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ABSTRACT

MEIJIAO ZHANG. Robust Generalized Likelihood Ratio Test Based On
Penalization. (Under the direction of DR. JIANCHENG JIANG)

The Least absolute deviation combined with the Least absolute shrinkage and

selection operator (LAD-LASSO) estimator can do regression shrinkage and selection

and is also resistant to outliers or heavy-tailed errors which is proposed in Wang

et al. (2007). Generalized likelihood ratio (GLR) test motivated by the likelihood

principle, which does not require knowing the underlying distribution family and

also shares the Wilks property, has wide applications and nice interpretations [cf.

Fan et al. (2001) and Fan and Jiang (2005)]. In this dissertation, we propose a

GLR test based on LAD-LASSO estimators in order to combine their advantages

together. We obtain the asymptotic distributions of the test statistic by applying the

Bahadur representation to the LAD-LASSO estimators. Furthermore, we show that

the test has oracle property and can detect alternatives nearing the null hypothesis at

a maximum rate of root-n. Simulations are conducted to compare test statistics under

different procedures for a variety of error distributions including standard normal, t3

and mixed normal. A real data example is used to illustrate the performance of the

testing approach.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

Consider the linear model

yi = x′iβ + z′iγ + εi, i = 1, ..., n, (1)

where εi are identically independently distributed (i.i.d.) random errors with PDF

f(x), median 0 and E|εi| = σ > 0. Let β and γ are unknown parameters where

p = dim(β) and q = dim(γ).

To obtain an estimator to be robust against outliers and error distributions and

also enjoy a sparse representation, Wang et al. (2007) proposed a robust LASSO-type

estimator, minimizing from the following LAD-LASSO criterion:

LAD-LASSO = Q(β) =
n∑
i=1

|yi − x′iβ|+ n

p∑
j=1

λj|βj|

In the current study we propose a robust GLR test based on L1 regression to im-

prove likelihood ratio test. The idea is applicable to some parametric, semiparametric,

and nonparametric models.

Our interest here lies on the following testing problem

H0 : γ = γ0 versus H1 : γ 6= γ0

regarding β as nuisance parameters.
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Let Y = (y1, ..., yn)′, X = (x1, ..., xn)′, Z = (z1, ..., zn)′, and ε = (ε1, ..., εn)′ in

model (1). The reduced model is

Y = Xβ + Zγ0 + ε,

and the full model is

Y = Xβ + Zγ + ε.

When {εi}ni=1 are normal, it is known that the LR test is equivalent to the F-test

statistic

Fn =
(RSS0 −RSS1)/q

RSS1/(n− p− q)
,

where RSS0 and RSS1 are the residual sum of squares under H0 and H1, respec-

tively, based on the least squares estimation. Under the null hypothesis, Fn follows

the Fq,n−p−q distribution. Under the alternative Fn has a non-central Fq,n−p−q(ν2)

distribution with non-centrality parameter

ν2 = σ−2 ‖ (In − P1)Z(γ − γ0) ‖2,

where P1 = X(X ′X)−1X ′, In is the n × n identity matrix, and ‖ · ‖ denotes the

L2 norm of a vector. In general, ν2 depends on the sample correlations between the

variables in X and those in Z.

According to the previous argument, under H1, we consider the penalized least

absolute deviation estimator minimizing

Q(β, γ) =
n∑
i=1

|yi − x′iβ − z′iγ|+ n

p∑
j=1

λj|βj|, (2)

over β and γ. Let β̂ and γ̂ be the resulting estimators. Then the residual sum of
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absolute deviations under H1 is

RSS?1 =
n∑
i=1

|yi − x′iβ̂ − z′iγ̂|

Under H0, we minimize

Q(β) =
n∑
i=1

|yi − x′iβ − z′iγ0|+ n

p∑
j=1

λj|βj|, (3)

over β and get the minimizer β̂0. Then the residual sum of absolute deviations under

H0 is

RSS?0 =
n∑
i=1

|yi − x′iβ̂0 − z′iγ0|

Since the error distribution is not specified, the LR test is not available here. In-

tuitively, we can compare the residual sum of squares from the null and alternative

models. Following the idea in Fan et al. (2001) and Fan and Jiang (2007), we define

the GLR statistic

Tn =
n

2
log(RSS?0/RSS

?
1) ≈ n

2

RSS?0 −RSS?1
RSS?1

(4)

Large values of Tn suggest rejection of H0. It is worth pointing out that the GLR

test of Fan et al. (2001) is different from the GLR test proposed here, since their

GLR test did not use regularization.

In the above estimation we have penalized the nuisance parameters but not the

parameters of interest which is different from the common penalized estimation for

variable selection where all parameters are penalized. Firstly, it improves the power

of the GLR test by penalizing the nuisance parameters. Secondly, if the true values of

parameters of interest γ are zero and all parameters are penalized, then asymptotically
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there is no difference between the penalized estimators of parameters under the null

and the alternative hypotheses or Tn can be very small. Now it is hard to reject the

null hypothesis. So the size of the test is very small and the power could not be

improved.

1.2 Outline

The rest of this dissertation is organized as follows. In Chapter 2, we begin to dis-

cuss the model and the theoretical results. We proposed the new test statistic, termed

as the GLR test, to test if the parameters of interest under the high dimensional mul-

tiple linear regression model is constant or not. The test statistic is constructed based

on the comparison of the residual sum of absolute deviations under the null and the

alternative hypotheses respectively. The asymptotic distribution of the test statistic

has been derived and the detailed proofs are provided in the Appendix. In Chapter

3, we use the simulation results to show the performance of our test statistics and

compare our working procedure with the oracle procedure to illustrate the oracle

properties of our test statistics. In Chapter 4, a real data example has been applied

to show the significance of the testing procedure. In Chapter 5, we conclude the

dissertation and discuss some possible directions for future work.



CHAPTER 2: ROBUST GLR TEST BASED ON PENALIZATION

2.1 Notations and Assumptions

For convenience, we define the regression coefficient as (β′, γ′)′ = (β′a, β
′
b, γ
′)′, where

βa = (β1, ..., βp0)
′, βb = (βp0+1, ..., βp)

′ and γ = (γ1, ..., γq)
′. Moreover, assume that

βj 6= 0 for j ≤ p0 and βj = 0 for j > p0 for some p0 ≥ 0 or βb = 0. Thus

the correct model has p0 significant and (p − p0) insignificant regression variables

of nuisance parameter β. Under H0, its corresponding LAD-LASSO estimator is

denoted by β̂0 = (β̂′0a, β̂
′
0b)
′. Under H1, its corresponding LAD-LASSO estimator

is denoted by (β̂′, γ̂′)′ = (β̂′a, β̂
′
b, γ̂
′)′. In addition, we also decompose the covari-

ate xi = (x′ia, x
′
ib)
′ with xia = (xi1, ..., xip0)

′ and xib = (xi(p0+1), ..., xip)
′ and define

wi = (x′i, z
′
i)
′ = (wi1, ..., wil)

′ where zi = (zi1, ..., ziq)
′ and l = p+ q.

To study the theoretical properties of our GLR test statistics, the following assump-

tions are necessary throughout:

Assumption 2.1. The error ε has continuous and positive density at the origin.

Assumption 2.2. n−1/2 max
l≤p+q,i≤n

|wil| = op(1).

Assumption 2.3. There exists positive definite Σxz such that

n−1(W ′W )
p−→ Σxz, as n→∞,

where (wi1, ..., wil) = w′i be the ith row of W .



6

Denote

Σxz = E


x1ax

′
1a x1ax

′
1b x1az

′
1

x1bx
′
1a x1bx

′
1b x1bz

′
1

z1x
′
1a z1x

′
1b z1z

′
1

 =


Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33

 ,

so Σxx , E(x1x
′
1) =

 Σ11 Σ12

Σ21 Σ22

 is positive definite and Σ33 = E(z1z
′
1) is also

positive definite. Define Σ ,

 Σ11 Σ13

Σ31 Σ33

, Σ−1 ,

 Σ11 Σ13

Σ31 Σ33

. Then Σ and

Σ−1 are positive definite.

Assumption 2.4. Let an = max{λj, 1 ≤ j ≤ p0} and bn = min{λj, p0 < j ≤ p}.
√
nan → 0 and

√
nbn →∞ as n→∞.

Note that Assumption 2.1, 2.2 and 2.3 are typical assumptions and used extensively

in literature for establishing the
√
n-consistency and the asymptotic normality of the

unpenalized LAD estimator. Furthermore, the Assumption 2.4 appears in Wang et

al. (2007) to build the oracle property of the penalized LAD-LASSO estimator.

2.2 Bahadur Representations of the LAD-LASSO Estimators

Under H0, ∆̂β0a ,
√
n(β̂0a − βa) and ∆̂β0b ,

√
n(β̂0b − βb). Then we have the

following theorem:

Theorem 2.1. Assume that the assumptions in Section 2.1 hold. The Bahadur

representations for ∆̂β0a and ∆̂β0b are

∆̂β0a =
1

2
f(0)−1Σ−111 n

−1/2
n∑
i=1

xiasgn(εi) + op(1), (5)



7

∆̂β0b = op(1). (6)

where the function

sgn(x) =


1, x > 0

0, x = 0

−1, x < 0

Under H1, ∆̂βa ,
√
n(β̂a− βa), ∆̂βb ,

√
n(β̂b− βb) and ∆̂γ ,

√
n(γ̂− γ). Then we

have the following theorem states as below.

Theorem 2.2. Assume that the assumptions in Section 2.1 hold. The Bahadur

representations for ∆̂βa, ∆̂βb and ∆̂γ are

∆̂βa =
1

2
f(0)−1n−1/2(Σ11

n∑
i=1

xiasgn(εi) + Σ13

n∑
i=1

zisgn(εi)) + op(1), (7)

∆̂γ =
1

2
f(0)−1n−1/2(Σ31

n∑
i=1

xiasgn(εi) + Σ33

n∑
i=1

zisgn(εi)) + op(1), (8)

∆̂βb = op(1). (9)

Theorem 2.1 and Theorem 2.2 show that the Bahadur representation of the pe-

nalized estimator is the same as that of the unpenalized estimator [cf. Ruppert and

Carroll (1980)], indicating that the penalized estimator has oracle property.

2.3 Asymptotic Theory of the GLR Test Statistics

Now let us consider the asymptotic properties of our GLR test statistics.

Theorem 2.3. Assume that the assumptions in Section 2.1 hold. Under H0, Tn
d−→

1
8f(0)σ

χ2
q.

However, the distribution of Tn depends on nuisance parameters. So we define T̃n ,
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8f̂(0)σ̂Tn, where f̂(0) , 1
nh

n∑
i=1

K(
yi − x′iβ̂ − z′iγ̂

h
) and σ̂ ≡ RSS∗1

n
. In the definition of

f̂(0), the kernel K(x) is the normal density function and h is the bandwidth. It is well

known that f̂(0) is a consistent estimator of f(0). Applying Lemma 7 in Appendix

B, σ̂ is also a consistent estimator of σ. So we propose the following corollary.

Corollary 2.3.1. Assume that the assumptions in Section 2.1 hold. Under H0,

T̃n
d−→ χ2

q.

This is an extension of the Wilks type of phenomenon, by which, we mean that the

asymptotic null distribution of T̃n is independent of the nuisance parameter σ and

the nuisance design density function f .

To study the power of the proposed test, we consider the local (Pitman) alternatives

of the form

H1n : γ = γ0 + n−r∆γ,

where ‖∆γ‖ 6= 0.

Theorem 2.4. Assume that the assumptions in Section 2.1 hold. For the testing

problem H0 ↔ H1n whenr < 1/2, the test Tn can detect alternative H1n asymptoti-

cally with probability one.

Corollary 2.4.1. Assume that the assumptions in Section 2.1 hold. For the testing

problem H0 ↔ H1n when r < 1/2, the test T̃n can detect alternative H1n asymptoti-

cally with probability one.

We conclude this section by considering the limiting behavior of the test statistic

under the local alternative H1n with r = 1/2.
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Theorem 2.5. Assume that the assumptions in Section 2.1 hold. Under H1n with

r = 1/2, Tn
d−→ 1

8f(0)σ
χ2
q(ρ

2) + C2,

where ρ2 = 4f(0)2∆′γ(Σ
33)−1∆γ and C2 = f(0)

2σ
∆′γΣ31Σ

−1
11 Σ13∆γ.

Corollary 2.5.1. Assume that the assumptions in Section 2.1 hold. Under H1n with

r = 1/2, T̃n
d−→ χ2

q(ρ
2) +D2,

where ρ2 = 4f(0)2∆′γ(Σ
33)−1∆γ and D2 = 4f(0)2∆′γΣ31Σ

−1
11 Σ13∆γ.

The above theorem and corollary show that both tests Tn and T̃n can detect the

local alternatives at a maximum rate of
√
n, the optimal rate in all regular parametric

tests.

The power of both tests Tn and T̃n can be calculated. Denote the PDF of χ2
q(ρ

2)

is g(x). The power of Tn is

P (Tn >
1

8f(0)σ
χ2
q,1−α|H1n) =

∫ +∞

1
8f(0)σ

χ2
q,1−α

8f(0)σ ∗ g(8f(0)σ(t− C2))dt

=

∫ +∞

χ2
q,1−α

g(t̃−D2))dt̃

= 1−G(χ2
q,1−α −D2)

= Q q
2

(√
ρ2,
√
χ2
q,1−α −D2

)
where G(x) is the CDF of χ2

q(ρ
2) and QM(a, b) is the Marcum Q-function.

The QM(a, b) function increases as b decreases. It is obvious that non-zero C2 or

D2 will improve the power.

From the power derivation of Tn, it also indicates that T̃n has the same asymptotic

power as Tn. Power results of Tn and T̃n under different error distributions are shown

in Table 1-6 in Chapter 3.



CHAPTER 3: SIMULATION

Similarly to Section 2.1 of Wang et al. (2007), we can easily get the LAD-LASSO

estimator by creating an augmented dataset including the penalized terms for nui-

sance parameters. In addition, we use the method in Section 2.3 of Wang et al. (2007)

to get the tuning parameter estimate for each λj which makes the LAD-LASSO esti-

mator enjoy the same asymptotic efficiency as the oracle estimator.

3.1 Density Estimations under H0

Specifically, we set p = 9 and β = (1, 0, 0, 0, 0, 0, 0, 0, 0)′. In other words, the first

p0 = 1 regression variable is significant, while the other 8 are insignificant. We also

set q = 3 and γ0 = (1, 2, 3)′. For a given i, the covariates xi and zi are generated from

N12(0,Γ),

where Γ =



1 0.8 0.82 . . . 0.811

0.8 1 0.8 . . . 0.810

0.82 0.8 1 . . . 0.89

...
...

...
. . .

...

0.811 0.810 0.89 . . . 1


.

The sample size considered is given by n = 500. Furthermore, each response variable

yi is generated according to

yi = x′iβ + z′iγ0 + εi
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where εi is generated from N(0, 1).

According to Theorem 2.3 and its corresponding corollary, the distribution of Tn

should be asymptotically 1
8f(0)σ

χ2
3-distributed and T̃n should be asymptotically χ2

3-

distributed. To verify this empirically, we plot the sampling distribution of 1000

simulation statistics of Tn and T̃n against their true distribution density respectively

via the kernel density estimate as shown in Figure 1. The two plots depict the Tn and

T̃n closely following their true distributions, which is consistent with our asymptotic

theory.

Figure 1: Estimated densities. (a) : Tn; (b) : T̃n. Solid: true; dashed: the simulation
approximation.

3.2 Power Functions under H1

We next investigated the power of our tests by considering the following alternative

sequences indexed by θ = 0, 0.2, 0.4, 0.6, 0.8, 1.0:

H1n : γ = γ0 + n−1/2θ∆∗γ,

where ∆∗γ = (−6, 0, 2)′ and ∆∗γ ⊥ γ0.
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Furthermore, each response variable yi is generated according to

yi = x′iβ + z′iγ + εi

where εi is generated from N(0, 1).

Note that when θ = 0, the null and the alternative are the same. Therefore, we can

expect that: 1) when θ = 0, the power of the test should be close to the significance

level; 2) the further is θ away from 0, the greater is the power. These are consistent

with the plots as shown in Figure 2. Figure 2 illustrate the power functions of Tn and

T̃n against them of their oracle tests based on 1000 simulation iterations of sample

size n = 500 at three different significance levels: 0.1, 0.05, and 0.01. We can tell

from the figure that our tests perform closely to the oracle tests, so our tests have

oracle property and should mimic the oracle tests.

Figure 2: Power functions of Tn and T̃n. (a), (b) and (c): Tn; (d), (e) and (f): T̃n;
From left to right, significance levels are α = 0.1[(a), (d)], 0.05[(b), (e)], 0.01[(c), (f)].
Solid: Our test; dashed: Oracle test.
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We next compare our test (GLR) with the oracle test, and the test with λj = 0

denoted by (GLR∗) for Tn and T̃n respectively in three error distributions: N(0, 1), t3

and mixed normal (0.95N(0, 1) + 0.05N(0, 9)). The results shown in tables below

indicating that our test is robust against heavy-tailed errors and outliers due to the

LAD and also has oracle property due to the LASSO.

Table 1: Power results of Tn for N(0, 1) error

θ
n α Test 0.0 0.2 0.4 0.6 0.8 1.0
500 0.1 Oracle 0.104 0.154 0.340 0.643 0.877 0.961

GLR 0.092 0.143 0.323 0.563 0.800 0.936
GLR∗ 0.087 0.124 0.202 0.320 0.491 0.701

0.05 Oracle 0.057 0.087 0.227 0.486 0.787 0.925
GLR 0.049 0.071 0.209 0.421 0.681 0.888
GLR∗ 0.044 0.063 0.115 0.204 0.363 0.589

0.01 Oracle 0.009 0.019 0.088 0.269 0.555 0.823
GLR 0.007 0.011 0.052 0.183 0.418 0.665
GLR∗ 0.004 0.015 0.027 0.064 0.169 0.336

1000 0.1 Oracle 0.094 0.164 0.354 0.622 0.866 0.974
GLR 0.084 0.160 0.316 0.574 0.802 0.933
GLR∗ 0.100 0.125 0.217 0.348 0.507 0.706

0.05 Oracle 0.046 0.101 0.245 0.488 0.776 0.940
GLR 0.034 0.077 0.220 0.416 0.703 0.891
GLR∗ 0.051 0.062 0.128 0.238 0.370 0.599

0.01 Oracle 0.008 0.024 0.082 0.275 0.558 0.814
GLR 0.005 0.019 0.069 0.184 0.432 0.716
GLR∗ 0.012 0.015 0.038 0.090 0.176 0.338

Table 2: Power results of T̃n for N(0, 1) error

θ
n α Test 0.0 0.2 0.4 0.6 0.8 1.0
500 0.1 Oracle 0.098 0.152 0.333 0.622 0.868 0.955

GLR 0.090 0.137 0.320 0.553 0.787 0.930
GLR∗ 0.087 0.125 0.199 0.324 0.489 0.702

0.05 Oracle 0.052 0.077 0.215 0.471 0.758 0.918
GLR 0.048 0.072 0.202 0.418 0.669 0.875
GLR∗ 0.043 0.062 0.114 0.201 0.368 0.584

0.01 Oracle 0.008 0.017 0.084 0.245 0.527 0.804
GLR 0.009 0.012 0.057 0.184 0.406 0.644
GLR∗ 0.005 0.014 0.028 0.061 0.166 0.329

1000 0.1 Oracle 0.080 0.153 0.335 0.599 0.856 0.969
GLR 0.084 0.149 0.313 0.560 0.788 0.928
GLR∗ 0.094 0.121 0.212 0.345 0.493 0.694

0.05 Oracle 0.038 0.094 0.224 0.467 0.759 0.929
GLR 0.033 0.069 0.209 0.391 0.678 0.878
GLR∗ 0.047 0.059 0.123 0.233 0.357 0.581

0.01 Oracle 0.007 0.023 0.078 0.265 0.536 0.796
GLR 0.005 0.019 0.063 0.177 0.411 0.693
GLR∗ 0.011 0.015 0.040 0.087 0.172 0.325
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Table 3: Power results of Tn for t3 error

θ
n α Test 0.0 0.2 0.4 0.6 0.8 1.0
500 0.1 Oracle 0.109 0.151 0.288 0.542 0.789 0.934

GLR 0.107 0.131 0.269 0.493 0.709 0.879
GLR∗ 0.110 0.116 0.205 0.310 0.439 0.622

0.05 Oracle 0.051 0.081 0.181 0.420 0.687 0.891
GLR 0.050 0.061 0.162 0.367 0.587 0.802
GLR∗ 0.057 0.058 0.110 0.189 0.319 0.491

0.01 Oracle 0.007 0.018 0.063 0.190 0.417 0.724
GLR 0.008 0.010 0.049 0.149 0.313 0.560
GLR∗ 0.009 0.012 0.028 0.067 0.135 0.267

1000 0.1 Oracle 0.090 0.143 0.289 0.529 0.808 0.921
GLR 0.077 0.122 0.283 0.476 0.769 0.888
GLR∗ 0.093 0.115 0.162 0.282 0.469 0.605

0.05 Oracle 0.048 0.079 0.197 0.399 0.686 0.870
GLR 0.034 0.065 0.162 0.341 0.638 0.805
GLR∗ 0.043 0.062 0.088 0.197 0.352 0.483

0.01 Oracle 0.008 0.021 0.076 0.176 0.444 0.704
GLR 0.003 0.013 0.040 0.142 0.364 0.573
GLR∗ 0.012 0.013 0.021 0.077 0.141 0.246

Table 4: Power results of T̃n for t3 error

θ
n α Test 0.0 0.2 0.4 0.6 0.8 1.0
500 0.1 Oracle 0.064 0.103 0.214 0.458 0.732 0.906

GLR 0.070 0.087 0.205 0.408 0.643 0.834
GLR∗ 0.075 0.078 0.143 0.229 0.367 0.538

0.05 Oracle 0.031 0.049 0.128 0.339 0.595 0.846
GLR 0.033 0.033 0.113 0.291 0.500 0.743
GLR∗ 0.033 0.042 0.074 0.143 0.252 0.411

0.01 Oracle 0.003 0.009 0.043 0.113 0.343 0.617
GLR 0.003 0.005 0.026 0.098 0.220 0.445
GLR∗ 0.005 0.006 0.014 0.038 0.083 0.182

1000 0.1 Oracle 0.065 0.105 0.248 0.453 0.751 0.895
GLR 0.056 0.096 0.224 0.420 0.710 0.848
GLR∗ 0.062 0.091 0.119 0.242 0.414 0.547

0.05 Oracle 0.035 0.056 0.160 0.330 0.613 0.829
GLR 0.020 0.049 0.114 0.283 0.572 0.742
GLR∗ 0.029 0.046 0.065 0.155 0.284 0.422

0.01 Oracle 0.005 0.010 0.051 0.133 0.376 0.629
GLR 0.002 0.009 0.019 0.113 0.289 0.489
GLR∗ 0.007 0.007 0.014 0.047 0.110 0.193
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Table 5: Power results of Tn for mixed normal error

θ
n α Test 0.0 0.2 0.4 0.6 0.8 1.0
500 0.1 Oracle 0.101 0.145 0.289 0.582 0.833 0.941

GLR 0.108 0.130 0.309 0.526 0.787 0.908
GLR∗ 0.115 0.120 0.200 0.314 0.522 0.675

0.05 Oracle 0.051 0.077 0.200 0.451 0.744 0.907
GLR 0.054 0.074 0.191 0.375 0.670 0.846
GLR∗ 0.065 0.070 0.120 0.202 0.375 0.540

0.01 Oracle 0.007 0.014 0.067 0.243 0.524 0.743
GLR 0.008 0.013 0.049 0.161 0.381 0.628
GLR∗ 0.007 0.011 0.034 0.081 0.171 0.307

1000 0.1 Oracle 0.089 0.148 0.347 0.631 0.835 0.959
GLR 0.103 0.162 0.302 0.551 0.800 0.932
GLR∗ 0.097 0.148 0.192 0.327 0.511 0.661

0.05 Oracle 0.047 0.085 0.231 0.482 0.731 0.916
GLR 0.057 0.085 0.205 0.425 0.680 0.869
GLR∗ 0.042 0.078 0.112 0.217 0.382 0.535

0.01 Oracle 0.009 0.020 0.088 0.229 0.501 0.797
GLR 0.008 0.015 0.067 0.172 0.405 0.665
GLR∗ 0.007 0.011 0.035 0.077 0.167 0.310

Table 6: Power results of T̃n for mixed normal error

θ
n α Test 0.0 0.2 0.4 0.6 0.8 1.0
500 0.1 Oracle 0.092 0.128 0.274 0.556 0.812 0.934

GLR 0.100 0.122 0.286 0.503 0.767 0.900
GLR∗ 0.106 0.106 0.188 0.292 0.497 0.652

0.05 Oracle 0.042 0.068 0.169 0.420 0.720 0.890
GLR 0.046 0.062 0.174 0.351 0.640 0.830
GLR∗ 0.055 0.064 0.115 0.190 0.356 0.524

0.01 Oracle 0.005 0.011 0.056 0.223 0.487 0.715
GLR 0.008 0.010 0.043 0.146 0.351 0.599
GLR∗ 0.007 0.009 0.032 0.074 0.158 0.281

1000 0.1 Oracle 0.081 0.135 0.329 0.599 0.817 0.950
GLR 0.090 0.151 0.288 0.524 0.785 0.920
GLR∗ 0.089 0.136 0.182 0.306 0.483 0.641

0.05 Oracle 0.038 0.079 0.212 0.455 0.711 0.910
GLR 0.053 0.081 0.191 0.409 0.660 0.853
GLR∗ 0.038 0.070 0.101 0.209 0.365 0.522

0.01 Oracle 0.005 0.017 0.080 0.204 0.462 0.762
GLR 0.008 0.014 0.059 0.146 0.370 0.624
GLR∗ 0.006 0.010 0.030 0.063 0.152 0.287
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In addition, we only change one condition of the true parameters in Section 3.1.

We set β = (1, 1, 1, 1, 1, 1, 1, 1, 1)′. We compare our test (GLR) with the test with

λj = 0 denoted by (GLR∗) for Tn in three error distributions: N(0, 1), t3 and mixed

normal (0.95N(0, 1) + 0.05N(0, 9)). In this case, the GLR∗ is the oracle test since all

nuisance parameters are significant. The results shown in tables below indicating that

the power of our GLR test is lower than the GLR∗ test when there are no insignificant

nuisance parameters.
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Table 7: Power comparisons of Tn for N(0, 1) error

θ
n α Test 0.0 0.2 0.4 0.6 0.8 1.0
500 0.1 GLR∗ 0.097 0.133 0.208 0.341 0.537 0.670

GLR 0.070 0.094 0.157 0.283 0.465 0.618
0.05 GLR∗ 0.046 0.067 0.119 0.228 0.413 0.553

GLR 0.028 0.044 0.086 0.163 0.330 0.491
0.01 GLR∗ 0.006 0.013 0.035 0.077 0.167 0.328

GLR 0.003 0.005 0.018 0.051 0.115 0.261
1000 0.1 GLR∗ 0.094 0.099 0.196 0.329 0.534 0.686

GLR 0.085 0.077 0.165 0.306 0.496 0.659
0.05 GLR∗ 0.044 0.047 0.108 0.227 0.412 0.572

GLR 0.036 0.040 0.091 0.199 0.369 0.523
0.01 GLR∗ 0.011 0.008 0.036 0.077 0.184 0.326

GLR 0.008 0.005 0.028 0.057 0.149 0.275

Table 8: Power comparisons of Tn for t3 error

θ
n α Test 0.0 0.2 0.4 0.6 0.8 1.0
500 0.1 GLR∗ 0.099 0.153 0.172 0.310 0.484 0.599

GLR 0.077 0.114 0.150 0.271 0.443 0.553
0.05 GLR∗ 0.046 0.085 0.110 0.209 0.348 0.483

GLR 0.030 0.059 0.078 0.178 0.298 0.438
0.01 GLR∗ 0.006 0.016 0.030 0.079 0.157 0.246

GLR 0.006 0.009 0.022 0.056 0.120 0.192
1000 0.1 GLR∗ 0.095 0.140 0.196 0.298 0.455 0.607

GLR 0.083 0.128 0.184 0.277 0.432 0.578
0.05 GLR∗ 0.047 0.072 0.113 0.187 0.320 0.463

GLR 0.042 0.061 0.098 0.171 0.295 0.434
0.01 GLR∗ 0.009 0.012 0.027 0.063 0.148 0.230

GLR 0.008 0.009 0.021 0.053 0.120 0.217

Table 9: Power comparisons of Tn for mixed normal error

θ
n α Test 0.0 0.2 0.4 0.6 0.8 1.0
500 0.1 GLR∗ 0.092 0.130 0.194 0.329 0.481 0.678

GLR 0.058 0.095 0.151 0.267 0.427 0.623
0.05 GLR∗ 0.037 0.068 0.109 0.203 0.357 0.546

GLR 0.024 0.045 0.081 0.165 0.286 0.472
0.01 GLR∗ 0.010 0.016 0.038 0.063 0.155 0.302

GLR 0.005 0.008 0.025 0.035 0.113 0.228
1000 0.1 GLR∗ 0.103 0.122 0.201 0.312 0.497 0.645

GLR 0.088 0.103 0.185 0.287 0.471 0.616
0.05 GLR∗ 0.051 0.067 0.137 0.204 0.369 0.525

GLR 0.038 0.049 0.114 0.175 0.337 0.483
0.01 GLR∗ 0.010 0.022 0.027 0.069 0.174 0.269

GLR 0.008 0.015 0.019 0.050 0.152 0.237



CHAPTER 4: REAL DATA EXAMPLE

We use the data set in Jiang et al. (2012). It consists a random sample of 113

hospitals and for each hospital there are 11 variables.

• Infection risk (y): Average estimated probability of acquiring an infection in

the hospital.

• Age (x1): Average age of patients (in years).

• Length of stay (x2): Average length of stay of all patients in the hospital (in

days).

• Routine culturing ratio (x3): Ratios of number of cultures performed to number

of patients without signs or symptoms of hospital-acquired infection, times 100.

• Routine chest X-ray ratio (x4): Ratio of number of X-rays performed to numbers

of patients without signs or symptoms of pneumonia, times 100.

• Number of beds (x5): Average number of beds in the hospital during the study

period.

• Average daily census (x6): Average number of patients in the hospital per day

during the study period.

• Number of nurses (x7): Average number of full-time equivalent registered and
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licensed practical nurses during the study period (number full time plus one

half the number part time).

• Available facilities and services (x8): Percent of 35 potential facilities and ser-

vices that are provided by the hospital.

• Medical school affiliation (x9): 1=Yes, 2=No.

• Region (x10, x11, x12): 1=NE, 2=NC, 3=S, 4=W.

We study whether the infection risk depends on the possible influential factors.

Since the medical school affiliation and region are categorical, we introduced a dummy

variable x9 for the medical school affiliation and three dummy variables (x10, x11, x12)

for the region as covariates. The model is linear,

yi =
12∑
i=1

βixi + εi, i = 1, ..., 113.

Table 10: Estimates and standard errors

Method LAD LAD-LASSO
x1 0.12593(0.01547) 0.11584(0.00784)
x2 0.29449(0.13214) 0.21798(0.06344)
x3 0.02575(0.01589) 0.01493(0.00616)
x4 0.01973(0.00726) 0.02056(0.00406)
x5 -0.00351(0.00373) 0.00000(0.00086)
x6 0.01129(0.00458) 0.00405(0.00136)
x7 -0.00277(0.00232) 0.00000(0.00070)
x8 -0.01541(0.01401) 0.00000(0.00395)
x9 -0.08286(0.44532) 0.00000(0.02239)
x10 -0.19322(0.33639) 0.00000(0.05143)
x11 -0.91443(0.34513) -0.40235(0.18229)
x12 -1.49347(0.43851) -1.41223(0.26854)

We applied the LAD and LAD-LASSO to get the coefficient estimates for each

covariate. The results of variable estimation and selection are presented in Table 10.

From Table 10, we can see that all coefficients are nonzero in LAD since we did not
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apply penalty method. The LAD-LASSO selected six variables: age (x1), length of

stay (x2), routine culturing ratio (x3), routine chest X-ray ratio (x4), average daily

census (x6) and the categorical variable region.

Since the estimated coefficients were positive for x1, x2, x3, x4, x6 and negative for

x11, x12, which indicates that, during the study period, infection risk (y) increases

with the average age of patients (x1), average length of stay of all patients in the

hospital (x2), the routine culturing ratio (x3), the routine chest X-ray ratio (x4),

average number of patients in the hospital per day (x6) and decreases with the region

corresponding to x11 and x12. This is reasonable, since elderly patients tend to have

a weak resistance to infection, and larger x2 and x6 increase the chance of cross-

infection among patients. In addition, routine cultures and chest X-ray may do harm

to the body, and patients without signs or symptoms of hospital-acquired infection

or pneumonia should receive it as little as possible. There may be also a region effect

to the infection. People from South or West area have stronger resistance to infection

comparing with those from other areas.

To check the significance of the selected variables, we performed the hypothesis

testing problem:

H0 : β3 = β6 = β8 = 0 versus H1 : at least one of them is not zero.

So our interesting parameters are β3, β6, β8 while the nuisance parameters are

the rest. We perform both the GLR test and the GLR∗ test of T̃n with significance

level α = 0.05. Their asymptotic null distributions are χ2
3 which does not depend on

nuisance parameters. The realized value of the GLR is calculated as 8.819581 and
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corresponding p-value is 0.03178837. The realized value of the GLR∗ is 7.493779 and

corresponding p-value is 0.05771851. We reject the null hypothesis in the GLR test

while we fail to reject the null hypothesis in the GLR∗ test. According to Table 10,

x3 is significant in either LAD or LAD-LASSO estimate indicating that we need to

reject the null hypothesis. So the GLR test performs better than the GLR∗ test in

this case.



CHAPTER 5: CONCLUSION

In summary, under both the null and the alternative hypothesis we have proposed,

the penalized estimators enjoy the oracle property of estimation. The resulting test

statistics imitate the oracle test statistics in the sense that those unknown insignificant

nuisance parameters were known in advance. Hence:

The GLR test should mimic the oracle GLR test.

This is very useful when there are insignificant nuisance parameters especially in

high-dimensional regression models or in classical multiple linear regression models.

In future work, we would like to allow the parameter dimensions depend on the

sample size, apply to ARIMA models which the errors are not i.i.d distributed, and

expand to various penalty functions such as SCAD in Fan and Li (2001). In addition,

we could also apply our procedure to semiparametric and nonparametric models.
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APPENDIX A: PROOFS OF THEOREMS IN SECTION 2.2

Lemma .1. Under H0,
√
n(β̂0a − βa) = Op(1) and β̂0b = 0 with probability tending

to 1.

Proof. See Lemma 1 and Lemma 2 of Wang et al. (2007) for reference.

Lemma .2. The sequence of solutions β̂0 of (3) satisfies

n−1/2
n∑
i=1

xiasgn(yi − x′iβ̂0)
a.s−→ 0. (10)

Proof. Let {ej}pj=1 be the standard basis of Rp. Define

Gj(a) =
n∑
i=1

|yi − x′i(β̂0 + aej)|+ nλj|β̂0j + a|,

and let Hj(a) be the derivative of Gj(a), so that

Hj(a) = −
n∑
i=1

xijsgn(yi − x′i(β̂0 + aej)) + nλjsgn(β̂0j + a).

Using the method of Ruppert and Carroll (1980, proof of Lemma A.2), we can

show that

n−1/2|Hj(0)| ≤ 2n−1/2
n∑
i=1

|xij|I(yi − x′iβ̂0 = 0) + 2
√
nλjI(β̂0j = 0).

Applying Lemma A.1 of Ruppert and Carroll (1980), it can be shown that

n∑
i=1

|xij|I(yi − x′iβ̂0 = 0)
a.s−→ 0.

By applying
√
nλj → 0 when 1 ≤ j ≤ p0 of Assumption 2.4, it is clear that
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n−1/2Hj(0)
a.s−→ 0 when 1 ≤ j ≤ p0. In addition, due to

n−1/2Hj(0) = −n−1/2
n∑
i=1

xijsgn(yi − x′iβ̂0) +
√
nλjsgn(β̂0j),

using
√
nλj → 0 when 1 ≤ j ≤ p0 of Assumption 2.4 again, the result (10) is

proved.

Proof of Theorem 2.1 :

Proof. For ∆ ∈ Rp, define

M(∆) = n−1/2
n∑
i=1

xiψτ (εi − n−1/2x′i∆),

where ψτ (x) = τ − I(x < 0).

Let ∆̂0 , (∆̂′β0a , ∆̂
′
β0b

)′. From Lemma 1, we know that ∆̂0 = Op(1). Applying

Lemma A.3 of Ruppert and Carroll (1980), we have

M(∆̂0)−M(0) + f(0)Σxx∆̂0 = op(1).

Plug in the definition of M(∆), we have

n−1/2
n∑
i=1

 xia

xib

ψτ (εi−n−1/2x′i∆̂0)−n−1/2
n∑
i=1

 xia

xib

ψτ (εi)+f(0)Σxx

 ∆̂β0a

∆̂β0b


which is equal to op(1). This leads to

n−1/2
n∑
i=1

xiaψτ (εi−n−1/2x′i∆̂0)−n−1/2
n∑
i=1

xiaψτ (εi)+f(0)(Σ11∆̂β0a+Σ12∆̂β0b) = op(1).

Applying Lemma 1, it is obvious that ∆̂β0b = op(1). Using Lemma 2, it shows that
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n−1/2
n∑
i=1

xiaψτ (εi − n−1/2x′i∆̂0)
a.s−→ 0, then we have

f(0)Σ11∆̂β0a = n−1/2
n∑
i=1

xiaψτ (εi) + op(1).

In L1-norm regression, τ = 1
2
. So ψτ (εi) = 1

2
sgn(εi) when εi 6= 0. Thus, the

Bahadur representation of ∆̂0 in Theorem 2.1 has been proved.

Lemma .3. Under H1,
√
n(β̂a − βa) = Op(1),

√
n(γ̂ − γ) = Op(1) and β̂b = 0 with

probability tending to 1.

Proof. Since we don’t use penalty on our interest parameter γ, so the tuning param-

eter for γ is zero, which satisfies the Assumption 2.4. The result follows from Lemma

1 and Lemma 2 of Wang et al. (2007).

Lemma .4. The sequence of solutions (β̂, γ̂) of (2) satisfies

n−1/2
n∑
i=1

xiasgn(yi − x′iβ̂ − z′iγ̂)
a.s−→ 0. (11)

and

n−1/2
n∑
i=1

zisgn(yi − x′iβ̂ − z′iγ̂)
a.s−→ 0. (12)

Proof. Let {ej}pj=1 be the standard basis of Rp. Define

Lj(a) =
n∑
i=1

|yi − x′i(β̂ + aej)− z′iγ̂|+ nλj|β̂j + a|,

and let Nj(a) be the derivative of Lj(a), so that

Nj(a) = −
n∑
i=1

xijsgn(yi − x′i(β̂ + aej)− z′iγ̂) + nλjsgn(β̂j + a).

Then result (11) follows from Lemma 2.
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Let {uk}qk=1 be the standard basis of Rq. Define

L∗k(a) =
n∑
i=1

|yi − x′iβ̂ − z′i(γ̂ + auk)|

and let N∗k (a) be the derivative of L∗k(a), so that

N∗k (a) = −
n∑
i=1

ziksgn(yi − x′iβ̂ − z′i(γ̂ + auk)).

The result (12) follows from Ruppert and Carroll (1980, proof of Lemma A.2).

Proof of Theorem 2.2 :

Proof. For ∆ ∈ Rp+q, define

M(∆) = n−1/2
n∑
i=1

wiψτ (εi − n−1/2w′i∆).

Let ∆̂ , (∆̂′βa , ∆̂
′
βb
, ∆̂′γ)

′. From Lemma 3, we know that ∆̂ = Op(1). Applying

Lemma A.3 of Ruppert and Carroll (1980), we have

M(∆̂)−M(0) + f(0)Σxz∆̂ = op(1).

Plug in the definition of M(∆) and simple algebra, we have both

n−1/2
n∑
i=1

xiaψτ (εi−n−1/2w′i∆̂)−n−1/2
n∑
i=1

xiaψτ (εi)+f(0)(Σ11∆̂βa +Σ12∆̂βb +Σ13∆̂γ)

and

n−1/2
n∑
i=1

ziψτ (εi − n−1/2w′i∆̂)− n−1/2
n∑
i=1

ziψτ (εi) + f(0)(Σ31∆̂βa + Σ32∆̂βb + Σ33∆̂γ)

equal to op(1).

By applying Lemma 3, it is obvious that ∆̂βb = op(1). Using Lemma 4, we can see
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that n−1/2
n∑
i=1

xiaψτ (εi − n−1/2w′i∆̂)
a.s−→ 0 and n−1/2

n∑
i=1

ziψτ (εi − n−1/2w′i∆̂)
a.s−→ 0.

So the above results can be simplified as

f(0)Σ

 ∆̂βa

∆̂γ

 = n−1/2
n∑
i=1

 xia

zi

ψτ (εi) + op(1),

which is equivalent as ∆̂βa

∆̂γ

 = f(0)−1Σ−1n−1/2
n∑
i=1

 xia

zi

ψτ (εi) + op(1).

Using the definition of Σ−1 and ψτ (εi) when τ = 1
2
, the Bahadur representation of

∆̂ in Theorem 2.2 has been proved.
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APPENDIX B: PROOFS OF THEOREMS IN SECTION 2.3

Lemma .5. According to the notations and assumptions in Section 2.1,

Σ−1 =

 Σ−111 + Σ−111 Σ13B
−1Σ31Σ

−1
11 −Σ−111 Σ13B

−1

−B−1Σ31Σ
−1
11 B−1

 ,

where B = Σ33 − Σ31Σ
−1
11 Σ13, and provided Σ−111 and B−1 exist.

Proof. It is well known known result by using simple matrix algebra.

Lemma .6.

∆̂β0a = ∆̂βa + Σ−111 Σ13∆̂γ

Proof. Define ξn = n−1/2
n∑
i=1

xiasgn(εi), ξ
∗
n = n−1/2

n∑
i=1

zisgn(εi) and ηn = (ξ′n, ξ
∗′
n )′ =

n−1/2
n∑
i=1

 xia

zi

 sgn(εi). It is obvious to see that ξn
d−→ N(0,Σ11), ξ

∗
n

d−→ N(0,Σ33)

and ηn
d−→ N(0,Σ). Applying the Bahadur representation of the LAD-LASSO esti-

mators in Theorem 2.1 and Theorem 2.2, then we have

∆̂β0a =
1

2
f(0)−1Σ−111 ξn + op(1), (13)

∆̂βa =
1

2
f(0)−1(Σ11ξn + Σ13ξ∗n) + op(1), (14)

∆̂γ =
1

2
f(0)−1(Σ31ξn + Σ33ξ∗n) + op(1). (15)

We can plug in the above equations to ∆̂βa + Σ−111 Σ13∆̂γ, so

∆̂βa + Σ−111 Σ13∆̂γ =
1

2
f(0)−1[Σ11ξn + Σ13ξ∗n + Σ−111 Σ13(Σ

31ξn + Σ33ξ∗n)] + op(1)

=
1

2
f(0)−1[(Σ11 + Σ−111 Σ13Σ

31)ξn + (Σ13 + Σ−111 Σ13Σ
33)ξ∗n] + op(1).
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Consider the two matrix before ξn and ξ∗n:

Σ11 + Σ−111 Σ13Σ
31 = Σ−111 + Σ−111 Σ13B

−1Σ31Σ
−1
11 + Σ−111 Σ13(−B−1Σ31Σ

−1
11 ) = Σ−111 ,

Σ13 + Σ−111 Σ13Σ
33 = −Σ−111 Σ13B

−1 + Σ−111 Σ13B
−1 = 0.

Plug them back in, so we have ∆̂βa + Σ−111 Σ13∆̂γ = 1
2
f(0)−1Σ−111 ξn + op(1), or the

Lemma is proved.

Lemma .7. RSS?1/n = σ + op(1)

Proof. Plug in the definition of RSS?1 , we can see that

RSS?1/n =
1

n

n∑
i=1

|yi − x′iβ̂ − z′iγ̂|

=
1

n

n∑
i=1

|yi − x′iaβ̂a − x′ibβ̂b − z′iγ̂|

=
1

n

n∑
i=1

|yi − x′iaβ̂a − z′iγ̂|+ op(1)

=
1

n

n∑
i=1

|εi − n−
1
2x′ia∆̂βa − n−

1
2 z′i∆̂γ|+ op(1),

since P (β̂b = 0)→ 1 as n→∞.

Define ε̂i , εi − n−
1
2x′ia∆̂βa − n−

1
2 z′i∆̂γ, and according to the LLN theorem,

RSS?1/n
p−→ E|ε̂i|.

Let I ,
n∑
i=1

(|εi − n−
1
2x′ia∆̂βa − n−

1
2 z′i∆̂γ| − |εi|). According to Wang et al. (2007),

it holds that

I = −η′n

 ∆̂βa

∆̂γ

+ f(0)(∆̂′βa , ∆̂
′
γ)Σ

 ∆̂βa

∆̂γ

+ op(1). (16)
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From Equation (14) and (15), we have ∆̂βa

∆̂γ

 =
1

2
f(0)−1Σ−1ηn + op(1). (17)

Plug in (17) back to (16), we can get I = − 1
4f(0)

η′nΣ−1ηn+op(1). Since ηn
d−→ N(0,Σ),

then η′nΣ−1ηn
d−→ χ2

p0+q
. Thus, I

d−→ − 1
4f(0)

χ2
p0+q
⇒ I = Op(1)⇒ I/n = op(1).

Using the definition of I and the LLN theorem, I/n
p−→ E|ε̂i| − E|εi|. Thus,

E|ε̂i| = E|εi|+ op(1)⇒ RSS?1/n = E|εi|+ op(1) = σ + op(1).

Lemma .8. ∆̂γ
d−→ N(0, 1

4f(0)2
B−1)

Proof. According to Equation (15), ∆̂γ = 1
2
f(0)−1(Σ31,Σ33)ηn + op(1) where ηn

d−→

N(0,Σ). In order to calculate the variance of ∆̂γ, we need to calculate the matrix

(Σ31,Σ33)Σ(Σ31,Σ33)′. According to Lemma 5, it can be shown that the matrix

(Σ31,Σ33)Σ(Σ31,Σ33)′ = B−1. Thus ∆̂γ
d−→ N(0, 1

4f(0)2
B−1).

Proof of Theorem 2.3

Proof. Consider
RSS?0−RSS?1

2
under H0.

RSS?0 −RSS?1
2

=
1

2

n∑
i=1

(|yi − x′iβ̂0 − z′iγ0| − |yi − x′iβ̂ − z′iγ̂|)

=
1

2

n∑
i=1

(|yi − x′iaβ̂0a − x′ibβ̂0b − z′iγ0| − |yi − x′iaβ̂a − x′ibβ̂b − z′iγ̂|)

=
1

2

n∑
i=1

(|yi − x′iaβ̂0a − z′iγ0| − |yi − x′iaβ̂a − z′iγ̂|) + op(1),

since P (β̂0b = 0)→ 1 and P (β̂b = 0)→ 1 as n→∞.
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Continue the derivation, we have

RSS?0 −RSS?1
2

=
1

2

n∑
i=1

(|εi − n−
1
2x′ia∆̂β0a| − |εi − n−

1
2x′ia∆̂βa − n−

1
2 z′i∆̂γ|)

=
1

2

n∑
i=1

(|εi − n−
1
2x′ia∆̂β0a| − |εi|)−

1

2

n∑
i=1

(|εi − n−
1
2x′ia∆̂βa − n−

1
2 z′i∆̂γ| − |εi|)

=
I1 − I2

2
.

According to Wang et al. (2007), I1 can be written as

I1 =
n∑
i=1

(|εi − n−
1
2x′ia∆̂β0a| − |εi|)

= −ξ′n∆̂β0a + f(0)∆̂′β0aΣ11∆̂β0a + op(1). (18)

I2 can be written as

I2 =
n∑
i=1

(|εi − n−
1
2x′ia∆̂βa − n−

1
2 z′i∆̂γ| − |εi|)

= −η′n(∆̂′βa , ∆̂
′
γ)
′ + f(0)(∆̂′βa , ∆̂

′
γ)Σ(∆̂′βa , ∆̂

′
γ)
′ + op(1). (19)

From Equation (13), we can get

ξn = 2f(0)Σ11∆̂β0a + op(1) (20)

From Equation (17), we can get

ηn = 2f(0)Σ(∆̂′βa , ∆̂
′
γ)
′ + op(1) (21)

Plug Equation (20) and (21) back to (18) and (19), then we have
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I1 = −f(0)∆̂′β0aΣ11∆̂β0a + op(1), and I2 = −f(0)(∆̂′βa , ∆̂
′
γ)Σ(∆̂′βa , ∆̂

′
γ)
′ + op(1).

I1 − I2 = f(0)[(∆̂′βa , ∆̂
′
γ)Σ(∆̂′βa , ∆̂

′
γ)
′ − ∆̂′β0aΣ11∆̂β0a ] + op(1)

= f(0)(∆̂′βaΣ11∆̂βa + ∆̂′γΣ31∆̂βa + ∆̂′βaΣ13∆̂γ + ∆̂′γΣ33∆̂γ − ∆̂′β0aΣ11∆̂β0a) + op(1).

Applying Lemma 6, we can get

∆̂′β0aΣ11∆̂β0a = ∆̂′βaΣ11∆̂βa + ∆̂′γΣ31∆̂βa + ∆̂′βaΣ13∆̂γ + ∆̂′γΣ31Σ
−1
11 Σ13∆̂γ,

I1 − I2 = f(0)∆̂′γ(Σ33 − Σ31Σ
−1
11 Σ13)∆̂γ + op(1) = f(0)∆̂′γB∆̂γ + op(1).

By applying Lemma 7, we can get Tn = I1−I2
2σ

+ op(1) under H0. In addition, using

Lemma 8, we can get I1 − I2
d−→ 1

4f(0)
χ2
q. Thus, Tn

d−→ 1
8f(0)σ

χ2
q under H0.

Proof of Theorem 2.4

Proof. Consider
RSS?0−RSS?1

2
under H1n.

RSS?0 −RSS?1
2

=
1

2

n∑
i=1

(|yi − x′iβ̂0 − z′iγ0| − |yi − x′iβ̂ − z′iγ̂|)

=
1

2

n∑
i=1

(|yi − x′iaβ̂0a − x′ibβ̂0b − z′iγ0| − |yi − x′iaβ̂a − x′ibβ̂b − z′iγ̂|)

=
1

2

n∑
i=1

(|yi − x′iaβ̂0a − z′iγ0| − |yi − x′iaβ̂a − z′iγ̂|) + op(1),

since P (β̂0b = 0)→ 1 and P (β̂b = 0)→ 1 as n→∞.

Continue the derivation, we have

RSS?0−RSS?1
2

= 1
2

n∑
i=1

(|εi − n−
1
2x′ia∆̂β0a + n−rz′i∆γ| − |εi − n−

1
2x′ia∆̂βa − n−

1
2 z′i∆̂γ|)

=
1

2

n∑
i=1

(|εi − n−
1
2x′ia∆̂β0a + n−rz′i∆γ| − |εi|)−

1

2

n∑
i=1

(|εi − n−
1
2x′ia∆̂βa − n−

1
2 z′i∆̂γ|

− |εi|) =
I3 − I4

2
.

According to Wang et al. (2007),
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I3 =
n∑
i=1

(|εi − n−
1
2x′ia∆̂β0a + n−rz′i∆γ| − |εi|)

= −η′n(∆̂′β0a ,−n
1/2−r∆′γ)

′ + f(0)(∆̂′β0a ,−n
1/2−r∆′γ)Σ(∆̂′β0a ,−n

1/2−r∆′γ)
′ + op(1),

and

I4 =
n∑
i=1

(|εi − n−
1
2x′ia∆̂βa − n−

1
2 z′i∆̂γ| − |εi|)

= −η′n(∆̂′βa , ∆̂
′
γ)
′ + f(0)(∆̂′βa , ∆̂

′
γ)Σ(∆̂′βa , ∆̂

′
γ)
′ + op(1).

By using Equation (21), we can get

I3 = −2f(0)(∆̂′βa , ∆̂
′
γ)Σ(∆̂′β0a ,−n

1/2−r∆′γ)
′

+ f(0)(∆̂′β0a ,−n
1/2−r∆′γ)Σ(∆̂′β0a ,−n

1/2−r∆′γ)
′ + op(1),

and

I4 = −f(0)(∆̂′βa , ∆̂
′
γ)Σ(∆̂′βa , ∆̂

′
γ)
′ + op(1).

Replacing ∆̂β0a with ∆̂βa and ∆̂γ by using Lemma 6, we can get

I3 − I4 = f(0)∆̂′γB∆̂γ + 2f(0)n1/2−r∆′γB∆̂γ + f(0)n1−2r∆′γΣ33∆γ + op(1)

= f(0)(∆̂γ + n1/2−r∆γ)
′B(∆̂γ + n1/2−r∆γ) + f(0)n1−2r∆′γΣ31Σ

−1
11 Σ13∆γ + op(1)

= I∗3 + I∗4 + op(1).

From Lemma 8 we can see that ∆̂γ +n1/2−r∆γ
d−→ N(n1/2−r∆γ,

1
4f(0)2

B−1) which leads

to I∗3
d−→ 1

4f(0)
χ2
q(ρ

2) where the non-centrality parameter ρ2 = 4f(0)2n1−2r∆′γB∆γ.

I∗4 →∞ as n→∞ when r < 1/2. By Slutsky’s Theorem and Lemma 7, we can get

Tn
d−→ I∗3+I

∗
4

2σ
under H1. P (Tn >

1
8f(0)σ

χ2
q,1−α|H1n) → 1 where χ2

q,1−α is the (1 − α)th

quantile of χ2
q if r < 1/2.
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Proof of Theorem 2.5

Proof. According to the proof of Theorem 2.4, if r = 1/2, we have

I3 − I4 = f(0)∆̂′γB∆̂γ + 2f(0)∆′γB∆̂γ + f(0)∆′γΣ33∆γ + op(1)

= f(0)(∆̂γ + ∆γ)
′B(∆̂γ + ∆γ) + f(0)∆′γΣ31Σ

−1
11 Σ13∆γ + op(1)

= I∗3 + I∗4 + op(1).

Then I∗3
d−→ 1

4f(0)
χ2
q(ρ

2) where the non-centrality parameter ρ2 = 4f(0)2∆′γB∆γ.

Thus, by Slutsky’s Theorem and Lemma 7, Tn
d−→ 1

8f(0)σ
χ2
q(ρ

2) + C2 where

C2 = f(0)
2σ

∆′γΣ31Σ
−1
11 Σ13∆γ under H1n.


