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ABSTRACT 

  

 

NAGA SWETHA PASUPULETI Geospatial and statistical methods to model intracity  

truck crashes (Under the guidance of Dr. SRINIVAS S. PULUGURTHA) 

 

In recent years, there has been a renewed interest in statistical ranking criteria to 

identify hot spots on road networks. These criteria potentially represent high crash risk 

zones for further engineering evaluation and safety improvement. Many studies also 

focused on the development of crash estimation models to quantify the safety effects of 

geometric, traffic, and environmental factors on expected number of total, fatal, injury, 

and/or property damage crashes at specific locations. However, freight safety, 

specifically truck safety, was meagerly addressed. Trucks and long-combination vehicles 

(LCVs) that carry approximately 70% freight have significant potential in triggering 

crash occurrences on roads, mostly severe crashes. Truck transportation is therefore 

attracting more and more attention due to its effect on safety and operational performance 

as well as rapid industrial growth.  

Most of the past research on truck safety focused on intercity or interstate truck 

trips. Intracity truck safety related studies or research was hardly pursued. The major 

research objectives of this dissertation are:1) to develop a geospatial method to identify 

high truck crash zones, 2) to evaluate the use of different ranking methods for 

prioritization and allocation of resources, 3) to investigate the relations between intra city 

truck crash occurrences and various predictor variables (on- and off-network 

characteristics) to provide greater insights regarding crash occurrence and effective 

countermeasures, and 4)to develop truck crash prediction models.
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The prioritization of high truck crash zones was performed by identifying truck 

crash hot spots and ranking them based on several parameters.  Geospatial methods along 

with statistical methods were deployed to understand the relationships between geometric 

road conditions, land use characteristics, demographic, and socio-economic 

characteristics and truck crashes. Truck crash estimation models were then developed 

using selected on- and off- network characteristics data. To assess the suitability of these 

models, several goodness-of-fit statistics were computed. The geospatial methods and 

development of truck crash estimation models are illustrated using data for the city of 

Charlotte, North Carolina for the year 2008. It was found that on-off network 

characteristics, socio-economic characteristics and demographic characteristics that are 

within the 0.5-mile proximity have a vital influence on truck crash occurrence.  

The findings from the research are expected to provide information and methods 

on identifying truck crash zones and the likelihood of a truck crash occurrence due to 

intracity trips and its relationship with on- and off-network characteristics of a region. 

Furthermore, this research is expected to aid significantly in the process of selecting 

meaningful countermeasures to improve safety of users on roads. 
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CHAPTER 1: INTRODUCTION 

 

 

Freight transportation is key to economic growth. Transportation planners and 

engineers are not only concerned with the freight shipment, but also with their safe 

movement. According to the Commodity Flow Survey of 2007, trucks move 70.7% of all 

freight by value. The nation's 117 million households, 7.6 million business 

establishments, and 89,500 governmental units are part of an enormous economy that 

demands the efficient movement of freight (Freight Facts and FIGUREs, USDOT, 2010). 

Freight transportations categorized in many different ways depending on the mode, type 

of vehicle/equipment, and commodity. According to the Freight Facts and FIGUREs – 

2009,   trucks carried 11,539 millions of tons in 2002 and an estimated 13,243 millions of 

tons  in 2008 (59.7% and 61.61% of total shipments by all modes, respectively) in the 

United States.  

For any mode of transportation, safety is a very important aspect. Safety and 

mobility, be it goods or people, should go hand-in-hand to run the system efficiently. In 

spite of ongoing engineering, education and enforcement efforts, safety on roads is still a 

major issue in the transportation world. Traffic crashes are the seventh leading cause of 

death in the United States according to United States Department of Transportation 

(USDOT) and Bureau of Transportation Statistics (BTS) (2001).The global economic 

losses due to road traffic crashes exceed US$500 billion. As per World Health 
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Organization (WHO) 2009 records, over 1.2 million people are killed and over 20 

million injured globally in crashes every year. In the United States alone, 37,261 people 

were killed in 34,017 fatal crashes, and another 2.34 million were injured in 1.63 million 

injury crashes during 2008 (NHTSA, 2009). 

According to the Center for National Truck and Bus Safety (CNTBS), the number 

of persons killed in crashes involving a truck increased from 5,314 in 2002 to 5,537 in 

2006, though it decreased to 4,508 in 2008. Statistics indicate that 24% of fatal truck 

crashes occur on highways and about 59% of large truck fatal crashes occur on undivided 

highways that do not have controlled access and have signalized intersections (USDOT, 

2005).  According to surveys, large trucks constitute approximately 4% of all the vehicles 

on the roads of United States. However, they are involved in 8% of all vehicles in fatal 

crashes per year (Zhu and Srinivasan, 2010). 

The CNTBS in their 2008 annual facts book mentioned that an average of about 

5,200 trucks is involved in fatal crashes each year. Tractors pulling one semitrailer are the 

most common truck configuration involved in crashes, accounting for about 60% of all 

trucks involved in fatal crashes.  The report also stated that California, Florida and Texas 

had the greatest number of truck involvements over the period 2002 to 2008. In addition, 

the number of truck drivers killed nationwide in traffic crashes increased from 664 in 

2002 to 784 in 2006, and later decreased to 639 in 2008. An average of 363 pedestrians 

and 87 cyclists (bicycles, unicycles, and tricycles) are killed each year in traffic crashes 

involving trucks. Deaths, injuries, and property damages due to these crashes are not only 

a major cause of personal suffering and financial loss to the victims, their families and 

friends, but also to the society. Therefore, vehicle crashes have become a major social 
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problem in the United States (USDOT and BTS, 2001), and how to improve traffic safety 

has become a major societal concern (Evans, 2004).These truck crashes impose a variety 

of costs on the vehicle and its driver, and other drivers either directly or indirectly. 

The above facts shed light on the need for an in-depth study of the reasons for 

high truck crashes. Though there has been a lot of ongoing research in the field of 

transportation safety, truck safety, in particular, has not been explored much. It is well 

known and widely accepted that crashes involving trucks are generally more severe 

compared to other types of crashes. There have been a few studies on truck safety but 

most of them focused on trucks transporting between states or cities, not on intracity 

roads.  Intracity truck crashes account for a good percentage of truck crashes that occur. 

Though most of them are not fatal, they impose a huge impact. (NHTSA 2006, FMCSA 

2009). 

This research aims to address the relatively neglected aspect of intra city truck 

safety. Before beginning more in-depth discussions about trucks and their safety 

concerns, it is important to have an introduction about what trucks are, how different they 

are from other automobiles, and other related basic information.  

While trucks are of various sizes and volume, they are classified into various 

categories based on their weight, the number of axles, or tonnage carried. Based on the 

number and spacing of axles, they are classified into 13 different categories (Federal 

Highway Administration, 1985). They are: 

Class 1: Motorcycles - All two- or three-wheeled motorized vehicles. This category 

includes motorcycles, motor scooters, mopeds, motor-powered bicycles, and three-wheel 

motorcycles.  
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Class 2: Passenger Cars – All sedans, coupes, and station wagons primarily for 

passengers and including those passenger cars pulling recreational or other light trailers. 

Class 3: Other Two-Axle, Four-Tire Single Unit Vehicles – All two-axle, four-tire 

vehicles, excluding passenger cars. Included in this classification are pickups, panels, 

vans, and other vehicles such as campers, motor homes, ambulances, hearses, carryalls, 

and minibuses. 

Class 4: Buses - All vehicles manufactured as traditional passenger-carrying buses with 

two axles and six tires or three or more axles.  

Class 5: Two-Axle, Six-Tire, Single-Unit Trucks – All vehicles on a single frame, 

including trucks, camping and recreational vehicles, motor homes, etc. with two axles 

and dual rear wheels. 

Class 6: Three-Axle Single-Unit Trucks – All vehicles on a single frame, including 

trucks, camping and recreational vehicles, motor homes, etc. with three axles. 

Class 7: Four-or-More-Axle Single-Unit Trucks – All trucks on a single frame with four 

or more axles. 

Class 8: Four-or-Fewer-Axle Single-Trailer Trucks – All vehicles with four or fewer 

axles consisting of two units, one of which is a tractor or straight truck power unit. 

Class 9: Five-Axle Single-Trailer Trucks – All five-axle vehicles consisting of two units, 

one of which is a tractor or straight truck power unit. 

Class 10: Six-or-More-Axle Single-Trailer Trucks – All vehicles with six or more axles 

consisting of two units, one of which is a tractor or straight truck power unit. 

Class 11: Five-or-Fewer-Axle Multitrailer Trucks – All vehicles with five or fewer axles 

consisting of three or more units, one of which is a tractor or straight truck power unit. 
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Class 12: Six-Axle Multitrailer Trucks – All six-axle vehicles consisting of three or more 

units, one of which is a tractor or straight truck power unit. 

Class 13: Seven-or-More-Axle Multitrailer Trucks – All vehicles with seven or more 

axles consisting of three or more units. 

Overall, trucks involve a wide array of equipment, from small delivery vans and 

pick-up trucks to 18-wheelers. Truck equipment-type information is important in the 

application of models for congestion, air quality, safety, and pavement impact analyses. 

In this particular research, trucks with two axles and six tires or more are considered for 

analysis  

Since the highway infrastructure is a shared-use facility, huge trucks share the 

same network as personal automobiles and buses, which entail high interaction with 

passenger vehicles and small trucks.  The higher the interaction and conflicts, the higher 

the risk of a crash occurrence. 

The Federal Motor Carrier Safety Administration (FMCSA) has recognized the 

need and has given high priority to research regarding collisions between large trucks 

(gross vehicle weight > 4,540 kilograms or 10,000 pounds) and other vehicles on the 

roadway (Minnesota Statewide Heavy Vehicle Safety Plan,2005).  

Considering the massiveness of truck transportation and its impact on mobility, 

safety and economy, the current research focuses on truck-based movement, i.e., all 

vehicles with more than 2 axles,. Minimizing these crash costs and improving safety are 

major goals for many researchers and institutions.   
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1.1 Background 

According to the Commodity Flow Survey of 2007, trucks transport 70.7% of all 

freight by value, while the remaining is transported by other modes or means. 

Furthermore, the freight transported by trucks is 68.8% of all freight by weight, and 

39.8% by ton-miles (USDOT/BTS, 2008). The figures clearly explain the importance of 

large truck traffic. However, because of this substantial volume of truck traffic, its unique 

nature, its drivers along with the design/weight-related problems, trucks are one of the 

major reasons of crashes, injuries and fatalities on roads. (Commodity Flow Survey, 

2007) 

In 1998, large trucks accounted for 7% of the total vehicle miles traveled but were 

involved in 13% of all traffic fatalities (5,374 of 41,471) (NHTSA, 2000). In truck 

crashes, the car's occupants are much more likely to be killed than the truck driver (78% 

of the fatalities were car occupants) or injured (76% of the injuries were sustained by car 

occupants). 

As per Federal Highway Administration (FHWA), more than 5,000 people lost 

their lives because of large truck crashes in the year 2005. Furthermore, 114,000 people 

are injured in the United States during the same year because of road crashes involving 

large trucks with gross vehicle weight rating greater than 10,000 pounds (NHTSA, 2006). 

In 2007, 413,000 large trucks were involved in road crashes that resulted in 4,808 

fatalities. This is certainly an alarming figure as it accounted for 12% of the total 

fatalities, while trucks accounted for about 8% of highway vehicle-miles traveled in 

United States (NHTSA, 2008). According to United States FMCSA‟s2009 report, the 
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number of large trucks involved in serious fatal and non-fatal crashes increased 

significantly by 5.9% from 2004 to 2007. 

According to the 2008 National Highway Traffic Safety Administration (NHTSA) 

safety facts report, large trucks are much more likely to be involved in a fatal multiple-

vehicle crash – as opposed to a fatal single-vehicle crash – than passenger vehicles. The 

large truck crash facts for 2005 report, “Trucks Involved in Fatal Accidents Fact Book – 

2007” released in 2010, indicates that 5,049 fatal truck involvements were observed in 

2007. Besides these, there are around 78,000 injury crashes and 341,000 property damage 

only crashes involving large trucks in the United States. 

Decades of interdisciplinary research on vehicle crashes have revealed that there 

are generally five major factors affecting traffic safety and efficiency: driver behavior 

(about 160 million drivers in the United States), vehicle types (motorcycles to large 

trucks), roadway condition (design, capacity, pavement type), traffic characteristics 

(flow, speed, density, occupancy), and environmental factors (weather, etc.). All these 

factors interact with each other and influence the occurrences and severity of crashes. 

Driver behavior- affected by variables such as alcohol and drug use, reckless operation of 

vehicles, failure to properly use occupant protection devices, and fatigue - are major 

factors contributing to a high proportion of crashes (USDOT and BTS, 2001). Although 

driver maneuvers often involve considerable amount of subjective judgment, they are 

nonetheless the reactions to the roadway condition, traffic situation and other 

environmental factors. Hence, in this research roadway conditions, land use, socio-

economic and demographic data are considered for in-depth study and analysis.  
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There is a great need for innovative methods and solutions to avoid crashes or 

reduce crash severity and improve safety of large truck movement. It is highly necessary 

in view of the revisions applied to the road or truck network to identify appropriate 

proactive measures and treatments to improve truck safety. To implement proper 

regulations to control these alarmingly increasing crash counts, the root cause of the 

problem need to be identified. 

Regulations will have a significant effect on freight flows in a region. As an 

example, safety regulations such as route restrictions, truck size, and weight limitations 

influence routing patterns of truck movements, types of equipment used, and shipment 

sizes. Environmental regulations pertaining to emissions will affect equipment types, 

while hours of service regulations affect the time-of-day characteristics. Land use 

regulations may have the most significant impact on freight demand due to the inherent 

interrelationship between land use and transportation. For example, land use regulation 

on the development of warehousing facilities in a region influences truck traffic patterns 

and trip length distributions. To recommend such measures, it is vital to identify where 

truck crashes are high, when are they occurring, and what are the factors/reasons 

contributing to these high crash counts. These basic questions need to be answered 

thoroughly to come up with appropriate safety measures or techniques for appropriate 

allocation of resources. As on- and off-network characteristics have a bearing on the 

number trips, travel patterns and safety, it is important to examine the direct relationship 

between these characteristics and truck crashes. Hence, finding answers to where, when 

and why truck crashes are occurring will aid agencies to address this critical issue, and set 

a goal to reduce truck-involved crashes significantly.  Research outputs can be informed 
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to land use policy and transportation planning departments for further safety 

enhancements. 

1.2 Problem Statement 
 

Safety can significantly influence the overall planning and design of new and 

rehabilitated infrastructure. Safe, Accountable, Flexible, and efficient Transportation 

Equity Act: A Legacy for Users (SAFETEA-LU) establishes a clear set of process and 

content requirements for states to establish a system that identifies hazardous locations, 

sections, and elements using different types of crash data. This is expected to facilitate 

and assist in problem identification and countermeasure selection. An analytically 

attractive approach is required to calculate risks in terms of crash rates based on factors 

of interest, using appropriate measures of exposure. 

When planning new roadways, large trucks are considered more important than 

passenger vehicles due to certain factors such as their performance on grades, horizontal 

curves and different pavement types or the effect of weather on their performance. A 

downgrade or steep grade can not only affect truck braking performance but can also be 

problematic when an inattentive or inexperienced driver accelerates at an unsafe speed 

that may result in the loss of control of the truck. Similarly, a steep upgrade can be 

problematic in situations where a large truck driver is moving at a significantly slower 

speed compared to the rest of the vehicle traffic stream along the road section. In such 

situations, the drivers of other vehicles may decide to accept higher risks by passing the 

large trucks. Such risky initiatives may cause hazardous crashes. Therefore, a lot of 

attention and focus on truck movement and their potential effect is needed for safe 

planning aspects of transportation. 
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Many studies and researches focused on intersection crash estimation models 

(Pulugurtha and Nujjetty, 2011, 2012), pedestrian crash models (Pulugurtha and 

Sambhara, 2011), and so on. However, not many focused on truck crash estimation 

models. A few of them developed models considering network characteristics or roadway 

geometrics or driver characteristics, but truck crash estimation models relating crashes to 

demographic, socio-economic and land use characteristics were hardly found in the 

literature. Truck crash estimation models developed considering such characteristics 

would play a significant role in incorporating safety into the planning process and adopt a 

proactive approach to make road transportation system more effective and efficient. 

Geographic Information Systems (GIS) has been proven to be a useful tool for 

mapping and spatial analysis in transportation studies (Miller and Shaw, 2001; Thill, 

2000). Many researchers have used GIS to display crash locations on digital maps and 

perform various spatial analyses (including hot spot analysis) of crashes (Black, 

1991; Flahaut et al., 2003; Kam, 2003; Levine et al., 1995a; Petch and Henson, 

2000; Steenberghen et al., 2004). Following earlier works on network autocorrelation 

analysis (Black, 1992; Black and Thomas, 1998), one recent significant advancement is 

the network-constrained approach to conduct spatial point pattern analysis over a network 

(Yamada and Thill, 2004; Yamada and Thill, forthcoming). In addition, GIS enables 

researchers to link crash data with travel information, land use, and social-economic 

information to capture the relationship between crash occurrence and contributing 

factors. 
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Principles pertaining to the field of statistics have been used to develop safety 

performance functions of many transportation systems (Abbess et al., 1981). The most 

common probabilistic models used by transportation safety analysts for modeling motor 

vehicle crashes are the traditional Poisson and Poisson-Gamma distributions (Haleem et 

al., 2009). Research also documents statistical relationships based on generalized linear 

models (GLMs) using Poisson distribution, Poisson-Gamma distribution and Negative 

Binomial (NB) regression models. Other models developed by researchers in the past 

include Probit models (Jason, Kockelman, and Avinash, 2010), Logit models (Srinivasan, 

2002), Interactive Highway Safety Design Model - IHSDM (FHWA National Highway 

Institute2010), and zero-inflated models (Lord et al., 2005). These studies mostly focused 

on pedestrian safety or crashes, in general, at intersections or mid-block. 

To address truck safety issues, it is necessary to estimate the number of crashes 

based on the various factors that increase crash risk.  In brief, the three questions that 

need to be answered are: where are crashes high?; when are they occurring?; and what 

are the causes?  If these questions are addressed, it will be of great help to the 

transportation planners in improving safety and resource allocation 

Simple crash plotting, or geo coding crash locations, cannot effectively aid in 

enhancing safety. Hence, this research aims to establish a geospatial method and use 

statistical techniques that can provide meaningful insights for truck safety studies. To fill 

in the gaps of previous research, this study aims to develop a methodology aiding in the 

identification of high-risk truck crash zones and elevate any relationship between these 

high-risk zones and surrounding on-/off-network characteristics. The idea behind this 

research is to bring in the various geometric, land use, demographic and socio-economic 
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characteristics into a serious purview and look into possible intracity truck safety 

improvements by altering them.  

It is important to recognize that intracity systems are different from intercity 

systems. Intracity travel are based on time, cost and convenience considerations for the 

entire journey – from origin to destination – as against time and cost considerations for 

only with respect to  intercity travel. Access and reliability are relatively important for 

intracity travel. When a crash occurs on these intracity roads especially a truck crash, it 

has immense impact on travel time, congestion and economy. Though there has been lot 

of emphasis on interstate and intercity safety studies, intracity truck safety studies are 

meager even today.  

This dissertation aims to bridge the identified research gaps in truck safety 

planning process by using truck crash estimation models to answer the key questions as 

to where, and why truck crashes could possibly occur on intracity road networks. 

1.4 Research Objectives 

The primary goal of this dissertation is to research geospatial methods to prioritize 

zones and develop intracity truck crash estimation models for improving safety on roads. 

The key objectives of this dissertation are: 

 To evaluate and determine where truck crashes occur and what are the causes; 

 To research and develop geospatial methods to identify the locations or zones 

with high truck crashes;  

 To evaluate ranking methods for prioritization of high truck crash zones; 

 To assess the role of spatial proximity or buffer width to capture off-network 

characteristics data for modeling; 
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 To research and understand the relationship between and on- and off- network 

characteristics and truck crashes; and, 

 To develop truck crash estimation models to help estimate intracity truck crash 

risk and proactively apply countermeasures. 

1.3 Research Organization 
 

The proposed methodology in this research deals with identifying high intracity 

truck crash zones and estimating truck crash models. Various on-network and off-

network characteristics data were considered as independent variables in the development 

of models, along with land use characteristics.  

The remainder of the dissertation consists of four chapters. Chapter II discusses 

various truck crash estimation/modeling techniques. A brief discussion of statistical 

analysis methods and distributions used in the past was also discussed in this chapter. 

Chapter III describes the proposed methodology, including the procedure to identify 

where truck crashes happen, the methods to extract data and examine the relationship 

between on- and off-network characteristics and truck crashes, and the geospatial and 

statistical methods that were adopted in developing truck crash estimation models. 

Chapter IV describes the selection of study area, data collection, design of sample size, 

and various characteristics of the data considered for the analysis. The results obtained 

are also discussed. A summary of findings, conclusions, and potential for future research 

is presented in Chapter V. 

 



 
 

  

CHAPTER 2: LITERATURE REVIEW 
 

 

Trucks play a vital role in freight movement, contributing to the nation‟s thriving 

economy. However, there are safety threats that accompany the mobility of trucks. It is 

important to identify factors that affect safety due to large trucks because it helps in 

developing progressive policies and regulations to enable transportation facilities to 

operate without compromising on efficiency and safety. 

Previous research on truck crash severity has been diverse, both empirically and 

methodologically. From an empirical standpoint, numerous research studies have focused 

on the casualty of crashes and attempted to isolate the risk factors that have contributed to 

truck crash severity. Determinants causing truck crashes include socio-economic factors 

such as real gross domestic product (GDP), the unemployment rate, roadway 

characteristics, mileage driven, interstate highway travel, distribution of the population, 

age, gender, and ethnicity, traffic congestion, speed limit and weather condition.  

A number of studies have attempted to identify driver characteristics (e.g., age 

and gender) (Campbell, 1991). From a methodological standpoint, varieties of statistical 

approaches were used to study crash severity. Many of these analytical methods are 

applied using aggregate data. The disadvantage of using aggregate data is that it can 

result in a loss of site- or location-specific information on the relationships between crash 

severity and contributing factors.  
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Researchers often followed two major approaches to study heavy trucks and long-

combination vehicle (LCV) safety. One major approach is giving emphasis to operational 

characteristics and design requirements of large trucks as this can help in understanding 

and anticipating actual safety impacts in real conditions (Debauche and Decock, 2007; 

Glaeser et al., 2006; Hanley and Forkenbrock, 2005; Knight et al., 2008;Renshaw, 2007). 

Another approach of studying safety measures of large trucks and LCV safety evaluation 

is to analyze actual crash rates and their outcomes in order to identify general trends and 

relationships (Campbell, 1991).  

Overall, a wide array of analytical methods, tools and technologies were applied 

to make the transportation system safer and efficient. How high crash locations were 

identified as well as the methods and tools used to calculate crash estimation models are 

discussed next. 

2.1 High Crash Zones and Factors Affecting Truck Crashes 

 

In general, research on traffic safety includes identification of dangerous locations 

and contributing factors based on the reported crash data (post-crash analysis). Aggregate 

traffic flow data and crash records were used to facilitate such research studies.  

In order to organize, relate, and analyze the roadway crash data, GIS was used by 

many researchers. GIS analysis can help in facilitating identification of crashes and their 

evaluation. As an example, a GIS-based methodology was developed and used to identify 

high pedestrian crash zones, and rank them in decreasing order of risks involved. This 

ranking helped in prioritizing, identification and execution of pedestrian safety measures 

and treatments (Pulugurtha andNambisan, 2003). 
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Jovanis et al. (1983) compared the crash involvement rates for motor vehicle 

crashes to identify whether large trucks have higher fatality and/or injury rates than other 

types of vehicle. Chira-Chavala et al. (1984) applied Logit models to study the effect of 

truck crash severity. They found that collisions with passenger cars, collisions on dry 

surface roads at night, and collisions on undivided rural roads usually resulted in higher 

fatality and injury ratios.  

Golob et al. (1987) statistically compared the mean number of injuries and 

fatalities by collision type and the number of involved vehicles in truck-involved freeway 

crashes. Alassar (1988) used a log-linear modeling approach to examine the crash 

severity of truck-involved crashes and identified the contributing factors (e.g., collision 

types and road class) for fatal and injury crashes. Saccomanno et al. (1988) used GLMs 

to explore the relationships between truck crash occurrence and highway geometric 

designs. 

Campbell (1988) addressed the issue of a minimum age for drivers of large trucks 

by comparing the fatal crash involvement rates against driver age. Khasnabis et al. (1989) 

used a time series analysis to forecast truck crashes. Braver et al. (1996) examined the 

crash involvement rates for different truck configurations (e.g., singles and doubles) to 

identify if a configuration is significantly safer than others are. The effect of roadway 

geometry, weather, and other vital factors on the crashes involving fatal large truck-car 

crashes (Braver et al., 1996) established the relationship between conditions such as 

defiance of traffic control devices and rules, curves, slippery and roadway conditions and 

fatal crashes. 
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Duncan et al. (1998) performed a research study and examined the injury incurred 

on passenger-car occupants in case of rear-end collision with a heavy truck. Highway 

Safety Information System (HSIS) data from North Carolina for the time duration of 

1993-1995was used to develop ordered-probit models. The result of their study suggested 

that higher speed, darkness, and grade increased the rigorousness of the injury. The 

results also indicated that drunk drivers and females are more prone to sustain drastically 

severe injuries when compared to non-drunk drivers and males, respectively. The 

research also strengthened the idea that snow/icy or bad weather conditions often 

uncharacteristically decrease the severity of injuries compared to the injuries sustained 

during a large-truck crash in dry and free-flow traffic conditions. The research report 

concluded that a car being struck in the rear led to more severe injuries when compared to 

a truck being struck at the rear (Duncan et al, 1998). 

Chang and Mannering (1999) adopted an un-ordered discrete-choice structure to 

develop and model severity of injuries. The researchers divided the available data into 

truck-involved and non-truck-involved road crashes and explained the statistical and 

experimental importance of these divisions. The results emphasized that more severe 

injuries happen in cases of crashes involving large trucks moving at higher speeds. On 

the other hand, the effect of high speed is insignificant in the case of non-truck crashes. 

The study also looked at that the effect of turning movements (left-turn and right-turn). 

The results indicated that multiple-occupant vehicles in truck-involved crashes often 

result in considerably severe injuries. 
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Nukoolkit, et al. (2001) used a neural network to investigate the effect of different 

variables on crash severity to identify dangerous crash patterns. 

In order to identify empirically significant factors contributing to truck crashes in 

New Jersey, a GIS-based Truck Accident Information and Management System (TAIMS) 

was developed. Even though the crash samples used in the study included a very short 

period of two years, 1998 and 1999, the results were found to be accurate and that 

TAIMS was adjudged as a potential tool that can help in truck crashes analysis. The 

results suggested that TAIMS can effectively correlate electronic maps, traffic crash data 

and roadway geometry data, but could not induce other useful variables such as land use 

information. Maintaining truck crash data and related information also proved to be time 

consuming and difficult to maintain consistency and completeness. This can affect the 

efficiency of TAIMS. Therefore, it is necessary to produce a system that can provide an 

appropriate database with the capability of data standardization and verification. This will 

help manage relevant information such as annual average daily traffic (AADT) and will 

help in improving the results of TAIMS (Daniel and Chin, 2003). Additionally, this will 

help identify and provide technologies and recommendations that may be included in 

planning proper safety measures against large truck crashes. 

Khattak et al. (2003) used HSIS data of North Carolina for a two-year period 

(1996-1998) to examine the severity of injuries caused in crashes involving single-large 

trucks. The basic idea behind the research study was to analyze the differences between 

rollover and non-rollover crashes. Ordered-probit models were used to establish that 

rollover crashes resulted in severe injury crashes involving single-trucks. 
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There have been extensive investigations about the relationship between the 

severity of injuries in road crashes involving large trucks and the gender and age of 

vehicle occupants. Crashes involving large trucks, tractors or semitrailers on expressway 

ramps are influenced largely by the interaction between the geometry of the expressway 

and vehicle dynamic behavior. Underage or inexperienced drivers also affect the 

causation of severe injuries in road crashes involving large trucks. Based on the analysis 

of relationship between minimum drinking age (MDA) and highway fatalities during the 

period of 1975 to 1985, an11% decrease in highway fatalities involving 18-20 years old 

drivers can be expected if the minimum drinking age is increased from 18 to 21 years.  

An increasing risk of severe injuries caused in crashes involving large trucks was 

reported in relationship with driver age for older and younger age driver group (Abdel-

Aty, 1998). Golob and Recker (2003) stated that traffic volume plays a greater influential 

role on the severity of injuries during a crash than speed. 

A learning process to develop a model that can be compared with a separate 

validation dataset to verify the accuracy was employed to make a full use of Bayesian 

method. The dataset used for this study was based on rural two-lane collector and arterial 

horizontal curves in Ohio, comprising 15,390 observations from crash records between 

2002 through 2006. This study specifically stressed on the observation of impact of 

shoulder width, horizontal curve radius, curve length, and other traffic parameters. The 

results of the study suggested a significant increase in truck crashes due to both 

horizontal curvature and passenger vehicle volumes (Daniel and Chien, 2004). 
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Wang and Kockelman (2005) in their research study reported that a dramatic 

reduction in the probability of severe (36.5%) or fatal injuries (47.5%) for vehicle drivers 

who promptly use safety restraints as compared to those who often ignore safety 

measures. 

Comparison between neural networks and Logit models was made using vehicle 

crash data on two-lane rural highways in Iran (Nassiri and Edrissi, 2006). A number of 

variables related to roadways, vehicles, environment and drivers (such as driver fatigue, 

head-on collision and lack of vehicle control) were found to have a significant effect on 

the severity of truck crashes. In addition, investigating the marginal effects of variables 

showed the same variables to be significant. The results of the comparison between the 

Logit and neural network model indicated that they both show similar patterns regarding 

the effects of different variables causing truck crashes, with the Logit model providing 

better results. 

The United States Large Truck Crash Causation Study (LTCCS) (Knipling, 2008) 

included information about 963 crashes involving 1,241 trucks in between 2001 and 

2003. Knipling (2008) used this data to compare combination truck and single-unit truck 

crashes. Forty-four characteristics including crash type, driver characterization, driving 

environment and vehicle types were studied. According to the study results, the 

percentage of crashes in darkness was three times higher for combination trucks in 

comparison to single-unit trucks.  

A model that captured both signal and roadway segments was developed to 

observe truck safety on roadways with signalized intersections. The model can be used 
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for not only determining truck safety but also roadway safety (Kiattikomol, Chatterjee, 

Hummer, and Younger, 2008). 

The relationship between driver characteristics/behavior and crash injury severity 

have been studied extensively. Many studies have significantly emphasized drug and/or 

alcohol usage by drivers and its effect on large truck crashes. The driver‟s alcohol or drug 

consumption dramatically increases the odds of having severe and even fatal crash 

injuries (Kim et al., 1995). Studies have suggested that drivers whose blood alcohol 

concentration (BAC) was greater than 0.3 gram per deciliter (g/dl)were three times more 

likely to be involved in crashes and incur severe fatal injuries (Bedard et al., 2002). Study 

performed by Khattak et al. (2002) stressed the safety issues regarding increasingly older 

drivers who were over the age of 65 years. This research also indicated that the alcohol 

consumption would increase the chances of fatal injuries in large-truck crashes. The 

factors that contribute to fatality in large-truck crashes aretruck drivers, vehicle defects, 

environmental conditions, and roadway geometry. Analyses have shown that the 

combination of effects of alcohol, misguided brakes, and conversation may lead to 

fatalities in large-truck crashes. The combination of alcohol effects with other factors 

including roadways geometry may increase the probability of a fatality on two-lane 

highways by 96%. In cases of distracted drivers, the probability of fatality may increase 

up to 77% when alcohol is involved in crashes on two-lane highways (Singh, 2009). 

 Zhu and Srinivasan (2010) used the data from the LTCCS. The empirical results 

obtained through ordered-probit models indicated the effects of various behaviors of 

drivers (variables) on the severity of injuries. Distraction of truck drivers, alcohol 

consumption by car drivers, and emotional factors of car drivers were taken into 
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consideration. Furthermore, the results also indicated the impact of other factors such as 

truck-driver fatigue, aggression, and seat belt usage on the severity of injuries caused in 

large truck crashes but it turned out to be statistically insignificant. 

While most of the studies indicated a significant role played by traffic exposure 

on severity of injuries sustained in a crash, some studies found that the influence of 

AADT is almost insignificant on the probability of truck crash occurrences. Past research 

studies and results also indicated that AADT is highly associated with crash frequency, 

while there is no direct relationship between AADT and crash types.  

2.2 Crash Estimation Models 

In general, any research on traffic safety includes an identification of dangerous 

locations and contributing factors based on the recorded studies of post-crash analysis.  

There has been considerable research over the last three decades on the development of 

crash prediction or estimation models (Abbess et al., 1981; Hauer et al., 1988; Persaud 

andDzbik, 1993; Kulmala, 1995; Poch and Mannering, 1996; Lord, 2000; Ivan et al., 

2000; Lyon et al., 2003; Miaou and Lord, 2003; Oh et al, 2003; Pulugurtha and 

Sambhara, 2011; Pulugurtha and Nujjetty, 2012). 

Researchers, however, continuously tried to attain better methods to provide 

greater consistency with improved data generating mechanism, which may provide better 

statistical fit and suggest in-depth information, which was not available earlier.  Multiple 

linear regression models were initially used to study the relationships between vehicle 

crashes and geometric conditions of road sections such as horizontal curvature, vertical 

grade, shoulder width and lane width (Roy Jorgensen Associates, Inc. 1978; Zegeer et al. 

1987; Okamoto and Koshi 1989; Zegeer et al., 1990). 
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Researchers analyzing the relationship between vehicle crashes and geometric 

design faced problems of dealing with a huge number of road sections at random that had 

no reported crashes during the study period.  

Maycock and Hall (1984) said that the inappropriateness of multiple linear 

regression models led the researchers to explore and use Poisson and NB regression 

models to identify factors that affect large truck safety and provide information about 

high crash zones.  Jovanis and Chang (1986) stated that multiple linear regression models 

are not suitable for making probabilistic statements or guidelines for vehicle safety and 

crashes since most of the multiple linear regression models rely on normal assumptions 

and they lack the distributional property, which is necessary to explain the random and 

discrete vehicle crashes in an appropriate manner. As a result, most of the test statistics 

derived from any such multiple linear regression model are inapt and questionable 

(Miaou, 1993).   

The Poisson and NBregression models are certainly better and more appropriate 

for studying and identifying safety factors affecting large truck safety when compared to 

multiple linear regression models because they provide a desirable distributional property 

that can describe vehicle crashes and geometric design relationship. However, Poisson 

and NBregression models are not without limitations and the relative performance of 

these models in establishing such relationships has not been evaluated yet (Miaou, 1993).  

Hauer (2001) suggested that the major reason behind over-dispersion in a 

particular model is that observed units with same represented traits can have different 

means because of differences between unrepresented traits which have not been included 
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in that model. Over-dispersion may also arise from the real nature of the crash process 

and its impact (Mitra and Washington 2006). It can be the result of Bernoulli trial 

associated with unequal probability of independent events that are known as Poisson 

trials. Lord et al. (2005) mentioned that distributions like Poisson-gamma or Poisson-

lognormal could be used for capturing over-dispersion pattern observed in crash data. 

In order to enhance the traffic safety analysis, Thobias (2005) used a prediction 

model based on Bayesian Belief Networks technique to study the relationship among 

various model variables such as AADT, section length, speed limit, the number of lanes, 

surface width, and the number of crashes per year for each road segment. The model was 

designed to estimate the number of crashes per year on a roadway segment for every set 

of values of all of the model variables. The model incorporated GIS to display results. 

The result was a map of the roadway network that provided information about the 

estimated crash category for each roadway section. The results obtained through this 

newly developed model provided the estimation accuracy of 68.08% in the first set of 

estimations and 78% accuracy for second set. 

Kim et al. (2006) studied the application of binomial multilevel models of crash 

types with the help of 548 motor vehicle crashes collected from 91 two-lane rural 

intersections in the state of Georgia. Crash estimation models estimating angle, rear-end, 

and sideswipe (both same direction and opposite direction) crashes were developed. This 

research study showed the importance of hierarchical data structure and its application in 

theoretical and suitable analytic approach for multilevel data, yielding intersection-related 

crashes by crash type.  
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Spatially disaggregated safety analysis models are being used in an increasing 

number of research efforts, which are anticipated to help in meeting the needs of region-

level safety inspection. However, it is necessary to differentiate between the exposure 

variables and risk factors between different regions in order to provide a consistent crash 

frequency in different alternative studies. 

Vavilikolanu (2008) performed a study in Ohio to develop appropriate estimation 

models that would analyze the effect of geometry, speed, and traffic volumes on large 

truck crashes on two-lane rural vertical curves. Three crash estimation models were 

developed using NBregression. These were then re-developed by using Bayesian 

approach so that the results obtained can be improved in the reduced models. Around 

1,900 vertical curve segments with 200 large truck crashes data from 2002 to 2006 were 

studied. The results were evaluated to correlate vertical curve variables, which were 

relevant to the large truck crashes. It was found that low speed limit on crest curves and 

high speed limit on sag curves contributed to an increase in large truck crashes.  

Huang et al.(2010)developed a Bayesian spatial model to help in accounting for 

county-level variations of crash risks in Florida by explicitly differentiating the variables 

of daily vehicle miles traveled in population. The results obtained suggested that there is 

no major difference in safety effects of risk factors on all crashes and severe crashes. It 

was also observed that the counties with higher traffic density and population density 

along with a higher level of urbanization had higher crash risk. The freeways are safer 

than arterials with respect to crash risk. Increased truck traffic volume also results in 

more severe crashes. The average travel time to work is negatively correlated with all 

types of crash risk. Population and age differences also tend to have an effect on crashes. 
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The young drivers tend to be involved in more crashes, whereas the increase in elderly 

population leads to less causality. 

Park (2010) stated that while most of the studies performed for developing 

statistical models of crash data address a few major common properties of crash data, the 

real factors that are responsible for heterogeneity of crashes are still unknown to 

researchers. The study suggested that failure in accounting for the heterogeneity of 

crashes in any model could reduce the validity of the empirical results. Based on research 

on the different crash count models for modeling highway safety measures, the author 

stated that the continuous mixture of Poisson/Gamma distribution model is often 

preferred for accommodating over-dispersion and related issues. Yet, it is not certain that 

empirical frequencies of crash data will follow any particular distribution used for 

determining the Poisson mean rate. 

A surrogate measure, Unsafe Following Condition (UFC), to estimate the 

probable likelihood of traffic crash with the help of individual vehicular information had 

been developed in the past (Park and Son, 2011). The individual vehicular information 

was applied to major sections of interstate highway in Virginia. Crash data and individual 

vehicular data were used to develop a statistical crash estimation model along with some 

hurdle models. The result of this research study, aimed at developing crash prediction 

models, showed that an aggregate UFC measure could help in predicting a traffic crash 

occurrence effectively. The results also showed that the Poisson model proved to be more 

effective than the other possible count data models in certain cases. The study proved that 

the aggregate UFC can work effectively to predict the probability of occurrence of rear-

end crashes. 
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Pulugurtha and Sambhara (2011)focused on the examination of non-linear 

relationship between pedestrian crashes and predictor variables such as demographic 

characteristics (population and household units), socio-economic conditions and road 

network conditions which include the number of lanes, speed limit, presence of median 

and pedestrian and vehicular volume along with the accessibility to public transit system. 

The other aim of this research was to develop generalized linear pedestrian crash 

estimation models by the level of pedestrian activity and spatial proximity to extract site-

specific data at signalized intersections. Data for 176 random signalized intersections in 

the city of Charlotte, North Carolina was used to examine the non-linear relationships 

that may be used to develop pedestrian crash estimations models. The average number of 

pedestrian crashes per year within 200 feet of each intersection was taken as a dependent 

variable, while the demographic characteristics, socio-economic conditions, land use 

patterns, road network characteristics and the number of transit stops were regarded as 

the predictor variables. To eliminate the predictor variables, which were in correlation 

with each other, the Pearson correlation coefficient was used. Statistical analysis 

suggested that increasing population, the number of transit stops, the number of 

approaches at an intersection and the pedestrian volume would typically result in an 

exponential increase in the number of pedestrian crashes. Land use predictor variables 

such as single-family residential area and neighborhood services have a negative effect 

on the pedestrian crashes in an area. This may be because of the increased level of 

pedestrian volume in such areas (Pulugurtha and Sambhara, 2011). 
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Many of the past research focused on estimating general or pedestrian crashes, 

while a few authors tried estimating truck crashes using driver or vehicular information. 

Not much literature was found on studies estimating intra city truck crashes using on- and 

off-network characteristics.  

2.3 Limitations 

Literature documents immense research to demonstrate that different crash types 

are related to predictor variables in different ways and that the estimation of crash models 

may provide more information about crash occurrence and proactively minimize 

occurrence of crashes through proper safety measures. 

Most of the literature on truck safety focused on intercity truck crashes or total 

truck crashes in general. Hardly any studies are found on intracity truck crashes. While 

there are many crash estimation models that were developed to proactively deploy 

countermeasures and improve safety, very few models have been developed that can 

offer insights about the types of intra city truck crashes, reasons for occurring, expected 

crash frequency and other key numbers. Examining these details can enhance 

transportation safety and minimize several varieties of costs.  

Interstate roadways often experience high percentage of truck trips. Despite this, 

only 24% of fatal truck crashes are observed on Interstate roadways (NHTSA 2006). Out 

of all, 59% fatal truck crashes occurred on undivided highways that do not have 

controlled access and have signalized intersections. The statistics suggest that truck safety 

research should not only concentrate on the Interstate driving conditions but should also 

stress on improving truck safety for secondary roadways. While many methods have been 

developed for segmenting roadways for safety analysis and performance functions, no 
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instruction is available for segmenting and modeling secondary, relatively low-volume 

roads.  

Truck crashes are a major issue of concern because often they involve serious 

injuries and increase the probability of fatality. Logit modeling and neutral network 

modeling were the basic model structures developed to investigate factors such as 

vehicle, roadway, environment, and driver characteristics that may probably increase the 

severity of truck crashes. Researchers also tried to present models that can be used to 

predict the severity of truck crashes and to identify the important factors that may cause 

these crashes or may increase the probability of such road crashes.  

In the past research, one or a few factors influencing truck crashes were 

considered to develop truck crash estimation models. Few addressed driver behavior. 

Few addressed age and gender of drivers, while a few studied the effect of road geometry 

or the effect of AADT on truck crashes. No past experiment or model was found 

addressing the effect of on- and off-network characteristics on truck crashes. Statistical 

models or relationships establishing the link between the various land use datasets, road 

geometry, driving and weather conditions and several other key aspects were not 

addressed. 

This research aims to bridge that gap and provide insights on why, when and how 

large truck crashes happen on roads within a city and how they may be avoided. This lack 

of constructive and apt research addressing the real scenarios leading to the high truck 

crashes is a great motivating factor for this research. 



 
 

  

CHAPTER 3: RESEARCH METHOD 
 
 

This dissertation research aims to identify high dense truck crash zones and 

develop crash estimation models that explain and predict crashes involving trucks. 

Reliability of these models was substantiated with appropriate spatial/statistical models, 

thus aiding safety planners a better vision and direction in identifying high-risk truck 

zones and factors influencing these crash counts. Findings from this dissertation are 

expected to enable proper allocation of resources and funds, along with the framing and 

designing of necessary steps and countermeasures to promote and ensure transportation 

safety.  

The proposed research method to achieve the goals and objectives identified in 

Chapter 1 includes the following steps: 

1. Defining study area and data collection 

2. Identifying high truck crash zones 

3. Assessing spatial proximity or ideal buffer width 

4. Collecting on-network characteristics and extracting off-network characteristics 

5. Developing statistical models  

6. Validation of  models  

Each of the above-mentioned steps is discussed next in detail. 
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3.1 Defining Study Area and Data Collection 

Study area needs to be selected in such a way that it represents various levels of 

road classes to avoid any possible discrepancies and biased results. Traffic-related 

crashes are largely dependent on road functional class, speed limit, geometric conditions, 

driver behavior and several other environmental conditions. While other parameters have 

minimal role in picking a study area, choosing one with a good sample of various road 

functional classes is vital for this particular study. Interstates and freeways are designed 

for vehicles to move at higher speeds. Crashes occurring on these sections of roadways 

are more likely to be severe injury or fatal during off-peak hours. Likewise, major and 

minor arterials serve various levels of traffic and speeds and they influence the type and 

severity of truck crash to an extent. 

Several sources provide various types of truck-related data such as tonnage, origin 

and destination of the commodities, and industry-wise data. However, detailed truck 

crash data are hardly compiled. The selection of study also depends on availability of 

data to support analysis.  

For this research, crash data on various sections of the road functional classes 

were considered. Since this research focuses on intracity, truck crash trends on different 

road classes within the city were selected to develop truck crash estimation models.  

In general, crashes largely depend on demographic, socio-economic, land use and 

on-network characteristics. An increase in demographic and socio-economic 

characteristics such as population and employment of location/zone may increase truck 

volume and crashes due to increased trips generated, attracted or both.  Commercial and 

industrial spaces typically attract more truck volumes. Higher speed limit, traffic volume, 

and other parameters (lane width, the number of lanes, grade, sight distance, etc.) 
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increase crash risk. Therefore, there is a need to consider these datasets in assessing the 

relationship between crashes and on- and off-network characteristics, and in developing 

truck crash estimation models. 

The selection of study area also depends on the availability of data such as:crash 

data, demographic characteristics (population, household units, size and type, ethnicity, 

age, and gender), land use characteristics (residential, commercial/retail, industrial etc.) 

and on-network characteristics (functional class, area type, numbers of lanes, and speed 

limit). They are identified and used in this research. 

3.2 Identifying High Truck Crash Zones  

After selecting the appropriate study area and data needed for the research, it is 

important to identify high truck crash zones in the study region before moving to further 

steps of the formulated methodology. For this purpose, several tools available in off-the-

shelf GIS software were used. 

A systematic approach was adopted to identify these hot spots. This approach 

includes: 

1. Geocoding crash data 

2. Applying Kernel density method 

3. Ranking of high truck crash zones 

3.2.1 Geocoding Crash Data 

There are several ways to locate crashes onto digital maps. Crashes can be 

directly added if the exact geographic references of crash locations, like coordinates, are 

available. Address geocoding can be conducted when the exact address (e.g., street name 

and number, city, state, zip code) is available. In this research, linear referencing was 
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performed to locate crashes since the roads on which crashes occurred and their positions 

relative to the starting points of the routes were known. 

Geocoding is the process of assigning a location, usually in the form of coordinate 

values to an address by comparing the descriptive location to the reference material. With 

geocoded addresses, address locations are spatially displayed which helps to recognize 

patterns within the information. In this step, the crash database with location details is 

imported into a GIS environment. The truck crashes are then geocoded on to the road 

network map. Once the required crash data is geocoded, the next step of the research was 

the identification of high truck crash zones.  

3.2.2 Applying Kernel Density Method 

Kernel density is a tool in GIS, which calculates density of chosen features in an 

area. High dense locations are where certain features are concentrated. In this step, high 

truck crash zones are mapped using Kernel density estimation method, aiding to 

understand where truck crashes are highly concentrated in the study area. Figure 1 depicts 

an example Kernel density map.  Dark red spots represent high dense areas (high number 

of truck crashes); while light green spots are low dense areas (fewer number of truck 

crashes). 
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FIGURE 1: Sample Kernel density map 

 

3.2.3 Ranking of High Truck Crash Zones 

This subtask focuses on ranking high truck crash zones for allocation of 

resources. Identifying and ranking high crash zones plays a key role in developing 

efficient and effective strategies to enhance truck safety. One of the main objectives of 

this research is to identify “high truck crash locations” in order to allocate resources 

including Federal Safety Funds, for safety improvements. The criteria will help in the 

development of an appropriate truck safety program assisting the traffic safety managers 

in better understanding and identifying appropriate operating strategies to enhance truck 

safety.  Ranking of the crash zones can also assist federal and state agencies in 

prioritizing funds and resources. This methodology can be implemented in any region to 

gain a better understanding of how truck crash locations are distributed. Even the 

transportation planners can take necessary steps in the regions that are highly ranked to 

ensure better safety norms.  
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Three different individual ranking methods (crash frequency, crash density and 

crash severity) were considered and evaluated in this research. 

Crash frequency(CF): After calculating density using Kernel density tool, high truck 

crash zones are assigned ranks based on the truck crash count. The higher the number of 

truck crashes, the lower the rank that shall be assigned. For instance, a zone with most 

number of crashes shall be given rank 1, and so on.  Therefore, all the zones are ranked 

based on the number of crashes that occurred. 

Crash density(CD): Based on the number of truck crashes within a given area, crash 

density is calculated. The formula used to calculate crash density is: 

Crash Density = Number of Truck Crashes 

        Area of the zone 

Hence, crash density is calculated and high truck crash zones shall now be 

assigned ranks similar to the crash frequency method. 

Crash severity(CS): Based on the crash severity and pre-established weight factors, 

scores are computed to rank high truck crash zones. As an example, fatal crashes are 

multiplied by a factor of 64, Type A, B injury crashes are multiplied by 19 and 1 

multiplies Type C, and non-injury type crashes.  

After converting all the type of truck crashes into a common numerical, a sum of 

the ranks was obtained by summing up the ranks of all the three different methods.  The 

average of the combined rankings from crash frequency, crash density and crash severity 

was calculated and zones were ranked similarly as in the previous methods – the higher 

the sum of the ranks, the lower the rank. The combined method (called sum of the ranks 
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methods) combines all the three parameters helping in identifying high truck crash zones 

based on severity, frequency and density.  

The combined method rules out any impartial or biased categorization of high 

truck crash zones due to merits or demerits of individual ranking methods (Pulugurtha et 

al., 2007).  The spatial pattern of crashes analyzed in this step pinpoints statistically high 

dense truck crash areas and is particularly helpful in resource allocations. 

3.3 Assessing Spatial Proximity or Ideal Buffer Width 

The idea behind developing models based on spatial proximity is to identify the 

ideal buffer width to extract spatial data.  

In a typical urban setting, land developments takes place along the transportation 

corridors. Various off-network characteristics data such as demographic, socio-economic 

and land use data influence traffic crashes on various adjacent roads. To quantitatively 

assess the influence of such characteristics, they should be captured. While it is evident 

that off-network characteristics data need to be captured, there is no documented 

evidence on the distance at which the data has to be captured.  Since, this research 

focuses on intracity truck crashes, most of the trips would be delivery or pick up trips 

than long distance trips. Moreover, to capture data influencing crashes at an intra-city 

level, close proximity buffers are preferred. Hence, buffer widths of 0.25-, 0.5-, and 1-

mile are generated around each selected high truck crash zone to extract off-network 

characteristics data. 

3.4 Collecting On-network Characteristics and Extracting Off-network Characteristics 

The focus of this step is to examine any existing relationships between the high 

truck crash zones and surrounding on- and off-network characteristics. This would help 
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identify and understand specific reasons (causes) influencing truck crash counts, which is 

very vital in working towards developing countermeasures to minimize truck crash 

counts. 

In this step, features available in GIS were used to conduct a spatial analysis to 

collect data or extract data from the spatial data layers. Aerial photographs and field visits 

as well as network files maintained by local agencies were used to extract on-network 

characteristics. 

3.4.1. Demographic and Socio-economic Characteristics 

To extract site-specific demographic and socio-economic characteristics, planning 

variables data was overlaid on 0.25-, 0.5- and 1-mile buffers generated around each high 

truck crash zone. The population, the number of household units, and total employment 

are calculated for each high crash zone. Spatial attribute data inside these buffers were 

generated for modeling and analysis. 

3.4.2. Land Use Characteristics 

To extract specific land use characteristics and use them in truck crash estimation 

modeling, land use coverage was overlaid onto 0.25-, 0.5-, and 1.0-mile buffers generated 

around each high truck crash zone. The areas of each land use type within the buffers 

around each selected high truck crash zone were extracted to understand and identify the 

land uses that could have a significant impact on truck crashes.   

3.5Develop StatisticalModels 

This step focuses on developing truck crash estimation models that provide 

insights on the degree to which one or more variables potentially promote positive or 

negative effect on truck crashes.  First, variables that are not correlated to each other are 
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identified by testing multicollinearity between variables. In general, two variables are 

said to be perfectly multicollinear if the correlation between two independent variables is 

equal to 1 or -1, which is studied using Pearson correlation coefficient. Pearson 

correlation coefficient is the ratio of covariance to the product of standard deviations. It 

represents the strength of association or linear relationship between two variables. The 

higher the absolute value, stronger is the relationship. Highly correlated predictor 

(independent) variables could produce significant overall P-values even when the 

variables do not produce an effect on the dependent variables. This problem of unreliable 

results due to correlation among the independent variables is called as multicollinearity 

effect. Hence, it is recommended that the correlations among the (independent) variables 

considered for developing the models be in the range (-0.3, +0.3). A rational approach 

was adopted in identifying and eliminating variables with inter-correlations. Models were 

then developed as a function of land use characteristics and socio–economic and 

demographic characteristics. Choosing an appropriate statistical model for estimating 

truck crashes is a challenging task. Extensive studies have been reported on the 

relationship between crash characteristics (rate, frequency, fatality, injury, duration, 

severity, etc.) and related variables, such as weather conditions, geometric design of 

roads, traffic volume, road density, and driver behaviors using a variety of statistical 

modeling techniques. Miaou and Lum (1993) found that conventional linear regression 

models were not appropriate for modeling vehicle crash events on roadways. Since 

crashes are counts, generalized linear models (GLMs) based on Poisson, NBor Gamma 

distribution may be more appropriate for modeling.   
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GLMs are a class of statistical models that are obtained by a natural 

generalization of standard linear models (McCullough and Nelder, 1989). Often 

categorized as extensions to the standard linear regression, GLMs can incorporate various 

outcomes such as count, binary, proportions and positive valued continuous variables 

(Hilbe, 1994). This is one of the reasons for increased use of GLMs in statistics. 

Moreover, the normality and constant variance of errors are no longer required 

(McCullough and Nelder, 1989).  Count regression models are best suited for analyzing 

skewed (non-normal) data with non-linear relationships (Elhai et al., 2008). The Poisson, 

NB, and other related models collectively come under GLMs. 

Wood (2005) stated that GLMs have gathered recognition in recent years as 

useful tools for relating the number of crashes of a specified type, to explanatory 

variables such as traffic volume. The Poisson model is the basic and simplest count 

regression model (Long, 1997;Elhai et al., 2008). Unlike the normal linear regression 

models in which the dependent variable is transformed, in a Poisson model the 

probability of counts are determined by a Poisson distribution in which the coefficients 

are exponentiated. The Poisson log linear relationship holds true when the mean is equal 

to the variance. If this assumption is not valid, the standard errors, usually estimated by 

the maximum likelihood (ML) method, are biased and test statistics derived from the 

model will be incorrect. In case of over dispersed sample, NBdistribution may be used 

instead of a Poisson distribution. 

Shankar et al. (1998) indicated that the NBmodel may be more appropriate as 

geometric and traffic variables are likely to have location-specific effects. The NBmodel 
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assumes that unobserved crash heterogeneity across sites (intersections, road segments, 

etc.) is Gamma distributed (Washington et al., 2003;Mitra et al. 2007).  

Based on the above discussion, GLMsare more apt in developing crash estimation 

models in this research. Various distributions (linear, Poisson, NB, and Gamma) are 

considered to identify the best distribution to estimate truck crashes. These models are 

expected to help transportation planners in reorganization or restructuring of on- and off-

network characteristics that influence truck crash counts. 

Statistical models were developed using statistical software SPSS®. SPSS is a 

comprehensive system for analyzing data. Data can be input and used to generate reports, 

charts, and plots of distributions and trends. Using SPSS, descriptive statistics and 

complex statistical analysis can be performed easily. 

Non-linear count models were developed using the independent variables that 

were selected from the correlation matrices.  Independent variables were screened based 

on their significance levels (P-values).Significance level is defined as maximum 

allowable probability of committing a statistical error. In this dissertation, a significance 

level less than 0.05 were considered. Thus, independent variables with a P-value greater 

than or equal to 0.05 were eliminated and the analysis was repeated. Wald confidence 

interval was also computed, which should be typically larger (greater than 1.0). The 

coefficient for selected independent variables in the model will normally lie within the 

lower and upper limits of Wald confidence interval. Those variables whose coefficients 

do not lie within the Wald confidence intervals were eliminated from further analysis. 

Using the above process, final models were developed to estimate high truck crash zones 

with various data sets. 
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Once the models are developed, best models are picked by examining the 

goodness of fit statistics. For this purpose, SPSS® was used to calculate the Deviance, 

Scaled Deviance, Pearson Chi-Square, Scaled Pearson Chi-Square, Log Likelihood, 

Akaike Information Criterion (AIC) and Second Order Information Criterion (AICC) 

statistics for the developed models.  

Deviance is defined as two times the difference of the log-likelihood for the 

maximum achievable model and the log likelihood under the fitted model. Pearson Chi-

Square is defined as the squared difference between the observed and predicted values 

divided by the variance of the predicted value summed over all observations in the 

model. The deviance value/degrees of freedom is generally preferred to be around one. 

When this value is around one, the model becomes optimally dispersed i.e., neither under 

dispersed nor over dispersed. 

The AIC is defined asAIC = 2k -2ln(L)where k is the number of parameters in 

the statistical model, and L is the maximized value of the likelihood function for the 

estimated model.From the given set of models for the data, the preferred model is the one 

with the minimum AIC value. The AICC statistic helps the user to decide on the best 

subset of model predictors for a particular correlation structure. It is designed to evaluate 

which predictors best explain the response within the model framework. The statistic 

takes into account sample size by increasing the relative penalty for model complexity 

with small datasets. AICC = -2 ( ln ( likelihood )) + 2 K * (n / ( n - K - 1)) where n is the 

sample size. The AICC values for each scenario and buffer width were examined. 

Evaluation and selection of models was primarily based on AICC (lower the better).  
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3.6 Validation of Models 

 

The models selected after testing for goodness of fit were considered for 

validation. Data for eight zones not used in model development were used to validate the 

developed models. The values for the independent variables are substituted into the 

model equation and compared to the actual crash counts. The percent difference in values 

of observed and predicted values for the eight zones are then calculated. The root-mean-

square deviation (RMSD) or root-mean-square error (RMSE) which is frequently used to 

measure the differences between values predicted by a model and the actual values. 

RMSE is a good measure of accuracy. It is just the square root of the mean square error. 

Root mean square of the percentage difference is calculated in this research to observe 

the mean square error between the actual and calculated crash counts. 

To summarize the proposed methodology, using the truck crash data gathered 

from various sources, high truck crash zones are identified and ranked based on various 

parameters. Then data layers such as land use, demographic and socio-economic 

characteristics were overlaid on the buffers generated around each high truck crash zones. 

The attributes responsible for high truck crashes are extracted using features available in 

a GIS.Multicollinearity between selected variables was tested. Using the final variables 

selected, statistical models to estimate truck crashes were then developed. Using the 

goodness of fit test, suitable models are selected and validated. 



 
 

  

CHAPTER 4: DATA PROCESSING AND ANALYSIS 
 

 

This chapter discusses the study area, selection of locations and various datasets to 

develop models, along with the analysis and results obtained. 

4.1 Study Area 

The study area for this research is the city ofCharlotte, North Carolina with a 

population of close to 700,000 (US Census Estimates, 2008).  Charlotte ranks top in 

terms of population, traffic congestion and urbanization in the state of North Carolina. 

According to the 2008 United States Census population estimates, it is one of the fastest 

growing cities and among the twenty most populous cities in the United States. The city‟s 

downtown attracts traffic from within the Mecklenburg County and several adjacent 

counties. A road network map of study area is shown in Figure 2. 
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FIGURE 2: Charlotte, NCRoad Network
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4.2 Data Collection 

The data collection process plays a vital role in obtaining good results based on 

analysis and in deriving meaningful conclusions. In order to develop models to predict 

the occurrence of crashes, detailed information of crashes, traffic volume, the number of 

lanes, speed limit, other road geometry data, land use, demographic, socio-economic and 

network characteristics are required. Since the study area for this research is Charlotte, 

the highway network and traffic analysis zone (TAZ) level planning variables data are 

obtained from the city of Charlotte Department of Transportation (CDOT). For 

consistency, all the traffic, network, demographic, socio-economic and land use data for 

the year 2008 are used. Crash data and network characteristics such as the number of 

lanes, and speed limit of the study links were obtained from CDOT and the CNBTS.  

4.2.1 Crash Data 

Crash data is critical in developing crash estimation models. In this research, 

crash statistics were collected from both CDOT and CNBTS for year 2008. Crash data 

collected includes the harmful event, severity of crash, type of crash, and the time of 

crash.  Figure3shows the spatial distribution of truck crashes in the study area for the year 

2008. 
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FIGURE3: Distribution of Truck Crash Data 2008 
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4.2.2 Socio-economic and Demographic Data 

Demographic characteristics such as the number of households, population, 

household population, and socio-economic characteristics such as mean income and 

unemployment rate were considered in the analysis.  

4.2.3 Land Use Data 

Land use zoning characteristics such as single family and multi-family, urban 

residential, office, business, institutional, industrial, commercial/retail and other land uses 

are expected to be significant attractors and generators of truck trips. Residential land 

uses considered include single-family housing, multifamily housing, urban residential 

and primarily residential mixed-use land uses. Other land uses considered include 

industrial, business, commercial center, office, institutional, research district and other 

mixed-use districts.  

4.2.4 Roadway Network Data 

Crashes depend on network characteristics largely. In this research, the network 

characteristics for the study locations were collected fromCNBTS and CDOT. The road 

network characteristics like traffic volume, link or segment length, speed limit, the 

number of lanes, horizontal curvature, median, and the number of driveways were 

considered along with land use and socio-economic data for a thorough understanding of 

the relationship between high truck crash zones and on- and off-network characteristics. 

4.3 Analysis 

This part of the chapter explains the analysis performed using the methodology 

discussed in Chapter 3. Data was obtained for the city of Charlotte, North Carolina. The 
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capabilities and features available in commercial GIS software were explored along with 

other statistical software. 

4.3.1 Descriptive Analysis 

The aim of descriptive analysis is to summarize the dataset and have a better 

understanding of when, where, why and how truck related crashes are occurring in the 

study area. It involves finding answers to questions such as: What does the data consist 

of? How many fatal crashes occurred? How many were injury crashes?  How many 

crashes occurred due to bad weather? How many crashes were sideswipe collisions?  

The total numbers of truck crashes recorded for the year 2008 are1,280.Of which 

999 crashes i.e., 78% of the total crashes are non-injury type or property damage only 

crashes. While 213 crashes are C type injury crashes, 54 crashes are B type injury
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 crashes. Fatal crashes account for hardly less than one percent. The crash distribution 

chart (Figure4) gives detailed breakdown of these crashes. 

Figure 5 shows type of truck collisions distributions that took place in the year 

2008. Of the 1,280 crashes, 427 were sideswipe collisions, 363 rear end crashes, 114 

backing up crashes, 86 angle collisions and 72 left turn crashes. While 8 were head on 

collisions, 35 were right turn crashes and 15 were pedestrian crashes. Of the rest, 19 were 

roll over and 24 were due to hitting a moving object. 

Figure6 shows the type of vehicles involved in the truck crashes. Single Unit Trucks 

involved are44% of the total truck crashes, while single unit trucks with 3 axles were 

involved in 25%.Semi-trailersare involved in 12% of total truck crashes while heavy 

trucks are involved in 14% of the total truck crashes. Rest of the crashes involved 

recreational vehicles and tractors.   

Figure7provides an overview of the climatic conditions that prevailed during the 

truck crashes. Twenty percent of truck crashes occurred under cloudy conditions while 

8% of truck crashes occurred under rainy conditions. The remaining 72% of the truck 

crashes happened when the weather was quite clear. 
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FIGURE4: Crash Severity Distribution 

 

FIGURE5: Collision Type Distribution 
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FIGURE6: Type of Vehicles Distribution 

 

FIGURE7: Climate Distribution 

4.3.2 Identifying High Truck Crash Zones 

The first step of the described methodology is identifying high truck crash zones. 

This was done using the Kernel density method. Different Kernel density maps were 

generated using cell size (100 ft and 500ft), radius (330ft, 660ft, 1,320ft and 2,640 ft) and 

using standard deviation for classification. 
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Cell size is the width or height of the output, whichever is smaller divided by 

250.The GIS Kernel density method considers the default size for computations. GIS 

measured the output extent from left to right (the shorter distance) and this came up to 

126,750 ft (about 24 miles) which can be seen on scale bar.  Therefore, 126,750ft divided 

by 250 is a cell size of 507 ft. With a 507ft - cell size, the map looked over-dispersed, 

highly pixilated and was tough to identify high dense locations. So based on a trial-and-

error method, the cell size was manually adjusted to 100ft for better display.  

The 330ft, 660ft or 2,640ftradii were found to be either too small or too large to 

make any meaningful interpretation. Hence, 1,320ftwas selected to identify high dense 

truck crash locations. Figures 8to 11 show selected Kernel density maps generated in this 

research. Figure8 shows the Kernel density distribution for the study area with 330 ft 

radius and 100ft cell size. Figure9 shows the Kernel distribution with 660 ft radius, and 

similarly figures 10 and 11 shows figures with 1,320 ft and 2,640ft. 
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FIGURE8: Kernel Density Map - 330 ft 
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FIGURE9: Kernel Density Map - 660 ft 



55 

 

 

 
 

 

FIGURE10: Kernel Density Map - 1320 ft 
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FIGURE11: Kernel Density Map - 2640 ft 
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Once the suitable Kernel density map is chosen, the next step in the analysis is to 

rank these high dense truck crash zones based on various parameters.  

4.3.3 Ranking High Truck Crash Zones 

Sixty linear zones were selected from the high dense crash areas using GIS and 

Microsoft office applications: 20 from high dense areas, 20 from medium dense, and 20 

from low dense crash areas. Figure 12 shows the selected 60 zones.  



58 

 

 

 
 

 

FIGURE12: Crash Zone Map 
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The zones identified from the Kernel density maps were ranked based on crash 

frequency, density and crash severity. A zone with say, 25 crashes, could rank 10 based 

on crash frequency while a zone with 4 crashes can rank 2based on the crash severity. 

Considering frequency, density and severity in the ranking may lead to unbiased results. 

Table1 summarizes zone number (Zone), crash frequency (CF), rank based on 

crash frequency (Rank based on CF), crash density (CD), rank based on crash density 

(Rank based on CD), number of fatal, injury type A, B, C and PDO crashes, rank based 

on crash severity (Rank based on CS), average of sum of the ranks (Avg of sum of 

Ranks) and rank based on sum of the rank method (Rank). 
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TABLE 1: High Crash Zones Ranking 

 

 

 

 

 

 

 

A B C

1 4 52 22.71 55 0 0 0 1 3 4 53.00 53.33 56.00

2 14 15 274.33 2 0 0 0 2 12 14 26.00 14.33 10.00

3 7 37 124.35 11 0 0 1 0 5 24 15.00 21.00 22.00

4 27 1 453.77 1 0 0 2 2 23 63 1.00 1.00 1.00

5 19 5 176.38 5 0 0 0 5 0 5 44.00 18.00 16.00

6 11 21 48.16 36 0 0 0 11 0 11 31.00 29.33 31.00

7 3 58 21.15 56 0 0 0 2 1 3 59.00 57.67 59.00

8 4 48 50.1 34 0 0 0 0 4 4 50.00 44.00 47.00

9 19 5 193.71 4 0 0 1 0 18 37 5.00 4.67 3.00

10 5 44 75.42 24 0 0 0 0 5 5 45.00 37.67 41.00

11 6 41 28.96 49 0 0 0 0 6 6 43.00 44.33 48.00

12 16 10 37.42 42 0 0 1 4 11 34 6.00 19.33 20.00

13 6 41 52.18 33 0 0 0 1 5 6 41.00 38.33 42.00

14 4 48 27.83 51 0 0 0 0 4 4 54.00 51.00 54.00

15 7 37 43.72 39 0 0 0 2 4 6 42.00 39.33 43.00

16 6 41 33.39 45 0 0 1 0 5 24 16.00 34.00 35.00

17 19 5 88.4 18 0 0 0 4 15 19 21.00 14.67 12.00

18 4 48 13.62 58 0 0 0 3 1 4 56.00 54.00 58.00

19 15 11 91.85 17 0 0 0 7 8 15 23.00 17.00 15.00

20 8 30 45.33 38 0 0 0 1 7 8 37.00 35.00 37.00

21 3 55 32.08 46 0 0 1 1 1 21 18.00 39.67 44.00

22 7 37 55.35 29 0 0 0 1 6 7 40.00 35.33 39.00

23 5 44 39.06 41 0 0 0 0 5 5 46.00 43.67 46.00

24 8 30 97.82 15 0 0 1 0 7 26 13.00 19.33 19.00

25 11 21 26.81 52 0 0 0 0 11 11 32.00 35.00 38.00

26 20 4 145.06 7 0 0 0 2 18 20 19.00 10.00 6.00

27 11 21 87.25 19 0 0 0 1 10 11 30.00 23.33 26.00

28 8 30 83.44 22 0 0 0 1 7 8 36.00 29.33 30.00

29 15 11 49.04 35 0 0 0 1 14 15 25.00 23.67 27.00

30 8 30 136.07 8 0 0 1 1 6 26 12.00 16.67 14.00

Rank

Crash severity (CS)

Zone CF

Rank 

based 

on CF

CD

Avg. 

of 

sum 

of 

ranks 

Rank 

based 

on CD

Fatal
Injury 

PDO

CS 

score 

Rank 

based on 

CS
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TABLE 1: Continued 

 

From the table it can observed that ranks vary based on the individual method considered. 

For example, Zone 2is ranked15 based on crash frequency, 2 based on crash density but 

26 based on crash severity. Therefore, to minimize the demerits of individual methods, 

A B C

31 15 11 78.54 23 0 0 1 0 14 33 7.00 13.67 9.00

32 8 30 67.69 26 0 0 0 2 2 4 49.00 35.00 36.00

33 12 18 93.94 16 0 0 0 1 11 12 29.00 21.00 23.00

34 11 21 55.29 30 0 0 1 1 9 29 10.00 20.33 21.00

35 12 18 125.84 10 0 0 0 3 9 12 28.00 18.67 17.00

36 3 55 30.83 47 0 0 0 0 3 3 58.00 53.33 55.00

37 5 44 34.33 43 0 0 0 0 5 5 47.00 44.67 49.00

38 4 48 33.65 44 0 0 0 1 3 4 51.00 47.67 51.00

39 4 48 28.45 50 0 0 0 0 4 4 52.00 50.00 53.00

40 4 48 13.64 58 0 0 0 0 4 4 55.00 53.67 57.00

41 19 5 107.25 12 0 0 0 0 19 19 20.00 12.33 7.00

42 13 16 70.21 25 0 0 0 1 12 13 27.00 22.67 25.00

43 16 10 104.5 14 0 0 2 4 10 52 2.00 8.67 5.00

44 22 3 246 3 0 0 0 4 18 22 17.00 7.67 4.00

45 9 28 86.56 20 0 0 0 1 8 9 35.00 27.67 29.00

46 18 9 106.97 13 0 0 0 5 13 18 22.00 14.67 11.00

47 9 28 85.66 21 0 0 0 1 8 9 34.00 27.67 28.00

48 11 21 135.77 9 0 0 1 1 9 29 9.00 13.00 8.00

49 3 55 58.49 28 0 0 0 1 2 3 57.00 46.67 50.00

50 8 30 26.66 53 0 0 0 1 7 8 39.00 40.67 45.00

51 7 37 30.7 48 0 0 1 0 6 25 14.00 33.00 34.00

52 10 26 46.07 37 0 0 0 3 7 10 33.00 32.00 33.00

53 10 26 26.6 54 0 0 1 3 6 28 11.00 30.33 32.00

54 5 44 20.17 57 0 0 0 1 4 5 48.00 49.67 52.00

55 15 11 52.93 32 0 0 0 1 14 15 24.00 22.33 24.00

56 14 15 61.47 27 0 1 1 2 10 50 3.00 15.00 13.00

57 12 18 53.1 31 0 0 1 2 9 30 8.00 19.00 18.00

58 8 30 39.07 40 0 0 0 0 8 8 38.00 36.00 40.00

59 25 2 168.3 6 0 0 1 3 21 43 4.00 4.00 2.00

Rank

Crash severity (CS)

Zone CF

Rank 

based 

on CF

CD

Avg. 

of 

sum 

of 

ranks 

Rank 

based 

on CD

Fatal
Injury 

PDO

CS 

score 

Rank 

based on 

CS
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sum of the ranks method was used to compute combined rank based on the three 

individual methods. The sum of the rank was attained by summing the ranks based on 

frequency, density and severity and then computing the average. The zones were thus 

ranked based on sum of ranks method. 

4.4On- and Off-network Characteristics 

Buffers of 0.25-, 0.5- and 1-mile width are generated around each of the 60 linear 

zones. Due to inconsistency in the zone characteristics and lack of required data, zones 25 

and 51 (though shown in Figures 13 - 27) were not included for further analysis.  

Land use, socio-economic and demographic data are overlaid over these buffers. 

The network characteristics as speed limit, the number of lanes, the number of driveways, 

horizontal curvature of the zones, presence of median were gathered from Google maps 

and Google earth. In addition, traffic volume (based on outputs from calibrated four-step 

regional travel demand forecasting models) and segment length were also obtained and 

added to the database. 

Maps generated with various buffers around each linear zone are shown in figures 

13 to 15. 

Once the buffers of 0.25-, 0.5- and 1-mile were generated, the land use, 

demographic and socio-economic data layers were overlaid onto the buffers. Figure 16 to 

27 are some maps with land use, socio–economic and demographic data overlaid on to 

the buffers around the high truck locations and land use data.  
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FIGURE 13: 0.25-mile Radius from Linear Zones 
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FIGURE 14: 0.5-mile Radius from Linear Zones 
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FIGURE15: 1-mile Radius from Linear  Zones 
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FIGURE 16: Land Use Data Overlaid onto 0.25-mile Buffers 
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FIGURE 17: Land Use Data Overlaid onto 0.5-mile Buffers 
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FIGURE 18: Land Use Data Overlaid onto 1.0-mile Buffers 
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FIGURE19: Population Data Overlaid onto 0.25-mile Buffers 
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FIGURE20: Unemployment Data Overlaid onto 0.25-mile Buffers 

 



71 

 

 

 
 

 
FIGURE21: Median Age Data Overlaid onto 0.25-mile Buffers 
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FIGURE22: Unemployment Data Overlaid onto 0.5-mile Buffers 
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FIGURE23: Population Data Overlaid onto 0.5-mile Buffers 
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FIGURE24: Median Age Data Overlaid onto 0.5-mile Buffers 

 



75 

 

 

 
 

 

FIGURE25: Unemployment Data Overlaid onto 1.0-mile Buffers 
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FIGURE26: Median Age Data Overlaid onto1.0-mile Buffers 
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FIGURE27: Average Household Data Overlaid onto 1.0-mile Buffers 
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After overlapping various network data onto the buffers, the variables from each 

buffer were extractedTable2lists variables considered for analysis in this research. 

TABLE2: Independent Variables Used in this Research 

S. 

No. Code Explanation 

1 R1 0.25 - 0.5 Acre Residential 

2 R2 0.25 Acre Residential/Apartments 

3 R3 0.5 - 2 Acres Residential 

4 R4 2 Acres Residential/Open Space 

5 HC Heavy Commercial 

6 HI Heavy Industrial 

7 I Institution 

8 LC Light Commercial 

9 LI Light Industrial 

10 POP Population 

11 POPFAM Population in Family Households 

12 AGEMED Median Age 

13 AGEMEDM Median Age Males 

14 AGEMEDF Median Age Females 

15 VPH Auto Ownership 

16 AHHI Average Household Income 

17 UNEMR Unemployment Rate 

18 LBF Population in Labor Force 

19 Lanes Number of lanes 

20 Driveways Number of driveways 

21 Signals Number of Signalized Intersections 

22 HorizCurv Number of Horizontal curvatures 

23 Median Median 

24 Zone Length Zone Length 

25 AADT Average Annual Daily Traffic  

 

After summarizing the variables extracted from each buffer width, it was found 

that residential, commercial and industrial spaces were high in the 1-mile buffer width 

zones while least in the 0.25-mile buffer width zones. Similarly, population and average 
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household income was observed to be high in the 1-mile buffer width when compared to 

0.25-mile buffer zones. Intuitively from the figures, it can be said variables in 0.5- and 1-

mile buffer width zones might have more influence compared to 0.25-mile buffer width 

variables. 

4.5Crash Estimation Models 

As discussed in Chapter 3, demographic, socio-economic, network, and land use 

characteristics for 50 randomly selected zones (of the 60 identified using Kernel density 

maps) were used to develop crash estimation models.  

Crash estimation models were developed using the final variables identified from 

the correlation matrices for multiple cases. For each buffer width and different crash 

density categories, different crash estimation models were developed. The final 

recommended model was selected based on the goodness of statistics. 

4.6 Correlation Matrices and Final Variables 

To observe the effect of spatial proximity in capturing data and developing 

models, this research used 0.25-, 0.5- and1-mile buffer widths to extract off-network 

characteristics data. Correlation matrices were developed to evaluate the strength of 

correlation between the independent variables for data based on all the three buffer 

widths.  

As discussed in Chapter 3, the strength of the linear association between two 

variables was determined by the correlation coefficient between the two variables. A 

correlation matrix was generated using the SPSS® software. Independent variables were 

screened such that no final selected variables have correlations out of (-0.3, +0.3) range. 

Variable selection was carried out in a logical way. Among the four types of independent 
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variables (network, demographic, socio-economic, and land use variables), the ones that 

are expected to be directly related to crash count were included whereas the variables that 

are comparatively unrelated were excluded. For example, in the network characteristics 

data, the more number of lanes, the more traffic and exposure and hence, the probability 

of more collisions. Speed limit also has a great influence on traffic and crash 

counts.Therefore, speed limit was considered along with the number of lanes wherever 

applicable. In the land use characteristics data, elimination was carried out on a case-by-

case basis. The objective was to eliminate the effect of multicollinearity to the extent 

possible and to avoid over parameter zing the final model.  

The above process is repeated for all selected buffer widths datasets considered in 

this research. The final sets of independent variables (that are not correlated to each 

other) are selected to develop the models for each buffer width.  

4.6.1.Correlation Matrix and Final List of Variables for 0.25-mile Buffer Width Dataset 

The correlation matrix for 0.25-mile buffer width data was developed to observe 

the correlation between the independent variables (land use, demographics,socio-

economic and network characteristics, etc.).Final variables identified from the correlation 

matrix for this buffer width dataset are shown in Table3. 

The red colored numbers in the matrix (Table3) denote the variables with 

correlation coefficients that are unacceptable. Table4 lists final set of variables for this 

buffer width dataset. 

 

 



81 

 

 

 
 

TABLE3: Correlation Matrix - 0.25-mile Buffer 

 
 

 
Note: R1= 0.25 - 0.5 Acre Residential, R2= 0.25 Acre Residential/Apartments, R3=0.5 - 2 Acres Residential, R4=> 2 Acres 

Residential/Open Space, HC=Heavy Commercial, HI=Heavy Industrial, I=Institutional,LC=Light Commercial, LI=Light Industrial, 

POP=Population, POPFAM=Population in Family Households, AGEMED=Median Age, AGEMEDM=Median Age Males, 
AGEMEDF=Median Age Females,VPH represents ownership,  AHHI=Average household Income, UNEMR=Unemployment Rate, 

LBF Population In Labor Force, Lanes = Number of lanes, Driveways = Number of driveways, Signals= Number of signalized 

intersections, HorizCurv= Number of horizontal curvatures , Median= Median 

 

TABLE4: Final Variables - 0.25-mile Buffer 

 

 

4.6.2. Correlation Matrix and Final List of Variables for 0.5-mile Buffer Width Dataset 

As explained for the 0.25-mile buffer scenario, correlation matrix for this for 0.5-

mile buffer width data was developed to observe the correlation between the independent 

Variables R1 R2 R3 R4 HC HI I LC LI POP
POP

FAM

AGE

MED

AGE

MED

M

AGE

MED

F

VPH AHHI LBF
UNE

MR
Lanes

Drive

ways
Signals Median

Horiz 

Curv

Zone 

Length 
AADT

R1 1

R2 -0.06 1

R3 0.17 -0.1 1

R4 -0.18 -0.3 0.16 1

HC -0.04 -0 -0.22 -0.22 1

HI -0.06 0.14 0.17 -0.22 -0.35 1

I -0.2 -0.3 -0.06 -0.04 -0.13 -0.45 1

LC 0.2 0.09 -0.14 0.06 -0.09 -0.1 -0.23 1

LI 0.31 -0.1 -0.35 -0.13 -0.18 -0.08 0.1 0.27 1

POP 0.65 0.47 0.06 -0.12 0.09 -0.09 -0.29 0.44 -0 1

POPFAM 0.76 0.41 0.17 -0.04 -0.12 -0.05 -0.31 0.36 0.03 0.92 1

AGEMED 0.76 0.12 0.05 -0.38 0.18 -0.04 -0.08 0.24 0.25 0.65 0.6 1

AGEMEDM 0.74 0.12 0.06 -0.38 0.17 -0.04 -0.05 0.24 0.25 0.63 0.59 1 1

AGEMEDF 0.77 0.12 0.05 -0.38 0.2 -0.05 -0.12 0.24 0.24 0.66 0.61 1 0.99 1

VPH 0.61 0.46 0.14 -0.04 -0.01 -0.13 -0.34 0.49 -0.1 0.91 0.86 0.53 0.52 0.54 1

AHHI 0.6 0.09 0.31 -0.38 0.06 -0.04 -0.01 0.16 0.18 0.45 0.43 0.76 0.77 0.746 0.54 1

LBF 0.3 -0.1 -0.17 -0.3 0.21 0.158 0.32 0.08 0.29 0.29 0.22 0.73 0.74 0.713 0.05 0.35 1

UNEMR 0.56 0.5 0 -0.12 0.13 -0.12 -0.29 0.47 -0.1 0.98 0.85 0.59 0.57 0.602 0.92 0.41 0.248 1

Lanes 0.2 0.2 0.1 -0.07 0.1 -0.07 -0.24 0.13 -0 0.35 0.34 0.31 0.31 0.313 0.23 0.132 0.205 0.33 1

Driveways 0.56 -0 0.5 -0.15 -0.3 -0.19 -0.04 -0.1 -0.1 0.27 0.33 0.43 0.44 0.422 0.34 0.755 0.046 0.2 -0.09 1

Signals 0.14 0.08 -0.05 0.162 0.33 0.21 -0.22 0.55 0.17 0.47 0.3 0.26 0.25 0.279 0.45 0.187 0.207 0.5 -0.02 -0.05 1

Median 0.36 0.17 0.16 0.228 -0.34 0.073 -0.18 0.3 0.17 0.25 0.39 0.05 0.04 0.05 0.26 0.03 -0.13 0.2 0.276 0.133 0.112 1

Horiz Curv 0.03 -0.2 0.15 0.622 -0.39 0.19 -0.28 0.37 0.01 0.16 0.2 -0.12 -0.11 -0.12 0.25 -0.059 -0.15 0.18 -0.01 -0.02 0.334 0.2439 1

Zone Length 0.45 0.03 0.18 0.432 -0.1 0.243 -0.39 0.61 0.23 0.54 0.61 0.24 0.23 0.238 0.59 0.165 0.034 0.51 0.143 0.059 0.592 0.4555 0.708 1

AADT 0.05 -0.2 0.05 0.32 0.31 0.229 -0.31 0.29 0.22 0.19 0.14 -0.02 -0.02 -0 0.16 -0.088 -0.04 0.2 0.256 -0.16 0.486 0.0925 0.531 0.6081 1

Variables Description

R1 0.25 - 0.5 Acre Residential

R2 0.25 Acre Residential/Apartments

R3 0.5 - 2 Acres Residential

LC Light Commercial

HC Heavy Commercial

 Lanes Number of lanes

I Industrial 
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variables (land use, demographics, socio-economic and network 

characteristics).Table5shows the correlation matrix and Table6shows the final set of 

variables identified from the correlation matrix for 0.5-mile buffer width dataset. 

Variables with correlation values within the acceptable range are selected for further 

analysis and rest are excluded. 

 

 

 

 

 

 

 

 

 

 

 

TABLE5: Correlation Matrix - 0.5-mile Buffer 
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Note: R1= 0.25 - 0.5 Acre Residential, R2= 0.25 Acre Residential/Apartments, R3=0.5 - 2 Acres Residential, R4=> 2 

Acres Residential/Open Space, HC=Heavy Commercial, HI=Heavy Industrial, I=Institutional,LC=Light Commercial, LI=Light 

Industrial, POP=Population , POPFAM=Population in Family Households, AGEMED=Median Age, AGEMEDM=Median Age 
Males, AGEMEDF=Median Age Females,VPH represents ownership,  AHHI=Average household Income, UNEMR=Unemployment 

Rate, LBF Population In Labor Force, Lanes = Number of lanes, Driveways = Number of driveways, Signals= Number of signalized 

intersections, HorizCurv= Number of horizontal curvatures , Median= Median 

 

TABLE 6: Final variables - 0.5-mile buffer 

 

4.6.3. Correlation Matrix and Final List of Variables for1-mile Buffer Width Dataset 

In this case, the correlation matrix for 1.0-milebufferwidth data was developed to 

observe the correlation between the  independent variables (land use, demographic, 

socio-economic and network characteristics). Table7shows the correlation matrix and 

Variables R1 R2 R3 R4 HC HI I LC LI POP
POP

FAM

AGE

MED

AGE

MED

M

AGE

ME

DF

VPH AHHI LBF

UN

EM

R

Lanes
Drive

ways
Signals Median

Horiz 

Curv

Zone 

Length 
AADT

R1 1

R2 0.1 1

R3 0.29 -0.11 1

R4 -0.4 -0.39 -0 1

HC -0.2 -0.04 -0.4 -0.01 1

HI -0 -0.21 -0.1 -0.1 -0.23 1

I 0.08 0.12 -0.3 -0.02 0.141 -0.33 1

LC 0.25 0.25 -0.2 -0.05 -0 -0.11 -0.03 1

LI 0.24 -0.08 -0.2 0.05 -0.09 0.221 -0.22 0.19 1

POP 0.61 0.48 0.11 -0.25 0.073 -0.15 0.11 0.41 -0 1

POPFAM 0.73 0.4 0.27 -0.21 -0.19 -0.05 0.03 0.29 -0 0.92 1

AGEMED 0.68 0.3 0.03 -0.42 0.103 -0.09 0.2 0.29 0.25 0.64 0.569 1

AGEMEDM 0.67 0.31 0.03 -0.43 0.095 -0.09 0.22 0.29 0.24 0.63 0.558 1 1

AGEMEDF 0.68 0.29 0.02 -0.42 0.131 -0.09 0.18 0.29 0.25 0.66 0.575 1 0.99 1

VPH 0.56 0.49 0.25 -0.21 -0.08 -0.2 0.01 0.4 -0.1 0.9 0.866 0.48 0.48 0.48 1

AHHI 0.54 0.22 0.31 -0.39 -0.09 -0.13 0.13 0.19 0.2 0.45 0.393 0.77 0.79 0.76 0.51 1

LBF 0.3 0.1 -0.2 -0.25 0.132 0.158 0.36 0.2 0.26 0.35 0.264 0.79 0.8 0.79 0.06 0.429 1

UNEMR 0.52 0.52 0.05 -0.23 0.094 -0.19 0.12 0.45 -0.1 0.98 0.861 0.58 0.57 0.59 0.91 0.415 0.28 1

Lanes 0.2 0.25 0.08 -0.07 -0.05 -0.17 0.07 0.13 -0 0.38 0.389 0.29 0.29 0.29 0.26 0.121 0.22 0.36 1

Driveways 0.48 -0.03 0.54 -0.27 -0.32 -0.14 0.02 -0.1 -0 0.23 0.287 0.39 0.4 0.38 0.3 0.714 0.1 0.18 -0.09 1

Signals 0.12 0.04 -0.1 0.2 0.252 0.122 -0.13 0.59 0.28 0.46 0.303 0.28 0.26 0.3 0.41 0.192 0.2 0.47 -0.02 -0.05 1

Median 0.34 0.06 0.21 0.23 -0.52 0.153 -0.1 0.17 0.08 0.19 0.349 -0.03 -0.04 -0 0.23 -0.024 -0.1 0.16 0.276 0.133 0.1121 1

Horiz Curv -0.1 -0.15 0.19 0.55 -0.25 0.142 -0.2 0.26 -0 0.14 0.191 -0.15 -0.14 -0.2 0.25 -0.081 -0.1 0.17 -0.01 -0.02 0.3341 0.24389 1

Zone Length 0.38 -0.02 0.29 0.36 -0.19 0.231 -0.2 0.5 0.22 0.51 0.592 0.17 0.17 0.17 0.57 0.121 0.03 0.49 0.143 0.059 0.5921 0.45555 0.708 1

AADT 0.07 -0.22 0.1 0.35 0.254 0.111 -0.16 0.28 0.2 0.19 0.154 -0.04 -0.05 -0 0.16 -0.113 -0.1 0.19 0.256 -0.16 0.4855 0.0925 0.531 0.6081 1

Variables Description

R1 0.25 - 0.5 Acre Residential

R2 0.25 Acre Residential/Apartments

R3 0.5 - 2 Acres Residential

LC Light Commercial

LI Light Industrial

 Lanes Number of lanes

HI High Industrial 

AADT Average Annual Daily Traffic
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Table8shows the final set of variables identified from the correlation matrix for 1.0-mile 

buffer width dataset. 

TABLE7: Correlation Matrix - 1.0-mile Buffer 

 

Note: R1= 0.25 - 0.5 Acre Residential, R2= 0.25 Acre Residential/Apartments, R3=0.5 - 2 Acres Residential, R4= 2 Acres 

Residential/Open Space, HC=Heavy Commercial, HI=Heavy Industrial, I=Institutional,LC=Light Commercial, LI=Light Industrial, 

POP=Population , POPFAM=Population in Family Households, AGEMED=Median Age, AGEMEDM=Median Age Males, 

AGEMEDF=Median Age Females,VPH represents ownership,  AHHI=Average household Income, UNEMR=Unemployment Rate, 
LBF Population In Labor Force, Lanes = Number of lanes, Driveways = Number of driveways, Signals= Number of signalized 

intersections, HorizCurv= Number of horizontal curvatures , Median= Median 

ABLE8: Final Variables - 1.0-mile Buffer 

 

  

Variables R1 R2 R3 R4 HC HI I LC LI POP
POP

FAM

AGE

MED

AGE

MED

M

AGE

MED

F

VPH AHHI LBF
UNE

MR
Lanes

Drive

ways
Signals Median

Horiz 

Curv

Zone 

Length 
AADT

R1 1

R2 0.5 1

R3 0.2 -0.17 1

R4 -0.6 -0.5 -0.1 1

HC -0.1 0.3 -0.4 -0 1

HI -0.1 -0.21 -0 0.09 -0.1 1

I 0.3 0.25 -0.2 -0.2 0.32 -0.46 1

LC 0.3 0.37 -0.4 -0.1 0.36 -0.09 0.4 1

LI 0.1 -0.12 -0.4 0.3 0.18 0.47 -0.1 0.24 1

POP 0.7 0.56 0.04 -0.4 0.28 -0.14 0.4 0.46 0 1

POPFAM 0.8 0.46 0.24 -0.4 0.06 -0.04 0.2 0.31 0.01 0.9 1

AGEMED 0.7 0.5 -0.1 -0.5 0.48 -0.06 0.5 0.56 0.29 0.7 0.59 1

AGEMEDM 0.7 0.51 -0.1 -0.5 0.48 -0.09 0.6 0.56 0.26 0.7 0.58 1 1

AGEMEDF 0.7 0.5 -0.1 -0.5 0.49 -0.04 0.5 0.56 0.3 0.7 0.6 1 1 1

VPH 0.7 0.53 0.27 -0.3 0.07 -0.3 0.3 0.32 -0.2 0.9 0.85 0.46 0.47 0.46 1

AHHI 0.5 0.41 0.11 -0.4 0.29 -0.21 0.6 0.45 0.07 0.5 0.38 0.82 0.84 0.81 0.5 1

LBF 0.6 0.59 0.01 -0.3 0.27 -0.22 0.4 0.46 -0.1 1 0.88 0.63 0.63 0.63 0.9 0.484 1

UNEMR 0.3 0.27 -0.3 -0.3 0.53 0.14 0.5 0.49 0.44 0.5 0.34 0.85 0.84 0.86 0.1 0.557 0.4 1

Lanes 0.3 0.2 0.04 -0.1 0 -0.17 0.1 0.11 -0 0.4 0.42 0.29 0.28 0.29 0.31 0.114 0.4 0.19 1

Driveways 0.4 0.03 0.32 -0.3 -0.2 -0.14 0.4 0.14 -0 0.2 0.24 0.38 0.39 0.37 0.27 0.623 0.19 0.15 -0.1 1

Signals 0 0.11 -0.1 0.33 0.31 0.2 0.1 0.53 0.34 0.4 0.3 0.24 0.23 0.25 0.3 0.156 0.4 0.25 -0 -0.05 1

Median 0.2 -0.14 0.26 0.19 -0.5 0.11 -0 -0 0.01 0.1 0.25 -0.1 -0.13 -0.1 0.17 -0.13 0.1 -0.2 0.28 0.13 0.112 1

Horiz Curv -0.1 -0.19 0.24 0.53 -0.2 0.04 -0.1 0.04 0.13 0.1 0.16 -0.2 -0.18 -0.2 0.26 -0.13 0.16 -0.2 -0 -0.02 0.334 0.2439 1

Zone Length 0.3 0 0.26 0.38 -0.1 0.18 0 0.33 0.22 0.4 0.52 0.07 0.07 0.07 0.51 0.013 0.44 -0.1 0.14 0.06 0.592 0.4555 0.708 1

AADT -0.1 -0.14 0.08 0.41 0.19 0.15 -0.1 0.14 0.23 0.2 0.16 -0.1 -0.06 -0 0.15 -0.16 0.19 -0 0.26 -0.16 0.486 0.0925 0.531 0.608 1

Variables Description

R1 0.25 - 0.5 Acre Residential

R3 0.5 - 2 Acre Residential

HI Heavy Industrial

Median Median

 AADT Average Annual Daily Traffic

 Lanes Number of lanes
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A comparison of variables in tables 4, 6 and 8 indicates that land use variables (in 

particular, residential characteristics) seem to play a vital role when 0.25-mile buffer 

width is used. As buffer width increases, network characteristics seem to play a relatively 

higher role while the possible effect of land use characteristics seem to diminish. 

However, these differences observed seem to be more marginal in terms of selected 

variables to explain truck crash counts. 

4.7 Generalized Linear Models 

Crash estimation models were developed using the final set of variables identified 

from the correlation matrices using SPSS. GLM was used to analyze and develop these 

models. Both Poisson and NB log links were tested to select the distribution that better 

explains the relationship between dependent and independent variables. A Poisson model 

requires variance to mean ratio of the crash data to be about 1. When the assumption is 

not satisfied, over-dispersion occurs and the result will be a biased model. 



86 
 

  

In this research, SPSS was used to observe the variance-to-mean ratio in order to 

avoid over-dispersed or under-dispersed models. Poisson models were tested first. It was 

observed that the value/df of deviance and Pearson Chi-square statistics was observed to 

be greater than 1.0. This shows that the data is over-dispersed (i.e., variance is much 

greater than the mean). In order to minimize over-dispersion, NB distributions models 

were tested. Results obtained from these analyses are discussed in the following section. 

4.7.1 Model based on 0.25-mile Buffer Width Dataset 

Table9summarizes model outputs from analysis of 0.25-mile buffer width dataset. 

The P-value for all the variables shown in the table is less than 0.05. It can also be 

observed that coefficients (B) for the variables 0.25 – 0.5 acre residential (R1), High 

Commercial (HC) and Industrial (I) are within the lower and upper limits of Wald 

confidence interval. 

Overall,  it was observed that High Commercial area (HC) and Industrial (I) have 

negative effect and 0.25 - 0.5 acre residential (R1) has a significant positive effect on the 

truck crash counts in buffers generated at 0.25-mile radius. The negative coefficient for 

Industrial (I) and High commercial (HC) indicates that the increase in industrial spaces 

and high commercial spaces rate results in a decrease of truck crash counts. Positive 

coefficient of 0.25-0.5 acre residential (R1) indicates that an increase in R1 type 

residential spaces shall increase truck crashes. 

The final model developed using 0.25-mile buffer width dataset can be 

mathematically represented as 

Log(crashes) = 3.639 + 0.002 * 0.25-0.5 acre residential (R1)– 0.005 *High 

Commercial(HC)– 0.025 * Industrial (I) 
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TABLE 9: Model Parameters Summary - 0.25-mile Buffer 

 
 

4.7.2 Model based on 0.5-mile Buffer Width Dataset 

Table10summarizes model outputs from analysis of 0.5-mile buffer width dataset. 

The P-values for all the variables in the final model (shown in the table) are less than 

0.05.  From the table, it can be observed that coefficients (B) for the variables 0.25 acre 

residential/apartments (R2), 0.5- 2 acre residential(R3) and Light Industrial (LI) are 

within the lower and upper limits of Wald confidence interval. In the model hence 

developed for 0.5-mile buffer width, it was observed that 0.25 acre residential/apartments 

(R2) and Light Industrial (LI)have significant effect on truck crash counts. The positive 

coefficient for 0.5-2 acres residential and Light Industrial(LI) area indicates that an 

increase in this variable results in increased truck crash counts. The negative coefficient 

for 0.25 acre residential/apartments (R2) indicates that an increase of R2 residential 

spaces decreases truck crash counts. An increase in light industrial space resulting in an 

increase in truck crash counts makes logical sense as industrial spaces attract more 

number of truck trips and can have a great effect on truck trips, hence justifying the 

Lower Upper P-Value

Intercept 3.639 3.171 4.106 -

R1 0.002 0.001 0.004 0.003

HC -0.005 -0.008 -0.003 < 0.001

I -0.025 -0.039 -0.012 < 0.001

95% Wald Confidence 

IntervalParameter B
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positive coefficient for light industrial spaces. The final developed based on 0.5-mile 

buffer width dataset can be mathematically represented 

Log(Crashes) = 3.232 - 0.003 * 0.5 acres residential/apartments (R2) + 0.002 * 0.5 acres 

residential (R3)+0.002 * Light Industrial 

 

TABLE10: Model Parameters Summary - 0.5-mile Buffer 

 

 

4.7.3 Model based on 1-mile Buffer Width Dataset 

Table11summarizes model outputs from analysis of 1-mile buffer width dataset. It 

can also be seen that High Industrial area (HI) and presence of a median have a 

significant effect on truck crash counts at 95% confidence interval, as the corresponding 

P-values for these variables are less than 0.05. The coefficients (B) for these variables lie 

within the Wald confidence interval ranges. The positive coefficient for High Industrial 

(HI)area indicates that an increase in this variable will result in an increase in truck crash 

counts. The positive coefficient formedian shows that presence of medianincreases the 

truck crashes which is counter intuitive as median normally decreases crash counts and 

increases safety.  

The final model developed using 1-mile buffer width dataset can be 

mathematically represented as 

Log(crashes) = 2.827 + 0.001 * HI  +0.424 * Median 

Lower Upper P-Value

Intercept 3.232 2.8 3.663 -

R2 -0.003 -0.005 -0.001 0.001

R3 0.002 7.91E-05 0.005 0.043

LI 0.002 0 0.004 0.015

95% Wald Confidence Interval
Parameter B
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TABLE11: Model Parameters Summary -1.0-mile Buffer 

 

4.7.4 Summary and Selection of  Best Model / Spatial Proximity 

As discussed earlier in Chapter 3, Deviance, degrees of freedom (df),Log 

Likelihood, Pearson Chi-Square, AIC and AICC statistics are computed to select the best 

model among the models generated. In general, the crash estimation model with lower 

AICC value and the value of deviance/df close to one is selected as the best model. The 

goodness of fit test values for each buffer width data set are summarized in Table12. 

TABLE 12:Summary of Goodness of Fit Statistics 

 

Lower Upper P-Value

Intercept 2.827 2.474 3.181 -

HI 0.001 0 0.002 0.013

Median 0.424 0.037 0.81 0.032

95% Wald Confidence Interval
Parameter B

Value df Value/df Value df Value/df Value df Value/df

Deviance 25.374 19 1.335 44.287 35 1.265 59 50 1.18

Pearson Chi-

Square
17.086 19 0.899 31.182 35 0.891 44.236 50 0.885

Log Likelihood -88.55 -165.96 -225.9

Akaike's 

Information 

Criterion (AIC)

187.1 341.915 459.77

Finite Sample 

Corrected AIC 

(AICC)

190.44 343.68 460.58

Goodness of Fit Statistics

0.25 mile Buffer 

Criterions

0.5 mile Buffer 1.0 mile buffer
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An increase in computed AIC and AICC was observed with an increase in buffer 

width to extract off-network characteristics data and develop truck crash estimation 

models. 

Table 13 summarizes the observed effect of independent variables on truck crash 

counts in the models for each buffer width dataset.  From the table, it can be observed 

that 0.25-0.5 acres residential (R1), 0.5 acres residential (R3), Light Industrial (LI), High 

Industrial (HI), Median  have a positive influence on truck crashes implying that an 

increase in the number/quantity of these variables will result in an increase in the number 

of truck crashes. Variables such as0.5 acres residential/apartments (R2), and High 

Industrial (HI)have a negative effect on truck crash counts (as these variables increase the 

number of truck crashes decrease and vice versa).This makes sense as residential areas 

might generate or attract relatively less number of truck trips. High commercial and 

Industrial areas have a negative effect on the truck crashes. In general, commercial and 

industrial areas influence truck crashes. This could be because a warehouse or an industry 

would attract more number of truck trips than a residential area or educational institute. 

But the increase of industrial space decreasing the number of truck crashes in 0.25 mile 

buffer zone is counter-intuitive. Similarly, median having a positive effect in case of 1.0-

mile buffer width model does not make much sense as generally median reduces head on 

collisions and other type of crashes aiding in enhancing safety. However, issues such as 

limited turning radius might increase truck crash counts in the presence of median. 
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TABLE13:  Influence of Independent Variables 

 

The value/df is found to be reasonably close to one for all three buffer widths. The 

AICC was observed to be the lowest for 0.25–mile buffer width dataset. But the overall 

model for 0.25 mile buffer width was not statistically significant. Also, the signs for 

coefficients of variables are not meaningful (counter-intuitive). Hence the NB model 

based on 0.5-mile buffer width dataset could be considered as the statistically best model 

to estimate truck crashes on intra city roads. 

4.8 Validation 

Models were validated by substituting data for eight randomly selected crash 

zones that were not used for model development. Models selected were validated by 

substituting relevant values in the mathematical regression equations that were 

formulated for each buffer width and compared to the actual truck crash counts. The 

percentage of error between the two was then calculated. The difference between the 

Variables 
0.25 Mile 

Buffer

0.5 Mile 

Buffer 

1.0 Mile 

Buffer

R1 +

R2 -

R3 +

HC -

LI +

HI +

I -

Median +
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crashes computed and crashes in the crash data available was observed to range between 

%-90 to 56 % for 0.25-mile regression model. 

Models developed for 0.5-mile buffer width and 1.0-mile buffer width are also 

validated to see the percent difference between actual truck crash counts and predicted 

truck crash counts. The percent difference varied from –5% and 7% in case of 0.5-mile 

buffer width scenario whereas between -19% and 16% for 1.0-mile buffer width scenario.  

Quite some difference can be observed between actual truck crash counts and statistically 

predicted counts for the latter two buffer widths as well.  Table 14 summarizes the actual 

truck crash counts and computed truck crash count values for the eight zones that were 

not used for model development.  

In addition, the root mean square error (RMSE), which measures the average of 

the squares of the errors, was also calculated. The computed RMSE was found to be the 

lowest (9.72 %) for 0.5-mile buffer width dataset model and the highest (55.09 %) for 

0.25-mile buffer width dataset model. Thus, results from validation also indicate that 0.5-

mile buffer width dataset model gives results relatively closer to real-world observations.  
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TABLE 14: Validation of Models

 

 

Log 

(Calculated  

Crash 

Counts)

Percent 

Difference

Log 

(Calculated  

Crash 

Counts)

Percent 

Difference

Log 

(Calculated  

Crash 

Counts)

Percent 

Difference

1 0.60 0.75 -24.57 0.61 -0.54 0.51 16.07

2 1.15 1.48 -29.13 1.18 -2.53 1.37 -19.53

3 0.85 0.46 46.04 0.85 -0.92 0.76 10.36

4 1.43 1.77 -23.31 1.42 1.07 1.52 -5.91

5 1.28 1.82 -42.37 1.19 7.04 1.49 -16.32

6 1.04 1.99 -90.75 1.08 -4.09 1.18 -13.69

7 0.48 0.87 -83.18 0.45 4.94 0.57 -19.44

8 0.60 0.26 56.65 0.61 -5.28 0.70 -17.01

Zone 

Number

Root Mean Square Error 55.09 9.72 15.37

0.25 Mile 0.5 Mile 1.0 Mile

Log(Actual 

Counts)



 
 

  

CHAPTER 5: CONCLUSIONS 
 
 

This research presents a geospatial method to identify high dense truck crash 

zones and develop intracity truck crash estimation models. Data for the city of Charlotte, 

North Carolina for the year 2008was used to illustrate the geospatial method and develop 

the model. Analyses showed that most of the truck crashes on intracity roads were found 

to be injury type or property damage only crashes.  

High truck crash zones were identified using Kernel density method and were 

ranked using several parameters. Kernel density method helped in identifying the hot spot 

pockets of truck crashes and sixty linear zones were picked from the density map to study 

the effect of various on- and off-network characteristics around each zone on truck 

crashes. 

Demographic, socio-economic, network and land use characteristics were used as 

predictor variables. Variables from these several datasets were used in developing 

correlation matrices and generalized linear models.  

Data were extracted using 0.25-, 0.5-and 1-mile buffer widths to study the role of 

spatial proximity in capturing demographic, socio-economic and land use data for 

developing models. Based on the goodness of fit tests, it was observed that the model 

obtained by using 0.5-mile buffer width is the best model when compared to other buffer 

widths.  
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The results obtained are also supported by findings from validation of developed 

models. The methods proposed in this research are easy to adopt and can be applied 

universally to urban settings of any size and level. The method developed for 

identification of high truck crashes zones can be implemented in any region to know the 

hot spot areas with regard to truck crashes. It can help identify where truck crashes are 

high and allocate resources based on rank (higher the risk, lower the rank).The method 

and models developed from this research can be proactively used to estimate intracity 

truck crashes, incorporate them into planning process and enhance safety. While not 

many changes can be made towards socio-economic and demographic characteristics, 

certainly strict land use regulations and altering on-network characteristics can be 

promoted by transportation agencies to ensure more safety with regard to truck crashes. 

Overall the findings from this research with abilities to infer meaning from 

complicated data seems useful in  

 providing robust understanding of truck crash patterns on intracity roads; 

 aiding Metropolitan Planning Organizations (MPOs) to proactively 

incorporate truck crashes and their effects in planning process; 

 incorporate safety planning at micro levels; and 

 assist in categorizing truck routes for congestion management planning. 

This research at broader level enhances truck safety and other system users by 

formulating a systematic methodology. While the identification of the high-risk zones is  

critical for effective allocation of resources, the methodology developed to estimate intra 

city truck crashes is vital to conduct micro level traffic safety and selection of suitable 

countermeasures. Though data such as population by age group and temporal variations 
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of truck crashes were not available and so could not be used in this research. Developing 

models based on variables that are more critical can help develop better crash estimation 

models. 

The effect of land use characteristics on crashes emphasizes the need to further 

explore their role on mobility and safety. It also stresses the need to develop truck trip 

generation and planning models. 
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