone, and many of these changes are
significantly long-ranged. In many instances specific hydrogen bonds or salt bridges that form
in regions where there is tight side chain packing play an important role in rigidifying CDRs
during the maturation process. The accompanying loss of conformational entropy due to this
increase in rigidity near the mutation site is an enthalpy-entropy compensation mechanism
that the DCM captures well through network rigidity. In addition, molecular couplings that
describe flexibility and rigidity correlations between residues are frequently enhanced by
somatic mutations. The structural plasticity of GL antibodies and associated trends in how
rigidity and flexibility profiles redistribute upon maturation likely represent general mecha-
nisms used by the immune response and could be used to guide design high affinity and selec-
tive antibodies for desired function.

Methods
The Distance Constraint Model

The DCM is defined in terms of an all-atom free energy decomposition (FED) scheme com-
bined with constraint theory. Atomic structure is mapped onto a graph where vertices repre-
sent atomic positions and edges describe intramolecular interactions that fix the distance
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between atomic positions. This graph defines a mechanical framework that is characterized by
its constraint topology. A Pebble Game (PG) algorithm identifies all rigid and flexible regions
[27, 28], which can provide statistically significant explanations of intramolecular couplings
[29]. An ensemble of graphs is considered to account for fluctuations in constraint topologies
due to the breaking and forming of H-bonds and packing interactions. The DCM generates a
Gibbs ensemble of graphs, where each graph is weighted by a Boltzmann factor given by xp
(—=BG). The free energy of a graph is calculated from a FED where each constraint is associated
with a component enthalpy and entropy. The total enthalpy of a graph is the sum over all
enthalpy contributions. However, as described below, the total entropy accounts for nonaddi-
tivity [23, 30, 31] due to network rigidity. Within the minimal DCM [18, 32] the number of
native-like torsion constraints, N,,,;, and number of H-bond constraints, Ny, specify a macro-
state. Native torsion states have lower energies and entropies relative to disordered torsion
states, meaning they correspond to good packing interactions. As a result, protein stability is
described in terms of both intramolecular packing and the H-bond network. Note that salt
bridges are considered to be a special case of H-bonds.

The two order parameters, (N, N,,4:), define a macrostate of a protein in terms of its con-
straint topology, from which a free energy functional is constructed as:

G(Ny, N,

nat

) = U(Ny) — 4Ny + V0N, — T[Sconf(Nhh’ N, 6pt) + S N, N )l (1)
where U is the intramolecular H-bond energy, u,,; is an average H-bond energy to solvent that
occurs when an intramolecular H-bond breaks, v, is the energy associated with a native-like
torsion, ScoudNpps Nyar) is the conformational entropy and S,,ix(Npp, Nyar) is the mixing entropy
of the macrostate associated with the number of ways of distributing N,,,; native-torsions and
Njyp H-bonds within the constraint topology. Three phenomenological parameters, {1, Vyar
Onar}, effectively account for overall structural shape and solvent interactions. Conformational
entropy, Scons is calculated over the set of independent constraints identified by the PG using:

Swnf(th? Nnat) = R<Z q:7: + Qnaténat + Qdisédis> (2)
tehb graphs
where the index t spans over all H-bond constraints in the input structure, and each H-bond
has a g, of either {0, 1, 2, 3, 4 or 5} to count the number of distance constraints that are inde-
pendent based on the PG. Note that in the mDCM, each H-bond is modeled using five distance
constraints. Hence, it is possible that all five constraints are independent (i.e. g; = 5) or all five
constraints are redundant (i.e. g; = 0) or any range in between if the ¢-th H-bond is present,
and g, = 0 if the #-th H-bond is not present (i.e. broken). For each independent H-bond dis-
tance constraint, R,, is the conformational entropy contribution. The details of these calcula-
tions depend greatly on the number of H-bonds present in the protein and where they are
distributed. Moreover, there is a strong dependence on the number and location of torsion con-
straints within the protein. The macrostate stratifies the total number of H-bonds and total
number of native torsions.

All native-like and disordered torsion constraints respectively contribute RJ,,; and R ;s to
the conformational entropy when they are independent. Taking advantage of the degeneracy,
the variable Q,,, is the total number of native-like torsions that are independent and Q;; is the
total number of disordered torsions that are independent. The various g;, Q,.,, and Qg;; values
in Eq (2) are calculated for each mechanical framework (graph) using the PG, and the confor-
mational entropy is obtained as an ensemble average over many graphs as denoted by the aver-
aging brackets [18]. Monte Carlo sampling is used to sample networks at each macrostate
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value (Npp, N,ar)- Typically, 200 samples per macrostate provide enough sampling to obtain
sufficiently accurate statistics.

Lastly, there is a critically important step that must be executed when determining if a con-
straint is independent or redundant. When the PG is used to calculate whether a constraint is
independent or redundant during a recursive process of building the PG graph one constraint
at a time [28], the constraints are placed in preferential order from lowest to highest compo-
nent entropies. With this preferential ordering, the calculation of conformational entropy pro-
vides a lowest possible upper bound estimate. Conceptually, total conformational entropy
reflects the minimal set of the most constrictive yet independent interactions. Solvation free
energy contributions are modeled by the phenomenological u,,; and v,,,, parameters [33] that
are conjugate to the intramolecular H-bonds and packing order parameters respectively. While
mutations are known to quantitatively affect solvation free energies [34], the same u,, and v,,4;
parameters are used throughout because the changes are not expected to be large here due to
the overall structural similarity across the dataset.

Dataset

We created a dataset of three pairs of GL-AM antibody Fabs that include anti-fluorescein (FA),
anti-CD3 T-cell receptor (CA) and esterase catalytic (EA) antibodies (Table 1). In this dataset,
except for the GL Fabs of FA and CA, all the X-ray structures are available. The structures of
GL Fabs of both FA and CA were modeled using their corresponding AM structures as tem-
plates by SCWRLA4 [35]. The melting temperatures (T,,) of FA(AM), CA(GL) and CA(AM) are
available. S1 Table summarized the potential germline genes of the three antibodies based on
the bioinformatics analysis of the closet human germline sequences by the alignments of the
sequences of maturated antibodies with those from the germline sequence database. Across the
three antibodies, only one or two segments may come from the same genes and other segments
are from different GL genes, meaning the three example systems do not belong to the same GL
family and suggesting wide applicability of our results. S2 Table shows the experimentally mea-
sured binding affinities of the three antibodies in the dataset with their antigens. The affinity
increases from GL to AM is at least 32-fold in FA and 7.3 fold in EA. The GL CA antibody does
not bind antigen, whereas the affinity for the AM antibody is Kd = 0.64 uM. The number and
identity of mutations between AM and GL are summarized in S3 Table.

Molecular Dynamics Sampling

We employed molecular dynamics (MD) simulations to generate an ensemble of conforma-
tions (10 representative structures) for subsequent DCM analysis. The advantage of using

Table 1. Dataset of the GL-AM pairs for rigidity/flexibility analysis.

Antibody Fab GL/AM
Anti-Fluorescein GL

AM
Anti-CD3 GL

AM
Esterolytic catalytic Ab GL

AM

PDB ID Residue Tm (K) Total # of clusters # conformations in 10 largest clusters®
NA® 437 NA 12 1987
1FLR 437 326 [47] 13 1839
NA? 432 343 [71] 13 1858
1SY6 432 344 [71] 14 1909
1AJ7 431 NA 11 1986
1GAF 431 NA 13 1930

a. The structures were modeled based on their corresponding AM antibody structure.
b. Each clustering was performed for 2,000 conformations extracted from 100 ns molecular dynamics trajectory.

doi:10.1371/journal.pcbi.1004327.1001
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multiple structures instead of a single structure is that sensitivity to structural artifacts is dimin-
ished and uncertainties can be estimated [26]. Each structure in the dataset was simulated for
100 ns using Gromacs 4.5.5 [36, 37] in the NVT ensemble with the AMBER99SB-ILDN force
field [38]. The structures were solvated by adding 10.0 A of TIP3P water [39] in a cubic

box (counter ions are also added to neutralize charge). Before production, the systems were
minimized for 5,000 iterations in Gromacs, followed by 1 ns of NPT and 1 ns of NVT equili-
bration. Pressure (1 atm) was regulated using the extended ensemble Parrinello-Rahman
approach [40] and temperature (300 K) was controlled by a Nose-Hoover temperature cou-
pling [40, 41]. A nonbonded cutoff of 10.0 A was used, and Particle-Mesh-Ewald [42] accounts
for long-range electrostatic interactions. All bonds to hydrogen atoms in proteins were con-
strained using LINCS [43], whereas bonds and angles of water molecules are constrained by
SETTLE [44], allowing for a time step of 0.002 ps.

DCM Parameterization

The phenomenological parameters, {ts, Vuar» Onas}> are ideally obtained by fitting to experi-
mental heat capacity curves from DSC. In our two recent reports [26, 45], we established
parameter ranges for various antibody fragment sizes and the parameters are relatively con-
served within the same antibody fragment. In addition, we showed that the mDCM could be
parameterized in the absence of experimental heat capacity curves assuming the melting tem-
perature is known or estimated. Therefore, because of the lack of experimental C, curves for
our dataset we obtained the parameters for the six antibodies by two ways. If the T, value of
the antibody is known, we fit the structure to a presumed similar experimental C, curve from a
commercial anti-VEGF antibody Fab, Bevacizumab, which has one peak corresponding to the
T,, at 347K [46]. Prior to the fitting, the T, of the target-experimental C, curve was shifted to
the true experimental T, (326K) [47] For the antibodies without experimental T,, we used the
same parameters from FA (54 Table).

Quantitative Stability/Flexibility Relationships

In addition to calculating thermodynamic properties, the mDCM calculates a number of
mechanical properties that are ensemble averaged. Taken together, the mDCM produces
Quantitative Stability/Flexibility Relationships (QSFR) of the protein. For example, large
extended rigid sub-structures, punctuated by flexible loops, are prevalent at low temperatures,
whereas the protein is primarily flexible in the denatured ensemble at temperatures greater
than the T, defined by the heat capacity peak. The backbone Flexibility Index (FI) and the
Cooperativity Correlation (CC) serve as useful QSFR metrics for characterizing mechanical
properties within a protein [48].

The FI is an ensemble average over the quantity f; = (h,—1;) that is calculated for each con-
straint topology as follows. When the i-th rotatable bond can rotate within a flexible region, the
number of rotatable bonds that can rotate (distinct hinge motions) within that flexible region
is counted, and denoted as H. The number of independent disordered torsions within that flex-
ible region is also counted, and denoted as A. The value h; = A/H represents the density of inde-
pendent degree of freedom (DOF) within that flexible region, and it is assigned to all H
rotatable bonds within. Conversely, if the i-th rotatable bond is locked within an over-con-
strained region, the total number of rotatable bonds that are locked are counted and denoted as
L. The number of redundant constraints within that over-constrained region is also counted,
and denoted as B. The value [; = B/L represents the density of redundant constraints within
that over-constrained region, and it is assigned to all L locked bonds within. In the special case
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that B = 0, the locked bond is called isostatic, but this distinction is lost in FI due to ensemble
averaging.

The CC matrix is calculated similarly to FI; however, mechanical couplings are being
tracked. That is, for a given constraint topology, the decomposition of regions as described
above also yield which pair of rotatable bonds are in the same flexible region or same rigid
region. If the i-th and j-th rotatable bond are in the same flexible region, the matrix element
CCjj = h; (recall h; = h;). If they are in the same rigid region, the matrix element CC;; = -I; (recall
l; = ;). If the pair of rotatable bonds are not within the same distinct region, the matrix element
CCjj = 0 and this pair of rotatable bonds are not correlated. The size of the CC matrix repre-
senting the backbone is nominally 2N-2N because the phi and psi torsions are tracked along
the backbone. However, generally the CC matrix is slightly smaller in size because proline has
only the psi rotatable bond. Although the backbone rotatable bonds within a residue can be
averaged to arrive at a N-N matrix, the CC matrix that we typically use, as is the case here,
show all rotatable angles.

There are multiple ways to ensemble average mechanical properties and other physical
observables. Note that because Boltzmann factors weight macrostates differently within the
free energy landscape, the most probable constraint networks depend on temperature. In this
report, we average over all macrostates corresponding to the native basin to focus on equilib-
rium fluctuations in the folded protein at T = T,. As such, both the FI metric and the CC
matrix represent the average native state characteristics at T = T,,,.

Comparative Analyses

In this report, residue numbering is based on the Kabat scheme [49]. The QSFR properties are
calculated for each representative structure, and a second average over 10 representative struc-
tures is performed with a weighting that is based on cluster size. To compare mutant QSFR
properties to the wild type, we use a Z-score (Eq 3) to discern differences between the GL and
AM results across the 10 representative structures.

Z= ()_Cmut - J_th)/ 2 2 (3)

;
mut wt
0+

10

The value of 10 corresponds to the number of representative structures considered. Cluster
weightings are included when calculating the averages and standard deviations of a quantity
over the 10 representative structures. Using a conservative Z-score cut-off, statistically signifi-
cant changes are deemed to occur when |Z-scores| are greater than 2.33, corresponding to a p-
value of 0.01. Further, large changes are deemed to occur when |Z-scores| are greater than 3.33,
which corresponds to a p-value of 0.0005. That is, the odds of a moderate change occurring by
random chance are 1 in 100, and the odds of a large change occurring by random chance are
less than 1 in 2300. No change is assigned when Z-scores are between +2.33.

Results and Discussion
Analysis of the Dataset

Three GL-AM antibody pairs including anti-fluorescein, anti-CD3 T-cell receptor and esterase
catalytic antibodies were compiled for rigidity/flexibility analysis. For each pair we compare
the AM sequence to the GL sequence via sequence alignments (Fig 1). The numbers of muta-
tions located in the Fab and CDRs with respect to the GL sequence are 12/6, 9/6 and 9/5 for
FA, CA and EA, respectively, indicating that 50% or more of the mutations occur in CDRs. Fig
2 shows the binding modes of the antigens in their AM antibodies. It is noted that antigen fluo-
rescein and hapten 5-(para-nitrophenyl phosphonate)-pentanoic acid are located in similar
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Anti-Fluorescein

FR1 CDR1 FR2 CDR2 FR3 CDR3 FR4

o o e o o e e ———— ——————— e 118

I{ EVKLDETGGGLVQPGRSMKLSCVASGFTFTNSWMNWFCQSPEKGLEWVAQIKSKPYNYETYYSDSVKGRFTISRDDSKSSVYLQMNNLRAEDTGIYYCTGSYYGMDYWGQGTSVTVSS
EVKLDETGGGLVQPGRPMKLSCVASGFTFSDYWMNWVRQSPEKGLEWVAQIRNKPYNYETYYSDSVKGRFTISRDDSKSSVYLQMNNLRVEDMGIYYCTGSYYGMDYWGQGTSVTVSS

FR1 CDR1 FR2 CDR2 FR3 CDR3 FR4

L DVVMTQTPLSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPWTFGGGTKLEIKR
DVVMTQTPLSLPVSLGDQASISCRSSQSLVHSNGNTYLRWYLQKPGQSPKVLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQSTHVPWTFGGGTKLEIKR

Anti-CD3
FR1 CDR1 FR2 CDR2 FR3 CDR3 FR4 119
————————— e e o e e e ——————— ———— e
}{ QVQLQOQOSGAELARPGASVKMSCKASGYTFTSYTMHWVKQRPGQGLEWIGYINPSSGYTKYNQKFKDKATLTADKSSSTAYMQLSSLTSEDSAVYYCARYYYDHYCFDYWGQGTTLTVSS

QVQLQQSGAELARPGASVKMSCKASGYTFTRYTMHWVKQRPGQGLEWIGYINPSRGYTNYNQKFKDKATLTTDKSSSTAYMQLSSLTSEDSAVYYCARYYDDHYCLDYWGQGTTLTVSS

L QIVLTQSPAIMSASPGEKVTMTCSASSSVSYMHWYQQKSGTSPKRWIYDTSKLASGVPARFSGSGSGTSYSLTISSMEAEDAATYYCQQWSSNPPTFGSGTKLEIN
QIVLTQSPAIMSASPGEKVTMTCSASSSVSYMNWYQQKSGTSPKRWIYDTSKLASGVPAHFRGSGSGTSYSLTISGMEAEDAATYYCQQWSSNPFTFGSGTKLEIN

Esterase catalytic Ab

FR1 CDR1 FR2 CDR2 FR3 CDR3 FR4 114

}{ QVQLQQSGAELVKPGASVKLSCTASGFNIKDTYMHWVKQRPEQGLEWIGRIDPANGNTKYDPKFQGKATITADTSSNTAYLQLSSLTSEDTAVYYCASYYGIYWGQGTTLTVSS
QVQLQQSGAELVKPGASVKLSCTASGFNIKDTYMHWVKQRPKQGLEWIGRIDPANVDTKYDPKFQDKATITADTSSKTTYLQLSSLTSEDTAVYYCASYYGIYWGQGTTLTVSS

FR1 CDR1 FR2 CDR2 FR3 CDR3 FR4 107

DIQMTQSPSSLSASLGERVSLTCRASQEISGYLSWLQOKPDGTIKRLIYAASTLDSGVPKRFSGSRSGSDYSLTISSLESEDFADYYCLQYASYPRTFGGGTKVEIK
DIQMTQOSPSSLSASLGERVSLTCRASQEINGYLGWLQQKPDGTIKRLIYAASTLHSGVPKRFSGSRSGSDYSLTISSLESEDFADYYCLQYASYPRTFGGGTKVEIK

Fig 1. Sequences of the three considered Fab fragments. Sequence alignments comparing the three GL/AM pairs for the anti-fluorescein, anti-CD3 and
esterase catalytic antibodies. FRs, CDRs regions and the lengths of sequences are indicated on top of each alignment. Yellow shading shows introduced
amino acid mutations.

doi:10.1371/journal.pcbi.1004327.9001

sub-regions of the binding site, which facilitate them to interact directly with the CDR-H3 and
CDR-L3 loops. Similarly, one epitope loop of antigen CD3 inserts into the same sub-regions,
while others make contact with CDR-H1 and CDR-H2 loops. S1 Fig summaries the changes of
amino acid propensity during affinity maturation. An apparent trend is that charged residues
are favorable in the mature sequences while polar residues are unfavorable (S5 Table).

Generation of Representative Structures by Molecular Dynamics

Our previous study of the stability and flexibility of wild-type and stable mutants of scFv using
mDCM indicate that an average over the most weighted ten representative structures sampling
by MD reduces the statistical variance in mean QSFR properties to a point that is less than the
level of accuracy that can be expected from the employed phenomenological mDCM underly-
ing the calculations [26]. In addition, the modeled structures require further conformational
refinement. Thus, we performed MD on all six Fab structures to generate a set of representative
conformations for mDCM analysis. Root mean square distances (RMSD) of Co. atoms are plot-
ted in Fig 3. In all six cases the fluctuations within the constituent Fv and Fc regions from the
Fab are well converged across the 100 ns trajectory (S2 Fig). The same is true in each of the
individual Ig-folds. While the overall RMSD values approach 8 A in the GL and AM trajecto-
ries, these large fluctuations are simply due to reorientations between the Fv and Fc regions (cf.
Fig 3C). Due to the immense flexibility within the linker regions, these rearrangements are con-
tinuously present in the native ensemble as equilibrium fluctuations, and these fluctuations
have been noted previously by both simulation and experiment [50, 51]. Therefore, these par-
ticularly large fluctuations do not indicate poor convergence, and no added benefit would be
achieved by simply simulating the systems longer. Moreover, it is worth noting the pronounced
Fv/Fc rearrangements occurring in both the GL and AM trajectories eliminates the mutant

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004327 July 1,2015 8/23
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Fig 2. Structures of the three Fab fragments bound with antigens (fluorescein, CD3 and hapten, respectively) are shown. H and L chains are colored
in cyan and green, respectively; epitope is colored in orange.

doi:10.1371/journal.pcbi.1004327.9002

modeling process as the cause of these fluctuations. It is interesting to note that the FA, one of
two anti-hapten systems, has the largest domain-domain fluctuations; antibodies raised to

Direction of change

RMSD (nm)
RMSD (nm)

' "
e TN

1 1 1 1 1 1 1 1 0.0 1 1 1 1 1 1 1 1
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000

Time (ps) Time (ps)
A B C

Fig 3. Molecular dynamics trajectories. FA, CA and EA represent anti-fluorescein, Anti-CD3 and esterase catalytic antibodies, respectively. (A) Root mean
square deviations (RMSDs) of Ca are provided each of the molecular dynamics trajectories. The FA(GL) and FA(AM) exhibit larger RMSDs than other
antibodies due to change of domain-domain reorientation. (B) Global RMSDs of for the full FA(GL) Fab and individual RMSDs for each domain. All the four
domains (VH, VL, CH and CL) show much lower RMSDs than global RMSDs. The small fluctuations within the domains highlight that the global fluctuations
are caused by slippage along the domain interface, where the four domains are continually rearranging relative to each other. (C) The slippage along the
domain interfaces is indicated in panel (B), where different colors represent snapshots occurring at: 20 ns (red), 40 ns (blue), and 80 ns (green).

doi:10.1371/journal.pcbi.1004327.9003

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004327 July 1,2015 9/283



©PLOS

COMPUTATIONAL
BIOLOGY

Rigidity Emerges during Antibody Evolution

H-chain

Flexibility index

L-chain

Flexibility index

Anti-fluorescein

haptens tend to be more susceptible changes in conformation upon binding than anti-protein
antibodies [52]. On the other hand, the catalytic EA antibody has the smallest global RMSD
fluctuations, so it is impossible to conclude anything with respect to the conformational fluctu-
ations based on this hapten vs. protein antigen distinction.

A total of 2,000 evenly spaced frames from each trajectory were clustered using the KCLUST
module [53] from the MMTSB tool set [54] based on the RMSD of all heavy atoms. Table 1
summarizes the number of conformations represented by each cluster. We adjust the cluster
radii to maintain around 20 total clusters, where the ten largest represent 92 to 99% of the total
conformations. A representative structure is identified as the centroid from each of the ten larg-
est clusters, which are then subsequently energy minimized and used as input to the mDCM. A
weighted average of all nDCM properties is taken over the ten representative structures, where
the total number of structures within the cluster containing a given representative structure
defines its weight. After MD simulation and clustering, H++ [55] is employed to account for
protonation state fluctuations by calculating ionization properties by considering residue pK,
values followed by a final minimization [56].

Rigidity Changes during Affinity Maturation

Backbone flexibility as described by the flexibility index (FI) for each antibody within the data-
set is shown in Fig 4. Positive FI values indicate flexibility, whereas negative values indicate
rigidity. Across the alignment, most secondary structure elements are determined to be rigid,
whereas intervening loops are flexible. The termini and linker regions (residue 112-120)
between the VH and CH domains shows considerable flexibility, which is in agreement with

Anti-CD3 Esterase catalytic Ab
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Fig 4. Average flexibility index for each antibody H and L chains. (A) and (D) are flexibility index for anti-fluorescein antibody H and L chain, respectively.
(B) and (E) for anti-CD3 antibody. (C) and (F) for esterase catalytic antibody. Black and red curves represent flexibility index for GL and AM antibodies,
respectively. Reported values correspond to the appropriate weighted average (defined in methods) over 10 representative structures sampled from the MD

trajectory.

doi:10.1371/journal.pcbi.1004327.9004
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the large fluctuations within domains observed by molecular dynamics (Fig 3). Despite this
overall qualitative similarity, there are quantitative differences throughout.

To assign statistical significance to the observed changes, we recast the differences between
the GL and AM antibodies as Z-scores. The Z-scores for each GL-AM pairs are plotted against
residue number in S3 Fig where all rigidity/flexibility differences are classified as no significant
change (|Z-score| < 2.33), moderate change (2.33 < |Z-score| < 3.33) and large change
(|Z-score| > 3.33). Table 2 counts the number of residues with altered rigidity/flexibility. Across
the Fabs and CDRs, the overall number of residues with increased rigidity (both are 52%) is
slightly higher than increased flexibility (both are 48%). These percentages indicate that both the
Fab and antibody-binding site, as a whole, maintains a global balance between rigidity and flexi-
bility during affinity maturation. Therefore, Le Chatelier’s principle, stating that an equilibrium
shift will occur to offset the perturbation and a new equilibrium is established, can be applied as a
rule of thumb to make credible predictions of mutation effects on protein flexibility. That is the
effects of affinity-improved mutations on the rigidity< flexibility equilibrium within the native
state ensemble manifest themselves through enthalpy-entropy compensation as the protein
structure adjusts to restore the global balance between the two. It is also interesting to highlight
that increased rigidity in CDR-H3 is observed in all three AM antibodies.

Table 2. Frequency of increased rigidity vs. increased flexibility.

Antibody

Anti-Fluorescein
Anti-CD3
Esterase catalytic Ab
Total
Anti-Fluorescein
Anti-CD3
Esterase catalytic Ab
Total
Anti-Fluorescein
Anti-CD3
Esterase catalytic Ab
Total
Anti-Fluorescein
Anti-CD3

Esterase catalytic Ab
Total

Chain

r I - I I

r I - T I

Flexibility increases® Rigidity increases®
23<x<33 3.3<x -3.3<x<-23 x<-3.3
whole FABs
6 19 19 3
26 15 23 1
2 0 20 29
16 20 5 3
2 3 21 37
29 38 3 1
81 95 91 74
Complementarity Determining Regions
0 8 5 0
11 6 0 0
0 0 8 11
1 3 0 0
0 0 15 10
11 14 0 0
23 31 28 21
CDR H3
0 0 5 0
0 0 7 3
0 0 7 3
0 0 19 6
CDR L2

5 3 0 0
4 3 0 0
5 2 0 0
14 8 0 0

@ The counts of amino acids belonging to this classification.

doi:10.1371/journal.pcbi.1004327.t002
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The increase in CDR-H3 rigidity is in good agreement with a backbone entropy study for
immunoglobulin (CDRs) from the crystal structures of 34 low-aftinity T-cell receptors and 40
high-affinity Fabs. Specifically, it has been demonstrated that loss of backbone entropy in
CDRS3 correlates significantly with the kinetic and affinity constants of the 74 selected com-
plexes [11]. CDR-H3 likely plays a critical role in determining the evolution of antibodies
because junctional amino acids introduced by imprecise joining in the combinatorial rear-
rangement of VH, DH, and JH genes provide increased diversity of CDR-H3 [57]. Interest-
ingly, structural analysis (Fig 2) shows that the antigens in all three AM antibodies contact
directly with the CDR-H3, which suggests that the lower entropic penalty upon binding due to
increased rigidity of CDR-H3 is most likely related to the affinity maturation and specificity to
a specific antigen. Similar results were presented by Manivel et al [17] who found that antibody
maturation essentially reflects modulations in entropy-control of the association, but not disso-
ciation, step of the binding [12]. Another consistent change in all the three cases is the
increased flexibility of CDR-L2. From a structural viewpoint, the CDR-H3 loop is located in
the center of the Ag-combining site facing CDR-L2, it is possible that this loop not only affects
the flexibility but also controls the angle between the VH and VL domains. Zimmermann et al.
[10] reported that the whole antibody-binding site is rigidified during affinity maturation while
our study indicates that an increase in rigidity only occurs in the CDR-H3 loop, but CDR loops
in the light chain tend to become more flexible during affinity maturation.

The Z-scores are mapped to structure using the same stratification of changes indicated
above (cf. Fig 5). Note that changes tend to occur primarily in loop regions of the variable
domains especially in CDRs. In FA, the CDR-H3 loop is moderately rigidified, whereas H1 and
L2 both become flexible. In CA, both H1 and H3 loops become rigid, whereas L2 becomes flex-
ible. In EA, all three heavy chain CDRs become rigid, whereas all the light chain CDRs become
flexible. Taken together, our results show a wide array of flexibility and rigidity changes, but
general trends of the VH domains becoming more rigid and the VL domains becoming more
flexible is observed. It is also interesting to point out that while all of the mutations occur in the
Fv fragment, there are changes in the Fc in all three cases. The mix of increased rigidity and
flexibility occurring in the CL domain of FA is particular noteworthy (cf. Fig 5A).

Mechanistic Details

Since the H-bond network (HBN) is a critical component to protein rigidity, we characterize
the changes that occur in the HBN in response to somatic mutation to better understand the
observed rigidity differences. We track H-bonds across the MD trajectories by comparing den-
sities between GL and AM in each pair. The propensity of a H-bond to form between a specific
potential donor-acceptor pair is measured by the fraction of occurrence of this H-bond over
the 2,000 frames. For example, if a H-bond occurs in all 2,000 frames, the propensity of the H-
bond is 1, whereas the value is 0.5 is assigned if it only occurs in half of the frames. The propen-
sity for a residue to be involved in H-bond formation is defined as the sum of all H-bond pro-
pensities formed by its atoms. The HBNS for the GL and AM antibodies are provided in S4 Fig.
The HBN differences are greater outside of secondary structures, while secondary structure H-
bonds are more similar. Not surprisingly, this suggests that the preservation of secondary struc-
ture H-bonds are largely responsible for backbone flexibility to be well conserved, and why FI
aligns well with secondary structure elements. Conversely, the largest H-bond differences
involving side chains elucidate significant differences in rigidity properties. That is, a change in
a handful of critically placed side chain H-bonds can drastically alter mechanical linkage
properties.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004327 July 1,2015 12/283
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Fig 5. Changes in mechanical properties upon maturation. Differences in rigidity/flexibility between GL and AM antibodies across the dataset are
projected onto the structures and indicated by color: green = no change; cyan and blue = moderate and large rigidity increases; and orange and

red = moderate and large increases in flexibility. The mutations are displayed in spheres. In each case, the color represents a certain z-score range for
differences that are defined within S3 Fig.

doi:10.1371/journal.pcbi.1004327.9005

Fig 6 plots the difference of H-bonds for each residue between the GL and AM antibodies
along the antibody sequences. Positive values represent more H-bonds formed in the AM
antibodies, and negative values indicate more H-bonds in the GL antibodies. In the H chain,
27 residues gain at least one H-bond by somatic mutations and seven of them increase by two;

AHB (AM-GL)
1
AHB (AM-GL)

4 1 1 4 1
0 50 100 150 200 250 0 50 100 150 200 250
Residue number Residue number
H-chain L-chain

Fig 6. Differences in H-bond between GL and AM antibodies (A for H chain and B for L chain). The total H-bond counts (donor and acceptor) are
averaged across the MD simulation for each residue. Positive values indicate AM antibodies have more hydrogen bonds than the GL antibodies and vice
versa. FA, CA and EA represent anti-fluorescein, Anti-CD3 and esterase catalytic antibodies, respectively.

doi:10.1371/journal.pcbi.1004327.9006
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simultaneously, 14 residues lose at least one H-bond, and three lose at least two H-bonds in the
AM forms. Changes in the L chain are skewed in the opposite direction—20 residues gain at
least one H-bond by somatic mutations (four residues gain two), while 21 residue lose H-
bonds (7 of which decrease by two or more). This indicates that the somatic mutations signifi-
cantly enhance the HBN in the H chain, but slightly weaken it in the L chain, which parallels
the overall rigidity/flexibility changes.

To further characterize the relationship between the HBN and flexibility, we compare the Z-
score versus the difference in H-bond propensity for each residue (S5 Fig). An important fea-
ture that cannot be over emphasized is that local H-bond propensity along the backbone does
not correlate well to backbone flexibility. In particular, residues with significant rigidity/flexi-
bility typically do not possess significant H-bond propensity changes due to the long-range
nature of network rigidity. That is, rigidity changes from H-bond differences propagate
through the network to affect distal residues mainly because H-bonds crosslink constraint
topology. This crosslinking property of H-bond constraints distinguishes their effect from tor-
sion constraints that model the influence of residue packing. Nevertheless, as shown in the fig-
ure, a local increase or decrease of two or more H-bonds at a specific residue location is a
statistical indicator for a concomitant increase in rigidity or flexibility at that location. How-
ever, this statistical bias holds only for extreme outliers since most propensity changes are well
within a two H-bond variation, and even for these outliers, exceptions remain. This result
shows that the complexity of rigidity/flexibility changes is directly linked to the details of the
HBN (or the entire constraint network) as a whole, rather than a local backbone characteriza-
tion of the HBN. Some detailed cases are now considered and discussed.

Fig 7 demonstrates how mutations lead to significantly increased rigidity/flexibility by form-
ing/breaking H-bonds. In FA, mutation VL H39R forms two new H-bonds to the VH Asp106
leading to increased rigidity within CDRs H3 (Fig 7A). In CA, the VH S31R and VH Y101D
mutations form two new H-bonds leading to increased rigidity within CDRs H2 and H3,
respectively (Fig 7C). Finally, in EA, mutation VH N56D forms two new H-bonds to the VH
Arg50 leading to increased rigidity within CDRs H2 (Fig 7E). Therefore, in two of the three
cases, the increased rigidity of CDR-H3 is mainly due to the local strengthening of the HBN.
These local changes cause the whole loop to become rigid, meaning adjacent residues also
become more rigid. This result demonstrates that the increased rigidity of CDR H3 could be
obtained by introducing mutations directly forming H-bonds with the residues in this loop,
which is in agreement with the multi-constraint design study for a set of antibodies that sug-
gests proposed amino acid mutations along the CDR H3 loops for increasing the rigidity of the
CDR H3 loop in the bound conformation to reduce its mobility [58]. By contrast, the increased
rigidity of H3 in EA is not directly caused by an identified set of new H-bonds that form locally.
Rather, increased rigidity in H3 is a consequence of a multitude of small but well distributed
changes throughout the protein that supports the propagation of rigidity to H3.

Note that flexibility within L2 increases significantly in all three cases. In EA, the VL D55H
mutation leads to the loss of two strong H-bonds between VL Asp55 and VL Arg46 (Fig 7F).
Conversely, in FA and CA there are no significant local HBN differences. Increased flexibility
upon affinity maturation is also observed in non-CDR loops. For example, increased flexibility
in a pair of CA loops is associated with the loss of H-bonds between VL R60H and VL Asp81
(Fig 7D). Similarly, a non-CDR loop in the H chain (residue 74-79) of FA becomes more flexi-
ble due to the VH S32Ymutation within H1 (Fig 7B).

In the process of pinpointing specific H-bond differences that are responsible for the
observed changes in flexibility, it is worth noting that Arg-to-Asp salt bridges do play an
important role. In some cases, somatic mutations introduce both donor and acceptor (e.g. the
VH S31R and VH Y101D pair of mutations in CA) or just one (e.g., the VL H39R in FA

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004327 July 1,2015 14/23
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Fig 7. Relating flexibility differences to changes in the H-bond network. (A) and (B) are differences of hydrogen bonds for anti-fluorescein antibody,
respectively. (C) and (D) for anti-CD3 antibody. (E) and (F) for esterase catalytic antibody. Regions that exhibit significant increased rigidity/flexibility are
affected by gain/loss local H-bonds. Large increases in rigidity due to gain of H-bonds are displayed in the left panel while large increases in flexibility due to
loss of H-bonds are in the right panel. The middle panel shows the same as in Fig 5. Hydrogen bonds are highlighted in yellow dashed lines.

doi:10.1371/journal.pcbi.1004327.9007

interacts with an Asp present in the GL antibody). Surprisingly, there are even examples of
changes in Arg-Asp salt bridges occurring at positions that are not altered by affinity matura-
tion, indicating that global changes in the network from the mutations occurring elsewhere
lead to these new favorable interactions. For example, the salt bridge between VH Arg74 and
VH Asp76 of FA is lost due to an aromatic mutation introduced within H1 that drastically
affects the carboxylate side chain position of Asp76. Interestingly, it has been previously dem-
onstrated that Arg-Asp salt bridges are the most frequent type occurring within antibody-anti-
gen interfaces [59].

Comparison of Mobility and Flexibility

Keeping in mind that rigidity and flexibility fundamentally characterize different aspects of
protein dynamics, Fig 8 shows the RMSFs of the three GL/AM antibodies. In FA and CA, the

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004327 July 1,2015 15/283
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Fig 8. Conformational fluctuations. Residue root mean square fluctuations (RMSF) are provided for the six molecular dynamics trajectories (black
indicates GL, whereas red indicates AM).

doi:10.1371/journal.pcbi.1004327.9008

RMSFs of the GL CDR-H3 loops are both slightly higher than those of AM CDR-H3, revealing
that the increased rigidity therein is accompanied by a decrease in motion. However, the corre-
sponding RMSFs in EA actually increase upon maturation, meaning that rigid-body motions
are present. S6 Fig shows the comparison of changes in flexibility and mobility by plotting

the ARMSFs against ZSCORE. It is observed that decreased mobility can be consistent with
decreased flexibility. This is especially true for the H chain of CA. A few residues with ARMSFs
< -1 A in the AM form possess ZSCORE < -2.3. However, in general, there is no significant
correlation between the changes of mobility and flexibility, underscoring the differences
between the two views of protein dynamics.

Changes in Mechanical Couplings

Cooperativity correlation (CC) plots characterize mechanical couplings between residue pairs,
providing a snapshot of allostery. It is worth pointing out that a particular rigid cluster can
itself be very mobile as a rigid body, indicating the motion of all residues therein are highly
correlated through the rigid body movement. When a pair of residues is flexibly correlated,
random thermal motions of one residue is readily channeled into pathways dictated by how
flexibility propagates through the protein to other residues, and vice versa. The rigidity network
analysis highlights pathways defined by the native state ensemble of constraint topologies, but
the mobility of atoms is not determined. Note, however, that molecular contacts can decrease
mobility within flexible regions. As an analogy, a rigidity analysis would characterize the wig-
gling of fingers on a single hand as partly correlated, whereas the finger motions from two sep-
arate hands are uncorrelated. However, if the hands are clasped, the mobility of all fingers is
greatly diminished due to being packed in an interlaced fashion. Thus, the CC-plot identifies
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Fig 9. Changes in molecular cooperativity. Cooperativity correlation plots reveal intramolecular couplings within structure. That is, blue corresponds to
residue pair correlated rigidity, whereas red correspond to correlated flexibility. White indicates no mechanical coupling between a pair of residues
irrespective if the residues are flexible or rigid. For each case, the presented values represent the appropriate weighted average values over each set of ten
representative structures sampled from the molecular dynamics trajectory.

doi:10.1371/journal.pcbi.1004327.9009

channels of communication that are intrinsic to the skeletal structure of the protein, but the
amplitude of motions that run through these channels is not quantified. In other words, ther-
modynamics and mechanics are quantified in QSFR, not kinetic properties.

The CC plots of the three antibody pairs are provided in S7 Fig, revealing that different
domains are often flexibly correlated and the CDRs within each domain can be highly corre-
lated as well. These correlations are expected to be important for function. In addition, except
for the GL form of EA, the VH domain is primarily composed of one large rigid cluster, punc-
tuated by several flexible loops. Conversely, the VL domain is significantly more co-flexible
throughout the dataset. The CH domains are similar to the VH domains, but slightly more co-
rigid. Across the dataset, the most co-rigid domains are the FA and CA CL domains.

Changes within CC highlight the sensitivity of rigidity properties to mutation, which is con-
sistent with a number of our prior works [20, 21, 60]. Fig 9 plots ACC values represented by Z-
scores per pixel for each of the antibody structures. Blue coloring indicates residue pairs that
are more likely to be rigidly correlated, whereas red indicates residue pairs more likely to be
flexibly correlated. Somatic mutations considerably increase rigid correlations between the
CDRs of the VH domain such as the CDR-H1 and H3 in CA and all the three H-chain CDRs
in EA. Meanwhile flexible correlations between different domains are enhanced. This result is
consistent with a previous covariance analysis of molecular dynamic trajectories demonstrating
that antibody motions in both CDRs and framework regions are correlated and that this corre-
lation is stronger in the AM antibody [16]. Our results provide additional evidence that the
correlations are enhanced during maturation, which makes sense due to the belief that these
couplings are related to antigen specificity [61]. Note that most of the increases in backbone
rigidity occur at locations where increased rigidly correlations also occur, indicating that the
observed H-chain CDR rigidity increases are coupled. This leads to a cooperative mechanism
that results in increased antigen specificity and affinity.

Relating the Observed Changes to Antibody Evolution and Engineering

Starting from the GL antibody, the maturation process accumulates multiple mutations by
repeated affinity maturation triggered by a specific antigen. GL antibodies are often
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polyspecific [6, 62-64], which is likely due to increased conformational flexibility. For example,
comparisons bound and unbound GL antibodies show much greater conformational changes
compared to the conformational changes that occurs within the corresponding AM pair [3].
Keeping with this, our results demonstrate that conformational flexibility is an intrinsic prop-
erty of GL—specified CDR H3 sequences, and significant conformational change within the
antibody-binding site especially restraining the H3 loop is the principal consequence of affinity
maturation in the three considered examples. Antibody maturation typically accumulates mul-
tiple mutations (10-20) in the course of the conventional immune response by iterative muta-
tion and selection triggered by a specific antigen. As expected, the large sets of GL AM mutants
have greater collective responses compared to the relatively small number of mutations charac-
terized in our previous study of the anti-lymphotoxin-p receptor antibody variants [26]. That
is, successive cycles of mutations during the maturation process are needed to substantially
alter flexibility characteristics of the Fab. Note that many somatic mutations across the dataset
are located in the unstructured loops, which are more flexible than secondary structures (Fig
4). This suggests that the preferred introduction of mutations in GL loops during maturation is
a primary driving force to the observed difference.

Interestingly, the observed changes across our dataset seldom significantly alter global flexi-
bility properties within the antibody Fab and the antibody-binding site (Table 2 and Fig 5). For
example, while VH is rigidified, the VL domain typically becomes more flexible. This near
“zero-sum game” implies that the change of conformational diversity of antibody evolution
again follows Le Chatelier’s principle [26]. That is, counteracting changes in rigidity and flexi-
bility will occur at remote sites to globally restore the balance between rigidity and flexibility
within protein structures [65]. Strikingly, our results show that both the co-rigid and co-flexible
couplings between residues are enhanced during evolution, which suggest higher specificity
require tighter collaboration between different structural components. This likely explains, at
least in part, why multiple mutations are required for affinity maturation.

Computation-guided affinity maturation is an appealing approach toward antibody engi-
neering. Currently, most efforts focus on improving the association between receptor and sub-
strate by optimizing their interactions using force-field-based energy functions [66-70].
However, the current success rate is rather modest because of the inaccuracy of force fields and
complexity of interaction network. The mechanism of evolution-mediated conformational
changes provides common features of affinity-matured antibodies that could be tracked to
guide the design of high affinity antibodies by introducing local and distal mutations. One can
imagine that simply introducing local mutations that rigidify the desired CDR loops to fix the
optimal binding site conformations could increase the binding affinity to an antigen. This is
partially true because the local neighborhood of a mutation will accommodate the new residue
respecting local geometrical constraints and network constraints imposed by the protein. How-
ever, the final effect on rigidity and flexibility is a mix of both strengthening and weakening
effects that occur over both short and long distances. Given that the molecular details that
involve multiple mutations during evolution are complicated, a rapid high throughput compu-
tational method that does not rely on local propensity properties is required. The mDCM has
provided insight into the process, and may provide a useful tool to assess the effects of muta-
tions within antibody design algorithms. In ongoing work, we are characterizing how muta-
tions affect the allosteric response to surface interactions within antibody fragments. These
characterizations reveal a similarly diverse set of antibody-substrate interactions, meaning that
antibody maturation likely also has a significant effect on intramolecular couplings. Future
work will determine if this is the case.
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S5 Table. Statistic of changes of amino acid propensity during affinity maturation in the
dataset.
(DOCX)

S1 Fig. Summary of the mutation types. Counts of the type of amino acid mutations before
(blue) and after (red) affinity maturation across the dataset.
(TTF)

$2 Fig. Conformational fluctuations. Molecular dynamics RMSDs are plotted for each germ-
line (GL) and affinity mature (AM) antibody systems along the 100 ns trajectories. In each
case, the RMSDs are provided for the full Fab fragment and also for each constituent domain.
(A) GL anti-fluorescein antibody, (B) AM anti-fluorescein antibody, (C) GL anti-CD3 anti-
body (D) AM anti-CD3 antibody, (E) GL esterase catalytic antibody, and (F) AM mature ester-
ase catalytic antibody.

(TTF)

S3 Fig. Changes in backbone flexibility. Changes in backbone flexibility are indicated by z-
scores using Eq. (3) from above. Positive values correspond to increased flexibility within the
mutant, whereas negative values correspond to increased rigidity. Values within the range of
+2.33 are considered to have no change; values of + (2.33-3.33) are considered to have moder-
ate changes; and values beyond +3.33 define large changes. The z-score representation of dif-
ferences in backbone flexibility quantifies the significance of the observed changes that include
both local and non-local changes in rigidity or flexibility.

(TIF)

$4 Fig. H-bond network visualization. The H-bond networks across the dataset are shown,
where white nodes denote H-bond donor and acceptor atoms, and colored edges represent H-
bond occupancy across the molecular dynamics simulation trajectory. Black corresponds to H-
bonds present greater than 90% of the simulation; blue corresponds to 70-90%; and green cor-
responds to 50-70%. Because we are primarily interested in stronger H-bonds, those present
less than 50% of the time are not shown.

(TIF)

S5 Fig. Comparing changes in flexibility as a z-score to changes in H-bond propensities for
each residue. Points outside the rectangles as dashed red lines represent residues with significant
differences of H-bonds (count of H-bonds < = -1 or > = 1) and/or flexibility (|Z-score| < = -2.33
or > =2.33).

(TIF)
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S6 Fig. Changes in mechanical flexibility (z-score) are compared to changes in the dynam-
ical RMSF for each residue across the dataset.
(TIF)

S7 Fig. Relating changes in the H-bond network to changes in flexibility. Cooperativity cor-
relation difference plots highlight differences in pairwise mechanical couplings between the
wild type and each mutant. Red indicates increased correlated flexibility within the mutant
structure, whereas blue indicates increased correlated rigidity. White indicates no change.
Notice in most mutants (i.e., triple mutant), changes in cooperativity correlation occur
throughout the Fv structure, whereas they are primarily isolated to the VH domain in the qua-
druple mutant.

(TTF)
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