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ABSTRACT 

 
 

RESHMI MITRA. Thread mapping using system-level model for shared memory 
multicores (Under the direction of DR. BHARAT S. JOSHI) 

 
Exploring thread-to-core mapping options for a parallel application on a multicore 

architecture is computationally very expensive. For the same algorithm, the mapping 

strategy (MS) with the best response time may change with data size and thread counts. The 

primary challenge is to design a fast, accurate and automatic framework for exploring these 

MSs for large data-intensive applications. This is to ensure that the users can explore the 

design space within reasonable machine hours, without thorough understanding on how the 

code interacts with the platform. Response time is related to the cycles per instructions 

retired (CPI), taking into account both active and sleep states of the pipeline. This work 

establishes a hybrid approach, based on Markov Chain Model (MCM) and Model Tree (MT) 

for system-level steady state CPI prediction. It is designed for shared memory multicore 

processors with coarse-grained multithreading. The thread status is represented by the MCM 

states. The program characteristics are modeled as the transition probabilities, representing 

the system moving between active and suspended thread states. The MT model extrapolates 

these probabilities for the actual application size (AS) from the smaller AS performance. 

This aspect of the framework, along with, the use of mathematical expressions for the actual 

AS performance information, results in a tremendous reduction in the CPI prediction time. 

The framework is validated using an electromagnetics application. The average performance 

prediction error for steady state CPI results with 12 different MSs is less than 1%. The total 

run time of model is of the order of minutes, whereas the actual application execution time is 

in terms of days. 
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement 

1.1.1 Problem Description 

A primary challenge for parallel programming in multicore machines is to optimize 

the thread count and blocking them to a particular core. Consider the example in Figure 

1.1 for sample mapping strategies for a 4-thread 4-cache quad-core machine. This 

diagram illustrates the plausible options just with four threads. The key question here is 

which of these options are suitable for minimizing the application response time: (a) 

threads mapped together to facilitate inter-thread communication, or (b) threads mapped 

on independent cores to provide access to individual cache. In reality, the best possible 

thread-to-core binding choice is interdependent on multiple factors such as detailed 

knowledge about the architecture, application and their interaction. Hence, the selection 

process is not that straight-forward. 

In fact, the study on the related work shows that exploring thread-to-core mapping 

strategies for any parallel application on multicore machines is very expensive both in 

terms of resources and man-power [11], [20], [38]. Recent research in the High 

Performance Computing (HPC) [41] has emphasized the need for efficient frameworks to 

improve the programmers’ productivity. However, some significant disadvantages of the 

existing performance models are: (1) lack of efficient framework for top-level design 

exploration, (2) dependence on detailed system information, (3) low design reusability, 

and (4) large computation time to generate training data. 
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Cache # 1 Cache # 3

Cache # 2 Cache # 4
 

Cache # 1 Cache # 3

Cache # 2 Cache # 4
 

(a) One thread per cache (b) Two threads per cache 
  

Cache # 1 Cache # 3

Cache # 2 Cache # 4
 

 (c) Four threads per cache 
 

Figure 1.1: Sample thread-to-core mapping strategies for  
four threads on a quad-core machine 

 
There are three main portability and scalability barriers for this optimization problem 

of selecting a suitable mapping strategy (MS). The first barrier is the large number of 

possible MS combinations to be explored, as multicore architectures proliferate. All the 

measurements and performance trends from other platforms are rendered useless with the 

move to a different architecture.  

Secondly, the parallel programs have very domain-specific data and control structures, 

which regulate the architecture-application interactions. It is very difficult to infer 

accurate performance trends, without measurements from running the code on the 

platform. It also means that simply writing parallel programs based on data or task 

parallelism are not sufficient for extracting good performance. In short, the optimum MS 

may vary with data size and thread counts, because of the trade-offs between 

computation, communication, and memory accesses. 
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The third reason is that the Operating System (OS) controlled thread binding may 

seem inefficient without adding a priori information about the application behavior. 

Although the focus of this work is on user-controlled thread-to-core binding schemes, 

but, it is important to review the fundamentals of the OS controlled strategies.  

The native Linux scheduler is based on ranking user processes and threads according 

to their priority. It works on the principle of maximizing the throughput and fairness of 

service. The processes running for a long time have their priorities dynamically decreased 

[63]. The large parallel applications are categorized as batch processes, and often run in 

the background. Because of their low requirement for the user interaction and dynamic 

priority scheme of the OS, these programs are often penalized by the scheduler. 

Sometimes this renders the OS-controlled thread binding as extremely inefficient. 

Summarizing the above arguments, it is extremely time-consuming for the application 

development community to predict the performance of a parallel program without 

understanding the details of the platform. The key idea here is to relieve them from a 

thorough understanding of this application-architecture interaction. This is to ensure that 

they can test out a large number of implementations in reasonable machine hours with 

fairly accurate results. Thus, the proposed solution is aimed towards reducing the 

application response time. 

For the given parallel application, the response time (or, wall clock time) is 

proportional to the cycles per instruction (CPI). The number of instructions remains 

almost consistent all throughout the MSs. Thus, CPI can be a convenient metric for 

identifying the implementation(s) with lowest wall clock time, given that the number of 
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threads remains same. It is important to add that the measurements includes both pipeline 

states i.e. when the application is running and pipeline waiting during halt instruction.  

1.1.2 CPI Characterization Curves 

  
  

(a) Measured CPI with iteration variation 
for different mapping strategies for the 

same application size 

(b) Measured CPI with iteration variation 
for different application sizes for the same 

mapping strategy 
  

Figure 1.2: Measured CPI variation curves 
  
Before formalizing the problem statement, it is imperative to examine some sample 

measured CPI versus iteration characteristic curves. In the first Figure 1.2(a), an 

electromagnetics application (MagnetoStatic Wave – abbreviated as MSW) is plotted for 

four different MSs with constant data size and thread count. For the same application, 

Figure 1.2(b) explores CPI variation with four different data sizes for the same MS. The 

smallest one is labelled as MSW1. The next higher one with twice the number of row and 

column elements is referred as MSW2 and so forth.  

It is evident from the graphs that the measured CPI with increasing iteration follows 

an initial rise and then, eventually reaching saturation. This characteristic is a property of 

the underlying application behavior and can vary with changing MS and data size. For 
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this particular electromagnetics code, the actual value of steady state CPI may vary 

anywhere from 15-25% of the initial measurements. Also, there can be up to 60% 

increase in the actual application size (AS) steady state CPI with respect to smallest AS 

values. In fact, the characteristic figures consistently show poor scalability. And hence, 

there is no straightforward method to infer the values from the initial few (thousand) 

iterations or smaller AS measurements. 

Summarizing the above ideas, the primary criteria for the proposed model design are:  

a) Fast: Application performance information from “shorter” runs.  

b) Accuracy: Reasonably precise with correct performance trends.  

c) Portable: Performance prediction without detailed architecture features or code 

inspection.  

1.1.3 Objective 

The goal of this dissertation is to design a fast, accurate and portable performance 

model framework for exploring various thread-to-core MSs for parallel programs. The 

main metric of steady state CPI (related to response time) will allow the engineer to 

explore these MS possibilities within reasonable machine hours. This framework is 

directed towards large data-intensive, iterative parallel applications for shared memory 

multicores. 

1.2 Proposed Model Framework 

The proposed model framework consists of two main parts: application-based timing 

model and thread-to-core throughput prediction model.  

The first part is studying the impact of the data partitioning and task reordering 

schemes on the performance without any empirical measurements.  This is for developing 
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an execution timing cost function based on computation, communication and 

synchronization. The parallelizing strategy recommended here will be optimized in the 

next model. 

The second part of the framework is for the thread-to-core steady state CPI prediction. 

It is a hybrid combination of the Markov Chain Model (MCM) and Model Tree (MT). 

The individual approaches, MCM and MT, in isolation have some significant 

disadvantages for performance prediction. Analytical models (such as MCM) are 

typically easy to modify and have low run-times. However, they may run the risk of 

larger error margins, as compared to statistical machine learning (SML) based techniques 

(such as MT). On the other hand, MT performs best with higher volume of training data, 

which is computationally very expensive to generate.  

Hence, the driving idea here is to design a framework with reasonable accuracy, which 

can simultaneously capture the advantages of the both model types - fast, portable and 

scalable. Based on the comments presented so far, the metrics used in framework 

evaluation are listed below: 

• Predicted steady state CPI for all MSs for the actual AS within permissible error 

limits. 

• Minimum computation time for generating training set. 

• Successful performance extraction without any real measurement data. 

The basic idea in the proposed solution uses the small-scale performance for 

predicting the large-scale application behavior. This is implemented by capturing the 

thread stall patterns from hardware event counter data of the small AS using MCM. It 

translates the detailed, cycle-accurate information into a design space which has a much 
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reduced parameter count. The MT, in turn, takes in this input and extrapolates the 

behavior for the actual AS. The final step in the framework comprises of converting these 

thread stall information back to CPI values.  

The architecture under study is a hierarchical, shared memory, multiple issue 

multicore processor, with coarse-grained multithreading. The model is validated for Intel 

Xeon Clovertown (X5365) using measurements from VTune (Intel's cycle accurate 

performance analyzer) for the electromagnetics application (MSW). 

1.3 Research Contribution 

The primary contributions of this dissertation are as follows: 

a) Identifying a computationally efficient approach for parallel program performance 

prediction. This solution should be relevant to a large class of data-intensive 

iterative parallel applications running on shared memory multicore machines. 

b) Laying down the details of a fast, accurate and portable framework based on the 

above approach. The thread-to-core model predicts the steady state CPI and points 

towards a suitable MS. It is in the form of hybrid combination of MCM and MT. It 

is based on extrapolating the effect of thread stall patterns for the actual AS. The 

inputs come from the cycle-accurate measurements of smaller data size of the same 

program. 

c) Exploring data partitioning strategies using application-specific timing model for 

the electromagnetics-based algorithm. This consists of representing the execution 

time (including computation, memory access, inter-processor communication and 

synchronization time) without any empirical measurements.  

d) Model validation on Intel Xeon Clovertown (X5365) using the same 

electromagnetics application (with data size and core scaling) with respect to 
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VTune measurements. As demonstrated in the results section, the model effectively 

predicts CPI with an average error of 0.168% with standard deviation of 3.866%. 

The total run time for model is of the order of minutes, whereas the actual 

application response time is in terms of days. 

e) Using the thread-to-core model to explore parallel application pairs that can be 

executed together on the same machine, without mutual interference of overall 

performance.  

In summary, the designed framework is to ensure that the parallel application 

development community can make informed MS choices without thorough understanding 

on the application-architecture interactions. 

1.4 Dissertation Outline 

There are six main chapters in the dissertation. Related work about modeling is 

presented in Chapter 2. Chapter 3 provides detailed information on the microarchitecture 

of the dual quad core Intel Clovertown machine. The entire design of the proposed model 

framework is explained in Chapter 4. The model results and discussions are presented in 

chapter 5. Conclusions are presented in Chapter 6 with the summary of the main 

contributions, and the future work.  The appendix covers additional material on the MCM 

solver and the measurement methodology. 



                        

CHAPTER 2: RELATED WORK 

This chapter covers topics related to performance prediction of parallel programs 

running on shared memory multicores. In general, analytical models are known for their 

fast predictions as shown in the survey paper [40]. Typically, there is a significant trade-

off between prediction accuracy and model design time. With the emphasis on better 

error margins, models end up capturing extensive information on architecture and 

application features. Thus, the analysis is tightly connected with detailed knowledge of 

the platform and program interaction as presented in [26]. This labor-intensive process is 

detrimental for model reusability for exploring large number of application flavors. 

Hence, it may become an expensive method for top-level design exploration.  

Table 2.1: Comparison criteria for different approaches 

Main Criteria Analytical Model 
Statistical 
Machine 

Learning (SML) 

Accuracy Medium - high Very high 

Cost of training data Low High 

Model reusability High Low 

Understanding architecture-application 
interaction High Low 

 
Usually, the performance trends are much closely connected with the key parameter 

measurements such as cache misses, page walks, division operations and other stall-
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causing long latency events. Hence, models based on empirical measurements are 

relatively more accurate than the purely analytical models as shown in [11] and [31]. 

However, generating such large volume of measurement data is computationally 

expensive for large applications. The key ideas are summarized in Table 2.1.  

The three main categories of the most popular class of performance analysis models 

covered in this chapter are - Amdahl’s Law ([1] to [11]), Queuing Theory ([12] to [22]), 

and SML ([31] to [37]).  For each technique examined here, the survey typically begins 

with revisiting the multiprocessor models for a better perspective. However, the current 

architectural features and profilers have paved the way for the new frameworks. Hence, 

after drawing sufficient parallels with the older work, the study moves on to the modern 

multicore performance analysis models.  

A review of the related work is presented below: 

2.1 Amdahl’s Law 

Amdahl’s Law [1] is one of the most popular models to predict performance of 

parallel applications. In essence, it is used for determining program speed-up, where its 

value is limited by the parallelizable fraction of the application. However, the model and 

some of its extensions [5] do not address the problem of performance loss due to resource 

contention.  

This section begins with the studies indicated in [2], [3], [4], which relate the speedup 

only to the inherent parallelism of the program and express the performance loss due to 

constraining the number of cores. These directed acyclic graphs based simple models, 

while useful, are impractical for understanding current multicore systems, where resource 
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contention can greatly hamper the net performance. In addition, the error margins (up to 

33%) do not match up to the current acceptable limits.  

The first significant multicore extension to the Amdahl’s Law is proposed in [5]. This 

work was one of the first to show the importance of entire chip’s performance over 

pipeline efficiencies. Compared to the above model, a more optimistic result on the 

multicore scalability is presented in [6] with the most significant suggested deterrent 

being the memory wall. Critical sections in the parallelizable fractions for the original 

multicore model [5] are introduced in [7]. The multiprocessor performance model is 

linked to the CPU and cache area in [8] without addressing the interference between 

resource contentions. A comprehensive model of [5], [7], [8], [9] is presented in [10], by 

including sequential-to-parallel synchronization and inter-core communication.  

Although the above models in [5], [6], [7], [8], [10] are suitable for exploring a range 

of multicore topologies, it may prove insufficient for studying a specific application and 

especially, thread-to-core MS. One of the most important reasons is the lack of a clear-cut 

approach to obtain the model inputs while exploring different flavors of the application. 

This makes these models unsuitable to capture the application behavior and its impact on 

the underlying architecture. In addition, these works ([5], [6], [7], [8]) fail to address the 

problem due to multiple threads competing for the same resources.  

One of the first (Amdahl’s Law based) models to study parallel program performance 

for shared memory multicores is presented in [11]. This model explores inherent program 

parallelism using Amdahl’s law with resource contention. The speed-up expression is 

similar to the one developed in [2]. In the model proposed in [11], the input parameters 

are dependent upon two major measurements. The first is the OS run-queue on a single 
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baseline run. The second one is the M/M/1 queuing model with inputs from the hardware 

counters using two to three runs. However, the main reason for performance loss is 

restricted to the memory behavior. This means that it may not be sufficient to account for 

compute-intensive application performance (e.g. floating-point operations). 

2.2 Queuing Theory  

This section covers techniques based on analytical models using probability matrices 

for performance prediction. Each component of the platform (mainly, processor and 

memory) is assigned a particular type of queue based on their length and waiting times. 

The idea is to determine the throughput of the entire system by solving the queue at 

steady state.  

This section begins with superscalar uni-processor performance modeling in [12], 

continues with multithreaded multiprocessors [13], [14], [15], and concludes with 

multicores [18], [22]. One of the first versions of the uni-processor queuing model [12] 

represents machine parallelism and program parallelism as linked MCM. This 

preliminary model is restricted to very few key architectural parameters and does not 

include the effect of cache misses or bus transactions. 

In comparison to the above model, a more integrated approach is presented in [13] and 

[14]. In these works, closed queues are used to denote the processor and the memory. 

Their model is extended further in [15], where the effects of cache and main memory are 

explored separately. Their model also accounts for prefetching and synchronization 

delays. However, these models treat the effect of stalling-causing events as independent 

queues. This may become an incomplete representation, since it does not account for 

their inter-dependent effects. 
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There is another set of queuing models which extensively cover just the pipeline 

parallelism for multithreaded systems. They represent both the multiprocessors ([16], 

[17], [18]) and multicores ([19]). Multicores thread-level queuing models in [20], [21] 

study the impact of thread-to-core mapping choices with respect to packet processing in 

communication processors. Their target is the phase before actual programming and the 

metrics under consideration is throughput, delay and loss. However, their analysis 

excludes impact of instruction or microarchitecture details on the application behavior. 

The focus of all these models ([13], [14], [15], [16], [17], [18], [19], [20]) is restricted 

to understanding the architecture rather than optimizing a given application. Their goal is 

to provide a top-level analysis for the early stages of the processor design. This means 

that these models do not define a clear-cut methodology for performance estimation for a 

particular implementation of a given application.  

One of the earliest works on multicores for parallel program performance is presented 

in [22]. The developed model is for fine-grained multithreaded single-issue multicore 

processor. The main thread stalling event is restricted to memory-misses and floating 

point instructions. However, this model’s accuracy is dependent on the measurements 

based on their own micro-benchmarks. Thus, their approach has portability issues with 

respect to other pipelines (e.g. Intel Core in the dissertation). We have extended their 

work on coarse-grained multithreaded, multi-issue processor. Secondly, we have 

consolidated the measurement techniques using cycle-accurate values. Also, by the use of 

training data we have managed to bring down the error margins from 8% to less than 1%. 
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2.3 Other Analytical Models 

This section covers models on performance prediction of program parallelism 

belonging to miscellaneous category. It includes topics on parameterized models ([23], 

[26], [27]), application traces ([24], [25]) and task graph analysis ([29], [30]).  

The application-specific analytical model [23] is parametric, with input information in 

the form of basic machine performance numbers (latency, MFLOPS rate, and bandwidth) 

and application characteristics (problem size, decomposition method, etc.). Although this 

approach produces extremely accurate results, but these highly customized, labor 

intensive models require a thorough understanding of the application and its 

implementation.  

Simple benchmark probes create machine profiles and a separate tool generates 

application signatures in [24] and [25]. Their approach is to gather a trace for each point 

in the parameter space for generating the application signatures. The convolution method 

is used to map them onto the machine profile. Depending on trace sampling rates, their 

predictions achieve error rates between 4.6% and 8.4%. Full traces obviously perform 

best, but such trace generation can slow application execution by almost three orders of 

magnitude. 

Parallel application prediction using a semi-automatic parameterized model is 

designed in [26]. The application behavior is based on properties of the architecture, 

program binary, and other application inputs. However, they cannot account for some 

important architectural parameters, such as cache associativity in their memory reuse 

modeling. The approach in [27] relies on low-level hardware detail, which makes it a 

non-trivial process to develop the model for other architecture variants. 
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The model proposed in [28] predicts highly iterative parallel program execution time 

without code inspection or detailed simulations. The performance on a target system is 

derived using the combination of two different components. The first one is the known 

program performance on a reference system. The second is the relative performance 

between the two systems from a very short run of the application. Hence, it is dependent 

upon using partial results for different problem sizes and degrees of parallelization, which 

renders this model less accurate. 

Tools based on task graph analysis ([29], [30]) help programmers identify 

optimization opportunities that are useful for application scalability. Compiler- 

synthesized static task graph generator is presented in [29]. It determines the sequential 

computations (tasks), parallel structure of the program (task precedencies, explicit 

computations) and the control flow that determines the parallel structure.  

In comparison, a fairly accurate, but somewhat restricted model is proposed in [30]. 

This is a hybrid approach of combining analytical modeling with a performance 

simulation language called PAMELA. It automatically generates a formal description of 

parallel implementation to enable code and mapping decisions. However, these models 

([29], [30]) based on task graph analysis are intentionally excluded from this review. This 

is because of their requirement of in-depth knowledge of the application. Rather than 

identifying the parallelization possibilities, our attempt is to explore the different 

implementations of the same parallel program with minimum possible information. 

2.4 Statistical Machine Learning  

SML is a relatively new approach for exploring the parameter space for performance 

prediction. These models feed empirical performance data to methods such as Artificial 
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Neural Networks (ANN), Linear Regression or other Machine Learning models for 

performance prediction. Typically, these methods have very high accuracy and are 

independent of any code analysis or architecture simulation. However, they are heavily 

dependent upon a very large training data set. This means that the input has a relatively 

high computational cost and low reusability. With a large number of performance 

influencing parameters, another significant drawback for these methods is the model 

design time and the proper choice of the training set. 

The model in [31] uses ANN is used for predicting performance of High Performance 

Computing (HPC) application SMG 2000 (OpenMP based) with an average error of less 

than 10%. However, they do not consider statistical techniques for preliminary data 

analysis or regression methods. In comparison to [31], the profiling cost for building the 

model is reduced in [32] by pre-processing. They compare the effectiveness of piecewise 

polynomial regression and ANNs for predicting performance in the context of varying 

input parameters. Their findings suggest that prediction accuracies between the two 

approaches are comparable, but each approach is advantageous in different contexts. 

However, they report that the training process is significantly simplified through the use 

of ANNs. 

Online learning based model in [33] is used to study the parallel program scaling 

behavior (processor count). Using linear regression techniques, they predict large scale 

performance behavior based on the extrapolation of small scale performance results. 

However, their focus is on the architecture exploration without any comments on the 

thread-to-core mapping. A machine learning approach (ANN and Support Vector 

Machine) using offline profiling is established in [34]. Their focus is on predicting the 
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number of OpenMP threads and the scheduling policy on a homogeneous architecture. 

However, their methodology is closely linked to the platform and is tested on an 

application with a single loop. ANN and regression models are used in [35], [36] and [37] 

to dynamically control number of threads for achieving higher predicted 

power/performance efficiency. 

2.5 Summary 

A review on the parallel application performance prediction on shared memory 

machines is presented in this chapter. Topics on Amdahl’s Law, Queuing Theory, 

application-specific models and task graph analysis are covered as part of the analytical 

models. This chapter begins with a comparison of analytical modeling and statistical 

measurement based methods. Two main arguments are presented here. The first one is on 

the appropriateness of these methods for application optimization. The second point is the 

cost associated with generating the training data for the methods based on empirical 

measurements. This section concludes with the various SML algorithms used for 

analyzing parallel applications. 



                        

CHAPTER 3: MACHINE MICROARCHITECTURE 

The framework is validated for a dual quad core machine with four processor cores 

per socket. It is a dual quad core machine with two processor cores on a single die. The 

two cores share a second level cache which improves performance by reducing the 

necessity to save the same data in multiple locations. A top level diagram is presented in 

Figure 3.1. This section is devoted to a brief description about the microarchitecture 

details including pipeline functionality and the cache architecture. 
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Figure 3.1: Block diagram representation of dual quad core “Clovertown” 

 
The pipeline of the Intel Core micro-architecture consists of three major components 

[34]:  
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a) An in-order issue front end which fetches instruction streams from memory, with 

four instruction decoders to supply decoded instruction (micro-ops) to the out-of-order 

execution core. 

b) An out-of-order superscalar execution core that can issue up to six micro-ops per cycle 

and reorder micro-ops to execute as soon as sources are ready and execution resources 

are available. 

c) An in-order retirement unit that ensures the results of execution of micro-ops is 

processed and architectural states are updated according to the original program order.  

The front end of the pipeline consists of the Branch Prediction Unit (BPU), Instruction 

Fetch Unit and, the Instruction Queue and Decode Unit. BPU enable speculative 

execution by predicting various branch types: conditional, indirect, direct, call and return 

using dedicated hardware for each type. In order to maintain a constant bandwidth 

irrespective of irregularities in instruction stream, Instruction Fetch Unit serves three 

primary purposes of prefetching, predecoding and buffering instructions, and caching 

frequently-used instructions. Instruction Queue and Decode Unit decodes up to four 

instructions, with the flexibility to fuse multiple micro-ops derived from the same macro-

op thereby reducing the number of micro-ops that need to be executed.  

The execution core is the collective name for renamer, reorder buffer (ROB), and 

reservation station (RS). In this process, the out of order core performs the following 

steps: 

a) Allocates resources to micro-ops by moving micro-ops from the front end to the ROB 

and RS.  

b) Binds the micro-op to an appropriate issue port in the RS.  
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c) Renames sources and destinations of micro-ops, enabling out of order execution. 

d) Provides data to the micro-op when the data is either an immediate value or a register 

value that has already been calculated.  

Table 3.1: Hierarchical shared memory multicore specification 
Processor name Intel Xeon X5365 (Clovertown) 
Microarchitecture Intel Core 
Number of cores  4 
Clock speed 3 GHz 
Min. feature size 65 nm 
Instruction set x86 
FSB  1333 MHz 
Pipeline 14 stages, In-order issue, Out-of-order  

Superscalar execution, In-order retirement 
L2 cache 8 MB, 64B/line, 16-way, Write back,  

14 cycle latency, shared 
L1 I-cache 32 KB, 8-way 
L1 D-cache 32 KB, 64B/line, 8-way, Write back,  

3 cycle latency, private 
ALU 1 cycle execution 
Branch predictor 32 byte, 16-entry Return Stack Buffer, private 
TDP 120 W 
Performance 38 GFlops in Linpack benchmark 

 
As shown in the Figure 3.2, the memory architecture contains an instruction cache and 

a first level data cache in each core. The two cores share a 4 MByte level-2 cache. All 

caches are writeback and non-inclusive. The data translation lookaside buffer (DTLB) 

works with two levels of hierarchy, with each level supporting 4 KByte pages or more. 

The entries of the inner level (DTLB0) are used for loads. The entries in the outer level 

(DTLB1) support store operations and loads that missed DTLB0. The third most 

significant component of the memory in each core is the memory ordering buffer (MOB). 

It supports speculative issue of loads and stores, and ensures retired loads and stores have 

correct data upon retirement. The memory performance is improved by data prefetching 

in L1 cache and L2 cache, store forwarding, memory disambiguation among others.  
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As shown subsequently in the model evaluation section(s), most of the architectural 

features mentioned here are used as pointers for measurement purposes for the 

throughput model. 
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Figure 3.2: Memory architecture representing shared Level-2 cache 



                        

CHAPTER 4: THREAD-TO-CORE PERFORMANCE PREDICTION FRAMEWORK 

This chapter provides a detailed discussion on the proposed model framework and the   

measurement methodology. It is divided into six main parts. In the first section, an 

introduction on the framework is presented. The throughput predicting MCM is the most 

important component of this framework. Hence, the next section specifies the step-by-

step MCM design procedure. The pre-processing methodology for the MCM is illustrated 

in Section 4.3. The second step of the framework is an extrapolator based on the MT 

learning technique. This is presented in the fourth section. This includes the basic input 

data characteristics, background on MT and step-by-step algorithm description. The 

individual elements (MCM and MT) for the model framework are combined together in 

the fifth part of this chapter. The chapter is summarized in the last section.  

4.1 Framework Overview 

This dissertation develops and validates a fast, accurate and portable methodology for 

estimating steady state CPI and exploring thread-to-core MS. It is directed towards large 

data-intensive parallel applications running on multicores. This section introduces the 

top-level ideas of the MS exploration framework.  

There are five main parts in Section 4.1. It begins with the key ideas on design of the 

proposed solution. The first two sections cover the main part of this design process (a) 

identifying major components of the problem, and (b) selecting a suitable approach for 

each of these parts. The main steps of the solution framework are highlighted in Section 

4.1.3. The fourth section provides a list of characteristics that qualifies the parallel 
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application for this framework. The final section is a chapter outline for the benefit of the 

reader.    

4.1.1 Identifying Problem Components 

This section begins with emphasizing the effect of cycle-accurate empirical 

measurements. The next step is exploring ways to reduce the computation time for 

generating this input (performance) information. The discussion then moves on to the 

criticism of each approach and identifying the most relevant solution. Based on this 

selection, the problem is then broken down into smaller components.       

The importance of empirical measurements from hardware performance counters to 

track application behavior is established in the beginning of Chapter 2. This data provides 

crucial insights on how the program interacts with the platform and its performance 

bottlenecks. However, it is expensive to generate these measurements for the actual AS 

for a long duration, especially, till the point the application performance reaches steady 

state. There are two main solutions to address this large response time issue and reduce 

the number of computations. These options involve collecting performance data from 

either one of the following cases:   

a) Shorter runs for actual AS, or 

b) Extended runs for smaller AS 

The first option is covered in [28] within the context of cross-platform performance of 

repetitive scientific applications. However, the main disadvantage of these partial 

program runs is that there is no direct way to determine the smallest number of iterations 

that are adequate to represent the steady state behavior. It is more of a hit-and-trial 

method, with the performance analyst regularly interrupting the application to compare 
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the trends with the previous iterations. For example, in Figure 1.2(b) the actual AS 

(MSW4) data set shows steady state behavior at 15,000 iterations, but the smaller AS 

data (MSW1) shows steady state at 9,000 iterations. Hence, the resultant method involves 

significant user intervention and runs the risk of low automation.  

On the contrary, some applications (e.g. Vortex and Wave of SPEC95 benchmark 

suite) may demonstrate regular periodic behavior all throughout the execution. In such 

cases, a purely statistical approach is sufficient to extrapolate the behavior from the initial 

iterations. This approach is widely covered in [64] for the basic block distribution 

analysis. However, the present framework addresses applications with repetitive 

operations, which may not demonstrate such periodic behavior.    

The second option of using performance data for extended runs with smaller AS is 

examined further in the next few paragraphs. This approach is commonly used in 

preliminary exploration phase of application development, and there is no available 

record of related work citing this course of action for exploring parallel applications. 

However, as pointed out in the subsequent arguments, the advantages of this approach 

have catapulted its use in the present framework.  

Depending on the data requirement, this response time is typically much less than the 

one for actual AS. Thus, it allows the performance analyst to examine the behavior till 

steady state for multiple sizes of data, without incurring the complete machine hour cost 

of the actual AS. After identifying the key thread stall patterns, it is much easier to 

transfer them to the actual AS. 

However, the main drawback with this approach is identifying a training data that is 

rich enough to capture all the performance stalls in the actual AS.  In spite of this issue 
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being a difficult problem, it can be addressed by a two-step solution. The first one is 

developing a detailed list of criteria for the selection of training data set. The second step 

is forcing the generated models to undergo a vigorous validation process, before applying 

it on the unknown data.  

These guidelines for selecting training data, essentially, ensure similar execution 

patterns with respect to the real data size. This list (in the first step) includes exactly same 

concurrency, tasks per iterations, memory accesses, and boundary term sharing patterns 

as the actual AS. Thus, by maintaining the application execution intact in the training set 

during the data collection process, this approach requires low user-intervention. This is 

unlike the previous option with low scope for automation. Hence, the current thread-to-

core model framework is designed based on the second approach of using extended runs 

for smaller AS.   

Purely SML methods are known to be robust with low error margins in their 

predictions. However, they are dependent upon large training data for their results. Their 

second significant disadvantage is due to the poor scale-ups of the performance events. 

Without detailed information about the application behavior, it is difficult to anticipate 

how to draw the focus on a particular class of events (e.g. computations or memory 

accesses). This makes the data exploration a time-intensive ad hoc process. Hence, these 

methods are considered unsuitable for direct extrapolation from small AS to the actual 

data size.  

In summary, it is useful to break down the problem into two parts. The first part of the 

framework handles the measurements from small AS and extracts the main thread stall 

patterns. This step should accept all the detailed cycle-accurate measurements. It should, 
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then, transform it into a very small number of parameters reflective of just the basic 

thread activity, irrespective of the cause for performance loss. The second part can, then, 

extrapolate this parameter variation from the small AS to the actual AS data. 

4.1.2 Hybrid Approach for Proposed Solution 

Continuing the design methodology of the proposed framework, the previous section 

establishes two key ideas in this process. The first significant comment is on breaking 

down the problem into (two) different components. Secondly, it explores the 

disadvantages of using a purely SML based approach, especially for the first part. To 

counter the disadvantages mentioned earlier, MCM is selected for this first step in the 

framework. It essentially translates the cycle-accurate empirical measurements into 

system-level performance terms with respect to thread stalls. The thread is treated as the 

primary element in the current MCM to represent the parallel behavior.  

Summarizing the main ideas discussed henceforth in this section. It begins with the 

key features of MCM. It then proceeds with the basics of MCM design for building the 

framework. The next paragraphs explore the hybrid nature of the proposed solution and 

especially highlighting the exchange of MCM and SML based technique. This section 

concludes with the design strategies that have helped in reducing the response time.  

There are three main benefits of using the MCM for the first part of the framework. 

Firstly, it goes beyond the black-box model treatment of the SML based techniques. Also, 

it is known to be comparatively easier to modify and thus, provides better design 

reusability. Thirdly, the performance analyst need not undergo data exploration during 

pre-processing stages to identify the key stall events (e.g. compute- or memory-
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intensive). This step was a major drawback with SML, because the performance trends 

may vary with the application and reduces the extent of automation.  

It is important to note here that MCM is used for predicting the state of system, while 

undergoing transitions within pre-defined states. However, it is unappealing in the 

context of the second part of the problem, which is extrapolating behavior with the 

change in data sizes. Under such conditions, it is very hard to perceive the system states 

in advance. Thus, as explained later, a SML based approach is used to overcome this 

unknown state issue. But considering its disadvantages pointed out in the previous 

section, its (prediction) scope is limited to the MCM characteristic curve. 

Exploring the framework design further, the system-level information, such as, the 

number of cores and the memory hierarchy, are represented by the MCM states. 

Multithreading is shown as the state transitions. Hence, the model is generic enough to be 

easily extended to similar architectures. The value of transition probability terms is 

determined from the program characteristics. They are representative of the common long 

latency events such as cache misses, division operation, among others.  

The designed MCM reduces the stall patterns to thread performance terms, namely, 

probability of thread to get suspended and probability of thread maintaining that 

suspended state. Application performance loss can occur in either of the two cases: (a) 

thread suspending frequently and recovering quickly, or (b) thread suspending rarely, but 

recovering after a long latency. Hence, the MCM gives rise to a characteristic curve, 

which maps a particular probability combination with the given system performance.  

SML based technique is used for the second part of the proposed solution. Its role is to 

extrapolate these thread probability values for the actual AS. Thus, the SML based 
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technique operates on the much smaller MCM characteristic curve.  This is a limited data 

space, in comparison to exploring the combination of large number of individual events 

to track performance loss.  

Since only MCM has the key for the probability values to CPI transformation, it is 

again involved as the third step of the framework. Thus, the SML output probability 

value of actual AS is fed back to the MCM to determine the unknown CPI. This 

comprises a brief overview on the hybrid nature of the proposed solution.   

Summarizing the above discussion, the improvement in the prediction time is 

achieved, because of two main reasons. First, the program characteristics are adequately 

modeled from the performance information from considerably smaller AS, in comparison 

with the actual data size. This significantly brings down the required number of 

computations. 

Secondly, the architecture-application interaction for the actual AS is represented by 

the mathematical expressions (in MCM) and hence, avoids the use of cycle-accurate 

information. Because of these two primary advantages, the use of this framework can 

drastically reduce the design time for application optimization, by testing multiple 

parallel implementations in a short duration. 

4.1.3 Thread-to-Core Model Outline 

The main parts of the proposed solution are elaborated in this section. It begins with 

formulating the three key steps of the framework. It, then, introduces the MCM design 

within the context of constructing the model. It concludes with the comments on using 

SML based learning technique called MT as the extrapolator.  
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Figure 4.1: Thread-to-core performance prediction framework 

 
A top-level overview of the entire model framework is shown in Figure 4.1. Based on 

the discussion in the previous section, this consists of the three primary parts as listed 

below: 

a) Translating machine and application information into MCM states and the thread 

transitional probability values. 

b) Extrapolating above thread transition probabilities for actual AS using MT. 

c) Throughput prediction for actual AS with these extrapolated transition probabilities 

using MCM. 
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The most significant component in the model framework is the MCM. Hence, before 

diving into a much detailed process of constructing the model, it is important to 

understand an overview of the MCM. Typically, it has a fixed number of pre-defined 

states to depict the nature of the system. It transitions from one state to another in the 

state space with certain probability. In the current context, the primary objective of the 

MCM is to calculate the probability of (system) states under steady state conditions. The 

predicted CPI is inferred from that state probability information. 

The first step in the framework begins with generating small AS- and MS-specific 

VTune measurements for the pre-processing steps. This includes separating instruction 

and cycle-related measurements, optimizations according to per event contribution 

values, among others. It, then, compares the measured and predicted CPI (from MCM) to 

select the best possible probability term that accurately represents the application 

behavior. In principle, this step transforms the cycle-accurate measurements into cycle-

independent performance data, as represented by the thread transitional probability terms.  

The MCM is again used in the third step of the framework (Figure 4.1). This MCM is 

the same model as before, with exactly the same states and the probability expressions. 

However, in this step, it receives input probability values from the MT extrapolator. 

These values denote the change in the system conditions, due to the larger data size 

application, running on the same machine. The output in this final step is the predicted 

steady state CPI for the actual AS.   

In the second step in Figure 4.1, the AS- and MS-specific transition probability terms 

are, then, fed to the MT for extrapolation for the higher AS. Some other MCM-related 

information about thread binding and states is also passed to this model. The 
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extrapolation occurs on two levels: AS and iteration count. Model Trees has been used 

for this block of the framework. This part is actually a classifier and it constructs tree-

based piecewise linear models as leaf nodes for the input information.  It is readily 

available as part of M5´ module [52] in Weka [51].  

A much simplified approach with the focus on just the individual performance events 

is not a practical idea, because of their non-linear scale-up characteristics, as discussed 

earlier in Section 4.1.1.1. Hence, a part of the design effort has been the development of a 

robust estimator for these probability terms.  

4.1.4 Properties of Application  

After a brief on the model design, it is important to understand the properties of 

application, which qualify them for the proposed solution. This framework is directed 

towards large parallel applications with all the following characteristics: 

a) Homogeneous and heterogeneous multithreading workloads with aperiodic 

performance.   

b) Rank order of MS remains consistent over the entire application execution. 

c) Large number of same data operations occurring over long durations. These 

repetitive activities may include floating point computations, logical, string 

matching, among others. Additionally, the number of instructions should be high 

enough to justify the requirement for performance prediction over very large time 

periods. 

d) Large memory requirement.  This is with respect to per-iteration memory and may 

involve global sweep over data size much larger than the available cache. Also, the 

applications may have dependencies over space and time with low data reuse. 
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e) Constant number of threads throughout the application execution. 

4.1.5 Framework Outline 

The subsequent next two sections are assigned to the MCM design. This includes a 

step-by-step procedure for the hierarchical system-level model as shown in Section 4.2. 

The MCM for step 1 involves an elaborate sequence of pre-processing steps and is 

covered under Section 4.3. The MT input characteristics and learning technique basics, 

including building and pruning of the tree, are described in Section 4.4. The individual 

model elements of the entire framework are combined together in Section 4.5. This 

section provides in-depth discussion on the three primary steps shown in Figure 4.1.  

4.2 Markov Chain Model 

4.2.1 Introduction 

The first two paragraphs review the fundamentals of MCM. It is a memory-less 

process and hence based on independent trials. The next state depends only on the current 

state, and not on the sequence of events that preceded it. The process moves successively 

within a group of fixed number of predefined states. For example, if the current state is si 

and the next state is sj, then the system transitions from one state to another with a 

probability of pij. Alternately, the process can remain in the current state, and this occurs 

with a probability pii. The predefined states represent the state space. The state diagram is 

constructed with these states and the transitional probabilities. 

An initial probability distribution specifies the conditions of the system in the 

beginning. On solving the transition matrix for the MCM, one can find the steady state 

probability of all the possible states. This numerically represents the feasibility of the 

system ending up from the first state to all other states, once it attains stable behavior at 
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steady state. MCM have been widely used in statistical modeling of various computing 

systems including telecommunication networks and multiprocessors. 

After a brief review about the theory of MCM, it is important to discuss its design for 

the proposed framework. The main challenge in the current context is on how to define 

the states and the transition probability matrix which comprises the state space. Ideally, 

they should adequately represent the machine behavior and program characteristics, 

without focusing on a deeper understanding of the program or the platform.  

Continuing on this reasoning with respect to the architecture, it is a well-known fact 

that the modern multicores derive their vastly improved performance from multiple cores, 

hierarchical shared memory and on-chip caches. Hence, the design of MCM reflects the 

memory hierarchy of the machine. The MCM states are based on the total number of 

threads supported by the particular cache level. It begins with the basic L1-cache level 

MCM. In this state machine, a thread can transition between active and suspension. Thus, 

the basic model is constructed using these two states. 

This L1-cache level model is extended further to the L2-cache level model. The 

number of all possible ways a transition can occur is constrained by the number of 

software threads per L2-cache and, the current state of active threads. Multiple L2-level 

models constitute the system-level model. The L2-caches communicate with each other 

only through the main memory. Hence, the probability expressions for the system-level 

model are designed reflecting this concept. This represents the machine described in 

Chapter 2. However, the model hierarchy can be easily extended to more layers of cache. 

The thread stalling activities affects the overall CPI and represents the program 

characteristics. They are included in the model as the thread transitional probability 
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values. They are calculated from the long latency events (frequency and average latency) 

from the empirical measurements. This, in turn, is calculated by the number of such 

instructions, frequency of their occurrence and, average cost per occurrence. For solving 

the transition matrix of the MCM, the initial state is assumed as all active threads. This is 

a realistic situation, since all threads are fully capable of processing the instructions in the 

beginning.  

The model can be solved to predict the probability of system transitioning to all 

threads suspended (ps) at steady state. The final throughput of the machine, representing 

the CPI is given by 1/(1 - ps). A detailed step-wise description on finding steady-state 

probabilities and CPI using MCM is shown in Appendix A. 

The main assumptions in the current MCM are: 

a) Coarse-grain thread-level parallelism or TLP (architecture-related): This implies

that thread switching occurs only during the stalls. Also, multiple threads mapped

to a single core may not translate to any performance gain. This is a constraint for

the MCM state transitions.

b) Single active-to-suspend transition per time stamp (MCM-related): The definition

of MCM dictates that only one transition can occur in a single time stamp. This

implies that the time interval between two events is so small that it can be safely

assumed that only a single active thread can transition to the suspended state in a

given time stamp. However, due to difference in the number of cycles of the long

latency events, there can be multiple suspended threads returning to the active state

in the same time stamp. This is again a constraint for the state transitions.
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c) Constant number of threads throughout application execution (application-related): 

The model dictates that the number of thread remains constant for the application 

from start till the end of program execution. Varying thread count will translate to 

absorbing MCM states, which is beyond the scope of the current work. 

A brief outline of this section on MCM is described henceforth in this paragraph.   A 

basic thread-level model framework is designed in Section 4.2.2. This is extended further 

with the plausible state transitions for L2-level model in sections 4.2.3 and 4.2.4. A 

system-level representation is developed in Section 4.2.5. The next two sub-sections 

shows derivation on the expressions for the transition probabilities (probability of active-

to-suspend - p and suspend-remaining-suspended - q). The last section 4.2.6 covers the 

alternative MCM model states. 

4.2.2 Basic Model Hierarchy 

Based on the discussions in Section 4.2.1 on the basics of MCM design, the multi-

levelled thread transition diagram for the entire system is shown in Figure 4.2. The three 

main levels (L1-cache, L2-cache and main memory) represent the memory hierarchy. In 

this figure, the distinction in each level is based on the total number of threads (active or 

suspended) supported by that particular abstraction layer. The state transitions in each 

layer are derived from this information. The transition probability expressions represent 

the combinations of all possible number of active and suspended threads associated with 

that particular level. In the subsequent paragraphs, the transition diagram for each of the 

levels is explained in greater detail.  
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L1 Cache-level Model

L2 Cache-level Model

...

System-level Model

Num of threads supported by 
a single L1 Cache

Num of L1 Cache supported by 
each L2 Cache

Total levels of Cache

Total number of highest level cache 
supported by main memory

 
Figure 4.2: Markov chain model hierarchy 

 
The first abstraction layer begins with the L1-cache level state machine as shown in 

Figure 4.3. As mentioned in Section 3, the best possible performance is derived with a 

single thread per core and each core has its own private L1-cache. In this state diagram, 

the system alternates between the active or suspended (no activity) states. Hence, the L1 

cache-level thread transition diagram can be appropriately assigned these two basic 

states. Since there are exactly two (thread) states, which are completely independent of 

each other, this can be adequately represented as a Bernoulli trial.  

Active
Thread

Suspended 
Thread

p
q

1 - p
1 - q

 
 

Figure 4.3: L1-cache level thread transition diagram showing  
thread transitional probability pair 
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The main thread transitional probability pair (Figure 4.3) are given as: 

a) p - Probability of active thread getting suspended 

b) q - Probability of suspended thread remaining suspended 

0 thread 
susp

2 thread 
susp

1 thread 
susp

(1-q)² p²
(1-p).(1-q)

(1-p)²

2p.(1-p)

pq

q²

2q.(1-q)

p.(1-q) + (1-p).q  
Figure 4.4: L2-cache-level thread transition diagram 

 
A single L2-level model is the next tier of the entire system state space as represented 

in Figure 4.4. For the current machine, each L2-cache is shared by the two cores (Figure 

3.1).  Hence, the three possible states for each L2-cache, depending on all threads active, 

only one thread active and both threads active, are given as 0, 1 and 2, respectively. The 

transition probability expressions shown in the above figure are developed in the Section 

4.2.4. 

0 

2 1 

0

2 1

0

2 1

0

2 1

Figure 4.5: System-level thread transition diagram 
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The final system-level model with all the eight cores is shown in Figure 4.5. This is 

built from the four L2-cache models (Figure 4.4). Thus, the total number of states 

possible in the final model is 81. This is calculated from the number of possible states for 

each L2-cache to the power of number of such L2-cache present in a single machine = 34.  

An alternate treatment to the total number of states is considering each thread state 

individually. For example, for the current case with eight threads, each can be either 

active or suspended. Hence, the total number of states becomes a slightly higher figure of 

256 (number of possible states for each thread to the power of number of such threads), 

increasing the execution time for solving the model. And hence this approach has been 

dropped in favor of gaining prediction speed.  

4.2.3 Examples for L2-level Markov Chain Model 

In the previous section, the L1-cache-level MCM states are established. In this section, 

each and every possible transition for a hypothetical L2-cache is explored. This exercise 

is performed to develop the transition probability expressions in the next section. Assume 

an L2-cache with a set of maximum two active threads, similar to the current Clovertown 

machine. As an example, the transition of one active thread (and one suspended thread) to 

any one active thread is considered. This transition can occur by any of the two following 

cases:  

a) Active thread remains active and suspended thread remains suspended, or  

b) Active thread becomes suspended and suspended thread becomes active. 

Since each of the above instances is independent of each other and equally likely to 

occur, the transition probability value is the sum of probabilities for both the possible 

cases.  
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Based on the decrease, increase, or no change in the number of "active" threads, these 

events are grouped into three categories as upstream, downstream, and constant, 

transitions respectively. The symbol (x, y) represents x active threads and y suspended 

threads. In general, a single L2-cache supporting N threads with i suspended threads is 

represented as (N - i, i). Consider a hypothetical single L2-cache supporting 8 threads 

each. Thus, a downstream transition from 2 active threads to 4 active threads, is 

represented as (2, 6) to (4, 4). This is illustrated in Figure 4.6. 

Current → Next 
(2, 6) → (4, 4) 

   
Active                          Suspended 
2 (Active) + 6 (Suspended) : Current State 
= 4 (Active) + 4 (Suspended) : Next State 
= 8 threads (constant)  
  

Figure 4.6:  L2-level active and suspended thread notations 
 

All possible transitions for this case are explained in detail in this section and 

summarized in Table 4.1. All possible next states are listed out in the columns marked as 

“Next State (i) to (iii)”. The suspended threads can either be active threads getting 

suspended (row 2), or, from suspended threads remaining suspended (row 3). The number 

of such possibilities depends on the total number of active (and suspended threads) in the 

next state.  For better explanation, the set of active and suspended threads are treated 

separately to count all such occurrences. On reversing the treatment, i.e., on beginning 

with the set of suspended threads (instead of set of active threads), exactly same cases 

will emerge.  
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Table 4.1: Downstream transition example from (4, 4) to (2, 6) 

Thread States Current 
State 

Next 
state (i) 

Next 
state (ii) 

Next 
state (iii) 

Active threads 4 (2, 2) (1, 3) (0, 4) 
Suspended threads 4 (0, 4) (1, 3) (2, 2) 

Total (4, 4) (2, 6) (2, 6) (2, 6) 
 
In the above example, following transitions for set of active thread cannot be 

considered, because they violate the maximum number of active threads in the next state:   

a) (4, 0) to (4, 0) 

b) (4, 0) to (3, 1) 

An example of constant transition, of 6 suspended threads to 6 suspended threads is 

shown as follows: 

Table 4.2: Constant transition example from (2, 6) to (2, 6) 

Thread States Initial 
State 

Next 
state (i) 

Next 
state (ii) 

Next 
state (iii) 

Active threads 2 (2, 0) (1, 1) (0, 2) 
Suspended threads 6 (0, 6) (1, 5) (2, 4) 

Total (2, 6) (2, 6) (2, 6) (2, 6) 
 

In an upstream transition example of 4 suspended threads to 6 suspended threads, is 

illustrated as: 

Table 4.3: Upstream transition example from (4, 4) to (2, 6) 

Thread States Initial 
State 

Next 
state (i) 

Next 
state (ii) 

Next 
state (iii) 

Active threads 2 (2, 0) (1, 1) (0, 2) 
Suspended threads 6 (2, 4) (3, 3) (4, 2) 

Total (2, 6) (4, 4) (4, 4) (4, 4) 
 
4.2.4 Transition Probability Expressions for L2-level Markov Chain Model 

The transition probability expression for a single L2-cache is denoted as “transition (i, 

j, x)” as shown in Figure 4.7. It represents the transition probability element from state-i 

to state-j for xth L2-cache. In this section, the expressions for “transition (i, j, x)” for 

Constant, Upstream and Downstream are developed. 
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  transition (i,  j,  x) 
Number of suspended  
threads in current state 

                                                                                 Cache id 
Number of suspended 
threads in next state 

 
Figure 4.7: Representation for 1-tuple for a single L2-cache model 

 
As explained earlier, the basic L1-cache level state model (Figure 4.3) is adequately 

represented as Bernoulli trials with binary values. Thus, the transition probability values 

for the different states are assigned based on the binomial distribution. The expressions 

for constant, upstream and downstream transitions are as follows: 

Constant i = j 

(N, 0) to (N, 0) with i = 0 (1a) 

𝑝𝑝𝑖𝑖𝑖𝑖 =  (1 − 𝑝𝑝)𝑁𝑁 

(0, N) to (0, N) with i = N  (1b)  

𝑝𝑝𝑖𝑖𝑖𝑖 =  𝑞𝑞𝑁𝑁 

(N-i, i) to (N-i, i) with i ≠ 0, N (1c)  

𝑝𝑝𝑖𝑖𝑖𝑖 =  �   � �� 𝑖𝑖𝑚𝑚�𝑞𝑞
𝑚𝑚. (1 − 𝑞𝑞)𝑖𝑖−𝑚𝑚� × ��𝑁𝑁 − 𝑖𝑖

𝑛𝑛 �𝑝𝑝𝑛𝑛(1 − 𝑝𝑝)𝑁𝑁−𝑖𝑖−𝑛𝑛�
𝑛𝑛=𝑖𝑖−𝑚𝑚+1

𝑛𝑛=𝑖𝑖−𝑚𝑚

 𝑚𝑚=𝑖𝑖

𝑚𝑚=0, 

 

 

Upstream j > i 

(N, 0) to (N-j, j) with i = 0 (2a) 

𝑝𝑝𝑖𝑖𝑖𝑖 =  �𝑁𝑁𝑗𝑗 � 𝑝𝑝
𝑖𝑖(1 − 𝑝𝑝)𝑁𝑁−𝑖𝑖 
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(N-i, i) to (0, N) with j = N (2b)   

 𝑝𝑝𝑖𝑖𝑖𝑖 =  𝑞𝑞𝑖𝑖𝑝𝑝𝑁𝑁−𝑖𝑖 

(N-i, i) to (N-j, j) with i ≠ 0, j ≠ N (2c) 

𝑝𝑝𝑖𝑖𝑖𝑖 =  �   � �� 𝑖𝑖𝑚𝑚� 𝑞𝑞
𝑚𝑚. (1 − 𝑞𝑞)𝑖𝑖−𝑚𝑚� × ��𝑁𝑁 − 𝑖𝑖

𝑛𝑛 �𝑝𝑝𝑛𝑛(1 − 𝑝𝑝)𝑁𝑁−𝑖𝑖−𝑛𝑛�
𝑛𝑛=𝑖𝑖−𝑚𝑚+1

𝑛𝑛=𝑖𝑖−𝑚𝑚

 𝑚𝑚=𝑖𝑖

𝑚𝑚=0, 

 

 

Downstream i < j 

(N-i, i)  to  (N, 0) with j = 0  (3a)   

𝑝𝑝𝑖𝑖𝑖𝑖 =  (1 − 𝑞𝑞)𝑖𝑖(1 − 𝑝𝑝)𝑁𝑁−𝑖𝑖 

(0, N) to (N, 0) with i = N (3b) 

𝑝𝑝𝑖𝑖𝑖𝑖 =  (1 − 𝑞𝑞)𝑁𝑁 

(N-i, i) to (N-j, j) with i ≠ N, j ≠ 0 (3c) 

𝑝𝑝𝑖𝑖𝑖𝑖 =  �   � �� 𝑖𝑖𝑚𝑚� 𝑞𝑞
𝑚𝑚. (1 − 𝑞𝑞)𝑖𝑖−𝑚𝑚� × ��𝑁𝑁 − 𝑖𝑖

𝑛𝑛 �𝑝𝑝𝑛𝑛(1 − 𝑝𝑝)𝑁𝑁−𝑖𝑖−𝑛𝑛�
𝑛𝑛=𝑖𝑖−𝑚𝑚+1

𝑛𝑛=𝑖𝑖−𝑚𝑚

 𝑚𝑚=𝑖𝑖

𝑚𝑚=0, 

 

The expression (1c) is examined in detail here. The other expressions can be derived 

with a similar logic. In the set of i suspended threads associated to a single L2-cache, any 

m of them will continue to remain suspended, each with the probability of q. This means 

that the remaining i − m suspended threads will become active (each with the probability 

of 1 − q). This can happen in any � 𝑖𝑖𝑚𝑚� number of ways. Thus, the transition probability 

value for the set of suspended threads is given by �� 𝑖𝑖𝑚𝑚� 𝑞𝑞
𝑚𝑚. (1 − 𝑞𝑞)𝑖𝑖−𝑚𝑚�.  
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At the same time, in the set of the N – i active threads, any n of them can get 

suspended, each with a probability of p. This also means that the remaining N − i − n 

active threads will continue to remain active, each with the probability of 1 – p. Again, 

this can happen in any �𝑁𝑁 − 𝑖𝑖
𝑛𝑛 �  of ways. Hence, this can be represented as 

��𝑁𝑁 − 𝑖𝑖
𝑛𝑛 � 𝑝𝑝𝑛𝑛(1 − 𝑝𝑝)𝑁𝑁−𝑖𝑖−𝑛𝑛�. Since, both events are occurring at the same time, hence 

product rule is applied. The total number of possible outcomes is given by the outer ∑ 

term. It is constrained by the total number of threads related to that particular cache.   

4.2.5 System-level Model  

The final step is combining all the L2-cache-level probability expressions (Figure 4.4) 

in developing the system-level model (Figure 4.5). The states are represented as (i1, i2; i3, 

i4) a 4-tuple, for each of the L2-cache. Mathematically, each tuple is given by transition 

(i, j, x) as shown in Figure 4.7). As mentioned earlier, the total number of states possible 

is 81. These are assigned all possible combinations from all threads active (0, 0; 0, 0) to 

all threads suspended (2, 2; 2, 2). This also implies that the state 1 (0, 0; 0, 1) is different 

from state 3 (0, 0; 1, 0). Although, only one thread is suspended in both the cases, but the 

suspended thread belongs to a different L2-cache. 

As mentioned earlier in Section 6.1, the performance prediction model is designed for 

a hierarchical shared memory machine. This means that communications between any 

two L2-caches takes place through the main memory and, hence, function independently.  
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State – 16
(1, 1; 1, 2)

State – 1
(0, 0; 0, 1)

State – 0
(0, 0; 0, 0)

State – 15
(1, 1; 1, 1)

State – 80
(2, 2; 2, 2)

State – 2
(0, 0; 0, 2)

State – 79
(2, 2; 2, 1)
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(a) current state having all active threads 
 

State - 80
(2, 2; 2, 2)

State - 0
(0, 0; 0, 0)

State - 1
(0, 0; 0, 1)

State - 79
(2, 2; 2, 1)

State - 78
(2, 2; 2, 0)

State - 15
(1, 1; 1, 1)

State - 16
(1, 1; 1, 2)
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●
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(b) current state having all suspended threads 
Figure 4.8: System-level thread transition diagram 
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Mathematically, the system transition is represented as:   

𝑝𝑝𝑖𝑖𝑖𝑖 = � transition 
𝑚𝑚

𝑠𝑠=1

(is, js, s)                                            (4) 

In current scenario, the value of m is four representing the maximum number of L2-

cache in the system.  

Using equation (4), two examples are shown in Figure 4.8.1. In the first Figure 4.8.2 

the current state is all active threads i.e. (0, 0; 0, 0). Consider the next MCM state with all 

active threads. For each L2-cache (Figure 4.4), the probability of transition of all active 

threads remaining active is (1 - p)2. Hence, for all system threads to continue to remain 

active, the transition probability is given by [(1 - p)2]4 using equation (4). The other 

transitions are worked out with a similar reasoning. 

The mi term for each event is calculated separately using equation (5). All the 

performance events used for calculating the above probability terms (both p and q) are 

enlisted in Section 5.7.  These two transition probability values (p and q), along with 

cache and threading information is fed into the MCM solver. It assigns the number of 

states and their transition values from the input data to calculate the predicted CPI.   

4.2.6 Expression for Probability of Active-to-Suspend  

The method used here to find state transition probability of each thread, is first 

suggested in [6]. The current dissertation has been modified for Intel Clovertown versus, 

the previous, Sun Niagara processor. Hence, there are significant changes in the model 

design and performance measurement procedure. 

The probability of an active thread to get suspended (Figure 4.3) is calculated from the 

ratio of the instructions causing a thread to get suspended, to the total number of retired 

instructions. It is shown by the following expression: 
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𝑝𝑝 =  �
𝐼𝐼𝑖𝑖

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑁𝑁

𝑖𝑖=1

                                                            (5) 

where, 

𝑁𝑁 = Total number of threads 
 

𝐼𝐼𝑖𝑖  = Number of instructions causing the thread i to be suspended 
 

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = Total number of instructions executed on the particular core 
 

The numerator term is represented by the additional instructions for the multi-threaded 

versus single-threaded implementations.  The detailed formula is shown below: 

𝑝𝑝 = ��𝐸𝐸𝑖𝑖,𝑚𝑚 −  𝐸𝐸𝑖𝑖,𝑠𝑠�
𝑟𝑟

𝑖𝑖

𝑁𝑁𝑁𝑁𝑚𝑚𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑜𝑜𝑛𝑛𝑖𝑖 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑟𝑟                   (6)�  

where, 

𝑁𝑁 = Total number of events causing an active thread to stall 
 

𝐸𝐸𝑖𝑖,𝑚𝑚 = Total number of occurrences for event-i for the multi-threaded 
implementation, 
 

𝐸𝐸𝑖𝑖,𝑠𝑠 = Total number of occurrences for event-i for the single-threaded 
implementation 
 

4.2.7 Expression for Probability of Suspend-remaining-Suspended  

Calculation of probability of suspended thread remaining suspended (Figure 4.3) is 

designed as a two-step process. Step one is to find q for a single event type. Step two is to 

compute q for the multiple events with a varying frequency of occurrence. Beginning 

with the case of single event latency, it is assumed that the number of stall cycles for a 

particular stall causing event is M. Hence, at the onset of a stall event, for the next M – 1 

cycles, the thread remains suspended and gets reactivated only in the last cycle. Thus, the 



47 

probability of reactivating a suspended thread on any given cycle is 1/M. This follows 

that the probability of a suspended thread to remain suspended is:   

𝑞𝑞 = 1 − 1
𝑀𝑀

                                                             (7)

Realistically, a multithreaded implementation can encounter stalls due to multiple 

events each influencing the overall performance in varying degrees. Some of the events 

are memory reads/writes, resource throttling in the pipeline, (conditional and 

unconditional) jumps etc. The average stall cycle not only depends on the latency of each 

event, but also on the number of their individual occurrences. For example, if event-1 

with 10 stall cycles occurs 5 times, and event-2 with 2 stall cycles occur 25 times, the 

average latency term can be computed as a weighted mean: 

𝑀𝑀� = 10 × 10×5
10×5+2×25  

+ 2 × 2×25
10×5+2×25  

= 6 cycles 

Mathematically, expressing this concept, the average stall cycles for all of the events is 

modeled using the formula: 

𝑀𝑀 =  �𝑤𝑤𝑖𝑖𝑚𝑚𝑖𝑖

𝑟𝑟

𝑖𝑖=1

  (8) 

where, 

𝑁𝑁 = number of events causing a suspended thread to remain stalled 

𝑤𝑤𝑖𝑖 = weight of each event-i 

𝑚𝑚𝑖𝑖 = latency of each event-i 

The mi term for each event is calculated separately using equation (20) as shown in 

Appendix B. The specific VTune events used for calculating the thread transitional 

probability pair is briefly explained in Appendix C. 
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4.2.8 Alternative MCM L1-level Model States 

In this section, two L1-level model strategies are investigated. Both these design 

decisions were made to gain model execution performance.  

Idle Busy Locked

 
Figure 4.9: Alternate thread-level transition diagram 

 
It begins with the tri-states for the basic L1-level model MCM. One way to improve 

model prediction accuracy is by modifying the thread states:  

a) Idle or sleeping 

b) Busy: resources available and thread doing useful work 

c) Locked or suspended: resources unavailable and thread is “busy waiting” 

The three states are shown in Figure 4.9. An actual locked thread cannot directly 

transition to an idle state, without performing assigned work with the newly available 

data or hardware. Similarly, the reverse situation is equally true about idle to busy 

transitions. Collectively, all such transitions will most likely improve the model 

prediction accuracy. Hence, the current approach of the binary states (Figure 4.3) of 

active and suspended (or no activity) might seem to be an over-simplification. However, 

this translates to lower state count at the system-level.  

The increase in the number of states in the system-level model is explained in the 

following paragraphs. The three states for the current L2-level model (Figure 4.4) with 

the basic binary states for the L1-level model (Figure 4.3) can be listed as below:  

a) all threads active 
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b) all threads suspended 

c) only one active thread 

Similar to the current L2-level model (Figure 4.4) a new L2-level model can be easily 

designed with the new L1-level model shown in Figure 4.9. The total number of states 

(after combining) for the new model can be listed as follows: 

a) All threads are idle 

b) All threads are busy 

c) All threads are active 

d) Any one thread is idle and another is busy 

e) Any one thread is idle and another is locked 

f) Any one thread is busy and another is locked 

In comparison to the older model, the new state count increases by two times with the 

present treatment of three states in the basic MCM. Using equation (4), the total number 

of states in the new system-level model will increased by 16 times (64 versus 34). Hence, 

the present selection of binary states significantly improves the performance of the entire 

MCM solver.  

The second alternative L1-level MCM is described henceforth in this paragraph. For 

more accurate representation, the lowest abstraction level should begin with the 

instruction-level, rather than the L1 cache-level model in Figure 4.2. A model capturing 

each instruction behavior should have better prediction results. However, there are two 

main disadvantages in such representation. First, there are up to six micro-ops that can be 

issued per clock cycle. Thus, the number of states in the system-level model will become 
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extremely high and, hence unmanageable. Second, tracking detailed instruction-level 

performance requires the measurement methodology to be much more expensive.  

In both the above cases, there is a significant trade-off between speed versus accuracy. 

In other words, at the price of slightly better prediction accuracy, there will be a much 

greater loss in terms of the run-times for the MCM solver.  

4.3 Pre-processing 

The methodology for transition probability calculation using the performance 

measurements is presented in this section. This includes details on the various parts of the 

first framework step (Figure 4.1). This section is divided into four main segments. 

Motivation on using the multiple starting points during the pre-processing the cycle-

accurate data is shown in the first section (4.3.1). The next section covers the details of 

(pre-processing) methodology including the computation of the starting vector. The 

calculations are explained using examples shown in Section 4.3.3. The last section 

presents an overview on the actual CPI used for error checking block in the first step in 

the framework.  

4.3.1 Multiple Starting Points 

In order to understand the motivation for the Multiple Starting Points, it is important 

to explore the MCM output properties. A sample predicted CPI characteristic curve for 

probability variation is shown in Figure 4.10. This 3-D graph is obtained by plotting the 

predicted CPI (from MCM) with respect to change in thread transitional probability pair 

value from 0 to 1, for different thread counts. Three primary conclusions can be derived 

from the visual inspection of this plot. This first significant observation is that the shape 
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of the plot is similar for all the different thread counts. The second comment is that the 

predicted CPI demonstrates performance loss with reduction in thread count. 

The final remark is the performance loss (increasing CPI) with increasing thread 

suspension probability. This probability term refers to both the thread probabilities 

associated with active-to-suspend - p and suspend-remaining-suspended - q. This, in turn, 

means that the application can have low performance in any of the three cases - (a) very 

high p, average q, (b) average p, very high q, or, (c) average p, average q. In fact, there is 

a band of acceptable solution values (Figure 4.10), each corresponding to a different 

transition probability pair. 

 

Figure 4.10: Multiple starting points 
 

The idea about Multiple Starting Points is for optimizing the throughput prediction 

process. It is roughly based on multiple source optimization problems. The approach is to 

explore the “sources” one-by-one to identify the best possible result that most accurately 

represents the system behavior. In the current context as explained in the previous 

paragraph, it takes advantage of the multiple solutions for a single correct predicted CPI. 
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The pre-processing block searches for a solution pair with the shortest distance from the 

acceptable solution band. The shortest distance corresponds to the lowest number of steps 

to reach the correct transition probability pair. The primary idea here is to search for a 

single solution with acceptable error limits. This also implies that it is not necessary to 

identify all possible solutions. 

The Multiple Starting Points are chosen as the combination of the boundary cases for 

per-event-contribution (PEC) for both p and q. A sub-set is shown in Figure 4.10 by the 

arrowheads. The three possible boundary cases are: the probabilities associated with - the 

highest PEC, the lowest PEC and all the events. This is referred as the PEC Vector. The 

Multiple Starting Points are the nine combinations of these three cases for p and q and is 

termed as the Starting Vector. Its components are listed as follows: 

a) Lowest p PEC, lowest q PEC 

b) Lowest p PEC, highest q PEC 

c) Lowest p PEC, all q events 

d) Highest p PEC, lowest q PEC 

e) Highest p PEC, highest q PEC 

f) Highest p PEC, all q events 

g) All p events, lowest q PEC 

h) All p events, highest q PEC 

i) All p events, all q events 

Using the MCM solver, predicted CPI is calculated for each of the starting points. The 

one with the minimum error has the shortest distance from the band of correct solution 

(Figure 10). Hence, this pair of p and q value is used for next step calculations. 
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4.3.2 Pre-processing Methodology 

Initial Data 
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Reject Event
(if PEC < 0)

Arrange in 
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Reject Event
(if PEC < 0)
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P.E.C. Vector

Create Starting Vector 

fo
r 

p for q
Vtune

Measurements

Figure 4.11: Pre-processing methodology 

The main aim of the pre-processing block is computing the nine-element starting 

vector from the raw measured data. A detailed step-by-step algorithm is shown in Figure 

4.11. The input to this block is the VTune application activity. It is in form of comma-

separated values (CSV) files. The performance data is obtained from the average of three 

runs. This is, then, adjusted with the hardware performance monitoring unit interrupting 

frequency values of the associated events. More details about VTune and this step is 

covered in Appendix B. This is for calculating the actual number of occurrences. The 

basic formulae for the transition probabilities are discussed in the previous section. The 
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per-event-contribution (PEC) values (for both p and q) are calculated from the adjusted 

VTune measurements.  

After arranging PEC values in ascending order, they are used to create the PEC vector 

for both p and q. A combination of the p and q PEC Vector is used for the Starting 

Vector. Out of the set of nine-element vector, the best starting point is selected from the 

predicted CPI (from the MCM solver) with the minimum error. This special starting point 

can, then, be used for a more detailed event search process to identify the (thread 

transitional probability) solution pair.  

4.3.3 Starting Vector Example 

The Starting Vector concept is explained using numerical examples in the following 

tables. First, PEC vector (lowest PEC, highest PEC, all events) for p is shown. Assume 

that the total instructions retired as 50: 

Table 4.4: Per-event-contribution example for p 
Performance 

Events 
VTune multi-
threaded value 

(measured) 

VTune single-
threaded value 

(measured) 
PEC for p Comments 

A 20 10 20 − 10
50

= 0.2 Lowest PEC 

B 15 17 15 − 17
50

 = −0.04 
Reject  

(PEC < 0) 

C 30 15 30 − 15
50

= 0.3 Highest PEC 

𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡   
(20 − 10) + (30 − 15)

50
= 0.5 

 
Thus, the PEC vector for p is (0.2, 0.3, 0.5) from (lowest PEC, highest PEC, all 

events). In some cases, PEC for p can have a negative value. This means that a particular 
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performance event has a lower value as a multi-threaded implementation, in comparison 

to the single-threaded version. An example of this type of event can be reduction in 

misses, due to more cache available to each thread in parallel program. Hence, they are 

not responsible for thread stall and can be safely ignored. Next, the following example is 

a sample PEC vector for q. 

Table 4.5: Per-event-contribution example for q 

Performance 
Events 

Total 
occurrences 

Avg. 
latency per 
occurrence 

(cycles) 

Total 
cycle time 
(cycles) 

PEC for 
q Comments 

X 10 3 30 1 − 1
3�  = 0.33  

Y 2 5 10 1 − 1
5� = 0.8 Lowest 

PEC 

Z 15 10 150 1 − 1
10� = 0.1 Highest 

PEC 

W 25 2 50 1 − 1
2� = 0.5  

Total 240  
 

Average latency is computed using the method described earlier is shown as follows:  

𝑀𝑀 =  (30×3)+ (10×5)+ (150×10)+ (50×2)
240

= 7.2  

𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡 =  1 − 1
7.25

= 0.862  

Thus, the PEC vector for q is (0.8, 0.1, 0.862) from (lowest PEC, highest PEC, all 

events). The overall starting point vectors are: (0.2, 0.8), (0.2, 0.1), (0.2, 0. 862) and so 

on. 

4.3.4 Actual CPI Measurement 

The response time for the application is dependent upon the three main factors - clock 

frequency, CPI, and number of cores. The clock frequency is the property of the 

architecture. The CPI and number of cores are dependent upon the application. The CPI 
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is the average of the number of clocks cycles each instruction takes for retirement. The 

total number of clock cycles includes both the active and sleep instances. In order words, 

it is the measure of instances where the pipeline is actively processing an instruction and 

in a sleep state (halt instruction). In the actual measurement, the ratio of VTune events 

“CPU_CLK_UNHALTED.TOTAL_CYCLES” and “INST_RETIRED.ANY” is used to 

quantify this particular part of the framework.  

4.4 Model Tree 

The second step in the framework (as shown in Figure 4.1) is the thread transitional 

probability pair extrapolation. This is performed using model trees which are a SML 

learning technique. This is readily available as M5´ package [52] in Weka (Waikato 

Environment for Knowledge Analysis), a machine learning toolkit. Weka [51] is free 

software available under the GNU General Public License. It supports several standard 

data mining tasks, more specifically, data preprocessing, clustering, classification, 

regression, visualization, and feature selection.  

There are four main segments in this section. The extrapolator design begins with 

comparison between MT with other numeric prediction learning techniques. This is 

explained in Section 4.4.2. The training data characteristics are presented in Section 

4.4.1. In Section 4.4.3, the main stages for the MT algorithm are elaborated. The two 

main parts of this learning technique includes building the decision tree and regression 

model. Section 4.6 presents details on the characteristics for selecting the training data 

and validating the model before applying to the application size with the unknown 

performance. 
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4.4.1 Background 

Some popular learning techniques for predicting floating point values are neural nets, 

instance-based learning, standard regression, induction trees and regression trees, among 

others as presented in [52]. Neural nets and instance-based learning are much powerful 

models. However, they suffer from opacity and do not provide much insight into the 

structure of the data. In comparison to regression and tree-induction methods, MT 

accounts better for the bias-variance trade-off (Figure 4.12). Bias and variance are the 

two main components of the prediction errors in most data fitting processes. Bias error is 

associated with erroneous assumptions in the learning algorithm, whereas variance is in 

relation to the sensitivity of the model to the small fluctuations in the training set. 

 

Figure 4.12: Graphical illustration of bias and variance [55] 
 

At this point, it is important to understand the argument for selecting of using MT over 

logistic regression and induction trees. The differences between logistic and linear 
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regression are addressed as follows. The dependent variable in logistic regression can 

assume a fixed number of possible values. In comparison, the linear regression models 

have floating values as their dependent variable. In application, the latter of the two is 

used in regression settings while the latter is used for binary classification or multi-class 

classification.  

Past research ([53] and [54]) has shown that both regression and tree-induction are 

superior methods. They are somewhat complementary and their relative performance 

depends on the size and the characteristics of the dataset. Logistic regression fits a simple 

(linear) model to the data, and the process of model fitting is quite stable. The method can 

be characterized as having a high bias but low variance. Tree induction, on the other 

hand, exhibits low bias but often high variance: it searches a less restricted space of 

models, allowing it to capture nonlinear patterns in the data, but making it less stable and 

prone to overfitting. This implies the model tends to fit according to the error in the 

training data.  

In general, the linear models fit by logistic regression are preferable when the data is 

noisy or only few training examples are available, or when the data exhibits a linear 

structure. Tree induction is preferable on highly non-linear datasets, if enough training 

examples are available. The work that combines these two schemes (linear regression and 

tree induction) is termed as Model Trees, as presented in [50] and [54]. 

4.4.2 Basics of Model Tree Learning Technique 

The model tree M5´ classifier is based on the pioneering work proposed in [50]. It 

constructs tree-based piecewise linear models as leaf nodes for multi-dimensional 

training data set. There are two main stages in building a model tree [52]. The first step 
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consists of building an ordinary decision tree by the divide-and-conquer method. A 

standard deviation based splitting criterion is used to create subsets for the set T. The 

variable T represents part of the training data to be explored for the particular node. 

This procedure is applied recursively to the sub-sets with the goal of reducing an error 

function at each node. However, this division may produce overelaborate structures that 

must be pruned back. This consists of the second stage, in which the tree is pruned back 

by replacing a sub-tree with a regression surface. If this step is omitted and the target is 

taken to be the average target value of training examples that reach this leaf, then the tree 

is called a “regression tree”. 

Most details of the original M5 algorithm [50] are not readily available and hence, it is 

reconstructed in [52]. M5´ also includes methods for dealing with numerical attributes 

and missing values, both of which are commonly occurring in the real world data sets. 

Due to these additions, M5´ performs better than the original M5 as demonstrated in the 

results in [52]. The subsequent paragraphs describe the main steps of M5´: 

a) Building the Initial Tree 

The splitting criterion is based on the standard deviation for each attribute that reaches 

that node. The error function associated with a particular node is calculated using the 

standard deviation reduction (SDR). The attribute which maximizes SDR is chosen for 

the subsequent sub-tree. The SDR is calculated using the following formula:  

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑖𝑖𝑟𝑟(𝑇𝑇) − ∑ |𝑇𝑇𝑖𝑖|
|𝑇𝑇|

× 𝑖𝑖𝑟𝑟(𝑇𝑇𝑖𝑖)𝑖𝑖                                       (9) 

Where,  

T : Set of examples that reach the node 

T1, T2, : Sets that result from splitting the node according to the chosen 
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… attribute 

b) Pruning the Tree 

A linear model for each interior node of the unpruned tree is completed using standard 

regression techniques. Only attributes in sub-tree below the node are used for this 

purpose. The subsequent step is to simplify the resulting linear model by greedily 

dropping the terms. The goal is to reduce the expected error at each node for the actual 

versus predicted value in the test data. After finalizing the linear model for each node, the 

tree is pruned back from the leaves as long as the estimated error is reduced.  

c) Smoothing 

The final stage is a smoothing process which takes place whenever the model is used 

for prediction purposes. This step compensates for the sharp discontinuities that might 

inevitably occur between adjacent linear models at the leaves of the pruned tree. This 

may occur specially for models constructed from a small number of training instances. 

First the predicted value is computed using the leaf model. The next step is filter that 

predicted value along the path back to the root. In the process, each node undergoes a 

smoothing process by combining it with the value predicted by the linear model of that 

node. 

4.4.3 Thread Transitional Probability Pair Characteristics 

The Figure 4.13 and Figure 4.14 represent sample thread transitional probability 

curves with respect to iterations (in thousands). The plotted figures are from actual 

measurements for the smallest AS and all the MS. It is very evident that increase in the 

value of thread transitional probability pair (p and q) shows degradation in application 
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performance. The given characteristics can be correlated with actual timing 

measurements.  

For example, on comparing the values for a particular MS (2T_2 - different L2-cache 

on same socket) for two threads, it is observed that (in Figure 4.13(a) and Figure 4.14(a)) 

the p values are the highest, but the value of q is the lowest. This means that threads tend 

to get stalled, but quickly come back to active state. In fact, the actual response time for 

2T_2 is reported as a mid-range performing MS. An example (from these data points) is 

for the highest response time (worst performance) for 8T_3 (8 threads with 4 threads per 

L2-cache). It is seen that at steady state (in Figure 4.13(c) and Figure 4.14(c)), both p and 

q has the high values for this MS, in comparison to the other MSs with 8 threads. 

As explained earlier in Figure 4.1, these serve as input data for the extrapolator in the 

second step in the framework. Hence, it is important to study the main characteristics of 

these thread transitional probability pair plots. They are listed as follows: 

a) Basics 

• Non-linear with continuous floating point data with respect to iterations. The 

probability values are in the range between 0 and 1, since probability can never be a 

negative value or greater than 1.  

• The required output is extrapolation for AS for given iteration. This involves 

prediction outside of range of available training data information for a single 

attribute (Application Size).   

b) Additional knowledge 

• This is an instance of unsupervised learning. This means that no additional 

information is provided as part of the training data for the actual AS.  
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• Also, there is no other expert knowledge that can be built into the model. For 

example, two threads per core will always have a fixed behavior for the p versus 

iteration characteristic curve.  

c) Balanced 

• The initial training model successfully calculates the probability values for all the 

iterations. Thus, there is equal amount of information available for all the MSs 

(different sub-classes) in the training set.  

• Also, the training set class frequencies is the same as the operational conditions. 

This means that for an unknown i-th iteration value in some MS in the actual AS, 

there is information available for the same MS and same iteration in the training set 

data. This is in regards to the quality of information between training and actual test 

data. 

d) Noisy data 

• Since, training data is generated from a clean input (VTune measurements) by the 

first MCM, the attribute labels are always correct. 
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(b) 4 threads 

 

 
(c) 8 threads 

 
Figure 4.13: Thread transitional probability characteristics p with respect to iterations for 

different MSs for smallest application size 
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(b) 4 threads 

 

 
(c) 8 threads 

Figure 4.14: Thread transitional probability characteristics q with respect to iterations for 
different mapping strategies for smallest application size 

 
4.4.4 Training and Validation 

In general, there is no straightforward method to precisely identify the smallest 

possible AS that can be sufficiently used as a training set. However, the pointers 

described in the following paragraphs act as sufficient guidelines for determining a 

suitable result. These pointers are divided into the two main parts of SML model design 

process: selection of the training data characteristics and validation methodology. 

The training set is representative of all the thread stalling activities that take place in 
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a) Each iteration finishes complete execution in exactly the same manner as the larger 

AS. This includes the concurrency, tasks per iteration, order of computation, 

number of synchronization barriers, pattern of memory accesses (including shared 

boundary terms) and number of MSs to be explored. 

b) Training data should run for sufficiently long duration, so that it itself reaches the 

steady state performance and demonstrates all execution phases. 

c) The training set AS should be larger than the cache size to incur sufficiently high 

number of cold misses. This should be held true, unless the actual AS is smaller 

than the cache size.  

d) The other processes running are exactly intact as the real application. 

The next aspect is the validation process, which involves accessing the model 

predictions for an independent data set. This prevents the model from representing a 

localized behavior or the noise in the data. The method used for this step in the current 

framework is called cross-validation.  

In this process, at first the training data set is partitioned into multiple sub-sets. For the 

first part of the verification step, the first sub-set is used to confirm the predictions from 

the model generated with the second sub-set. The next step involves reversing the roles of 

the two sub-sets. This means that the first sub-set is used to build the model, while the 

second sub-set is verified for the predictions. The final result is the average of the two 

predictions. The confidence in the model can be improved by increasing the number of 

partitions in the training set and repeating the procedure equivalent number of times.  

Cross-validation is performed on two levels in the present extrapolator. The first one is 

while creating the model on Weka. This step involves 10-fold cross-validation, where the 
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training set is randomly partitioned into 10 equal parts and verified according to the 

method described earlier. Mean squared error is used as a measure of fit for the model at 

this step. This part is in-built within the Weka tool. The second cross-validation is 

performed on the final framework results (predicted CPI). This means verifying the 

model for an AS when the empirical results (CPI) are already available. Standard 

deviation is used to summarize the errors in this step.  

After this discussion, it important to examine case(s) with verification fails. The 

training data is regarded as unsuitable, when the model errors are outside the permissible 

limits (5% in the final results). Under such circumstances, the performance analyst needs 

to collect more training data. However, generating additional training data is not a very 

straightforward process. The performance analyst must pay attention to the guidelines on 

characteristics of training set, mentioned earlier in this section. In addition, it is important 

to localize the data points where the validation is actually incorrect.  

For example, it may happen that the results are not matching for a particular MS, 

application iterations or the entire AS. In cases where the errors are restricted to a 

particular MS or iterations, more focus should be drawn to that particular subset of the 

training data. However, if the validation does not work for the complete AS, then the 

entire data is regarded as unsuitable. Under such circumstances, the small AS is increased 

to resemble actual AS. In addition, it is advisable to make the validation process more 

rigorous by increasing the number of sets for the cross-validation process. 

4.5 Model Framework 

This section combines all the individual components of the model framework 

described in Section 4.1. This consists of three primary parts as listed below: 
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a) Translating machine and application information into MCM states and the thread 

transition probabilities. 

b) Extrapolating above thread transition probabilities for actual AS using MT model. 

c) Calculating predicted CPI for actual AS from the extrapolated probabilities using 

MCM. 

4.5.1 Translating Measurements into Probability 
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Figure 4.15: Workflow for generating training data (thread transitional probability pair) 
 

This part (Figure 4.15) of model framework is the detailed description of Step 1 from 

Figure 4.1. It translates the small AS cycle-accurate VTune measurements into thread 

transitional probabilities. The MCM used here is constructed in Section 4.2.5. The states 

and probability expressions are dependent on the input MS information. The pre-

processing methodology is illustrated in Section 4.3.2. The application probability with 

the minimum prediction error with respect to actual CPI from the VTune measurements 
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is selected. There is a correct solution pair for each of the MS for all the input iterations. 

This set of thread transitional probability pair will serve as the training data for the 

subsequent step in the model framework. 

4.5.2 Model Tree Extrapolator 

This section is about Step 2 in the model framework in Figure 4.1. This stage 

transforms small AS information to the actual data size performance data. All the input 

parameters from the MCM (AS, iteration, number of L2-cache, number of threads per 

L2-cache, p, q and the number of MC-states) are part of the training data. The model 

output at this stage is the extrapolated thread transitional probability pair. A 

sample output for this step is shown in Appendix D.  

4.5.3 Actual Application Size Performance Prediction 

Mapping Strategies

MCM State Transitions

Predicted CPI &
Selected Mapping Strategy

Application-specific State Transition 
Probabilities

Extrapolated Thread Transitional
Probability Pair

Markov Chain 
Model

Figure 4.16: Workflow for actual application size performance prediction 

This part of model framework is the description of Step 3 from Figure 4.1. This step 

transforms the extrapolated thread transitional probability pair (p and q) from the 

previous stage to actual performance prediction, as shown in the Figure 4.16. This MCM 
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is the same model as before, with exactly the same states and the probability expressions. 

However, this time it receives different values to denote the change in the system 

conditions. 

4.6 Summary 

Chapter 4 covers the details on the proposed framework methodology. It begins with a 

top-level overview of the main components of the framework. It is followed with a step-

by-step development of each of the individual parts - pre-processing, MCM, MT-based 

extrapolator. The system-level architecture details, such as, the number of cores and the 

memory hierarchy information, are represented by the MCM states.  Coarse-grained 

multithreading is shown as the allowable transitions among various states. The transition 

probabilities’ values are determined from the program characteristics. They are 

representative of the common long latency operations such as cache misses, division, 

among others. MT-based extrapolator is used to estimate the behavior of the actual AS 

from the small AS performance information. This chapter also includes the basic parts of 

the learning algorithm, characteristics of the training set and the validation procedure. 

This chapter concludes with combining the individual pieces of the framework.



                        

CHAPTER 5: RESULTS 

The model framework results are presented in this chapter. There are three main 

sections. It starts with the application-specific parallel algorithm design and timing model 

results. The next section is on the thread-to-core prediction results, timing measurements 

from actual application execution and intermediate thread transitional probability results. 

Finally, it elaborates on the MCM prediction analysis based on the number of states and 

the probability values. 

5.1 Timing-Based Model for Data Partitioning Strategies 

The scientific computing application under study is an electromagnetics based two-

dimensional Magneto-Static Wave (MSW) simulation. The MSW phenomena can be 

exploited to develop next generation devices, such as miniaturized circulators and 

spintronics applications. The current devices which can greatly benefit from this 

technology include magnetic amplifiers, frequency selective power limiters and phase 

shifters.  

The computation order for the serial algorithm is first determined. The main 

constraints while designing the parallelizing strategy are reduced boundary sharing, 

decreasing stride penalties, reduced synchronization requirement and increased data 

sharing. These constraints are used to modify the order of computation. The next step is 

to develop the timing-based performance models. The main components of this model are 

computation, memory access and synchronization times. Finally, the actual speed-up 

results of the two parallelizing strategies are compared for identifying the better scheme.  
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5.1.1 MagnetoStatic Wave Simulation Description 

This section describes the electromagnetic aspects of the Magnetostatic Wave 

simulation. The basic scheme for MSW algorithm builds on the standard Finite Domain 

Time Difference (FDTD) scheme [60]. In the traditional FDTD schemes, electric field 

intensity (E) and magnetic field intensity (H) values are computed for each cell. For a 

particular cell, the E calculations depend on the difference of the neighboring H values. 

Similarly, the H calculations are computed based on the differences of the neighboring E 

values. In the MSW calculations, two additional parameters are calculated, namely 

magnetic flux density (B) and magnetization. The magnetization parameter (M) is 

restricted to only certain cells. It is represented by the shaded area in Figure 5.1. The 

magnetic and electric sources introduce Gaussian pulses along the source “plane” row. 

The voltage and current calculations performed on the terminal “plane” row.  

Absorbing 
Boundary 
Condition

Dielectric 
Material

Magnetic 
Material

Perfect 
Magnetic 

Conductor

Perfect 
Magnetic 
Conductor

Perfect 
Magnetic 
Conductor

Source 
Plane

Terminal 
Plane

 

Figure 5.1: Magnetic material and dielectric distribution 
 

For the simulation, a specimen of dimensions 25 cm by 25 cm is used. It is excited by 

a single port, with both soft electric and magnetic current density using transverse TEM 
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data, separated by half time-step. The magnetic material calculations are restricted to 17.5 

mm by 8.75 mm (Figure 5.1), and are the most compute-intensive part of the algorithm. 

The Liao ABC (Absorbing Boundary Condition) scheme is used for the source boundary. 

The other three boundaries are covered by PMC (Permanent Magnetic Conductor). The 

overall number of cells is varied from 100 to 8000 cells in each of x-direction, y-direction 

and 1 cell in z-direction. The electric and magnetic properties of the material are 

mentioned in Table 5.1.  

Table 5.1: Technical specifications of the material 
Dielectric :  Trans-Tech TTVG-1000 Ferrite: D-4, Cordierite 
 Length (mm) Breadth (mm) Height (mm) Dielectric 

constant 
Dielectric   25 25 1 14 
Ferrite 17.5 8.75 1 4.5 
Magnetic saturation : 4πMs = 1000 G Linewidth: ∆H = 795.77 Oe 
Hex = 1x1019 Ho = 700 
 

5.1.2 Serial Algorithm for MagnetoStatic Wave Simulation 

For each iteration, the computation involves seven different parameters - electric field 

intensity (Ez), magnetic flux density (Bx and By), magnetization (Mx and My), and 

magnetic field intensity (Hx and Hy). The calculations progresses in the “leap-frog” 

fashion, both with respect to space and time based on Yee’s scheme from [8].  The 

electric calculations (E) occur in the first half time step and the magnetic calculations (B, 

M, H) calculations happen in the second half time step. For a particular iteration, the 

serial algorithm calculates seven parameters in the given order: 

𝐸𝐸𝑧𝑧
𝑛𝑛+1 2� →  𝐸𝐸𝑧𝑧

𝑛𝑛−1 2� ,𝐻𝐻𝑥𝑥𝑛𝑛,𝐻𝐻𝑦𝑦𝑛𝑛 
 

(10) 

𝐵𝐵𝑥𝑥𝑛𝑛+1  →  𝐵𝐵𝑥𝑥𝑛𝑛,𝐸𝐸𝑧𝑧
𝑛𝑛+1 2�  

 

(11) 

𝐵𝐵𝑦𝑦𝑛𝑛+1  →  𝐵𝐵𝑦𝑦𝑛𝑛,𝐸𝐸𝑧𝑧
𝑛𝑛+1 2�  (12) 
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𝑀𝑀𝑥𝑥
𝑛𝑛+1 →  𝑀𝑀𝑥𝑥

𝑛𝑛−1,𝑀𝑀𝑥𝑥
𝑛𝑛,𝑀𝑀𝑦𝑦

𝑛𝑛,𝐻𝐻𝑥𝑥𝑛𝑛,𝐻𝐻𝑦𝑦𝑛𝑛 
 

(13) 

𝑀𝑀𝑦𝑦
𝑛𝑛+1 →  𝑀𝑀𝑦𝑦

𝑛𝑛−1,𝑀𝑀𝑥𝑥
𝑛𝑛,𝑀𝑀𝑦𝑦

𝑛𝑛,𝐻𝐻𝑥𝑥𝑛𝑛,𝐻𝐻𝑦𝑦𝑛𝑛 
 

(14) 

𝐻𝐻𝑥𝑥𝑛𝑛+1  →  𝐵𝐵𝑥𝑥𝑛𝑛,𝑀𝑀𝑥𝑥
𝑛𝑛  

 
(15) 

𝐻𝐻𝑦𝑦𝑛𝑛+1  →  𝐵𝐵𝑦𝑦𝑛𝑛,𝑀𝑀𝑦𝑦
𝑛𝑛  (16) 

 

The notation 𝐵𝐵𝑥𝑥𝑛𝑛 represents x-component of parameter B for time-step n. The left hand 

side to the arrow-head represents the parameter being calculated. The right hand side 

terms represent the parameters required for the calculation. The serial algorithm is shown 

in Figure 5.2. The term NEND represents the total number of iterations.  

for niter = 1 to NEND 
     calc_Ez 
    calc_electric_source 
    calc_voltage_current 
    calc_Bx 
    calc_By 
    calc_magnetic_source 
    calc_Mx 
    calc_My 
    calc_Hx 
    calc_Hy 
end  for 

 
Figure 5.2: Serial MSW algorithm 

 

As shown above, for N × N Yee cells in the specimen, the net calculation for a single 

iteration is of the order of 7N2 and the memory requirement is 11N2. The magnetization 

parameter computation is depends on two previous iterations. Hence, the memory 

requirement is very high. In general, it is the most compute and memory intensive among 

the four parameters.  
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There are multiple factors in this simulation which contribute to unbalanced 

computation load. First, the magnetization term (M) is restricted to only a certain portion 

of the entire matrix size (shaded portion in Figure 5.1). Secondly, the presence of extra 

computation at the source and terminal point results in an unbalanced load at different 

cells. Finally, the Liao boundary conditions are dependent on data from upper three rows 

of source boundary data.  

5.1.3 Parallel Algorithm for MagnetoStatic Wave Simulation 

The primary components of the execution time are computation, memory access, inter-

processor communication and synchronization time. The main goal in this section is to 

build a composite performance analysis model to capture the effect of these terms. Apart 

from the efficient use of the available compute power, performance improvement greatly 

depends on efficient memory accesses. The objective is to partition the problem (to 

exploit task and data parallelism) to achieve the following goals:   

a) Reusing data for multiple parameter computation. 

b) Efficient use of multiple processors simultaneously. 

c) Minimal interaction between neighboring processors. 

d) Simplified synchronization between phases of computation. 

Hence, to illustrate the spatial and temporal dependency for each parameter, 

dependency graphs are obtained. This information is used to estimate the memory 

requirements in terms of reads, additional boundary buffering, and need for data 

replication. Using these graphs, potential computation reordering schemes is generated. 

Additionally, this eliminates some of the barriers for the parallel algorithm, which were 

enforced by the serial version. Subsequently, the information from these graphs is used to 
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obtain the computational and communication bounds for the potential parallelizing 

schemes. 

5.1.4 Dependency Graphs 
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M
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putation for each iteration
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E

H

B

M

E
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B
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(n-1) th Iteration(n-2) th Iteration

 
Figure 5.3: Task graph representing iteration variations 

 
In order to examine the complex interrelationship between the various parameters, 

dependency graphs are derived. They represent the spatial and temporal dependency for 

each Yee cell. Figure 5.3 represents the task graph showing temporal relationship on a top 

level. Figure 5.4 represents the temporal dependency with respect to x, y and z 

components. Each node represents calculation of a particular parameter for that given 

time step. The edges represent number of terms of parent node used to calculate the child 

node.  
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In Table 5.2, the terms needed by the north, east, west and south neighbors for 

calculating a given term, are listed. This data is useful for estimating the intra-processor 

communication.  

Table 5.2: Spatial dependency 
Parameter 
Calculated 

Boundary Terms needed 
North East West South 

Ez Hx Hy - - 
Mx Hx, Myp Hy, Myp Myp Myp 
My Hx, Mxp Hy, Mxp Mxp Mxp 
Bx - - - Ez 
By - Ez - - 
Hx - - - Mx 
Hy - - Mx - 

 

1/ 2n
zE − n

xH n
yH n

yMn
xMn
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yB
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zE +
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(1) (5)(5)        
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Figure 5.4: Temporal dependency graph 

 
5.1.5 Preferred Order of Computation  

In this section, a methodology is designed to reorder parameter calculations to extract 

optimal performance, while maintaining the correct order of computation. The parallel 
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performance usually suffers because of barrier wait time and cache misses. Hence, a part 

of the parallelizing strategy is reusing data fetched in the local memory for multiple 

parameter computation.  

In the following paragraphs, all possible modifications in the computation order are 

developed: 

1a) The MSW computation always begins with the Ez terms. In the serial computation all 

the B terms are generated after the E terms. In terms of memory, this translates to 

reuse of a single set of E terms, which is of the order of O(N2). Additionally, due to the 

presence of direct temporal dependency (Figure 5.4), there should be a barrier to 

ensure that all the E calculations are completed before calculating the B terms. Hence, 

a barrier is inserted.  

Scheme 1a: Ez  Barrier 1  Bx  By 

1b) Since the H terms cannot be calculated without the M terms, a logical extension for 

Scheme 1a (above) is to compute the M terms. There are is no dependency between 

the B and the M term computations and, hence, so no barriers are placed.  

Scheme 1b: Ez  Barrier 1 Bx  By  Mx  My 

1c) The dependency graph in Figure 5.3 and Figure 5.4 shows that the M terms are 

dependent upon H terms from the previous iteration, and H terms depend on M terms 

from the same iteration. So, to extend this further, the H terms are added in the 

computation with barriers. This scheme allows reuse of 2N2 M terms for H 

computation and total reuse of 4N2 terms. 

 Scheme 1c: Ez  Barrier 1  Bx  By  Mx  My  Barrier 2  Hx  Hy 

2a) An alternative to Scheme 1a (above) is to compute the M terms after the E 

computation, since it will involve reusing two set of H terms, which are of the order 
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2N2. This may (or may not) translate to another barrier after the end of M calculation, 

depending on the next parameter. Thus, the following scheme is obtained: 

Scheme 2a: Ez  Mx  My  

2b) The next item is the B terms added to the preferred order of computation. Since all E 

computations should be completed before moving to the B calculations, a barrier is 

added as follows:  

Scheme 2b: Ez  Mx  My  Barrier 1  Bx  By 

2c) Referring to Figure 5.3, there is no data dependency between the B and M parameter. 

Hence, there is no data reuse in any of the two schemes (1b and 2b). In order to 

incorporate such a feature, another alternative for Scheme 2b can be, calculating the H 

terms immediately after the B terms. However, this will introduce additional barriers 

to synchronize the entire computation.   

Scheme 2c: Ez  Mx  My  Barrier 1  Bx  Barrier 2  Hx  By   Barrier 3  

Hy 

It is important to note here that for the magnetic calculation it is necessary to calculate 

Bx terms before By. This is because of the presence of the magnetic source in the 

original algorithm.   

3a) An alternative for Scheme 2b is to add the H terms with barriers. This scheme also 

allows reuse of 2N2 B terms for H computation.  

Scheme 3a: Ez  Mx  My  Barrier 1  Bx  By  Barrier 2  Hx  Hy 

The performance of the parallel implementation of the algorithm depends on two 

major factors - reduction in the barrier wait time and data reuse. The discussions are 

summarized in Table 5.3. Based on it, it is evident that the scheme 2d is the preferred 

order of computation.  This is illustrated in Figure 5.5. The E and M calculations occur in 
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a single phase of computation. Then the values generated are used for the second phase of 

calculations (B and H computation).  

Table 5.3: Summary of modified computation order performance 

 

E, M B, H

E, M

B, H

E, M

B, H

I t e r a t i o n

 
Figure 5.5: Selected parallel implementation 

 
5.1.6 Design of Application-Specific Timing-Based Performance Model  

In this section, the timing-based performance model for the parallel MSW algorithm 

for shared memory multicore is presented. Two data partitioning strategies are evaluated. 

The comparison parameters are computation, communication (main memory), 

synchronization and inter-processor communication times.  

Broadly, there are two possible schemes of computation for a finite local memory, with 

each processor being assigned N2/p cells (for every parameter):  

a) This is a straightforward approach where the entire data size for each parameter 

gets calculated at a time. Then the computation moves to the next parameter 

calculations. For example, every processor calculates all the E terms for the given 

Schemes Num of barriers Order of terms reused 
Scheme 1c 2 3 N2 
Scheme 2c 3 4 N2 
Scheme 3a 2 4 N2 
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domain size. The data size is constrained by the data it can fetch from the main 

memory. Once these values are written back to the main memory, it begins 

calculating the E terms for another region. This is repeated until all the E terms are 

computed for the entire matrix. The computation, then, shifts to calculating B terms 

for the first region. A similar pattern is repeated till all the parameters are 

completed. The order of computation is enforced by the barriers. Once all the 

parameters for a single iteration are completed, the same computation order is 

repeated for the next iteration.  

b) All the (parameter) computations for a single iteration are completed in a small 

domain. Then it is directed towards immediate next domain and a similar pattern is 

repeated. For example, the E terms for a given domain size n×m, (such that n and m 

are lesser than the application matrix size) is calculated. Subsequently, the H terms 

fetched to calculate E, is “re-used” to calculate some other parameter, before 

permanently flushing them out of the local memory.  

The trade-off in the second scheme is increased data re-usage versus increased stride 

misses, C being a row major language. Secondly, there is a significant difference of 

MSW from the basic FDTD algorithm. The later cyclically uses one set of parameters (E) 

to calculate the other set and vice-versa. However, the requirement of current application 

is such that the multiple parameters are required for calculating a single one. It is also 

evident that the computation time for a single cell for E-M is lesser as compared to B-H, 

i.e. tcomp1 < tcomp2. Also, there are data dependencies from two previous iterations. Hence, 

the data re-usage is not uniform over all the parameters for a single iteration. In summary, 

the data partitioning schemes should be designed to strike a balance between reducing 
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stride misses and maximizing data re-usage, by exploring the column boundary of the 2-

D computation.  

This design process begins with basic assumptions and description of the notations. 

The total memory required for each serial iteration is 11N2 (memory is required to store 

Ez, Bx, By, Hx, Hy, Mx, My and two previous iterations of Mx and My). Additionally, the 

entire data is maintained in the main memory and hence 11N2 is much lesser than the 

main memory size. But, the data size is sufficiently large that the L1 cache is inadequate 

for the entire data set and thus, m << 11N2.  

Notations:  

N = Matrix row/column length for dielectric material. 

Nmag = Matrix row/column length for magnetic material. 

r = Ratio of Nmag / N, r < 1. 

tcomp1 = Computation time for unit cell for the parameters E, B and H. 

tcomp2 = Computation time for unit cell for the parameter M. 

tbarr = Barrier time. 

m = L1-cache size (local memory) 

p = Number of processors available. 

M = Main memory available. 

q  = Number of rows assigned to each processor per cycle of computation. 

In each of the parallelizing strategies identified so forth, the net memory requirement 

is first computed, assuming an infinite memory. This also accounts for the data which is 

already present in the local memory. After finishing computation for one phase, the entire 

data is flushed out to read in new data for the next phase of computation. Then, on the 

basis of the memory requirement of each phase (E, M or B, H computation), the value of 
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the maximum number of rows that can be brought in at a time (blocking) can be 

evaluated. Each “cycle” of computation refers to a block of data being computed for a 

single phase (say, E and M). Finally, the total time taken for the four major steps: 

computation, main memory communication, inter-processor communication and 

synchronization for all the cells are estimated.  

5.1.7 One-Dimensional Data Partitioning 

 N 

  N
  

N/p
q

q

1

2

3

P1

Pp

1

2
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Pp-1

 

for niter = 1 to END 
  calc_Ez  
  if source port thread 
     calc_electric_source 
  calc_Mx 
  calc_My 
  barrier 1 
  calc_Bx 
  calc_By 
  if source port thread 
     calc_magnetic_source 
     calc_voltage_current 
  calc_Hx 
  calc_Hy 
  barrier 2 
End for 

 

Figure 5.6: One-dimensional partitioning  
for N/pq = 3 

Figure 5.7: Parallel algorithm for 
one-dimensional data partitioning 

  
Figure 5.6 represents the one-dimensional data partitioning scheme. In this case, the 

trade-off of stride miss versus data re-usage is in favor of the former. Also, there are 

barriers to impose global synchronization as shown in Figure 5.7. The subsequent 

paragraphs present mathematical representation of the three major components of the 

timing performance - computation, communication and synchronization.  

The total memory requirement per phase per processor is the maximum of the 

requirement for each phase i.e. E-M or B-H as mentioned in Table 5.4. The number of 
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rows assigned to each processor per cycle of computation (q) can be computed using the 

constant L1-cache size constraint. This value can be used to estimate the three important 

timing parameters - computation, communication and synchronization.  

Table 5.4: Memory requirement for each parameter for one-dimensional partitioning 

Parameter Boundary buffering 
Parameters already in 

local memory Net memory requirement 

Ez Hx - 
3𝑁𝑁2

𝑝𝑝
+ 𝑁𝑁 

Mx 
Hx, 

Myp - 2 terms 
- 

6𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚2

𝑝𝑝
+ 3𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚 

My Mxp - 2 terms Ez, Hx, Hy, Mx, Mxp, 
Mxpp, Myp 

8𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚2

𝑝𝑝
+  5𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚 

Bx Ez - 
2𝑁𝑁2

𝑝𝑝
+ 𝑁𝑁 

By - Ez, Bx 
3𝑁𝑁2

𝑝𝑝
+ 𝑁𝑁 

Hx Mx Ez, Bx, By 
5𝑁𝑁2

𝑝𝑝
+ 2𝑁𝑁 

Hy - Ez, Bx, By, Hx, Mx 
7𝑁𝑁2

𝑝𝑝
+ 2𝑁𝑁 

 
The total number of cycles of computation required to complete per iteration of 

computation is  
𝑁𝑁2 𝑝𝑝�

𝑁𝑁𝑁𝑁
=  𝑁𝑁

𝑝𝑝𝑁𝑁
. The values estimated for the two phases can be summed to be 

calculate the “per cycle” and “per iteration” timing parameters. These are summarized in 

Table 5.5 and 5.6.  

Table 5.5: Timing performance model (per phase) for one-dimensional partitioning 

Timing Parameters Phase 1 Phase 2 

Computation 
�𝑁𝑁𝑞𝑞𝑖𝑖𝑐𝑐𝑡𝑡𝑚𝑚𝑝𝑝1� + 

(2𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚𝑞𝑞𝑖𝑖𝑐𝑐𝑡𝑡𝑚𝑚𝑝𝑝2) 
4𝑁𝑁𝑞𝑞𝑖𝑖𝑐𝑐𝑡𝑡𝑚𝑚𝑝𝑝1 
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Main memory accesses 3𝑁𝑁𝑞𝑞 +  8𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚𝑞𝑞 7𝑁𝑁𝑞𝑞 

Inter-processor communication 𝑁𝑁 + 5𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚 2𝑁𝑁 

Synchronization 𝑖𝑖𝑏𝑏𝑡𝑡𝑟𝑟𝑟𝑟 𝑖𝑖𝑏𝑏𝑡𝑡𝑟𝑟𝑟𝑟 

 
Table 5.6: Timing performance model for one-dimensional partitioning 

 

Timing 
Parameters 

Per cycle 
(for both phases) 

Per Iteration 

Computation 
�5𝑁𝑁𝑞𝑞𝑖𝑖𝑐𝑐𝑡𝑡𝑚𝑚𝑝𝑝1� + 

�2𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚𝑞𝑞𝑖𝑖𝑐𝑐𝑡𝑡𝑚𝑚𝑝𝑝2� 

�
5𝑁𝑁2

𝑝𝑝
𝑖𝑖𝑐𝑐𝑡𝑡𝑚𝑚𝑝𝑝1 +

2𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚2

𝑝𝑝
𝑖𝑖𝑐𝑐𝑡𝑡𝑚𝑚𝑝𝑝2� 

= �
𝑁𝑁2

𝑝𝑝
� �5𝑖𝑖𝑐𝑐𝑡𝑡𝑚𝑚𝑝𝑝1 + 2𝑁𝑁2𝑖𝑖𝑐𝑐𝑡𝑡𝑚𝑚𝑝𝑝2� 

Main memory 
accesses 10𝑁𝑁𝑞𝑞 +  8𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚𝑞𝑞 

�10𝑁𝑁𝑞𝑞 +  8𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚𝑞𝑞� ∗ �
𝑁𝑁
𝑝𝑝𝑞𝑞
� 

=
𝑁𝑁2

𝑝𝑝
(10 + 8𝑁𝑁) 

Inter-processor 
communication 3𝑁𝑁 + 5𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚 

(3𝑁𝑁 + 5𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚) ∗ � 𝑁𝑁
𝑝𝑝𝑁𝑁
� 

=
𝑁𝑁2

𝑝𝑝𝑞𝑞
(3 + 5𝑁𝑁) 

Synchronization 2𝑖𝑖𝑏𝑏𝑡𝑡𝑟𝑟𝑟𝑟 2𝑖𝑖𝑏𝑏𝑡𝑡𝑟𝑟𝑟𝑟 ∗ �
𝑁𝑁
𝑝𝑝𝑞𝑞
� 

 
5.1.8 Two-Dimensional Data Partitioning 

Two-Dimensional data partitioning: In Figure 5.8, the two-dimensional data 

partitioning scheme is shown. This scheme differs from the former case in the sense that 

it reuses the data much more efficiently. The timing performance parameters are derived 

in a similar method as shown in Section 5.1.7. Hence, the end results are presented in 

Table 5.7. 
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Figure 5.8: Two – dimensional Partitioning for 𝑁𝑁

𝑁𝑁√𝑝𝑝
= 3 

 
Table 5.7: Timing performance model for two-dimensional partitioning 

Timing 
Parameters 

Per cycle 
(for both phases) Per Iteration 

Computation 

5𝑁𝑁𝑞𝑞
�𝑝𝑝

𝑖𝑖𝑐𝑐𝑡𝑡𝑚𝑚𝑝𝑝1

+
2𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚𝑞𝑞

�𝑝𝑝
𝑖𝑖𝑐𝑐𝑡𝑡𝑚𝑚𝑝𝑝2 

�5𝑁𝑁
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5.1.9 Results 

The parallel code performance for “O3” optimized is measured against un-optimized 

serial code. Performance is observed for up to eight cores. All data used is single 

precision values and it is simulated for up to 5000 iterations. CPU utilization for each 

data partitioning specimen is compared with respect to that of the serial code. 

Maximum speed-up (Figure 5.9) and CPU utilization (figure 5.10) are observed for 

maximum number of cores irrespective of data partitioning scheme, since more 

computing resources are available for each thread. Secondly, as compared to two-

dimensional, one-dimensional data partitioning usually outperforms in the parallel MSW 

algorithm. This can be explained by comparing Table 5.6 and 5.7, where it is evident that 

inter-processor and barrier times are lesser in the better implementation.  

 
Figure 5.9: CPU Utilization versus number of cores for data size 8001x8001 
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Figure 5.10: Speed-up versus number of cores for data size 8001x8001 
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Table 5.8: Mapping strategy symbols 
Num. of 
threads Mapping Strategy Symbols 

2 
th

re
ad

s Different L2-cache with different socket 2T_1 
Different L2-cache with same socket 2T_2 
2 threads per core 2T_3 
Same L2-cache with same socket 2T_4 

4 
th

re
ad

s 4 threads per core 4T_1 
1 thread per L2-cache 4T_2 
2 threads per core ALL on one socket 4T_3 
2 threads per L2-cache two on each socket 4T_4 

8 
th

re
ad

s 1 thread per core 8T_1 
2 threads per core 8T_2 
4 threads per core 8T_3 
8 threads per core 8T_4 

 
5.2.2 MagnetoStatic Wave Benchmark Overview 

MSW serial and parallel algorithm is described in Section 5.1. MSW1 stands for data 

size 60 MB approximately with around 600 data points for each row and column of 

matrix. MSW2 has double the number of row (and column) elements with respect to 

MSW1. The application size can be worked out with similar logic for MSW3 and MSW4. 

For model validation, MSW4 is chosen as the test data. MSW3 results are shown for 

verification.  

5.2.3 N-Body Solver Benchmark Overview 

An n-body problem is used to find the positions and velocities of a collection of 

interacting particles over a period of time. The input to the problem is the mass, position, 

and velocity of each particle at the start of the simulation. 

The output is typically the position and velocity of each particle at a sequence of user-

specified times. Here, the N-Body solver is used to simulate the motions of planets or 

stars. The algorithm [61] uses Newton’s Second Law of Motion and his law of universal 

gravitation to determine the positions and velocities. The derivate terms are calculated 
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with Euler’s method. The compute complexity for this algorithm, for N problem size, is 

5N and the memory requirement is 9N. 

5.2.4 Benchmark Mix for MagnetoStatic Wave Simulation  

This section describes the application mix details used for the model validation. The 

driving idea in the validation process is to estimate the performance of a single 

application under different conditions. This is to gauge its change in performance when it 

is running by itself, in comparison to, sharing the resources (cache or network) with 

another application. However, only a reduced set of MSs for N-Body Solver is chosen for 

the second set of application mix. The scope of this dissertation is to display the validity 

of the thread-to-core model, rather than optimizing the number of experiments with 

multiple applications. Hence, examination of all possible MS combinations for multiple 

applications is left as a future work. The two set of experiments are listed below: 

a) Application mix 1: all cores reserved for only MSW 

b) Application mix 2: MSW with N-Body Solver in the background 

In the current Clovertown machine, the odd numbered cores are mapped on the first 

socket and the even numbered cores are mapped on another socket. And the core 

arrangement is made in such a way that the first four cores (0 to 3) are connected to an 

individual L2-cache. In regard to this core numbering information, the binding details for 

the different MSs are listed in Table 5.9.  

Table 5.9: Thread-to-core binding for application mix 1 (only MSW)  
(a) 2 Threads 

Mapping Strategy Thread 0 Thread 1 
2T_1 0 1 
2T_2 0 2 
2T_3 0 0 
2T_4 0 4 
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(b) 4 Threads 
Mapping 
Strategy Thread 0 Thread 1 Thread 2 Thread 4 

4T_1 0 0 0 0 
4T_2 0 2 1 3 
4T_3 0 0 4 4 
4T_4 0 4 1 5 

 
(c) 8 Threads 

Mapping 
Strategy 

Thread 
0 

Thread 
1 

Thread 
2 

Thread 
4 

Thread 
5 

Thread 
6 

Thread 
7 

Thread 
8 

8T_1 0 4 2 6 1 5 3 7 
8T_2 0  0 4 4 2 2 6 6 
8T_3 0 0 0 0 4 4 4 4 
8T_4 0 0 0 0 0 0 0 0 
 
In the second benchmark mix, the two threads MSs of MSW, i.e. 2T_1, 2T_2, 2T_3 

and 2T_4 are paired with two threads per core for the N-Body Solver. The four threads 

are paired with 4 threads per core and so forth.  

5.2.5 Fast Fourier Transform Overview 

FFT decomposes a periodic function in time into its component frequencies. For given 

N points, the naïve Fourier operation involves O(N2) arithmetical operations, whereas 

FFT completes it in O(N log2 N) operations [62]. The memory requirement for the current 

implementation is 2N2 + 4N.  

In this experiment, all the 12 MSs as shown in Table 5.8 are explored. The thread-to-

core bindings are based on core id information in Table 5.9. The smallest data set has a 

size of 1,024, and is represented as FFT_1. This translates to a memory size of 8 MB 

approximately. This increases by a factor of 2 for the subsequent sets. So, the complete 

training data includes sizes: 2048 (FFT_2), 4,096 (FFT_3) and 8,192 (FFT_4). The 

validation is performed for N = 16,384 (FFT_5) and the actual AS is 32,678 (FFT_6). 

The memory footprint for the actual AS is about 8 GB. The different training data is 
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chosen to compensate for the lack of iteration information in this application. In the 

experiment, FFT is executed as a singular application, without any other user applications 

running in background. 

5.2.6 Results for MagnetoStatic Wave Simulation 

The error in prediction results with increasing core and application sizes are presented 

in Figure 5.11 and Figure 5.12 for application mix 1 and 2, respectively. The reported 

values are the percentage error with respect to actual measurements from VTune for 

steady state CPI (around 20,000 iterations or more). Results are shown from three 

different models (a) MT with only smallest AS for training (MSW1), (b) MT with the 

two small AS for training, (c) MCM and MT.  

Intermediate results in the form of extrapolated probability pair for actual application 

size from MT is shown in Table 5.11. The same information for application mix 2 is 

presented in Table 5.13. 

 
 

-20

0

20

40

60

80

2T
_1

2T
_2

2T
_3

2T
_4

4T
_1

4T
_2

4T
_3

4T
_4

8T
_1

8T
_2

8T
_3

8T
_4

2 threads 4 threads 8 threads

Pr
ed

ic
tio

n 
Er

ro
r (

Pe
rc

en
ta

ge
)

Application Size = MSW3

Only MT (MSW1)
Only MT (MSW1 & MSW2)
MC Model + MT



92 
 

 

Figure 5.11: Prediction error for steady state CPI versus mapping strategies with 
core and application scaling for application mix 1 (only MSW)  

 
Table 5.10: Summary of prediction error values for application mix 1  

 
Only MT  

(with MSW1) 
Only MT (with 

MSW1 and MSW2) MCM + ML 

Average error 7.92589246 -5.4679317 -0.1681387 
Std Deviation 22.2158795 11.4576263 3.866066 

 
 

Table 5.11: Transitional probability variation for  
actual application size data (MSW4) for application mix 1  

Mapping Strategies Training Data Actual AS Data 
p q p q 

2 
th

re
ad

s 2T_1 0.001 0.966667 0.001 0.969753 
2T_2 0.25 0.75 0.275272 0.763373 
2T_3 0.001 0.998333 0.001 0.982736 
2T_4 0.001 0.998333 0.001 0.972849 

4 
th

re
ad

s 4T_1 0.001 0.998333 0.001 0.984722 
4T_2 0.999 0.5 0.9 0.673064 
4T_3 4.93E-06 0.966667 0.002003 0.931579 
4T_4 0.999 0.666667 0.973859 0.666667 

8 
th

re
ad

s 8T_1 0.5 0.966667 0.532037 0.966667 
8T_2 0.25 0.966667 0.269423 0.966667 
8T_3 0.999 0.75 0.9999 0.729884 
8T_4 0.001 0.966667 0.010698 0.988694 
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Figure 5.12: Prediction error for steady state CPI versus mapping strategies with core 
and application scaling for application mix 2 (MSW with N-Body Solver in the 

background) 

 
Table 5.12: Summary of prediction error values for application mix 2 

 
Only MT  

(with MSW1) 
Only MT (with 

MSW1 and MSW2) MCM + ML 

Average error -2.5501748 -13.058848 -2.618146 
Std Deviation 26.7915402 7.42696016 9.487566 

-30

-20

-10

0

10

20

30

40

50

60

2T
_1

2T
_2

2T
_3

2T
_4

4T
_1

4T
_2

4T
_3

4T
_4

8T
_1

8T
_2

8T
_3

8T
_4

2 threads 4 threads 8 threads

Pr
ed

ic
tio

n 
Er

ro
r (

Pe
rc

en
ta

ge
)

MSW3 Only MT (MSW1)

MSW3 Only MT (MSW1 & MSW2)

MSW3 MC Model + MT

-40

-30

-20

-10

0

10

20

30

40

50

60

2T
_1

2T
_2

2T
_3

2T
_4

4T
_1

4T
_2

4T
_3

4T
_4

8T
_1

8T
_2

8T
_3

8T
_4

2 threads 4 threads 8 threads

Pr
ed

ic
tio

n 
Er

ro
r (

Pe
rc

en
ta

ge
)

Only MT (MSW1)

Only MT (MSW1 & MSW2)

MC Model + MT



94 
 

 
Table 5.13: Transitional probability variation for  

actual application size data (MSW4) for application mix 2 

Mapping Strategies Training Data Actual AS Data 
p q p q 

2 
th

re
ad

s 2T_1 0.001 0.998333 0.001 0.956443 
2T_2 0.75 0.2 0.737062 0.241648 
2T_3 0.001 0.966667 0.001 0.999 
2T_4 0.0249855 0.966667 0.009133 0.95283 

4 
th

re
ad

s 4T_1 0.0000739 0.998333 0.001 0.982944 
4T_2 0.999 0.7 0.929972 0.694483 
4T_3 0.75 0.75 0.873477 0.730283 
4T_4 0.999 0.8 0.970366 0.78102 

8 
th

re
ad

s 8T_1 0.5 0.966667 0.688248 0.952814 
8T_2 0.25 0.966667 0.220528 0.973659 
8T_3 0.99 0.8 0.9 0.784496 
8T_4 5.99E-06 0.966667 0.019233 0.953487 

 
5.2.7 Results for Fast Fourier Transform 

This section describes the CPI p rediction results for FFT with validation and actual 

AS. It is organized in a manner similar to the previous section. The dependent parameter 

in the y-axis represents the difference of predicted CPI with respect to the actual CPI 

measurements from VTune. These are compared with the following models generated 

from the direct use of MT:  

(a) FFT_1  

(b) FFT_1 and FFT_2  

(c) FFT_1 to FFT_3 

(d) FFT_1 to FFT_4 

Intermediary results in form of the transitional probability terms are presented in Table 

5.15.  
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Figure 5.13: Prediction error for CPI versus mapping strategies with core scaling for Fast 
Fourier Transform 

 
 

Table 5.14: Summary of prediction error values for Fast Fourier Transform (FFT_6) 
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MCM + 
ML 

Average 
error 25.21921 2.589647 25.91624 26.33398 7.46667 

Std. 
Deviation 11.16867 14.79908 8.819354 8.161058 10.31759 
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Table 5.15: Transitional probability variation for  
actual application size data (FFT_6) for Fast Fourier Transform 

Mapping Strategies Training Data Actual AS Data 
p q p q 

2 
th

re
ad

s 2T_1 0.001 0.996667 0.013628 0.957735 
2T_2 0.001 0.996667 0.001 0.994361 
2T_3 0.001 0.996667 0.001 0.998512 
2T_4 0.001 0.996667 0.001 0.98092 

4 
th

re
ad

s 4T_1 0.001 0.996667 0.001 0.994361 
4T_2 0.99 0.666667 0.863151 0.632334 
4T_3 0.8 0.75 0.675436 0.729553 
4T_4 0.6 0.8 0.67248 0.76517 

8 
th

re
ad

s 8T_1 0.3 0.966667 0.275 0.944596 
8T_2 0.001 0.996667 0.001 0.998512 
8T_3 0.001 0.996667 0.007193 0.999 
8T_4 0.001 0.996667 0.001 0.994361 

 
5.2.8 Elapsed Time Measurements 
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Figure 5.14: Wall clock time versus mapping strategies with core and 

application scaling for the different experiments 
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The actual wall clock time with the different application sizes and the MS are plotted 

in Figure 5.14. These results are from the Linux command time measurements. The first 

two graphs are for 20,000 iterations of MSW, which translate to around 9.67E11 

instructions. 

5.2.9 Discussion on Selection of Mapping Strategy  

This section covers the primary criteria to select the best possible thread-to-core 

binding strategy for the given parallel application (MSW). The primary component of this 

selection is the lowest response time. Another crucial factor is the resources (core and 

cache count) used for achieving the speed-up. For example, if the two MSs have 

comparable response times, then it is advisable to select the one with the lowest thread 

count. This releases the additional cores for use by another application. However, if the 

number of threads remain the same, the selection process is driven by the least number of 

caches. 

The relationship on CPI and application response time is explained earlier in Section 

1.1.1. In the current set of applications, the number of threads is assumed to be constant. 

This discussion begins with the first application mix with only MSW. Following cases are 

examined to identify the best and worst results, and their practical implications: 

a) Lowest response time - For the constant thread count, MS with highest steady state 

CPI has the lowest (application) wall clock time. This is to factor in the variation in 

frequency through the application run. Hence, the MS for each thread count with 

the highest CPI are as follows:  

i)  2 threads: 2T_1 (different L2-cache with different socket) 

ii)  4 threads:  
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• 4T_2 (1 thread per L2-cache)  

• 4T_4 (2 threads per L2-cache two on each socket) 

iii)  8 threads: 8T_1 (1 thread per core) 

b) Overall selected - The criteria for MS selection is mentioned is based on the lowest 

number of cores and caches used to achieve the lowest application response time. 

In accordance to it, 4T_4 (2 threads per L2-cache two on each socket) is the overall 

selected MS. The selected MS 4T_4 has similar response time as 4T_2 and 8T_1. 

However, 4T_2 and 8T_1 are essentially monopolizing all the 4 L2-caches in the 

machine and hence discarded.  

However, as recommended by the VTune profiler, high CPI (over 2) means that 

8T_1 is most likely to show improvement with optimizations. In comparison, the 

other two (4T_2 and 4T_4) with CPI around 1, will potentially plateau 

performance-wise in spite of the additional modifications. However, exploring 

these optimizations is beyond the scope of this work and left as a future work.  

c) Overall rejected - Best (lowest) predicted CPI is for 2, 4 and 8 threads per core 

(Range of 1.00001 to 1.0031). However, these MSs have the worst response time. 

These MSs demonstrate the performance penalty for running multiple threads per 

core on a coarse-grained multithreaded machine.  

The next set of discussion is focused on the second benchmark mix evaluated using 

the framework. This mix consists of MSW with NBody-Solver running in the 

background. The key points are highlighted below: 
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a) Lowest response time - As observed in the earlier results, the MS with highest steady 

state CPI has the lowest (application) wall clock time. The MS with the lowest 

response time are summarized in the table below: 

Table 5.16: Comparison of response time for best MS with thread count variation 

Thread Count Mapping 
Strategy 

MSW only (in 
minutes) 

MSW + NBody 
Solver (in 
minutes) 

2 threads 2T_1 114.9 116.1 

4 threads 4T_2 77.85 82.083 
4T_4 76.15 100.62 

8 threads 8T_1 71.43 130.033 
 

• As observed in the table above, the best 8 thread MS suffers a significant performance 

loss. Comparing third and fourth columns, the current response time is double that of 

the previous case. This is because one of the cores is shared between the two 

applications. This causes the thread with the shared core to stall the others leading to 

significant performance loss. 

• The MS for 4 threads shows a 5% performance loss due to the shared cache. However, 

the loss is so low, because both the applications are running on independent cores.  

• The 2 thread MS do not show any effects because all the resources (cores, cache and 

network) are independent for the two interfering applications. 

b) The worst ranked MS remain exactly same as before showing the performance loss 

due to higher number of threads throttling the pipeline. 

The next item under discussion is about MS selection for the FFT workload. The 

comments on CPI and response time relationship hold true as mentioned earlier in the 

section and hence, they are not repeated here for brevity. The key comments related to 

FFT performance are listed below:  
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• Best response time is with 8 threads with 1 thread per core (8T_1). However, this MS 

completely monopolizes the machine and hence, it is advisable to explore some other 

thread-to-core choices.  

• The second best elapsed time of 340 seconds is observed with these four MSs: 4T_2, 

4T_4, 8T_2 and 8T_3. This value is approximately 1.63 times higher than the overall 

lowest value (of 8T_1). The resources used are calculated using information in Table 

5.8 and Table 5.9. This is summarized below in Table 5.17. The results clearly show 

that by using just 2 L2-cache and 1 core, the best MS in terms of resources (both core 

and cache count) is 8T_3 (8threads with 4threads per core). Thus, the best MS in 

terms of ooverall resources is 8T_3 (8threads with 4threads per core). 

Table 5.17: Resource reserved for mapping strategies with the  
second best elapsed time 

Mapping Strategy Number of Cores Number of L2-cache 
4T_2 4 4 
4T_4 4 2 
8T_2 4 2 
8T_3 2 1 

 
• Increasing the number of threads improves performance. This is demonstrated by the 

best performing MS with 8T_1. Secondly, all the 4 thread MSs perform much better 

than the 2 thread ones. Similarly, other than the exception of 8T_4, rest of the 8 

threads MSs perform almost as well as 4 threads MSs. This is true in spite of the 

coarse-grained threading restriction.  

• Access to more memory per thread does not necessarily improve performance. This 

behavior can be shown by the similar elapsed times in 2 thread MSs on separate 

(2T_1) and same cache (2T_4). This behavior is also demonstrated in comparing 8T_2 

and 8T_3. This behavior points to the compute-intensive nature of the application.  
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5.3 Characterization of Markov Chain Model  

This section elaborates on the MCM prediction analysis based on the change in basic 

input values i.e. the number of states and the probability values. Prediction trends with 

the change in thread suspension activities and cores/threads are presented in section 5.3.1. 

The second section is explores the interrelationship of the two transition probabilities 

with respect to the application behavior. The analysis in the first section is independent of 

the hardware event counters. However, its effect on the performance is investigated in the 

second part of this section.  

Although the primary focus for the current research is on how an application behaves 

with the platform, rather than architecture exploration. However, an agreement between 

the predicted performance characteristics and actual trends brings forth confidence in the 

designed model. In addition, the strategy of multiple starting points in the pre-processing 

block (Section 4.3.1) is developed from studying these plot characteristics.  

5.3.1 General Probability and Configuration Characteristics 

In the current section, the predicted CPI from the MCM solver is plotted with the 

varying inputs to correlate real and observed performance. The inputs to the model, as 

explained in the previous sections, are: 

a) Configuration variations (number of L2-cache and threads per L2-cache), and  

b) Thread transitional probability pair (probability of active-to-suspend - p, and 

suspend-remaining-suspended - q) - varying from 0 to 1.  

The MCM (without empirical measurements) considers infinite cache and bandwidth 

and, hence, the characterization study does not include threads per L2-cache. The effect 

of multiple threads accessing a common cache is incorporated in the model design as the 
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thread transitional probability pair values. This means that different applications running 

on the same machine should (typically) have very different probability values, for the 

same number of MCM states and probability expressions. Thus, in this section 5.3, the 

predicted CPI is independent of the performance gain due to cache sharing. In Figures 

5.15 and 5.16, four different thread counts - 2, 4, 8 and 16, are taken under consideration.  

The different architecture configurations under investigated in this section are listed 

below: 

a) 2 L2-cache with 1 thread per core 

b) 2 L2-cache with 2 threads per core 

c) 2 L2-cache with 4 threads per core 

d) 4 L2-cache with 1 thread per core 

e) 4 L2-cache with 2 threads per core 

f) 4 L2-cache with 4 threads per core 

g) 8 L2-cache with 1 thread per core 

h) 8 L2-cache with 2 threads per core 

The configuration 8 L2-cache with 4 threads per core is intentionally omitted here, 

because it leads to very high number of states (around 400,000). And, state optimization 

is beyond the scope of the current work. This work is focused on laying the framework 

and validation of the MCM based performance model. 

For each configuration, predicted CPI is plotted with a pair of p and q value. The input 

probability values are in the following range:  

a) 0.001 to 0.009, with intervals of 0.002 (e.g., 0.001, 0.003 and so forth) 

b) 0.01 to 0.09, with intervals of 0.02 
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c) 0.1 to 0.9, with intervals of 0.2 

d) 0.91 to 0.99, with intervals of 0.02 

e) 0.991 to 0.999, with intervals of 0.002 

The two boundary values are chosen as 0.001 and 0.999. They are synonymous with 

the lowest and highest possible probability values. For each value of p or q, there are total 

25 individual points as shown above. Pairing each p value with a q value, there are 625 (= 

25×25) data points for any given configuration.   

(a) 2 threads (b) 4 threads 

  
(c) 8 threads (b) 16 threads 

  

  
Figure 5.15: Characterization of Markov Chain Model with varying thread count and 

thread transitional probability pair 
 

Figure 5.15 is a three-dimensional plot showing predicted CPI (output) variations from 

the MCM. This is plotted with respect to the 625 (input) data points for a given thread 
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count. These graphs demonstrate the global minima, global maxima and general trends on 

variations. A more detailed behavior is shown by the plots in Figure 5.16 with a constant 

value of q.  The vertical axis represents the predicted CPI in both set of figures (5.15 and 

5.16). Also, the primary horizontal axis represents the p variations in both these figures. 

For the characterization curves in Figure 5.15, the depth axis represents the change in the 

q terms.  

(a) q = 0.001 (b) q = 0.1 

  
  

(c) q = 0.3 (d) q =  0.5 

  
  

(e) q = 0.7 (f) q =  0.9 

  
 

(g) q = 0.999 

 
Figure 5.16: Predicted CPI with varying thread suspension probability 
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Table 5.18: Maximum & minimum predicted CPI variations 

Total number 
of threads 

Number of L2 & 
threads per core 

Number of 
states in 
MCM 

Maximum 
Predicted 

CPI 

Minimum 
Predicted 

CPI 

2 2 L2 with 
1 thread(s)/core 4 500.2 1.0101±1% 

4 
 

2 L2 with 
2 thread(s)/core 9 250.526 1.0101±1% 

4 L2 with 
1 thread(s)/core 16 250.526 1.0101±1% 

8 
 

2 L2 with 
4 thread(s)/core 25 125.719 1.0101±1% 

4 L2 with 
2 thread(s)/core 81 125.716 1.0101±1% 

8 L2 with 
1 thread(s)/core 256 125.425 1.0101±1% 

16 

4 L2 with 
4 thread(s)/core 625 63.0732 1.0101±1% 

8 L2 with 
2 thread(s)/core 6531 63.08 1.0101±1% 

 
A summary of results from Figure 5.14 and 5.15 is presented in Table 5.18. The 

columns represent the maximum and minimum predicted CPI results with the various 

configurations. The characterization curves show that for all the given thread counts, 

maximum predicted CPI is always for p = 0.990 to 0.999, and q = 0.999. However, the 

minimum values are over a bigger range of data points. For example, the transition 

probability range for the minimum predicted for 2 L2 with 1 thread per core is as follows: 

a) p = 0.001 and q =  0.001 to 0.995 

b) p = 0.003 and q =  0.001 to 0.970 

c) p = 0.005 and q =  0.001 to 0.970 

d) p = 0.007 and q =  0.001 to 0.950 

e) p = 0.009 and q =  0.001 to 0.930 

For all the other configurations, a similar range of probability values exists. However, 

they are not reproduced here for brevity.  
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On a fundamental level, high CPI means that the core takes more number of clocks for 

retirement of a single instruction. This implies poor application performance. The 

comments to correlate the predicted performance from MCM with the actual scenario are 

henceforth discussed. The main points on model predictions (without empirical 

measurements) are listed below: 

a) Worst-case performance for higher thread suspension probabilities: As shown in 

Figure 5.15g, the MCM predicts that the highest CPI is always with (p = 0.990 to 

0.999 & q = 0.999). The vice-versa is also true as shown in Figure 5.15a. For very 

low values of thread transition probability pair (p and q), the predicted CPI is 

consistently the lowest possible value in all the configurations.  

   In the real system, higher thread transition probability pair refers to a large 

application running on a relatively smaller capacity processor. In such situations, 

there is an increase in the number of stall-causing instructions, and higher average 

stall cycles for the long latency operations. This, in turn, brings up the average 

cycles for an instruction retire, and consequently, causes loss of performance. The 

reverse situation points to a machine with very low workload. In such a case, 

threads get suspended less frequently, and the ones which are suspended revert 

back to active state in the immediate next cycle. In such situations, pipeline stalls 

are very low and performance is the highest.  

b) Maximum performance when either suspension probability is minimum: This case 

is a modification of the first comment. As shown in Figure 5.14, CPI remains the 

lowest, when either p or q term is minimum.  
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       Considering the first of the two possible cases, when p is lowest and q is highest. 

In the real system, this means that the threads never get suspended and hence, there 

is no performance loss. In the converse case with highest p and lowest q, threads 

tend to get suspended very frequently. However, they revert back to active state in 

the very next cycle.  

        On comparing these two (hypothetical) cases, performance loss is slightly more 

in the second case. Since in the latter situation, once the thread gets stalled, the 

machine spends a single cycle to recover back to the active state. This increases the 

average number of cycles required for an instruction retirement. In terms of the 

MCM, it is observed that the model correctly predicts this scenario. Performance is 

better in lowest p (and highest q), rather than vice-versa.  

c) Performance improvement with increase in the parallel resources: As shown in 

Table 5.18 in column 4 and Figure 5.15, CPI increases with the decrease in the 

number of threads. Secondly, CPI consistently remains lower even with high values 

of the transition probabilities with the rise in thread count, as shown in Figure 

5.15g. For example, the lowest of the “highest” predicted CPI is observed with 16 

threads.   

d) Threads with higher suspension probability will benefit more with higher thread-

level parallelism: Comparing CPI for 16 and 2 threads for two probability cases (a) 

q = 0.3 and (b) q = 0.9, as shown in figures 5.15(c) and 5.15(f). For constant p = 

0.9, it is observed that the ratio of CPI for 2 threads with respect to 16 threads is 4 

times for case (b), with the higher value of q = 0.9. On the other hand, this ratio of 

CPI is almost constant in case (a), with the lower value q = 0.3. Similar trends can 
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be observed with variation of p, with constant q. This example refers enumerates 

the decrease in CPI (or performance gain) with higher thread counts, in cases with 

higher thread suspension probability.  

        In the real system, applications suffering from thread stalls need to resolve the 

resource contention problem to gain back performance. In such cases, increasing 

the thread count provides access to more number of cores, cache and bandwidth. 

However, applications with lesser stalls may have reached a performance plateau 

and hence may not benefit from increasing the thread count. 

Although some of the above comments may appear obvious. However, the designed 

model becomes more plausible as the predicted performance trends point towards 

realistic situations. 

A limitation of this model is that the lowest predicted CPI always remains unity (Table 

5.18 column 5). The predicted CPI is computed as 1/(1 – ps) at steady state (Section 

4.2.1). The minimum value of this probability term (ps) is zero, since the negative 

probability terms are omitted here for all practical purposes. Thus the minimum value of 

the overall throughput expression comes out as unity. Since, the current work is for high 

performance computing application optimization; at this point this limitation is not of 

much concern. 
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5.3.2 Thread Transition Probability Pair Characteristics 

In the previous section, predicted performance trends are explored with varying states 

and transition probabilities. However, it is important to explore the factors that influence 

the change of these probability values. Hence, the study of the thread transition 

probability pair relationship is presented in this section.  

The p value is dependent upon instructions causing a thread to get suspended. The 

average penalty cycles associated with each suspension occurrence defines the q value. 

Their characteristics studies are indicative of the application-architecture interaction, 

which is crucial for application optimization. A fixed probability range to specific 

algorithm or architecture type seems to be an over-simplification at this stage. However, 

an overview of conditions for its increase or decrease is covered in this section.  

First, comments about probability of active-to-suspend are presented. Then, 

probability of suspend-remaining-suspended analysis is shown. 

The p value is calculated from the single and multi-threaded implementations, as 

shown in equations (5) and (6). There are three primary comments about this: 

a) With the increase in the thread disruption activities such as cache misses, 

computation, among others, threads tend to get suspended more frequently. Hence, 

there is an increase in the p value. For example, in the same application running on 

the same architecture, typically, the p value should increase with increasing 

application data size. Another example can be a compute-intensive application 

tending to benefit from a more powerful ALU, then a string matching application. 

In such a machine, the former case will have a lower p value as compared to the 

later.  
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b) Multiple applications with different computation pattern running on the same 

architectures can have equal p value. This is true, provided that the rate of thread 

suspension activities is identical even though the cause of suspension may be very 

different.  In such situations, the change in predicted performance comes from the 

variation in q values. For example, (1) influence of cache misses in a fluid 

dynamics simulation with a large AS and, (2) bus transactions in a correlation 

computation with a large number of cross computations with smaller data set, can 

be comparable. Consider the following applications, with instruction retired for 

both cases is n: 

TABLE 5.19: Example - 1 for variation of p 

Events 
Application # 1 (same architecture) Application # 2 (same architecture) 
Single-

threaded 
Multi-

threaded PEC Single-
threaded 

Multi-
threaded PEC 

Branch 
misses 𝑥𝑥1  𝑥𝑥2  𝑥𝑥1 −  𝑥𝑥2  𝑦𝑦1  𝑦𝑦2  𝑦𝑦1 −  𝑦𝑦2  

Division 𝑦𝑦1  𝑦𝑦2  𝑦𝑦1 −  𝑦𝑦2  0 0 0 

Cache 
Misses 0 0 0 𝑥𝑥1  𝑥𝑥2  𝑥𝑥1 −  𝑥𝑥2  

 
In both the cases, the p value is calculated as  (𝑥𝑥1 −𝑥𝑥2 )+(𝑦𝑦1 −𝑦𝑦2 ) 

𝑛𝑛
. 

c) Similarly, applications with different computation patterns running on very 

different machines can have equal p value. This is true with the same condition 

mentioned above that the ratio terms are identical in both the cases. An example can 

be a small embedded application running on an 8-bit processor and a scientific 

computing application on a 64-bit processor. This is illustrated with the following 

example. In both the cases, the p value is 0.4. 
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Table 5.20: Example - 2 for variation of p 

Events 
Application # 1, Architecture # 1 Application # 2, Architecture # 2 
Single-

threaded 
Multi-

threaded PEC Single-
threaded 

Multi-
threaded PEC 

Branch 
misses 20 2 18 210 40 170 

Division 55 33 22 0 0 0 

Cache 
Misses 0 0 0 55 80 50 

Instructions retired 100 Total = 40  500 Total = 
200 

 
The next set of discussions is on the probability of suspended thread remaining 

suspended. The q value is dependent upon two factors - application behavior, and event 

latency cost, as shown in equation (8). However, the more dominant influence comes 

from the latency or the per-event cost, as seen in the subsequent examples. The main 

observations are listed below:  

d) For a single event, as the average stall cycle increases, q value increases as shown 

in Figure 5.17. It follows a linear asymptotic behavior reaching towards unity for 

higher values, as obtained by plotting the equation (7). Realistically, any pipeline 

with smaller buffer size will cost more in terms of the higher number of stall cycle. 

Performance-wise this means that the suspended threads with higher latency costs 

should have a higher chance of remaining suspended, and vice-versa.  

 
Figure 5.17: Probability of suspend-remaining-suspended variation  

with average latency (single event) 
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e) Due to linear asymptotic behavior shown above in Figure 5.16, the q value 

stabilizes significantly with higher values of average latency cycles. An important 

implication is that for the same application, running on the same architecture, 

typically the q value should maintain similar range with increasing AS. 

f) This comment is similar to the previous observation (d), but in a more expanded 

context. Consider the same parallel application (with exactly same thread count) 

running on multiple architectures. This means that the cost of same stall causing 

event will be different in each case. Even with the same number of stalls, the idea is 

to determine which of the machines will have a higher likelihood of suspended 

threads remaining suspended.  

        Mathematically, this is demonstrated by the four cases (columns 3 to 6) in the 

following example in Table 5.21. Here, the number of occurrences of each event 

(column 2) is exactly equal for all the four cases. The value of q is the highest for 

the last case (0.999), where the cost of cycle is the highest. However, as shown in 

the comment (e) above, in spite of the increase in average latency cycles, the value 

of q stabilizes at an early knee point.  

Table 5.21: Example - 1 for variation of q 

Events Number of 
occurrences ( fi ) 

Cycles per occurrence (mi) – same application 
Architecture 

# 1 
Architecture 

# 2 
Architecture 

# 3 
Architecture 

# 4 
A 3 2 20 2 20 

B 2 4 4 40 40 

M  8.8 246.4 642.4 880 

q 0.886 0.996 0.998 0.999 
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    For example, for the same number of L1 and L2 cache-misses for a given 

application, threads tend to get stalled with much higher probability in machines 

with lowest capacity of both these caches.  

g) The next case explores the opposite of the above comment. This refers to 

applications with different execution patterns running on very different machines. 

In spite of their different computation and memory access patterns, they can have 

equal q value. This can happen only when the average overall latency cost becomes 

exactly identical. The following example demonstrates this point: 

Table 5.22: Example - 2 for variation of q 

Events 
Architecture # 1, Application # 1 Architecture # 2, Application # 2 

Cycles per 
occurrence Total cycles Cycles per 

occurrence Total cycles 

Branch misses u x v y 

Division v y w “0” 

Cache Misses w “0” u x 
 
     A realistic example of such a case can be a compute-intensive application running 

on a platform with a fast ALU should have similar q value as a memory-intensive 

application on architecture with large memory and bandwidth.  

Summarizing the ideas from the above discussion on MCM characterization, some 

basic predicted and actual performance trend agreements have emerged. First, the model 

successfully predicts the worst-case performance when both thread suspension 

probabilities are the maximum. There is slight gain in performance, if just one of them is 

the maximum. Secondly, the model demonstrates performance improvement with the 

increase in the number of threads. This is in accordance with the Amdahl’s Law, since 

the part of application which can be parallelized remains same all throughout. Third, the 
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model points to cases with different applications with similar performance in spite of 

their dissimilar behavior. This idea is extended further in the Multiple Starting Points in 

Section 4.3.1. In this block, the MCM maps the performance to a certain band, 

irrespective of the cause.  

5.4 Summary 

Chapter 5 focusses on the benchmark, experimental set-up and framework validation 

results. It begins with the application-specific timing model for MSW. This is for 

representing the communication and computation times for data partitioning strategies. In 

the next section, the hybrid model is validated with the results for two different 

applications - MSW & FFT. The first set has two types of experiments. The first one 

being a singular application (MSW) running on the machine. The second type of 

experiments again predicts the performance of the same parallel program. However, in 

this experiment, another application (N-Body Solver) is running in the background. The 

second set is with FFT prediction. The third (last) section in this chapter covers the 

characterization of MCM prediction with respect to the change in the number of states 

and probability values. 



                        

CHAPTER 6: CONCLUSION AND FUTURE WORK 

This chapter summarizes the main ideas described in this dissertation. Top-level 

comments on the problem statement, model metric, proposed solution and model design 

are presented in the first section. The second section proposes ways of extending the 

designed framework to improve the scope of the solution.  

6.1 Conclusion 

The objective of this dissertation is to design a framework for improving the 

productivity of the parallel programmers. The fast, accurate and portable solution should 

enable the application development community to explore large number of MS within 

reasonable machine hours, without detailed information about the program or platform.  

The current performance analysis framework is a fast and accurate tool for identifying 

steady state CPI characteristics of a given parallel application for various thread-to-core 

mapping choices. The architecture under study is a hierarchical, shared memory, multiple 

issue multicore processor, with coarse-grained multithreading.  

The four primary contributions of the dissertation are summarized in the following 

paragraphs. First is identifying an approach for the MS exploration, which is fast, 

accurate and portable. This also includes laying down the model framework in the form 

of hybrid combination of MCM and MT for steady state CPI prediction for the parallel 

application. It consists of designing the MCM states, translating the probability 

expressions into measurements, and extrapolating transitional probability by MT model.  
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Second contribution is developing an application-specific timing model to select the 

data partitioning strategy. The results demonstrate that the 1-D partitioning works better 

than 2-D due to increased data re-usage. 

The third contribution is thread-to-core model validation on Intel Xeon Clovertown 

(X5365) using electromagnetics application (core scaling) against VTune measurements. 

As demonstrated in the results section, the model effectively predicts CPI with an average 

error of 0.168% with standard deviation of 3.866%. In comparison, a purely SML based 

model has an average error of 7.926% with standard deviation of 22.216%. The total run 

time for the model is of the order of minutes, whereas the actual application execution 

time is in terms of days. This is including the overhead of running the application with 

the performance analyzer.  

The last contribution is use of the framework to explore the MS for the given 

electromagnetics benchmark. The most interesting result from this step demonstrates that 

maximizing core and cache count is not required to obtain the lowest response time. The 

best selected MS on an 8-core machine is with 4 threads (2 threads per L2-cache with 2 

on each socket). It is also observed that the result remains true even with MSW has 

another application (N-Body Solver) running in the background. 

In conclusion, this dissertation develops a framework for fast, accurate and portable 

CPI prediction for data-intensive iterative parallel applications running on multicores. 

The steady state value translates to information about the actual response time for the 

various MS. This CPI data, in turn, can be used for effectively exploring the design 

space. Thus, the performance analyst can make informed selections about the various 
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thread-to-core schemes, without developing an ad-hoc application-specific model or a 

detailed understanding about how the program interacts with the platform. 

6.2 Future Work 

This section is divided into two main parts. The first part focusses on how to use this 

framework for the I/O (input/output) bound problems. The second part discusses the 

other possible improvements.  

6.2.1 I/O Bound Problems 

In the current scenario, it is assumed that all the data resides in the main memory. 

Hence, it is a CPU- or memory-bound, rather than an I/O bound problem. The subsequent 

paragraphs provide ideas for modifying the MCM to extend the scope of this dissertation 

for I/O bound problems.  

These I/O bound problems with extremely large data sets spend several thousands of 

clock cycles for reading data from the external devices to the main memory. On the core 

side, this is overlapped by small bursts of activity in terms of CPU execution, followed 

by very long wait periods. These extended periods represent the processes waiting for 

completion of the I/O reads and writes. Thus, it is very different from thread suspension, 

due to unavailability of pipeline resources or cache misses. Hence, with the enormous 

difference in the (clock) cycle cost for I/O accesses, it is a much accurate representation 

to treat the I/O behavior separately from the processor and memory.  

In the current context of the MCM, the I/O could be treated as two different states - 

idle (inactive) and busy (reading disk or writing to main memory). The thread behavior 

can remain similar to the states shown in Figure 4.3. Thus, the overall system can be 

represented by the following four states: 
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• I/O idle, thread active 

• I/O idle, thread suspended 

• I/O busy, thread active 

• I/O busy, thread suspended 

In view of the discussion above, it is very clear that most of the times the system will 

remain in the last two states with busy I/O. However, the first two are included here for 

sake of completeness.  

The next important aspect of MCM design is the transitional probability expressions 

for the I/O accesses. The probability of system transitioning from idle to busy is 

determined by two main factors: (1) ratio of size of main memory to external disk, and 

(2) total size of data set. For example, a system with a smaller main memory will move to 

the busy state with a much higher probability, in comparison with another one with a 

larger memory for the same application. The second probability term of system 

remaining in the busy state can be decided based on the cost cycles and frequency of the 

disk accesses. This concludes a brief overview of extending the framework for I/O bound 

problems.  

6.2.2 Other Improvements 

As part of the future work, the following other enhancements can improve the scope of 

the framework: 

a) Currently the framework usage gets restricted by the availability of VTune 

measurements. A significant improvement will be removing this dependence by 

developing a chain of memory and execution models to assign the thread 

transitional probability pair values. 
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b) Another logical extension to the framework is to dynamically vary the MS during 

execution. Although past work is done for dynamically varying the thread count, 

but it would be interesting to examine the behavior even with same number of 

threads, but switching the thread binding based on requirement.  

c) It is important to identify performance improvement using a particular memory or 

computation optimization. Hence, another key usage enhancement will be covering 

the effect of a particular group of events (e.g. misses or divisions) exclusively.  
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APPENDIX A: MARKOV CHAIN SOLVER 

Algorithm for the MCM solver is listed below: 

a) Transition probability at the beginning of run, pij at t = 0, is given by:

𝑝𝑝𝑖𝑖𝑖𝑖(𝑖𝑖 = 0) = �
(1 − 𝑝𝑝)8 … 𝑝𝑝8

⋮ ⋱ ⋮
(1 − 𝑞𝑞)8 … 𝑞𝑞8

� (17) 

     The above equation represents all eight working threads (shown in Figure 4.8.1). 

b) Compute (pij)t when t→ ∞. For practical purposes, it is assumed that t = 1000.

c) Assuming that all threads are active in the beginning, the probability vector for

starting distribution, u, is [1 0 … 0]. The state of machine at t→ ∞ i

P = u × (pij)t          (18) 

d) In the probability vector, P, the first element represents the probability of machine

at state 0 (all threads active), the next one is for state 1 (any one thread suspended),

and so on.

e) The throughput of the machine (Cycles per Instruction, or CPI) is equal to:

(1 – PN)                                                             (19) 

     where, N represents state where all threads are suspended. In the current case N = 

81.
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APPENDIX B: VTUNE - INTEL’S CYCLE-ACCURATE 
PERFORMANCE ANALYZER 

It is important to understand the basics of performance monitoring hardware [44] and, 

in particular, Intel’s detailed cycle-accurate commercial performance analyzer − VTune. 

It is a well-recognized application and can be used from embedded systems through 

supercomputers. The main features in VTune analyzer include graph generation, time-

based and event-based, thread profiling, performance tuning, among others. The five 

main categories of performance events are  

a) program characterization

b) memory accesses

c) pipeline stalls

d) branch prediction

e) resource utilization.

The two main categories of profiling are time-based sampling and event-based 

sampling based on the timing of when the application is interrupted by the performance 

monitoring hardware. The current project uses event-based sampling or EBS. Time-based 

sampling is unavailable in Linux version of VTune analyzer. This means that instead of 

interrupting the application at regular time intervals (as in time-based sampling), the 

performance monitoring hardware interrupts the application after a specific number of 

performance events has occurred. The samples taken during application execution are 

instruction address (module, source line and assembly line), OS process and OS thread. 
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The maximum number of events which can be recorded at a time is four. This is 

restricted by the number of Performance Monitoring Unit registers.  

Sample After value (SAV) is the frequency or the number of events after which the 

VTune analyzer interrupts the processor to collect a sample during EBS. By default, the 

calibration option is enabled and the VTune analyzer adjusts the Sample After value 

automatically. During the first run of the application (called “Activity”), the VTune 

analyzer records every occurrence of an event. It, then, calculates the total number of 

events and calibrates the Sample After value. The second time the “Activity” runs, the 

VTune analyzer collects samples based on the calibrated Sample After value.  Typically, 

the analyzer calculates the CPU's speed and sets the Sample After value so that there will 

be 1000 samples per second. 

Average latency or penalty cycle associated with each event (mi in equation (8)) is 

calculated using this Sample After values with the following formula: 

𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝑡𝑡𝑟𝑟 𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝑁𝑁𝑈𝑈𝑆𝑆𝐶𝐶𝑇𝑇𝑈𝑈𝑈𝑈.𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈
𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝑡𝑡𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑡𝑡−𝑖𝑖𝑛𝑛−𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒𝑠𝑠𝑡𝑡

                                                  (20) 
 
The VTune event - CPU_CLK_UNHALTED.CORE counts the number of core cycles 

while the core is not in a halt state.  
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APPENDIX C: VTUNE PERFORMANCE EVENTS 

This list is leveraged from the main stall events information mentioned in the profiler 

documentation.  

a) Explanation about p events is presented below:

i) BR_INST_RETIRED.MISPRED: Retired mispredicted branch instructions.

ii) BUS_BNR_DRV: Bus Not Ready (BNR) signals that the processor asserts

on the bus to suspend additional bus requests by other bus agents.

iii) DIV: divide operations executed. This includes integer divides, floating point

divides and square-root operations executed.

iv) FP_ASSIST: floating point operations executed that required micro-code

assist intervention for denormalized input or underflow output.

v) ITLB_MISS_RETIRED: Retired instructions that missed the ITLB.

vi) L1I_MISSES: all instruction fetches that miss the Instruction Fetch Unit

(IFU) or produce memory requests.

vii) LOAD_BLOCK.L1D: Loads blocked by the L1 data cache.

viii) LOAD_BLOCK.OVERLAP_STORE: Loads that partially overlap an earlier

store, or 4K aliased with a previous store.

ix) LOAD_BLOCK.UNTIL_RETIRE: Loads blocked until retirement.

x) MEM_LOAD_RETIRED.DTLB_MISS: retired loads that missed the DTLB.
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xi)  MEM_LOAD_RETIRED.L1D_LINE_MISS: load operations that miss the 

L1 data cache and send a request to the L2 cache to fetch the missing cache 

line. 

xii)  MEM_LOAD_RETIRED.L2_LINE_MISS:  load operations that miss the L2 

cache and result in bus request to fetch the missing cache line. 

b) Following events are under consideration for q calculation: 

i)  BUS_LOCK_CLOCKS: Bus cycles when a LOCK signal is asserted. 

ii)  CYCLES_DIV_BUSY: number of cycles the divider is busy executing divide 

or square root operations.  

iii)  CYCLES_L1I_MEM_STALLED: Cycles during which instruction fetches 

are stalled. 

iv)  DELAYED_BYPASS.FP: number of times floating point operations use data 

immediately after the data was generated by a non-floating point execution 

unit. 

v)  DELAYED_BYPASS.LOAD: number of delayed bypass penalty cycles that 

a load operation incurred. 

vi)  IDLE_DURING_DIV: number of cycles the divider is busy (with a divide or 

a square root operation) and no other execution unit or load operation is in 

progress. 

vii)  ILD_STALL: Instruction Length Decoder stall cycles due to a length 

changing prefix 

viii)  INST_QUEUE.FULL: Cycles during which the instruction queue is full. 
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ix)  L1D_CACHE_LOCK_DURATION: Duration of L1 data cacheable locked 

operation. 

x)  L1D_REPL: number of lines brought into the L1 data cache. 

xi)  L2_LINES_IN.SELF.ANY: number of cache lines allocated in the L2 cache. 

Cache lines are allocated in the L2 cache as a result of requests from the L1 

data and instruction caches and the L2 hardware prefetchers to cache lines 

that are missing in the L2 cache. SELF represents events initiated by this core 

only. 

xii)  MACHINE_NUKES.MEM_ORDER: Execution pipeline restart due to 

memory ordering conflict or memory disambiguation misprediction. 

xiii)  MEMORY_DISAMBIGUATION.RESET: cycles during which memory 

disambiguation misprediction occurs. 

xiv)  PAGE_WALKS.CYCLES: Duration of page-walks in core cycles.  

xv)  RAT_STALLS.ANY: number of stall cycles due to:  

• Cycles when ROB read port stalls occurred, which did not allow new 

micro-ops to enter the execution pipe.  

• Cycles when partial register stalls occurred  

• Cycles when flag stalls occurred  

• Cycles floating-point unit (FPU) status word stalls occurred  

xvi)  RESOURCE_STALLS.ANY: number of cycles while resource-related stalls 

occur:  

• Number of instructions in the pipeline waiting for execution or retirement 

reached the limit the processor can handle.  
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• Number of load or store instructions in the pipeline waiting for retirement 

reached the limit the processor can handle.  

• There is an instruction in the pipe that can be executed only when all 

previous stores complete and their data is committed in the caches or 

memory. For example, SFENCE and MFENCE instructions require this 

behavior.  

• The pipeline recovers from a mispredicted branched that was executed.  

• The floating-point unit (FPU) control word is written. 

xvii)  SB_DRAIN_CYCLES: Cycles while stores are blocked due to store buffer 

drain. 
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APPENDIX D: WEKA OUTPUTS 

A sample Weka output is shown in this section. The input CSV file has the following 

column labels:  

a) AS (Application_size)

b) Iteration

c) Number of L2-cache (Num_L2)

d) Number of threads per L2-cache (Num_threads_per_L2)

e) MS (Mapping_Strategy)

f) Number of MCM States (Num_MC_States)

g) Value of p (p_value)

h) Value of q (q_value)

The summary of the linear models are shown in the Table A.4.1. 

Table A.1: Sample Model Tree created using Weka 
Value of q Number of MCM States Linear Model 

≤ 0.84 ≤ 20.5 LM1 
≤ 0.84 > 20.5 LM2 

> 0.84 ≤ 0.982 LM3 
> 0.982 LM4 

The different linear models from the third column in the above table are listed below: 

LM1: 

 p_value = 

0 * Iteration  

+ 0.1009 * Num_L2 
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 + 0.0698 *  Num_threads_per_L2  

- 0.0072 *  Mapping_Strategy=  2threads_different_L2_same_socket ,  

8threads_2threads_per_core ,  8threads_1threads_per_core ,  

8threads_4threads_per_core ,  4threads_with_1threads_per_L2   

+ 0.1019 *  Mapping_Strategy=  8threads_4threads_per_core ,  

4threads_with_1threads_per_L2   

 + 0.002 *  Num_MC_States  

 - 1.6038 *  q_value  

 + 1.1725 

 

LM2: 

p_value =  

 0 *  Iteration  

 + 0.0196 *  Num_L2  

 + 0.0413 *  Num_threads_per_L2  

- 0.0072 *  Mapping_Strategy=  2threads_different_L2_same_socket ,  

8threads_2threads_per_core ,  8threads_1threads_per_core ,  

8threads_4threads_per_core ,  4threads_with_1threads_per_L2   

+ 0.1019 *  Mapping_Strategy=  8threads_4threads_per_core ,  

4threads_with_1threads_per_L2   

 + 0.002 *  Num_MC_States  

 - 0.5726 *  q_value  

 + 1.0028 
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LM3: 

p_value =  

 -0.0412 *  Num_L2  

 - 0.0009 *  Num_threads_per_L2  

- 0.0075 *  Mapping_Strategy=  2threads_different_L2_same_socket ,  

8threads_2threads_per_core ,  8threads_1threads_per_core ,  

8threads_4threads_per_core ,  4threads_with_1threads_per_L2   

+ 0.3059 *  Mapping_Strategy=  8threads_4threads_per_core ,  

4threads_with_1threads_per_L2   

 + 0.0027 *  Num_MC_States  

 - 0.5804 *  q_value  

 + 0.6007 

 

LM4: 

p_value =  

 -0.016 *  Num_L2  

 - 0.0011 *  Num_threads_per_L2  

- 0.009 *  Mapping_Strategy=  2threads_different_L2_same_socket ,  

8threads_2threads_per_core ,  8threads_1threads_per_core ,  

8threads_4threads_per_core ,  4threads_with_1threads_per_L2   

+ 0.0547 *  Mapping_Strategy=  8threads_4threads_per_core ,  

4threads_with_1threads_per_L2   

 + 0.001 *  Num_MC_States  
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 - 0.231 *  q_value  

 + 0.2471 
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