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ABSTRACT 

 

 

CHAOFAN WANG.  Theory and numerical analysis of index-antiguided waveguide 

lasers.  (Under the direction of DR. TSING-HUA HER) 

 

 

 Index-antiguided (IAG) waveguide is promising for high-power application due to 

simple step-index structure and the property to introduce higher waveguide loss for higher-

order-modes (HOMs). The loss ratio between fundamental mode (FM) and 1st HOM is 

fixed at 4 for IAG planar waveguides and 2.54 for IAG fibers. Since 2006, robust single-

transverse-mode oscillation has been reported both in IAG fibers with diameter up to 400 

µm and IAG planar waveguides with 220 µm core width. Although IAG waveguides seem 

to be promising for large-single-mode operation, the main challenges are the low output 

efficiency in end-pumped IAG lasers and the effect of HOM oscillation. The objective of 

the research is to solve the above two challenges. 

In this dissertation, both core and cladding pumping schemes are numerically 

studied, demonstrating that cladding pumping is not efficient in IAG fiber lasers due to 

both index-antiguiding effect and large core size, and core pumping should be implemented 

instead. To achieve high output efficiency, laser parameters need to be carefully designed 

to satisfy that the gain length Lgain =1/σapN is much smaller than the decay length Ldecay = -

lnRoc/2αs, and the fiber length should be chosen such that Lgain ≤ L << Ldecay. This 

conclusion works well to explain the low output efficiency issue for the published 

experimental results. 

In addition, the investigation of transverse mode competition effect in IAG lasers 

shows that in order to maintain single-mode operation, the maximal extraction efficiency 

of single-fundamental-mode is suppressed to 66.7% and 50% (from 100%) for IAG slab 
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and fiber lasers, respectively. This low efficiency is due to the small loss ratio (2.54 for 

IAG fibers and 4 for IAG planar waveguides) in IAG waveguide lasers. 
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CHAPTER 1 INTRODUCTION 

 

 

High-power fiber lasers have been popular during the past decades [1]. Compared 

to the conventional solid-state bulk lasers, fiber waveguide lasers have advantages of robust 

single transverse mode, high efficiency, broad gain linewidth, broad absorption band, easy 

handling, low cost and compact size [1]. With the technology of cladding pumping [2], 

single-mode core can be efficiently pumped and beam brightness can be largely enhanced 

with close to 5 orders [3] compared to the pump. Fiber lasers have proven to be power 

scalable and the output power has greatly increased over the last two decades, with a 

continuous-wave power from 110W [4] reaching to 10 kW [5] in single-mode operation. 

The high power capability of fiber laser is mainly limited by nonlinear effects, such 

as stimulated Brillouin scattering, stimulated Raman scattering, self-phase modulation and 

four-wave mixing, as well as thermal effect and facet damage. Large-mode-area (LMA) 

waveguides are highly desired for high-brightness operation due to their advantages of 

mitigating the above nonlinear and thermal effects. However, the increase of core size will 

finally introduce higher-order-modes (HOMs). Several approaches have been proposed to 

suppress the HOMs using specialty fibers such as photonic crystal fibers [6], photonic 

bandgap fibers [7, 8], leakage channel fibers [9, 10], chirally coupled core fibers [11, 12], 

index-antiguided (IAG) fibers [13, 14] and others [15, 16]. Among these techniques, index 

antiguiding is a relatively simple approach, where the negative index step between core 

and cladding naturally introduces higher loss for HOMs, with a loss ratio (between 

fundamental mode - FM and 1st HOM) of 4 [17] for IAG planar waveguides and 2.54 [14] 

for IAG fibers. The idea of IAG waveguide lasers was firstly proposed by Siegman in 2003 

[18] and experimentally demonstrated in 2006 [19] with side flashlamp pump on an IAG 
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fiber with 100 µm-core diameter. After that, robust single-fundamental-mode oscillation 

has been reported both in IAG fibers with diameter up to 400 µm [13] and IAG planar 

waveguides with 220 µm core width [20]. 

1.1 Motivation 

Many LMA fiber structures listed above are aimed to enlarge modal loss (between 

FM and HOMs) to ensure single-mode operation. IAG waveguides seem to be promising 

due to its simple step-index structure and property of differential modal loss. Many 

experiments [13, 19, 21-23] have verified the single-mode operation in IAG waveguide 

lasers during the past years. Comprehensive theoretical study on IAG amplifiers and lasers 

were also firstly proposed by us in 2011 [24] and 2012 [25], giving the idea how the laser 

cavity parameters, such as small-signal gain, internal loss, cavity length and output 

coupling, affect the output power characteristics. It is noted that the theoretical model only 

assumes that the IAG waveguide lasers are fundamentally single-moded (i.e., HOMs can 

never oscillate). 

However, recently Liu [20] observed clear HOM oscillation in a 400 µm IAG slab 

laser. This observation indicates the necessity to consider transverse mode competition due 

to transverse spatial hole burning [26] in such multimode IAG waveguide lasers. Therefore 

part of my work will focus on the comprehensive study of the transverse mode competition 

effect in IAG fiber lasers. In addition, the published result [21] demonstrated very low 

output efficiency in an end-pumped IAG fiber laser. Therefore another topic of the 

dissertation will emphasize on improving the output efficiency in end-pumped IAG fiber 

lasers. In summary, the main topics of the dissertation include: 

1. Understand the effect of transverse mode competition in IAG waveguide lasers. 
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2. Improve output efficiency in end-pumped IAG fiber lasers. 

1.2 Outline 

The dissertation is structured as follows: In Chapter 2, a review of the high-power 

fiber lasers will be given including the application of high-power fiber lasers, advantages 

of fiber waveguide lasers over conventional solid-state bulk lasers, high power limitations 

and introduction of different types of LMA fibers for high power implementations. Chapter 

3 illustrates the theory of IAG planar waveguide lasers, including the modal properties of 

IAG planar structures, output characteristics of fundamentally single mode (assume no 

HOMs oscillation) in IAG planar waveguide amplifiers and lasers, and finally the 

transverse mode competition in IAG slab lasers. Chapter 4 will focus on IAG fiber lasers. 

The modal property of IAG fibers will be provided and different pumping schemes will be 

investigated. The efficiency between core and cladding pumping schemes will be carefully 

studied. The output efficiency in both uniformly side-pumped or core-pumped IAG fiber 

lasers will be investigated, and the rules to improve the output efficiency in will be given. 

Chapter 5 focuses on the study of transverse mode competition in IAG fibers lasers. Both 

oscillator models for uniformly side-pumped and core-pumped IAG fiber lasers with 

transverse mode competition are provided, with the output characteristics of single 

fundamental mode (i.e., only FM is oscillated in a multimode laser) comprehensively 

analyzed. The last chapter is the summary of work and suggestions for future work. 
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CHAPTER 2 REVIEW OF HIGH-POWER FIBER LASERS 

 

 

In this chapter, a short review of high-power fiber lasers will be given. The first 

section introduces the application of high power fiber lasers. The following section 

discusses the advantages of fiber lasers than traditional solid-state bulk lasers. The third 

section focuses on the main limitations of high power capability. As it is generally 

important to pursue high power as well as maintaining single-mode operation, the fourth 

section will introduce the theory of mode area scaling and provide the background of some 

general large-mode-area fiber lasers.  

2.1 Application of high-power fiber lasers 

High-power fiber lasers are widely used in the world. Figure 2-1(a) demonstrates 

the high-power laser sales from the world largest vendor - IPG Photonics Corporation over 

the past 5 years, showing an increase of over 15% every year. Figure 2-1(b) demonstrates 

the high-power laser market by end-use, from which it is seen that majority of the high-

power fiber lasers are used for material processing. High-power fiber lasers provide a 

simple, cost-effective, low-pollution way in cutting, welding and micromachining metals 

[27, 28], which are widely used in the automotive industry. In addition, 1064- and 532-nm 

fiber lasers have large impact on the manufacturing of solar cells like scribing the cell 

interconnect pattern, processing edge isolation grooves and drilling vias [29, 30], due to 

their advantages of high scribing speed, high reliability and low cost.  

In the area of medicine, Tm3+- and Ho3+-doped fiber lasers are also widely 

implemented [31, 32] as their 2 µm emission wavelength overlaps with the absorption 

wavelength of O-H bond in water [33]. The incision of soft tissues in many organs like 
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brain [34, 35], kidneys [36], skins [37, 38] and prostate [39] benefits from these 2-µm lasers 

due to their excellent ablative and low carbonization properties [40]. 

Moreover, directed-energy weapons based on high-power fiber lasers are used in 

many military applications [41], like the detonation of land mines, bombs and rockets [42]. 

Many ongoing projects like Area Defense Anti-Munitions (ADAM), Excalibur, Laser 

Weapon System (LaWS) and Robust Electric Laser Initiative (RELI) [41] are dedicated to 

develop ultra-high-power lasers with over 10s of kilowatt output.   

 

Figure 2-1 (a) High-power laser sales from IPG Photonics over the past 5 years and (b) 

market by end-use [43].  

2.2 Advantages of fiber lasers over conventional solid-state bulk lasers 

Fiber lasers are getting more attractions than traditional solid-state bulk lasers due 

to the following advantages [1], 

1. Compact size and easy alignment. Traditional solid-state bulk lasers typically have 

large gain mediums and cavities than small fiber lasers. Moreover, bulk lasers 
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require careful alignment of free-space components, which is more difficult than 

the alignment of fiberized cavities. 

2. High beam quality. The beam quality is often reduced in traditional solid-state bulk 

lasers due to the thermally induced mode distortion. Therefore, it is difficult for 

solid-state lasers to maintain a good transverse-mode profile. 

3. High output efficiency. The internal loss in fiber waveguide is smaller than free-

space medium, resulting higher output efficiency. Moreover, fiber lasers can work 

for low-gain conditions while bulk lasers fail to work. 

4. Broad gain linewidth (can achieve 20 THz), which allows wide wavelength tuning 

range and ultrashort pulse operation. 

Although fiber lasers have the above advantages, bulk lasers work better in some 

scenarios. For instance, bulk lasers have more potential for high pulse energies either with 

Q switching or mode locking. Fiber lasers are prone to be affect by nonlinear or thermal 

effects when the peak power is too high. Moreover, bulk lasers are more suitable if there 

is a requirement of output linearity. In addition, bulk lasers can generate unusual output 

wavelengths, like the broad tunable Ti: sapphire laser with the wavelengths ranging from 

0.7 – 1 µm. 

2.3 Limitations of high power capability 

As the peak power is getting higher, nonlinear effects [44, 45] like stimulated 

Brillouin scattering (SBS), stimulated Raman scattering (SRS), self-phase modulation 

(SPM, occurred in pulsed lasers) and four-wave mixing (FWM) become evident and affect 

the output performance. Among these, SBS and SRS are the most common limitations in 

high power fibers, SBS will introduce a small frequency shift of 10 – 20 GHz in silica 
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fibers while SRS has a larger shift at ~ 13 THz. The threshold power of stimulated Brillouin 

scattering can be approximated by [46] 

 eff

eff

21th

SBS

B

A
P

g L
   (2.1) 

where Aeff is the effective mode area, gB is the peak Brillouin gain coefficient with a typical 

value of 
115 10 m/W  and Leff is the effective fiber length. The Brillouin gain coefficient 

is also dependent on the pump laser spectral linewidth with an expression of  

 .B
B B

B P

g g


 




 
  (2.2) 

where ΔνB is the spectral linewidth of Brillouin gain with typical value of few 10 MHz in 

silica fiber, while ΔνP is the spectral linewidth of input pump. Therefore the SBS threshold 

power is dependent on the pump linewidth. 

Compared to Brillouin scattering, the threshold power of stimulated Raman 

scattering is usually larger, with an approximate expression of [46] 

 eff

eff

21
.th

SRS

R

A
P

g L
   (2.3) 

where the peak Raman gain coefficient is 131 10 m / WRg    in fused silica at the pump 

wavelength of 1 µm. It is seen from the above equations that large mode area and shorter 

fiber length will reduce the SBS and SRS effects.  

In addition to nonlinear effects, power scaling is also limited by thermal effects 

which are due to the heat generated by quantum effect and other effects like unabsorbed 

pump and non-radiative decay. Thermally-induced change of refractive index will alter the 

beam confinement and therefore lead to beam distortion and thermal lensing [47-49]. The 

limit of heat load per unit length for thermal lensing effect can be estimated as [49] 
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2

2
.

2 /

s
lensq

a dn dT


   (2.4) 

where κ is the thermal conductivity of the core material, which is 1.38 W/m/K for silica 

[50]. λs is the signal wavelength. a is the core radius and dn/dT is the change of refractive 

index due to temperature, which is ~ 1.2×10-5 K-1 for silica [50]. The limit of input power 

is then expressed as 

 
2

2
.

2 /

in s
lens lens

heat heat

kL L
P q

a dn dT

 

 
    (2.5) 

where ηheat is the deposit heat efficiency which is mostly estimated as (but actually larger) 

than 1-λp/λs, with λp the pump wavelength. L is the fiber length. Equation (2.4) indicates 

that thermal lens is prone to occur if the core size is very large. 

Moreover, high power (more accurately, heat load per unit length) will also results 

in thermal fracture with the limited heat load per unit length estimated as [49] 

 
2

2

4
.

1
2

m
fracture

R
q

a

b






  (2.6) 

where a is the core radius and b is the cladding radius. Rm is the rupture modulus of the 

glass, which is between 2500 and 4000 W/m for silica [51]. 

In addition, high power will cause the melting of the core, with the limit of heat 

load per unit length expressed as [49], 

 
4 ( )

.
2

1 2ln

m c
melt

T T
q

b

bh a








 

  (2.7) 

where Tm and Tc are the melting and coolant temperatures, respectively. h is the combined 

convective and radiative heat transfer coefficient. The convective heat transfer coefficient 
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could be ~ 1000 W/m2/K for forced airflow or ~ 10000 W/m2/K for forced liquid flow 

cooling [49]. 

Another damage that is most likely to occur is the thermal damage of the fiber 

coating. Since most of the polymer coatings work under temperature limit of ~ 150 C [52]. 

Large heat load is likely to induce high temperature in the coating. The limit of heat load 

for this case is usually smaller than the effect of core melting as the melting temperature of 

most silica cores is ~ 1000 C, except some special glass like phosphate which has a lower 

melting point of ~ 600 C. The temperature distribution in the transverse and longitudinal 

direction of the fiber can be solved by the following heat transfer equations [53] 

 1

2

( , )1 ( , )
, 0

T r z q r z
r r a

r r r a

  
      

  (2.8) 

 2 ( , )1
0,

T r z
r a r b

r r r

  
     

  (2.9) 

 3( , )1
0.

T r z
r b r c

r r r

  
     

  (2.10) 

together with the following boundary conditions 

 1

0

( )
0.

r

T r

r 





  (2.11) 

 1 2
1 2 1 2

( ) ( )
( ) ( ), .

r a r a

T r T r
T r a T r a

r r
 

 

 
   

 
  (2.12) 

 32
2 3 2 3

( )( )
( ) ( ), .

r b r b

T rT r
T r b T r b

r r
 

 


   

 
  (2.13) 

  3
3

3

( )
( ) .c

r c

T r h
T T r c

r 


  


  (2.14) 

Here q(r, z) is the heat load per unit length which can be estimated as 

 ( , ) ( ) ( ) ( ).p heatq r z q z P z z     (2.15) 
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where Pp(z) is the pump power and α(z) denotes the pump decay coefficient which is the 

combination of pump absorption coefficient, pump waveguide loss coefficient and 

scattering loss coefficient. As pump power is the largest at the input end of the fiber, the 

heat load per unit length is usually largest at the input end. T1, T2 and T3 are the temperatures 

in the core, cladding and coating materials, respectively. κ1, κ2 and κ3 are the thermal 

conductivities of the core, cladding and coating materials, respectively. a, b and c are the 

radii of core, cladding and coating. h is the combined convective and radiative heat transfer 

coefficient and Tc is the coolant temperature. Note that the validity of the above Eqs. (2.8)

-(2.10) assumes that the thermal transition in the longitudinal direction is negligible 

compared to the transverse transition (∂2T/∂z2 ≈ 0), which is usually true for fiber lasers. 

Based on the above equations, the temperature distributions can be derived 
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4
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     

 
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 

 
   

 

  (2.16) 

The limit of heat load per unit length can then be derived based on the limit of coating 

temperature (say 150 C). 

Besides the above mentioned thermal effects, surface damage [54] is another type 

of damage that will be induced if the incident beam intensity is over a certain damage 

threshold, which is estimated to be ~ 10 W/µm2 [49]. 
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2.4 Large-mode-area fiber lasers and mode area scaling 

Large-mode-area (LMA) fibers are desired to reduce the thermal and nonlinear 

effects which limit the high-power capability. However, the size of the core is limited by 

single-mode operation, which can be explained by the theory of mode area scaling. 

Let us consider a general step-index fiber with a core index slightly higher than the 

cladding, which ensures the guidance of light based on total internal reflection. The V 

parameter is used to characterize the guiding property, with the expression of  

 
2 2

0 0 02 .core cl coreV k a n n k a n n k a NA        (2.17) 

where k0 is the free-space wavenumber, a is the core radius, ncore, ncl are the core and 

cladding indexes, Δn is the index difference between the core and cladding and NA is the 

numerical aperture. It is well known that a single mode is maintained if V is less than 2.405. 

This means that, in order to maintain the same single-mode profile with large core radius 

a, the NA should be relatively reduced. For example, if the core size is increased by a factor 

of 2, the NA should be reduced by a factor of 2 and Δn needs to be reduced by a factor of 

4. The difficulty to precisely control small Δn imposes a limit on large-core fibers with 

single-mode operation. On the other hand, the change of Δn associates with other 

parameters such as thermal load [55], bending [56] and Kerr nonlinearity, all of which need 

to be relatively scaled. When the core size is doubled, the bending radius is scaled by a 

factor of 23 [57], which means a large-core fiber needs to be very straight (large bending 

radius) in order to maintain the same single mode. This adds more difficulty to the design 

of fiber rod. In addition, the thermal load needs to be reduced by a factor of 4 [58] in order 

to maintain the same single mode, which limits the high power capability from the thermal 
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perspective. All scaling factors are summarized in Table 2-1, from which it is seen that it 

is difficult to simply increase the core size while maintaining the single-mode property. 

Table 2-1 Scaling factors to maintain a constant V 

Parameter Scaling factor 

Core diameter k 

NA 1/k 

Index difference Δn 1/k2 

Bending radius k3 

Thermal load 1/k2 

 

Photonic crystal fiber (PCF) could be a good candidate for LMA fiber lasers and 

amplifiers, which was first proposed by Birks in 1996 [59], with a typical structure and 

output single mode shown in Figure 2-2. The NA of PCF is dependent on the pitch and hole 

size. After proper control of these two parameters, very low NA could be achieved [60] to 

ensure single mode capability at large core sizes. Some early work [6, 61] demonstrated 

large-core high-power PCFs with core diameter up to 35 µm and output power of 120 W. 

However, PCFs with low NA are very sensitive to bending effect, which makes them 

inappropriate for high average power lasers that usually require long fibers.  

 

Figure 2-2 Typical structure and output single mode of PCFs 
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It is seen that PCFs still work in a traditional way to scale the NA and increase the 

mode size, which turns out to be ineffective. The design of LMA fiber waveguides with 

effective single-mode operation needs to consider other alternatives which can be 

categorized into two different types: 1) increase of differential modal loss (between FM 

and HOMs) and 2) introduction of higher gain for FM than HOMs, or sometimes called 

HOM delocalization [62]. The general LMA fibers that belong to the first type are photonic 

bandgap fibers (PBFs) [7, 8], leakage channel fibers (LCFs) [63], chirally coupled core 

(CCC) fibers [12] and index-antiguided (IAG) fibers [13]. Large pitch fibers (LPFs) [64], 

distributed mode filtering rod fibers (DMFs) [65, 66] and multitrench fibers (MTFs) [67, 

68] belong to the second type where the HOMs are delocalized away from the gain area. 

Below is a brief review of these general LMA fibers. 

Photonic bandgap fibers, which usually include a core surrounded by a cladding 

that consists of periodic high-index rods embedded in the host material. Modes are 

confined not by the traditional index-guided structure with higher-index core, but by the 

bandgap effect from the periodic structure. After proper optimization of the rod-size and 

pitch [7], PBFs could be designed to easily generate significant loss ratio of over 100 [69] 

between LP01 and LP11. A mode field diameter of 58 µm [69] and power of higher than 

900 W [70] was reported using the all-solid PBF.  

Leakage channel fibers, with the typical structure shown in Figure 2-3, provide 

another way to generate large differential modal loss. In LCFs, the cladding shares the 

same background material (same refractive index) as the core except that several layers of 

low-index photonic crystal structures, like air holes [71] or fluorine-doped silica glass [72] 

are embedded. As the core-cladding boundary disappears, all of the propagating modes 
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suffer transmission loss. The first LCF was demonstrated in 2005 with a simple one layer 

of air holes [71], generating a large mode field diameter of ~ 42 µm. Under proper structure 

design, the FM loss can be kept for very low while the HOMs suffer higher loss. A loss 

ratio (between LP01 and LP11) of over 10 [73] can be obtained in LCFs, and large core size 

of over 100 µm can be achieved [73, 74].  

 

Figure 2-3 Typical structure of LCFs 

Index-antiguided fibers, which are similar to leakage channel fibers, have lower 

refractive index in the core than the cladding, such that all propagation modes are leaky. 

The very simple step-index structure creates an intrinsic loss ratio of ~ 2.54 [14] between 

LP01 and LP11, making IAG fiber a promising candidate for high-power fiber lasers. Ultra-

large single-mode was reported with core size up to 400 µm [13]. The capability of high-

power and single-mode operation will be discussed in following chapters. 

Chirally coupled core fiber, which was firstly reported in 2007 [75], generally has 

a large central core accompanied by a smaller helical side core, as shown in Figure 2-4. 

The helical cores are fabricated by spinning the small-core preform during the draw. In 

CCC fibers, the HOMs are coupled to the small side core while FM is still confined in the 

central core. The angular-momentum assisted quasi-phase-matching condition can be used 

to analyze the mode coupling [76]. As helical structure introduces large bending loss to the 

HOMs, FM can be differentiated from HOMs. After proper engineering design, over 20 
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dB differential modal loss [12] can be achieved between LP01 and LP11. The reported core 

diameter of CCC fibers was over 50 µm [12]. 

 

Figure 2-4 Typical structure of chirally coupled core fibers 

The above LMA fibers differentiate FM from HOMs based on differential modal 

loss. Large pitch fibers, on the other hand, operate in a different way named HOM 

delocalization. The typical structure is shown in Figure 2-5. The design with large pitch 

(usually > 10 times of the wavelength) will push the HOMs away from the central core 

area where the doping material usually dominates. As a result, FM will enjoy much larger 

gain than HOMs due to the larger overlap of FM and doped region. A 100 µm mode-field 

diameter and 100 W of average output power was successfully demonstrated in a LPF [77]. 

The idea of HOM delocalization was also implemented in other LMA fibers like DMFs 

[66] and MTFs [68]. 

 

Figure 2-5 Typical structure of large pitch fibers 
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2.5 Summary 

High-power fiber lasers are widely used in many applications, such as military, 

automotive manufacturing, medicine and other general material processing. Compared to 

traditional solid-state bulk lasers, fiber lasers have smaller size, better mode quality, 

smaller loss, easier alignment, broader gain linewidth, etc. The peak power in fiber lasers 

is limited due to the nonlinear effects like SBS and SRS, thermal effects and surface 

damage. Large-mode-area fibers are desired to reduce the nonlinear effects and increase 

the output power. However, in order to maintain single-mode operation, it is seen from the 

theory of mode area scaling that the numerical aperture needs to be inversely scaled if the 

core size is increased. As it is generally difficult to manufacture very small numerical 

aperture (< 0.06) in step-index fibers, the core size is limited to ensure single-mode 

operation. Photonic crystal fibers can yield very small numerical aperture as it is dependent 

on the pitch and hole size. However, they are very sensitive to bending effect which makes 

them unsuitable for high power applications where long fibers are usually desired. Several 

large-mode-area fiber lasers adopt a different way for single-mode operation by increasing 

the differential loss between the fundamental and higher-order modes. Examples belong to 

this type are photonic bandgap fibers, leakage channel fibers, index-antiguided fibers and 

chirally coupled core fibers, within all of which only index-antiguided fibers were 

experimented to show single-mode output in ultra large core up to 400 µm while others 

with core size generally less than 100 µm. The second type of large-mode-area fibers 

achieve single-mode operation by delocalizing the higher-order-modes away from the 

center area where gain material is doped, therefore yielding lower gains for higher-order-
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modes. Typical example belong to the second type is the large pitch fiber with the 

demonstrated mode size to 100 µm.  

As index-antiguided fibers have simple structure which intrinsically introduce 

differential modal loss and experimentally yield ultra large single mode. The topic of the 

dissertation will focus on high power and single mode capabilities of index-antiguided 

waveguide lasers. The following chapter will first investigate index-antiguided planar 

waveguide lasers. 
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CHAPTER 3 INDEX-ANTIGUIDED PLANAR WAVEGUIDE AMPLIFIERS AND 

LASERS 

 

 

In Chapter 2, a brief literature review of high-power fiber lasers is given and the 

limitation of high power capability is discussed. Some LMA fibers that could yield high 

output power are introduced. Among these LMA fibers, IAG fiber is attractive as its unique 

structure naturally induces differential modal loss between fundamental mode and higher-

order modes. Chapter 3 will first focus on the theory of IAG planar waveguide lasers and 

following chapters will investigate IAG fiber lasers. 

The outline of Chapter 3 is as follows. Section 3.1 introduces the general IAG 

structures, the important parameter of complex V number and the property of modal loss 

in IAG planar waveguides. In sections 3.2, we will investigate the propagation 

characteristics of gain-guided modes in IAG planar waveguide amplifiers. We show that 

the gain-guided mode has modal confinement proportional to the modal gain, and single-

transverse mode propagation is very robust in such waveguides. The power evolution of 

the fundamental mode could be described analytically with very good accuracy. Limiting 

power and optimum length of the waveguide amplifiers could also be obtained analytically. 

In section 3.3, we will numerically analyze the output characteristics of IAG slab lasers 

with uniform side pumping. A model is proposed that describes a bidirectional 

homogeneously broadened IAG slab lasers with arbitrary single-pass gain and distributed 

losses. Maximum extraction efficiency and corresponding optimum output coupling are 

determined for various values of unsaturated gain and loss per pass.  

It needs to note that all the previous analysis only considers fundamentally single 

mode, that is, assuming no existence of HOMs. In high-power fiber lasers, the robustness 
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of single-mode oscillation is also significant and there was already the observation of HOM 

oscillation in an IAG slab laser [20]. Thus, in section 3.4 we will provide a comprehensive 

analysis of single mode capability in uniformly side-pumped IAG slab lasers. Specifically, 

the oscillator model with transverse mode competition is introduced. The gain oscillation 

threshold of the first HOM will be calculated with a proposed semi-analytical method and 

the characteristics of the threshold will be analyzed. Moreover, the output characteristics 

of single fundamental mode (which means multimode lasers operate in FM only) will be 

completely investigated. The last section is a summary of IAG planar waveguide lasers. 

3.1 Modal characteristics of index-antiguided planar waveguides 

Traditional planar or fiber waveguides are index-guided (IG), that is, the refractive 

index of the core is higher than the cladding and the propagation modes are confined 

through the total internal reflection at the core-cladding interface. Index antiguiding, on the 

other way, has smaller refractive index in the core than the cladding, which results in 

waveguide loss during propagation. Figure 3-1 demonstrates a general IAG structure in 

which total internal reflection will not be satisfied and all propagation modes are lossy. 

 

Figure 3-1 Structure and index profile of an index-antiguided waveguide 
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3.1.1 The complex 
2V  number 

In traditional IG planar or fiber waveguides, a dimensionless parameter V number 

is generally used to characterize the propagation modes, which could be expressed as 

 2 2 2 2 2

0 0 0( ) .V k a n n n        (3.1) 

here k0 is the vacuum wavenumber, a is the core radius, 0n n   and 0n  are the refractive 

indices of core and cladding, respectively. In order to achieve single-mode operation, the 

V number should be smaller than ℼ/2 in planar waveguides and smaller than 2.405 in fiber 

waveguides. Modes could propagate without loss (absorption is not considered) due to 

index guiding and no gain is needed to confine the modes.  

In IAG waveguides, modes are lossy with a loss coefficient of α. Sufficient gain g0 

is needed (≥ α) to confine the propagation modes. In order to characterize the propagation 

modes like in traditional IG waveguides, the same parameter V  could be introduced except 

that 
2V  is a complex number due to the gain. The expression of 

2V  is 

 2 2 2 2 2 2 2 2 20
0 0 0 0 0 0
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 
           

 
  (3.2) 

Equation (3.2) could be further decomposed into real and imaginary parts 
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where  
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here ΔN characterize the differential index between core and cladding, which is a negative 

value (-ΔN > 0) for IAG waveguides. G is the parameter associated with the gain. In the 

next section, we will show that the propagation modes can be characterized with the two 

parameters ΔN and G.  

3.1.2 Modal profile and waveguide loss 

The expression of modal profiles in IAG planar waveguides are the same as in IG 

planar waveguides, except that the parameters U  and W  are complex. For fundamental 

slab mode with a core thickness of 2a in the direction of x, the modal profile could be 

expressed as  

 
cos( / ) , ( )

( , )
cos( )exp ( / 1) . ( )

i z

i z

Ux a e x a
E x z

U W x a e x a









 
 

     

  (3.5) 

with 
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  (3.6) 

here   is the complex propagation constant. After applying the boundary conditions - the 

continuity of tangential fields E and H, the same characteristic equations could be obtained 

for IAG planar waveguides. For special case of FM and 1st HOM, the characteristic 

equations are  
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  (3.7) 
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The above equation could be solved to show the propagation regions for different 

modes. Figure 3-2(a) plots the gain thresholds of FM (
1

thG , solid blue) and the 1st HOM 

(
2

thG , solid red) in IAG planar waveguides. In order to confine the FM and 1st HOM, the 

required gain G should be chosen above the solid blue and solid red lines, respectively. The 

propagation of only FM requires the gain G to be located within 
1

thG  and 
2

thG . In addition, 

the threshold values could be simply estimated for large –ΔN, which is derived as follows. 

At large –ΔN, the modes nearly have zero field at the core-cladding interface. Therefore 

for FM there is / 2U   and tan 1/ tan( / 2 ) 1/ ( / 2 )U U U     . Finally, the 

characteristic equation of FM in Eq. (3.7) could be modified to  

 
/ 2

.
/ 2

W
U







  (3.8) 

For a confined mode, the fields in the cladding should have no exponential growth or decay, 

which means the real part of W  is zero. Assume 
r iW W iW  , substitute Eq. (3.8) to Eq. 

(3.3) and set 0rW  , yielding  

 .iW N    (3.9) 

and the threshold gain for the FM could be estimated  

 
2

1_ est ( / 2) 4 / .thG N     (3.10) 

Likewise, the threshold gain for the 1st HOM has a simple analytical expression at large –

ΔN 

 
2

2_ est 4 / .thG N     (3.11) 

The estimated thresholds from Eqs. (3.10) and (3.11) are plotted as the dashed lines 

in Figure 3-2(a). Excellent agreement could be seen for 100N  . 
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Figure 3-2 (a) Gain thresholds of FM (solid blue) and 1st HOM (solid red) in IAG planar 

waveguides, the dashed lines are the corresponding estimated gain threshold values from 

Eqs. (3.10) and (3.11). (b) The ratio of gain threshold 
2 1/th thG G  between FM and the 1st 

HOM, showing an asymptotic value of 4 at large –ΔN.   

Figure 3-2(b) demonstrates the gain threshold ratio (
2 1/th thG G ) between FM and the 

1st HOM. It is seen that at larger –ΔN, the gain threshold ratio is  
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The modal loss in IAG planar waveguide is very close to the gain threshold 

calculated in Figure 3-2. At large –ΔN, the modal could be estimated as  

 

2

0
1 12 2

0 0 0 0

0
2 2 12

0 0

,
( ) 2

IAG planar

4 .
( )

th

th

k
G

k a n k a n N

k
G

k a n




 

 


 

  (3.13) 

where α1 and α2 are the losses of FM and 1st HOM, respectively. It is seen that the loss ratio 

between FM and 1st HOM is 4 in IAG planar waveguides for large –ΔN.  
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3.2 Index-antiguided planar waveguide amplifiers with homogeneous broadening 

The previous section illustrates the characteristics of propagation modes in IAG 

planar waveguides. In this section, we will present a thorough study of the characteristics 

of the fundamental mode in IAG planar waveguide amplifiers. A simplified analytical 

model for IAG planar waveguide amplifier will be introduced, which agrees well with the 

numerical result using finite-difference beam propagation method (FD-BPM). The 

property of power evolution with different –ΔN is analyzed, as well as the optimum length 

for the amplifier. 

3.2.1  Model and numerical method 

Consider an IAG planar waveguide with a core thickness of 2a in the x (i.e., guided) 

direction that extends infinitely in the z propagation direction and has both a constant index 

step n (n < 0) with respect to the cladding and a uniform unsaturated power gain 

coefficient g0 inside the core. The scalar complex electric field in the planar waveguide 

could be expressed as ( )exp[ ( )]E x i z t    , where 
r ii     is the complex 

propagation constant and  is the angular frequency. In the case of symmetric modes in a 

symmetric planar waveguide, the FM field amplitude has the following form 
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 
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  (3.14) 

where 
r iU U iU   and 

r iW W iW   are the complex-valued mode parameters illustrated 

in Eq. (3.6). 

For a gain medium that is homogeneously broadened, the complex refractive index 

profile ( , )n x z  could be written as 
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where 
2

( ) ( )I x z x z    is the light intensity, s is the saturation parameter defined as the 

inverse of the saturation intensity sI , and "n  is related to 0g  by 0 02 "g k n . The evolution 

of the electric field is at first numerically calculated using a standard finite-difference beam 

propagation method (FD-BPM) with perfectly matched layers as boundary conditions [78, 

79]. We solve for the envelope function ( )x z   of the scalar electric field 

( )exp[ ( )]E x i kz t    where k  is the reference wavenumber which could be taken to 

be r . The launch field is the unsaturated fundamental mode with peak amplitude equal to 

0.01. A step size of 1 µm is used for both x and z directions. During the propagation, the 

index profile in Eq. (3.15) is updated using the intensity distribution of the previous z-step. 

In this work, we investigate an IAG planar waveguide with a core thickness 2a of 100 µm, 

and the dimensionless index parameter –ΔN between 10 and 1000 by changing the 

refractive index of the core according to Eq. (3.4). We also consider Nd:YAG as a gain 

media [80, 81] with an operating wavelength λ = 1.05 µm, an unsaturated power gain 

coefficient -1

0 1.5 cmg   and a saturation intensity of 3 kW/cm2. The cladding index is 

assumed to be 0 1.82n  , The simulation is carried out over a distance of 30 cm along the 

z direction in order to examine the saturation behavior. 
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3.2.2 Field Evolution 

 

Figure 3-3 (a-c) Evolution of the electric field amplitude in IAG waveguide for -N = 10, 

100, and 1000, respectively. (d-f) Gain profiles and (g-i) the corresponding normalized 

field amplitudes at several distances along the waveguide [24]. 

Figure 3-3(a-c) show the evolution of the field amplitude ( , )x z  along the z 

direction in a weak (-ΔN = 10), medium (-ΔN = 100), and strong (-ΔN = 1000) IAG planar 

waveguide. For all cases under study, the field amplitudes grow initially and then saturate. 

This is confirmed in Figure 3-3(d-f) which show the transverse profiles of power gain 

coefficients at propagation distance of 2, 100 and 300 mm. The corresponding normalized 

mode profiles of the fundamental mode are shown in Figure 3-3(g-i). At short distance of 

2 mm where the gain is nearly uniform across the core (solid black lines), the unsaturated 

field amplitudes follow Eq. (3.14) with different decay coefficients determined by the 

electromagnetic boundary conditions. At long distance where the gain saturation becomes 

most noticeable at the center of the mode, the field amplitudes in the cladding all become 
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cutoff-like extending infinitely in the transverse direction. For weak IAG (-N = 10), 

saturation occurs earlier in propagation with low limiting powers, and the mode shape 

changes substantially from highly confined to nearly cutoff (Figure 3-3(g)). For strong IAG 

(-N = 1000), saturation occurs at long distance with much larger limiting intensities, and 

the mode shape remains nearly identical during propagation (Figure 3-3(i)).  

Figure 3-4 shows BPM simulation of co-propagation of the FM and 1st HOM in an 

IAG waveguide with -N = 1000. At short distance beating between these two modes due 

to different propagation constants is clearly observed. As distance increases the beating 

gradually disappears and the field pattern evolves into that of a pure FM. The diminishing 

HOM during the co-propagation with the FM is due to its higher propagation loss at the 

presence of gain saturation. Figure 3-4 clearly indicates that the single-transverse-mode 

operation is robust in IAG waveguides. 

 

Figure 3-4 Co-propagation of the FM and 1st HOM in an IAG planar waveguide with -N 

= 1000. The vertical scale is the electric field amplitude (V/cm) [24]. 
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3.2.3  Power evolution 

Understanding power evolution in laser amplifiers is critical to extract information 

such as maximum output power and optimum device length. Since the fields of leaky 

modes cannot be normalized properly, here we are concerned with power in the core per 

unit length along the unguided (y) direction, defined by the integrated intensity in the core 

along the guided (x) direction, i.e., ( ) ( , )
a

c
a

P z I x z dx


  . For a uniform plane wave 

propagating in a homogeneously broadened medium with a power loss coefficient , the 

intensity saturates according to [82] 

 0( )
( ) ( ).

1 ( )

gdI z
I z I z

dz sI z
 


  (3.16) 

For propagating modes with non-uniform spatial dependence which leads to 

transverse spatial hole burning in the gain profile, Casperson has shown that the total power 

could be determined if the mode profile is known along the propagation length [26]. This 

is the case for IAG waveguides, as illustrated in Figure 3-3(g-i) which shows the mode 

profiles inside the core stay nearly identical to those of the unsaturated mode. We therefore 

define a normalized intensity profile ( )cf x  inside the core by ( ) 1
a

c
a

f x dx


  such that the 

local intensity could be written as 

 ( , ) ( ) ( ).c cI x z P z f x    (3.17) 

If Eq. (3.17) is substituted into Eq. (3.16), the result could be integrated over the guided 

direction to yield a differential equation for the evolution of ( )cP z  along the propagation 

direction 

 
0

( ) ( ) ( )
( ).

[1 ( ) ( )]

a
c c c

c
a

c c

dP z f x P z
g dx P z

dz sf x P z



 

   (3.18) 
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The net modal gain coefficient mg  could be written as  

 
0

( ) ( )1
.

( ) [1 ( ) ( )]

a
c c

m
a

c c c

dP z f x
g g dx

P z dz sf x P z



  

   (3.19) 

where the first term on the right-hand side is the effective net gain taking into account the 

transverse gain saturation, and the second term is the modal loss coefficient which has been 

shown equal to that of the corresponding passive IAG waveguides [83]. Recognizing that 

( ) / 2cP z a  is equivalent to the core intensity averaged along the guided direction, we 

thereby define a dimensionless normalized average core intensity ( ) ( ) / 2c cI z sP z a  . 

Equation (3.18) could then be re-written as 

 
0

( ) ( ) ( )
( ).

[1 2 ( ) ( )]

a
c c c

c
a

c c

dI z f x I z
g dx I z

dz af x I z




 
 


   (3.20) 

Equation (3.20) describes the evolution of the normalized average intensity in the core 

along the waveguide. By solving the modal characteristic equation in section 3.1, it could 

be easily shown that for -N  100, rU  is very close to /2 with negligible iU  ( 0.2). The 

normalized intensity profile ( )cf x  could then be approximated by a real cosine squared 

function to be    2cos / /c rf x U x a a . The integration in Eq. (3.20) could then be carried 

out analytically which yields 

 

1

0

tan tan / 1 2

1 .

1 2

r c
c

c

r c

U I
dI

g I
dz U I



          
  
 

  (3.21) 



30 

 

Furthermore, as rU is very close to /2 and cI   is a finite number, the above equation could 

be simplified if one approximates 
1tan tan / 1 2r cU I   
 

 by rU , which leads to an 

ordinary differential equation for normalized average core intensity 

 0 0

1 1 1
1 (1 ) .

1 2 1 2

c
c c c

cc c

dI
g I g I I

dz II I

 

   
          
        

  (3.22) 

Equation (3.22) provides a good description of the core power of the fundamental 

mode propagating along planar IAG waveguides. Its role in determining the propagation 

characteristics for the fundamental mode in IAG planar waveguides is as important as Eq. 

(3.16) is for plane waves in unbounded homogeneously broadened media [82]. For 

example, the net modal gain coefficient defined by Eq. (3.19) could be simplified to a pure 

analytic function as 

 
1

1 .

1 2

o
m

c c

g
g

I I



 
   
   

  (3.23) 

At low intensity where cI  << 1, Eq. (3.22)  is reduced to  

 0( ) .c
c

dI
g I

dz



    (3.24) 

which indicates that the core power experiences a uniform gain, as expected. Furthermore, 

limiting normalized core intensity limI   could be obtained by imposing the condition of zero 

net modal gain in Eq. (3.23) which yields 

 
lim ( 8 1 1) / 4.I         (3.25) 
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where 
0g   is the ratio of the unsaturated gain coefficient to the loss coefficient. 

Notice that the above equation could be re-written as 1 ( 8 1 3) / 4satI        , where 

1   is the well known saturated intensity of a plane wave. 

The normalized intensity cI   in Eq. (3.22) could be solved analytically by 

introducing another intermediate parameter 1 2 cR I   . Rearrange Eq. (3.22) to 

 
   

2

0

2

1 2 1

dz R

dR R g R R


    
  (3.26) 

Integrate Eq. (3.26) over R to obtain 
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



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 

    




  (3.27) 

where the constant C could be determined by the input ( ) 0inz R  . The results of Eq. (3.27) 

for IAG waveguides with -N equal to 10, 100, and 1000 are shown as solid black lines in 

Figure 3-5. For comparison, the evolution of the core power obtained from BPM 

normalized to input power (i.e., power gain) is also shown as open red circles. For all cases 

considered, the analytical results agree reasonably well with the simulation, which 

validates the initial assumption that the field profiles within the core of these IAG slabs 

remain invariant and could be approximated fairly accurate as cos( / 2 )x a . This result 

confirms that Eq. (3.22) provides a fairly accurate analytic description of the intensity 

evolution of the fundamental mode in IAG planar waveguides. 
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Figure 3-5 The evolution of the power in the core normalized to the input power along the 

propagation distance for different strengths of index antiguiding [24]. The solid circles are 

results obtained from the beam propagation method, and the black solid lines are the 

analytic results as discussed in the text. 

3.2.4  Gain saturation and modal confinement 

Figure 3-3 (g-i) indicates that the propagating modes become less and less confined 

as the gain diminishes upon gain saturation. In Figure 3-6 we compare the net modal gain 

coefficient gm and cladding field decay coefficient Wr as a function of propagation distance, 

calculated both from BPM (open symbols) and from analytical results (lines) for different 

N. The two calculations show very good agreement, especially for large IAG, validating 

the accuracy of Eq. (3.22). At short distance, the net modal gain coefficient gm (red open 

circles) roughly equals g0, beyond which it starts to decrease until it settles into a single 

exponential decay at large distance. The weaker the IAG, the larger the decay coefficient 

is. This implies that the propagating modes in a weak IAG waveguide could only grow 

over a relatively shorter distance to have smaller amplitude before saturation, whereas 

modes in a strong IAG waveguide could grow over a longer distance to reach a much larger 

limiting intensity – an indication that is consistent with the observation in Figure 3-5. Such 

a trend could be understood by considering the decay coefficient  of the net gain 

coefficient gm, which is equal to the negative of the slope of the black solid lines in Figure 

3-6. The decay coefficient  could be derived from Eq. (3.22) to be 
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2
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( ) .

( ) 1

m

m

R Rdg
z g

g z dz R R


 
  


  (3.28) 

At short distance with low intensity, 1R   and   is zero. At large distance where 

R approaches its limiting value lim ,lim1 ( 1 8 1) 2cR I      ,  is a monotonically 

decreasing function of R. This explains the faster gain saturation in IAG waveguides with 

small -N. 

 

Figure 3-6 Modal gain coefficient gm and decay coefficient wr of the cladding field as a 

function of propagating distance for different strength of index antiguiding. Open symbols 

are obtained from BPM, and lines are obtained from analytical calculation [24]. 

Figure 3-6 also indicates that, over the entire distance of propagation, the cladding-

field decay coefficient wr (blue open squares) is linearly proportional to the net gain 

coefficient gm (red open circles), as indicated by the constant offset in the log-linear plot. 

Such a linear proportionality ensures that, as gain saturation reduces the net gain, the field 

in the cladding becomes proportionally less confined, leading asymptotically towards a 

cut-off-like distribution as the net gain approaches zero. This linear correlation could be 

understood by examining the relationship between the complex modal parameter W  and 

the complex effective propagation constant   in the phase matching condition. From Eq. 

(3.6), we have  
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2 2 2 2
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positive due to index antiguiding. For a large core waveguide, 
2/ ~ Im( ) / 2r i effn n     is 

on the order of 
5 310 /10 

, which is
 
very small compared to unity. wr could then be 

approximated as 

 
2 2

0 0

2

r i
r m

a k a n
w g

N N

 
 

 
  (3.29) 

This equation indicates that the decay coefficient of the field amplitude in the 

cladding is linearly proportional to the net gain coefficient, which is in good agreement 

with our BPM numerical result. We emphasize that such a behavior is a unique feature of 

gain-guided modes in IAG waveguides. For comparison, with a similar approach it could 

be shown without much effort that 
rw N   for index-guided modes, indicating the field 

confinement is determined exclusively by the index contrast between core and cladding, 

irrespective of gain saturation. Our study shows that the modal confinement in IAG 

waveguides is fundamentally different from that in index-guided waveguides. For IAG 

waveguides, the modal confinement is intrinsically related to the modal gain and is self-

limited: as gain saturates, the net gain approaches a limiting value just enough to 

compensate for the propagation loss, rendering a zero modal gain and the field becomes 

cut-off. Even though the field cannot be normalized, the core power is finite and the field 

remains stable. Equation (3.29) also indicates that the ratio gm/wr increases with stronger 

index antiguiding, which is consistent with the increasing offset in Figure 3-6. This 

explains, for large IAG waveguides, why the cladding field amplitude appears very flat 

throughout the propagation since its initial wr is already very small due to its large -N. 
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3.2.5 Output intensity and optimized length 

Equation (3.27) provides a good description of the power or intensity evolution in 

the core of IAG waveguides. By expressing the integration constant explicitly, Eq. (3.27) 

could be re-written as 
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   
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            

  (3.30) 

where 1 2out outR I    and 1 2in inR I    are the output and input R parameters, 

respectively. The first term in the above equation could be shown to be small compared to 

other terms and may be neglected. Equation (3.30) could be simplified, by defining a 

normalized length 'z z , as  

  
 

 
1 out outout

in in in

2 11 1
' 1 [ln ( ) ln ].

1 2 2 1

R RR
z

R R R


 



    
             

  (3.31) 

Equation (3.31) indicates that the normalized propagation distance is determined 

exclusively by the ratio , the input and output normalized core intensities ,in outI I  . If we 

define the output normalized intensity outI   to be 90% of the limiting intensity, i.e.,

lim90%outI I  , the corresponding normalized output length outz  could be calculated using 

Eq. (3.31). Figure 3-7 shows outz  and its corresponding outI   as a function of
 
 for different 

values of input normalized intensity inI  . Several features are notable. Firstly, the output 

intensity scales nearly linearly over a large range of the ratio . Secondly, the output length 

outz  is shorter for larger input intensity inI  , which is consistent with the fact that saturation 
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takes place faster for larger input power than for lower power. Thirdly, for input intensity 

2inI   , outz  diverges very fast for  < 5 and is a strong function of input intensity inI  , 

whereas for  > 10 it becomes a smooth function with a limiting value between 2 and 3. 

This suggests that it is advantageous to design IAG planar waveguide amplifiers with larger 

 to be less sensitive to the variation in the input condition. In particular, there exists a 

critical input intensity 1criticalI    near which the output distance outz  becomes nearly 

constant over a very wide range of . Above (below) this critical intensity, outz  decays 

(rises) monotonically with increasing . This indicates an interesting design configuration 

where the optimum length of the waveguides is nearly independent of the gain and 

therefore pumping condition. Also we would like to point out that Eq. (3.31) is similar in 

form to Eq. (5) in Rigrod’s plane-wave analysis of gain saturation and output power of 

lasers [82], and is expected to be useful in designing IAG waveguide amplifiers. 

 

Figure 3-7 Normalized output length (solid colors, referred to the left axis) and output core 

intensity (dash black, referred to the right axis) as a function of the ratio of unsaturated gain 

coefficient to the loss coefficient, for different input intensities [24]. 
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3.3  Index-antiguided planar waveguide lasers with uniform side pumping 

Previous sections are investigating the characteristics of IAG planar waveguide 

amplifiers, including the effect of index-antiguiding on the field and power evolution, the 

amplifier model for the power evolution, and the optimized length for the amplifier. This 

section investigates the output power characteristics of fundamentally single mode (assume 

no HOMs) in uniformly side-pumped IAG slab lasers. The amplifier model in the previous 

section will be used to construct a bi-directional oscillator model. Based on the oscillator 

model, maximum extraction efficiency and corresponding optimum output coupling are 

determined for various values of unsaturated gain and loss per pass. A method is proposed 

to determine the intrinsic laser parameters from output power measurements. 

The oscillator model could be derived as follows. Eq. (3.22) has been shown to be 

useful for finding the amplification and saturation of the propagating fundamental mode in 

a homogeneously-broadened (uniformly side-pumped) IAG planar waveguide amplifier. 

To generalize this one-directional amplifier equation to a bi-directional laser oscillator with 

the cavity extending from z = 0 to z = L, we modify only the form of the saturation factor 

to include saturation by both the forward and backward propagating waves. The forward 

and backward propagating intensities in a homogeneously-broadened IAG waveguide 

oscillator are thus governed by the following set of two coupled first-order nonlinear 

ordinary differential equations 
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  (3.32) 
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  (3.33) 

which subject to the boundary conditions imposed by the reflections at the oscillator ends 

 ' ' ' '(0) (0), ( ) ( ).c l c c r cI R I I L R I L       (3.34) 

where Rl and Rr are the mirror reflections at the left-hand (z = 0) and the right-hand (z = L) 

ends of the laser, respectively, and the plus and minus superscripts refer to the fields 

propagating toward the right and left ends respectively. It is seen from Eqs. (3.32) and 

(3.33) that the saturation equations for an IAG bi-directional laser are more complicated 

than the corresponding uniform-plane-wave results. On the other hand, for small values of 

the saturating intensities, the saturation factors in Eqs. (3.32) and (3.33) reduce to unity, 

and in this limit the saturation equations may be approximated by the plane-wave forms 

for an unsaturated laser 

 
0

' ( )
( ) ' ( ).c

c

dI z
g I z

dz



     (3.35) 

At threshold, Eq. (3.35) could be integrated subject to the boundary conditions at the laser 

mirrors to obtain the familiar result for the threshold gain gth: 

 
1

ln( ).
2

th l rg R R
L

    (3.36) 

For arbitrary levels of saturation, one has to solve Eqs. (3.32) - (3.34) self-consistently. 

Notice that if the left-hand side of Eq. (3.32) is divided by 
' ( )cI z

 and the left-hand side of 

Eq. (3.33) is divided by 
' ( )cI z

, then the right-hand sides of these equations differ from 

each other only by a minus sign. The solution of this equation is known as the first integral: 

 ' '( ) ( ) .c cI z I z c     (3.37) 
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where c is a constant to be determined, indicating that the product of the right and left 

propagating intensities is a constant over the length of the oscillator. With the boundary 

conditions given in Eq. (3.34), the left propagating intensities could be eliminated in Eq. 

(3.37), and the result could be written as 

    
2 2

' '1
(0) ( ) .c r c

l

c I R I L
R

     (3.38) 

Substitute Eq. (3.37) into Eq. (3.32) to yield 
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  (3.39) 

Equations (3.38) and (3.39) provide a complete set for solving the intensities of the forward 

and backward propagating waves anywhere inside the homogeneously broadened IAG-

waveguide oscillators. Equation (3.39) is considerably more complicated than its plane-

wave counterpart [84, 85], but could be solved numerically. For a common laser 

configuration where Rl = 1 at z = 0 (perfectly reflecting), the output normalized intensity 

'I  outside of the output coupler could be calculated according to 
'' (1 ) ( )r cI R I L  . From 

this result the extraction efficiency, which is one of the most important performance 

metrics of lasers, could be obtained by [85] 

 
0

'
.

I

g L
    (3.40) 

The denominator g0L is the unsaturated gain per pass and represents the maximum 

normalized optical intensity available from the population inversion as a result of pumping. 
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Such a maximum value could be obtained in a plane-wave laser resonator exhibiting no 

distributed loss and nearly 100% output coupler reflectance [85]. 

 

Figure 3-8 Maximum extraction efficiency versus optimum output coupler reflectance of 

homogeneously broadened IAG slab lasers for various values of g0L and L [25]. 

The theoretical model we have developed could be used to design and optimize 

IAG waveguide lasers. For this purpose it is convenient to solve Eq. (3.39) in terms of 

unsaturated gain per pass g0L and loss per pass L. For a given set of g0L and L, there 

exists an optimized output coupler reflectance Ropt that results in a maximum extraction 

efficiency max. Figure 3-8 shows the max versus its corresponding Ropt for various values 

of g0L and L. The optimum parameters for a given laser configuration are represented by 

the intersecting point of the two curves with the corresponding values of g0L and L. Very 

high extraction efficiency is only attainable with very low loss and nearly 100% output 

coupler reflectance. As loss increases, max decreases significantly. Figure 3-8 indicates 

that high gain and low loss are desirable for IAG oscillators because they lead to not only 
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higher max, but also more robust laser operation as max becomes less sensitive to variation 

of loss and mirror reflectance. 

The above trend is qualitatively similar to that of a plane-wave oscillator [85] and 

one might be tempted to use the simpler plane-wave saturation model to design IAG 

oscillators. To compare their performance, we consider a plane-wave oscillator with a finite 

aperture equal to that of the IAG oscillator. Figure 3-9 shows the relative efficiency ηr, 

defined by the ratio of ηmax of an IAG oscillator to the corresponding ηmax of a plane-wave 

oscillator, as a function of g0L between gthL to 10 for various values of αL. Note that ηr is 

always less than unity. Physically, this is due to the cosine-shaped mode field of the IAG 

slab waveguide, which leads to non-uniform gain saturation along the transverse dimension, 

whereas a plane-wave mode field saturates uniformly across the entire aperture. This, 

however, does not imply that an IAG oscillator operated in the fundamental mode is less 

efficient, as a plane-wave oscillator with a mode field filling a finite aperture cannot be 

realized in single-mode operation. Figure 3-9 shows that all curves have similar trends: ηr 

is low and rises sharply right above the threshold, after which it increases smoothly as gain 

increases. In addition, lower loss leads to higher ηr. These trends could be understood 

qualitatively by noting that, as gain increases or loss decreases, the transverse gain in the 

IAG oscillator becomes more uniformly saturated across the aperture, leading to higher ηr. 

In the theoretical limit of no loss, i.e., distributed loss = 0 and nearly 100% mirror 

reflectance where the IAG oscillator is nearly fully saturated transversely, ηmax of an IAG 

oscillator approaches 100% (see Figure 3-8), which is comparable to that of a plane-wave 

oscillator [85]. Figure 3-9 shows that the prediction from a plane-wave saturation model is 
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too optimistic and is strongly dependent on gain or loss. Therefore, Eq. (3.39) will provide 

better results when designing and analyzing IAG oscillators. 

Experimental determination of the three intrinsic laser parameters g0, α, and Is 

would also be useful. Assume the slab laser has a mode size l along the unbounded 

dimension, which could be defined by the width of the optical or electrical pumping. The 

power extracted from a homogeneously broadened IAG slab laser is then 

 0( , , ),sP I d l I g R      (3.41) 

 

Figure 3-9 Dependence of the ratio ηr of ηmax of IAG slab oscillators to that of plane-

wave oscillators on g0L for different αL [25]. 

The above equation has three unknowns (g0, α, Is) if the mirror reflectance R is 

known and therefore requires three measurements to obtain its solution. Let the mirror 

reflectance and its corresponding output power of each measurement i be Ri and Pi, 

respectively, for i = 1 to 3. For each Ri, Eq. (3.41) indicates 
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      (3.42) 
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For plane-wave oscillators, the solution to Eq. (3.42) could be obtained analytically 

[85], whereas for IAG oscillators this solution has to be obtained numerically. One 

potential approach is to define a function ( , ) '( , ) /z x y I x y P , where x and y are variables 

of gain and loss coefficients, respectively. For each i, zi represents a curved surface in the 

three-dimensional space of (x, y, z). These three surfaces could be obtained numerically by 

solving Eqs. (3.38) and (3.39) for each of the three pairs of Ri and Pi. Since the laser 

intrinsic parameters satisfy the three equations in Eq. (3.42) simultaneously, they could be 

obtained from the intersection point of the three curved surfaces zi, whose coordinates are 

1( 0, ,( ) )sg I d l   . 

3.4 Transverse mode competition in uniformly side-pumped index-antiguided slab lasers 

In the previous section, we have comprehensively analyzed the output efficiency of 

IAG planar waveguide lasers. However, the previous analysis only considers 

fundamentally single mode and does not include HOMs. As the robustness of single-mode 

operation is also significant to high-power lasers. This section will focus on the 

comprehensive analysis of single mode capability by considering transverse mode 

competition in uniformly side-pumped IAG slab lasers. 

3.4.1 Introduction 

It is well known that the output of a laser depends on many parameters in the 

resonator, such as pumping level and distribution, internal loss, mirror curvatures, output 

coupling, and cavity length, etc. [84, 85]. A comprehensive study of laser resonators is 

therefore essential for understanding these limitations and optimizing their performance. 

This is especially important for high-power lasers where large mode area (LMA) with 
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robust single fundamental mode is highly desired for high-brightness operation [86, 87]. 

These LMA lasers are mostly multimoded (MM) and require some level of mode 

discrimination to achieve single fundamental mode operation. Among various means to 

achieve this goal [76, 77, 87-89], index antiguiding is a relatively simple approach, where 

the negative index step between the core and the cladding imposes higher loss for higher 

order modes. Robust single fundamental mode oscillation has been reported both in IAG 

fibers with diameter up to 400 µm [13] and IAG planar waveguides with 200 µm core 

width [90]. In the previous section we have conducted the first theoretical analysis of output 

characteristics of fundamentally single-moded (i.e., HOMs can never oscillate) planar IAG 

lasers with arbitrary single-pass gain, single-pass internal loss and output coupling. 

However, recent observation of HOM oscillation in a 400 µm-core planar IAG laser [20] 

(as shown in Figure 3-10) indicates the necessity to include transverse mode competition 

due to transverse spatial hole burning [26] in such MM waveguide lasers. Although 

transverse mode competition in MM waveguide lasers has been investigated [91-94], these 

studies were conducted for specific values or narrow range of gain, loss, and output 

coupling. A comprehensive study of output characteristics in MM waveguide lasers, not 

only for IAG but also for LMA waveguide lasers in general, is still lacking. In this work, 

we conduct comprehensive analysis of output characteristics of single fundamental mode 

in planar multimoded IAG lasers with arbitrary gain and loss. We report a simple and 

efficient quasi-analytical method to calculate the threshold gain of the 1st HOM, which is 

very beneficial to this comprehensive study. We study numerically the extraction 

efficiency and optimal extraction conditions of the single fundamental mode (oscillation 

of only FM in a MM laser) for various combinations of single-pass gains and losses. We 
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present an analytic theory that predicts the absolute maximal extraction efficiency to be 

suppressed to 66.7% which is in excellent agreement with numerical modeling. 

 

Figure 3-10 Near-field mode profiles at different lasing powers of (a) 3 mW, (b) 61 mW, 

(c) 237 mW and (d) 512 mW in a 400-µm IAG slab laser, showing clear HOM oscillation 

[20]. 

3.4.2 Oscillator model 

We consider a generic planar IAG waveguide with a core width d and a length L, 

sandwiched between two flat mirrors with reflections Rl and Rr at the left-hand (z = 0) and 

the right-hand (z = L) ends of the resonator, respectively. The modal loss coefficient of the 

nth mode is determined by the core width and the refractive indexes of the core and the 

cladding, and scales as square of the mode order n [20]. For simplicity, we assume the FM 

and HOM oscillate at the same frequency with a uniform small-signal gain coefficient in 

the core region. Previously in Section 3.3 we have developed a model to calculate the 

propagating intensities in a uniformly side-pumped planar IAG waveguide laser based on 

a zero-field approximation. In the situation of transverse mode competition, the forward-

propagating average normalized intensities (
nI  ) of the fundamental (n=1) and the first 



46 

 

higher-order mode (n=2) are governed by the following set of two coupled first-order 

nonlinear ordinary differential equations [17] 
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where ' 2 ' 2[ (0)] / [ ( )]n n l r nc I R R I L    are mode-specific constants, and f1(x) = 

2cos2(πx/d)/d and f2(x) = 2sin2(2πx/d)/d are the normalized intensity profiles across the 

waveguide core width satisfying 
/2

/2
( ) 1

d

n
d

f x dx


 . For arbitrary level of saturation, 

Eq.(3.43) needs to be solved self consistently to yield ( )nI z , from which a multitude of 

laser output parameters, such as threshold gain, slope efficiency, extraction efficiency, 

output power, etc., could be derived for individual modes. 

3.4.3 The gain oscillation threshold of the first higher-order mode 

It is important to firstly know the gain oscillation threshold of the 1st HOM (
2

thg ). 

As the focus of this section is on the output characteristics of the single fundamental mode, 

there is no need to calculate '

2I   if we already know its threshold 
2

thg .This threshold could 

be calculated numerically by solving the two integro-differential equations in Eq. (3.43). 

However, it is computationally intensive to solve these two coupled equations. Below we 

present a simple method to obtain 
2

thg  quasi-analytically. 

When the unsaturated gain coefficient 0g  equals threshold gain of the fundamental 

mode 
1

thg , the FM just starts to oscillate ( '

1 0I   ) while '

2I   is zero. At steady state where 

the round-trip gain equals the round-trip loss for the FM, Eq. (3.43) could be integrated to 

yield the well-known condition for 
1

thg : 
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1
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2

th

l rg L L R R    (3.44) 

At intermediate gain 
1 0 2

th thg g g  , the FM oscillates and '

1I
  is governed by a single 

integro-differential equation: 
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which is identical to Eq. (3.39) (after substituting 1( )f x ), and could be solved much more 

efficiently than Eq. (3.43). At the same time, the 1st HOM is below the threshold and 

integrating Eq. (3.43) yields 
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Finally, at 
0 2

thg g , the HOM starts to oscillate ( '

2 0I   ) and Eq. (3.46) becomes 
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Equation (3.47) defines 
2

thg , which could be determined fairly quickly by gradually 

increasing 0g  in Eq. (3.45) to obtain '

1I
  until a transition from Eq. (3.46) to Eq. (3.47) is 

obtained. We have applied this simplified method to Figure 1 and 3 of Ref. [20] and 

obtained excellent agreement. 

3.4.4 Regions of single-fundamental-mode operation 

Equations (3.44)-(3.47) are applied to study the oscillation threshold characteristics 

of IAG planar waveguide lasers. Consider a general laser configuration where Rl = 1 and 

Rr = Roc (the reflectance of the output coupler). With this notation, the output coupling loss 

is defined as T = 1-Roc, which approximates –lnRoc when Roc is close to unity. Figure 3-11(a) 
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shows the contour plot of the theoretical single-pass threshold gain 
1

thg L  of the FM as a 

function of single-pass loss α1L (logarithmic scale) and output coupler Roc (linear scale).  

 

Figure 3-11 Contour plots of (a) single-pass threshold gain 
1

thg L  of the fundamental mode, 

(b) single-pass threshold gain 
2

thg L  of the 1st HOM, and (c) threshold gain contrast 
2 1/th thg g

, as a function of single-pass loss α1L of the fundamental mode (logarithmic scale) and 

output coupler Roc (linear scale) [17], in uniformly side-pumped IAG slab lasers. 

As is apparent from Eq. (3.44), 
1

thg L  decreases monotonically  with decreasing 

distributive loss α1L and output coupling loss T (or increasing Roc). Figure 3-11(b) shows 
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a similar plot for the threshold gain 
2

thg L  of the 1st HOM. In the lower-left region where 

the output coupling loss T dominates the distributive loss α1L, there is little modal 

discrimination between the FM and 1st HOM such that the 1st HOM oscillates immediately 

after FM lases. The gain saturation term in Eq. (3.47) is negligible and 
2

thg L  follows the 

trend of 
1

thg L . This situation is completely different in upper-right region of the figure 

where 1L T   and gain saturation by the FM effectively suppresses HOM oscillation. 

We define a robustness parameter 
2 1/th thg g   to reflect the robustness of single 

fundamental mode operation. As shown in Figure 3-11(c), to have large ξ and therefore 

robust single FM operation, one needs to work in the upper-right region where the 

discriminating IAG loss ( 1L ) dominates the non-discriminating output coupling loss T 

such that gain saturation by the FM effectively suppresses HOM oscillation. It is worth to 

point out that not all the points along the contour work equally effective in laser 

optimization. As for the case of plane-wave oscillators, large internal loss significantly 

reduces lasers’ extraction efficiency [95]. This topic is the subject of the following sections.  

3.4.5 Extraction efficiency of single fundamental mode 

One of the most important performance metrics of lasers is their extraction 

efficiency which is defined in Eq. (3.40) for uniformly side-pumped lasers. For 

multimoded lasers, the extraction efficiency for the nth mode is '

0( )(1 ) /n n ocI L R g L   . 

For given gain and loss coefficients, n  is typically a strong function of the output coupling, 

and maximal extraction efficiency max

n  exists at some optimal output coupler Ropt. For 

high-brightness operation, one is particularly interested in the maximal extraction 
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efficiency max

SM  of the single fundamental mode, which is defined by max

SM = maximal 1  

when 2 0  . In principle max

SM  could be calculated by solving Eq. (3.43) to take into 

account of the transverse mode competition explicitly. With the knowledge of 
2

thg , 

however, we propose a simpler method to calculate it and illustrate its principle below by 

considering an IAG waveguide with α1L = 0.1. Firstly we assume a fundamentally single-

mode laser by setting 
2 0I    and solve Eq. (3.45) to obtain 1  as a function of ocR  for 

selected 0g L , as shown in Figure 3-12(a). For each 0g L , max

1  occurs at the critical point 

where the derivative 1 ( )optR   equals zero and this defines the optimal output coupler 
optR . 

The red dash-dot-dot in Figure 3-12(a) denotes the locus of max

1  and its corresponding 

optR  for different gains. Next, we allow HOM to oscillate (i.e., 
2I   can be non-zero) and 

identify single FM region in Figure 3-12(a). To do so, we calculate 
1

thg L  and 
2

thg L  as a 

function of ocR  for 1L  = 0.1, which is displayed in Figure 3-12(b). The regions below the 

1

thg L   curve, between 
1

thg L   and 
2

thg L   curves, and above the 
2

thg L   curve, represent no 

oscillation, FM only, and multimode oscillation, respectively. While the 
1

thg L  curve is 

monotonic, the 
2

thg L   curve has a local minimum at 
0

thg L   = 2.654, below which the 

oscillation is single FM for all ocR . For each 
0

thg L > 2.654, the 
2

thg L  curve defines two ocR  

values separating the single FM from MM operation. The 
2

thg L  curve in Figure 3-12(b) 

could then be mapped into Figure 3-12(a) as the blue dash-dot curve, which also represents 

1  at the threshold of the 1st HOM. Finally, we could define max

SM  as follows, which is 

represented by black circles in Figure 3-12(a): Below the 
2

thg L  curve the laser is single 
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fundamental mode so max max

1SM  ; above it the laser is MM and max

SM  follows the 
2

thg L  

curve, as HOM kicks in before the laser reaches to max

1 . These two segments intersect at 

0g L  = 4.235 which defines a sharp kink. Figure 3-12(a) clearly shows that, as a result of 

transverse mode competition, max

SM  is suppressed in regions of high gain and the 

corresponding optimal output coupler 
optR  increases. 

 

Figure 3-12 For α1L = 0.1, (a) extraction efficiency of the fundamentally single mode vs. 

output coupling for selected fixed gains, and (b) threshold gain vs. output coupling for FM 

and 1st HOM in a MM IAG laser. In (a), red dash-dot-dot is the locus of maximal extraction 

efficiency of the FM, blue dash-dot is η1 at the threshold of 1st HOM, and black circle is 

the maximal single-fundamental-mode extraction efficiency in a MM IAG laser [17]. 

Figure 3-12 (a) could be repeated to obtain max

SM  
and 

optR  for different values of 

1L . The result is summarized in Figure 3-13(a). For comparison, the same calculation for 

a fundamentally single-mode IAG laser is displayed in Figure 3-13(b). As shown, without 

the HOM competing with the FM, all curves of constant 0g L  (solid line) or 1L  (dash line) 

are smooth and max

1  approaches unity in the limit of low loss. With the HOM competing 

with the FM, the trend remains the same in high-loss regions while it is squeezed 

downwards in low-loss regions. The squeezing results in kinks in all curves of constant 
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gain or loss (notice that kinks in curves of very low gain or very high loss are not shown). 

Specifically, the dash curve with 1L = 0.1 in Figure 3-13(a) is identical to the max

SM  curve 

in Figure 3-12(a). Figure 3-13 clearly indicates that max

SM  is suppressed and approaches an 

asymptotic value of 67%, which defines an absolute maximal extraction efficiency max

SMH  

of the laser under single-fundamental-mode operation (H stands for capital Greek letter η). 

The squeezing also makes max

SM  insensitive to (internal) distributive loss and (external) 

output coupling loss at high gain – a property that is also shared by plane-wave resonators 

[85]. 

The value of max

SMH  could be derived analytically as follows. Referring to Figure 

3-13(a), max

SMH  equals max

SM  in the limit of low distributive loss, weak output coupling, and 

high gain. This point corresponds to the largest max

SM  in Figure 3-12(a), which occurs at the 

intersection of the 
2

thg L  curve and the 1  curve of the highest 0g L . It therefore satisfies 

both Eq. (3.47) and  
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Here 1lR   and rR  is replaced by ocR . Equation (3.48) states simply that round-trip gain 

equal to round-trip loss for the FM at 
2

thg . Let 2 1k   where k = 4 for planar IAG 

waveguides. Multiplying Eq. (3.48) by k and subtracting Eq. (3.47) yields 

 
/2

1 2
2 ' '

1 1 10 /2

( ) ( ) ( 1)
ln .

[1 ( )( )] 2

L d

th

OC

d

kf x f x k
g dxdz R

df x I I 



 
 

     (3.49) 

At the limit of low loss 1 0L   and weak coupling 1ocR   where ' '

1 1I I   and 

ln 1OC OCR R   , Eq. (3.49) is reduced 
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Since the right-hand side of Eq. (3.50) is close to zero, we have '

1 1( )2 1df x I    and Eq. 

(3.50) becomes 
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The absolute maximal extraction efficiency max

SMH  of single fundamental mode is therefore 
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With k = 4 for planar IAG lasers, max

SMH = 2/3 ~ 0.67, which agrees well with the numerical 

result shown in Figure 3-13(a). It needs to be noted that the absolute maximal extraction 

efficiency is not only dependent on the loss ratio k, but also the ratio of modal profiles 

f2(x)/f1(x), as shown in the left-hand side of Eq. (3.50). 

 

Figure 3-13 (a) Maximal extraction efficiency of the single fundamental mode in a 

multimoded IAG slab laser ( max

SM ) and optimal output coupler reflectance 
optR , for various 

single-pass gains (solid lines) and distributive losses (dash lines). (b) Same as (a) except 

maximal extraction efficiency of a fundamentally single-moded laser ( max

1 ) [17]. 
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Besides the unique feature that demonstrates a 2/3 maximal extraction efficiency 

for IAG slab lasers with transverse mode competition, another interesting feature from 

Figure 3-13 is where the kinks occur. Below are some derivations showing that the kink 

occurs at max 0.58SM  , 0 1/ 42g    and 
1ln / 8.8optR L  , under small output coupling 

condition (Rr is close to 1). 

Since the kink points are the intersections of max

1  profiles (red dash-dot-dot) and 

2

thg L  profiles (blue dash-dot), as shown in Figure 3-12(a). It has to satisfy Eq. (3.47) and 

another equation relating to max

1 . Below demonstrates an analytical derivation of max

1  at 

the condition of small output coupling. Let us start from Eqs. (3.32) and (3.33), under small 

coupling condition with Rr closed to 1, we could assume ' 'I I I    and Eq. (3.32) is 

changed to  
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The solution of Eq. (3.53) is 
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where L is waveguide length. If we consider the left-hand reflection 1lR   and steady state 

condition, it is further derived from Eq. (3.54) that  
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The optical extraction efficiency is defined as  
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Substitute Eq. (3.55) into Eq. (3.56), the extraction efficiency could be analytically 

expressed as  
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  (3.57) 

The optimum output coupler 
optR  could then be calculated by taking the derivative of Eq. 

(3.57) to rR  and set it to zero ( 1 / 0rd dR  ), that is  
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  (3.58) 

Now we could combine Eq. (3.58) and Eq. (3.47) to obtain the solution of the kink points. 

Here I would like to state that the solution of kink points satisfies a scaling law, which 

means that if 
* * *

1 0( , , ln )optL g L R   is a solution, 
* * *

1 0( , , ln )optk L kg L k R   is also a 

solution, where k is a random positive constant. 

At first let us prove Eq. (3.58) satisfies the scaling law. It is simple to rewrite Eq. 

(3.58) as a function F1 
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  (3.59) 

Then it is straightforward to show that 

 * * * * * *

1 1 0 1 1 0( , , ln ) ( , , ln ) 0.opt optF k L kg L k R F L g L R       (3.60) 

Therefore 
* * *

1 0( , , ln )optk L kg L k R   is also a solution of the kink points. 

The next step is to prove that Eq. (3.47) satisfies the scaling law. Rewrite Eq. (3.47) 

as another function F2 
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  (3.61) 

Here in Eq. (3.61) we replace 'z Lz  and 2 14   (for planar IAG). Therefore it is 

obtained from Eq. (3.61) that  

 * * * * * *

2 1 0 2 1 0( , , ln ) ( , , ln ) 0.opt optF k L kg L k R F L g L R       (3.62) 

and 
* * *

1 0( , , ln )optk L kg L k R   is also a solution of the kink points. 

Now since we have shown that the solution of the kink points satisfies the scaling 

law under weak coupling condition, it is only necessary to calculate one solution and derive 

the others. Table 3-1 shows the solution of the kink points. It is seen that the scaling law is 

satisfied for weak coupling, with a nearly fixed 0 1/g   value of ~ 42 and 
1ln /optR L  

value of ~ 8.8. Moreover, the optimum extraction efficiencies of the single mode at the 
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kink points are nearly the same, with a value of ~ 0.58. In addition, the scaling law is not 

well satisfied when the coupling is strong (small Rr). 

Table 3-1 Solution of the kink points that satisfy the scaling law 

α1L g0L Ropt 
max

SM  g0/α1 -ln(Ropt)/α1L 

0.01 0.42 0.92 0.58 42.36 8.82 

0.02 0.97 0.82 0.58 42.31 8.83 

0.05 2.12 0.64 0.58 42.31 8.83 

0.07 2.96 0.54 0.58 42.32 8.83 

0.10 4.24 0.41 0.58 42.35 8.83 

0.14 5.95 0.29 0.58 42.48 8.81 

0.20 8.59 0.17 0.58 42.94 8.77 

 

3.5 Summary 

This chapter provides the theory of IAG planar waveguide lasers. It starts from the 

waveguide properties, showing that IAG planar waveguides will intrinsically introduce a 

waveguide loss ratio of 4 between the FM and 1st HOM for large –ΔN. This differential 

loss is believed to favor the large single-mode operation and high power capability. After 

that, an amplifier model for uniformly side-pumped IAG planar waveguides is given, 

which is shown to have a simple analytical solution for the power evolution of fundamental 

mode. The gain-guided mode has modal confinement proportional to the modal gain, and 

single-transverse-mode propagation is very robust in such waveguides. In addition, it is 

seen that for strong IAG (large -N), saturation occurs at long distance with much larger 

limiting intensities, and the mode shape remains nearly identical during the propagation. 

Based on the amplifier model, the laser model of fundamentally single mode in uniformly 
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side-pumped IAG slab lasers is also provided. Maximum extraction efficiency of 

fundamentally single mode and corresponding optimum output coupling are calculated for 

various values of unsaturated gains and losses per pass, showing similar property as for 

plane-wave oscillators. Very high extraction efficiency is only achievable with very low 

loss and nearly 100% output coupler reflectance, with the value approaching to unity at the 

limit. The capability of single-mode operation in IAG slab lasers is also comprehensively 

investigated. The oscillator model including transverse mode competition is proposed for 

uniformly side-pumped IAG slab lasers. Based on the oscillator model, a simple quasi-

analytical method is proposed to calculate the gain oscillation thresholds of HOMs. It is 

shown that single-mode operation is favored for large distributive loss of FM and small 

output coupling loss (or large output coupler reflectivity). The output efficiency of the 

single fundamental mode (only FM oscillates in MM lasers) is numerically investigated 

under the condition of transverse mode competition and compared to the result without 

considering transverse mode competition. It is shown that due to transverse mode 

competition the maximal extraction efficiency is suppressed when the small signal gain is 

large and distributive loss is small, or roughly at g0/α1 > 42. At the limit of 1 0L   and 

1ocR  , the maximal extraction efficiency asymptotically approaches the maximal value 

of 66.7%, or more generally, (k-2/k-1) with k the distributive loss ratio between the 1st 

HOM and FM (for IAG slab waveguides, k = 4). In fact, this absolute maximal value is 

shown to be related to both the ratio of modal loss and the ratio of HOM and FM profiles.  
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CHAPTER 4 OUTPUT CHARACTERISTICS OF INDEX-ANTIGUIDED FIBER 

LASERS IN FUNDAMENTALLY SINGLE MODE REGIME 

 

 

Previous chapter focuses on the theory of IAG planar waveguide lasers. The 

property of IAG waveguide loss, output characteristics of fundamentally single mode and 

transverse mode competition in uniformly side-pumped IAG slab lasers are 

comprehensively analyzed. This chapter, along with the following chapters will focus on 

the property of IAG fiber lasers. 

The structure of this chapter is as follows. Section 4.1 will provide the background 

of waveguide properties in IAG fibers, showing a loss ratio of 2.54 between FM and first 

HOM for large index antiguiding, which differs from IAG planar waveguides with a loss 

ratio of 4. Section 4.2 discusses the general pumping schemes for IAG fiber lasers. Both 

side and end pumping techniques are investigated. Moreover, the efficiency of end 

pumping is further investigated and compared between core and cladding pumping. Some 

improvement methods on end pumping scheme are also analyzed. Section 4.3 will 

investigate the output characteristics of fundamentally single mode in uniformly side-

pumped IAG fiber lasers. Section 4.4 will investigate the output characteristics of 

fundamentally single mode in core-pumped IAG fiber lasers. The oscillator model will be 

provided and the parameters affecting the output efficiency will be carefully analyzed.  The 

reason for the low output efficiency in the published experiment [21] will be indicated. 

Based on the analysis, a design guideline to yield high output efficiency will be provided 

for core-pumped IAG fiber lasers.  
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4.1 Modal characteristics of index-antiguided fiber lasers 

In IAG fiber waveguides, the modes in z direction could be expressed as  
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here Jm and Km are the mth-order Bessel J and K functions, respectively.   is the complex 

propagation constant. The characteristic equations could be obtained after applying the 

boundary conditions - the continuity of tangential fields E and H. For special case of LP01 

and LP11 modes, the expressions are  

 

1 1

0 0

0 0

1 1

( ) ( )
, 01

( ) ( )

( ) ( )
, 11

( ) ( )

UJ U WK W
LP

J U K W

UJ U WK W
LP

J U K W



 

  (4.3) 

The above equation could be solved to show the propagation regions for different 

modes in IAG fibers. Similar to Figure 3-2(a) for planar waveguides, Figure 4-1(a) shows 

the gain thresholds of LP01 (solid blue) and LP11 (solid red) modes in IAG fiber waveguides. 

The single-mode operation requires G staying within 
1

thG  and 
2

thG . Like planar waveguides, 

at large –ΔN the threshold gains could be simply estimated as  
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where j01 = 2.405 and j11 = 3.832.  
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Figure 4-1(b) plots the gain threshold ratio between LP01 and LP11. It is seen that at 

larger –ΔN, the gain threshold ratio is 

 2

2 1 11 01/ ( / ) 2.54. IAG fibersth thG G j j    (4.5) 

 

Figure 4-1 (a) Gain thresholds of LP01 (solid blue) and LP11 (solid red) in IAG fiber 

waveguides, the dashed lines are the corresponding estimated gain threshold values from 

Eq. (4.4). (b) The ratio of gain threshold 
2 1/th thG G  between FM and the 1st HOM, showing 

an asymptotic value of 2.54 at large –ΔN. 

The modal loss in IAG fiber waveguide is very close to the gain threshold 

calculated in Figure 4-1. At large –ΔN, the modal losses in IAG fiber waveguides could be 

estimated as  
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where α1 and α2 are the losses of FM and 1st HOM, respectively. It is seen that the loss ratio 

between FM and 1st HOM is 2.54 in IAG fiber waveguides, compared to 4 in IAG planar 

waveguides. 
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4.2 Pumping schemes 

High-efficiency pumping is significant to high-power fiber lasers. This section 

discusses the possibility of the most two common optically pumping schemes – side and 

end pumping, for IAG fiber lasers. 

4.2.1 Side pumping 

Side pumping is a general optically pumping technique, which is usually to pump 

a gain medium by coupling the pump light into the core in a perpendicular direction from 

the side. Figure 4-2 demonstrates a typical side pumping scheme for IAG fiber lasers. The 

large core of IAG waveguides will favor the side pumping as more pump light could be 

coupled into the large core. Moreover, most of the IAG waveguides have short lengths [19, 

96] which make the side pumping technique applicable. The first demonstration of lasing 

in IAG fiber laser with side pumping scheme was in 2006 using a Xe flashlamp to pump a 

100 µm-core, 10 cm long Nd-doped phosphate fiber [19]. Up until now, nearly all of the 

IAG waveguide lasers utilize side pumping technique [13, 19, 20, 23, 96]. Although none 

of them experimentally demonstrated the exact coupling efficiency using side pumping 

technique, the reported highest slope efficiency is ~ 30% by an IAG planar waveguide laser 

from our group [23]. The reflections of the air-cladding and core-cladding interfaces, as 

well as the core size [96] will contribute to the loss of coupling. Moreover, the non-

uniformity of the pumping along the whole length of fiber will also affect the pump 

efficiency. In addition, the side pumping technique is not applicable for long fibers which 

might be desired for high power performance. 
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Figure 4-2 Side pumping scheme for IAG fiber lasers 

4.2.2 End pumping 

For end pumping technique, usually a lens is used to couple the pump light directly 

into the facet of the fibers, as shown in Figure 4-3. The pump light could be coupled either 

to the core or the cladding of the fibers. End pumping technique has high efficiency in 

traditional index-guided waveguide lasers. The invention of cladding pumping technique 

has significantly increased the threshold of launched pump power and the coupling 

efficiency due to the acceptance of large area of input as well as large NA. Therefore almost 

all of the high-power fiber lasers adopt cladding pumping technique. A double-clad fiber 

is generally used for cladding pumping, for which the pump beam is launched into the inner 

cladding of the fiber and confined within it by the outer cladding. The confined pump light 

is then progressively passing through the core and absorbed during its propagation along 

the fiber. As the cladding area is much larger than the core, more power could be launched 

into the inner cladding which greatly reduces the thermal and nonlinear effects and 

increases the output power.  



64 

 

 

Figure 4-3 End pumping scheme for IAG fiber lasers (the above figure is an example of 

core pumping) 

Although it is very successful to implement end pumping technique in traditional 

index-guided fiber lasers, it might not be efficient in IAG fiber lasers. The first reported 

slope efficiency in IAG fiber laser with cladding pumping was only less than 1% [21]. The 

author assumed that the low efficiency was due to index-antiguiding effect, which will 

prevent the pump power in the cladding passing into the core, and also introduce waveguide 

loss of the pump in the core. Therefore the author considered that end pumping was not 

applicable in IAG fiber lasers. After our analysis, we believe that the low efficiency of the 

cladding pumping is partly but not mainly due to index-antiguiding effect (the detailed 

analysis will be provided in Section 4.4). End pumping is still possible in IAG fiber lasers. 

In the following part of this section, we will numerically analyze the end pumping 

efficiency and compare between core and cladding pumping schemes. 

Finite-difference beam propagation method (FD-BPM) could be used to simulate 

the pump and signal evolutions along the propagation direction, for either core or cladding 

pumping schemes. Let us take the parameters from [21] as an example to show the 

efficiency difference between core and cladding pump. The simulated fiber has a core 

diameter of 200 µm and inner cladding diameter of 340 µm with the corresponding 
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refractive indices of ~ 1.5689 and 1.5734, respectively. In the case of cladding pumping, 

let us assume there exists another outer cladding with a diameter of 400 µm and an index 

of 1 (air cladding). The pump wavelength in the simulation is ~ 803 nm and the fiber length 

is 26 mm. There is a 1% Nd3+ doping in the core, corresponding to a pump absorption 

coefficient of ~ 277 m-1 [96]. As we are only interested in the pump evolution, for 

simplicity let us use a fixed complex core index 
51.5689 1.7721 10i     with its 

imaginary part representing the pump absorption. In the simulation, the initial pump field 

has a significant effect to the pump evolution profile. For a flat-top pump with multimode 

input, the exact input field is difficult to obtain. However, a noisy input could be used to 

simulate the spatial incoherence [97] of the input pump field, with the expression of  

 
2 ( , )

0 ( , ) ( , )(1 ( , )) .piN B x y

aE x y U x y N A x y e


    (4.7) 

where U(x, y) represents the profile of coherent input beam, A(x, y) and B(x, y) are the 

normalized spatial distributions of the amplitude and phase noises. Na and Np are the 

amplitudes of amplitude noise and phase noise, respectively. In flat-top pumping, assume 

U(x, y) = 1 and there only exists the phase noise with a spatial distribution B(x, y) . Thus, 

input field is simplified to 
2 ( , )

0 ( , ) piN B x y
E x y e


 . Moreover, let us assume the phase noise is 

random across the whole transverse section, such that B satisfies a random distribution in 

the interval [0, 1]. The value of Np determines the degree of coherence (spatial frequency) 

of the input beam. For Np = 0, the input beam has uniform transverse spatial phase. For the 

worst situation of Np = 1, the spatial frequency content of the beam is greatly varied [97] 

leading to poor spatial coherence, where most of the incident rays could leave the fiber 

without being confined. This worst spatial coherence usually does not occur in the real 
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situation. In [97] Np = 0.2 was used in the simulation. In our simulation, we consider more 

different choices of Np = 0, 0.4 and 1.  

 

Figure 4-4 Power evolution profiles in the core (solid blue) and cladding (solid red) in case 

of cladding pump for the initial pump field with phase noise amplitudes of (a) Np = 0, (b) 

Np = 0.4 and (c) Np = 1. Corresponding absorption coefficients of the core power are 279, 

233 and 193 m-1, respectively. As a comparison, the power evolution profiles in the core 

for core pumping (dotted blue) are also plotted, with the absorption coefficient of 278 m-1. 
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Figure 4-4 illustrates pump power evolutions for different phase noise amplitudes 

of (a) Np = 0, (b) Np = 0.4 and (c) Np = 1, where in each figure the solid blue and red lines 

represent the power evolutions in the core and cladding for cladding pump, while the dotted 

blue line represents pump power evolution in the core for the core pumping scheme. From 

Figure 4-4(a) it is seen that for cladding pump with uniform phase input (Np = 0), the 

cladding power is almost trapped in the cladding and unable to effectively pass through the 

core. The power evolutions in the core are nearly the same for cladding and core pumping. 

Corresponding absorption coefficient of the core power is 279 m-1, which is very close to 

the core pumping with an absorption coefficient of 278 m-1. In Figure 4-4(b) with some 

phase perturbation (Np = 0.4), the cladding power is slightly coupled into the core (~ 10%), 

resulting slight increase of the core power (seen from the solid and dotted blue lines). 

Corresponding absorption coefficient of the core power is 233 m-1, which is close to the 

value in the situation of core pumping. Even in the worst situation of Np = 1, only small 

fraction of cladding power (~ 20%) is coupled into the core, as seen from Figure 4-4(c). 

Corresponding absorption coefficient of the core power is 193 m-1, which reduces the 

absorption coefficient to 70% compared to core pumping. However, this value (70%) is 

still far away compared to the ideal situation where the effective absorption coefficient is 

reduced to Aco/Acl = 34.6%, with Aco and Acl the core and cladding areas, respectively. The 

reason why more cladding power is leaked into the core at Np = 1 is because more beams 

with high spatial frequencies (large beam angles) are able to pass through the core-cladding 

interface. However, as previously stated, it is usually not desired to have a pump with Np 

= 1 from pump efficiency perspective. Thus, it is seen from Figure 4-4 that cladding 

pumping barely improves the pump efficiency compared to core pumping in IAG fibers. 
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Although Figure 4-4 shows that core and cladding pumping schemes have similar 

efficiency in IAG fiber lasers for the flat-top pump with input phase noise having some 

degree of correlation, it does not explain whether the low efficiency of cladding pump is 

due to index antiguiding effect. Figure 4-5 illustrates pump power evolution profiles in 

core and cladding in IAG and IG fibers at input phase noise amplitudes of (a) Np = 0 and 

(b) Np = 0.4 (the worst situation of Np = 1 is not considered in the simulation), for the same 

simulation parameters in Figure 4-4, except the core and cladding indexes are switched 

such that the core index is higher than the cladding (IG waveguide). The blue and red solid 

lines represent the power evolution in the core and cladding in IAG fibers, while the blue 

and red dashed lines are for IG fiber lasers. It is clearly seen from Figure 4-5 that IG is 

more beneficial to improve the pump efficiency as more cladding power (~ 18% for Np = 

0 and ~ 20% for Np = 0.4) is coupled into the core. Therefore, index antiguiding truly affects 

the cladding pump efficiency. However, it is still seen that even index-guiding could not 

effectively increase the pump efficiency. One possible reason is that the round cladding 

shape is not effective compared to other like D-shape and rectangle-shape claddings [98]. 

Another reason is that the core size of the IAG fiber is usually very large (> 100 µm) such 

that the overlap between doping area and cladding modes is relatively small. This could be 

verified by Figure 4-6 which demonstrates the simulated pump power evolutions for IAG 

and IG fiber lasers with smaller core diameter of 40 µm and inner cladding of 125 µm. 

Other simulation parameters are maintained unchanged. It is observed from Figure 4-6 that 

for different input fields (Np = 0 and 0.4) and IG, the cladding power could more efficiently 

pass into the core and assist the pump efficiency. However, for IAG fibers, most of the 

cladding power is still trapped in the cladding, yielding low pump efficiency.  
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Figure 4-5 Power evolutions in core and cladding for flat-top cladding pump in IAG and 

IG fibers at input phase noise amplitudes of (a) Np = 0 and (b) Np = 0.4. 

Thus, from both Figure 4-5 and Figure 4-6 it is seen that cladding pump is not 

efficient in IAG fiber lasers due to both index antiguiding effect and large core size. Core 

pumping will be more suitable for IAG fiber lasers. Moreover, the large core size (usually > 

100 µm) in IAG fibers is comparable to the inner cladding size of most double-clad fibers, 

which favors the core pumping scheme from coupling efficiency perspective. Another 

reason for core pumping is that the fiber length is usually preferred not to long for high 

output efficiency (which will be explained in Section 4.4). Therefore cladding pumping is 
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generally not appropriate since it is usually accompanied with long fiber length for the low 

effective pump absorption coefficient. 

 

Figure 4-6 Power evolutions in core and cladding for flat-top cladding pump in IAG and 

IG fiber lasers with small core diameter of 40 µm and inner cladding of 125 µm, at input 

phase noise amplitudes of (a) Np = 0 and (b) Np = 0.4. 

 

4.2.3 Some improvements for end pumping scheme 

Prior to my discussion in the previous section, it was believed that end pumping 

technique was not efficient in IAG waveguide lasers due to index-antiguiding effect, which 

results in the loss of pump power in the core and the difficulty of cladding power coupling 

into the core. Some alternatives were proposed to ensure index guiding at the pump 
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wavelength while maintaining index antiguiding at the signal wavelength. One method is 

to consider adding Bragg layers between core and cladding to confine the pump light while 

ensuring that the lasing signal is index-antiguided [99], as shown in Figure 4-7. The Bragg 

fiber is composed of concentric layers of alternating high- and low-index materials (Bragg 

cladding) surrounding a core, followed by a uniform outer cladding. The width and index 

of each layer need to be appropriately designed to ensure the index guiding condition of 

the pump light, while the signal is in the region of index antiguiding. The schematic of the 

propagation of pump and signal in Bragg IAG fibers is shown in Figure 4-7(c). 

 

Figure 4-7 (a) Schematic of Bragg IAG fiber, (b) Radial index profile and (c) Schematic 

of pump and signal propagation in Bragg IAG fibers. 



72 

 

Although this method seems promising, there are several drawbacks. The first and 

biggest issue is the difficulty to fabricate Bragg layers. The later one is that this design only 

works for core-pumped systems, in which the waveguide loss of the pump is generally 

negligible compared to the pump absorption. Therefore it might be futile to reduce the 

waveguide loss of the pump. More details will be discussed in Section 4.4. 

Besides using photonic bandgap to confine the pump light, another method was 

proposed to use the dispersion to control the index and therefore confine the pump light 

[100, 101]. As shown in Figure 4-8, the index of the core after dispersion control is higher 

than the cladding at the pump wavelength, and lower than the cladding at the signal 

wavelength. This fiber is called index crossover gain-guided index-antiguided fiber. In this 

structure, the pump light propagates in an IG waveguide while the signal light propagates 

in an IAG waveguide. However, one issue of this method is the difficulty to manufacture 

the required index profile. Another issue is that even IG waveguide will be inefficient for 

cladding pump if the core size is very large, as seen from Figure 4-5. 

 

Figure 4-8 Schematic of using dispersion to control the indices of core and cladding 
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4.3 Output characteristics of uniformly side-pumped index-antiguided fiber lasers 

In Chapter 3, both amplifier and laser models are provided and the output 

characteristics of fundamentally single mode in uniformly side-pumped IAG planar 

waveguide lasers are investigated. For IAG fibers, similar amplifier and laser models can 

be obtained and the output characteristics of fundamentally single mode can be investigated. 

The amplifier model for IAG fibers could be derived from Eq. (3.16), with intensity 

expressed as  

 ( , , ) ( ) ( , ).I r z P z f r     (4.8) 

where P(z) is the transverse power in the core at distance z and ( , )f r   is the normalized 

intensity profile of FM (Eq. (4.1)) in the core satisfying 

 
2

0 0 0
( , ) 2 ( , ) 1.
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         (4.9) 

Substitute Eq. (4.8) into Eq. (3.16) and integrate both sides over the core area, yielding 
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Or further simplified to  

 
0

0

( ) ( , )
( ) 2 ( ).

1 ( ) ( , )

adP z f r r
g P z dr P z

dz sP z f r


 


  

   (4.11) 

Here the modal gain coefficient is  
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Remove the saturation factor s and use the same parameter of averaged intensity 

2( ) ( ) / ( )I z sP z a   will further modify Eq. (4.11) to  
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It is seen that the amplifier model for fiber waveguide is similar to the model for 

planar waveguide in Eq. (3.20). 

The oscillator model could then be derived from Eqs. (4.13) and (3.37), with the 

following expression 

 0 20

( ) 2 ( , )
( ) ( ).

1 ( ( ) / ( )) ( , )

adI z f r r
g I z dr I z

dz a I z c I z f r

 


 


 

 


  

     (4.14) 

which subjects to the boundary conditions  

    
2 21

' (0) ' ( ) .r

l

c I R I L
R

     (4.15) 

here ' ( )I z
 is the normalized forward-propagating intensity. Based on Eqs. (4.14) and 

(4.15), the output normalized intensity could be calculated for different cavity parameters. 

Figure 4-9 shows the maximum extraction efficiency ηmax as a function of optimum output 

coupler Ropt for different combination of unsaturated single-pass gains and internal losses. 

From which it is seen that ηmax in IAG fiber lasers behaves similar to IAG slab lasers 

(Figure 3-8) as well as plane-wave oscillators. Very high extraction efficiency is only 

attainable with very low loss and nearly 100% output coupler reflectance. As loss increases, 

max decreases significantly. 
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Figure 4-9 Maximum extraction efficiency versus optimum output coupler reflectance in 

uniformly side-pumped IAG fiber lasers for various values of g0L and L 

(fundamentally-single-mode operation is assumed). 

 

4.4 Output characteristics of core-pumped index-antiguided fiber lasers 

In the previous section, we have demonstrated the output efficiency of 

fundamentally single mode in uniformly side-pumped IAG fiber lasers. The behavior of 

output efficiency is similar to plane-wave lasers. Maximum optical extraction efficiency 

could approach to unity when the internal loss (includes IAG waveguide loss, mirror gap 

loss, scattering loss, etc.) is very small and output coupler is close to one. Some 

experiments demonstrated less than 30% of slope efficiency [22, 23] using side pumping 

scheme. The low output efficiency might due to the low pump efficiency, large internal 

loss and non-optimized output coupler.  
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End pumping is more attractive than side pumping due to high coupling efficiency 

and easy handling. In Section 4.2.2 we have discussed the possibility of end pumping in 

IAG fiber lasers. We have shown that cladding pumping is not effective since most of the 

cladding power is trapped in the inner cladding due to both index-antiguiding effect and 

large core size. Core pumping should be used in IAG lasers. Experimental result [21] 

demonstrated a very low output efficiency using cladding pumping technique. The low 

efficiency is partly due to the cladding pumping method, which is proved to be inefficient 

in Section 4.2.2. However, there are some other factors that mainly affect the output 

efficiency.  

In this section, we will analyze the output efficiency of fundamentally single mode 

in core-pumped IAG fiber lasers and indicate which factors have impact on slope efficiency, 

and further explain why experimental result [21] demonstrated low efficient.  

4.4.1 Oscillator model for core-pumped index-antiguided fiber lasers 

The construction of the oscillator model needs to know the rate equations for energy 

band diagram. There are many different energy band diagrams for different doping 

materials and pump wavelengths. However, we could generalize the four-level, three-level 

and quasi-three-level systems into one group of simple two-level system, which shares 

similar rate equations [102]. For instance, Figure 4-10(a) demonstrates the general four-

level systems such as 1060 nm Nd3+-doped fibers. N0, N1, N2 and N3 are the population 

densities at level 0, 1, 2 and 3, respectively. τ32 and τ10 are the non-radiative decay lifetimes 

from level 3 to level 2, and level 1 to level 0, respectively. τ21 and τ20 are the decay lifetimes 

(including spontaneous and non-radiative transitions) from level 2 to level 1, and level 2 to 

level 0, respectively. σap, σep are the stimulated absorption and emission cross-sections at 
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the pump wavelength, while σas, σes are the stimulated absorption and emission cross-

sections at the signal wavelength. 

 

Figure 4-10 (a) General four-level system such as 1060 nm Nd3+, (b) general three-level 

system like Er3+, and (c) generalized two-level system. 

Usually the non-radiative decay rates from level 3 to level 2, and from level 1 to 

level 0 are very fast (τ32, τ10 ≈ 0), such that N1, N3 ≈ 0. Therefore the four-level band could 

be reduced to a two-level band, as shown in Figure 4-10(c). For a general three-level system 

in Figure 4-10(b), it is also reasonable to assume that the no-radiative decays, either 

interband or intraband, are very fast and could be ignored (τ32, τ42, τ10 ≈ 0). If we do not 

consider the excited state absorption (σ24 ≈ 0), the general three-level system could also be 

reduced to a two-level system in Figure 4-10(c). For other quasi-three level systems such 

as Yb3+, they could also reduce to the generalized two-level system shown in Figure 4-10(c). 
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Thus, we could construct the rate equations for the generalized two-level system which 

could simulate the general four-level, three-level and quasi three-level systems. From 

Figure 4-10(c), the generalized rate equations are 

2
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  (4.16) 

where N is the total population density and assumed to be constant, W12 and W21 are the 

stimulated absorption and emission rates between the two levels, which relate to the 

absorption and emission cross-sections as  

 

12

21

12

21

( , , )
( ) ( , )( ( ) ( )),

( , , )
( ) ( , )( ( ) ( )),

( , , )
( ) ( , )( ( ) ( )),

( , , )
( ) ( , )(

p ap

p ap p P P

p p

p ep

p ep p P P

p p

s as
s as s s s

s s

s es
s es s s

s s

I r z
W r P z P z

h h

I r z
W r P z P z

h h

I r z
W r P z P z

h h

I r z
W r P

h h

 
  

 

 
  

 

 
  

 

 
  

 

 

 

 



   

   

   

   ( ) ( )).sz P z

  (4.17) 

In the above equations, h is the Planck constant, vp and vs are the pump and signal 

frequencies. Ip and Is are the pump and signal intensities, respectively. pP
 and pP

 are the 

forward and backward powers of transverse pump mode, 
sP  and 

sP  are the forward and 

backward powers of the transverse signal mode. ( , )p r   and ( , )s r   are the power 

filling distributions (or normalized intensity profiles) for pump and signal, with expressions 

of  
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  (4.18) 

where Acore is the area of the core, Aclad is the area of the cladding, a is the core radius, 
core

pP  

and 
clad

pP  are the pump powers in the core and cladding, respectively. For the situation of 

core pumping, we assume 0clad

pP  . core

sP  and clad

sP  are the signal powers in the core and 

cladding. For IAG fibers with large core size, most of the modal power is occupied in the 

core and we could assume 0clad

sP  . From Eqs. (4.16), (4.17) and the steady-state 

condition (dN2/dt = 0), we could obtain  
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  (4.19) 

Equation (4.19) is then coupled with the following equations relating the evolution of pump 

and signal powers to form the complete governing equations for oscillator model, 
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where αp and αs are the internal losses of pump and signal modes. The validity of Eqs. 

(4.19) - (4.21) includes several assumptions: (1) The energy band diagrams should be either 

general four- or three-level systems which could be generalized into a quasi two-level 

system. (2) A narrow-band signal is considered such that ( , ) ( ) ( )s s sP z P z      . (3) 

There is only one pump mode, and also one signal mode (fundamentally single mode). 
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Before solving the above coupled equations, an auxiliary equation is needed for Eq. (4.21), 

which is expressed as 
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  (4.22) 

where c is a constant. Assume the cavity length is L, and Rl and Rr are the left- and right-

hand reflectivities at z = 0 and z = L for the signal light. The boundary equations are 

(0) (0), ( ) ( )s l s i r sP R P P L R P L     , or expressed as 

 2 2(0) / ( ) .s l r sc P R R P L     (4.23) 

The above coupled equations could be further reduced to simpler forms. Let us consider 

the pump light is injected from the left end and no pump light is reflected or injected from 

the right end, the term pP
 in Eqs. (4.19) and (4.20) could be neglected. Moreover, it is 

reasonable to assume that the upper-level population density is very small compared to the 

total population density (N2 << N) [102]. Eq. (4.20) could be reduced to 
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Thus, the pump power could be analytically expressed as  

 ( ) (0)exp ( ) .p p ap pP z P N z          (4.25) 

which is a simple exponential decay profile. In addition, usually we have 
ep ap   and 

as es  . Since 2N N , it is derived from Eq. (4.19) that 
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Therefore Eq. (4.19) could be rewritten to 
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If we define the saturated power as  
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Eq. (4.27) is further reduced to  
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Define the signal gain in Eq. (4.21) as  
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If we assume a uniform pump across the transverse section, such that ( , )p pr   . 

Substitute Eq. (4.29) into Eq. (4.30), yielding 
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  (4.31) 

where the unsaturated signal gain coefficient is  
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Equation (4.21) will reduce to a final form, 
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If we assume normalized intensity by ( ) ( ) /s satI z P z P   and change the constant c in Eq. 

(4.33) to 2

satcP . We find that Eq. (4.33) has the similar expression as Eq. (4.14) for uniform 

side pumping. The only difference between end pumping and uniform side pumping is that 

the gain in end pumping is z-dependent, while in uniform side pumping is a constant (g0(z) 

= g0). We could define a single-pass unsaturated gain for both uniform side pumping and 

end pumping systems, which is expressed as  
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The unsaturated single-pass gain is an important parameter to characterize the effective 

gain that will be used in the next section. The threshold power of the fundamental mode 

could be obtained by Eqs. (4.34) and (3.36), with the final expression of  
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After the above derivations, the original model from Eqs. (4.19) -(4.21) could be greatly 

simplified to Eq. (4.33) with the boundary condition of Eq. (4.23). 
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Note that Eq. (4.31) only considers one pump core-mode. In the situation of 

multimoded pumping from one end, Eqs. (4.24) and (4.25) are changed to 
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where m is the number of propagating pump modes, pjP
 is the forward-propagating pump 

power in jth mode and 
pj  is the corresponding distributive loss. Note that the above 

equations do not consider the coupling between pump modes. The effect of multimoded 

pumping only changes the signal gain in Eq. (4.31) to 
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where the unsaturated gain is 
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4.4.2 Improve output efficiency in core-pumped index-antiguide fiber lasers 

It is interesting to see that except IAG fiber lasers, all other LMA fiber lasers were 

demonstrated to yield high slope efficiency of > 60% [6, 8, 10, 88, 103, 104] with long 
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fiber length (~ several meters) and end pumping scheme. From the loss perspective, we 

can see that the confinement losses of fundamental mode in those LMA fibers were usually 

designed to be negligible or smaller than 0.2 dB/m. However, this loss value is typically 

very large in IAG fibers (1.74/m in Ref. [21]). It is important to investigate how to achieve 

high output efficiency in IAG fiber lasers with large confinement loss. 

The structure of this section is as follows. In Section 4.4.2.1 I will first introduce 

the background of slope efficiency in a low-loss resonator, giving an implication of what 

parameters will affect the output efficiency. Detailed analysis of those parameters will be 

covered in Sections 4.4.2.2 - 4.4.2.5 and the requirements of those parameters for high 

efficiency will be given. 

4.4.2.1 Background: slope efficiency in a low-loss resonator 

In order to understand which parameters affect the output efficiency in core-

pumped IAG fiber lasers, let us first start the analysis from a simple case of homogeneous 

plane-wave oscillator. In a homogeneous plane-wave oscillator, the forward and backward 

propagating waves can be described by the following coupled equations [95] 
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For a low-loss resonator, the forward and backward circulating intensities are nearly 

constant and the same along the cavity 

 .I I I     (4.41) 

From the steady-state condition requiring the roundtrip gain equals the roundtrip loss, it 

has  
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The output intensity is then expressed as 
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where δe represents the round-trip external loss due to mirror reflections, or the total 

external coupling. δi is the round-trip internal loss which includes all other losses besides 

the external loss, such as waveguide loss, attenuation loss, scattering loss and coupling loss 

due to the mirror gap. In IAG fiber lasers, the round-trip external loss can be expressed as 

δe = -lnRlRr. Assume the left mirror has 100% reflectivity and Roc = Rr, then δe = -lnRoc. If 

we neglect the attenuation loss, scattering loss and mirror gap loss, the round-trip internal 

loss can be simplified as δi = 2αsL. Here L is the cavity length and 2g0L is the round-trip 

unsaturated gain. Isat is the saturated intensity and Iout is the output intensity. From Eq. 

(4.44) it is seen that the slope efficiency ηslope for a low-loss homogeneous plane-wave laser 

is  
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which shows that the slope efficiency is only dependent on the internal to external loss 

ratio δr. The slope efficiency will be reduced if δr is large. Note that Eq. (4.45) is valid for 

plane-wave oscillator with uniform gain. In the situation of end pumping the unsaturated 

gain roughly exponentially decays with the expression demonstrated in Eq. (4.32) (assume 

one-side pumping), and Eq. (4.43) is changed to  
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The slope efficiency is then expressed as 
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  (4.47) 

Here Eq. (4.47) uses the saturation power Psat that is defined in Eq. (4.28). Compared to 

plane-wave oscillator with uniform gain (Eq. (4.45)), the slope efficiency for end pumping 

depends not only on δr but also gain. Here the gain is dependent on pump absorption 

coefficient σapN, pump waveguide loss αp and fiber length L. 

Although Eq. (4.47) is only valid for low-loss resonator, it can provide the 

implication of how gain and δr affect the slope efficiency in core-pumped IAG fiber lasers. 

For more accurate numerical analysis, we will use the previous oscillator model in Section 

4.4.1 to simulate the output power efficiency in core-pumped IAG fiber lasers. 

In order to further analyze how laser parameters affect the output efficiency, let us 

first pull out all the related laser parameters as shown in Figure 4-11. Within these 

parameters, the gain is only dependent on fiber length L, pump absorption σapN and pump 

IAG loss αp, while δr is only dependent on fiber length L, output coupler Roc and signal 
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IAG loss αs. We can first analyze the effect of gain to the output efficiency by studying the 

gain-related parameters L, σapN and αp, which will be covered in Section 4.4.2.2. Then we 

can analyze the effect of δr to the output efficiency by studying the δr-related parameters 

L, Roc and αs, which will be covered in Section 4.4.2.3. Note that the fiber length L 

determines both gain and δr, therefore we need to finally combine both gain and δr effects 

to determine the requirement of fiber length to yield high efficiency, as shown in Section 

4.4.2.4. Note that here we only consider slope efficiency and neglect the threshold power. 

Therefore in Section 4.4.2.5, both slope efficiency and threshold power are considered and 

the appropriate range of output coupler is discussed. 

 

Figure 4-11 Laser parameters that relate to the output efficiency. Here the gain is only 

dependent on fiber length L, pump absorption σapN and pump IAG loss αp, while δr is 

only dependent on fiber length L, output coupler Roc and signal IAG loss αs. 
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4.4.2.2 Requirements of gain – related parameters for high efficiency 

Assume one-side pump, from Eq. (4.47) it is seen that  
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Thus, to achieve sufficient gain and increase the output efficiency, the pump absorption 

coefficient needs to be much larger than the pump waveguide loss as seen from the 

denominator of Eq. (4.48), that is 

 .ap pN    (4.49) 

The physics of Eq. (4.49) is easy to interpret because only the pump absorption contributes 

to the gain while the pump waveguide loss adds pure loss to the gain. Usually pump IAG 

waveguide loss is negligible to the pump absorption coefficient in core-pumped IAG fibers 

and Eq. (4.49) is satisfied. For instance, the pump absorption coefficient for 1% Nd3+ 

doping (Kigre Q100) is as large as ~ 278 m-1 [96], while the calculated average waveguide 

loss for flat-top pump in Ref. [21] is up to 23 m-1 for the worst case with the input field 

totally spatial incoherent (Np = 1). 

Figure 4-12 demonstrates the negligible effect of pump waveguide loss to the 

output efficiency, in which the solid line is the simulated output power as a function of 

input power for the pump waveguide loss of 1.01 m-1 (the situation of Ref. [21]), and the 

dashed line shows the result when the pump waveguide loss is increased by a factor of 10. 

Other simulation parameters are chosen based on Ref. [21] and shown below in Table 4-1 

for 1% Nd3+-doped Kigre Q100 laser glass. It is clearly seen that the slope efficiency has 

slight change even when the pump loss is increased by a factor of 10, as the ratio of pump 

absorption to pump waveguide loss is still very large (~ 28). Thus, generally for core-
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pumped IAG fiber lasers with relatively large pump absorption coefficient (> 10αp), the 

waveguide loss of the pump has trivial impact on the output efficiency. 

Table 4-1 Simulation parameters 

Parameter Value Parameter Value 

p  803 (nm) ap  201.4 10  (cm-2) 

s  1054 (nm) ep  223.76 10  (cm-2) 

N 201.98 10  (cm-3) as  227.82 10  (cm-2) 

Rl 1 
es  204.4 10  (cm-2) 

Rr (Roc) 0.98 p  1.01 m-1 

L 2.6 (cm) 
s  1.74 m-1 

a 100 (µm)   190 (µs) 

 

 

Figure 4-12 Output power as a function of input pump power for different pump waveguide 

losses of 1.01 m-1 and 10.1 m-1, while the absorption coefficient is maintained at 278 m-1. 

 

Besides Eq. (4.49), another criterion to yield high slope efficiency in Eq. (4.48) is that the 

fiber length should satisfy  
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Here Lgain is defined as the propagation distance where pump power or gain reduces to 1/e, 

or the length when the integrated gain increases to 63% of the limiting value, as shown in 

Figure 4-13. When fiber length is below Lgain, the integrated gain increases evidently with 

the increase of fiber length. However, when the fiber length is over Lgain, the integrated 

gain increases slowly with the increase of fiber length because the gain is almost depleted 

at further distance, as seen from Figure 4-13(a). Usually the fiber length should be greater 

than, but in the order of Lgain. 

In summary, to achieve sufficient gain and increase the output efficiency, both Eqs. 

(4.49) and (4.50) need to be satisfied. 

 

Figure 4-13 (a) Gain and (b) integrated gain evolutions along the propagation. Here Lgain 

is the defined length corresponding to 1/e of the gain. 

4.4.2.3 Requirements of δr – related parameters for high efficiency 

Equation (4.47) illustrates that the slope efficiency is dependent on δr in plane-wave 

lasers, and a very small δr (δr << 1) is needed for high efficiency. This conclusion is also 
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valid for the core-pumped IAG fiber lasers, as demonstrated by the following simulation 

results. 

Figure 4-14 demonstrates the effect of δr to the output efficiency in a core-pumped 

IAG fiber laser. The solid line represents the output power as a function of input pump 

power for the same parameters used in Ref. [21] (Table 4-1) with δi = 2αsL = 0.09, δe = 

0.02 (for an output coupler Roc of 98%), and δr = 4.5. The calculated slope efficiency is 11% 

and the threshold power is 4.2 W. The dashed line is the output for the same simulation 

except that the signal waveguide loss is increased by a factor of 10 (δi = 0.9) such that δr = 

45. It is seen that the slope efficiency is dramatically decreased to 1.3%, and the threshold 

power is increased to 8.2 W. The dotted line shows the result when the output coupler is 

changed to 4%, corresponding to an external mirror loss of δe = 3.22 and δr = 0.028. It is 

clearly seen that the slope efficiency is greatly increased to 61.4% which is closed to the 

theoretical maximal slope efficiency of λp/λs = 76.2%. As a compromise, the threshold 

power is also increased to 18 W due to large external loss. From Figure 4-14 it is seen that 

large slope efficiency is achieved for δr much smaller than 1, which requires 
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Equation (4.51) limits the fiber length to  
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Here the decay length Ldecay is defined as the length at which the internal loss equals the 

external loss (δi = δe), or the slope efficiency is reduced to half (because δr = 1). 

 For most traditional LMA fiber lasers, the signal waveguide loss is < 0.2 dB/m and 

the decay length is very long Ldecay ~ 35 m for a 4% Roc (reflection at air-glass interface). 
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Usually the fiber length is less than few meters such that Eq. (4.52) is satisfied. This is why 

most previously mentioned LMA fiber lasers could report a slope efficiency > 60%. 

However, in IAG fiber lasers the signal waveguide loss is usually very large, such as αs = 

1.7385 m-1 in Ref. [21] and the decay length is very small Ldecay < 1m for a 4% Roc. Thus, 

to achieve high slope efficiency and satisfy Eq. (4.52), the fiber length in IAG fiber lasers 

is usually limited to much smaller than 1 m due to large signal loss. In order to have large 

decay length, Roc needs to be small (like 4%) to increase the external loss in IAG fiber 

lasers. The choice of 98% Roc in Ref. [21] is definitely inappropriate because the decay 

length is only 5.8 mm, and the 26 mm fiber length used in the experiment was too long 

such that Eq. (4.52) is not satisfied. This is one of the reason for the low slope efficiency 

in Ref. [21]. 

 

Figure 4-14 Output power as a function of input pump power at different δr of 4.5 (solid 

line), 45 (dashed line) and 0.028 (dotted line). 

4.4.2.4 Requirement of fiber length after considering both gain and δr effects 

The previous two sections separately analyze the gain- and δr – related parameters 

to increase the output efficiency. Note that the fiber length is the only one parameter that 
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affects both gain and δr. In order to achieve sufficient gain, the fiber length needs to satisfy 

Eq. (4.50). Meanwhile, to achieve small δr, the fiber length needs to satisfy Eq. (4.52). 

Therefore, the fiber length is limited by  
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It is seen from Eq. (4.53) that a hidden relation is required, 
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Here I want to emphasize an interesting finding that if Eq. (4.54) is satisfied, Eq. (4.49) is 

automatically satisfied when Roc ≥ 0.04 (which is usually true) as shown in the following 

equation 
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So to achieve high output efficiency, two rules needs to be followed. Firstly, the laser 

parameters should be chosen such that Eq. (4.54) is satisfied. Secondly, the fiber length 

needs to satisfy Eq. (4.53). Based on these two rules, let us further analyze the low 

experimental efficiency issue in Ref. [21]. 

Figure 4-15 demonstrates the calculated slope efficiency as a function of fiber 

length for the parameters used in Ref. [21] (as shown in Table 4-1), except that the fiber 

length is varied. One feature that can be observed from Figure 4-15 is that there is an 

optimal fiber length Lopt = 4 mm which yields the maximal slope efficiency of 26%. This 

optimal fiber length should be close or in the order of Lgain because the gain is almost 

depleted for fiber length that is over Lgain, as illustrated previously. For small fiber length 

L below the optimal fiber length, the slope efficiency is increased when the fiber length is 

increased. This is because at small fiber length the unsaturated single-pass gain in Figure 
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4-13(b) increases significantly as fiber length increases, while the single-pass internal loss 

αsL is still very small for small L such that δr is small. Therefore, the gain dominates the δr 

effect and the slope efficiency is increased with the increase of L. However, after the fiber 

length is over Lopt, the gain is very weak at longer distance such that the unsaturated single-

pass gain in Figure 4-13(b) barely (slightly) increases (which was previously claimed in 

Ref. [105]). Meanwhile, the internal loss is linearly increased when L is increased and δr 

becomes very large and dominant compared to the gain. Therefore the slope efficiency is 

then reduced when fiber length is increased. 

The red-dot in Figure 4-15 shows the simulated efficiency of the experiment in Ref. 

[21], with the fiber length of 26 mm. It is clearly seen that the 26 mm fiber length used in 

the experiment was too long such that the output efficiency was reduced. If the fiber was 

using an optimal length of 4 mm, the slope efficiency could be increased to 26%. However, 

it is found that even at the optimal fiber length the output efficiency is still very small. The 

reason for that is because the laser parameters (σapN, αs and Roc) were not chosen properly 

in the experiment such that the Lgain is very close to Ldecay, as shown by the dashed lines in 

Figure 4-15 with Lgain of 3.6 mm and Ldecay of only 5.8 mm. Thus, Eq. (4.53) is not satisfied 

and the output efficiency is small. 

In summary, the low efficiency of the experiment in Ref. [21] is due to the 

following reasons:  

1. Improper choice of laser parameters (mainly because of 98% Roc) such that Eq. 

(4.54) is not satisfied. It is usually desired to choose small Roc because of large 

signal waveguide loss. 

2. The fiber length was too long and not optimized such that Eq. (4.53) is not satisfied. 
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3. The use of cladding pumping is not efficient in IAG fiber laser, as demonstrated in 

Section 4.2.2. Core pumping should be used instead. 

 

Figure 4-15 Slope efficiency as a function of fiber length for the output coupler of 98%. 

The simulation parameters are from Table 4-1 (Ref. [21]) except the fiber length is 

varied. 

4.4.2.5 The requirement of output coupler for both high efficiency and low threshold power 

As discussed in the last section, high slope efficiency can be achieved when the 

laser parameters satisfy Eq. (4.53). However, all the previous analysis does not consider 

the power threshold which is also important for the laser design. This section will focus on 

the requirement of output coupler that yields both high slope efficiency and low threshold 

power. 

Figure 4-16(a) shows the slope efficiency as a function of fiber length L for 

different output couplers Roc, using the simulation parameters in Table 4-1 except the fiber 

length is varied. Several features can be observed from Figure 4-16(a). The first feature is 

that for each Roc, there is an optimal fiber length Lopt corresponding to the maximum slope 
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efficiency ηmax, and this Lopt is close or in the order of Lgain, which was explained previously 

in Section 4.4.2.4. The second feature is that the slope efficiency is reduced when Roc is 

increased, which was explained in the previous section as δr is increased when Roc is larger. 

The third feature seen from Figure 4-16(a) is that the optimal fiber length Lopt shifts to 

larger value when the output coupler Roc is decreased. This is because δr is very small for 

small output coupler. To make δr start to dominate the gain effect (which corresponds to 

the turn point of the slope efficiency, or maximal slope efficiency), a longer fiber length is 

required to ensure large δr and therefore Lopt is larger. The relationship between Lopt and 

Roc is illustrated as the dashed line in Figure 4-16(c). The solid line in Figure 4-16(c) 

illustrates the maximum slope efficiency as a function of Roc. It is seen that for Roc = 0.04, 

the slope efficiency can be as high as 61.4% with an optimal fiber length of 1.83 cm. 

Figure 4-16(b) plots the corresponding threshold powers as a function of fiber 

length for different Roc. Several features can be observed from Figure 4-16(b). At first, 

there is an optimal fiber length L2_opt which minimizes the threshold power. For a fiber 

length below L2_opt, the threshold power is decreased with an increased fiber length, which 

can be seen by Eq. (4.35). An explanation is that the unsaturated single-pass gain in Eq. 

(4.34) increases more effectively compared to the internal loss for short fiber length. For 

longer fiber length, the unsaturated single-pass gain does not increase further as the pump 

is almost depleted at longer distance, while the increase of internal loss becomes more 

dominant when L is increased. As a result, more pump power is needed to compensate the 

roundtrip loss. The second feature seen from Figure 4-16(b) is that the threshold power is 

decreased for increased Roc, which is evident as the external loss is reduced. Figure 4-16(d) 

illustrates the minimum threshold power as a function of Roc (solid line). Another feature 
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seen from Figure 4-16(b) is that L2_opt is increased when Roc becomes smaller, with the plot 

shown as the dashed line in Figure 4-16(d). This can be explained in the same way as for 

the slope efficiency in Figure 4-16(a), or by the following expression of L2_opt that is 

derived from Eq. (4.35) by setting (0) / 0th

PdP dL   
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Another interesting observation from Figure 4-16(c) is that the maximum slope 

efficiency dramatically increases when the output coupler is decreased from 0.98 to 0.7, 

while the threshold power does not increase too much, as seen from Figure 4-16(b). For 

the output coupler smaller than 0.3, the maximum slope efficiency only slightly increases 

with reduced Roc, while the threshold power, on the other way, increases significantly with 

reduced Roc. This provides us the guideline to choose an appropriate output coupler that is 

within 0.3 – 0.7 to satisfy both high output efficiency and low threshold power. 
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Figure 4-16 (a) Slope efficiency and (b) corresponding threshold power as a function of 

fiber length for different output couplers (solid lines), while the dashed lines represents the 

locus of optimal output couplers. (c) Maximum slope efficiency (solid line) and 

corresponding optimal fiber length Lopt (dashed line) as a function of output coupler Roc. 

(d) Minimum threshold power (solid line) and corresponding optimal fiber length L2_opt 

(dashed line) as a function of output coupler Roc. 

4.4.3 Design guidelines to improve the output efficiency in core-pumped index-antiguided 

fiber lasers 

Based on the analysis from the previous section, we can create design guidelines to 

improve laser output efficiency in core-pumped IAG fiber lasers. The overall goal is to 

satisfy Eq. (4.53), or separately satisfy Eqs. (4.52) and (4.50), with the design details 

illustrated below. 

For a core-pumped IAG fiber laser system with a fixed signal waveguide loss αs, 

the design should first satisfy Eq. (4.52). As a long fiber length is desired for large output 
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power, it is preferred to choose a small Roc such that Ldecay is very large. For a small 4% 

coupler with external loss of δe = 3.22, the decay length is Ldecay = 1.6/αs. In order to design 

meter-scale fiber lasers, the signal IAG loss should be maintained much smaller than 1/m, 

which can be achieved by increasing the core size or index difference as illustrated by Eq. 

(4.6). After we obtain Ldecay, we can pre-determine the fiber length L to satisfy L << Ldecay. 

It is known that if we choose L = Ldecay, the slope efficiency drops to half as δr = 1. For a 

decent efficiency of 80% (here the real slope efficiency should be further reduced to 

80%∙λp/λs as shown in (4.47)), δr should be as small as 0.25 and the fiber length is limited 

to L = 0.25Ldecay = 0.4/αs. 

Based on the pre-determined L we can choose a proper doping density N and pump 

absorption cross-section σap such that the pump absorption satisfies Eq. (4.50). The pump 

absorption can be chosen close or in the order of 1/L (usually 2/L – 4/L as demonstrated in 

Figure 4-16(c)). Meanwhile, the pump absorption should be automatically much larger than 

the pump IAG loss, as illustrated by Eq. (4.55). 

After pump absorption coefficient is determined, an optimal fiber length can be 

calculated to yield the maximal efficiency, as shown in Figure 4-16(a). Up until now, large 

output efficiency can be achieved if following the above design guidelines. 

Note that the threshold power also needs to be considered during the design. A 

proper tuning of the output coupler (like 0.3 – 0.7 in Figure 4-16(c)) is necessary to 

maintain both high efficiency and low threshold power. 
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4.5 Power limit 

It is essential to understand what is the power limit for IAG fiber lasers. From 

Section 2.3 we have introduced the power thresholds to induce nonlinear, thermal and 

surface damage effects. Now let us roughly estimate what is the power limit for IAG fiber 

lasers based on Section 2.3. Take the Nd3+-doped fiber from Ref. [21] as an example. The 

core and cladding diameters are 200 and 340 µm, respectively. Let us first consider power 

threshold from thermal perspective. From Eq. (2.6) it is seen that the threshold of heat load 

per unit length is 

 
2

2

4
15 .

1
2

m
fracture m

R
q R

a

b


 



  (4.57) 

For normal silica with Rm > 2500 W/m, the above limit is ~ 37500 W/m. For Kigre Q-100 

glass used in the reference, the heat load limit is > 10000 W/m [106], which is a very large 

value compared to other thermal effects (as shown in the following paragraphs). Thus, the 

heat-induced mechanical damage is usually not considered in high-power IAG fiber lasers. 

The heat load limit for thermal lens effect can be calculated from Eq. (2.4), which 

shows that  
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Thus, the effect of thermal lensing is obvious for IAG fiber lasers due to large core size. 

Fortunately, the Kigre Q-100 laser glass is athermal, which is achieved by designing 

appropriate positive thermal expansion coefficient to compensate the negative thermo-

optic coefficient of dn/dT = -4.6×10-6 /C [106].  

The heat load limit for the melting of core and damage of polymer coating can be 

calculated from Eq. (2.16). Figure 4-17(a) plots the highest polymer temperature (referred 
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to the coolant temperature Tc) at the cladding-coating interface r = b, as a function of total 

heat transfer coefficient (including both convective and radiative heat transfer coefficients) 

for different heat load of 10, 50, 100, 200 and 500 W/m. During the simulation, the thermal 

conductivity of the core and cladding is 0.82 W/m/K [106] and the thermal conductivity of 

the polymer coating is assumed to be 0.2 W/m/K [52]. The dashed line indicates 150 C 

which is roughly the limit temperature for most of the polymers. Heat load should be 

chosen such that the polymer temperature is below the dashed line. As the Q-100 Kigre 

glass has a very low melting temperature of 432 C [106], the highest temperature in the 

core (at r = 0) needs to be considered, which is plotted in Figure 4-17(b). It is seen from 

Figure 4-17 that the heat load limit for core melting is always higher than the heat load for 

polymer damage. Thus, we only need to consider the heat load limit for polymer damage. 

It is seen from Figure 4-17 that in order to push the heat load over 100 W/m, the heat 

transfer coefficient needs to be over 600 W/m2/K. For the heat load of 500 W/m, the heat 

transfer coefficient needs to be greater than 4000 W/m2/K. For a forced liquid cooling with 

h = 10000 W/m2/K, the limit of heat load is ~ 850 W/m, which is very promising to push 

the IAG fiber lasers to kW scale for meter-scale fiber length. 

For a fixed core size, the polymer temperature is also dependent on cladding 

diameter and coating thickness. Figure 4-18(a) illustrates the polymer temperature (referred 

to the coolant temperature Tc) as a function of total heat transfer coefficient for different 

cladding diameter of 340, 400 and 500 µm. Figure 4-18(b) illustrates the polymer 

temperature as a function of total heat transfer coefficient for different coating thickness of 

20, 50 and 70 µm. From Figure 4-18 it is seen that larger cladding and smaller coating 

thickness is preferred to increase the heat load.  
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Figure 4-17 (a) Polymer temperature (referred to coolant temperature Tc) and (b) 

Temperature at core center (referred to coolant temperature Tc) as a function of total heat 

transfer coefficient h, for different heat load of 10, 50, 100, 200 and 500 W/m. The core 

and cladding diameters are 200 and 340 µm, respectively. The coating thickness is 20 µm.  

 

 

 

 

 

Figure 4-18 Polymer temperature (referred to coolant temperature Tc) as a function of total 

heat transfer coefficient h for (a) different cladding diameter of 340, 400 and 500 µm (with 

core diameter is 200 µm and the coating thickness is 20 µm) and (b) different coating 

thickness of 20, 50 and 75 µm (with core and cladding diameters of 200 and 340 µm). 
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From the previous analysis we see that a heat load of ~ 850 W/m can be achieved 

if using a forced liquid cooling with h = 10000 W/m2/K. Given a conservative estimation, 

let us assume there is a heat load limit of 500 W/m for IAG fiber lasers. The maximum 

input pump power for one-side core-pumped IAG fiber lasers could be calculated from  
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q
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 
   (4.59) 

Here Pp(0) and q(0) are the pump power and heat load at the input end. ηheat is the heat 

deposition efficiency. α denotes the pump decay coefficient which is the combination of 

pump absorption coefficient, pump waveguide loss coefficient and scattering loss 

coefficient. For core-pumped IAG fiber lasers, the largest heat load is usually at the input 

end and the limit of input pump power could then be obtained from the limit of heat load. 

As the extracted power per unit length is proportional to the heat load per unit length, 

long fiber (meter scale) is prefered to yield large output power. Usually a fiber length of > 

0.5 m is required. However, from Section 4.4.3 it is seen that the fiber length needs to be 

chosen such that L < 0.4/αs for an output coupler of 4%. Due to the large signal IAG loss 

(like 1.74 m-1 in Ref. [21]), the fiber length is usually is limited within 1 m in IAG fiber 

lasers. Suppose the fiber length is 0.5 m, the corresponding pump absorption coefficient 

should be α ~ 2 m-1. Here we assume the pump absorption coefficient is larger than other 

pump waveguide loss and scattering loss. The calculated limit of pump power is Pp(0) ~ 1 

kW, which limits the output power under kW scale. In fact, from Chapter 5 it is seen that 

the maximum extraction efficiency of single fundamental mode in IAG fiber lasers is ~ 50% 

(the quantum defect of λp/λs is not included). Thus, the real output power will be less than 

Pp(0)*50%*λp/λs ~ 380 W, for a heat load of 500 W/m and α ~ 2 m-1.  
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In addition to thermal effects, surface damage will also limit the input pump power. 

However, the estimated damage power is very high (> 7×105 W for a core size of 100 μm 

and intensity threshold of 10 W/μm2 [49]) for IAG fiber lasers with large core size. Thus, 

surface damage effect could be neglected in IAG fiber lasers. 

Besides above analysis of power limit induced by thermal effects and surface 

damage, the input pump power also needs to be chosen such that the SBS and SRS 

nonlinear effects will not occur. The SBS threshold power could be estimated from Eq. 

(2.1), which is > 3 kW for the worst situation of 1 m effective fiber length, small core size 

of 100 μm and no inclusion of pump linewidth. The SRS threshold power could be 

estimated from (2.3), which is usually > 106 W. Compared to the limit of pump power by 

thermal effects (~ 1 kW), the SBS and SRS effects are not evident for large-core IAG fiber 

lasers.  

In conclusion, after considering the thermal, nonlinear and surface damage effects, 

the estimated maximal pump power using Kigre Q-100 Nd3+-doped fiber is ~ 1 kW for a 

pump absorption coefficient of 2 m-1, which corresponds to an output power (single 

fundamental mode) < 380 W. The pump power is limited by the short fiber length, as high 

output efficiency requires shorter length for high-loss fiber lasers. A higher power might 

be achieved if better cooling is used or the coating is removed such that higher heat load is 

allowed. 
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4.6 Summary 

IAG fibers intrinsically introduce a waveguide loss ratio of 2.54 between FM and 

1st HOM for large index-antiguiding, which is different from IAG planar waveguides that 

provide a loss ratio of 4. Due to the specialty of IAG waveguides, different pumping 

schemes need to be analyzed. Side pumping technique was widely used in most of the 

experimental work because it is not limited by the waveguide loss and low pump efficiency 

(due to index-antiguiding effect) as in end pumping scheme. However, side pumping is not 

efficient as it will suffer reflection loss at the waveguide interfaces. Moreover, it requires 

complicated setup and straight fibers, which makes it difficult to implement for real 

products. End pumping should yield higher efficiency than side pumping. However, it was 

believed that the waveguide loss and index-antiguiding effect will greatly affect the pump 

efficiency. In this section, the output efficiency between two common end pumping 

techniques – core and cladding pumping is numerically analyzed, which shows that core 

pumping will be appropriate for IAG lasers since in cladding pumping, most of the cladding 

power will be trapped and unable to effectively pass though the core due to both index-

antiguiding effect and large core size. Therefore it is always recommended to use core 

pumping instead of cladding pumping for IAG fiber lasers. Moreover, the large core size 

is beneficial for pump coupling, making core pumping applicable in IAG fiber lasers. 

Maximum extraction efficiency of fundamentally single mode in uniformly side-

pumped IAG fiber lasers are calculated for different single-pass gains and losses, showing 

similar property as for homogeneous plane-wave lasers. Very high extraction efficiency is 

achievable with very low internal loss and large output coupler, with the maximal value 

approaching to unity at the limit. The output characteristics of fundamentally single mode 
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in core-pumped IAG fibers is also investigated, and the parameters affecting the output 

efficiency are carefully analyzed. To achieve high output efficiency, the gain length Lgain 

=1/σapN should be much smaller than the decay length Ldecay = -lnRoc/2αs, and the fiber 

length should be chosen such that Lgain ≤ L << Ldecay. The reason for the low efficiency in 

the published Ref. [21] is due to the failure of satisfying the above conditions. A detailed 

design procedure for core-pumped IAG fiber lasers is also provided to improve the output 

efficiency. 

In addition, the power limit of IAG fiber lasers is investigated for the specific Kigre 

Q-100 Nd3+-doped fiber laser, showing that the nonlinear and surface damage effects are 

insignificant compared to thermal effects. Within the thermal effects, thermal lens effect is 

the main limit to the output power due to the large core size. Thus, athermal laser glass is 

desired to reduce this effect, and fortunately Kigre laser glass is designed to be athermal. 

As a result, the main limit to the power is due to the melting of polymer coating. Due to 

the short fiber length (< 1 m) in general IAG fiber lasers, the maximal calculated allowed 

pump power (to avoid the polymer melting) is ~ 1 kW for a pump absorption coefficient 

of 2 m-1. Corresponding output power is limited less than 380 W. 
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CHAPTER 5 TRANSVERSE MODE COMPETITION IN INDEX-ANTIGUIDED 

FIBER LASERS 

 

 

In the previous chapter we have comprehensively analyzed the output efficiency of 

fundamentally single mode in both uniformly side-pumped and core-pumped IAG fiber 

lasers. However, the previous analysis only considers FM operation and does not include 

HOMs oscillation. Due to the experimental observation of HOM oscillation in an IAG slab 

laser, the robustness of single-mode needs to be studied. In this chapter we will provide a 

thorough analysis of single mode capability in both uniformly side-pumped and core-

pumped IAG fiber lasers. Specifically, the oscillator models with transverse mode 

competition are given for both pumping schemes. The gain oscillation threshold of the first 

HOM will be calculated with a semi-analytical method, along with the characteristics of 

the threshold analyzed. Moreover, the calculated HOM threshold in uniformly side-

pumped IAG fiber lasers will be applied to one published experimental work to validate 

the numerical model. In addition, the output characteristics of single fundamental mode 

(only FM oscillates in multimode lasers) will be completely investigated. 

5.1 Transverse mode competition in uniformly side-pumped index-antiguided fiber lasers 

In this section, we will at first provide theoretical model and comprehensive 

analysis of transverse mode competition in uniformly side-pumped IAG fiber lasers. Both 

the characteristics of the 1st HOM threshold and the output of the single fundamental mode 

are investigated. The more complicated model for core-pumped index-antiguided fiber 

lasers will be discussed in Section 5.3. 



108 

 

5.1.1 Oscillator model 

For uniformly side-pumped IAG fiber lasers, the oscillator model is slightly 

changed from Eq. (3.43) by replacing the planar modal profiles ( )if x  to fiber modal 

profiles ( , )if r  . These modal profiles are sometimes called power filling distributions, 

which are used to relate the whole transverse power to local intensities. If we still consider 

two-mode competition (LP01 and LP11), the governing equations for the oscillator model 

of IAG fiber laser are   
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where '

nI   is the forward-propagating normalized intensity of nth mode. Acore is the area of 

the core with a radius of a. ' 2 ' 2[ (0)] / [ ( )]n n l r nc I R R I L    are mode-specific constants, and 

the normalized modal profiles are  
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For IAG waveguides that generally have large ΔN, we could approximate 

01 01 2.4048u j   and 11 11 3.8317u j  , and the distributive losses could be estimated 

from Eq. (4.6) with the loss ratio of 2 1/ 2.54   .  

5.1.2 Regions of single-fundamental-mode operation 

Like Eq. (3.47), the gain oscillation threshold of LP11 mode could be solved from 

the following equation 
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Figure 5-1 demonstrates the gain threshold ratio 
2 1/th thg g  of LP11 to LP01 mode as 

a function of single-pass distributed loss (of FM) and output coupler. Similar to IAG planar 

waveguides shown in Figure 3-11, the gain threshold ratio becomes large in the top-right 

region where the output coupling loss T is small or the distributed loss of FM is large. 

 

Figure 5-1 Contour plot of gain threshold ratio 
2 1/th thg g , as a function of single-pass loss 

α1L of the fundamental mode (logarithmic scale) and output coupler Roc (linear scale), in 

uniformly side-pumped IAG fiber lasers. 



110 

 

5.1.3 Extraction efficiency of single fundamental mode 

After obtaining the 1st HOM gain threshold, the maximal extraction efficiency of 

single fundamental mode max

SM  as a function of Ropt could be calculated for different pairs 

of single-pass gains and losses, which is shown in Figure 5-2. Similar to IAG planar 

waveguide (Figure 3-13(a)), the maximal extraction efficiency of single fundamental mode 

in IAG fiber waveguide is also suppressed due to transverse mode competition for large 

value of 0 1/g  . Moreover, the calculated absolute maximal extraction efficiency max

SMH  is 

0.499 for IAG fiber waveguides, compared to 0.67 for IAG planar waveguides. The 

derivation for max

SMH  in IAG fiber lasers is the same as in IAG planar waveguide lasers, 

which is shown as follows. Similar to Eq. (3.49), the equation for fiber waveguides is  
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At the limit of low loss 1 0L   and weak coupling 1rR   where 
' '

1 1I I   and 

ln 1OC OCR R   , the above equation is further reduced to 
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Since the right-hand side of Eq. (5.6) is close to 0, we have '

1 12 ( , ) 1coreA f r I    and Eq. 

(5.6) is modified to  
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From which the absolute maximal extraction efficiency is expressed as  
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For IAG fibers with k = 2.54, max

SMH  is 0.499. 

 

Figure 5-2 Maximal extraction efficiency of the single fundamental mode in uniformly 

side-pumped IAG fiber lasers ( max

SM ) as a function of optimal output coupler reflectance 

optR , for various single-pass gains (solid lines) and distributed losses (dash lines). 

In addition, as is similar to IAG planar waveguides, the kink points in IAG fiber 

lasers also satisfy the scaling law under weak coupling condition. Table 5-1 shows the 

solution of the kink points in IAG fiber lasers, from which it is seen that the scaling law is 

roughly satisfied, with a nearly fixed 0 1/g   value of ~ 21 and 
1ln /optR L  value of ~ 5.4 

observed. Moreover, the optimum extraction efficiencies of the single mode at the kink 

points are nearly the same, with a value of ~ 0.406, which is smaller than the value of 0.58 

in IAG planar waveguide lasers. 
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Table 5-1 Solution of the kink points in IAG fiber lasers 

α1L g0L Ropt 
max

SM  g0/α1 -ln(Ropt)/α1L 

0.047 1 0.775 0.406 21.433 5.453 

0.093 2 0.601 0.406 21.435 5.452 

0.140 3 0.466 0.406 21.444 5.451 

0.186 4 0.362 0.406 21.466 5.448 

0.278 6 0.221 0.406 21.584 5.430 

0.366 8 0.139 0.407 21.841 5.394 

0.449 10 0.091 0.408 22.254 5.338 

 

5.2 Model validation from published experimental work 

Let us take a look at one published experimental work [22] and try to use the 

previous theory to predict the threshold power of the 1st HOM (as shown in Eq. (5.4)). 

Although the coupling efficiency of side pumping is unknown, we could assume a fixed 

coupling efficiency for the same core diameter. The relationship between the pump power 

and the unsaturated gain could be derived from Eq. (4.32) by assuming a constant pump 

power pP  along the propagation direction 
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Here a pump coupling coefficient ηc is added in Eq. (5.9) and could be fitted based on the 

three pairs of measured threshold powers and theoretical threshold gains ( 1,th th

pP g L ) of the 

FM at output couplers of 37%, 45% and 90%. In fact, the parameter N is also unknown. 

Therefore another scaling parameter is added on N. For simplicity, there would be simply 
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only two fitting parameters to connect the threshold powers and threshold gains, 

demonstrated below as 

 
0 .pg L AP B    (5.10) 

which illustrates that the gain has a linear relationship to the input pump power. Note that 

the pump coupling coefficient could be assumed fixed for the same core diameter, but 

different for different core diameters. Then the threshold power of the 1st HOM could be 

derived from the theoretical calculated threshold gain of the 1st HOM 
2

thg L  and Eq. (5.10). 

Table 5-2 shows the calculated threshold powers of the 1st HOM for the experimental result 

from Ref. [22]. In all of the simulations, a signal loss of 0.08 m-1 is also considered for 

Kigre Q100 glass [106]. 

It is seen from Table 5-2 that at the core width of 100 µm, there are no HOM 

oscillations (the threshold is infinite) for all three output couplers at 37%, 45% and 90%, 

which corresponds well with the small measured value of M2 at 50 W. For the 200 µm core, 

there is no HOM at 90% coupler which corresponds to a small M2. The calculated HOM 

threshold powers are 54.2 W and 52.8 W for 37% and 45% couplers, respectively. The 

measured values of M2 at 50 W were also small as the pump power (50 W) was below the 

thresholds. For the core width of 300 µm, the calculated HOM threshold powers were 33.7 

W and 29.2 W for the output coupler of 37% and 45%, respectively. Then there would 

already exist the oscillation of HOM at the pump power of 50 W. This could be partially 

verified by the very high value of measured M2 in the table. At the output coupler of 97% 

(there might be a mistake in the paper as the author might use the 90% output coupler), 

there is no HOM oscillation which also agrees well with the low measured value of M2. 

Although there is no direct measurement of the threshold power of the HOM, the measured 
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M2 value is still a good indicator of the existence of HOMs, and the theoretical model 

seems to work well to predict the threshold power of the HOM. 

Table 5-2 Calculated threshold power of the 1st HOM for the data from Ref. [22] 

Core 

Width 

(𝜇𝑚) 

Coupler 
𝑀2𝑥  

(at 

50W) 

𝑀2𝑦 

(at 

50W) 

FM 

Threshold 

Power (W) 

FM 

Threshold 

Gain  𝑔1
𝑡ℎ𝐿 

1st HOM 

Threshold 

Power (W) 

1st HOM 

Threshold 

Gain  𝑔1
𝑡ℎ𝐿 

100 

37% 1.60 1.44 26 1.06 inf inf 

45% 1.45 1.44 21 0.96 inf inf 

90% 1.34 1.34 12 0.61 inf inf 

200 

37% 1.44 1.35 31 0.57 54 1.10 

45% 1.31 1.31 27 0.47 53 1.07 

90% 1.25 1.23 12 0.13 inf inf 

300 

37% 1.89 1.95 27 0.52 34 0.64 

45% 1.60 1.71 25 0.42 30 0.54 

97% 1.32 1.35 7 0.08 inf inf 

 

5.3 Transverse mode competition in core-pumped index-antiguided fiber lasers 

In Section 5.1, the single mode capability in uniformly side-pumped IAG fiber 

lasers is investigated. Oscillator model including transverse mode competition due to 

spatial hole burning is proposed. A simple quasi-analytical method is used to calculate the 

gain oscillation threshold of the 1st HOM. The dependence of single-mode operation on 

single-pass internal loss (of FM) and output coupler is analyzed. The maximal output 

extraction efficiency in the region of single fundamental mode is calculated as a function 

of optimal output coupler at different pairs of single-pass gains and losses.  

Compared to side pumping, core pumping is more favorable due to its high 

efficiency and simple pumping scheme. In this section, we would investigate the single 
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mode capability in core-pumped IAG fiber lasers. At first, a more complicated oscillator 

model for core-pumped IAG fiber lasers is provided. Then the gain threshold of the 1st 

HOM is calculated using the same semi-analytical method proposed in the last chapter, and 

the relation of single-mode robustness to output coupler and single-pass internal loss is 

analyzed. Finally, the output characteristics of single fundamental mode is investigated and 

compared to the results with side pumping scheme. 

5.3.1 Oscillator model 

Consider multiple competitive transverse modes with the same frequency 
sv , the 

governing equations for fundamentally signal mode (Eqs. (4.19) - (4.21)) will be changed 

to 
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where 
iP  and 

iP  are the forward and backward signal powers of ith transverse signal 

mode. ( , )i r   is the power filling distribution of ith transverse signal mode. It needs to be 

noted that the coupling of signal modes is not considered in above equations. After the 

same derivation implemented in Section 4.4 with the assumption of 2N N , Eqs. (5.11) 

- (5.13) could be reduced to  
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which subjects to the boundary conditions   

 2 2(0) / ( ) .i i l r ic P R R P L     (5.15) 

where ci is a constant related to the ith single mode. Consider the pump is injected from the 

left end and no pump light is reflected or injected from the right end, the pump power and 

the unsaturated signal gain will have the same expression of Eq. (4.25) and Eq. (4.32). Thus, 

the signal powers as well as the gain oscillation thresholds of HOMs could be calculated 

from Eqs. (5.14) and (5.15).  

5.3.2 The gain oscillation threshold of the first higher-order mode 

Let us consider only two competitive transverse modes – LP01 and LP11 with the 

corresponding oscillator equations shown as 

2
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where P1(z) and P2(z) represent the transverse powers of FM and 1st HOM. The power 

filling distributions (or normalized intensity profiles) are the same as Eq. (5.2). Usually for 

IAG fiber lasers with large core, the power in the cladding could be negligible. Therefore 

we have 
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i
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P
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P P
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The threshold of the FM could be obtained by setting 
1 2( ) ( ) 0P z P z    in Eq. (5.16), 

yielding 

 
1 0 1

0

1
( ) ln .

2

L

th

l rg L g z dz L R R     (5.19) 

here the expression is similar to Eq. (3.44), except that the gain is not uniform along 

propagation for end pumping. The average gain 
1

thg  (over fiber length) is used for end-

pumped lasers, and compared with the uniform gain in side-pumped lasers. The threshold 

power of the FM could then be calculated from Eq. (5.19) and is shown in Eq. (4.35). The 

gain threshold for the 1st HOM could be simply calculated by setting 
2 ( ) 0P z   in Eqs. 

(5.16) and (5.17), yielding  
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It is seen that Eqs. (5.16) and (5.17) are reduced to two decoupled equations (5.20) and 

(5.21) which require much less computation work. The average gain threshold for the 1st 

HOM is then calculated by 
2 0

0

( )

L

thg L g z dz  . 

5.3.3 Regions of single-fundamental-mode operation 

Figure 5-3 demonstrates the typical contour plot of average gain threshold ratio 

2 1/th thg g  between LP11 to LP01 mode as a function of single-pass internal loss and output 

coupler in core-pumped IAG fiber lasers.  The simulation parameters are shown in Table 

5-3 with many parameters chosen from Ref. [107], for 1.05 µm Nd3+-doped IAG fiber 

lasers. 
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Table 5-3 Simulation parameters for Figure 5-3 

Parameter Value Parameter Value 

p  803 (nm) ap  200.7 10  (cm-2) 

s  1053 (nm) ep  223.76 10  (cm-2) 

N 201 10  (cm-3) as  227.82 10  (cm-2) 

Rl 1 es  204.4 10  (cm-2) 

L 10 (cm) p  2

1( / )p s    

  0.19 (ms) 2  12.54  

a 100 (µm)   

 

Similar to uniformly side-pumped IAG fiber lasers shown in Figure 5-1, the gain 

threshold ratio becomes large in the top-right region where the output coupling loss T is 

small or the single-pass internal loss (α1L) is large. 

 

Figure 5-3 Contour plot of average gain threshold ratio 
2 1/th thg g , as a function of single-

pass loss α1L of the fundamental mode (logarithmic scale) and output coupler Roc (linear 

scale) in core-pumped IAG fiber lasers. 
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5.3.4 Extraction efficiency of single fundamental mode 

For core-pumped IAG lasers, in order to ensure single fundamental mode 

oscillation in IAG lasers, we need to choose the proper input power (0)pP
 such that the 

corresponding single-pass gain 
0

0
( )

L

g z dz  is below the 1st HOM threshold 
2

thg L . The 

extraction efficiency of single fundamental mode is of interest for multimoded IAG lasers. 

In order to coincide with the expression of extraction efficiency in uniformly side-pumped 

lasers (Eq. (3.40)), the extraction efficiency of single fundamental mode in core-pumped 

IAG lasers could be written as  

 1

0

( ( ) / )(1 )
.sat oc

SM

P L P R

g L


 
   (5.22) 

where the saturated power Psat is defined in Eq. (4.28).  

Figure 5-4 demonstrates the maximal extraction efficiency of single fundamental 

mode SM in core-pumped IAG fiber lasers as a function of optimal output coupler Roc, for 

various single-pass internal losses α1L and average unsaturated single-pass gains. The 

simulation parameters are the same as in Table 5-3. Similar to uniformly side-pumped IAG 

fiber lasers (Figure 5-2), the maximal extraction efficiency of single fundamental mode in 

core-pumped IAG fiber lasers is also suppressed due to transverse mode competition, for 

large value of 0 1/g  . Moreover, the calculated absolute maximal extraction efficiency 

max

SMH  is 0.499 which is the same as in uniformly side-pumped fiber lasers. This could be 

derived as follows. 
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Let α2 = kα1, as similar to Eq. (5.5) for uniformly side-pumped fiber lasers, the 

corresponding equation for core-pumped fiber lasers with non-uniform gain is expressed 

as  
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At the limit of low loss 1 0L   and weak coupling 1ocR   where 
1 1 1( ) ( )P z P z P    

and ln 1oc ocR R   , Eq. (5.23) is changed to 
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Since the right-hand side of Eq. (5.24) is close to zero, we have 1 12 ( , ) / 1core satr A P P   

and Eq. (5.24) is further simplified to  
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which then yields 

 
max 1

0

/ (1 ) 1.7714
0.4991.

1

sat oc
SM

P P R k
H

kg L

 
  


  (5.26) 

Compare Eq. (5.25) to Eq. (5.7), it is seen that the absolute maximal extraction efficiency 

does not depend on the pump schemes, but relates to the ratio of modal profile and modal 

loss, which was stated previously in Section 3.4.5.  
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Figure 5-4 Maximal extraction efficiency of the single fundamental mode ( max

SM ) in a 

multimoded core-pumped IAG fiber laser as a function of optimal output coupler 
optR , for 

various single-pass gains (solid lines) and distributed losses (dash lines). 

In addition, it is seen from Figure 5-4 that the kink points in core-pumped IAG fiber 

lasers also satisfy the scaling law under weak coupling condition, which was discussed in 

Sections 3.4 and 5.1. Figure 5-4 shows the solution of the kink points in core-pumped IAG 

fiber lasers, from which it is seen that the scaling law is roughly satisfied with a nearly 

fixed 0 1/g   value of ~ 22 and 
1ln /optR L  value of ~ 5.4. Moreover, it is seen that the 

kink occurs when the maximal extraction efficiency is over ~ 40%. 
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Table 5-4 Kink points in core-pumped IAG fiber lasers 

α1L 0g L  Ropt 
max

SM  
0 1/g   -ln(Ropt)/α1L 

0.047 1 0.777 0.405 21.455 5.417 

0.092 2 0.609 0.404 21.656 5.379 

0.137 3 0.483 0.402 21.923 5.326 

0.180 4 0.388 0.400 22.256 5.262 

0.260 6 0.264 0.395 23.074 5.123 

0.333 8 0.191 0.390 24.056 4.982 

0.398 10 0.145 0.383 25.128 4.851 

 

5.4 Summary 

For uniformly side-pumped IAG fiber lasers, single-mode operation is favored for 

large distributed loss of FM and small output coupling. With the consideration of transverse 

mode competition, the calculated extraction efficiency of single fundamental mode is 

suppressed when the small signal gain is large and distributed loss (of FM) is small, or 

roughly at g0/α1 > 21. A quasi analytical method is proposed to calculate the threshold 

power of the 1st HOM, which seems to work well to predict the HOM threshold power in 

one published experimental work.  

For core-pumped IAG fiber lasers with the consideration of transverse mode 

competition, the same quasi analytical method could be implemented to calculate the HOM 

threshold power. Based on the numerical model it is shown that single-mode operation also 

benefits from large distributed loss or small output coupling, which is similar to the 

scenario of uniform side pumping. Indeed, it could be assumed that the only difference 

between uniform side pumping and end pumping is the different gain evolution along the 

fiber, where in end pumping the unsaturated gain coefficient is non-uniform and the 
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corresponding single-pass gain is not proportional to the cavity length. A parameter of 

average single-pass gain could be used to feature the effective gain in end-pumped fiber 

lasers. The extraction efficiency of single fundamental mode is also calculated in core-

pumped IAG fiber lasers, showing the similar trend of output suppression due to transverse 

mode competition. 

In addition, it is seen that for both uniformly side-pumped and core-pumped IAG 

fiber lasers, the absolute maximal extraction efficiency of single fundamental mode is 

always ~ 50%, or more generally, (k-1.7714/k-1) with k the waveguide loss ratio between 

FM and 1st HOM (for IAG fibers, k = 2.54). In fact, this value is only dependent on the 

ratio of modal loss and modal profile between FM and 1st HOM.  
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CHAPTER 6 CONCLUSION 
 

 

Index-antiguided structure is promising for large-mode-area high-power laser 

application due to its simple step-index structure. An intrinsic differential loss between FM 

and HOMs, with a loss ratio (between LP01 and LP11) of 2.54 in IAG fibers and 4 for IAG 

planar waveguides, makes IAG waveguides potential for large-mode-area operation. Up to 

400 µm core size can be achieved in IAG fiber lasers. The current challenges of IAG fiber 

lasers are the low end pumping efficiency and the effect of HOM oscillation, which are 

solved by this dissertation. 

In this dissertation, numerical analysis has shown that cladding pumping is not 

efficient for IAG fibers due to both index-antiguiding effect and large core size, and core 

pumping should be used in IAG fiber lasers. To achieve high output efficiency, the gain 

length Lgain =1/σapN should be much smaller than the decay length Ldecay = -lnRoc/2αs, and 

the fiber length should be chosen such that Lgain ≤ L << Ldecay. The reason for the low 

efficiency in the published Ref. [21] is due to the failure of satisfying the above conditions 

and use of cladding pumping. 

The effect of transverse mode competition in IAG waveguide lasers is also 

comprehensively studied, showing that single-mode operation is favored when the 

waveguide loss of the FM is large and the output coupling loss is small (large Roc). The 

extraction efficiency of single fundamental mode is calculated, demonstrating maximum 

value of ~ 50% (not including the factor of λp/λs) in both uniformly side-pumped and core-

pumped IAG fiber lasers. This low efficiency is due to the small 2.54 modal loss ratio 

between FM and 1st HOM.  
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Future work on IAG fiber lasers can focus on the implementation of core pumping 

technique and optimization of laser parameters to yield high output efficiency and single-

mode operation, based on the theoretical results from Chapter 4 and Chapter 5. 
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APPENDIX SIMULATION CODE 

 

 

Below shows part of the modeling code in the dissertation. If readers are interested 

in more comprehensive code, please contact the author. 

Table 1 Matlab code for Figure 4-9 (ηmax vs. Ropt for uniformly side-pumped IAG fiber 

lasers without transverse mode competition) 

clear all 
clc 
g=[1;2;3;4;6;8;10]; 
alpha1=5e-4; 
alpha2=2.54*alpha1; 
Rl=1;Rl1=1;Rl2=1;Rr1=1;Rr2=1; 

  
Ropt=zeros(length(g),1); 
I1l_out_opt=zeros(length(g),1); 

  
c1=1; 
dc=0.0001; 
zspan=0:0.01:1; 
Rr0=0.06;dR=1e-4; 
parfor m=1:length(g) 
 

[Ropt(m),I1l_out_opt(m)]=Optimal_R_1M(g(m),Rl,Rl1,Rl2,Rr1,Rr2,alpha1); 
end 
eita=I1l_out_opt./g; 
figure 
plot(Ropt,eita) 

 

function [Ropt,I1l_out_opt]=Optimal_R_1M(g0,Rl,Rl1,Rl2,Rr1,Rr2,alpha1) 
dR=1e-4; 
Rth0=exp(2*(alpha1-g0))/Rl/Rl1/Rl2/Rr1/Rr2; 
c1=1; 
dc=0.0001; 
zspan=0:0.01:1; 
%R0=Rth0+1e3; 
R0=0.99; 
I1l_outR=Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,R0+dR/2,Rr1,alpha1,zspan); 
I1l_outL=Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,R0-dR/2,Rr1,alpha1,zspan); 
dif=(I1l_outR-I1l_outL)/dR; 

  
count=0;count_max=20; 
while abs(dif)>1e-8&&count<count_max 
    R1=R0+dR; 
    

I1l_outR=Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,R1+dR/2,Rr1,alpha1,zspan); 
    I1l_outL=Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,R1-

dR/2,Rr1,alpha1,zspan); 
    dif1=(I1l_outR-I1l_outL)/dR; 
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    R0=abs(R0+dif/(dif-dif1)*dR); 
    

I1l_outR=Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,R0+dR/2,Rr1,alpha1,zspan); 
    I1l_outL=Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,R0-

dR/2,Rr1,alpha1,zspan); 
    dif=(I1l_outR-I1l_outL)/dR; 
    count=count+1; 
end 
Ropt=R0; 
I1l_out_opt=Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,R0,Rr1,alpha1,zspan); 
end 

 

function Iout=Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,Rr,Rr1,alpha1,zspan)    
count=0;count_max=60; 
r=linspace(0,1,200); 
I10=sqrt(c1*Rl*Rl1); 
I1l=sqrt(c1/Rr/Rr1); 
[z,I] = ode45(@(z,I) IAG_fiber_onemode(z,I,g0,alpha1,c1,r),zspan,I10); 
dif1=I(end,1)-I1l; 

  
while abs(dif1)>1e-8&&count<count_max 
    dc=c1/100; 
    c2=c1+dc; 
    I10=sqrt(c2*Rl*Rl1); 
    I1l=sqrt(c2/Rr/Rr1); 
    [z,I] = ode45(@(z,I) 

IAG_fiber_onemode(z,I,g0,alpha1,c2,r),zspan,I10); 
    dif2=I(end,1)-I1l; 
    c1=abs(c1+dif1/(dif1-dif2)*dc); 
    count=count+1; 

     
    I10=sqrt(c1*Rl*Rl1); 
    I1l=sqrt(c1/Rr/Rr1); 
    [z,I] = ode45(@(z,I) 

IAG_fiber_onemode(z,I,g0,alpha1,c1,r),zspan,I10); 
    dif1=I(end,1)-I1l; 
end 
Iout=sqrt(c1/Rr/Rr1)*(1-Rr); 
end 

 

function dIdt = IAG_fiber_onemode(z,I,g0,alpha1,c1,r) 
dIdt=0; 
j01=2.4048; 
const1=0.269515643830234; 
f1=besselj(0,j01*r).^2/const1; 
int1 = 2*f1.*r./(1+f1.*(I+c1./I)); 
integral1=trapz(r,int1); 
dIdt = g0*I*integral1-alpha1*I; 
end 
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Table 2 Matlab code for calculation of the 1st HOM threshold gain in uniformly side-

pumped IAG fiber lasers 

clear all 
clc 
alpha1=0.2; 
alpha2=2.54*alpha1; 
Rl1=1;Rr1=1; 
Rl2=1;Rr2=1; 
Rl=1;Rr=0.5; 

  
gth=alpha1-1/2*log(Rl*Rl1*Rr*Rr1); 
g0=gth+0.1; %initial guess 
g0=2.1098; 
dg=0.0001; 
c1=1; % initial guess 
dc=0.0001; 
zspan=0:0.01:1; 
r=linspace(0,1,200); 
count_max=40; 
count=0; 
f0=HOMthreshold_calc_fiber(g0,c1,dc,Rl,Rl1,Rl2,Rr,Rr1,Rr2,alpha1,alpha

2,zspan,r); 

  
while abs(f0)>1e-7&&count<count_max 
g1=g0+dg; 
f1=HOMthreshold_calc_fiber(g1,c1,dc,Rl,Rl1,Rl2,Rr,Rr1,Rr2,alpha1,alpha

2,zspan,r); 
g0=abs(g0+f0/(f0-f1)*dg); 
f0=HOMthreshold_calc_fiber(g0,c1,dc,Rl,Rl1,Rl2,Rr,Rr1,Rr2,alpha1,alpha

2,zspan,r); 
count=count+1; 
end 
% calculated 1st HOM threshold 
g0 

 

function 

f=HOMthreshold_calc_fiber(g0,c1,dc,Rl,Rl1,Rl2,Rr,Rr1,Rr2,alpha1,alpha2

,zspan,r)    
count=0;count_max=60; 
j01=2.4048;j11=3.8317; 
%const1=2*trapz(r,besselj(0,j01*r).^2.*r); 
%const2=2*trapz(r,besselj(1,j11*r).^2.*r); 
const1=0.269515643830234; 
const2=0.162215636332671; 
f1=abs(besselj(0,j01*r).^2)/const1; 
f2=abs(besselj(1,j11*r).^2)/const2; 

  
I10=sqrt(c1*Rl*Rl1); 
I1l=sqrt(c1/Rr/Rr1); 
[z,I] = ode45(@(z,I) IAG_fiber_onemode(z,I,g0,alpha1,c1,r),zspan,I10); 
dif1=I(end,1)-I1l; 

  
while abs(dif1)>1e-6&&count<count_max 
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    dc=c1/100; 
    c2=c1+dc; 
    I10=sqrt(c2*Rl*Rl1); 
    I1l=sqrt(c2/Rr/Rr1); 
    [z,I] = ode45(@(z,I) 

IAG_fiber_onemode(z,I,g0,alpha1,c2,r),zspan,I10); 
    dif2=I(end,1)-I1l; 
    c1=abs(c1+dif1/(dif1-dif2)*dc); 
    count=count+1; 

     
    I10=sqrt(c1*Rl*Rl1); 
    I1l=sqrt(c1/Rr/Rr1); 
    [z,I] = ode45(@(z,I) 

IAG_fiber_onemode(z,I,g0,alpha1,c1,r),zspan,I10); 
    dif1=I(end,1)-I1l; 
end 
Iz=I+c1./I; 
int_z=zeros(length(Iz),1); 
for ii=1:length(Iz) 
    F=2*f2.*r./(1+f1.*Iz(ii)); 
    int_z(ii)=trapz(r,F); 
end 
LHS=g0*trapz(zspan,int_z); 
RHS=alpha2-0.5*log(Rl*Rr*Rl2*Rr2); 
f=LHS-RHS; 
end 

 

 

Table 3 Matlab code for Figure 5-1 (contour plot of gain threshold ratio 
2 1/th thg g , as a 

function of α1L and Roc, in uniformly side-pumped IAG fiber lasers) 

clear all 
clc 

  
Rl=1;Rl1=1;Rl2=1;Rr1=1;Rr2=1; 
gr=100; % set gain threshold ratio 
%alpha1=[linspace(0.001,0.04,100) 

linspace(0.045,0.233,100)];%linspace(0.001,0.0755,50) 
alpha1=[linspace(0.001,0.04,64) linspace(0.045,0.2,8) 

linspace(0.21,3,96)]; 
alpha2=2.54*alpha1; 

  
Rth=zeros(length(alpha1),1); 
parfor m=1:length(alpha1) 
Rth(m)=Rth_gratio_fiber(gr,Rl,Rl1,Rl2,Rr1,Rr2,alpha1(m),alpha2(m)); 
end 

  
figure 
semilogy(Rth,alpha1) 
xlim([0 1]) 
ylim([1e-3 3]) 
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function R=Rth_gratio_fiber(gr,Rl,Rl1,Rl2,Rr1,Rr2,alpha1,alpha2) 
R0=0.0001;%R0=0.00001;% initial guess of Rr  
gth_FM=alpha1-1/2*log(Rl*Rl1*R0*Rr1);%FM gain threshold 
g0=gth_FM*gr; 
%Rth_0=exp(-2*(g0-alpha1))/Rl/Rl1/Rr1/Rl2/Rr2; 
%R0=Rth_0+0.0001;%0.999;%Rth_0; %initial guess 

  
dR=0.00001;%dR=0.000001; 
c1=1; % initial guess 
dc=0.0001; 
zspan=0:0.01:1; 
r=linspace(0,1,200); 
count_max=20; 
count=0; 
f0=HOMthreshold_calc_fiber(g0,c1,dc,Rl,Rl1,Rl2,R0,Rr1,Rr2,alpha1,alpha

2,zspan,r); 

  
while abs(f0)>1e-10&&count<count_max 
R1=R0+dR; 
gth_FM=alpha1-1/2*log(Rl*Rl1*R1*Rr1);%FM gain threshold 
g0=gth_FM*gr; 
f1=HOMthreshold_calc_fiber(g0,c1,dc,Rl,Rl1,Rl2,R1,Rr1,Rr2,alpha1,alpha

2,zspan,r); 
R0=abs(R0+f0/(f0-f1)*dR); 
gth_FM=alpha1-1/2*log(Rl*Rl1*R0*Rr1); 
g0=gth_FM*gr; 
f0=HOMthreshold_calc_fiber(g0,c1,dc,Rl,Rl1,Rl2,R0,Rr1,Rr2,alpha1,alpha

2,zspan,r); 
count=count+1; 
end 
R=R0; 

end 

 

Table 4 Matlab code for Figure 5-2 ( max

SM  vs. Ropt in uniformly side-pumped IAG fiber 

lasers) 

% Calculate the range of output coupler [Rth1L, Rth1R] for single-mode 

operation, for given single-pass gain and distributive loss. 
 
clear all 
clc 

  
Rl=1;Rl1=1;Rl2=1;Rr1=1;Rr2=1; 
g=[2 3 4 6 8 10]; 
alpha1=0.1399;%8.215e-4*1.98; 
alpha2=2.54*alpha1; 

  
%g0=alpha1-0.5*log(Rl*Rr); 



138 

 

Rth1L=zeros(length(g),1); 
Rth1R=zeros(length(g),1); 
for m=1:length(g) 
Rth1L(m)=Rth_1L(g(m),Rl,Rl1,Rl2,Rr1,Rr2,alpha1,alpha2); 
Rth1R(m)=Rth_1R(g(m),Rl,Rl1,Rl2,Rr1,Rr2,alpha1,alpha2); 
end 

  
figure 
plot(g,Rth1L,g,Rth1R,'r') 

 
function R=Rth_1L(g0,Rl,Rl1,Rl2,Rr1,Rr2,alpha1,alpha2) 
%gth=alpha1-1/2*log(Rl*Rl1*Rr*Rr1); 
Rth_0=exp(-2*(g0-alpha1))/Rl/Rl1/Rr1/Rl2/Rr2; 
R0=Rth_0+1e-7;%initial guess 
dR=0.0001; 
c1=1; % initial guess 
dc=0.0001; 
zspan=0:0.01:1; 
r=linspace(0,1,200); 
count_max=20; 
count=0; 
f0=HOMthreshold_calc_fiber(g0,c1,dc,Rl,Rl1,Rl2,R0,Rr1,Rr2,alpha1,alpha

2,zspan,r); 

  
while abs(f0)>1e-7&&count<count_max 
R1=R0+dR; 
f1=HOMthreshold_calc_fiber(g0,c1,dc,Rl,Rl1,Rl2,R1,Rr1,Rr2,alpha1,alpha

2,zspan,r); 
R0=abs(R0+f0/(f0-f1)*dR); 
f0=HOMthreshold_calc_fiber(g0,c1,dc,Rl,Rl1,Rl2,R0,Rr1,Rr2,alpha1,alpha

2,zspan,r); 
count=count+1; 
end 
R=R0; 
end 

 

function R=Rth_1R(g0,Rl,Rl1,Rl2,Rr1,Rr2,alpha1,alpha2) 
R0=0.999;%initial guess 
dR=0.0001; 
c1=1; % initial guess 
dc=0.0001; 
zspan=0:0.01:1; 
r=linspace(0,1,200); 
count_max=20; 
count=0; 
f0=HOMthreshold_calc_fiber(g0,c1,dc,Rl,Rl1,Rl2,R0,Rr1,Rr2,alpha1,alpha

2,zspan,r); 

  
while abs(f0)>1e-7&&count<count_max 
R1=R0+dR; 
f1=HOMthreshold_calc_fiber(g0,c1,dc,Rl,Rl1,Rl2,R1,Rr1,Rr2,alpha1,alpha

2,zspan,r); 
R0=abs(R0+f0/(f0-f1)*dR); 



139 

 

f0=HOMthreshold_calc_fiber(g0,c1,dc,Rl,Rl1,Rl2,R0,Rr1,Rr2,alpha1,alpha

2,zspan,r); 
count=count+1; 
end 
R=R0; 
end 

 

% Calculate 𝜂𝑆𝑀
𝑚𝑎𝑥 vs. Ropt for a fixed distributive loss and different 

single-pass gains. The whole figure is constructed by running 

different sets of distributive loss and single-pass gains. 

 
clear all 
clc 
g=[1;2;3;4;6;8;10]; 
alpha1=0.001; 
alpha2=2.54*alpha1; 
Rl=1;Rl1=1;Rl2=1;Rr1=1;Rr2=1; 
% alpha 0.001 
%Rth1_L=[0.137104539 0.018537342 0.002509387 0.000363816 0 0 0]; 
%Rth1_R=[0.997771086 0.997844562 0.997876191 0.997894796 0.997916624 

0.997929497 0.997938208]; 

  
% alpha 0.01 
%Rth1_L=[0.15273407 0.020637258 0.0027924 0.000378294 0 0 0]; 
%Rth1_R=[0.971420143 0.974516771 0.975727953 0.976410988 0.97718759 

0.977634567 0.977933212]; 

  
% alpha 0.02 
%Rth1_L=[0.173723777 0.023344656 0.003155555 0.000426982 0 0 0]; 
%Rth1_R=[0.932792135 0.943656657 0.94755588 0.949683196 0.952044833 

0.953378342 0.954259384]; 

  
% alpha 0.03 
%Rth1_L=[0.199756974 0.026521261 0.003577984 0.000483992 0 0 0]; 
%Rth1_R=[0.884415174 0.908724775 0.916686881 0.920901052 0.925482238 

0.928027321 0.929693314]; 

  
% alpha 0.046656629 
%Rth1_L=[0.26234566 0.033161837 0.004444985 0.000600517 0 0 0]; 
%Rth1_R=[0.775380539 0.842415484 0.860421075 0.869475286 0.87900567 

0.884175077 0.887514117]; 

  
% alpha 0.05 
%Rth1_L=[0.279988056 0.034748294 0.004648375 0.000627767 0 0 0]; 
%Rth1_R=[0.747087113 0.827920646 0.84848331 0.858714007 0.869414792 

0.875191953 0.878914858]; 

  
% alpha 0.093304 
%Rth1_L=[0 0.069490287 0.008651348 0.00115404 0 0 0]; 
%Rth1_R=[0 0.601262259 0.677816666 0.709696153 0.740352132 0.756012724 

0.765825182]; 

  
% alpha 0.1 
%Rth1_L=[0 0.079208167 0.009600357 0.001275461 0 0 0]; 
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%Rth1_R=[0 0.558120075 0.649091757 0.685451261 0.719923955 0.737389267 

0.748290186]; 

  
% alpha 0.12 
%Rth1_L=[0 0.129755231 0.013323729 0.001737328 0 0 0]; 
%Rth1_R=[0 0.402367657 0.559999518 0.611815186 0.658726248 0.681912223 

0.696224969]; 

  
% alpha 0.1399 
%Rth1_L=[0 0 0.019082115 0.002402463 0.000182219 0 0]; 
%Rth1_R=[0 0 0.466452562 0.537327299 0.59803759 0.627299704 

0.645179062]; 

  
% alpha 0.15 
%Rth1_L=[0 0 0.023320932 0.002852533 0 0 0]; 
%Rth1_R=[0 0 0.416869984 0.499277641 0.567490802 0.599939597 

0.619668107]; 

  
% alpha 0.186339 
%Rth1_L=[0 0 0.06219924 0.0055716 9.28E-05 0 0]; 
%Rth1_R=[0 0 0.212705553 0.36235962 0.460170638 0.504336685 

0.530748868]; 

  
% alpha 0.2 
%Rth1_L=[0 0 0 0.007376072 0.000123424 0 0]; 
%Rth1_R=[0 0 0 0.311188575 0.421254567 0.469812335 0.498684645]; 

  
% alpha 0.277985 
%Rth1_L=[0 0 0 0 0.000593689 0 0]; 
%Rth1_R=[0 0 0 0 0.221003875 0.292143201 0.33323252]; 

  
% alpha 0.366282 
%Rth1_L=[0 0 0 0 0.007437522 8.40E-05 0]; 
%Rth1_R=[0 0 0 0 0.047447394 0.138667255 0.187183831]; 

  
% alpha 0.4 
%Rth1_L=[0 0 0 0 0 0.000203346 0]; 
%Rth1_R=[0 0 0 0 0 0.094263388 0.143436492]; 

  
% alpha 0.44936 
%Rth1_L=[0 0 0 0 0 0 0]; 
%Rth1_R=[0 0 0 0 0 0 0]; 

  
% alpha 0.54 
%Rth1_L=[0 0 0 0 0 0 0]; 
%Rth1_R=[0 0 0 0 0 0 0]; 

  
% alpha 0.63 
%Rth1_L=[0 0 0 0 0 0 0]; 
%Rth1_R=[0 0 0 0 0 0 0]; 

  
% alpha 0.7 
%Rth1_L=[0 0 0 0 0 0 0]; 
%Rth1_R=[0 0 0 0 0 0 0]; 
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% alpha 1 
Rth1_L=[0 0 0 0 0 0 0]; 
Rth1_R=[0 0 0 0 0 0 0]; 

  
eita=zeros(length(g),1); 
Ropt=zeros(length(g),1); 

  
for m=1:length(g) 
    

[Rout,I1l_out]=Iout_vs_R_fiber(g(m),Rl,Rl1,Rl2,Rr1,Rr2,alpha1,Rth1_L(m

),Rth1_R(m)); 
    %figure 
    %plot(Rout,I1l_out/g(m)) 
    for ii=1:length(I1l_out) 
        if I1l_out(ii)>g(m) 
            I1l_out(ii)=0; 
        end 
    end 
    n=find(max(I1l_out)==I1l_out); 
    Ropt(m)=Rout(n); 
    eita(m)=I1l_out(n)/g(m); 
end 

  
figure 
plot(Ropt,eita) 

  

 

Table 5 Matlab code for calculation of the trace of kink points in Figure 5-2 (refer to 

Table 5-1), for uniformly side-pumped IAG fiber lasers 

clear all 
clc 
g0=0.21433; 
dg=0.0002; 
dR=0.0001; 
alpha1=0.01; 
alpha2=2.54*alpha1; 
Rl=1;Rl1=1;Rl2=1;Rr1=1;Rr2=1; 
count_max2=20; 
c1=1;% initial guess 
dc=0.0001; 
zspan=0:0.01:1; 

  
% obtain Rth_1R 
Rr_goal=Rth_1R(g0,Rl,Rl1,Rl2,Rr1,Rr2,alpha1,alpha2); 
Ropt=Optimal_R_fiber(g0,c1,dc,dR,Rr_goal,Rl,Rl1,Rl2,Rr1,Rr2,alpha1,alp

ha2,zspan); 
fg0=Ropt-Rr_goal; 
count2=0; 
while abs(fg0)>1e-9&&count2<count_max2 
    g1=g0+dg; 
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    Rr_goal=Rth_1R(g1,Rl,Rl1,Rl2,Rr1,Rr2,alpha1,alpha2); 
    

Ropt=Optimal_R_fiber(g1,c1,dc,dR,Rr_goal,Rl,Rl1,Rl2,Rr1,Rr2,alpha1,alp

ha2,zspan); 
    fg1=Ropt-Rr_goal; 
    g0=abs(g0+fg0/(fg0-fg1)*dg); 
    Rr_goal=Rth_1R(g0,Rl,Rl1,Rl2,Rr1,Rr2,alpha1,alpha2); 
    

Ropt=Optimal_R_fiber(g0,c1,dc,dR,Rr_goal,Rl,Rl1,Rl2,Rr1,Rr2,alpha1,alp

ha2,zspan); 
    fg0=Ropt-Rr_goal; 
    count2=count2+1; 
end 
g0 % single-pass gain at the kink point 
eta=Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,Rr_goal,Rr1,alpha1,zspan)/g0 % 

extraction efficieny at the kink point 
-log(Rr_goal)/alpha1 % last column of Table 5-2 

 

function 

Ropt=Optimal_R_fiber(g0,c1,dc,dR,Rr,Rl,Rl1,Rl2,Rr1,Rr2,alpha1,alpha2,z

span) 
df0=(Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,Rr+dR/2,Rr1,alpha1,zspan)-

Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,Rr-dR/2,Rr1,alpha1,zspan))/dR/g0; 
count1=0; 
count_max1=10; 
while abs(df0)>1e-6&&count1<count_max1 
df1=(Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,Rr+3*dR/2,Rr1,alpha1,zspan)-

Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,Rr+dR/2,Rr1,alpha1,zspan))/dR/g0; 
Rr=abs(Rr+df0/(df0-df1)*dR); 
df0=(Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,Rr+dR/2,Rr1,alpha1,zspan)-

Iout_1D1M_fiber(g0,c1,dc,Rl,Rl1,Rr-dR/2,Rr1,alpha1,zspan))/dR/g0; 
count1=count1+1; 
end 
Ropt=Rr; 

end 

 

Table 6 Matlab code for Figure 5-3 (contour plot of gain threshold ratio 
2 1/th thg g , as a 

function of α1L and Roc, in core-pumped IAG fiber lasers) 

clear all 
clc 
N=1e26;% doping density, unit m-3 
sigma_ap=0.7e-24;sigma_ep=3.76e-26;% unit m^2 
c=299792458; % speed of light (m) 
lambda_p=8.03e-7;% pump wavelength (m) 
v_p=c/lambda_p; 
sigma_as=7.82e-26;sigma_es=4.4e-24;% unit m^2 
lambda_s=1.053e-6;% signal wavelength (m) 
v_s=c/lambda_s; 
tau=1.9e-4; 
L=0.1;% cavity length (m) 
a=100e-6;% core radius (m) 
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Acore=pi*a^2; 
Tau_p=1/Acore; 
Rl=1;Rl1=1;Rl2=1;Rr1=1;Rr2=1; 
gr=10; % set gain threshold ratio 

  
alpha_1L=[linspace(0.001,0.04,64) linspace(0.045,0.2,8) 

linspace(0.21,1.5,64)]; 
alpha_1=alpha_1L/L; 
alpha_2=2.54*alpha_1; 
alpha_p=(lambda_p/lambda_s)^2*alpha_1; 

  
Rth=zeros(length(alpha_1),1); 
parfor m=1:length(alpha_1) 
Rth(m)=Rth_gratio_fiber(gr,Rl,Rl1,Rl2,Rr1,Rr2,N,sigma_ap,sigma_ep,lamb

da_p,sigma_as,sigma_es,lambda_s,tau,alpha_p(m),alpha_1(m),alpha_2(m),L

,a,Tau_p); 
end 

  
figure 
semilogy(Rth,alpha_1L) 
xlim([0 1]) 
ylim([1e-3 10]) 

 

function 

R=Rth_gratio_fiber(gr,Rl,Rl1,Rl2,Rr1,Rr2,N,sigma_ap,sigma_ep,lambda_p,

sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,alpha_2,L,a,Tau_p) 
h=6.626e-34;% Planck constant 
c=299792458; % speed of light (m) 
v_p=c/lambda_p; 
v_s=c/lambda_s; 
R0=0.0001;%R0=0.00001;% initial guess of Rr  
gth_FM=alpha_1*L-1/2*log(Rl*Rl1*R0*Rr1);%FM gain threshold 
g_L0=gth_FM*gr; 
Pp0=(g_L0+N*L*sigma_as)*(h*v_p)*(sigma_ap*N+alpha_p)/(N*sigma_ap*tau*(

sigma_as+sigma_es)*Tau_p)/(1-exp(-(sigma_ap*N+alpha_p)*L));% input 

pump power (W) 
guess=0.5*g_L0; 
c1=(-guess/log(Rr1*R0))^2*Rr1*R0; 

  
dR=0.00001;%dR=0.000001; 
dc=0.1; 
zspan=0:0.01:1; 
r=linspace(0,1,200); 
count_max=20; 
count=0; 
%f0=HOMthreshold_calc_fiber(g_L0,c1,dc,Rl,Rl1,Rl2,R0,Rr1,Rr2,alpha1,al

pha2,zspan,r); 
f0=HOMthreshold_calc_fiber_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambd

a_p,sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,alpha_2,L,a,c1,dc,R

l,Rl1,Rl2,R0,Rr1,Rr2,Pp0); 

  
while abs(f0)>1e-7&&count<count_max 
R1=R0+dR; 
gth_FM=alpha_1*L-1/2*log(Rl*Rl1*R1*Rr1);%FM gain threshold 
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g_L0=gth_FM*gr; 
Pp0=(g_L0+N*L*sigma_as)*(h*v_p)*(sigma_ap*N+alpha_p)/(N*sigma_ap*tau*(

sigma_as+sigma_es)*Tau_p)/(1-exp(-(sigma_ap*N+alpha_p)*L));% input 

pump power (W) 
guess=0.5*g_L0; 
c1=(-guess/log(Rr1*R1))^2*Rr1*R1; 
f1=HOMthreshold_calc_fiber_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambd

a_p,sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,alpha_2,L,a,c1,dc,R

l,Rl1,Rl2,R1,Rr1,Rr2,Pp0); 

  
R0=abs(R0+f0/(f0-f1)*dR); 
gth_FM=alpha_1*L-1/2*log(Rl*Rl1*R0*Rr1);%FM gain threshold 
g_L0=gth_FM*gr; 
Pp0=(g_L0+N*L*sigma_as)*(h*v_p)*(sigma_ap*N+alpha_p)/(N*sigma_ap*tau*(

sigma_as+sigma_es)*Tau_p)/(1-exp(-(sigma_ap*N+alpha_p)*L));% input 

pump power (W) 
guess=0.5*g_L0; 
c1=(-guess/log(Rr1*R0))^2*Rr1*R0; 
f0=HOMthreshold_calc_fiber_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambd

a_p,sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,alpha_2,L,a,c1,dc,R

l,Rl1,Rl2,R0,Rr1,Rr2,Pp0); 

  
count=count+1; 
end 
R=R0; 
end 

 

function 

f=HOMthreshold_calc_fiber_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambda

_p,sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,alpha_2,L,a,c1,dc,Rl

,Rl1,Rl2,Rr,Rr1,Rr2,Pp0) 
c=299792458; % speed of light (m) 
h=6.626e-34;% Planck constant 
v_p=c/lambda_p; 
v_s=c/lambda_s; 
count_max=40; 
count=0; 
j01=2.4048;j11=3.8317; 
%const1=2*pi*trapz(r,besselj(0,j01*r).^2.*r); 
%const2=2*pi*trapz(r,besselj(1,j11*r).^2.*r); 
const1=0.846708366684588*a^2; 
const2=0.509615451400111*a^2; 
Tau_s1=abs(besselj(0,j01*r).^2)/const1; 
Tau_s2=abs(besselj(1,j11*r).^2)/const2; 
Acore=pi*a^2; 
Psat=(h*v_s)*Acore/((sigma_as+sigma_es)*tau); 
g0=N*(Pp0*exp(-(sigma_ap*N+alpha_p)*L*zspan)*sigma_ap/Psat*(v_s/v_p)-

sigma_as);% g0(z) 

  
Ps0=sqrt(c1*Rl*Rl1);PsL=sqrt(c1/Rr/Rr1); 
[z,P] = ode45(@(z,P) 

IAG_fiber_onemode_endpump_R(z,P,r,N,sigma_ap,sigma_ep,v_p,sigma_as,sig

ma_es,v_s,tau,alpha_p,alpha_1,L,a,c1,Pp0),zspan,Ps0); 
dif_1=P(end)-PsL; 
while abs(dif_1)>1e-6&&count<count_max 
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    dc=min(dc,c1/100); 
    c11=c1+dc; 
    Ps0=sqrt(c11*Rl*Rl1);PsL=sqrt(c11/Rr/Rr1); 
    [z,P] = ode45(@(z,P) 

IAG_fiber_onemode_endpump_R(z,P,r,N,sigma_ap,sigma_ep,v_p,sigma_as,sig

ma_es,v_s,tau,alpha_p,alpha_1,L,a,c11,Pp0),zspan,Ps0); 
    dif_11=P(end)-PsL; 

  
    c1=abs(c1+dif_1/(dif_1-dif_11)*dc); 
    Ps0=sqrt(c1*Rl*Rl1);PsL=sqrt(c1/Rr/Rr1); 
    [z,P] = ode45(@(z,P) 

IAG_fiber_onemode_endpump_R(z,P,r,N,sigma_ap,sigma_ep,v_p,sigma_as,sig

ma_es,v_s,tau,alpha_p,alpha_1,L,a,c1,Pp0),zspan,Ps0); 
    dif_1=P(end)-PsL; 

  
    count=count+1; 
end 
Pz=P+c1./P; 
int_z=zeros(length(Pz),1); 
for ii=1:length(Pz) 
    F=2*pi*a^2*Tau_s2.*r./(1+Tau_s1*Acore*Pz(ii)); 
    int_z(ii)=trapz(r,F); 
end 
LHS=trapz(zspan,g0'.*int_z*L); 
RHS=alpha_2*L-0.5*log(Rl*Rr*Rl2*Rr2); 
f=LHS-RHS; 

  
end 

 
function dPdz = 

IAG_fiber_onemode_endpump_R(z,P,r,N,sigma_ap,sigma_ep,v_p,sigma_as,sig

ma_es,v_s,tau,alpha_p,alpha_1,L,a,c1,Pp0) 
h=6.626e-34;% Planck constant 
j01=2.4048; 
%const1=2*pi*trapz(r,besselj(0,j01*r).^2.*r); 
const1=0.846708366684588*a^2; 
Tau_s1=abs(besselj(0,j01*r).^2)/const1; 
Acore=pi*a^2; 
Psat=(h*v_s)*Acore/((sigma_as+sigma_es)*tau); 
g0=N*(Pp0*exp(-(sigma_ap*N+alpha_p)*L*z)*sigma_ap/Psat*(v_s/v_p)-

sigma_as); 
int1=g0*L*Tau_s1.*r*a^2./(1+Tau_s1*Acore*(P+c1/P)); 
integral1=2*pi*trapz(r,int1); 
dPdz=P*integral1-alpha_1*L*P; 
end 
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Table 7 Matlab code for calculation of Figure 5-4 ( max

SM  vs. Ropt in core-pumped IAG 

fiber lasers) 

% Calculate the range of output coupler [Rth_1, Rth_1R] for single-

mode operation, for given single-pass gain and distributive loss. 
 

clear all 
clc 

  
r=linspace(0,1,200); 
zspan=0:0.01:1; 
N=1e26;% doping density, unit m-3 
sigma_ap=0.7e-24;sigma_ep=3.76e-26;% unit m^2 
c=299792458; % speed of light (m) 
lambda_p=8.03e-7;% pump wavelength (m) 
v_p=c/lambda_p; 
sigma_as=7.82e-26;sigma_es=4.4e-24;% unit m^2 
lambda_s=1.053e-6;% signal wavelength (m) 
v_s=c/lambda_s; 
tau=1.9e-4; 
a=100e-6;% core radius (m) 

  
Rl=1;Rl1=1;Rl2=1;Rr1=1;Rr2=1; 
g_L=[1 2 3 4 6 8 10]; 

  
alpha1=1.6*0;% absorption (m^-1) 
alpha2=1.6*0; 
alphap=1.6*0; 

  
L=0.1; 
%Alpha1=0.39796/L; 
Alpha1=0.01/L; 
alpha_1=Alpha1+alpha1; 
alpha_2=2.54*Alpha1+alpha2; 
alpha_p=(lambda_p/lambda_s)^2*Alpha1+alphap 

  
Rth1L=zeros(length(g_L),1); 
Rth1R=zeros(length(g_L),1); 
parfor m=1:length(g_L) 
    

Rth1L(m)=Rth_1L_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambda_p,sigma_a

s,sigma_es,lambda_s,tau,g_L(m),Rl,Rl1,Rl2,Rr1,Rr2,alpha_1,alpha_2,alph

a_p,L,a); 
    

Rth1R(m)=Rth_1R_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambda_p,sigma_a

s,sigma_es,lambda_s,tau,g_L(m),Rl,Rl1,Rl2,Rr1,Rr2,alpha_1,alpha_2,alph

a_p,L,a); 
end 
figure 
plot(g_L,Rth1L,g_L,Rth1R,'r') 
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function 

R=Rth_1L_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambda_p,sigma_as,sigma

_es,lambda_s,tau,g_L,Rl,Rl1,Rl2,Rr1,Rr2,alpha_1,alpha_2,alpha_p,L,a) 
%gth=alpha1-1/2*log(Rl*Rl1*Rr*Rr1); 
Rth_0=exp(-2*(g_L-alpha_1*L))/Rl/Rl1/Rr1/Rl2/Rr2; 
R0=Rth_0+1e-5;%initial guess 
h=6.626e-34;% Planck constant 
c=299792458; % speed of light (m) 
v_p=c/lambda_p; 
Acore=pi*a^2; 
Tau_p=1/Acore; 
dc=0.1;dR=0.0001; 

  
guess=0.5*g_L; 
Pp0=(g_L+N*L*sigma_as)*(h*v_p)*(sigma_ap*N+alpha_p)/(N*sigma_ap*tau*(s

igma_as+sigma_es)*Tau_p)/(1-exp(-(sigma_ap*N+alpha_p)*L));% input pump 

power (W) 
c1=(-guess/log(Rr1*R0))^2*Rr1*R0; 
f0=HOMthreshold_calc_fiber_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambd

a_p,sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,alpha_2,L,a,c1,dc,R

l,Rl1,Rl2,R0,Rr1,Rr2,Pp0); 
count=0; 
count_max=20; 

  
while abs(f0)>1e-7&&count<count_max 
R1=R0+dR; 
c1=(-guess/log(Rr1*R1))^2*Rr1*R1; 
f1=HOMthreshold_calc_fiber_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambd

a_p,sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,alpha_2,L,a,c1,dc,R

l,Rl1,Rl2,R1,Rr1,Rr2,Pp0); 

  
R0=abs(R0+f0/(f0-f1)*dR); 
c1=(-guess/log(Rr1*R0))^2*Rr1*R0; 
f0=HOMthreshold_calc_fiber_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambd

a_p,sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,alpha_2,L,a,c1,dc,R

l,Rl1,Rl2,R0,Rr1,Rr2,Pp0); 

  
count=count+1; 
end 
R=R0; 
end 

 
function 

R=Rth_1R_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambda_p,sigma_as,sigma

_es,lambda_s,tau,g_L,Rl,Rl1,Rl2,Rr1,Rr2,alpha_1,alpha_2,alpha_p,L,a) 
R0=0.999;%initial guess 
h=6.626e-34;% Planck constant 
c=299792458; % speed of light (m) 
v_p=c/lambda_p; 
Acore=pi*a^2; 
Tau_p=1/Acore; 
dc=0.1;dR=0.0001; 

  
guess=0.5*g_L; 
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Pp0=(g_L+N*L*sigma_as)*(h*v_p)*(sigma_ap*N+alpha_p)/(N*sigma_ap*tau*(s

igma_as+sigma_es)*Tau_p)/(1-exp(-(sigma_ap*N+alpha_p)*L));% input pump 

power (W) 
c1=(-guess/log(Rr1*R0))^2*Rr1*R0; 
f0=HOMthreshold_calc_fiber_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambd

a_p,sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,alpha_2,L,a,c1,dc,R

l,Rl1,Rl2,R0,Rr1,Rr2,Pp0); 
count=0; 
count_max=20; 

  
while abs(f0)>1e-7&&count<count_max 
R1=R0+dR; 
c1=(-guess/log(Rr1*R1))^2*Rr1*R1; 
f1=HOMthreshold_calc_fiber_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambd

a_p,sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,alpha_2,L,a,c1,dc,R

l,Rl1,Rl2,R1,Rr1,Rr2,Pp0); 

  
R0=abs(R0+f0/(f0-f1)*dR); 
c1=(-guess/log(Rr1*R0))^2*Rr1*R0; 
f0=HOMthreshold_calc_fiber_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambd

a_p,sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,alpha_2,L,a,c1,dc,R

l,Rl1,Rl2,R0,Rr1,Rr2,Pp0); 

  
count=count+1; 
end 
R=R0; 
end 

 
% Calculate 𝜂𝑆𝑀

𝑚𝑎𝑥 vs. Ropt for a fixed distributive loss and different 

single-pass gains. The whole figure is constructed by running 

different sets of distributive loss and single-pass gains. 

 

clear all 
clc 
h=6.626e-34;% Planck constant 
r=linspace(0,1,200); 
zspan=0:0.01:1; 
N=1e26;% doping density, unit m-3 
sigma_ap=0.7e-24;sigma_ep=3.76e-26;% unit m^2 
c=299792458; % speed of light (m) 
lambda_p=8.03e-7;% pump wavelength (m) 
v_p=c/lambda_p; 
sigma_as=7.82e-26;sigma_es=4.4e-24;% unit m^2 
lambda_s=1.053e-6;% signal wavelength (m) 
v_s=c/lambda_s; 
tau=1.9e-4; 
L=0.1;% cavity length (m) 
a=100e-6;% core radius (m) 
Acore=pi*a^2; 
Tau_p=1/Acore; 
alpha1=1.6*0;% absorption coef. (m^-1) 
alphap=1.6*0; 
n0=1.5734; 
dn=-0.0045; 
% input alpha 
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Alpha1=0.4/L; 

  
alpha_1=Alpha1+alpha1; 
alpha_p=(lambda_p/lambda_s)^2*Alpha1+alphap; 
Rl1=1;Rr1=1;Rl=1;%Rr=linspace(0.1,0.99,96); 

  
g_L=[1;2;3;4;6;8;10]; 

  
% alpha 0.001 
%Rth1_L=[0.136482427 0.018412845 0.002487186 0.000341852 0 0 0]; 
%Rth1_R=[0.997778599 0.997850205 0.997881225 0.997899525 0.997921047 

0.997933767 0.997942381]; 

  
% alpha 0.01 
%Rth1_L=[0.151986565 0.020485135 0.002764805 0.000373098 0 0 0]; 
%Rth1_R=[0.971520539 0.974584761 0.975786003 0.976464243 0.977236069 

0.977680612 0.977977773]; 

  
% alpha 0.02 
%Rth1_L=[0.172853532 0.02316859 0.003123211 0.000421426 0 0 0]; 
%Rth1_R=[0.933042062 0.943809661 0.947682292 0.94979716 0.952146632 

0.953474032 0.954351361]; 

  
% alpha 0.03 
%Rth1_L=[0.19871 0.02631972 0.003540711 0.000477538 0 0 0]; 
%Rth1_R=[0.884880773 0.908977794 0.916889411 0.921080655 0.925640099 

0.928174477 0.929834014]; 

  
% alpha 0.04661 
%Rth1_L=[0.260544504 0.032886617 0.004395657 0.000592035 0 0 0]; 
%Rth1_R=[0.776869277 0.843066857 0.860929089 0.869921406 0.879393911 

0.884534823 0.887856458]; 

  
% alpha 0.05 
%Rth1_L=[0.278223483 0.03448509 0.004599963 0.000619258 0 0 0]; 
%Rth1_R=[0.74843558 0.828419269 0.848857369 0.859036013 0.869689984 

0.875444801 0.879154295]; 

  
% alpha 0.092352 
%Rth1_L=[0 0.067812799 0.008455148 0.001124122 0 0 0]; 
%Rth1_R=[0 0.608493978 0.682665379 0.713777823 0.74378148 0.759135834 

0.768764763]; 

  
% alpha 0.1 
%Rth1_L=[0 0.078696533 0.009527925 0.001260877 0 0 0]; 
%Rth1_R=[0 0.559681329 0.649990697 0.686168192 0.720499471 0.737903511 

0.748769572]; 

  
% alpha 0.12 
%Rth1_L=[0 0.12872985 0.013258269 0.001721804 5.30E-05 0 0]; 
%Rth1_R=[0 0.405031509 0.561134519 0.612692863 0.65941597 0.682523622 

0.696792476]; 

  
% alpha 0.1368406 
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%Rth1_L=[0 0 0.017971584 0.002269661 8.61E-06 0 0]; 
%Rth1_R=[0 0 0.482505021 0.549832599 0.608110116 0.636327102 

0.653599475]; 

  
% alpha 0.15 
%Rth1_L=[0 0 0.023338379 0.002844833 3.42E-05 0 0]; 
%Rth1_R=[0 0 0.418339969 0.500365092 0.568330553 0.600679413 

0.620352537]; 

  
% alpha 0.179723 
%Rth1_L=[0 0 0.049280531 0.004931086 8.47E-05 0 0]; 
%Rth1_R=[0 0 0.257725387 0.388401404 0.480273684 0.522193658 

0.547337819]; 

  
% alpha 0.2 
%Rth1_L=[0 0 0 0.007496341 0.000123088 0 0]; 
%Rth1_R=[0 0 0 0.312286461 0.422216844 0.470683439 0.499500157]; 

  
% alpha 0.2600366 
%Rth1_L=[0 0 0 0 0.000416274 0 0]; 
%Rth1_R=[0 0 0 0 0.263896797 0.330551398 0.369229761]; 

  
% alpha 0.3 
%Rth1_L=[0 0 0 0 0.001058807 0 0]; 
%Rth1_R=[0 0 0 0 0.172274786 0.249253149 0.293127109]; 

  
% alpha 0.332555 
%Rth1_L=[0 0 0 0 0.002583083 2.33E-05 0]; 
%Rth1_R=[0 0 0 0 0.106268033 0.190777479 0.237828843]; 

  
% alpha 0.39796 
%Rth1_L=[0 0 0 0 0 0.000229977 0]; 
%Rth1_R=[0 0 0 0 0 0.094736594 0.14506471]; 

  
% alpha 0.4 
Rth1_L=[0 0 0 0 0 0.00024438 0]; 
Rth1_R=[0 0 0 0 0 0.092191052 0.142558099]; 

  
% alpha 0.5 
%Rth1_L=[0 0 0 0 0 0 0]; 
%Rth1_R=[0 0 0 0 0 0 0]; 

  
% alpha 0.6 
%Rth1_L=[0 0 0 0 0 0 0]; 
%Rth1_R=[0 0 0 0 0 0 0]; 

  
% alpha 0.7 
%Rth1_L=[0 0 0 0 0 0 0]; 
%Rth1_R=[0 0 0 0 0 0 0]; 

  
% alpha 0.8 
%Rth1_L=[0 0 0 0 0 0 0]; 
%Rth1_R=[0 0 0 0 0 0 0]; 
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% alpha 0.9 
%Rth1_L=[0 0 0 0 0 0 0]; 
%Rth1_R=[0 0 0 0 0 0 0]; 

  
% alpha 1 
%Rth1_L=[0 0 0 0 0 0 0]; 
%Rth1_R=[0 0 0 0 0 0 0]; 

  
eita=zeros(length(g_L),1); 
Ropt=zeros(length(g_L),1); 

  
for m=1:length(g_L) 
    

[Rout,Pout]=Pout_vs_R_IAG_fiber_onemode_endpump_R(N,sigma_ap,sigma_ep,

lambda_p,sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,L,a,Rl,Rl1,Rr1

,g_L(m),Rth1_L(m),Rth1_R(m)); 
    %figure 
    %plot(Rout,Pout/g_L(m)) 
    %hold on 
    for ii=1:length(Pout) 
        if Pout(ii)>g_L(m) 
            Pout(ii)=0; 
        end 
    end 
    n=find(max(Pout)==Pout); 
    Ropt(m)=Rout(n); 
    eita(m)=Pout(n)/g_L(m); 
end 

  
figure 
plot(Ropt,eita) 

  
function 

[Rout,Pout]=Pout_vs_R_IAG_fiber_onemode_endpump_R(N,sigma_ap,sigma_ep,

lambda_p,sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,L,a,Rl,Rl1,Rr1

,g_L,Rth1_L,Rth1_R) 
h=6.626e-34;% Planck constant 
r=linspace(0,1,200); 
zspan=0:0.01:1; 
c=299792458; % speed of light (m) 
v_p=c/lambda_p; 
%v_s=c/lambda_s; 
Acore=pi*a^2; 
Tau_p=1/Acore; 
Pp0=(g_L+N*L*sigma_as)*(h*v_p)*(sigma_ap*N+alpha_p)/(N*sigma_ap*tau*(s

igma_as+sigma_es)*Tau_p)/(1-exp(-(sigma_ap*N+alpha_p)*L));% input pump 

power (W) 
dR=0.001; 
Rth0=exp(2*(alpha_1*L-g_L))/Rl/Rl1/Rr1; 
if Rth1_L~=0&&Rth1_R~=0 
    Rout=[linspace(Rth0+1e-5,Rth1_L,max(ceil((Rth1_L-Rth0)/dR),200)) 

linspace(Rth1_R,0.9999,max(ceil((0.9999-Rth1_R)/dR),200))]; 
elseif Rth1_L==0&&Rth1_R~=0   
    Rout=linspace(Rth1_R,0.9999,max(ceil((0.9999-Rth1_R)/dR),200)); 
else 
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    Rout=linspace(Rth0,0.9999,max(ceil((0.9999-Rth0)/dR),200)); 
end 
%Rout=Rout(2:end-1); 
Pout=zeros(length(Rout),1); 
guess=0.5*g_L; 
dc=0.0001; 
c1=(-guess./log(Rr1*Rout)).^2*Rr1.*Rout; 

  
parfor m=1:length(Rout) 
    

Pout(m)=Pout_IAG_fiber_onemode_endpump_R(zspan,r,N,sigma_ap,sigma_ep,l

ambda_p,sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,L,a,c1(m),dc,Rl

,Rl1,Rout(m),Rr1,Pp0); 
end 

  
end 

 
function Pout = 

Pout_IAG_fiber_onemode_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambda_p,

sigma_as,sigma_es,lambda_s,tau,alpha_p,alpha_1,L,a,c1,dc,Rl,Rl1,Rr,Rr1

,Pp0) 
c=299792458; % speed of light (m) 
v_p=c/lambda_p; 
v_s=c/lambda_s; 
count_max=40; 
count=0; 

  
Ps0=sqrt(c1*Rl*Rl1);PsL=sqrt(c1/Rr/Rr1); 
[z,P] = ode45(@(z,P) 

IAG_fiber_onemode_endpump_R(z,P,r,N,sigma_ap,sigma_ep,v_p,sigma_as,sig

ma_es,v_s,tau,alpha_p,alpha_1,L,a,c1,Pp0),zspan,Ps0); 
dif_1=P(end)-PsL; 
Pout=0; 
while abs(dif_1)>1e-6&&count<count_max 
    dc=min(dc,c1/100); 
c11=c1+dc; 
Ps0=sqrt(c11*Rl*Rl1);PsL=sqrt(c11/Rr/Rr1); 
[z,P] = ode45(@(z,P) 

IAG_fiber_onemode_endpump_R(z,P,r,N,sigma_ap,sigma_ep,v_p,sigma_as,sig

ma_es,v_s,tau,alpha_p,alpha_1,L,a,c11,Pp0),zspan,Ps0); 
dif_11=P(end)-PsL; 

  
c1=abs(c1+dif_1/(dif_1-dif_11)*dc); 
Ps0=sqrt(c1*Rl*Rl1);PsL=sqrt(c1/Rr/Rr1); 
[z,P] = ode45(@(z,P) 

IAG_fiber_onemode_endpump_R(z,P,r,N,sigma_ap,sigma_ep,v_p,sigma_as,sig

ma_es,v_s,tau,alpha_p,alpha_1,L,a,c1,Pp0),zspan,Ps0); 
dif_1=P(end)-PsL; 

  
count=count+1; 
end 
if count~=count_max 
Pout=PsL*(1-Rr); 
end 
%figure 
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%plot(z,P(:,1),z,P(:,2),'r') 
end 

 

Table 8 Matlab code for calculation of the trace of kink point in Figure 5-4 (refer to Table 

5-4), for core-pumped IAG fiber lasers 

clear all 
clc 
g0_L=10;% initial guess of g_L 
dg=0.0002; 
Rl=1;Rl1=1;Rl2=1;Rr1=1;Rr2=1; 
r=linspace(0,1,200); 
zspan=0:0.01:1; 
N=1e26;% doping density, unit m-3 
sigma_ap=0.7e-24;sigma_ep=3.76e-26;% unit m^2 
c=299792458; % speed of light (m) 
lambda_p=8.03e-7;% pump wavelength (m) 
v_p=c/lambda_p; 
sigma_as=7.82e-26;sigma_es=4.4e-24;% unit m^2 
lambda_s=1.053e-6;% signal wavelength (m) 
v_s=c/lambda_s; 
tau=1.9e-4; 
a=100e-6;% core radius (m) 

  
alpha1=1.6*0;% absorption coef. (m^-1) 
alpha2=1.6*0; 
alphap=1.6*0; 

  
L=0.1; 
Alpha1=0.39796/L; 
alpha_1=Alpha1+alpha1; 
alpha_2=2.54*Alpha1+alpha2; 
alpha_p=(lambda_p/lambda_s)^2*Alpha1+alphap; 

  
% obtain Rth_R 
Rr_goal=Rth_1R_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambda_p,sigma_as

,sigma_es,lambda_s,tau,g0_L,Rl,Rl1,Rl2,Rr1,Rr2,alpha_1,alpha_2,alpha_p

,L,a); 
%Rr_goal=0.6 
[Ropt,eita]=Optimal_R_fiber_endpump_R(g0_L,Rr_goal,Rl,Rl1,Rr1,alpha_1,

alpha_p,L); 
fg0=Ropt-Rr_goal; 
count=0;count_max=20; 
while abs(fg0)>1e-9&&count<count_max 
    g1_L=g0_L+dg; 
    

Rr_goal=Rth_1R_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambda_p,sigma_as

,sigma_es,lambda_s,tau,g1_L,Rl,Rl1,Rl2,Rr1,Rr2,alpha_1,alpha_2,alpha_p

,L,a); 
    

[Ropt,eita]=Optimal_R_fiber_endpump_R(g1_L,Rr_goal,Rl,Rl1,Rr1,alpha_1,

alpha_p,L); 
    fg1=Ropt-Rr_goal; 
    g0_L=abs(g0_L+fg0/(fg0-fg1)*dg); 
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Rr_goal=Rth_1R_endpump_R(zspan,r,N,sigma_ap,sigma_ep,lambda_p,sigma_as

,sigma_es,lambda_s,tau,g0_L,Rl,Rl1,Rl2,Rr1,Rr2,alpha_1,alpha_2,alpha_p

,L,a); 
    

[Ropt,eita]=Optimal_R_fiber_endpump_R(g0_L,Rr_goal,Rl,Rl1,Rr1,alpha_1,

alpha_p,L); 
    fg0=Ropt-Rr_goal; 
    count=count+1; 
end 
g0_L % single-pass gain at the kink point 
eita % extraction efficiency at the kink point 
-log(Rr_goal)/(alpha_1*L) % last column of Table 6-2 

  

 

Table 9 BPM code for cladding-pumped IAG fiber lasers (implemented in Figure 4-4, 

Figure 4-5 and Figure 4-6) 

% 2D-scalar BPM with PML 
clear all 
clc 
% definition of structure 
r=100; % core radius (um) 
%L1=100; % cladding length um 
%L2=124; % whole length 
L1=340; % cladding length um 
L2=400; % whole length 
Lz=26e3; % propagation distance um 
Lpml=20; % PML thickness 
L=L2+2*Lpml; 
nco=1.5689; ncl=1.5734; nair=1; % Corning SMF28, core, cladding and 

air index 
%ncl=1.5689; nco=1.5734; 
lambda0=0.802; % um 
k0=2*pi/lambda0; 
epsilon0=8.854e-12; 
mu0=1.2566e-6; 
c=sqrt(1/epsilon0/mu0); 
omega=2*pi*c/lambda0; 
dx=2; dz=5; % um, dy=dx 
N1=L1/dx+1; N2=L2/dx+1; Npml=Lpml/dx; 
N=L/dx+1; 
Nz=Lz/dz+1; 
ref=1e-10;% PML Reflection 
m=2;% order of PML 
sigmax=(m+1)/2*epsilon0*c*nair/Lpml*log(1/ref); % sigma max 
n=nair*ones(N,N); % refractive index 

  
% Calculate sx/s, sy/s, PML definition 
sxs=ones(N,N); % sx/s 
sys=ones(N,N); % sy/s 
lambda_launch=lambda0; 
k0_launch=2*pi/lambda_launch; 
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nco_launch=nco;ncl_launch=ncl; 
omega_launch=2*pi*c/lambda_launch; 
for i=1:N 
        if i<=Npml; 
            sxs(:,i)=ones(N,1)/(1-1i*sigmax*((Npml-

i+1)/Npml)^m/omega/epsilon0/nair^2); 
            sys(i,:)=ones(1,N)/(1-1i*sigmax*((Npml-

i+1)/Npml)^m/omega/epsilon0/nair^2); 
        elseif i>=(N-Npml); 
            sxs(:,i)=ones(N,1)/(1-1i*sigmax*((i-

N+Npml)/Npml)^m/omega/epsilon0/nair^2); 
            sys(i,:)=ones(1,N)/(1-1i*sigmax*((i-

N+Npml)/Npml)^m/omega/epsilon0/nair^2); 
        end 
end 

  

  
% field define, assume x polarized LP01 and LP11  
Ex=zeros(N^2,Nz); 
Ex0=zeros(N,N); 
Ex1=zeros(N,N); 
A=sparse(N^2,N^2); 
B=sparse(N^2,N^2); 

  
% filter indexes 
Indi1=[];Indj1=[]; 
Indi2=[];Indj2=[]; 
for i=1:N 
    for j=1:N 
        R=sqrt((i-(N+1)/2)^2+(j-(N+1)/2)^2)*dx; 
        if R<=r 
            Indi1=[Indi1;i];Indj1=[Indj1;j]; 
        elseif R>=r&&R<=L1/2 
            Indi2=[Indi2;i];Indj2=[Indj2;j]; 
        end 
    end 
end 
% LP01 mode profile 
idx1=sub2ind(size(Ex0),Indi1,Indj1);idx2=sub2ind(size(Ex0),Indi2,Indj2

); 
R1=sqrt((Indi1-(N+1)/2).^2+(Indj1-(N+1)/2).^2)*dx; 
R2=sqrt((Indi2-(N+1)/2).^2+(Indj2-(N+1)/2).^2)*dx; 

  
% index profile 
neff_imag=-log(0.4)/3.3e-3/2/k0/1e6; % imaginary part of core index 
n(idx1)=nco-1i*neff_imag; 
n(idx2)=ncl; 

  
nn=zeros(N,N,Nz); 
for Z=1:Nz 
    nn(:,:,Z)=n; 
end 

  
figure 
[X,Y]=meshgrid((0:(N-1))*dx-L/2,(0:Nz-1)*dz); 
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nn_xz=abs(squeeze(nn(:,(N+1)/2,:))); 
nn_yz=abs(squeeze(nn((N+1)/2,:,:))); 
mesh(Y,X,nn_xz') 
shading interp 
figure 
mesh(Y,X,nn_yz') 
shading interp 

  
% launch LP01 mode 
% obtain neff 
%1.448675164708124, 1.443997253441347 
%r_launch=200;% launched mode radius, LP01 um 
%neff_01_launch=LP01_neff_IAG(r_launch,nco_launch,ncl_launch,lambda0); 
%neff_01_launch=neff_clad_fiber; 
n0=nco; % reference index 
Ex_launch=zeros(N,N); 
%kt0_launch=k0_launch*sqrt(nco_launch^2-neff_01_launch^2); 
%wt0_launch=k0_launch*sqrt(ncl_launch^2-neff_01_launch^2); 
%Ex_launch(idx1)=besselj(0,2.405/r_launch*R1); 
%Ex_launch(idx2)=besselj(0,2.405/r_launch*R2); 
phi=0.4*rand(N); % phase noise amplitude 
Ex_launch(idx1)=1*exp(1i*2*pi*phi(idx1)); 
Ex_launch(idx2)=1*exp(1i*2*pi*phi(idx2)); 
%Ex_launch(idx2)=besselj(0,kt0_launch*r)/besselh(0,1,wt0_launch*r)*bes

selh(0,1,wt0_launch*R2); 
%Ex_launch((N+1)/2,(N+1)/2)=1; 

  
% LPF method to generate the input field 
%NA=0.22; 
%X2=LPF_shaping(Ex_launch,N,NA,dx,lambda0); % low-pass filter shaping 
%Ex_launch2=zeros(N,N); 
%Ex_launch2(idx1)=X2(idx1); 
%Ex_launch2(idx2)=X2(idx2); 
%figure 
%mesh(abs(Ex_launch2)) 
%shading interp 
%Pp=sum(sum(abs(Ex_launch).^2)); 
%Pp2=sum(sum(abs(Ex_launch2).^2)); 
figure 
[X,Y]=meshgrid((1:N)*dx-(N+1)/2*dx,(1:N)*dx-(N+1)/2*dx); 
mesh(Y,X,abs(Ex_launch')) 
shading interp 
%Ex_launch=Ex_launch2; 
Ex(:,1)=reshape(Ex_launch,N^2,1); 
Pcore=zeros(Nz,1);Pclad=zeros(Nz,1); 

     
alpha=0.5; 
dx2=dx^2; 
% gmres iteration 
tol=1e-12; 
maxit=100; 
restart=20; 
A=sparse(A); 
B=sparse(B); 
for Z=1:(Nz-1) 
    % (i,j)=(1,1),(N,N) 
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    B(1,2)=-1i*dz*(1-alpha)*sxs(1,1)*0.5*(sxs(2,1)+sxs(1,1))/dx2; 
    B(1,N+1)=-1i*dz*(1-alpha)*sxs(1,1)*0.5*(sxs(1,2)+sxs(1,1))/dx2; 
    B(1,1)=2*n0*k0-1i*dz*(1-alpha)*(k0^2*(nn(1,1,Z)^2-n0^2)-

sxs(1,1)*(0.5*sxs(2,1)+0.5*sxs(1,2)+3*sxs(1,1))/dx2); 
    A(1,2)=1i*dz*alpha*sxs(1,1)*0.5*(sxs(2,1)+sxs(1,1))/dx2; 
    A(1,N+1)=1i*dz*alpha*sxs(1,1)*0.5*(sxs(1,2)+sxs(1,1))/dx2; 
    A(1,1)=2*n0*k0+1i*dz*alpha*(k0^2*(nn(1,1,Z)^2-n0^2)-

sxs(1,1)*(0.5*sxs(2,1)+0.5*sxs(1,2)+3*sxs(1,1))/dx2); 
    for i=2:(N-1) 
        % i=2:(N-1),j=1 
        B(i,i+1)=-1i*dz*(1-

alpha)*sxs(i,1)*0.5*(sxs(i+1,1)+sxs(i,1))/dx2; % E(i+1,j) 
        B(i,i-1)=-1i*dz*(1-alpha)*sxs(i,1)*0.5*(sxs(i-

1,1)+sxs(i,1))/dx2; % E(i-1,j) 
        B(i,i+N)=-1i*dz*(1-

alpha)*sxs(i,1)*0.5*(sxs(i,2)+sxs(i,1))/dx2; % E(i,j+1) 
        B(i,i)=2*n0*k0-1i*dz*(1-alpha)*(k0^2*(nn(i,1,Z)^2-n0^2)-

sxs(i,1)*(0.5*sxs(i+1,1)+0.5*sxs(i-

1,1)+0.5*sxs(i,2)+0.5*sxs(i,1)+2*sxs(i,1))/dx2); % E(i,j) 
        A(i,i+1)=1i*dz*alpha*sxs(i,1)*0.5*(sxs(i+1,1)+sxs(i,1))/dx2; % 

E(i+1,j) 
        A(i,i-1)=1i*dz*alpha*sxs(i,1)*0.5*(sxs(i-1,1)+sxs(i,1))/dx2; % 

E(i-1,j) 
        A(i,i+N)=1i*dz*alpha*sxs(i,1)*0.5*(sxs(i,2)+sxs(i,1))/dx2; % 

E(i,j+1) 
        A(i,i)=2*n0*k0+1i*dz*alpha*(k0^2*(nn(i,1,Z)^2-n0^2)-

sxs(i,1)*(0.5*sxs(i+1,1)+0.5*sxs(i-

1,1)+0.5*sxs(i,2)+0.5*sxs(i,1)+2*sxs(i,1))/dx2); % E(i,j)     
        % i=2:(N-1),j=N 
        B(i+(N-1)*N,i+1+(N-1)*N)=-1i*dz*(1-

alpha)*sxs(i,N)*0.5*(sxs(i+1,N)+sxs(i,N))/dx2; % E(i+1,j) 
        B(i+(N-1)*N,i-1+(N-1)*N)=-1i*dz*(1-alpha)*sxs(i,N)*0.5*(sxs(i-

1,N)+sxs(i,N))/dx2; % E(i-1,j) 
        B(i+(N-1)*N,i+(N-2)*N)=-1i*dz*(1-alpha)*sxs(i,N)*0.5*(sxs(i,N-

1)+sxs(i,N))/dx2; % E(i,j-1) 
        B(i+(N-1)*N,i+(N-1)*N)=2*n0*k0-1i*dz*(1-

alpha)*(k0^2*(nn(i,N,Z)^2-n0^2)-sxs(i,N)*(0.5*sxs(i+1,N)+0.5*sxs(i-

1,N)+0.5*sxs(i,N)+0.5*sxs(i,N-1)+2*sxs(i,N))/dx2); % E(i,j) 
        A(i+(N-1)*N,i+1+(N-

1)*N)=1i*dz*alpha*sxs(i,N)*0.5*(sxs(i+1,N)+sxs(i,N))/dx2; % E(i+1,j) 
        A(i+(N-1)*N,i-1+(N-1)*N)=1i*dz*alpha*sxs(i,N)*0.5*(sxs(i-

1,N)+sxs(i,N))/dx2; % E(i-1,j) 
        A(i+(N-1)*N,i+(N-2)*N)=1i*dz*alpha*sxs(i,N)*0.5*(sxs(i,N-

1)+sxs(i,N))/dx2; % E(i,j-1) 
        A(i+(N-1)*N,i+(N-1)*N)=2*n0*k0+1i*dz*alpha*(k0^2*(nn(i,N,Z)^2-

n0^2)-sxs(i,N)*(0.5*sxs(i+1,N)+0.5*sxs(i-

1,N)+0.5*sxs(i,N)+0.5*sxs(i,N-1)+2*sxs(i,N))/dx2); % E(i,j)  
    end 

     
    for j=2:(N-1) 
        % j=2:(N-1),i=1 
        B(1+(j-1)*N,2+(j-1)*N)=-1i*dz*(1-

alpha)*sxs(1,j)*0.5*(sxs(2,j)+sxs(1,j))/dx2; % E(i+1,j) 
        B(1+(j-1)*N,1+j*N)=-1i*dz*(1-

alpha)*sxs(1,j)*0.5*(sxs(1,j+1)+sxs(1,j))/dx2; % E(i,j+1) 
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        B(1+(j-1)*N,1+(j-2)*N)=-1i*dz*(1-alpha)*sxs(1,j)*0.5*(sxs(1,j-

1)+sxs(1,j))/dx2; % E(i,j-1) 
        B(1+(j-1)*N,1+(j-1)*N)=2*n0*k0-1i*dz*(1-

alpha)*(k0^2*(nn(1,j,Z)^2-n0^2)-

sxs(1,j)*(0.5*sxs(2,j)+0.5*sxs(1,j)+0.5*sxs(1,j+1)+0.5*sxs(1,j-

1)+2*sxs(1,j))/dx2); % E(i,j) 
        A(1+(j-1)*N,2+(j-

1)*N)=1i*dz*alpha*sxs(1,j)*0.5*(sxs(2,j)+sxs(1,j))/dx2; % E(i+1,j) 
        A(1+(j-

1)*N,1+j*N)=1i*dz*alpha*sxs(1,j)*0.5*(sxs(1,j+1)+sxs(1,j))/dx2; % 

E(i,j+1) 
        A(1+(j-1)*N,1+(j-2)*N)=1i*dz*alpha*sxs(1,j)*0.5*(sxs(1,j-

1)+sxs(1,j))/dx2; % E(i,j-1) 
        A(1+(j-1)*N,1+(j-1)*N)=2*n0*k0+1i*dz*alpha*(k0^2*(nn(1,j,Z)^2-

n0^2)-sxs(1,j)*(0.5*sxs(2,j)+0.5*sxs(1,j)+0.5*sxs(1,j+1)+0.5*sxs(1,j-

1)+2*sxs(1,j))/dx2); % E(i,j)   
        % j=2:(N-1),i=N 
        B(N+(j-1)*N,N-1+(j-1)*N)=-1i*dz*(1-alpha)*sxs(N,j)*0.5*(sxs(N-

1,j)+sxs(N,j))/dx2; % E(i-1,j) 
        B(N+(j-1)*N,N+j*N)=-1i*dz*(1-

alpha)*sxs(N,j)*0.5*(sxs(N,j+1)+sxs(N,j))/dx2; % E(i,j+1) 
        B(N+(j-1)*N,N+(j-2)*N)=-1i*dz*(1-alpha)*sxs(N,j)*0.5*(sxs(N,j-

1)+sxs(N,j))/dx2; % E(i,j-1) 
        B(N+(j-1)*N,N+(j-1)*N)=2*n0*k0-1i*dz*(1-

alpha)*(k0^2*(nn(N,j,Z)^2-n0^2)-sxs(N,j)*(0.5*sxs(N,j)+0.5*sxs(N-

1,j)+0.5*sxs(N,j+1)+0.5*sxs(N,j-1)+2*sxs(N,j))/dx2); % E(i,j) 
        A(N+(j-1)*N,N-1+(j-1)*N)=1i*dz*alpha*sxs(N,j)*0.5*(sxs(N-

1,j)+sxs(N,j))/dx2; % E(i-1,j) 
        A(N+(j-

1)*N,N+j*N)=1i*dz*alpha*sxs(N,j)*0.5*(sxs(N,j+1)+sxs(N,j))/dx2; % 

E(i,j+1) 
        A(N+(j-1)*N,N+(j-2)*N)=1i*dz*alpha*sxs(N,j)*0.5*(sxs(N,j-

1)+sxs(N,j))/dx2; % E(i,j-1) 
        A(N+(j-1)*N,N+(j-1)*N)=2*n0*k0+1i*dz*alpha*(k0^2*(nn(N,j,Z)^2-

n0^2)-sxs(N,j)*(0.5*sxs(N,j)+0.5*sxs(N-

1,j)+0.5*sxs(N,j+1)+0.5*sxs(N,j-1)+2*sxs(N,j))/dx2); % E(i,j) 
    end 
    for i=2:(N-1) 
        indj=2:(N-1); 
        idxj1=sub2ind(size(A),i+(indj-1)*N,i+1+(indj-1)*N); 
        idxj2=sub2ind(size(A),i+(indj-1)*N,i-1+(indj-1)*N); 
        idxj3=sub2ind(size(A),i+(indj-1)*N,i+indj*N); 
        idxj4=sub2ind(size(A),i+(indj-1)*N,i+(indj-2)*N); 
        idxj5=sub2ind(size(A),i+(indj-1)*N,i+(indj-1)*N); 
        B(idxj1)=-1i*dz*(1-

alpha)*sxs(i,indj)*0.5.*(sxs(i+1,indj)+sxs(i,indj))/dx2; % E(i+1,j) 
        B(idxj2)=-1i*dz*(1-alpha)*sxs(i,indj)*0.5.*(sxs(i-

1,indj)+sxs(i,indj))/dx2; % E(i-1,j) 
        B(idxj3)=-1i*dz*(1-

alpha)*sxs(i,indj)*0.5.*(sxs(i,indj+1)+sxs(i,indj))/dx2; % E(i,j+1) 
        B(idxj4)=-1i*dz*(1-alpha)*sxs(i,indj)*0.5.*(sxs(i,indj-

1)+sxs(i,indj))/dx2; % E(i,j-1) 
        B(idxj5)=2*n0*k0-1i*dz*(1-alpha)*(k0^2*(nn(i,indj,Z).^2-n0^2)-

sxs(i,indj).*(0.5*sxs(i+1,indj)+0.5*sxs(i-

1,indj)+0.5*sxs(i,indj+1)+0.5*sxs(i,indj-1)+2*sxs(i,indj))/dx2); % 

E(i,j) 
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A(idxj1)=1i*dz*alpha*sxs(i,indj)*0.5.*(sxs(i+1,indj)+sxs(i,indj))/dx2; 

% E(i+1,j) 
        A(idxj2)=1i*dz*alpha*sxs(i,indj)*0.5.*(sxs(i-

1,indj)+sxs(i,indj))/dx2; % E(i-1,j) 
        

A(idxj3)=1i*dz*alpha*sxs(i,indj)*0.5.*(sxs(i,indj+1)+sxs(i,indj))/dx2; 

% E(i,j+1) 
        A(idxj4)=1i*dz*alpha*sxs(i,indj)*0.5.*(sxs(i,indj-

1)+sxs(i,indj))/dx2; % E(i,j-1) 
        A(idxj5)=2*n0*k0+1i*dz*alpha*(k0^2*(nn(i,indj,Z).^2-n0^2)-

sxs(i,indj).*(0.5*sxs(i+1,indj)+0.5*sxs(i-

1,indj)+0.5*sxs(i,indj+1)+0.5*sxs(i,indj-1)+2*sxs(i,indj))/dx2); % 

E(i,j) 
    end 
    Ex(:,Z+1)=gmres(A,(B*Ex(:,Z)),restart,tol,maxit); 
    Z 
end 
Ex3D=zeros(N,N,Nz); 
for Z=1:(Nz-1) 
    Ex3D(:,:,Z)=reshape(Ex(:,Z),N,N); 
    temp=Ex3D(:,:,Z); 
    Pcore(Z)=sum(abs(temp(idx1)).^2); 
    Pclad(Z)=sum(abs(temp(idx2)).^2); 
end 
figure 
plot((0:(Nz-2))*dz,Pcore(1:Nz-1)/Pcore(1),(0:(Nz-2))*dz,Pclad(1:Nz-

1)/Pclad(1),'r',(0:(Nz-2))*dz,Pcore(1:Nz-1)/(Pcore(1)+Pclad(1)),'k') 
figure 
[X,Y]=meshgrid((0:(N-1))*dx-L/2,(0:Nz-1)*dz); 
Ex_xz=abs(squeeze(Ex3D(:,(N+1)/2,:))); 
Ex_yz=abs(squeeze(Ex3D((N+1)/2,:,:))); 
mesh(Y,X,Ex_xz') 
shading interp 
figure 
mesh(Y,X,Ex_yz') 
shading interp 
[X1,Y1]=meshgrid((0:(N-1))*dx-L/2,(0:(N-1))*dx-L/2); 
Ex_xy=abs(squeeze(Ex3D(:,:,Nz-1))); 
figure 
mesh(Y1,X1,Ex_xy') 
shading interp 

 

 


