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ABSTRACT 

 

 

SHAQWANA MARIE FREEMAN. Effects of the SOLVE strategy on the mathematical 

problem solving skills of secondary students with learning disabilities. (Under the 

direction of DR. CHRISTOPHER O‘BRIEN) 

 

 

Students with learning disabilities are most typically characterized as struggling 

readers (i.e., 80-90% of students are identified on the basis of reading failure; LD 

OnLine, 2008 Lerner, 1989; Lyon, Fletcher, Shaywitz, Torgesen, Wood, et al., 2001); 

however, as many as 50% of students with learning disabilities have IEP goals in the area 

of mathematics suggesting that general curricula in mathematics present a relevant barrier 

to the success of this population (Geary, 1999). Given that expectations in the era of the 

Common Core State Standards promote higher achievement in mathematics, specifically 

Algebraic thinking (CCSS, 2012), secondary curriculum in the area of Algebra presents a 

hurdle for students with a specific learning disability to keep pace with peers and 

graduate on time.  

This study investigated the effects of the SOLVE Strategy on the mathematical 

problem solving skills of secondary students with disabilities. A multiple probe across 

participants design was employed to determine the impact of the independent variable 

(i.e., instruction in the SOLVE Strategy) on the primary dependent variables (i.e., 

strategy use, correct response). The intervention was implemented with six 8
th

 grade 

students with specific learning disabilities. Results indicated a functional relation 

between SOLVE Strategy usage and improved problem solving performance for all six 

target students. Additionally, all participants were able to generalize the SOLVE Strategy 

to other mathematic topics and concepts, and the teacher and students felt the intervention 
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was socially acceptable. Finally, limitations of the study, suggestions for future research, 

and implications for practice are provided.  
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CHAPTER 1: INTRODUCTION 

 

 

Inadequate progress in mathematics made by secondary students with learning 

disabilities in the United States (U.S.) has been a concern for practitioners, researchers, 

administrators, parents, and policymakers for years. Math difficulties usually begin in 

elementary grades and persist through secondary schooling with students with disabilities 

performing several grade levels behind their non-disabled peers (Cawley, Parmer, Yan, & 

Miller, 1998; Miller & Mercer, 1997). On a national assessment of mathematical 

proficiency (i.e., National Assessment of Educational Progress; NAEP) Lee, Grigg, and 

Dion (2007) reported that only 32% of students with disabilities who were included in 

testing in Grade 8 were performing at or above proficiency level.  

According to the Thirtieth Annual Report to Congress on the Implementation of 

the Individuals with Disabilities Act (U.S. Department of Education, 2008), from 2000 

through 2006, the percentage of students ages 6 through 21 served under IDEA, Part B, 

educated in general education classes for most of the school day (i.e., 80% or more of the 

day) increased from 46.5 percent to 53.7 percent). Prior to 2001 (i.e., 1997 through 

2000), the percentage had remained relatively unchanged. Earlier research by Greenstein 

and Strains (1977) found that mathematics abilities for students with learning disabilities 

plateau at the fourth grade level and students do not achieve higher level problem solving 

skills beyond that level. A few years later, Warner, Alley, Schumaker, Deshler, and Clark 
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(1980) found that adolescents with learning disabilities reached a mathematics plateau 

after seventh grade. Students in the latter study made on average one year growth in 

mathematics from Grade 7 to Grade 12 (i.e., the mean math score in 12
th

 grade was only 

a 5
th

 grade level). 

With that being said, in 2007 the U. S. public schools educated more than 6 

million students with learning disabilities, approximately 9% of all students (Swanson, 

2008). Swanson also noted that close to one-third of these students are between the ages 

of 14 and 17 years old. Unfortunately, of the 6 million students with learning disabilities, 

more than 50% were likely to drop out of high school without receiving a diploma 

(Wagner, 2004). For all youth, including those with disabilities, graduating from high 

school is necessary and critical for all young adults (Swanson, 2008).  

Prior studies (e.g., Blackorby &Wagner, 1996; Lichtenstein, 1993; Wagner, 1991) 

have documented that students in special education drop out of school at a much higher 

rate than students in general education. While high-stakes testing had significant 

consequences for all student, this was especially true for students with disabilities who 

experienced academic failure most of their academic career. The pressure to pass these 

state tests and earn a high school diploma caused many of them to drop out of school 

(Thurlow & Johnson, 2000).  

While there may be a number of contributing factors to high dropout rates another 

notable factor is the unsuccessful completion of Algebra I (Reys & Reys, 2011). The 

increase in high school exit exams has influenced and increased policies of alternative 

diplomas or certificates of completion (Dorn, 2003; Thurlow & Thompson, 2000). 

Johnson and Thurlow (2003) reported on 15 different types of certificates and diplomas 
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in the United States in 2002. The purpose of this was so that states could offer some type 

of certificate for students with disabilities when they exited high school while still 

upholding the standards related to earning a standard high school diploma (Thurlow & 

Johnson, 2000). Algebra I has become a part of graduation requirements in many states 

and serves as a gateway course for higher level mathematics and science courses. Higher 

level mathematics requires all students to be proficient problem solvers, but as stated 

previously students with learning disabilities struggle with mathematical problem 

solving. 

Not surprisingly, Blackorby and Wagner (1996) found that only 12% of students 

with disabilities take advanced mathematics classes in high school (e.g., algebra, 

geometry, trigonometry). Success in high school algebra is important to success in 

postsecondary education and well paying jobs. For example, Algebra is a gateway course 

for higher level mathematics and science courses. With that being said, students with 

learning disabilities have difficulty meeting content standards and passing state 

assessments (Thurlow, Albus, Spicuzza, & Thompson, 1998; Thurlow, Moen, & Wiley, 

2005). This calls into question the two federal mandates directly affecting special 

education: the Elementary and Secondary Education Act (ESEA, 2010) and the 

Individuals with Disability Education Improvement Act (IDEA) of 2004.  

The Elementary and Secondary Education Act measures all students by the same 

standards, whereas IDEA focuses more on the individual student. The ESEA measures 

every student on proficiency in math and reading instead of on individual improvement. 

The Individuals with Disability Education Improvement Act calls for individualized 

curriculum and assessments that determine student success based on growth and 
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improvement each year. The Individuals with Disabilities Education Act was 

reauthorized in 2004 with the goal of preparing students for further education, 

employment and independent living (20 U.S.C. 1400 [d] [1] [A]). 

In March, 2010, The Obama administration released recommendations for the 

reauthorization of the Elementary and Secondary Education Act (ESEA) in a document 

titled ―Blueprint for Reform (http://www2.ed.gov/policy/elsec/leg/blueprint/index.html). 

The blueprint lays the foundation for states to adopt academic standards that prepare 

students to succeed in postsecondary education and the workplace. The blueprint 

challenges the nation to embrace education standards that would put America on a 

pathway to global leadership. Additionally, the blueprint asserts that every student should 

graduate from high school ready for college and a career having meaningful opportunities 

to choose from upon graduation from high school. The College and Career Ready 

Standards outlined in the blueprint have become known as the Common Core State 

Standards (CCSS). These standards are intended to define the knowledge and skills 

students should have within their K-12 education careers so that they will graduate high 

school ready to succeed in entry-level, credit-bearing academic college courses (CCSSI, 

2010).  To date, 45 states, 3 territories, and the District of Columbia have fully adopted 

the CCSS, one state has provisionally adopted the standards, and one state has adopted 

the ELA standards only (Boyer, Phillips, Jones, & Witzel, 2011).   

The mathematics high school CCSS sets a rigorous definition of college and 

career readiness, by helping students develop a depth of understanding and ability to 

apply mathematics to novel situations, as college students and employees regularly do 

(CCSS, 2010). The standards stress conceptual understanding to make sure students 
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learn the critical information needed to succeed at higher levels. The high school 

standards also emphasize mathematical modeling, the use of mathematics and statistics 

to analyze empirical situations, understand them better, and improve decisions. 

Mathematical modeling is similar to problem solving in that students are required to link 

classroom mathematics and statistics to everyday life, work, and decision-making. The 

high school standards call on students to practice applying mathematical ways of 

thinking to real world issues and challenges preparing students to think and reason 

mathematically (CCSS, 2010).  

Ongoing reform efforts, including the CCSS and the standards documents of the 

National Council of Teachers of Mathematics (NCTM), call for robust mathematics 

curricula, more innovative instructional approaches, and greater access to higher-level 

mathematics for students traditionally steered in other directions (NCTM, 2000). 

Additionally, the NCTM guidelines are what guided the creation of the mathematics 

CCSS to promote application and problem solving skills beyond the basic knowledge 

level of mathematics. In the NCTM‘s latest standards document (2000), problem solving 

is strongly endorsed: 

Successful problem solving requires knowledge of mathematical content, 

knowledge of problem-solving strategies, effective self monitoring, and a 

productive disposition to pose and solve problems. Teaching problem 

solving requires even more of teachers, since they must be able to foster 

such knowledge and attitudes in their students (p. 341). 

It is emphasized that instructional programs from Prekindergarten through Grade 

12 enable all students to (a) build new mathematical knowledge through problem 
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solving, (b) solve problems that arise in mathematics and in other contexts, (c) apply and 

adapt a variety of appropriate strategies to solve problems, and (d) monitor and reflect on 

the process of mathematical problem solving (NCTM, 2000). This emphasis goes along 

with the emphasis of the previous standards (NCTM, 1980; NCTM, 1989). Faced with 

the challenge to help all students succeed with the complexities of algebra and problem 

solving, instructional leaders are encouraged to turn to research literature for teaching 

methods that enhance student achievement in algebra. 

Looking more closely at problem solving, the conceptual definition of problem 

solving in mathematics is complex. Possibly the most significant reason for this is 

because no formal conceptual definition has ever been agreed upon by experts in the 

field of mathematics education. Grugnetti and Jaquuet (2005) even suggested that a 

common definition of mathematical problem solving could not be provided. One term 

that is often associated with mathematical problem solving is novelty. Historically, this 

notion was first put forth in 1925 (Kohler, 1925). However, Polya is often credited with 

the use of novelty as a component of his definition. For example, Polya (1945 & 1962) 

described mathematical problem solving as finding a way around a difficulty, around an 

obstacle, and finding a solution to a problem that is unknown. Lester and Kehle (2003) 

suggested that reasoning and/or higher order thinking must occur during mathematical 

problem solving.  

Students with high incidence disabilities at the secondary level are commonly 

included in content-area classrooms, such as mathematics, English, science, and social 

studies. Largely, ability to succeed in these core content classrooms determines the 

student‘s long-term potential for success in school. Unfortunately, by high school, 
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students with learning disabilities are failing in the secondary mathematics curriculum. It 

has been found that students at the secondary level have not mastered basic skills 

(Algozzine, O‘Shea, Crews, & Stoddard, 1987; Cawley, Baker-Kroczynski, & Urban, 

1992), struggle with reasoning algebraically (Maccini, McNaughton, & Ruhl, 1999), and 

experience difficulty with problem solving (Hutchinson, 1993; Montague, Bos, & 

Doucette, 1991).  

It is evident through research that students with learning disabilites at the 

secondary level exibit memory deficits (Bryant, Bryant, & Hammill, 2000; Bryant, 

Hartman, & Kim, 2003; Ginsburg, 1997; Cooney & Swanson, 1987) which potentially 

contributes to their academic failure. In a study on mathematics difficulties for students 

with learning disabilities in Grades 2 through 12, Bryant, Bryant, and Hammill (2000) 

identified 29 mathematics behaviors associated with difficulties in mathematics. The top 

ranked issue that teachers identified as being problematic for students with learning 

disabilities as well as students who are low performing in mathematics was solving word 

problems. Given the mathematics difficulties demonstrated by students with learning 

disabilities, prevention and intervention are critical components to include as part of 

instructional delivery (Fuchs & Fuchs, 2001).  

Other examples of effective strategies for improving mathematical performance 

of students with learning disabilities include the following:  (a) schema-based instruction 

(e.g., Jitendra, Hoff, & Beck, 1999; Xin, 2008), (b) peer-mediated instruction (e.g., 

Fuchs, Fuchs, Hamlett, et al. 1997; Fuchs, Fuchs, Mathes, & Martinez, 2002), (c) 

mnemonic instruction (e.g., Maccini & Hughes, 2000; Test & Ellis, 2005), and (d) 

concrete-representational-abstract sequence (e.g., Witzel, 2005).  More recently, the 
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Center on Instruction conducted a meta-analysis in which they examined studies on 

teaching mathematics to students with learning disabilities (Gersten, et al., 2008). Based 

on the findings from the meta-analysis seven effective instruction practices were 

identified: (a) teach students using explicit instruction on a regular basis (i.e., clear 

modeling, think aloud specific steps, provide immediate corrective feedback to students); 

(b) teach students using multiple instructional examples; (c) have students verbalize 

decisions and solutions to a math problem; (d) teach students to visually represent the 

information in the math problem (e.g., drawing, graphic representations); (e) teach 

students to solve problems using multiple/heuristic strategies (i.e., a generic approach for 

solving a problem); (f) provide ongoing formation assessment data and feedback to 

teachers; and (g) provide peer-assisted instruction to students. 

Research conducted by Jones et al. (1997) identified six contributing factors that 

may hinder the effectiveness of instruction for secondary students with learning 

disabilities: (a) prior achievement by the student, (b) perceptions of self-efficacy by the 

student, (c) content of instruction, (d) management of instruction, (e) evaluation of 

instruction, and (f) the educator‘s beliefs about effective instruction. Additionally, Miller 

and Mercer (1997) identified attributes of learning disabilities, information processing 

factors, characteristics in the areas of language, cognition, meta-cognition, and social and 

emotional behavior as contributing factors that also affect the mathematical performance 

of students with learning disabilities. Looking at meta-cognition specifically, students 

with learning disabilities have difficulty assessing their ability to solve problems, identify 

and select appropriate strategies, organize information, monitor problem solving 
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processes, evaluate problems for accuracy, and generalize strategies to appropriate 

situations  (Miller & Mercer, 1997).  

Progress has been made in improving problem solving skills for youth with 

disabilities; however, there are still deficits between general population peers and 

students with learning disabilities in mathematic performance. One option that has been 

demonstrated through research to be particularly effective for students with learning 

disabilities in mathematics is the use of explicit instruction (e.g., Carnine, Jones, & 

Dixon, 1994; Carnine & Stein, 1981; Charles, 1980; Gleason, Carnine, & Boriero, 1990; 

Hollingsworth & Woodward, 1993; Leinhardt, 1987; Mastropieri, Scruggs, & Butcher, 

1997; NMAP, 2008; Resnick, Cauzinile-Marmeche, & Mathieu, 1987). Explicit 

instruction involves the teacher following a sequence of events, generally stating the 

objective, reviewing skills necessary for new information, presenting new information, 

questioning students, providing group instruction and independent practice, assessing 

performance, and giving more practice (Swanson, 2001). Thus classroom instruction 

must reflect principles of explicit instruction to meet the unique learning needs of 

students with learning disabilities as recommended by the Center on Instruction 

(Jayanthi, Gersten, & Baker, 2008) and the National Mathematics Advisory Panel 

(2008).  

Research conducted by the University of Kansas Center for Research on Learning 

indicates that students should be taught skill-specific learning strategies using principles 

of explicit instruction. Learning strategies are tools students utilize to approach learning 

and use information to help them understand information and solve problems (Schumaker 

& Deshler, 1992). Learning strategy instruction focuses on making the students more 
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active learners by teaching them how to learn and use what they have learned to solve 

problems and be successful. Strategy instruction supplies struggling students with the 

same tools and techniques that efficient learners use to help them understand and learn 

new material or skills (Luke, 2006). With guidance and ample opportunities for practice, 

struggling students learn to link new information with previously taught information in 

meaningful ways, thus making it easier for them to recall the new information or skill at a 

later time, regardless of the situation or setting (Luke, 2006). Certain learning strategies 

tend to be task-specific, meaning that they are useful when learning or performing certain 

tasks which are known as cognitive strategies. Examples include note taking, asking 

questions, or filling out a chart; however, it has also been found that metacognitive 

awareness (Campione, Brown, & Connell, 1988) is an essential element in how good 

learners approach tasks. Metacognitive awareness is the learner‘s awareness of the 

learning process and what it takes to achieve desired results in a specific learning task 

(Luke, 2006). We know now, for example, that the most effective strategy interventions 

combine the use of cognitive and metacognitive strategies. Research has demonstrated 

that consistent, intensive, explicit instruction and support are key components for 

instructional success (e.g., Mercer, Lane, Jordan, Allsopp, & Eilsele, 1996; Scheuermann, 

Deshler, & Schumaker, 2009; Swanson & Deshler, 2003). 

According to Swanson (1999) the most effective form of teaching students with 

learning disabilities is to combine components of direct instruction (e.g., teacher-directed 

lecture, discussion, and learning from books) with components of strategy instruction 

(e.g., teaching ways to learn such as memorization techniques and study skills). Swanson 

(1999) identified the main instructional components of this combined model as: (a) 
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sequencing (e.g., breaking down the task, providing step-by-step prompts); (b) drill-

repetition-practice (e.g., daily testing, repeated practice, sequenced review); (c) 

segmentation (e.g., breaking down skills into parts and then synthesizing the parts into a 

whole); (d) directed questioning and responses (e.g., teacher asks process or content 

questions of students); (e) control of task difficulty; (f) use of technology (e.g., 

computers, presentation media); (g) teacher-modeled problem solving; (i) small-group 

instruction; and (j) strategy cues (e.g., reminders to use strategies, think-aloud models). 

Reviews of interventions for students with learning disabilities by Swanson 

(1999) and Forness, Kavale, Blum, and Lloyd (1997) indicated that the use of strategy 

instruction using mnemonic strategies has helped students with disabilities significantly 

improve their academic achievement. Research across varying content areas has 

demonstrated that mnemonic strategy instruction can be effective for students with 

learning disabilities (e.g., Manalo, Bunnell, & Stillman, 2000; Pressley, Levin, & 

Delaney, 1982). However, limited research has been conducted in the area of secondary 

mathematics.  

Due to the limited number of studies on mnemonic strategy instruction conducted 

in mathematics, little is known about its effectiveness for students with learning 

disabilities at the secondary level. There has been one mnemonic problem solving 

strategy (i.e., STAR) researched that has empirical data to support its effectiveness at 

increasing the mathematical problem solving skills of students with learning disabilities 

at the secondary level.  

First, Maccini and Ruhl (2000) conducted a study to determine the effects of the 

STAR strategy on problem solving skills of students with learning disabilities. Results of 
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this study indicated that students improved their ability to represent and solve word 

problems involving subtraction of integers, and students maintained treatment effects 

over varying time intervals.  Several limitations of this study were identified. First, the 

study was conducted at the end of the school year causing a threat to the internal validity 

of the study.  Next, there were no cue cards or worksheets to help the students memorize 

the steps of the STAR strategy. Lastly, students‘ performance on generalization measures 

was below average making it necessary to use more complex problems and vary the story 

lines of the word problems. 

Second, Maccini and Hughes (2000) investigated the effects of the STAR strategy 

within a graduated teaching sequence (i.e., concrete, semi-concrete, abstract) on the 

representation and solution of problem-solving skills of six secondary students with 

learning disabilities using a multiple probe across participants design. Although students 

demonstrated improvement in problem solving skills some students did not remember all 

of the steps of the STAR strategy, making it necessary to set mastery criteria for learning 

the steps of the strategy before continuing with the study. 

Additionally, various research studies have investigated the effects of training 

students with memory problems both with and without disabilities to use mnemonic 

strategies independently (e.g., Cassel & Reid, 1996; Fulk, Mastropieri, & Scruggs, 1992; 

King-Sears, Mercer, & Sindelar, 1992; Scruggs & Mastropieri, 1992). Scruggs, 

Mastropieri, Berkely, and Marshak (2010) referred to mnemonic strategies as an 

―evidence-based practice and practice-based evidence.‖ Despite the title of the article, it 

is not evident that the researchers applied all of the standards or quality indicators set 

forth by Horner et al. (2005) needed to contribute support for an evidence-based practice.  



13 

Also, the content areas that the researchers examined for the use of mnemonic strategies 

were limited to elementary: life science, social studies, reading, and vocabulary; and 

secondary: social studies, anatomy, and SAT vocabulary. 

Significance of the Study 

To respond to the increased number of students with disabilities (e.g., learning 

disabilities) who are being educated in secondary general education mathematics courses, 

more research is needed to determine effective strategies for increasing student academic 

performance. Teaching problem solving skills to students, as emphasized by the Common 

Core State Standards (CCSS, 2010) and NCTM (2000), is one way to improve students‘ 

mathematical performance. To assist students with problem solving the Center on 

Instruction recommended that students be taught to solve mathematical problems using 

heuristic strategies (Jayanthi et al., 2008). The heuristic approach offers students an 

opportunity to talk themselves through problems and reflect on their attempts to solve 

problems. Additionally, memory of factual information is essential for success in school, 

particularly at the secondary level; however, there is limited research in mathematics 

about the effectiveness of mnemonic strategy instruction compared to other content areas 

(Scruggs, Mastropieri, Berkeley, & Marshak, 2010).  The proposed study addresses the 

mathematical needs of students with learning disabilities by providing them with a 

heuristic mnemonic mathematical problem solving strategy (i.e., SOLVE) that was 

empirically tested to determine its effectiveness at increasing problem solving skills. 

More specifically, this research combines strategy instruction and explicit instruction as 

recommended by Swanson (1999) to teach the SOLVE Strategy.  
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Because the previous review by Scruggs, Mastropieri, Berkely, and Marshak 

(2010) did not address mathematics, additional studies are needed to determine if 

mnemonic strategy instruction can be considered an evidence based practice in 

mathematics as well. There are a number of mathematical mnemonic problem solving 

strategies (e.g., FAST DRAW, SOLVE, RIDGES) that are being used by secondary 

teachers across the country, but these strategies lack empirical research to support their 

use and effectiveness. For example, the National Training Network has published 

curricula (e.g., Algebraic Thinking) that are being implemented across the U.S. by 

districts and individual schools with the SOLVE Strategy as one of its major components, 

yet there have been no empirical studies conducted to validate its effectiveness. The 

SOLVE Strategy shows promise in that it follows  a similar problem solving process as 

some of the other mathematical mnemonic strategies; however, the SOLVE Strategy is 

more broad and can possibly be generalized to multiple concepts and topics. Therefore, 

this study was an adapted implementation of the instructional process for the SOLVE 

Strategy combining explicit instruction and incorporating an established approach to 

eight systematic stages of instruction (i.e., pretest, describe,  model, verbal practice, 

controlled practice, advanced practice, posttest, generalization; Schumaker & Deshler, 

1992) to determine if the strategy is effective at increasing mathematical reasoning and 

problem solving.  

Purpose 

The purpose of this study was to examine the effectiveness of explicit instruction 

in the SOLVE Strategy on the mathematical problem solving skills of students at the 

secondary level who have been identified as having a specific learning disability. As 
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noted previously, explicit-intensive instruction refers to the established approach of the 

eight stages of instruction consistent to learning strategy instruction research conducted 

by the University of Kansas Center for Research on Learning (Lenz & Deshler, 2004). 

Specifically, I assessed (a) student knowledge of the strategy, (b) student use of the 

strategy while completing mathematical word problems, (c) correct response for each 

word problem, and (d) student scores on a standardized measure of mathematical 

problem solving. The study attempted to answer these research questions: 

1. What are the effects of the SOLVE Strategy on the mathematical problem 

solving skills of secondary students with learning disabilities? 

2. To what extent does training in the SOLVE Strategy increase accuracy on 

grade level mathematical word problems? 

3. To what extent does training in the SOLVE Strategy increase standardized 

mathematical reasoning scores? 

4. What are teachers opinions about using the SOLVE Strategy within their 

instruction? 

5. What are student perceptions of using the SOLVE Strategy in their everyday 

mathematics classes? 

It was believed that with the implementation of the SOLVE Strategy students‘ 

problem solving skills would increase, thus improving academic performance of students 

with learning disabilities. Additionally, with high-stakes testing being a considerable 

factor in education today the SOLVE Strategy may offer a way to improve standardized 

scores of students with learning disabilities in mathematics. Measuring student‘s 

performance on standardized mathematical assessments before and after intervention 
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allowed me to demonstrate whether or not student performance changed after the 

intervention was in place. When examining strategies that can be used to help increase 

academic achievement in the classroom it was imperative to take into consideration the 

amount of time it would take to successfully teach the strategy to students during normal 

classroom instructional time.  

The independent variable was explicit instruction of the SOLVE Strategy. 

Students with learning disabilities at the secondary level were participants in this study. 

Students were taught to apply the SOLVE Strategy to one-step mathematical word 

problems. 

The primary dependent variable was the percentage of correct responses by the 

student on the five question probe test. The secondary dependent variable was the 

percentage of strategy use for each probe question. These two variables were measured 

by the researcher after each session using pre-establised answer keys. The third 

dependent variable was student problem solving scores on a standardized mathematical 

assessment. This was measured using subtests of the Woodcock Johnson III. 

Delimitations 

It is important to note the delimitations of this investigation that may influence the 

results of this study. For instance, the study was conducted at a private school in a large 

metropolitan area. All students who attend this school have been identified as having a 

learning disability or attention deficit hyperactivity disorder.  The students come from 

average to upper socioeconomic backgrounds, the class sizes are smaller than traditional 

high schools, and the school was equipped with recourses that may not be available in 

traditional schools.  
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Summary 

 In summary, research is needed to examine effective mathematical strategies for 

secondary students with disabilities. The intent of this study was to add to the literature 

by providing students with an effective empirically based strategy for solving 

mathematical word problems. Chapter 2 provides a review of related literature of 

importance to this study. The methodology used to conduct the study can be found in 

Chapter 3. The results of the study are presented in Chapter 4. Lastly, in Chapter 5 a 

discussion, including implications of this study, limitations, and suggestions for future 

research are presented.  
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Definition of Terms 

 The terms used throughout this study with their definitions are presented in this 

section. Terms listed in this section are critical for understanding implementation 

procedures and results of this study. 

Explicit Instruction—instruction in which the teacher follows a sequence of events; 

generally stating the objective, reviewing skills necessary for new information, 

presenting new information, modeling procedures for students,  questioning 

students, providing group instruction and independent practice, assessing 

performance, and giving more practice (Swanson, 2001). 

Heuristic Strategy—a method or strategy that exemplifies a generic approach for solving 

a problem (Jayanthi et. al., 2008).  

Learning Disability—a  disorder in one or more of the basic psychological processes 

involved in understanding or in using language, spoken or written, that may 

manifest itself in an imperfect ability to listen, think, speak, read, write, spell, or 

do mathematical calculations, including conditions such as perceptual disabilities, 

brain injury, minimal brain dysfunction, dyslexia, and developmental aphasia 

(IDEA, 2004). 

Learning Strategy—a tool a person uses to approach learning and using information 

(KUCRL, 2009). 

Learning Strategy Instruction—instruction that focuses on making students more active 

learners by teaching them how to learn and how to use what they have learned to 

be successful (KUCRL, 2009).  
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Mnemonic Strategy Instruction—instruction in which a  memory enhancing instructional 

strategy is used with students with and without disabilities to assist them with 

remembering important information by linking new information that is taught to 

information that they already know. 

National Council of Teachers of Mathematics Standards—a set of standards set forth by 

the National Council of Teachers of Mathematics (NCTM) intended to drive all 

mathematic education.  

 

 

 

 



 

CHAPTER 2: REVIEW OF THE LITERATURE 

 

 

Contemporary schools face an increasingly daunting task of addressing incredible 

learner diversity, more rigorous standards for teaching in the content areas, and the 

continuation of high-stakes accountability for the success in teaching learners with all 

levels of academic need or readiness (Reys & Reys, 2011; Thurlow & Johnson, 2000). 

Caught in the middle of this notably challenging context are students with specific 

learning disability who are typically included in general education settings, fully 

participating in the general curriculum, and held accountable to the same rigorous 

standards in inclusive settings (U.S. Department of Education, 2008). Although, students 

with learning disabilities are most typically characterized as struggling learners (i.e., 80-

90% of students are identified on the basis of reading failure; LD OnLine, 2008 Lerner, 

1989; Lyon, Fletcher, Shaywitz, Torgesen, Wood, et al., 200), as many as 50% of 

students with learning disabilities have IEP goals in the area of mathematics suggesting 

that general curricula in mathematics present a relevant barrier to the success of this 

population (Geary, 1999).  

Given that expectations in the era of the Common Core State Standards promote 

higher achievement in mathematics, specifically Algebraic thinking (CCSS, 2012), 

secondary curriculum in the area of Algebra presents a hurdle for students with a specific 

learning disability to keep pace with peers and graduate on time. In this chapter, I 

reviewed the literature related to a few notable themes: 
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 The core characteristics of adolescents with specific learning disability 

that present difficulty in secondary schools 

 Why students with specific learning disability experience difficulty with 

grade level performance in mathematics 

 The expectations of math performance in secondary schools 

 What works for teaching students with learning disabilities? What works 

for teaching mathematics to students with learning disabilities? 

 Need for further research on use of mnemonic-based problem solving 

strategies using the explicit-intensive instruction model (i.e., involving the 

8 stages of instruction established by the University of Kansas Center for 

Research on Learning). 

Characteristics of Students with Learning Disabilities 

What is a Learning Disability? 

Although Samuel Kirk is credited with coining the term ―learning disability‖ in 

1963 from a speech that he gave to the group that would later become known as the 

Association for Children with Learning Disabilities, it was actually first used by Kirk and 

Bateman in a 1962 article featured in Exceptional Children. Even though the term was 

used previously, it wasn‘t until 1977 that ―specific learning disability‖ was operationally 

defined with diagnostic and exclusion criteria in federal legislation. Although defining a 

learning disability continues to be problematic (Kavale & Forness, 2000; Keogh, 1988; 

Mather & Roberts, 1994), the most favorable and widely used definition comes from the 

Individuals with Disabilities Education Act.  



22 

The term ―specific learning disability‖ means a disorder in one or more of 

the basic psychological processes involved in understanding or in using 

language, spoken or written, which disorder may manifest itself in the 

imperfect ability to listen, think, speak, read, write, spell, or do 

mathematical calculations, including conditions such as perceptual 

disabilities, brain injury, minimal brain dysfunction, dyslexia, and 

developmental aphasia. Such term does not include a learning problem 

that is primarily the result of visual, hearing, or motor disabilities, of 

mental retardation, of emotional disturbance, or of environmental, cultural, 

or economic disadvantage  (20 U.S.C. §1401 [30]).  

The classic sign of a learning disability has been a distinct and unexplained gap 

between an individual‘s level of expected achievement and his/her actual performance 

level. Learning disabilities can affect and present itself differently at various stages of 

development. Additionally, learning disabilities can range from mild to severe and it is 

not uncommon for individuals to have a learning disability in more than one area (NCLD, 

2012). Three areas most affected by learning disabilities are reading (e.g., dyslexia), 

writing (e.g., dysgraphia), and mathematics (e.g., dyscalculia).  

Dyslexia. According to the International Dyslexia Association, dyslexia is a 

specific learning disability that is neurological in origin; ―It is characterized by 

difficulties with accurate and/or fluent word recognition and by poor spelling and 

decoding abilities‖ (Lyon, Shaywitz, & Shaywitz, 2003, p. 2). Students with dyslexia 

typically experience difficulties with other language skills such as spelling, writing, and 

pronouncing words. Of the students who are found eligible for special education services 
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approximately 85% of them have a primary learning disability in reading and language 

processing (Lyon et al., 2003). The International Dyslexia Association also suggested that 

dyslexia runs in families. For example, parents with dyslexia were very likely to have 

children who were dyslexic as well. For some, dyslexia is identified at an early stage in 

life, but for others dyslexia goes unidentified until they get older. 

 Dysgraphia. The Diagnostic and Statistical Manual of Mental Disorders (DSM) 

identifies Dysgraphia as a ―Disorder of Written Expression‖ as ―writing skills (that) ...are 

substantially below those expected given the person's ...age, measured intelligence, and 

age-appropriate education (4th ed., text rev.; DSM–IV–TR; American Psychiatric 

Association, 2000).‖ Dysgraphia can make the act of writing very difficult for students. It 

can also lead to other problems such as spelling, poor handwriting, and putting thoughts 

on paper. Characteristics of individuals with dysgraphia can include: trouble organizing 

letters, numbers, and words on a line or page. 

Dyscalculia. The DSM-IV identifies Dyscalculia as ―difficulties in production or 

comprehension of quantities, numerical symbols, or basic arithmetic operations that are 

not consistent with the person's chronological age, educational opportunities, or 

intellectual abilities (4th ed., text rev.; DSM–IV–TR; American Psychiatric Association, 

2000).‖ Different subtypes of mathematical disability may occur. For example, 

neuropsychologists often differentiate between acalculia and dyscalculia (Keller & 

Sutton, 1991). Acalculia refers to a condition in individuals who once mastered 

mathematical ability but subsequently lost it (e.g., as a result of brain injury), and 

dyscalculia (or developmental dyscalculia) refers primarily to a failure to develop 

mathematical competence (Keller & Sutton, 1991). Because math disabilities vary so 
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much, the effect they have on an individual varies just as much. For instance, a student 

who has difficulty processing language will face different challenges in math than a 

person who has difficulty with visual-spatial relationships. Although researchers and 

practitioners may intend to address the same construct when referring to math disabilities; 

there is much variability in the characteristics of both the actual and intended groups of 

students described across studies and settings (Landerl, Bevan, & Butterworth, 2004; 

Mazzocco, 2005). There is even variation in the terms used to define study participants 

and, thus, the populations that participants represent (e.g., Geary, 1993, 2004; Hanich, 

Jordan, Kaplan, & Dick, 2001; Mazzocco & Myers, 2003; Russell & Ginsburg, 1984; 

Shalev & Gross-Tsur, 2001). Further, learning disabilities in mathematics can arise at 

nearly any stage of a child's development (Misunderstood Minds, 2012). 

Prevalence and Characteristics of Specific Learning Disabilities. 

The number of students identified as having a specific learning disability (SLD) 

and receiving special education services has more than doubled since the original passage 

of The Individuals with Disabilities Education Act in 1975. Since the existence of the 

SLD category, approximately half of all students determined eligible for special 

education are found eligible under this category (Zirkel, 2006). According to the United 

States Department of Education (2006) 2.9 million children in the US have been 

diagnosed with having a specific learning disability and receive special education 

services. This represents over 5.5% of the total school-age population, and approximately 

one-half of all children receiving special education services. With that being said, 

identification and treatment of children with SLD have been and continue to be areas of 

interest and concern (NASP, 2007).  
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Because the diagnosis of learning disabilities is not a clear, objective medical 

condition and involves the use of psychometric evaluation, the field of special education 

has struggled with developing consensus around an operational definition of learning 

disabilities, which has left room for ambiguous and biased decisions with regard to 

diagnosis (Artiles, Kozleshi, Trent, Osher, & Ortiz, 2010). The years of emphasis on the 

student who should truly be ―in‖ special education detracts from the critical question of 

what can be done to improve instruction for students who demonstrate a profile of 

academic weakness in a particular area. 

Thus, more needs to be done to prevent academic failure of students in content 

area classes. Placement in special education may not be the answer based on current 

research and poor post-school outcomes of students with disabilities (Artiles, et al., 2010; 

Blackorby & Wagner, 1996; Blackorby, et al., 2005).  There has been some improvement 

from the minority groups of students; however, the achievement gap between students 

with and without disabilities still remains (Wagner, Newman, Cameto, Levine, & Garza, 

2006). With these findings there has been a national response to the over identification of 

students with learning disabilities.  

A national response to this has been the implementation of Response to 

Intervention (RTI) as an alternative to traditional approaches. RTI, in essence, is a 

framework or process of systematically evaluating students‘ needs and then aligning 

intervention to instruction that is designed to prevent academic and behavior difficulties 

for students (Vaughn, Wanzek, & Fletcher, 2007). The National Center on Response to 

Intervention (2010) gave this definition 
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Response to intervention integrates assessment and intervention within a 

multi-level prevention system to maximize student achievement and to 

reduce behavioral problems. With RTI, schools use data to identify 

students at risk for poor learning outcomes, monitor student progress, 

provide evidence-based interventions and adjust the intensity and nature of 

those interventions depending on a student‘s responsiveness, and identify 

students with learning disabilities or other disabilities. 

No matter what definition one chooses to use, when implemented correctly RTI can serve 

as a powerful preventative tool that aids ―at-risk‖ students from being referred for special 

education services without proper interventions. Two advantages to using RTI for 

specific learning disability identification is that there would be a strong focus on 

providing effective instruction and improving all students‘ outcomes, and decision-

making is supported by continuous progress monitoring closely aligned with desired 

instructional outcomes (Fuchs & Mellard, 2007). With RTI now being implemented at 

the secondary level it is important to examine factors that influence the acquisition of 

skills and concepts by students in addition to the interventions and supports that respond 

challenges students experience. 

Why do Students with Specific Learning Disability Experience Difficulty in Secondary 

Mathematics? 

Some of the typical characteristics associated with students with learning 

disabilities have a direct impact on their ability to understand and complete word 

problems (Steel & Steele, 2003). According to Brodesky, Parker, Murray, and Katzman 
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(2002) there are eight areas that have been identified that may influence mathematic 

disabilities. The following section reviewed each of these areas. 

Language. Morin and Franks (2010) explored why students have difficulty 

learning mathematics from a language-processing perspective.  The authors suggested 

that ―understanding of the spoken and printed word is complicated by the complex, 

syntax structure, and semantic variation inherent in the words used to convey meaning 

(Morin & Franks, 2010).‖ Therefore, teachers should be conscious of the language and 

terminology they use in their instruction.  

As part of the Communications Standard (NCTM, 2000), students need to 

describe strategies, explain their reasoning, justify solutions, and make persuasive 

arguments, both orally and in writing. They need to learn mathematical vocabulary and 

use it to express mathematical ideas with precision and clarity. In class and small group 

discussions, students need to build on the thinking of their classmates and ask questions 

to help them understand and clarify another person's strategies (Brodesky et al., 2002). If 

a student has a deficit in language they may have difficulty understanding a) long or 

complex sentence structures and figures of speech, b) retrieving vocabulary words, c) 

orally presented tasks, and d) responses to teacher-directed questions (Walcot-Gayda, 

2004). Additionally, solving algebraic word problems may pose as a problem to students 

who have difficulty with language because the students may have trouble understanding 

the facts and words that are used. A problem may also occur in understanding and using 

some of the terminology found in mathematics textbook (Steele & Steele, 2003).  

Maccini and Ruhl (2000) pointed out that teachers assume students know basic 

facts and vocabulary which often lead to academic failure for students with learning 



28 

disabilities. Students can be able to verbal state a definition without actually 

understanding the concept and how it relates to problem solving.  

Visual-spatial processing. The representation of mathematical ideas is another one 

of the ten standards in the Principles and Standards for School Mathematics (NCTM, 

2000). Students create and use representations to solve problems and to explore and 

communicate mathematical concepts in all the strands. For example, in the number and 

operation strand, students use different visual representations for percents including (a) 

number lines, (b) fraction circles and bars, (c) base ten blocks, and (d) hundred-grids. In 

algebra, students extend visual patterns in order to determine a rule, analyze graphical 

representations of functions, and create mathematical models (Brodesky et al., 2002). 

Deficits in visual-spatial processing make interpreting what is seen difficult for students 

with learning disabilities (Steel & Steel, 2010).  

Attention. At the secondary level there is an increase of complex math content. 

With this increase there is also an increase in the demand for students‘ attention over 

longer time spans. In a typical mathematics class students would have to listen to 

directions and explanations, participate in class discussions, and work effectively by 

themselves. Completing multi-step investigations and long-term projects, paying 

attention to details, and completing tests and assessments, often within a limited time 

frame, are other obstacles that students with attention deficits face (Brodesky, et al, 

2002). 

Psycho-social. Psycho-social skills are heavily related to the communication 

processing strand from the NCTM Standards and Principals (NCTM, 2000). 

Communication of mathematical ideas is something that students need to be able to do at 
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the secondary level. Students work together in pairs or small groups to carry out 

mathematical investigations and then share their findings in a whole class discussion. 

Students need to be able to give and receive constructive feedback to help them or their 

peers improve a problem solution. Confidence is needed by students to try new 

mathematical investigations and persist through frustrations(s) that may arise when 

solving problems. All of these types of tasks involve psycho-social skills. Students who 

have deficits in psycho-social skills may misread social cues and thus cause tensions 

when they are working with peers. Making inappropriate comments and disrupting class 

discussions are just two examples of behaviors that students with psycho-social deficits 

may exhibit (Brodesky et al., 2002).  

Fine-motor skills. Fine-motor skill is the coordination of small muscle movements 

which occur in body parts, such as the fingers and hands, usually in coordination with the 

eye (Brodesky et al, 2002). Fine-motor skills are needed in mathematics to carry out tasks 

such as (a) performing calculations, (b) writing explanations, (c) making tables and 

graphs, (d) using manipulatives, (e) drawing representations, (f) cutting out shapes, and 

(g) building scale models. Fine-motor skill deficits can also manifest when students are 

aligning numbers, plotting points on graphs, and drawing straight lines. These students 

tend to work slowly and their final products may be illegible or lack the necessary 

precision (Brodesky).  

Organization. The Principles and Standards for School Mathematics (NCTM, 

2000) emphasize the integral role of problem solving in mathematical learning. The 

Problem Solving standard states that "students should have frequent opportunities to 

formulate, grapple with and solve complex problems that require a significant amount of 
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effort." (NCTM, 2000) Solving these complex problems involves several organizational 

demands: (a) figuring out how to get started; (b) carrying out a sequence of steps; (c) 

keeping track of the information from prior steps; (d) monitoring one‘s progress and 

adjusting the strategies accordingly; and (e) presenting solutions in an organized manner. 

Students must also organize their time to insure that they do not rush through tasks and 

make careless errors or spend an excessive amount of time and not complete the task 

(Brodesky et al., 2002). With that being said, cognitive processing plays a major role in 

student‘s ability to be effective problem solvers.  

Cognitive processing. One of the goals of standards-based mathematics is for 

students to have and build a deep understanding of mathematical concepts (Brodesky et 

al., 2002). Understanding concepts involves making connections between ideas, facts, 

and skills and the metacognitive process of reflecting upon and refining that 

understanding. As students begin to explore the secondary mathematics curricula they use 

more symbolic representations than in the elementary grades. Consequently, students 

who tend to think concretely may need additional support to help them make the 

transition from concrete to abstract representations (Brodesky et al., 2002; Steele & Steel, 

2003). Johnson, Humphrey, Mellard, Woods, and Swanson (2010) wrote that arithmetical 

learning difficulties can be associated with cognitive deficits (e.g., Bull & Johnston, 

1997; Geary & Brown, 1991; Geary, Brown, & Samanayake, 1991; Hitch & McAuley, 

1991; Rourke & Findlayson, 1978; Rourke & Strang, 1978; Siegel & Ryan, 1989; 

Temple, 1991). 

According to Goldman and Hasselbring (1997) research in cognitive science 

points to the distinctions among three basic types of mathematical knowledge: 
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declarative, procedural, and conceptual. The authors point out that each type is critical to 

developing mathematical literacy consistent with the NCTM Standards and New 

Standards. Declarative knowledge is facts about mathematics which can be 

conceptualized as a network of relationships containing basic problems and their answers. 

The facts stored in this network have different strengths that determine how long it takes 

to retrieve an answer. The stronger the relationship in this network, the more quickly and 

effortlessly students can retrieval the information. Procedural knowledge is the rules, 

algorithms, or procedures used to solve mathematical problems. It is represented as step-

by-step instructions in how to complete tasks, and the steps are to be executed in a 

predetermined linear sequence. Lastly, conceptual knowledge was defined as connected 

information that make up a whole where the relationships that connect the information 

together is just as import as the whole that they create. This particular mathematical 

knowledge type focuses on understanding rather than computational steps (Goldman & 

Hasselbring). Since mathematical literacy involves more than fluent retrieval of basic 

math facts students will have to know the relationship between declarative, procedural, 

and conceptual knowledge in order to solve problems. 

According to Hieber and Carpenter (1992) the importance of metacognition to 

mathematical problem solving has been well documented. Montague, Bos, and Doucette 

(1991) suggested that errors in problem solving may be the result of students with 

learning disabilities inability to monitor their problem solving performance. For example, 

Montague and Applegate (1993) found that as task difficulty increased gifted students 

verbalized more metacognitive strategies compared to students with learning disabilities. 

As the task difficulty increased for students with learning disabilities they ―shut down‖ 
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indicating cognitive overload (Montague et al.). As Montague and Bos (1990) pointed out 

successful problem solvers monitor their thinking and strategy use. Johnson, Humphrey, 

Mellard, Wods, and Swanson (2010) conducted a meta-analysis on the cognitive 

processing deficits of students with specific learning disabilities. One of the major 

findings from this analysis was that students with math disabilities have average 

intelligence, but struggle with executive functioning, processing speed, and short-term 

memory.  

Johnson et al. (2010) conducted a meta-analysis to determine if differences in 

cognitive processes between students with learning disabilities and their nondisabled 

peers were of sufficient magnitude to justify inclusion of such measures in the specific 

learning disabilities assessment batteries. A total of 177 studies were reviewed and 32 

were included in the analysis. Results indicated a moderate to large difference in the 

cognitive processing abilities of students with a specific learning disability compared to 

their nondisabled peers. Based on these findings, including cognitive processes related to 

the suspected area of disability in the explanatory component of a specific learning 

disability diagnostic process is supported. Despite research support that students with 

learning disabilities have cognitive processing deficits when compared to their 

nondisabled peers (Berninger, 2006; Semrud-Clikeman, 2005; Swanson, 2009) cognitive 

processes are not routinely assessed as part of the specific learning disabilities 

identification process (Johnson et al., 2010). Additionally, key cognitive areas identified 

as areas to focus more on included working memory, processing speed, executive 

function, and receptive and expressive language (Johnson et al.).  
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Memory deficits. Both short- and long-term memory play vital roles in learning 

mathematics (Brodesky et al., 2002). Students rely on memory to perform (a) calculations 

and procedures, (b) identify geometric figures, and (c) create graphs that have all of the 

necessary parts. A common characteristic of students with long-term memory deficits is 

the inability to easily store and retrieve information, such as number facts or the steps of 

algorithms. Making connections between what is currently being taught and what was 

learned previously is important in mathematics. Having deficits with long-term memory 

can impede students‘ ability to make these connections.  

Additionally, short-term or working memory can serve as barriers for students 

with mathematic disabilities. Students use their working memory to keep track of several 

pieces of information for a brief time, such as keeping track of calculations when solving 

multi-step problems or performing mental calculations (Bodesky et al., 2002). Having 

deficits in either long- or short-term memory can pose a number of problems for students 

with learning disabilities. According to Steele and Steel (2003) students with learning 

disabilities with memory deficits have difficulty remembering all the steps in complex 

problems, recalling formulas, remembering the rules for order of operations, calculating 

with integers, and solving quadratic equations.  

 Ashcraft, Donley, Halas, and Vakali (1992) suggested that the executive is 

responsible for initiating and directing processing, comprehension, and retrieval from 

long-term memory. Baddeley (1996) described the various executive functions. The first 

executive function was the ability to organize performance on two or more separate tasks. 

The second executive function was the ability to switch retrieval strategies (e.g., 

multiplying and adding in a multidigit multiplication problem). The third executive 
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function was attending selectively to different inputs (i.e., attention is spent on selected 

parts of a problem at different times). The fourth executive function was activating and 

manipulating information in long-term memory. All of Baddeley‘s components of the 

central executive seem likely to be involved in arithmetical calculation which may help to 

explain why students with learning disabilities struggle with calculation tasks. The 

suppression of irrelevant information has also been characterized as being a part of 

executive functioning. Previous studies (e.g., Passolunghi, Cordnoldi & De Liberto, 

1999; Passolunghi & Siegel, 2004; Passolunghi & Siegel, 2001; Russell & Ginsburg, 

1984) have suggested that students with math disabilities have a difficult time 

suppressing irrelevant information.  

Learning disability and secondary mathematics. Cawley, Parmer, Yan, and Miller 

(1998) noted not only that math difficulties usually began in elementary grades, but also 

persisted through secondary schooling with students with disabilities performing several 

grade levels behind their non-disabled peers. Consequently, problem-solving skills have 

increasing importance due to technology demands (e.g., calculators, computers, and 

software programs) that require advanced levels of mathematics proficiency (Little, 

2009). 

There have been a number of nationwide mathematics reforms of the last several 

decades (e.g., National Education Association, 1894; NCME, 1923; NCTM, 1989). In 

1894, the National Education Association suggested that the mathematics curriculum at 

the secondary level be standardized. From this movement algebra-geometry-algebra 

became the secondary mathematics course sequence, which continues to be the course 

sequence that is followed in most high schools today. Next, the Commission on the 
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Reorganization of Secondary Education (1918) issued Cardinal Principles of Secondary 

Education which did not have a strong focus on mathematics, but instead focused on 

everyday life skills that would assist students with becoming successful citizens. In 1923, 

the National Committee on Mathematical Requirements called for more unification, and 

proposed the concept of function as a central unifier of algebra and geometry. During this 

time the number of students attending secondary schools increased concurrent to an 

increasingly diverse student population (Reys & Reys, 2011).  

As noted previously, the mathematical focus in earlier years was on solving 

problems in everyday life. This changed in 1957 when the Soviet Union beat the United 

States into space with the launching of Sputnik. ―New math‖ or ―modern math‖ that 

emphasized guided discovery of mathematical structures, patterns, and relationships 

became the focus (Miller & Mercer, 1997; UICSM, 1957). This ―new math‖ only lasted 

about 20 years once it was discovered that students were unable to perform basic math 

operations (Miller & Mercer, 1997; Reys & Reys, 2011). Subsequently, the National 

Council of Teachers of Mathematics (NCTM; 1980) called for an increased focus on 

problem solving. This, along with the National Commission on Excellence in Education 

(1983) and the National Research Council (1989) led to high schools requiring more 

years of mathematics to graduate from high school. In 1989, NCTM developed standards 

that went back to focusing on discovery learning via constructivism for teaching 

mathematics (Miller & Mercer, 1997). Likewise, the NCTM Principles and Standards of 

2000 outlined content and processes by grade level for mathematics with problem solving 

being one of the five process standards.  
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More recently, the Obama administration has advocated for education standards 

designed to make all high school graduates ―college- and career-ready.‖ To achieve this 

goal the National Governors‘ Association and the Council of Chief State School Officers 

(NGA/CCSSO) have developed the ―common core‖ standards. To date, more than 47 

states have adopted the Common Core State Standards for Mathematics since its release 

in 2010. In the Obama Blueprint document the common core standards require greater 

rigor and higher expectations as compared to the previously lower and inconsistently 

required standards such as those of the 1970s (Mathis, 2010). Since the common core 

standards are fairly new, little to no research is available on the impact of common 

national standards in the US.  

High stakes testing. The most significant educational challenge facing American 

society in the 21
st
 century is the gap in academic achievement on standardized tests 

among subgroups in schools including students with disabilities and students from low 

income communities (Kim & Sunderman, 2005). The No Child Left Behind Act of 2001 

(NCLB; 2002) was one of the first national policies that addressed the need for closing 

―the achievement gap‖.  This act placed stringent requirements on ―all schools‖ and ―all 

students‖ to make adequate yearly progress (AYP) on academic standards in reading and 

mathematics by the 2013-2014 school year (Kim & Sunderman, 2005). State-level 

National Assessment of Education Progress (NEAP) scores have served as a common 

measure across states. From these data studies have revealed that determinations of 

―proficient‖ in making AYP had little correlation to relative NEAP performance 

(Bandeira de Mello, Blankenship, & McLaughlin, 2009). Under the accountability system 

introduced by the NCLB Act of 2001, it has been found that many states have lowered 
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their standards in an effort to make AYP. When the NAEP scale equivalent scores of 

each state‘s standards from 2005 to 2007 were compared, researchers documented that in 

states with a significant change in their NAEP scale equivalent scores, standards for that 

state had become easier. For example, of the Grade 8 mathematics scores in 12 states 

with a significant change in their NAEP scale equivalent, 9 had significantly decreased 

their expectations (Bandeira de Mello et al., 2009). These results were used to help justify 

the current administrations push for common ―college- and career-ready‖ standards.  

Since NCLB, students with disabilities, including those with learning disabilities, 

are required to participate in these statewide assessments. The Individuals with 

Disabilities Education Improvement Act (IDEIA; 2004) mandates that students with 

disabilities are included in all general State and district-wide assessments with 

appropriate accommodations as indicated on their Individualized Education Programs 

(IEP). Students with learning disabilities are now involved in high stake testing which 

inadequately measure their academic performance (Sireci, Li, & Scarpati, 2003). 

Students‘ performance in the US on standardized tests has become a major concern. One 

indication of this widespread challenge in mathematics is the estimate that 40 – 60% of 

students nationwide are failing Algebra I (Berg, 2009). 

Algebra I serves as a ―stepping-stone‖ for continued study of mathematics and is 

no longer an elective course in high school, but a required mathematics course for all 

high school students (Reys & Reys, 2011). Currently, Algebra I is required in most states 

for graduation for all students regardless of if they are going to go on to college or not. It 

is symbolic to a gate that everyone has to pass through in order to graduate from high 

school and to advance to high level mathematics and science classes (Chazan, 1996).  
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Throughout history it has been suggested that one possible way to increase 

performance in mathematics for students with learning disabilities is to teach problem 

solving skills (Carnine, 1991; CCSS, 2010; NCTM, 2000 Parmar & Cawley, 1997; and 

Xin & Jitendra, 1999). For example, the 2000 Principles and Standards developed by the 

NCTM states that problem solving should be taught from prekindergarten through grade 

12.  Instructional programs should enable all students to (a) build new mathematical 

knowledge through problem solving, (b) solve problems that arise in mathematics and in 

other contexts, (c) apply and adapt a variety of appropriate strategies to solve problems, 

and (d) monitor and reflect on the process of mathematical problem solving. It is also 

suggested that students should be taught how to use diagrams, look for patterns, trying 

special values or cases as problem solving strategies to solve mathematical problems. 

Student who struggle with mathematics do not lack intelligence or motivation; 

instead, they lack the perceptual and associative processing tools that allow individuals to 

process numbers and mathematics (Berg, 2009). The lack of these processing tools, 

sensory-cognitive development, limit students memory challenging them to learn, retain, 

and apply math facts, recall formulas, and remember sequences and structure of multi-

step problem solving. 

Summary 

When examining the areas that affect mathematics specifically we know that (a) 

language, (b) visual-spatial processing, (c) attention, (d) psycho-social skills, (e) fine-

motor skills, (f) organization, (g) cognitive processing, and (h) memory deficits can all 

impede students with learning disabilities from being successful in mathematics 

(Brodskey et al, 2002). According to Johnson et al. (2010) deficits in verbal working 
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memory, visual working memory (Hitch & McAuley, 1991), processing speed (Bull & 

Johnston, 199 7; Swanson & Jerman, 2006), attention (Fuchs, Compton, Fuchs, Paulsen, 

Bryant, & Hamlett, 2005), and executive function (Geary, 2004) have been demonstrated 

to differentiate between average achievers and students with math disabilities. These 

deficits manifest in difficulties with math fact fluency (Geary, Brown, & Samaranayake, 

1991), problem solving (Geary), and number sense. Because learning disabilities can 

arise at any stage of development it is imperative that we identify strategies adolescents 

can use to help them be successful in content area classes. 

It is evident that implementing RTI requires purposeful planning, and continuous 

evaluation. Prior research has shown that adolescents with learning disabilities reach a 

mathematics plateau after seventh grade making only one year‘s growth during Grades 7 

through 12 (Warner, Alley, Schumaker, Deshler, & Clark, 1980).  

Historically, despite all of the remediation in most secondary programs for 

students with learning disabilities, the academic performance gap persists (Deshler, 

Schumaker, Alley, Warner, & Clark, 1982). Alley, Deshler, and Warner (1970) found 

that 85% of adolescent students with learning disabilities demonstrated deficits in test-

taking and study skills. Likewise, Carlson and Alley (1981) found that high school 

students with learning disabilities performed significantly below their nondisabled peers 

in note taking, monitoring writing errors, test taking, and listening comprehension. 

Because adolescents with learning disabilities are above a fourth grade level, Deshler et 

al. (1982) suggested that students can be supported in the general education curriculum 

by teaching them specific learning strategies. 
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There is a great need for intervention research for adolescents with learning 

disabilities. Most of the professional literature relating to learning disabilities has focused 

on younger students, hence the nationwide shift to RTI. However, Deshler (2005) made 

the argument that in spite of existing effective interventions for students, the chance of 

any of them being implemented with fidelity at a large-scale was remote.  Additionally, 

the need for effective intervention strategies for older students is just as great as effective 

interventions for younger students because as students get older and start to mature they 

are faced with more and more challenges making it imperative to develop interventions 

that address multiple aspects of the learning disabilities across varying age groups and 

academic setting demands (Deshler, 2005).  

Learning Strategy Instruction 

One way to assist students with learning disabilities with the shift to more 

content-focused classes is to provide them with effective and efficient learning strategies. 

Simply put, a learning strategy is an individual's approach to completing a task. More 

specifically, a learning strategy is an individual's way of organizing and using a particular 

set of skills to learn content or complete tasks more effectively and efficiently both in and 

out of school (Schumaker & Deshler, 1992).  

Research from the University of Kansas Center for Research on Learning 

An ample amount of the research conducted on the explicit teaching of learning 

strategies to adolescents with learning disabilities has come from The University of 

Kansas, Center for Research on Learning (KU CRL). This research suggests the use of 

learning strategies as a way to improve student performance in inclusive settings or on 

grade appropriate tasks. Additionally, the Learning Strategies Curriculum was developed 
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over approximately the last 30 years of research. It is composed of three academic areas: 

(a) acquiring information, (b) storing information, and (c) expressing knowledge (KUCR, 

2012).  

Acquiring information. The Word Identification Strategy—a strategy for 

decoding complex words (Lenz, Schumaker, Deshler, & Beals, 1984), the Paraphrasing 

Strategy—a strategy to translate main ideas and details of a passage into one‘s own words 

(Schumaker, Denton, & Deshler, 1984), and the Word Mapping Strategy—a strategy 

used to predict the meaning of words (Harris, Schumaker, & Deshler, 2008) are all a part 

of the information acquisition strand.  

Lenz, Schumaker, Deshler, and Beals (1984) conducted a study to examine the 

effects of the word identification strategy on the reading abilities of adolescents with 

learning disabilities. Twelve students were selected for participation in the study, and 

were assessed based on five measures (i.e., 3 oral reading measures, 2 reading 

comprehension measures). The word identification strategy is a systematic process in 

which multisyllabic words can be recognized in reading assignments in content area 

classes (e.g., social studies, science). Students were trained in a general problem-solving 

strategy in which specific substrategies were applied for the quick identification of 

difficult words. Training was provided by the student‘s teachers using the eight-step 

instructional sequence created by Deshler, Alley, Warner, and Schumaker (1981) to 

promote strategy acquisition and generalization. The eight steps included: (1) pretest and 

obtain commitment to learn, (2) describe the strategy, (3) model the strategy, (4) verbal 

rehearsal of strategy steps, (5) controlled practice and feedback, (6) grade-appropriate 

practice and feedback, (7) posttest and obtain comment to generalize, and (8) 
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generalization. Using a multiple-baseline across participants design, students were placed 

in three groups of three and received approximately 20 to 25 minutes of instruction in the 

intervention per day for a 6-week period. Results indicated that the strategy was effective 

in reducing common oral reading errors (e.g., mispronunciations, substitutions). Students 

were also able to maintain their performance up to five weeks after intervention. 

Researchers pointed out that the strategy was taught as a problem solving process rather 

than as a decoding process, and the eight stages of instruction were used to insure student 

understanding, memory, and mastery of the strategy.  

Schumaker, Denton, and Deshler (1984) created a paraphrasing strategy to 

increase adolescents with learning disabilities ability to recall information from text. The 

mnemonic ―RAP‖ was created to help students remember the steps of the strategy: (a) 

Read a paragraph; (b) Ask myself, ―What was the main idea and two details?‖ and (c) Put 

it into my own words. The RAP strategy is based on sound theory utilizing paraphrasing 

to help improve memory of main ideas and details in text. Initial pilot data for the RAP 

strategy were promising in that students who were taught to use the RAP strategy 

increased their recall of text from 48% to 84%.  

Although there was no empirical study conducted Harris, Schumaker, and Deshler 

(2008) created the Word Mapping Strategy to help adolescents predict the meaning of 

words. There is an instructor‘s manual that follows the eight stages of instruction outlined 

by Deshler, Alley, Warner, and Schumaker (1981). 

Storing information. The information storage area includes strategies such as the 

FIRST-letter Mnemonic Strategy and the Paired Associates Strategy. The FIRST-letter 

Mnemonic Strategy enables students to scan textbooks to create lists of critical 
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information and devise first letter mnemonics to remember the material (Nagel, 

Schumaker, & Deshler, 1986). More specifically, the strategy includes strategies for 

reviewing written information, finding important information through the use of "clues" 

(e.g., bold-faced headings), creating lists of related information, creating memory devices 

to enhance recall of the items in the lists, and memorizing those lists in preparation for a 

test.   

The Paired Associates Strategy enables students to pair pieces of new information 

with existing knowledge by using a visual device (Bulgren, Hock, Schumaker, & 

Deshler, 1995). Students learn pairs of informational items, such as names and events, 

places and events, or names and accomplishments. From these pairs students identify 

pairs of items, create mnemonic devices, create study cards, and use the study cards to 

learn the information. Twelve high school students with learning disabilities were 

instructed in the strategy to identify and remember pairs of small groups of information 

using a multiple baseline across participants design. Results indicated that before students 

learned the Paired Associates Strategy, they only answered on average eight percent of 

test questions correctly related to paired information when the paired information was 

identified for them. After intervention students answered correctly an average of 85 

percent of the questions about paired information that was identified for them. When 

given reading passages to study on their own, they answered an average of 22 percent of 

test questions correctly before instruction in the strategy versus answering 76 percent 

correctly after mastering the strategy.  Results also revealed student improvement in test 

performance and creation of study cards. Students had distinct preferences among 

mnemonic devices and adapted strategies based on previous experience. 
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Expressing knowledge. Lastly, the expression and demonstration of understanding 

academic area includes strategies such as the Sentence Writing and Test Taking 

Strategies. The Sentence Writing Strategy was designed to teach students how to write 

simple, compound, complex, and compound-complex sentences (Schumaker & Sheldon, 

1985). The Test Taking Strategy was used by students to focus attention on critical 

aspects of test items, systematically answer questions, and improve test performance 

(Hughes & Schumaker, 1991). The Test-Taking Strategy is designed to be used while 

taking classroom tests. Students allocate time and priority to each section of the test, 

carefully read and focuses on important elements in the test instructions, recall 

information by accessing mnemonic devices, systematically and quickly progress through 

a test, make well-informed guesses, check their work, and take control of the testing 

situation.  

Schumaker and Sheldon (1985) developed a sentence-writing strategy that has 

been used successfully to help students with learning disabilities understand sentences 

better. The acronym PENS helps students remember the steps in writing a sentence: Pick 

a sentence type and formula, Explore words to fit the formula, Note the words, Search for 

verbs and subjects, and check. The Sentence Writing Strategy teaches students to 

recognize and write 14 sentence patterns with four types of sentences: simple, compound, 

complex, and compound-complex.  

When examining the aforementioned research there was a consistent theme across 

the methods used to deliver the intervention to students. With that being said, an 

instructional sequence has been validated by the educators at the University of Kansas, 

Center for Research on Learning following these teacher-directed steps: (a) pretest, (b) 
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describe, (c) model, (d) verbal practice, (e) controlled practice, (f) grade-appropriate 

practice, (g) posttest, (h) generalization (Schumaker & Deshler, 1992). Schumaker and 

Deshler (1992) discuss some of the key features surrounding the research conducted on 

learning strategy interventions for adolescents with LD, including the stages of the 

research, research standards, the curriculum, and the instructional methodology. 

 First, the teacher assesses the current level of student performance using a 

strategy pretest and students commit to learning a new strategy. Second, the teacher 

describes the features of the strategy as well as when, where, why, and how to use the 

strategy. Next, the teacher models how to use the strategy by "thinking aloud" as the 

strategy is applied to content material. During the verbal practice stage, students 

memorize the steps of the strategy and other essential requirements. Afterwards, 

controlled practice activities are used to enable students to become proficient strategy 

users with ability level materials. One critical component at this stage for students is for 

teachers to provide specific feedback on student performance. Next, students use the 

strategy with grade-appropriate or increasingly more difficult materials. Finally, students 

are given a posttest followed by the teacher facilitating student generalization of the 

strategy through use in other academic and nonacademic settings. Each of the learning 

strategies has multiple parts that students remember with the aid of a mnemonic. These 

strategies are typically learned in small groups, sometimes in a resource room, through 

short, intensive lessons over several weeks.  All in all, in order to effectively design 

mathematics instruction it is imperative to examine where the focus of mathematics 

instruction has been and where it is going. 
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Selected Research in Learning Strategies from Various Sources 

In addition to the research conducted at the KU CRL, other researchers in the area 

of learning strategies have also found positive results. According to Maccini, 

McNaughton, and Ruhl (1999) teacher‘s delivery of instructional strategies was shown to 

be more effective than some of the more student-centered (i.e., discovery) approaches. 

Modeling, guided practice, and corrective feedback on responses to practice problems 

were also recommended as ways to increase student academic performance.  

For example, Graham, Harris, and colleagues (e.g., Graham, Harris, MacArthur, 

& Schwartz, 1991) have validated strategies for improving the quality of student 

compositions, planning processes, and revisions using the PLAN and WRITE strategies. 

In another line of research, Palincsar and Brown (e.g., Palincsar & Brown, 1986) 

successfully tested and replicated reciprocal teaching, a strategy to improve student 

reading performance. Scruggs and Mastropieri (e.g., Scruggs & Mastropieri, 1992) have 

validated several approaches to teach students how to construct and use mnemonic 

strategies (i.e., keyword strategy, pegword strategy, first). The DRAW strategies tested 

by Miller and Mercer (e.g., Miller & Mercer, 1991; 1993), which resulted in improved 

student performance in math calculations as well as in solving word problems, are 

discussed further later in this chapter.  

Writing. Graham, Harris, MacArthur, and Schwartz, (1991) reviewed their 

research program in written language, including examinations of what and how students 

with LD write. Based on their research, students' writing difficulties stem from problems 

with basic text production skills, limited knowledge about writing, and difficulties with 

planning and revising text. In their previous studies, the researchers evaluated the 
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effectiveness of instructional procedures for addressing strategy instruction, procedural 

facilitation, word processing, basic skills instruction, and the process approach to writing.  

Mnemonic strategies. According to Mastropieri and Scruggs (1998) students with 

learning disabilities and other special needs may be at particular risk for failure in school 

due to memory deficits. In order to promote academic success in school, Mastropieri and 

Scruggs (1998) recommend that teachers teach students how to remember as well as what 

to remember. According to Mastropieri and Scruggs teaching students how and what to 

remember can be done by a variety of strategies, but they found that the most powerful 

strategies have been the keyword method, the pegword method, and letter strategies. 

Additionally, systematic instruction using mnemonic strategies can be important in 

helping to determine school success for students with learning disabilities and memory 

deficits.  

Summary 

Most favorable learning outcomes for students occur when their skills and 

abilities closely match the demands of the curriculum and instruction within the 

classroom. Therefore, it is important that to match quality classroom instruction to meet 

the needs of the students. When there is a mismatch between the curriculum and 

instruction within the classroom, student outcomes and learning may suffer (Mellard, 

2003).  One way to assist students with learning disabilities with the shift to more content 

focused classes is to provide them with effective and efficient learning strategies. 

According to Schumaker et al. (2002) much of the instruction that takes place in 

general and special education class settings does not adhere to validated instructional 

practices. A fair amount of the special education literature in mathematics has suggested 
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that instruction be explicit and systematic (e.g., Fuchs & Fuchs, 2003; Gersten, Baker, 

Pugach, Scanlon, & Chard, 2001; Swanson & Hoskyn, 1998). Secondary grades show a 

departure from the skills emphasis of elementary grades to a more specific content 

emphasis. Students are faced with greater demands to read information from textbooks, 

take notes from lectures, work independently, and express understanding in written 

compositions and on paper and pencil tests (Deshler & Schumaker, 1986).  

The Need for Explicit Instruction 

In a 1999 meta-analysis, Swanson found two major intervention practices that 

produced large outcomes for students with specific learning disability. One was 

direct/explicit instruction; the other learning strategy instruction. Archer and Hughes 

(2011) described explicit instruction as ―a series of supports in which students are guided 

through the learning process with clear statements about the purpose and rationale for 

learning the new skill, clear explanations and demonstrations of the instructional target, 

and supported practice with feedback until independent mastery has been achieved‖ (p. 

1).  

 From the Swanson (1999) analysis it was found that teachers who were applying 

those kinds of intervention (e.g., direct/explicit instruction): (a) broke learning into small 

steps; (b) administered probes; (c) supplied regular quality feedback; (d) used diagrams, 

graphics and pictures to add to what they were saying in words; (e) provided ample 

independent intensive practice; (f) modeled instructional practices that they wanted 

students to follow; (g) provided prompts of strategies to use; and (h) engaged students in 

process type questions like ―How is that strategy working? Where else might you apply 

it?‖  



49 

Research in General Education 

In 1968, the U.S. Office of Education initiated a comprehensive program called 

Project Follow-Through for economically disadvantaged students in elementary grades in 

180 communities. Although not its original purpose, Project Follow-Through focused on 

identifying effective approaches for teaching economically disadvantaged students. The 

study was conducted over multiple years with the first cohort of students entering 

Kindergarten in 1968 and included tens of thousands of students across the country 

ending in 1981 (Meyer, Gersten, Gutkin, 1983). The effectiveness of 12 programs was 

examined and categorized based on the description and primary instructional emphasis 

provided by the program developers. Programs were categorized as (a) basic-skills, (b) 

cognitive-conceptual, and (c) affective–cognitive models. Students were administered a 

variety of measures that focused on the acquisition of basic skills, problem-solving 

abilities, or self-concept. From this study Watkins (n.d.) reported that in terms of 

measures of basic academic skill improvement, The Direct Instruction model had 

unequivocally higher average effect on scores in the basic skills domain (as well as the 

other domains) than did any other model. Project Follow-Through has been used in 

support of explicit instruction approach (Archer & Hughes, 2011). Similarly, Direct 

Instruction and explicit instruction are based on principles such as (a) increasing on-task 

behaviors, high levels of success, and content coverage (Meyer & Hughes, 2011). 

According to Stein, Carnine, and Dixon (1998) the major difference between Direct 

Instruction and explicit instruction is Direct Instruction‘s emphasis on curriculum design; 

every other component overlaps (Stein, Carnine, & Dixon, 1998).  
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Pursuing this further, Brophy and Good (1986) conducted a review of the 

literature conducted in general education classrooms from 1973 through 1983 in which 

the link between teacher behavior and student achievement was investigated. Results 

indicated that in most instances, students of the teachers who were using explicit 

instruction techniques had higher achievement scores than students in control classes. 

Another finding was that students learn more efficiently when their teachers first 

structure new information for them and help them link it to prior knowledge, and then 

monitor their performance and provide corrective feedback during drill, practice, or 

application activities. It is believed that explicit instruction can be applied to any body of 

knowledge or set of skills that has been sufficiently well organized and analyzed so that it 

can be presented (i.e., explained, modeled) systematically and then practiced or applied 

during activities that call for student performance that can be evaluated for quality and 

given corrective feedback (Brophy & Good, 1986).   

Additionally, Gage and Needles (1989) reviewed a model of good strategy use. 

One important finding was that good strategy users know many strategies and a lot of 

information about when and where to use them. For example they are reflective and have 

low anxiety, and possess beliefs that they can do well by using the right approaches. 

While strategy use is very important the challenging part is finding the most effective 

instructional approaches to teach the strategies to students. Gage and Needles (1989) also 

suggested that strategies are best learned when the teacher is interactive, with teacher-

provided responsive feedback. Reciprocal teaching and direct explanation were preferred 

teaching techniques suggested by the authors. Both of these teaching approaches involve 

(a) extensive explanation of the strategies to students, (b) explicit and extensive modeling 
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of strategic techniques, and (c) practice with extensive teacher diagnoses followed by 

remedial instruction that is individually tailored to students. 

Additionally, the National Mathematics Advisory Panel (2008) recommended that 

students be taught mathematics using explicit instruction. Explicit instruction with 

students who have learning disabilities was shown to consistently positively affect 

performance with word problems and computation. The Panel defined explicit instruction 

as the teacher providing clear models for solving a problem type using an array of 

examples, that students receive extensive practice in use of newly learned strategies and 

skills, that students are provided with opportunities to think aloud (i.e., talk through the 

decisions they make and the steps they take), and that students are provided with 

extensive feedback. While the Panel did not endorse all mathematics instruction be taught 

using explicit instruction, it was recommended that struggling students receive some 

explicit mathematics instruction regularly.  

Research in Special Education 

Swanson and colleagues (Swanson, 1999; Swanson & Hoskyn, 1998) reviewed all 

the intervention research published since 1963 when the field of learning disabilities first 

began. From these reviews three critical instruction components were identified that 

improved student outcomes: (a) control of task difficulty (i.e., sequencing examples and 

problems to maintain high levels of student success, (b) small interactive group 

instruction with six or fewer students, and (c) directed response questioning (i.e., students 

generate questions while reading or working on a scientific or mathematical problem).  

Christenson et al. (1989) summarized findings of their research on instruction for 

students with mild learning disabilities which identified five factors that reinforced the 
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need for well-organized and explicit methodologies for teaching academic content: (a) 

clear expectations about what is to be learned, (b) clarity of presentation, (c) multiple 

opportunities for student responses, (d) active teacher monitoring of these responses, and 

(e) frequent teacher evaluation and feedback.  

Additionally, Vaughn, Gersten, and Chard (2000) summarized findings of several 

research syntheses that were federally funded through the Office of Special Education 

Programs. Intervention research reviewed focused on a variety of topics, including 

instruction in written expression and reading comprehension, as well as grouping 

practices for students with learning disabilities.  In the area of writing instruction, the 

authors analyzed 13 studies (all of which resulted in large effect sizes) and identified best 

practices in teaching expressive writing skills to these students. These practices included 

(a) explicit teaching of essential steps in the writing process, including models and 

prompts; (b) explicit instruction in teaching writing conventions across multiple genres 

(e.g., persuasive essays, compare-and-contrast essays); and (c) guided feedback to 

students from teacher and/or peer feedback about the quality of their writing attempts. 

Additionally, Vaughn et al. (2000) synthesized the results of two meta-analyses on 

reading comprehension research (Gersten et al., 1998; Mastropieri, Scruggs, Bakken, & 

Whedon, 1996). From this it was concluded that instruction in reading comprehension 

should provide students with multiple opportunities to practice the strategy with feedback 

before they are expected to use the strategy on their own. The last area investigated by 

Vaughn and colleagues dealt with the effects of instructional grouping arrangements 

(e.g., whole-group, small-group, pairs) on student achievement. Elbaum et al. (2000) 

conducted a meta-analysis of 19 studies that examined grouping methods and included 
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students with disabilities. The highest effect sizes were associated with small-group 

instruction.  

According to Kroesbergen and Van Luit (2003) Direct Instruction is most 

effective for teaching basic or isolated skills. Based on their meta-analysis of over 50 

studies of students with math disabilities, explicit methods of teaching were more 

effective than less direct instructional methods such as discovery learning. A series of 

meta-analyses of intervention research, Lee Swanson (i.e., Swanson & Hoskyn, 1998; 

Swanson, 1999, 2001) has identified instructional components that predict positive 

learning outcomes for students with learning disabilities. Based on these analysis 180 

published intervention studies were reviewed. Swanson (2001) identified 12 criteria 

associated with direct instruction. He suggested that when any four of these indicators are 

present, direct instruction is occurring: (a) breaking down a task into small steps, (b) 

administering probes, (c) administering feedback repeatedly, (d) providing a pictorial or 

diagram presentation, (e) allowing independent practice and individually paced 

instruction, (f) breaking the instruction down into simpler phases, (g) instructing in a 

small group, (h) teacher modeling a skill, (i) providing set materials at a rapid pace, (j) 

providing individual child instruction, (k) teacher asking questions, and (l) teacher 

presenting the new (novel) materials (Swanson, 2001, p. 4). 

Explicit instruction and mathematics. The Center on Instruction conducted a 

meta-analysis on mathematical interventions as instructional practices and activities that 

attempted to enhance the mathematics achievement of students with learning disabilities 

(Gersten, Chard, Jayanthi, Baker, Morphy, & Flojo, 2008). Forty-four studies with 

randomized control trials or high quality quasi-experimental designs were included in the 
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meta-analysis. Based on the findings of the meta-analysis seven effective instructional 

practices were identified for teaching mathematics to students with learning disabilities. 

First, it was recommended that students with learning disabilities should be taught 

mathematics using explicit instruction on a regular basis. This could be done by the 

teacher (a) clearly modeling the solution specific to the problem, (b) thinking aloud the 

specific steps during modeling, (c) present multiple examples of the problem and 

applying the solution to the problem, and (d) providing immediate corrective feedback to 

the students on their performance. Their second recommendation was to teach students 

using multiple instructional examples. For example, teachers should select a range of 

examples of a problem type so that students are exposed to as many of the different 

possible variations. It was also suggested that multiple examples be presented in a 

specified sequence such as concrete to abstract, easy to hard, and simple to complex. 

Third, it was recommended to have students verbalize, or think aloud, their decisions and 

solutions to a math problem. Verbalizing steps in problem solving may help to address 

students‘ impulsivity (i.e., solving problems by randomly combining numbers rather than 

implementing a solution strategy step-by-step) thus facilitating students‘ self-regulation 

during problem solving. Next, students should be taught to visually represent the 

information in the math problem. It was suggested that visuals are more effective when 

combined with explicit instruction. Additionally, teachers should conduct or be provided 

data from ongoing formative assessments that evaluate students‘ progress and use this 

data to drive their instruction. Finally, students should be taught to solve problems using 

multiple heuristic strategies. A heuristic strategy is a method or strategy that exemplifies 

a generic approach for solving a problem (i.e., a strategy that can applied to broad 
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mathematical contexts). The Center on Instruction (2008) identified four intervention 

studies in the area of heuristic strategy instruction.  

Research on heuristic strategy instruction. Hutchinson (1993) conducted a study 

with 20 students with learning disabilities to teach them three types of algebraic word 

problems involving different story lines and different structures. The researchers 

employed both a multiple baseline across participants and a two group experimental 

design. Students were assigned to either strategy instruction or typical classroom 

instruction, and were provided self-questions on cue cards, structured worksheets, teacher 

modeling of the strategy, prompts, corrective feedback, and reinforcement. Students were 

not taught to use self-questioning prompts for a specific problem type; instead the 

prompts in the guide can be applied to any problem type. Results indicated that students 

in the strategy instruction group performed significantly better than students in the 

control group on posttest measures. Furthermore, students that received strategy 

instruction improved problem solving performance and maintained their performance for 

six weeks. 

Van Luit and Naglieri (1999) investigated the utility of a Mathematics Strategy 

Training for Educational Remediation (MASTER) program, (Van Luit, Kaskens, & Van 

der Krol, 1993). This program (i.e., MASTER) is based on the assumption that strategy 

instruction within the context of mathematics can help special children improve their 

performance in math. The effectiveness of the program was investigated with 84 students 

with poor mathematics skills, (i.e., learning disabilities; n = 42, and mild levels of mental 

retardation; n = 42) using a pre- and posttest design. The teacher modeled several 

strategies for solving computational problems. Each student was allowed to choose a 
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strategy to help them complete the problem, but the teacher assisted the students in 

discussion and reflection about their choices. Results indicated that the use of the self-

instruction program resulted in significant improvement over the general instruction 

program.  

Woodard, Monroe, and Baxter (2001) reports the findings from a larger, yearlong 

case study, focusing on ways to improve problem solving through classwide performance 

assessment tasks and ad hoc tutoring for 182 students with learning disabilities. During 

the ad hoc tutoring phase students suggested a strategy for solving the problem, and the 

tutor probed the other students to see if they agreed and encouraged different individuals 

to work the next step in the problem. Specifically, the tutor's roles were to: (a) help 

students understand the problem and what it was asking; (b) clarify students' ongoing 

interpretation of the problem; (c) remind students of relevant components of the problem 

that had been previously discussed; and (d) offer explicit suggestions when students 

became stuck on a problem. The researchers employed a group design using pre/posttest 

measures. Results from this study indicate that the combined focus on problem solving in 

the ad hoc tutoring sessions and the classwide practice on performance assessment tasks 

led to positive gains for students with learning disabilities over time. This approach 

contrasted sharply with traditional strategy approaches to math problem solving in that it 

didn‘t focus on memorizing specific steps when solving traditional word problems. 

Next, Woodard (2006) conducted a study in which 58 students in Grade 4 were 

taught multiple fact strategies based on a review of the intervention literature on 

developing automaticity in math facts. The two approaches (i.e., strategy use and timed 

practice drills) were combined and compared to timed practice drills only to determine 
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which method would be most effective for learning multiplication facts using a group 

design. Daily lessons consisted of the introduction of new strategies or review of old 

strategies, but students were not required to memorize strategies. They did have to 

discuss the strategy and contrast it with previously taught strategies. Results indicated 

that both approaches were effective in helping students achieve automaticity in 

multiplication facts; however, students in the integrated approach generally performed 

better on posttest and maintenance test measures that assessed the application of facts to 

extended facts and approximation tasks.  

Summary 

 While there is extensive overlap between direct and explicit instruction, Stien et 

al. (1998) identified the major difference between the two as curriculum design. From all 

of the research reviewed explicit instruction was a key element in helping students 

succeed in strategy instruction. In 2008, the National Mathematics Advisory Panel and 

the Center on Instruction reported explicit instruction as consistently showing positive 

effects on math performance of students with mathematical difficulties, in both 

computation and problem solving. Additionally the Center on Instruction recommended 

that students be taught multiple heuristic strategies when solving problems. From the 

research and national reports it can be concluded that explicit instruction plays a major 

role in the success of students in mathematics as well as other content areas.  

Mathematical Problem Solving Intervention Strategies for 

Secondary Students with Learning Disabilities 

In order to increase the mathematical performance of students with learning 

disabilities, it is important to examine intervention strategies that have been effective in 



58 

teaching problem solving skills. A number of reviews of the literature revealed 

intervention strategies found to be effective for students at the secondary level with 

learning disabilities (e.g., Mastropieri, Scruggs, and Shiah, 1991; Maccini and Hughes, 

1997; Xin and Jitendra, 1999).  

First, Nuzum (1983) conducted a study using a single subject design (i.e., multiple 

probe across participants) that examined the effect of an instructional model on the word 

problem solving performance of four secondary students with learning disabilities. The 

model included six instructional phases with each phase beginning with clear instructions 

and cue cards. As the instructional phases progressed students no longer used cue cards. 

The types of word problems included addition, subtraction, and two-step problems 

requiring addition and subtraction. Results indicated that the number of problems solved 

correctly by students increased when intervention phases progressed. Additionally, 

students performed well on the posttest measure.  

Next, Marzola (1985) replicated the work of Nuzum (1983) extending it by 

implementing a group design with sixty fifth-and sixth-grade students who were 

diagnosed with learning disabilities. The experimental group was taught strategies for 

solving word problems, whereas the control group practiced word problems without any 

instruction. All of the strategies were organized and sequenced based on five objectives, 

(a) identify the questions, labels, and the necessary information; (b) determine the correct 

operation in addition or subtraction word problems; (c) recognize and eliminate 

extraneous information; (d) decide if the problem was a one- or two-step problem and 

then solve it; and (e) check their work. Students were instructed in each of these five 

objectives after the demonstrated mastery of the previous objective. Results indicated that 
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students in the experimental group outperformed student in the control group who did not 

receive instruction in problem solving. Two-step problems and problems with extraneous 

information were the two areas that students performed significantly better on.   

Montague and Bos (1986) conducted a similar study to the two previous studies in 

that the researchers examined the effects of an eight-step cognitive strategy on students‘ 

generalization to three-step problems was examined. Students ranged in age from 15-19 

and participants consisted of five males and one female. The eight steps included (a) read 

the problem aloud, (b) paraphrase, (c) visualize, (d) state the problem, (e) hypothesize, (f) 

estimate, (g) calculate, and (h) self-check. Results indicated five of the six students 

improved after cognitive strategy training. Additionally, four students successfully 

generalized the strategy to three-step problems. Upon error analysis results revealed that 

students mostly made computation and operation errors on the tests after the strategy 

training which suggest that cognitive strategy training may provide students a general 

approach for solving word problems, but does not ensure correct computation of answers 

to the word problems. 

Bennett (1980) conducted a study that examined the effects of pre- and post-

organizers on 21 secondary students with learning disabilities scores on word problems 

with different levels of syntactic and computational complexity using a group design.  

During the pre-organizer phase students were taught four steps to solve word problems 

(a) read problem, (b) underline numbers, (c) re-read problem, and (d) decide on the 

operation sign and problem type. During the post-organizer phase students followed the 

following five steps (a) read problem, (b) check operation, (c) check math statement, (d) 

check calculations, and (e) write labels. During the last phase of intervention students no 
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longer used the cue cards, and post-test scores improved on one-step problems with lower 

levels of syntactic complexity.  

Montague (1992) conducted a study with six secondary students with learning 

disabilities using strategy training to improve students‘ problem solving performance in 

mathematics. Strategy instruction for these students consisted of two instructional phases 

where teachers instructed student on (a) cognitive (seven problem solving strategies) or 

(b) metacognitive strategies (self-awareness and regulation of the strategies). Students 

then had to memorize the strategies through self-instructions, monitoring, and 

questioning. If student were assigned to the cognitive strategy group during the first 

instructional phase, then during the second instructional phase they would receive 

instruction in metacognitive strategies on the treatment they missed during the first 

instructional phase. A quasi-experimental, control group time-series design was used. 

Results indicated that students‘ problem solving performance increased more once they 

had a combination of cognitive and metacognitive strategies than either of the strategies 

in isolation; however, students did not generalize strategy use to their regular classroom 

and did not maintain their performance over time making it necessary to conduct booster 

sessions. 

Montague, Applegate, and Marquard (1993) conducted a study with secondary 

mathematics students in which 72 students were randomly assigned to three treatment 

conditions (i.e., cognitive, metacognitive, or a combination of both strategies together) 

for 7 days, followed by 5 days of intervention treatment phase on the treatment missed 

during the first phase. A group design was employed, and results of this study was similar 

to the results from Montague (1992) in that students‘ increased their performance in each 
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treatment phase, but students showed the most improvement in the combination phase. 

Generalization in this study was not investigated, but it was noted that students needed 

booster sessions to help them maintain their skills over time.  

Bottge (1999) conducted a study to determine if secondary students with learning 

disabilities could transfer skills gained from video-based problem solving to an authentic 

task. Using a pretest-posttest design 66 students were assigned to 2 treatment groups (i.e., 

remedial and prealgebra classes; contextualized instruction with the use of videodiscs) 

and 2 control groups (i.e., remedial and prealgebra classes; word problem instruction. 

Results indicated that students in the contextualized problems condition performed better 

on contextualized problem tasks and transfer tasks.  

Jitendra, Hoff, and Beck (1999) conducted a study to examine the effects of 

schema-based strategy instruction on the mathematical problem solving skills of four 

secondary students with learning disabilities on one- and two-step addition and 

subtraction word problems. A multiple probe across participants and behaviors design 

was employed to determine whether the two instructional phases of schemata instruction 

(i.e., problem schema instruction using story situations, problem schema instruction using 

word problems with unknown quantities) increased student‘s scores on word problem 

tests, maintenance, near and far generalization measures, and strategy usage and 

questionnaire. Results indicated participants improved performance from baseline across 

all treatment phases. While generalization scores varied, students were able to maintain 

performance up to four weeks following intervention.   

Manalo, Bunnell, and Stillman (2000) conducted two studies that examined the 

effectiveness of process mnemonics on the mathematics computation performance of 
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eighth-grade students with learning disabilities. Twenty-nine students with learning 

disabilities were assigned to process mnemonic instruction, demonstration-imitation 

instruction, or one of two control conditions (i.e., study skills or no instruction). In the 

process mnemonic instruction group students were a mnemonic to assist them with 

recalling the process involved with adding, subtracting, multiplying, and dividing 

numbers with and without decimals. Instruction for the group of students assigned to the 

demonstration-imitation instruction group included the teacher modeling the process for 

students and then having students practice across similar problems. Students in the 

control group received no instruction. Results indicated significant improvements from 

pre- to posttest in both the process mnemonic and demonstration-imitation groups (d = 

2.88 for both). It was also found that the group of students who received process 

mnemonic instruction maintained a higher mean performance six weeks following 

intervention than students who received demonstration-imitation instruction (87% vs. 

61% respectively). In a second experiment 28 students were assigned to treatment 

conditions similar to the previous experiment except instruction was delivered by two 

instructors instead of the researcher and there was only one control group (i.e., no 

instruction). Similar to previous findings students in both treatment conditions out 

performed students in the control group, and students in the process mnemonic group had 

higher maintenance measure scores than students in the demonstration-imitation group 

(82% vs. 56% respectively).  

Naglieri and Johnson (2000) investigated the effects of cognitive planning 

strategy on the mathematics performance of students who were poor planners. Cognitive 

strategy intervention included three 10 minute phases (i.e., worksheet completion, 
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teacher-facilitated discussion of effective strategies, worksheet completion). Nineteen 

students with learning disabilities were assigned to either the experimental group or one 

of four comparison groups (i.e., students with weaknesses with attention, successive, 

simultaneous, or no weaknesses). Three students indentified as having low planning 

scores from the Cognitive Assessment System (CAS) (Naglieri & Das, 1997) measure 

demonstrated the greatest change from baseline to intervention compared to students 

assigned to other groups. Effects of the intervention were not measured over time. 

Building upon previous studies (i.e., Bottge, 1999; Bottge & Hasselbring, 1993), 

Bottge, Heinrichs, Chan, and Sterlin (2001) also investigated the effects of contextualized 

instruction with the use of videodiscs to solve word problems using a pretest-posttest 

design. Seventy-five students, including 16 with learning disabilities, were assigned to 

treatment or control groups. Results indicated all groups made gains from pretest to 

posttest on problem-solving measures regardless of which condition (i.e., treatment or 

control) they were assigned to. The only measure students in the treatment group 

performed better on was computations where students in the prealgebra classes 

outperformed students in the remedial math classes.  

Joseph and Hunter (2001) investigated the effects of a cognitive assessment 

instrument to identify students‘ use of cognitive planning strategies. Using a multiple 

baseline across participants design, three students with learning disabilities were taught a 

cue card strategy for solving fraction problems. Results indicated that while all of the 

students improved from baseline conditions, only two of the students (i.e., average and 

above-average planner) were able to maintain high scores on maintenance probes. It was 

suggested by the authors that students with learning disabilities be taught specific 
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strategies for planning problem-solving tasks, as well as self-regulatory strategies for 

completing those tasks. 

Jitendra, DiPipi, and Perron-Jones (2002) conducted a study to examine the 

effects of schema-based strategy instruction on the mathematical problem solving skills 

of four secondary students with learning disabilities on multiplication and division word 

problems. A multiple probe across participants design involving explicit instruction was 

used to teach students to (a) recognize and represent or map the different types of word 

problems onto diagrams and (b) map salient features of the word problems onto a 

diagram and then translate the information into an equation and solve for the unknown. 

Students reached improved from baseline meeting criterion by 12 sessions and 

maintaining their performance up to 10 weeks following intervention. Additionally, 

students were able to generalize their strategies to other word problems.  

Bottge, Heinrichs, Mehta, and Watson (2002) conducted a study to determine the 

effectiveness of anchored instruction on problem solving skills of secondary students. Of 

the 42 participants, 6 were identified as have a specific learning disability, and all 

participants were assigned to treatment (i.e., enhanced anchored instruction) or control 

(i.e., traditional problem instruction) groups. Results indicated significant differences at 

posttest favoring contextualized instruction on the contextualized instruction test and 

transfer test only. Furthermore, additional analyses of the performance of students with 

disabilities indicated that only modest gains were made among those students.  

Along those same lines, Bottge, Heinrichs, Chan, Mehta, and Watson (2003) 

conducted a study using a repeated measures design to examine the math performance of 

low-and average-achieving students across baseline, anchored instruction, and instruction 
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with applied problems. A total of 37 secondary students, including 4 identified as having 

a specific learning disabilities. Results of the study indicated that students performed 

better during the anchored instruction phase compared to baseline. Of the four students 

with learning disabilities three maintained low performance throughout all conditions of 

the study with them exhibiting specific difficulties performing computation and 

procedural tasks.  

Cass, Cates, Smith, & Jackson (2003) conducted a study using geoboards to teach 

problem solving skills. A multiple baseline across participants and behaviors was used to 

evaluate the effects of teaching students to solve area and perimeter problems using 

geoboards and then paper and pencil without geoboards. Results indicated all students 

reached criterion level of 80% correct on problems solving activities for 3 consecutive 

days. Students were also able to maintain 90% accuracy on maintenance measures as well 

as generalization measures. 

 Next, Xin, Jitendra, and Deatline-Buchman (2005) investigated the effects of 

mathematical word problem solving instruction on 22 secondary students with 

mathematics difficulty. A pretest-posttest design was used to explore the effects of 

schema-based instruction and general strategy instruction on student‘s performance on 

compare and proportional multiplication and division word problems. Results indicated 

that students in both conditions made significant gains. However, students who received 

schema-based instruction preformed significantly higher than students in the general 

strategy instruction group on posttest, maintenance measures, follow-up tests, and 

generalization measure.  
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Finally, Jitendra et al. (2009) conducted a study to evaluate the effectiveness of 

schema-based instruction (SBI) on student‘s acquisition of ratio and proportion word 

problem solving ability. Researchers used a pretest-intervention-posttest-retention design 

in which six teachers and 148 students participated with 10% of the students receiving 

special education services. Results indicated that SBI had statistically significant effects 

on increasing student‘s ability to correctly solve word problems involving ratios and 

proportions. Another important finding was that the use of SBI also improved the 

problem solving skills of the students over an extended period of time (i.e., four months 

after the study). This study shows promise that secondary students with diverse needs can 

benefit from SBI instruction that emphasizes the mathematical structure of word 

problems. 

Summary 

While progress has been made in improving problem solving skills for youth with 

disabilities, there are still deficits between general population peers and students with 

disabilities in mathematic performance. Research has shown that students who have 

sufficient problem solving skills have improved mathematical performance (e.g., Cass, et 

al., 2003; Jitendra, et al., 2002; Xin, et al., 2005). The new Common Core State Standards 

ask that students "understand solving equations as a process of reasoning" and say 

explicitly what needs to be taught about this process. With more attention focused on 

mathematical reasoning and the application of mathematical skills to word problems, it is 

important to teach students strategies that address their cognitive processing and memory 

deficits. One possible solution would be to teach students mathematical mnemonic 

strategies to address these memory deficits.  
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Mnemonic Strategy Instruction 

Scruggs, Mastropieri, Berkeley, and Graetz (2010) conducted a meta-analysis that 

examined the effects of special education interventions on learning for secondary 

students with disabilities. A total of 70 experimental or quasi-experimental studies 

published from 1984 to 2006 with more than 2, 400 students were included in the 

analysis. As demonstrated previously by Scruggs and Mastropieri (2000) mnemonic 

instruction produced very high mean effects for students with disabilities (M = 1.47).  

A mnemonic strategy has been defined as ―a specific reconstruction of target 

content intended to tie new information more closely to the learner‘s existing knowledge 

base and, therefore, facilitate retrieval‖ (Scruggs & Mastropieri, 1990, pp. 271-272).  

Simply put, mnemonics strategies are enhacements used to  aid in improving memory. 

Research by Mastropieri and Scruggs (1998) suggests that the way we learn new 

information when we first study facilitates memory better as oppose to using memory 

techniques to retrieve the information.  

Numerous research studies have investigated the effects of training students with 

disabilities with memory problems to use mnemonic strategies independently (e.g., 

Cassel & Reid, 1996; Condus, Marshall, & Miller, 1986; Fulk, Mastropieri, & Scruggs, 

1992; King-Sears, Maccini & Hughes, 2000; Maccini & Ruhl, 2000; Mastropieri, 

Scruggs, Mercer, & Sindelar, 1992; Levin, Gaffney, & McLoone, 1985; McLoone, 

Scruggs, Mastropieri, & Zucker, 1986; Scruggs & Mastropieri, 1992). Studies from the 

1980‘s (e.g., Mastropieri et al., 1985; McLoone et al., 1986) successfully trained students 

with disabilities to use the mnemonic strategies to improve their memory, and to 

generalize the procedures for learning new vocabulary words to other areas where they 
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had to learn and memorize vocabulary words. More recent studies trained students with 

disabilities to use the strategies across different content areas, including science and 

social studies (Fulk et al., 1992; King-Sears et al., 1992; Scruggs & Mastropieri, 1992). 

In their review of research on mnemonic instruction, Scruggs, Mastropieri, Berkely, and 

Marshak (2010) referred to mnemonic strategies as an evidence-based practice and 

practice-based evidence. Despite the title of the article, it is not evident that the 

researchers applied the all of the standards or quality indicators set forth by Horner et al. 

(2005) needed to contribute support for as evidence-based practice.  Also, the content 

areas that the researchers examined for the use of mnemonic strategies were limited to 

elementary: life science, social students, reading, and vocabulary; and secondary: social 

studies, anatomy, and SAT vocabulary. All of the studies included demonstrated some 

positive benefits for training students to use mnemonic strategies independently; however 

there is no support of mnemonic strategy use in elementary or secondary mathematics.  

Types of Mnemonic Strategies 

There are three types of mnemonic strategies that appear most consistently in the 

literature: (a) the keyword strategy, (b) the pegword strategy, and (c) the letter strategy. 

First, the keyword strategy is based on linking new information to keywords that students 

have already encoded to memory. The keyword method is used by taking the new word 

needed to be learned and creating a keyword that is concrete (i.e., easy to picture), 

already familiar to the learner, and acoustically similar to the new vocabulary word (DLD 

& DR, 2001). The keyword is then linked to the definition of the new vocabulary word in 

an interactive picture which shows the keyword and the definition ―doing something 

together.‖ For example, when teaching this strategy one might teach the new vocabulary 
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word by first identifying a keyword that sounds similar to the word being taught and 

easily represented by a picture or drawing. Next, a picture is created that connects the 

word to be learned with its definition. According to Scruggs and Mastropieri (1994), the 

keyword strategy is most effective when the information to be learned is new to students. 

Second, the pegword strategy is used when numbered or ordered information 

needs to be remembered. Pegwords are short words that sound like numbers and are easy 

to picture. Each number (e.g., 1-10) is assigned a short word(s); based on these words 

pictures are created so that students are able to remember important ordered information 

(see Mastropieri & Scruggs, 1991 for examples). Research has shown that this strategy 

and strategies similar to it are very effective, and that when color is added and 

appropriately used, memorization is easier (Scruggs, Mastropieri, Levin, & Gaffney, 

1985). The pegword strategy supports recall of numerically-ordered information by 

pairing easily pictured and acoustically similar substitutes for numbers and concepts. This 

makes the order of concepts easier to remember.  

Finally, the letter strategy, which involves using letter prompts to remember lists 

of things, is the most familiar to both students and teachers. Of all the mnemonic 

strategies, the letter strategy has been researched the most (e.g., Maccini & Hughes, 

2000; Scruggs & Mastropieri, 1992; Test & Ellis, 2005). As an example, in elementary 

grades students remember the acronym HOMES to recall the names of the Great Lakes 

(i.e., Huron, Ontario, Michigan, Erie, and Superior). Not all first letters of terms create 

words. To memorize the names of the planets in their order from the sun (if Pluto were 

still included), the letters would be M-V-E-M-J-S-U-N-P. There is not a word from 

which these letters can be created. Consequently, an acrostic can be created, in which the 
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first letters are reconstructed to represent the words in a sentence. The sentence for 

remembering the planets that has been widely used was "My very educated mother just 

sent us nine pizzas" (Mastropieri & Scruggs, 1994, p. 271). Additionally, PEMDAS in 

mathematics is used to represent the order of operations (i.e., parenthesis, exponents, 

multiplication and division, and addition and subtraction). The acrostic widely associated 

with this is mnemonic was created based on these letters, ―Please Excuse My Dear Aunt 

Sally.‖ As with any strategy, providing structured instruction on strategy use and 

providing students with ample opportunities to practice is important. 

Mnemonic Strategies and Students with Learning Disabilities 

Mnemonic instruction has been well researched and validated for students with 

high incidence disabilities, particularly students with learning disabilities (e.g., Maccini 

& Hughes, 2000; Manalo, Bunnell, & Stillman, 2000; Pressley, Levin, & Delaney, 1982; 

Veit, Scruggs, & Mastropieri, 1986). Reviews of interventions for students with learning 

disabilities by Swanson (1999) and Forness, Kavale, Blum, and Lloyd (1997) indicated 

that the use of strategy instruction using mnemonic strategies have helped students with 

disabilities significantly improve their academic achievement. Specifically, Swanson 

(1999) found that strategy instruction using mnemonics produced larger effect sizes than 

strategies that did not use such procedures. It was also found that even though students 

without disabilities academically outperformed students with disabilities on different 

tasks, when strategy instruction was used the effect sizes were significantly smaller.  

Mnemonics in content area classes. According to Scruggs et al. (2010) from the 

early 1980s to the present, researchers have conducted more than 40 experiments, 

including more than 2,000 participants with high incidence disabilities. Based on this, 
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mnemonic strategies have been found to be very effective for students with mild 

disabilities at the elementary and secondary levels, for a wide range of content areas.  

English. Mastropieri, Scruggs, Levin, Gaffney, and McLoone, (1985) conducted a 

study to determine the effects of a pictorial mnemonic strategy and principles of direct 

instruction on adolescents with learning disabilities ability to learn the definitions of 14 

vocabulary words. Using stratified random assignment 16 students were assigned to the 

mnemonic picture condition, and the other 16 students were assigned to the direct 

instruction condition. Results from experiment 1 indicated that the mean recall of 

mnemonic-picture subjects (79.5%) was statistically higher than that of direct-instruction 

subjects (31.2%), t(30) = 7.12, p < .001. In the second experiment 30 students were 

randomly assigned to similar treatment groups as in the first experiment (i.e., mnemonic 

imagery, direct instruction). Aligned with the findings from the first experiment, students 

in the mnemonic group (mean recall of words, 69.3%) statistically outperformed student 

in the direct instruction group (M = 46.7%, t(28) = 2.96, p < .01).    

Foreign language vocabulary. McLoone et al., (1986) examined the effects of two 

types of memory strategy instruction--mnemonic or directed rehearsal--on the vocabulary 

acquisition of 60 seventh and eighth grade students with learning disabilities. Results 

indicated that students who received instruction in the mnemonic method significantly 

outperformed subjects instructed in the direct rehearsal strategy.   

History. Mastropieri and Scruggs (1988) evaluated the effects of teacher-

implemented mnemonic instruction of content-area information (US history) using 

different mnemonic techniques. Twenty-seven students with learning disabilities in 

grades 7-8 from low socioeconomic backgrounds were assigned to either a mnemonic 
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instruction or a traditional instruction groups. Student in the mnemonic instruction group 

outperformed students in the traditional instruction group. These results were true for 

both immediate testing and eight weeks after intervention.  Additionally, students and 

their teachers positively assessed the mnemonic instruction materials and the degree to 

which they were perceived as facilitating content learning and recall. 

Science. Mastropieri, Scruggs, and Levin (1985) conducted two experiments in 

which students were taught hardness levels of minerals according to (a) keyword-

pegword mnemonic, (b) a questioning procedure, or (c) free study. In the first experiment 

90- ninth grade students with learning disabilities were divided into two groups (i.e., 

high- or low- reading achievers). Within each achievement level, 15 students were 

assigned randomly to each of the three experimental conditions. Results indicated that 

regardless of the student‘s achievement level the students who received instruction in the 

mnemonic condition out recalled all of groups. Likewise, in experiment 2, 45 seventh 

grade students without disabilities were assigned to the same treatment groups as 

experiment 1. Results of this study indicated that students in the mnemonic group 

continued to outperform students in the other groups.   

Additionally, King-Sears, Mercer, and Sindelar (1992) conducted a study that 

examined the use of mnemonics to learn and remember information. Keyword 

mnemonics were used in two of three instructional procedures taught to 30 students with 

learning disabilities and 7 students with emotional or behavioral disorders in the sixth, 

seventh, and eighth grades, and included 34 males and 3 females. Students were assigned 

to one of three treatment groups (a) systematic teaching, (b) systematic teaching with an 

imposed (teacher-provided) keyword mnemonic, and (c) systematic teaching with an 
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induced (student-provided) keyword mnemonic. Students were required to learn and 

remember definitions of unfamiliar science terms. Results of these investigations 

indicated that when students were taught new vocabulary definitions using an imposed 

keyword mnemonic, the students remember more definitions.  

Although not listed in the Scruggs et al. (2010) review, there are studies that have 

been conducted in mathematics as well (e.g., Maccini & Hughes, 2000; Maccini & Ruhl, 

2000; Manalo, Bunnell, & Stillman, 2000; Test & Ellis, 2005) that have been effective 

with students with learning disabilities. It is important to examine all content areas when  

Mnemonic Strategies in Mathematics 

A total of seven first-letter mnemonic strategies have been identified to teach 

mathematical problem solving skills to students with learning disabilities (i.e., FAST 

DRAW, RIDE, RIDGES, SIGNS, SQRQCQ, SOLVE, STAR). Of the seven strategies 

identified, four empicical studies (i.e., FAST DRAW: Cassel & Reid, 1996; SIGNS: 

Watanabe, 1991; STAR: Maccini & Ruhl, 2000; Maccini & Hughes, 2000) have been 

conducted that examined the effectiveness of the mnemonic strategy. More specifically, 

studies by Maccini and Ruhl (2000), Maccini and Hughes (2000), and Watanabe (1991) 

were the only studies that taught secondary students to use mnemonic strategies to solve 

word problems.  

Intervention studies.  Watanabe (1991) developed the word problem solving 

strategy SIGNS that requires students to visually represent the word problem. SIGNS 

stands for (a) survey question, (b) identify key words and labels, (c) graphically draw 

problem, (d) note type of operation(s) needed, and (e) solve and check problem. This 

study was conducted with middle school students who had mild disabilities using a single 
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subject design. During the first step students were taught to read the problem and 

underline numerals and/or number words (i.e., RUN). Next, students looked for key word 

that gave them hints about the operation to be performed (e.g., altogether) and labeled 

words that described the objects being dealt with in the problem. Thirdly, students drew a 

picture to represent what the problem was asking. Fourthly, students were taught to think 

about the operation and/or equation that best described the drawing and to write it down. 

During the final step students answered the problem they created in step four and used a 

calculator to check their work.  This strategy was developed and reportedly implemented 

successfully, but the results of the study were never published bringing into question the 

efficacy of the strategy for increasing the problem solving skills of secondary students 

with learning disabilities. 

The STAR strategy was first developed by Maccini (1998). Since that time two 

empirical studies have examined the effects of the STAR strategy on the problem solving 

skills of students with learning disabilities. First, Maccini and Ruhl (2000) conducted a 

pilot study to determine the effects of the STAR strategy on problem solving skills of 

students with learning disabilities. A multiple probe across participants design was 

employed to examine the effects of the strategy on the solution of algebra problem 

involving subtraction of integers. Three male students with learning disabilities received 

instruction within a graduated teaching sequence (CSA) and applied the STAR strategy to 

effectively solve the problem. In the first stage of the STAR strategy students search the 

word problem by (a) reading the problem carefully, (b) asking the questions: ―What do I 

know? What do I need to find? and (c) writing down the facts. Second, students translate 

the problem into an equation in picture form by (a) choosing a variable, (b) identifying 
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the operation(s), and (c) representing the problem using CSA. Third, students answer the 

problem. Last, students review the solution by (a) rereading the problem, (b) asking the 

question, ―Does the answer make sense? Why?, and (c) checking their answer. Results of 

this study indicated that students improved their ability to represent and solve word 

problems involving subtraction of integers, and students maintained treatment effects 

over varying time intervals. Several limitations of this study were identified. First, the 

study was conducted at the end of the school year causing a threat to the internal validity 

of the study.  Next, there were no cue cards or worksheets to help the students memorize 

the steps of the STAR strategy. Finally, student‘s performance on generalization 

measures were low suggesting that it may be necessary to use more complex problems 

and vary the story lines of the word problems to better match problems student may face 

in a variety of contexts.   

Additionally, Maccini and Hughes (2000) investigated the effects of the STAR 

strategy within a graduated teaching sequence (i.e., concrete, semi-concrete, abstract) on 

the representation and solution of problem-solving skills of six secondary students with 

learning disabilities using a multiple probe across participants design. Participants were 

enrolled in a resource modified introductory algebra course, and assessment scores 

indicated that students were performing two years below grade level. Results indicated 

that all participants increased problem-solving skills following instruction in CRA and 

implementation of the STAR strategy. Although students demonstrated improvement in 

problem solving skills some students did not remember all of the steps of the STAR 

strategy, making it necessary to set mastery criteria. 
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Theoritical studies. Fay (1965) developed the problem solving process, SQRQCQ, 

which stands for stands for the following terms and respective actions (a) Survey. Read 

the problem quickly to get a general understanding of it; (b) Question. Ask what 

information the problem requires; (c) Read. Reread the problem to identify relevant 

information, facts, and details needed to solve it; (d) Question. Ask what operations must 

be performed, and in what order, to solve the problem; (e) Compute/Construct. Do the 

computations, or construct the solution; (f) Question. Ask whether the solution process 

seems correct and the answer reasonable 

Snyder (1988) developed the mathematical mnemonic problem solving strategy 

RIDGES in an effort to provide upper elementary and high school students a structure to 

follow when they are solving word problems. The mnemonic RIDGES stands for read the 

problem, I know statement, draw a picture, goal statement, equation development, and 

solve the equation. In the first step the students read the problem for understanding which 

may include rereading the problem. The second step requires the students to create an ―I 

know statement.‖ Students list the given information in the problem regardless of the 

relevance. In the third step students are instructed to draw a picture, in which Snyder 

suggests is the most important step, where the students determine relevant information. 

Fourth, students create a goal statement that is expressed in their own words that focuses 

on the question the problem is asking. Fifth, students create an appropriate equation to 

solve the problem using words or formulas. Last, students solve the equation. The 

information given in the problem is plugged into the equation created in the fifth step. As 

students become familiar with the steps they are encouraged to make modifications as 
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need to meet their needs. There were no data presented that demonstrated the 

effectiveness of this strategy. 

One instructional manual and one study investigated the use of the mnemonic 

FAST DRAW to increase student‘s mathematical problem solving skills. The FAST 

DRAW strategy was first introduced by Mercer and Miller (1992) in the Strategic Math 

Series. The FAST DRAW strategy builds upon an earlier mnemonic computation strategy 

DRAW. DRAW stands for (a) discover the sign, (b) read the problem, (c) answer, or 

draw and check, and (d) write the answer. Once students have learned this strategy they 

are taught the FAST DRAW strategy which serves as a way for students to analyze and 

solve multiplication word problems. The FAST DRAW strategy consists of students (a) 

finding what they are solving for, (b) asking ―what are the parts of the problem, (c) 

setting up the numbers, and (d) tieing down the sign. After these steps are complete 

students then use the DRAW strategy to continue solving the problem.  

Cassel and Reid (1996) conducted a study to determine the effects of self-

regulated strategy instruction on word problem solving skill improvement of students 

with mild disabilities. A multiple probe across participants designed was employed to 

investigate the effects of the strategy and instructional procedures on four elementary 

students with disabilities (i.e., 2 with learning disabilities and 2 with mild intellectual 

disabilities) performance in solving simple addition and subtraction word problems. The 

mnemonic strategy FAST DRAW was used to assist students in remembering the strategy 

steps. After reading the problem aloud the students were to (a) find and highlight the 

question, then write the label; (b) ask what are the parts of the problem then circle 

the numbers needed; (c)  set up the problem by writing and  labeling the numbers; (d) 
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re-read the problem and tie down the sign (decide if you use addition or 

subtraction); (e) discover  the  sign  (recheck the operation); (f) read the number  

problem; (g) answer the number problem and; (h )  write the answer and check by 

asking if the answer makes sense. Strategy usage was determined by whether students 

highlighted the question, circled the numbers, placed the larger number at the top of the 

problem, and wrote a label. The percentage of strategy usage steps was defined as the 

number of times in a phase that the strategy step was used divided by the total number of 

problems in the phase. Results indicated that all students were able to successfully master 

the strategy and improve their performance to at or above 80% which was the criterion 

set for mastery. Although results indicated the FAST DRAW strategy was effective in 

increasing problem solving skills, the strategy was used in combination with self-

monitoring, self-instruction, direct instruction, and meta-cognitive skill modeling, thus 

making it impossible to isolate the effects of the strategy.  

Mercer and Mercer (1993) mention the RIDE strategy as a mnemonic strategy 

that identifies the steps needed to solve story problems successfully. The steps include (a) 

read the problem, (b) identify the relevant information, (c) determine the operations and 

unit for expressing the answer, and (d) enter the correct numbers and calculate and check 

the answer. Although this strategy appears to follow similar sequence steps of other 

problem solving strategies, there is no published evidence to verify its effectiveness.  

There are two versions of the SOLVE strategy, one for upper elementary students 

and one for students in middle grades. First, the SOLVE: Action Problem Solving was 

developed by Enright (1987a,b,c) as a part of the Enright Math System published by 

Curriculum Associates. There were a total of three skill books that covered problem 
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solving for whole numbers, fractions, and decimals and percents. The mnemonic SOLVE 

was used to teach the five steps of problem solving. The first letter mnemonic SOLVE 

stood for (a) study the problem, (b) organize the facts, (c) line up a plan, (d) verify your 

plan with computation, and (e) examine your answer. Next, Mercer (1992) designed the 

SOLVE strategy to cue upper elementary students to answer multiplication facts from 0 

to 81. SOLVE stands for (a) See the sign; (b) Observe and answer (if unable to answer, 

keep going; (c) Look and draw; (d) Verify your answer; and (e) Enter your answer. In the 

first step of the SOLVE strategy students see the sign and decide which mathematical 

operation to use (i.e., add, subtract, multiply, divide). Next, they observe the numbers and 

answer the problem. At this point if they are unable to answer the problem they continue 

on to the next step. During the look and draw step students use graphic representation of 

the problem through the use of tally marks. Next, students verify their answers by 

recounting the graphic representations in the previous step (i.e., check the first number 

and representations, check the second number and representations, and check the answer 

and representations) to ensure accuracy. The last step of the strategy requires the students 

to record their answer in the appropriate space. Although the steps of this strategy worked 

well with upper elementary students, younger students had difficulty understanding some 

of the components of this strategy such as the words solve and verify. Therefore, the 

previously mentioned mnemonic DRAW was created for younger students.  

The original version of the SOLVE as seen in the three part series developed by 

Enright (1987a, b, c) is no longer in print, but the strategy is still being used as a part of 

the Algebraic Thinking Program (Enright, Mannhardt, & Baker, 2004).The Algebraic 

Thinking program is a product of the National Training Network and has been 
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implemented in 13 school districts across the United States. The SOLVE strategy is 

credited with being the ―corner stone‖ of the Algebraic Thinking program. The steps of 

the SOLVE strategy remained the same as the previously mentioned strategy with the 

exception of the ―v‖ step which currently stands for verify your plan with action instead 

of computation. When looking at each of the steps individually during the first step, study 

the problem, students highlight or underline the question and then proceed by asking 

themselves, ―What is the problem asking me to find?‖  Students then write the question in 

their own words. During the next step, organize the facts, students identify each fact in 

the word problem; eliminate unnecessary facts by putting a line through it; and then list 

all necessary facts. The next step, line up a plan, involves the students choosing an 

operation (i.e., add, subtract, multiply, divide), and telling in words how they are going to 

solve the problem without using words. Next, students verify their plans with action by 

estimating their answer then carrying out their plan by solving the problem. Lastly, 

students examine their results by asking themselves if their answer makes sense (i.e., 

check what the problem was asking them to find); is their answer reasonable (i.e., check 

their estimate), and is their answer accurate (i.e., check their work). During this last step 

students write their answer to the problem in a complete sentence. Although, there is data 

on the National Training Network website that indicate that the Algebraic Thinking 

program is successful, there are no empirical studies to validate the effectiveness of the 

SOLVE strategy on increasing mathematical problem solving skills of students with 

learning disabilities at the secondary level.  

 

 



81 

Summary of Research Foundation for the Current Study 

 Evident through research, students with learning disabilites at the secondary level 

exibit memory deficits (Bryant, Bryant, & Hammill, 2000; Bryant, Hartman, & Kim, 

2003; Ginsburg, 1997; Cooney & Swanson, 1987) which may contributes to their 

academic failure, hense leading to low graduation rates (Witzel et al., 2001). Learning 

strategy instruction and explict instruction have both been identified as ways to help 

students secceed in content area classes (Gersten et al., 2008; NMAP, 2008; Schumaker 

& Deshler, 1992). Swanson (1999) suggested that the most effective form of teaching 

students with learning disabilities is to combine components of direct instruction (e.g., 

teacher-directed lecture, discussion, and learning from books) with components of 

strategy instruction. Additionally, the Center on Instruction recommends teaching 

students to solve problems using multiple/heuristic strategies. Additionally, Maccini, 

McNaughton, and Ruhl (1999) recommended step-by-step prompts for problem solving 

in algebra. Research across varying content areas has demonstrated that mnemonic 

strategy instruction can be an effective strategy for students with learning disabilities 

(e.g., Manalo, Bunnell, & Stillman, 2000; Pressley, Levin, & Delaney, 1982). While 

mnemonics have been heavily researched in other areas little research has been conducted 

in mathematics to see if mnemonics may be effective in this area as well.  

 Although there is a strong implication that mnemonics are beneficial in math 

instruction, there is limited research that suggests that explicit instruction in mnemonic 

strategies is effictive in mathematics for students with learning disabilities at the 

secondary level. Specifically, one problem solving mnemonic strategy (i.e., STAR) has 

empirical data to support its effectiveness at increasing the mathematical problem solving 
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skills of studens with learning disabilities at the secondary level. While there are other 

mnemonic strategies (e.g., FAST DRAW, SOLVE) being used by secondary teachers 

across the country, these strategies lack published empirical research to support to 

support their effectiveness for students with learning disabilities.  

More specifically, the Algebraic Thinking program is being implemented across 

the United States by districts and individual schools with the SOLVE strategy as one of 

its major components, yet there have been no empirical studies conducted to validate the 

effectiveness of the SOLVE strategy. Considering the positive outcomes of mnemonic 

strategies in other content areas and by addressing some of the concerns raised in using 

mnemonic strategies with students with learning disabilities, additional research in the 

use of mnemonic strategies with mathematical problem solving is warranted.  

Therefore, the purpose of this study was to examine the effectiveness of explicit 

instruction in the SOLVE Strategy on the mathematical problem solving skills of 

secondary students who have been identified as having a specific learning disability. 

Specifically, learning strategy and explicit instruction was combined and the SOLVE 

strategy was taught using the eight stages of instruction established as the explicit-

intensive model of instruction by the KU CRL (Schumaker, & Deshler, 1992). The 

following research questions were addressed: (a) what are the effects of the SOLVE 

Strategy on the mathematical problem solving skills of secondary students with learning 

disabilities?, (b) does training in the SOLVE Strategy increase students accuracy in 

solving word problems, (c) does training in the SOLVE Strategy increase standardized 

mathematical reasoning scores?, and (d) is it feasible, based on classroom time 

constraints, for teachers to embed the SOLVE Strategy within their instruction? 



 

CHAPTER 3: METHOD 

 

 

Participants  

Six students were recruited to participate in this investigation. The participants for 

this study were eighth-grade students ranging in age from 12 to 16 years old enrolled in 

the participating school. Students who participated in the study met the following 

inclusion criteria: (a) identified as having a specific learning disability based on 

psychoeducational evaluations from an outside agency; (b) computed one-step 

mathematical equations (i.e., score of at least 70%; equations involving whole numbers 

and decimals), but not in word problem format (i.e., score of less than 60%) as measured 

by pretest;  (c) obtained a score on a standardized math test, the Woodcock-Johnson® III 

(WJ III; Woodcock, McGrew, & Mather, 2001) that is at least two grade levels below 

their current grade level; (d) had consistent attendance (i.e., absent less than two times 

per month); and (e) recommended by their teacher to participate.  

Relevant characteristics of the participants are presented in Table 1. Ages of the 

students, gender, and intellegence quotient (IQ) scores are reported. 
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Table 1: Student characteristics 

 

The researcher obtained all informed consent (i.e., teachers and parents) and 

student assents using the format approved by the Institutional Review Board (IRB) at the 

University of North Carolina at Charlotte. The informed consent and student assent forms 

were signed and returned before participants began to participate in the investigation.  

Setting 

 The study took place in the southeastern part of the United States in a private high 

school exclusively for students with a specific learning disability or attention deficit  

hyperactivity disorder.  Demographic data for the overall school population included 74% 

White, 13% African American, and 13% Multiracial students. The school had a total 

enrollment of approximately 120 students in Kindergarten through Grade 12.  

The upper school (i.e., Grades 8-12) offers a college preparatory curriculum with 

an eight period day. Students also have a preestablished supervised study hall each day to 

provide tutorial support and support for study habits. This study was conducted during 

the supervised study hall in a private classroom.   

Independent Variable 

The independent variable was explicit instruction of the SOLVE Strategy using 

the eight stages of instruction (Schumaker & Deshler, 1992). The SOLVE Strategy is a 

Student Grade Age Gender Race IQ Disability 

Taylor  8 13 M W 106 SLD 

Chris 8 13 M W 96 SLD 

Herman 8 14 M W 102 SLD 

Zee 8 14 M Af/A 99 SLD 

Alvin 8 14 M W 92 SLD 

Hugh 8 13 M W 105 SLD 
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mathematical problem solving strategy designed to assist students with solving 

mathematical word problems. This strategy was developed by Brian Enright in 1987, and 

is currently a part of the entire National Training Network mathematics curriculum. 

SOLVE is a mnemonic that directs the students through a series of steps for effective 

problem solving. 

 The SOLVE Strategy consisted of five steps. During the first step, ―Study the 

problem,‖ students (a) highlighted, (b) circled, or (c) underlined the question in the word 

problem. The students then ask themselves, ―What is the problem asking me to find?‖  

The students wrote the answer to this question in their own words. During step 2, 

―Organize the facts,‖ students (a) identified each fact in the word problem by ―striking‖ 

the facts, (b) eliminated unnecessary facts by putting a line through it, and (c) listed all 

necessary facts. The next step, ―Line up a plan,‖ involved the students choosing an 

operation or operations (i.e., add, subtract, multiply, divide), and telling in words how 

they were going to solve the problem without using numbers. During step 4, ―Verify your 

plan with action,‖ students estimated their answer to the word problem and then carried 

out the plan they created in the ―L‖ step by computing the equation that they created. The 

final step, ―Examine your results,‖ called for students to make a logical decision about 

the appropriateness and accurateness of their final answer. Students asked themselves (a) 

does my answer makes sense (check what the problem was asking them to find); (b) is 

my answer reasonable (check their estimate), and (c) is my answer accurate (check their 

work). The last thing that the students did was write their answer to the problem in a 

complete sentence (See Appendix F for sample completed problems using the SOLVE 

Strategy).  
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Dependent Variables  

The primary dependent variables were strategy use and scores on researcher-

devised problem solving test probes. The third and fourth dependent variables were pre- 

and posttest measures on a test of strategy knowledge and scores on a standardized 

mathematical assessment (WJ III). 

Strategy use test. To obtain repeated measures of students' use of the SOLVE 

Strategy, a pool of 50 eighth grade mathematical word problems was created by the 

researcher and randomly selected and sequenced for each student. A mathematics expert 

validated the word problems to ensure they were grade level appropriate validated the 

word problems used in this study. This level of word problems (i.e., Grade 8) was chosen 

to provide information on performance at the students' current grade level because this 

was the level at which they are expected to perform in general education classes. The 

students were allowed to use calculators during all phases of the study. For each test 

probe, the students were asked to read five word problems and use the SOLVE Strategy 

to answer the problem. Students were able to have the questions read aloud to them upon 

request. To measure use of the strategy, students were awarded one point for each step 

and sub-step of the strategy. A total of 10 points was available per word problem for the 

strategy use score of 50 points per test probe (See Appendix A for scoring sheet).  

Mathematical computation test. Each probe test contained five word problems in 

which the students were asked to solve the mathematical word problem. One point was 

awarded for correctly setting up the equation, and one point was awarded for each correct 

response for a total of 10 points per test probe (See Appendix B for scoring sheet).  
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Strategy knowledge test. The strategy knowledge test was used to measure the 

students' knowledge of the steps of the SOLVE Strategy as a pre- and posttest measure. It 

included five short-answer questions that required students to list and explain the strategy 

steps and all of the components of each step. An answer key was used to specify the 

boundaries for correct responses. 

Standardized math test. To measure mathematical reasoning the WJ III 

(Woodcock et al., 2001) was administered to students prior to and after intervention. The 

Applied Problems subtest was administered. Forms A and B of the WJ III was used for 

pre- and posttesting respectively.  

The Applied Problems test requires analysis of math problems before solving 

them. To solve the problems, the individual must listen to the problem, determine the 

procedure to be followed, and then perform relatively simple calculations. Because many 

of the problems include extraneous information, deciding on the appropriate 

mathematical operations and determining which numbers to include in the calculation is 

required.  

Data Analysis Procedures 

 Experimental design. A multiple-probe-across participants design (Cooper, 

Heron, & Heward, 2007; Horner & Baer, 1978) was used to determine the effects of the 

SOLVE Strategy on the problem solving skills of students with learning disabilities. This 

experimental design was used to show that changes in the level or trend of students‘ 

performance occurred when and only when the intervention was in place. Baseline began 

at the same time for each group of students. Each group of students began intervention in 

a staggered fashion so that changes were made for one group of students at a time while 
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the other groups of students remain in the baseline condition. Once the group of students 

in the intervention phase showed stability in their performance, the next group of students 

was introduced to the intervention. Initial baseline included a minimum of five data 

points for all students and was collected simultaneously across students to establish 

percentage of strategy usage and correct response for each test probe question. The 

intervention condition included teaching using the eight stages of instruction followed by 

a maintenance and generalization phase.   

There were three groups of students (i.e., two students in each group) who began 

intervention in a staggered fashion so that changes were made for one group of students 

at a time while other students remain in the baseline condition. The group of students 

with the lowest baseline data began intervention first. Once students in the first group 

reach mastery (i.e., 80% on strategy use; 70% correct response) and/or demonstrate an 

increasing trend after controlled practice, students in the second group began instruction. 

Data continued to be collected on the remaining group of students in the baseline 

condition. The same procedure was used to introduce the intervention to the final group 

of students.  Students moved to maintenance phase once a minimum of five data points at 

grade level have been collected and scored at or above mastery level during intervention.  

Data analysis. Data in this study were analyzed by using visual analysis (Tawney 

& Gast, 1984).  Data points were displayed graphically and then judged relative to (a) 

stability of baseline conditions, (b) changes in instructional variables between conditions, 

and (c) changes in mean student performance between conditions. All of those factors 

were combined to determine if a functional relationship exists between the 

independent variable and the dependent variables.  
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Additionally, a pretest-posttest analysis was employed to compare the 

standardized mathematical reasoning scores earned on the WJ III before and after 

instruction. Specifically, the researcher was looking at age and grade equivalency, means, 

and standard deviations. 

Data Collection and Procedures 

Instructor. The primary instructor for this study was a full-time doctoral candidate 

in Special Education at UNC Charlotte who has five years of experience teaching 

secondary students with high-incidence disabilities in a large urban public school district. 

She holds a North Carolina Teaching License and Master‘s Degree in Special Education: 

General Curriculum. 

Data collector. A first year doctoral student in the Special Education at UNC 

Charlotte assisted the primary researcher with fidelity and reliability data collection. She 

has eight years of teaching experience with students with learning disabilities. She 

currently holds a masters degree in special education and North Carolina Teaching 

Licensure in the areas of emotional and behavior disorders and K-12 general curriculum.  

Baseline. During baseline, no instruction was provided to students. They were 

given the cue card with the meaning of the SOLVE Strategy (i.e., Study the problem, 

Organize the facts, Line up a Plan, Examine your results) and helpful hints for solving 

word problems. Students had approximately 30 minutes to complete the test probe, and 

the percentage of strategy use and correct response were recorded.  

SOLVE Instruction. The students received instruction in the SOLVE Strategy in 

sessions ranging in length from 30 to 45 minutes, depending on the content being taught 

during that lesson over the course of approximately two weeks. More specifically, the 
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researcher adapted the SOLVE Strategy, which is a mnemonic metacognitive strategy, 

and taught it using the ―eight stages of instruction‖ (Schumaker & Deshler, 1992). The 

eight stages of instruction are based on research-validated explicit instructional tactics 

shown to be highly effective for teaching learning strategies to students with learning 

disabilities (Schumaker & Deshler, 2006; Swanson 1996).  

During the initial instructional session, Stage 1: Pretest, the students completed a 

pretest to assist them with understanding why they are ineffective at solving word 

problems. The students were asked to make a commitment to actively learn and use the 

SOLVE Strategy (See Appendix E for learning contract).  Each step of the SOLVE 

Strategy was explained to the students.  

During the next three instructional sessions Stages 2 and 3 (Describe and Model 

respectively) were introduced. During the Describe Stage the instructor explained the 

specific step of the SOLVE Strategy and explained to students the benefits of using the 

strategy. Stage 3: Model, allows the instructor to model for students how to implement 

each of the steps. The instructor did this by ―thinking aloud‖ to demonstrate for students 

how to perform the sequence of steps. Students completed practice problems with the 

instructor at the conclusion of each lesson. Each lesson contained six elements: (a) 

advance organizer, (b) describe, (c) model, (d) guided practice, (e) independent practice, 

and (f) feedback. 

During Lesson 2, the instructor described and modeled in detail the ―S‖ and ―O‖ 

steps of the SOLVE Strategy and sub steps for each. In Lesson 3 students were taught the 

―L‖ step and its sub-steps. This was the only step of the SOLVE Strategy that was taught 
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on this day. The next day of instruction, Lesson 4, students were taught steps ―V‖ and 

―E‖ of the SOLVE Strategy along with their sub-steps.  

Stages 4 and 5 (Verbal Practice and Controlled Practice and Feedback 

respectively) began immediately following Lesson 4. During verbal practice students 

practiced explaining and naming each step and sub-step of the SOLVE Strategy. After 

successfully being able to explain and list the steps and sub-steps of the SOLVE Strategy, 

students moved to Stage 5. Additional practice mathematical word problems were 

provided in which students were required to use all the steps of the strategy. If the 

students earn a score at or above mastery level (i.e., 70% on the mathematical 

computation test, 80% on the Strategy Use Test) on the practice probes, they moved up to 

the next math grade level (e.g., sixth- to seventh-grade) (See Appendix F for a sample 

completed probe). In subsequent sessions, Stage 6: Advanced Practice and Feedback, 

students continued to practice and receive individual feedback on their performance until 

they reach mastery on at least five eighth grade mathematical word problem test probes 

(See Appendix G for progress charts). Students completed the test probes after instruction 

the same day. Additionally, they were allowed to use their cue card with the step of the 

SOLVE Strategy and helpful hints for solving word problems as they did during baseline 

conditions.  

 Instructional materials. The instructional lessons on the SOLVE Strategy used 

was adapted from the Algebraic Thinking Curriculum by the National Training Network 

(Enright, Mannhardt, Baker, 2004) and organized in a notebook to ensure that instruction 

is standardized across the three groups of students. It consisted of scripted step-by-step 
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instructions for each lesson as well as visual aids to be used during instruction (See 

Appendix H for a sample scripted lesson).  

 Posttest procedures (Stage 7). After completion of instruction and mastery of two 

eighth grade mathematical word problem test probes, students were administered Form B 

of the WJ III. They were also administered the student social validity survey and strategy 

knowledge test in a group setting. The students completed each instrument 

independently, and there was no time limit for test completion. 

 Maintenance and generalization procedures (Stage 8). Two generalization tests 

were administered to the students on solving inequalities from their math class (i.e., one 

during baseline and one after intervention). At least 2 maintenance tests were 

administered to students after intervention (i.e., 2 weeks and 6 weeks).  

Instruments and Measures 

 Procedural fidelity checklists. To assess fidelity with instructional procedures a 

checklist was used to measure researcher adherence to the instructional sequence for the 

lessons. It contained several instructor behaviors: provide an advance organizer, discuss 

the purpose of the lesson and provide rationales for the lesson, state expectations for 

student behavior, describe a step of the strategy or how to use the strategy, model the 

strategy, provide practice opportunities with feedback, and provide a post organizer. The 

actual number of instructor behaviors varied from lesson to lesson depending on the 

checklist and what is being taught. The delivery of each instructional lesson was recorded 

using an audio recorder; no student data were collected from these recordings. A trained 

doctoral student completed the fidelity checklist by listening to at least 30% of recorded 

instructional lessons. The scripted lesson plans were used as the checklist. If the scorer 
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hears the instructor produce one of the teacher behaviors listed on the checklist, one point 

was awarded for that behavior. Zero points were awarded for behaviors not demonstrated.  

Dividing the number of instructor-behaviors observed by the total number of behaviors 

planned and multiplying by 100 calculated a percentage score.  

Social validity data. Social validity data were collected to measure social 

acceptability of procedures and outcomes. Students were given a questionnaire consisting 

of 10 questions using a Likert scale format to assess student satisfaction with the SOLVE 

Strategy. Additionally, the math teachers received a short questionnaire examining their 

perceptions of the relevance, impact, and feasibility of teaching this strategy to students 

in a traditional high school math course. Items emphasize perceptions of effectiveness, 

and the potential for future use.  

Time required for instruction. Instructional time was recorded on log sheets with 

dates, start and stop times (including hours and minutes). Instructional time began when 

the instructor starts (or restarted) instruction with the students. It ended when the students 

began practicing the strategy independently. Student time began when the teacher started 

(or restarted) independent practice. If an interruption occurred, or when the students 

stopped practicing and turned in their work recording of student time ended. Therefore, 

throughout the logs several start and stop times were recorded for each lesson. 

Interrater reliability. The primary researcher of the study and one other data 

collector collected interrater reliability. Reliability checks were completed for the 

strategy use test and the mathematical computation test for 30% of the tests taken across 

all phases of the study (i.e., baseline, instruction, intervention, maintenance). All 

reliability scores were calculated using an item-by-item method by dividing the number 
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of agreements by the number of agreements plus disagreements, and then multiplying by 

100. 



 

CHAPTER 4: RESULTS 

 

 

 Findings of the study are presented below. Results for interrater reliability and 

treatment integrity are presented first followed by results for each research question.  

Interrater Reliability 

Student‘s Use of the SOLVE Strategy 

 The outside observer collected interrater reliability data on 30% of the probes for 

the first primary dependent variable (i.e., strategy use) using item-by-item scoring. 

Overall, interrater reliability ranged from 86% to 100% with a mean of 96%. During 

baseline, interrater reliability ranged from 86% to 100% with a mean of 93%. During 

instruction, interrater reliability ranged from 88% to 100% with a mean of 96%.  During 

intervention, interrater reliability ranged from 92% to 100% with a mean of 98%.  

Student‘s Correct Response 

 The outside observer collected interrater reliability data on 30% of the probes for 

the second primary dependent variable (i.e. correct response). Overall, interrater 

reliability ranged from 97% to 100% with a mean of 98%. During baseline, interrater 

reliability ranged from 90% to 100% with a mean of 98%. During instruction, interrater 

reliability ranged from 70% to 100% with a mean of 97%. During intervention, interrater 

reliability was 100%. 
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Treatment Integrity 

 To ensure intervention procedures were implemented as intended, treatment 

fidelity data were collected for 30% of all lessons distributed evenly across participants. 

Audio recordings of the sessions were used for collecting treatment integrity data by 

comparing scripted lessons to behaviors performed by the instructor to ensure that the 

instruction followed as prescribed. Treatment integrity ranged from 92% to 100% with a 

mean of 97.5%. 

Dependent Variables 

Research Question 1: What are the effects of the SOLVE Strategy on the mathematical 

problem solving skills of secondary students with learning disabilities? 

Research Question 2: To what extent does training in the SOLVE Strategy increase 

accuracy on grade level mathematical word problems? 

 Results for each participant are presented in Figures 1 through 4. Each graph 

shows participant results across baseline, post-intervention (2 weeks after baseline), and 

maintenance. Data for students‘ knowledge of the SOLVE Strategy and accuracy on 

grade level mathematical word problems are presented as number correct. Results 

indicated a functional relation between instruction in the SOLVE Strategy and students‘ 

increased accuracy on grade level mathematical word problems. 
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Figure 1. Percent of students‘ knowledge of the SOLVE strategy (group 1)
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Figure 2. Percent of students‘ accuracy of word problems (group 1) 
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Zee. During baseline, Zee‘s performance on strategy use was stable with scores 

ranging from 0% to 0% correct with a mean of 0%. Zee‘s correct response scores ranged 

from 0% to 20% with a mean of 8%.  

During instruction in the SOLVE Strategy, Zee successfully completed the 

mathematical probes and reached mastery of 70% on accuracy and 80% or higher for 

strategy use. Strategy use scores ranged from 82% to 84% with a mean score of 81%; and 

correct response scores ranged from 50% to 100% with a mean score of 78%. The 

following table displays Zee‘s performance during the instructional phase of the SOLVE 

Strategy.  

Table 2. Zee‘s performance during instructional phase 

Grade Level Strategy Use Correct Response 

5 82% 90% 

6 82% 100% 

7 76% 50% 

7 84% 70% 

 

 During intervention, Zee continued to show an increasing trend in strategy use 

and correct response with scores for strategy use ranging from 70% to 92% with a mean 

of 82%, and correct response scores ranging from 60% to 90% with a mean of 68%. On a 

generalization measure during baseline Zee scored a 0% for both strategy use and number 

correct. Following intervention Zee‘s score on strategy use was 82%, and for correct 

response his score was 60%. 
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Taylor. During baseline, Taylors‘s performance on strategy use was stable with 

scores ranging from 0% to 0% correct with a mean of 0%. Taylor‘s correct response 

scores ranged from 0% to 0% with a mean of 0%.  

During instruction in the SOLVE Strategy, Taylor successfully completed the 

mathematical probes and reached mastery of 70% on accuracy and 80% or higher for 

strategy use. Strategy use scores ranged from 90% to 100% with a mean score of 96%; 

and correct response scores ranged from 80% to 90% with a mean score of 90%.  The 

following table displays Taylor‘s performance during the instructional phase of the 

SOLVE Strategy.  

Table 3. Taylor‘s performance during instructional phase 

Grade Level Strategy Use Correct Response 

5 100% 100% 

6 98% 80% 

7 90% 90% 

 

During intervention, Taylor continued to show an increasing trend in strategy use 

with scores ranging from 98% to 100% with a mean of 99.6%. Taylor‘s correct response 

scores ranged from 90% to 100% with a mean of 98%. On a generalization measure 

during baseline Taylor scored a 0% for both strategy use and number correct. Following 

intervention Taylor‘s score on strategy use was 98%, and for number correct his score 

was 100%.  
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Alvin. During baseline, Alvin‘s performance on strategy use was stable with 

scores ranging from 0% to 12% correct with a mean of 3.1%. Taylor‘s correct response 

scores ranged from 0% to 30% with a mean of 15.7%.  

During instruction in the SOLVE Strategy, Alvin successfully completed the 

mathematical probes and reached mastery of 70% on accuracy and 80% or higher for 

strategy use. Strategy use scores were 100%; and correct response scores ranged from 

90% to 100% with a mean score of 96.7%.  The following table displays Alvin‘s 

performance during the instructional phase of the SOLVE Strategy.  

Table 4. Alvin‘s performance during instructional phase 

Grade Level Strategy Use Correct Response 

5 100% 100% 

6 100% 100% 

7 100% 90% 

 

During intervention, Alvin continued to show an increasing trend in strategy use 

with scores ranging from 94% to 100% with a mean of 97%. Alvin‘s correct response 

scores ranged from 90% to 100% with a mean of 88%. On a generalization measure 

during baseline Alvin scored a 0% for both strategy use and number correct. Following 

intervention Alvin‘s score on strategy use was 100%, and for number correct his score 

was 80%. 
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Figure 3. Percent of students‘ knowledge of the SOLVE strategy (group 2) 
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Figure 4. Percent of students‘ accuracy of word problems (group 2) 
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 Chris. During baseline, Chris‘s performance on strategy use was stable with 

scores ranging from 0% to 0% correct with a mean of 0%. Chris‘s correct response scores 

ranged from 0% to 20% with a mean of 6%.  

During instruction in the SOLVE Strategy, Chris successfully completed the 

mathematical probes and reached mastery of 70% on accuracy and 80% or higher for 

strategy use. Strategy use scores ranged from 80% to 92% with a mean score of 83.5%; 

and correct response scores ranged from 70% to 100% with a mean score of 82.5%   The 

following table displays Chris‘s performance during the instructional phase of the 

SOLVE Strategy.  

Table 5. Chris‘s performance during instructional phase 

Grade Level Strategy Use Correct Response 

5 92% 80% 

6 80% 80% 

7 82% 100% 

7 80% 70% 

 

 During intervention, Chris continued to show an increasing trend in strategy use 

with scores ranging from 80% to 96% with a mean of 82.8%. Chris‘s correct response 

scores ranged from 60% to 100% with a mean of 72%. On a generalization measure 

during baseline Chris scored a 0% for both strategy use and number correct. Following 

intervention Butter‘s score on strategy use was 90%, and for number correct his score 

was 80%.  
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 Hugh. During baseline, Hugh‘s performance on strategy use was stable with 

scores ranging from 0% to 0% correct with a mean of 0%. Hugh‘s correct response scores 

ranged from 0% to 0% with a mean of 0%.  

During instruction in the SOLVE Strategy, Hugh successfully completed the 

mathematical probes and reached mastery of 70% on accuracy and 80% or higher for 

strategy use. Strategy use scores ranged from 80% to 100% with a mean score of 88%; 

and correct response scores ranged from 90% to 100% with a mean score of 98%. The 

following table displays Hugh‘s performance during the instructional phase of the 

SOLVE Strategy.  

Table 6. Hugh‘s performance during instructional phase 

Grade Level Strategy Use Correct Response 

5 80% 100% 

6 84% 100% 

7 100% 90% 

 

 During intervention, Hugh continued to show an increasing trend in strategy use 

with scores ranging from 82% to 90% with a mean of 88%. Hugh‘s correct response 

scores ranged from 70% to 90% with a mean of 82%. On a generalization measure during 

baseline Hugh scored a 0% for both strategy use and number correct. Following 

intervention Hugh‘s score on strategy use was 90%, and for number correct his score was 

80%.  
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Herman. During baseline, Herman‘s performance on strategy use was stable with 

scores ranging from 0% to 0% correct with a mean of 0%. Herman‘s correct response 

scores ranged from 0% to 0% with a mean of 0%.  

During instruction in the SOLVE Strategy, Herman successfully completed the 

mathematical probes and reached mastery of 70% on accuracy and 80% or higher for 

strategy use. Strategy use scores ranged from 84% to 92% with a mean score of 89.3%; 

and correct response scores ranged from 80% to 100% with a mean score of 93.3%.  The 

following table displays Herman‘s performance during the instructional phase of the 

SOLVE Strategy.  

Table 7. Herman‘s performance during instructional phase 

Grade Level Strategy Use Correct Response 

5 92% 100% 

6 84% 80% 

7 92% 100% 

 

During intervention, Herman continued to show an increasing trend in strategy 

use with scores ranging from 84% to 94% with a mean of 89%. Herman‘s correct 

response scores ranged from 70% to 100% with a mean of 82%. On a generalization 

measure during baseline Herman scored a 0% for both strategy use and number correct. 

Following intervention Herman‘s score on strategy use was 82%, and for number correct 

his score was 70%.  
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Strategy Knowledge Test 

Overall results of the Strategy Knowledge Test indicate an increased level of 

strategy knowledge for all participants from pretest to posttest. Table 8 provides detailed 

pre/posttest results for each participant.  

Table 8: Strategy knowledge test results 

Student Pre-Test Post-Test 

Zee 0% 100% 

Chris 0% 91% 

Hugh 0% 91% 

Taylor 0% 100% 

Alvin 0% 91% 

Herman 0% 91% 

Mean (SD) 0 (0) 94 (4.648) 

  

A Wilcoxon signed-rank test was run to determine whether or not there was a 

statistically significant difference between pre and posttest scores. Results indicated that 

there was a statistically significant difference between pre- and posttest scores (Z =                    

-2.271, p = .023).  

Research Question 3: To what extent does training in the SOLVE Strategy increase 

standardized mathematical reasoning scores? 

 To measure the extent to which training in the SOLVE Strategy increased 

standardized mathematical reasoning scores students were administered the Applied 

Problems subtest of the Woodcock Johnson III (Woodcock et al., 2001). Form A was 
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administered prior to intervention and Form B was administered upon completion of 

training in the SOLVE Strategy. Results of the pre and post measures are displayed in 

Table 9. 

Table 9. Students performance on the WJII 

Student Pre-Test 

Age 

Equivalency 

Pre-Test 

Grade 

Equivalency 

Post-Test 

Age 

Equivalency 

Post-Test 

Grade 

Equivalency 

Zee 11-7 6.2 13-0 7.7 

Chris 11-1 5.7 13-6 8.2 

Hugh >30 18 17-5 13.0 

Taylor >30 16.9 >28 >18.0 

Alvin 10-9 5.3 12-3 6.7 

Herman 8-11 3.6 11-2 5.6 

Mean (SD) 17.30 (10.68) 9.28 (6.39) 16.10 (6.67) 10. 03(5.07) 

 

A Wilcoxon signed-rank test indicated that instruction in the SOLVE Strategy did 

not elicit a statistically significant change in in WJ-III text scores for students age 

equivalency (Z = -.314, p = .753) and grade equivalency (Z = -.943, p = .345).   

Social Validity 

Research Question 4: What are teachers opinions about using the SOLVE Strategy within 

their instruction? 

Research Question 5: What are student perceptions of using the SOLVE Strategy in their 

everyday mathematics classes? 

Participants and participants‘ classroom teacher responded to a survey related to 

their social attitudes of the SOLVE Strategy. The teacher survey contained seven 
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questions; six of which could be answered using a 5-point Likert scale (i.e., strongly 

agree, agree, not sure, disagree, strongly disagree). In order to obtain a numerical range, 

values were assigned to each of the 5 points (i.e., 5 = strongly agree, 1 = strongly 

disagree). Table 10 presents the results of the teacher survey.  

Table 10: Social validity teacher survey 

Question Response 

 

1.  Instruction in the SOLVE Strategy is relevant 

for my students based on the mathematics 

curriculum and required testing.  

  4 

2. Given the time required to teach the SOLVE 

Strategy; I feel that it could be taught in the 

general education classroom with a larger 

group of students.  

  5 

3.  Given the outcomes, I would use the strategy 

following the prescribed instructional 

procedures. 

  5 

4.  I am considering using the intervention for 

other students in future. 

  4 

5.  Student‘s ability to solve word problems 

increased in accuracy and consistency during 

the intervention.  

  3 

6.  I am considering sharing this information 

with other teachers within my school. 

  5 

 

Scores from six questions ranged from 3 to 5 indicating that the teacher agreed 

that the SOLVE Strategy was relevant to his students based on the mathematical 

curriculum. The teacher also strongly agreed that he would/could teach the strategy to a 
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larger group of students, follow the prescribed instructional procedures, and share the 

strategy with other teachers within his school. He also agreed that he would use this 

strategy with his students in the future. The teacher was asked an additional question of 

what changes/additions would he suggest for the intervention. He indicated that he would 

have ―Changed the time they did it to ―class time‖ & had it apply to the problems they 

were currently working on so it didn't feel like it was ―extra.‖ 

Following intervention, students were given a social validity survey that 

contained eight questions; seven of which could be answered using a 5-point Likert scale 

(i.e., strongly agree, agree, not sure, disagree, strongly disagree). In order to obtain a 

numerical range, values were assigned to each of the 5 points (i.e., 5 = strongly agree, 1 = 

strongly disagree). Table 11 presents the results of the student survey.  

Table 11: Social validity student survey 

Questions Mean Score Responses  

 

1.  Before I learned the SOLVE 

Strategy I was not good at solving 

mathematical word problems. 

  3  

2. After I learned the SOLVE 

Strategy I was able to attack and 

solve word problems correctly.  

  3  

3.  I know what steps I can take to get 

started solving a word problem. 

  4  

4.  I have started using the SOLVE 

Strategy in my math class.  

  2  
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5.  I feel comfortable using the 

SOLVE Strategy while I solve 

word problems in class. 

  3  

6.  I would consider sharing the 

SOLVE Strategy with other 

students at my school.  

  2  

7. Since learning the SOLVE 

Strategy I can see a change in my 

grades in my math class.  

  2  

 

Scores from the first seven questions ranged from 2 to 4 indicating that the 

students did not agree that the SOLVE Strategy was beneficial to them. Half of the 

students agreed that before they learned the SOLVE Strategy they were not good at 

solving mathematical word problems. By the end of the study all students agreed that 

they knew what steps to take to get started solving a word problem, and that they were 

comfortable using the SOLVE Strategy.  The students were asked an additional question 

of what changes/additions would you suggest if this strategy was to be taught to another 

group of students. Of the six students four of them responded to question eight in which 

they were asked what changes/additions they would suggest if this strategy was to be 

taught to another group of students. Response from students ranged from ―I don‘t know, 

you did well‖ to ―Only use certain steps.‖  

Anecdotal data from students revealed that they thought the SOLVE Strategy was 

beneficial to them, but the reason they had not used it in class was because they could not 

spend ―20 minutes‖ on one problem. After the conclusion of all eight stages of instruction 

the students agreed that if they could choose which steps of the strategy they could use 

then they would be more likely to use it in class. Students also revealed that the reason 
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they would not share the strategy with other students in their grade was because none of 

the students would listen to them. They did not indicate that they would not share the 

strategy with other students because they did not think it would be beneficial. 



 

CHAPTER 5: DISCUSSION 

 The purpose of this study was to examine the effectiveness of explicit instruction 

in the SOLVE Strategy (a previously developed strategy) on the mathematical problem 

solving skills of students at the secondary level who have been identified as having a 

specific learning disability. Specifically, this study investigated the effects of the SOLVE 

Strategy on the mathematical problem solving skills of secondary students with 

disabilities. A multiple probe across participants design was employed to determine the 

impact of the independent variable (i.e., instruction in the SOLVE Strategy) on the 

primary dependent variables (i.e., strategy use, correct response, strategy knowledge, 

mathematical reasoning score). The intervention was implemented with six 8
th

 grade 

students with specific learning disabilities. Results indicate a functional relation between 

SOLVE Strategy usage and improved problem solving performance for all six target 

students. Additionally, all participants were able to generalize the SOLVE Strategy to 

other mathematic topics and concepts. Finally, the teacher and students felt the 

intervention was socially acceptable. 

In general, these findings are consistent with previous studies on problem solving 

instruction for students with specific learning disabilities indicating that students with 

SLD can learn problem solving strategies (e.g., Maccini & Hughes, 2000; Maccini & 

Rhoul, 2000). Findings and discussion points are presented in this chapter organized by 

the five research questions. Additionally, limitations of the study, suggestions for future 

research, and implications for practice are discussed.  
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Effects of the Intervention on the Dependent Variables 

Research Question 1: What are the effects of instruction in the SOLVE Strategy on the 

mathematical problem solving skills of secondary students with learning disabilities? 

Students demonstrated a dramatic increase in strategy use scores across all 

instructional phases of the study. One important component of the intervention was 

explicit instruction in the SOLVE Strategy. Training was provided to the student‘s using 

the eight-step instructional sequence created by Deshler, Alley, Warner, and Schumaker 

(1981) to promote strategy acquisition and generalization. Because learning strategy 

instruction focuses on making the students more active learners by teaching them how to 

learn and use what they have learned to solve problems; the SOLVE Strategy supplied 

struggling students with the same tools and techniques that efficient learners use to help 

them understand and learn new material or skills (Luke, 2006). Consistent with previous 

research on learning strategies (e.g., Mercer, Lane, Jordan, Allsopp, & Eilsele, 1996; 

Scheuermann, Deshler, & Schumaker, 2009; Swanson & Deshler, 2003) this study 

demonstrated that consistent, intensive, explicit instruction and support were key 

components for instructional success. 

 Consistent with previous mathematics research on the difficulties students with 

SLD experience with problem solving and self-monitoring (e.g., Maccini & Ruhl, 2000; 

Montague & Bos, 1990), the low mean strategy usage scores of 1during baseline indicate 

that the current participants experienced difficulty applying effective problem-solving 

strategies when solving mathematical word problems. Specifically, students were unable 

to identify necessary facts to assist them with correctly solving the word problem. 

Following explicit instruction in the SOLVE Strategy, students‘ scores improved with a 
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mean strategy usage score of 45. As a requirement, before students could proceed to other 

phases of instruction, a mastery level of 80% had to be obtained on strategy use to ensure 

that students were able to correctly apply the problem solving procedures.  

Research Question 2: To what extent does training in the SOLVE Strategy increase 

accuracy on grade level mathematical word problems? 

 Findings from this study also indicated a functional relation between instruction 

in the SOLVE Strategy and students ability to set up and correctly solve mathematical 

word problems. Students demonstrated an increase on the number of correct responses 

from baseline to post-intervention across all phases of the study. 

 During baseline, the mean accuracy score for correct response was 1. Overall, 

baseline performance was variable among participants with some students exhibiting 

more difficulty than others. Once students were taught the SOLVE Strategy, the 

variability in student‘s performance for problem set and solution decreased and scores 

increased. These findings are similar to Maccini and Ruhl (2000) and Maccini and 

colleagues (1999) in that after intervention students were able to more accurately set up 

appropriate equations and solve the word problems correctly. Therefore, strategy 

instruction involving general problem-solving strategies, self-monitoring training, and 

effective teaching elements improved students‘ ability to correctly set up and solve 

mathematical word problems.  

Generalization. Following instruction in the solve strategy students completed a 

generalization measure and two maintenance tests. Compared to mean baseline scores for 

strategy use of 1, following instruction students‘ mean generalization scores on strategy 

use increased to 45. Compared to mean baseline scores for correct response of 1, 
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following instruction students‘ mean generalization scores for correct response increased 

to 7.8. These results replicate earlier findings from Hutchinson (1993) and Maccini and 

Ruhl (2000).  

Effectiveness of SOLVE Strategy on Standardized Mathematical Test 

Research Question 3: To what extent does training in the SOLVE Strategy increase 

standardized mathematical reasoning scores? 

 Student performance on standardized tests is a major concern with the increase of 

testing accountability (Sireci, Li, & Scarpati, 2003), the SOLVE Strategy may offer a 

way to help students increase their scores on standardized measures of mathematical 

reasoning. Students in the current study were given the WWJ III before instruction in the 

SOLVE Strategy began and once again at the conclusion of the study. Results of this 

study indicated that there was not a significant increase on students‘ posttest scores on the 

WJ III from their pretest scores following instruction in the SOLVE Strategy. 

 The CCSS for Grade 8 explicitly states that students should be able to solve 

equations as a process of reasoning and provides a clear statement of what should be 

taught. With more attention focused on mathematical reasoning and the application of 

mathematical skills to word problems, it is important to teach students strategies that will 

address their cognitive processing and memory deficits.  

One possible solution is to teach students the SOLVE Strategy to address these 

memory deficits as even students with higher achievement scores would not attempt to 

solve mathematical word problems in class prior to intervention in this study which is 

why they were still included even though their achievement level was above grade level. 
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This indicates that even high performing students benefited from instruction in the 

SOLVE Strategy to assist them in solving mathematical word problems.  

Discussion of Social Validity Findings 

Research Question 4: What are teachers opinions about using the SOLVE Strategy within 

their instruction? 

Research Question 5: What are student perceptions of using the SOLVE Strategy in their 

everyday mathematics classes? 

This study assessed the social validity of the SOLVE Strategy intervention and 

outcomes based on the perceptions of the general education teacher and study 

participants. Social validity data were collected to evaluate the social importance of the 

intervention and the social importance of behavior change based on effects of the 

intervention (Cooper & Wolf, 1978; Cooper et al., 2007).  

The social validity questionnaires assessed teachers‘ perceptions of the 

acceptability of the intervention and the effect the intervention had on students‘ 

performance in class. Additionally, participants were asked to evaluate the social 

acceptance of the intervention and the social importance of behavior change. 

 Teacher‘s perception of the intervention and feasibility of implementation in 

general education classrooms.  Participants‘ classroom teacher indicated that instruction 

in the SOLVE Strategy helped students improve their performance on word problems. 

Specifically, the teacher stated that prior to intervention students would not attempt to 

solve word problems when they encountered them in class or on homework assignments. 

Now, even if the students are unsure of themselves when presented with word problems 

they at least attempt to solve them. The teacher also stated that he thought the 
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intervention should have been implemented in his classroom instead of study hall. His 

perception was that the students viewed the strategy as ―extra work‖ and it was not as 

meaningful to them because it was not a part of their actual math class.  

When examining the feasibility of implementing the SOLVE Strategy in the 

general education classroom it was important to look at the amount of time required for 

instruction and practice with the strategy. In the current study instruction in the SOLVE 

Strategy required 1.5 hours of initial instructional delivery and 3 hours of supervising 

practice activities and providing feedback. The teacher reported that this was an 

acceptable amount of time to teach the students the strategy without taking away from the 

course requirements when the strategy was taught over several days. 

Students‘ perceptions of the acceptability of the intervention and importance of 

the SOLVE Strategy. Participants in this study where unsure whether the SOLVE 

Strategy intervention helped them attack mathematical word problems, was easy to use, 

and would use it in the future. Participants in this study either agreed or strongly agreed 

that the SOLVE Strategy intervention taught them how to begin and work through 

mathematical word problems.  

Limitations and Future Directions for Research 

 While the results of this study are promising, there are several limitations and 

implications for future research that should be considered. First, as with most studies 

using a single-subject research design, this study included a small number of participants 

(i.e., 6 participants) which limits the generalizability of these results to a larger 

population of students causing a potential threat to external validity. Additionally, this 

study was implemented in a suburban private school where the students faced more 
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significant learning challenges because they could not succeed in public schools. While 

these limitations limit generalizability of findings, future research should continue to 

investigate SOLVE as a method for teaching problem solving skills to students with 

disabilities to build generality via systematic replications (Horner et al., 2005). Future 

research should be conducted with various student populations (e.g., students from more 

culturally and linguistically backgrounds) as well as with students in other geographic 

locations to determine if the SOLVE Strategy is an effective intervention for teaching 

problem solving skills to students at-risk for, or with, other disabilities.  

 Second, because of the research design, data may not accurately reflect students‘ 

full understanding and ability to use the SOLVE Strategy due to fatigue. For instance, in 

both baseline and intervention phase‘s five data points were collected for each student 

totaling 50 word problems. Additionally, students completed a minimum of three 

instructional probes (i.e., 15 word problems) and four more probes for generalization and 

maintenance data (i.e., 20 word problems). In total students independently complete a 

minimum of 65 word problems in two weeks and 85 total for the entire study. Future 

research may want to use a group design instead of single-case design to avoid testing 

fatigue.  

Third, no long-term maintenance data were collected in this study. Specifically, 

maintenance data for this study were collected two and six weeks after each student 

exited the intervention phase. Response maintenance refers to ―the extent to which a 

learner continues to perform the target behavior after a portion or all of the intervention 

responsible for the behavior‘s initial appearance in the learner‘s repertoire has been 

terminated‖ (Cooper et al., 2007, p. 615). Although study participants maintained 
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knowledge of the SOLVE Strategy and increased levels of accuracy on word problems 

two and six weeks after intervention it is unknown whether students would maintain the 

knowledge of the SOLVE Strategy and increased accuracy on word problems for a 

longer, extended period of time. Future research should consider collecting maintenance 

data over an extended period of time (e.g., 3 months, 6 months). 

Fourth, because more intervention strategies are needed that can be embedded 

within instruction it is difficult to determine how useful this intervention may be for use 

in the general education classroom setting. Although the teacher reported that the 

procedures were reasonable and would be willing to use the strategy as a supplement to 

his instruction, the researcher implemented the intervention and data collection 

procedures. The effects of the intervention may be more meaningful if the classroom 

teachers actually implemented the SOLVE Strategy intervention in the general education 

classroom setting as a supplement to instruction. Future research should focus on 

implementing the SOLVE Strategy intervention in the general and/or special education 

classroom. 

Finally, the primary researcher provided instruction to the students. Although the 

researcher did not create the SOLVE strategy and received standard professional 

development in the instructional tactics, it is unknown whether other teachers can help 

students to produce similar results.  

Common Core State Standard 8.EE.7 states that students should be able to solve 

linear equations in one variable with one solution, infinitely many solutions, or no 

solutions. Students are expected to also show which of these possibilities is the case by 

successively transforming the given equation into simpler forms, until an equivalent 
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equation of the form x = a, a = a, or a = b results (where a and b are different numbers). 

Additionally, students solve linear equations with rational number coefficients, including 

equations whose solutions require expanding expressions using the distributive property 

and collecting like terms. Consequently, the word problems used in this study partially 

addressed CCSS 8.EE.7 in that only word problems that contained whole numbers and 

decimals were used. Because of this, the difficulty level of the word problems were 

harder to control and do not fully represent the variety of problem types students are 

expected to master at Grade 8. Future research should expand problem types to include 

other mathematical concepts such as inequalities or proportional reasoning.  

Implications for Practice 

 While most interventions for students with SLD focus on procedural knowledge 

(Maccini & Hughes, 1997; Mastropieri et al., 1991) this study focused on meta-cognitive 

awareness. For that reason this study has several implications for practice. First, 

instruction in the SOLVE Strategy helped students improve problem solving skills by 

attending to critical elements (e.g., what the problem was asking them to find, key 

information in the problem, writing and carrying out an accurate plan for solving the 

problem) and correctly solving mathematical word problems. Although all students 

reached 80% mastery criterion on strategy use, the L-step of the SOLVE Strategy 

presented the most difficulty for students. During this step students were required to 

choose an operation or operations and write in words how they would solve the word 

problem without using numbers. This required students to fully understand what the 

problem was asking them to find and showed an in depth understanding of how and why 

they would solve the problem that way. Because students think differently, and their 
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plans may not be alike, more time may be required for teaching this step. Additionally, 

practitioners may adapt the SOLVE Strategy so that it can be embedded within 

instruction in the general education classroom. Previous research on learning strategy 

instruction has shown that unless students are provided with ample opportunities to 

practice using a strategy, they will not use the strategy correctly and will rarely use it 

independently (Scanlon, Deshler, & Schumaker, 1996).  

Second, the SOLVE Strategy intervention was implemented during study hall 

providing practitioners a logical solution for implementing this strategy. Students were 

able to receive individual corrective feedback on their strategy use and were provided 

with ample opportunities to practice using the strategy.  With students failing the 

secondary mathematics curriculum there is a need for a resource room and/or supported 

inclusion model to provide intensive-explicit instruction (i.e., a curriculum assistance 

class).  

The University of Kansas Center for Research on Learning (KU-CRL) developed 

a framework called the Content Literacy Continuum to allow for a range of supports and 

interventions including explicit strategy instruction in a resource classroom. According to 

the Strategic Learning Center, content refers to the information and concepts that teachers 

have identified as critical knowledge for students to learn in that content area. Students 

have achieved Content Literacy when they have the skills and strategies that they need, to 

not only master the content, but also have the ability to manipulate and generalize those 

skills and strategies to other learning situations (Ehren, Lenz, & Deshler, 2004). The 

Content Literacy Continuum is a schoolwide framework of supports with tools of the 

Strategic Instruction Model (Deshler et al., 2001) that consist of five levels with each 
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level increasing in intensity that meet the varying needs of high, average and low 

achievers. The first two levels are for all students, while Levels 3, 4 and 5 focuses more 

on the needs of those students who struggle with learning (Lenz et al., 2005). 

With Level 2 interventions teachers embed instruction in selected learning 

strategies (Schumaker & Deshler, 2006) in core curriculum courses through direct 

explanation, modeling, and required application in relation to content assignments. They 

describe strategies for acquiring, storing, and expressing course information, design 

learning tasks that promote practice of the strategies, and provide feedback on students‘ 

use of the strategies as they learn content. The method used to teach the SOLVE Strategy 

in this study can be viewed as a Level 2 learning strategy.  

 Third, the study addressed self-regulation training via the SOLVE Strategy by 

having students ask themselves questions while problem solving. Self-regulation training 

(i.e., the sub-steps of the SOLVE Strategy) helped cue students to important processes 

(e.g., identifying important information, eliminating unnecessary information, lining up a 

plan) for correctly setting up and solving word problems. Additionally, students‘ being 

able to verbally cue themselves is important because many students with SLD experience 

difficulty applying appropriate problem solving strategies and exhibit deficiencies in 

monitoring their metacognitive processes (Montague & Bos, 1990).  

 Fourth, given that the CCSS promote higher achievement in mathematics, 

specifically Algebraic thinking (CCSS, 2012), the SOLVE Strategy may be used to 

increase students‘ scores on standardized assessments of mathematical reasoning. 

Because one educational challenge facing American society is the gap in academic 

achievement on standardized tests among subgroups in schools including students with 
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disabilities and students from low-income communities (Kim & Sunderman, 2005) this 

study offers a way to bridge this gap by providing students with a self-regulation strategy 

that equips them with similar problem solving skills as their peers.  

 Finally, the low-cost, easy, and efficient use of the SOLVE Strategy is an 

important implication for practitioners. The cost of implementing this strategy was low in 

that two reams of paper were used to photo copy all materials, file folders for each 

student, one pack of colored pencils, and two sheets of laminate paper for the cue card. In 

rural and urban schools, teachers benefit from using strategies that are low cost as 

additional resources may not be available to them to purchase more expensive learning 

strategy curriculums.  
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APPENDIX A: STRATEGY USE SCORING GUIDELINES 

 

 

S 

Score 1 point for underlining, circling, or highlighting the question. 

Score 1 point for writing the correct answer to the question, ―What 

is this problem asking me to find?‖ 

      

O 

Score 1 point for identifying the facts, which can be done by 

striking the facts, or circling the facts. 

Score 1 point for some eliminating unnecessary facts, which can be 

done by drawing a line through the fact. 

Score 1 point for listing all necessary facts, which must be written 

down on the answer sheet. 

      

L 

Score 1 point for choosing an operation or operations (i.e., +, -, x, 

÷). 

Score 1 point for writing a plan that does not contain numbers (i.e., 

numerical or written words). 

 

V 
Score 1 point for estimating the answer. 

Score 1 point for carrying out the plan they wrote in the ―L‖ step. 

      

E Score 1 point for writing the answer as a complete thought. 

      

Total 

Points for 

strategy 

usage 

10 points per question for a total of 50 points per test 

probe. 

 

 

 

 

SOLVE Usage Score Sheet 

 

Student Name: ______________        Probe #: _____       Grade 

Level: _______ 

Question # S O L V E 

1           

2           

3           

4           

5           

Total Each 

Column 

          

Total for Each 

Step 

     Total Score 

 

___/50_ 

Points 
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APPENDIX B: COMPUTATION SCORING GUIDELINES 

 

 

Correct Equation Score 1 point if the equation is written correctly. 

Score 0 points for incorrect equations. 

  

Correct Response Score 1 point if the correct response is given. 

Score 0 points for incorrect responses.  

  

Total points for 

correct response 

2 points per question for a total of 16 points per test probe. 

 

 

 

 

Score Sheet 

 

Student Name: ____________        Probe #: ____       Grade Level: 

____ 

Question # Correct Equation 
Correct 

Response 

1   

2   

3   

4   

5   

 

Total Correct Score 
  

Total 

Score 

 

_____/10_ 

Points 
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APPENDIX C: STRATEGY KNOWLEDGE PRE- AND POST-TEST 

 

 

1. List the steps of the SOLVE Strategy. 

S 

__________________________________________________________________ 

O 

__________________________________________________________________ 

L 

__________________________________________________________________ 

V 

__________________________________________________________________ 

E 

__________________________________________________________________ 

 

2. When you organize the facts there are three things that you need to do, what are 

they? 

a. ____________________________________________________________ 

b. ____________________________________________________________ 

c. ____________________________________________________________ 

 

3. The second sub-step of the L step of the SOLVE Strategy requires that you line 

up a plan without using __________________. 

4. How can you determine if your solution to a problem is reasonable? 

__________________________________________________________________ 

5. What is the first thing you should ask yourself once you come up with an answer 

to the word problem? 

 

__________________________________________________________________ 

 

__________________________________________________________________ 
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APPENDIX D: STEPS FOR THE SOLVE STRATEGY AND HELPFUL HINTS CUE 

CARDS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STEPS FOR THE SOLVE STRATEGY 

 

Study the problem 

 

Organize the facts 

 

Line up a plan 

 

Verify your plan with action 

 

Examine your results 

 

Helpful Hints: 

1. Use the problem 

solving strategies you 

have learned 

previously 

 

2. Note key information 

 

3. Show all of your 

work 
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APPENDIX E: LEARNING CONTRACT 

 

 

I, _______________________________________, agree to learn the SOLVE Strategy. If 

I work hard, I will learn how to approach word problems so that I am more likely to solve 

it correctly. This will help me understand math and get better grades.  

 

 

 

______________________________  ______________________________ 

Student Signature      Instructor Signature 

 

 

 

 

 

_______________ 

Date 
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APPENDIX F: SAMPLE COMPLETED PROBE 

 

 

Name: ____________________ Grade Level: 8 

 

Date: _____________________ Probe #: 1 

 

1-Step word problem 

 

1. Keith‘s mom paid him for keeping the yard looking good for a month. He mowed, 

watered, and groomed the yard. He went to the mall and spent $17.84 on a CD, 

$28.40 on a pair of shorts, and $30.00 on a new pair of sunglasses. He had $13.76 

left in his wallet when he left the mall. How much did his mom pay him for doing 

the lawn this month? 

S 

O 

L 

V 

E 

2-Step word problem 

2. Joe bought 3 pairs of pants each costing the same amount and a shirt costing $12. 

He spent a total of $63. How much was each pair of pants? 

S 

O 

L 

V 

E 

 

1-Step word problem 

Keith‘s mom paid him for keeping the yard looking good for a month. He mowed, 

watered, and groomed the yard. He went to the mall and spent $17.84 on a CD, $28.40 on 

a pair of shorts, and $30.00 on a new pair of sunglasses. He had $13.76 left in his wallet 

when he left the mall. How much did his mom pay him for doing the lawn this month? 

S—The amount mom paid Keith for doing the lawn 

O—CD - $17.84 
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APPENDIX F: SAMPLE COMPLETED PROBE (CONTINUED) 

 

Shorts - $28.40  

Sunglasses - $30.00  

Had left - $13.76 

L—Add all amounts together 

V—Estimate: $100.00 

$17.84 + $28.40 + $30.00 + $13.76 = $90.00 

E—yes, yes, yes 

She paid him $90.00 for doing the lawn. 

 

2-Step word problem 

Joe bought 3 pairs of pants each costing the same amount and a shirt costing $12. He 

spent a total of $63. How much was each pair of pants? 

S—the cost of a pair of pants. 

O—All facts are necessary 

3 pairs of pants – all same cost 

Shirt $12 

Total spent $63 

L—subtraction, division 

Create an equation relating the cost of one pair of pants, p, multiplied by number of pants 

purchased plus cost of the shirt equal to the total spent. 

V—under $20 

3p + 12 = 63 

     -12      -12 

     3p = 51 

     3        3 

     p = 17 
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APPENDIX F: SAMPLE COMPLETED PROBE (CONTINUED) 

 

E—yes, yes, yes 

Each pair of pants cost $17.  
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APPENDIX G: PROGRESS CHARTS 

 

 

Management Chart 

 



       151 

 

APPENDIX G: PROGRESS CHARTS (CONTINUED) 
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APPENDIX G: PROGRESS CHARTS (CONTINUED) 
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APPENDIX H: SCRIPTED LESSON PLANS 

 

 

Stage 1: Pretest  

Materials 

___Advance organizer: ―Today we are going to find out two things. 

First, we need to know whether you can solve one- and two-step 

equations. Second, we need to know if you can solve those same 

equations when they are asked in a word problem. For that reason, I 

will give you some math problems that were written for students at 

your grade level.‖ 

 

___Distribute the materials. (1) Test paper, (2) Steps of the SOLVE 

strategy and helpful hints Card 

 

___Give instructions for the pretest. ―Each of you should have a test 

paper in front of you. You may write on the test paper. Be sure to 

show all of your work and use any strategy that you know to help 

you complete your work.‖ 

 

___Solicit and answer questions. 

 

___Instruct the students to begin, and monitor their work. (Students 

will be given 20 minutes to complete the test. Additional time will 

be given if needed) 

 

___Collect the tests. [Students should place their test in their folder 

provided by the instructor] 

 

___Score the tests.  

 

___Communicate the results to the students 

 

___Fill out the Management Chart  

1. Copies of the 

pre-

assessment 

2. Management 

chart 

3. Scoring 

sheets 

4. Steps of the 

SOLVE 

strategy and 

helpful hints 

Cards.  

5. Student 

folders 
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APPENDIX H: SCRIPTED LESSON PLANS (CONTINUED) 

 

 

Lesson 2 

Stages 2 & 3: Describe & Model – Introduction to the SOLVE 

Strategy 

 

Materials 

Essential Question(s): Why is it important to have a strategy for 

solving word problems? Why is it important to study a 

problem? 

 

___ 1. Instruction will begin by stating the goals of the lesson.  

―For the next few days you are going to learn a math strategy to 

help you understand and solve word problems. You will be able 

to use this strategy for a variety of concepts that involve word 

problems.‖ 

  

 What to do: 

  

____Teacher will facilitate a discussion on the difference 

between the problem and the question when analyzing word 

problems. This discussion should take 5 minutes. Teacher will 

conclude the discussion by summarizing the following points: 

―The problem is the entire paragraph. The question is normally 

one sentence in that paragraph that determines what math work 

needs to be done in order to arrive at a correct solution.‖  

 

____State the purpose of the SOLVE Strategy. ―SOLVE‖ is a 

way to ATTACK a word problem. We often do not know 

where to begin, but SOLVE gives us a starting point; that 

starting point is ―S‖. 

 

 

____Give each student three sheets of different color 

construction paper. 

 

____Teacher demonstrates for students how to create the 

SOLVE foldable.  

 

___ Describe the first step of the SOLVE Strategy ―The first 

step of the SOLVE Strategy is Study the Problem. When we 

study the problem we (1) highlight, circle, or underline the 

1. Smartboard 

2. Colored 

construction 

paper 

3. Markers, pens, 

and pencils 

4. Note sheets 

with word 

problems.  

5. Cue Cards  

6. Student folders 
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question. (2) Ask, what is this problem asking me to find?‖ 

Student will write these steps on their foldable.  

 

____Model for students exactly what to do for each of the 

following word problems to complete the ‗S‘ step. ―Okay, the 

first thing that you do for the ‗S‘ step is highlight, circle, or 

underline the question. Go ahead and write that in your 

foldable. The second thing you do is ask yourself the question, 

‗what is this problem asking me to find?‘ The last thing you do 

for the ‗S‘ step is write the answer as a complete thought. Let‘s 

look at the first problem and complete the ‗S‘ step together.‖ 

[Demonstrate the ‗S‘ step using the first 4 problems with the 

students using think alouds following the above described 

procedures]. 

 

____ Conduct the Independent Practice Activity. ―Now you are 

ready to try using the ‗S‘ step on your own. I will give you 

some word problems, and you will S the problem.‖  

 

Students will complete problems 5-8 independently and receive 

corrective feedback from the instructor.  

 

 

Problem 1: Spence shot three times as many baskets as Drew, 

while Carney shot 12 more baskets than Drew. If Spence and 

Carney shot the same number of baskets, how many baskets did 

each of them shoot? 

 

 

Problem 2: The school board had to make budget cuts to avoid 

going into the negative. One item they cut was funding for 

drivers education in the high schools. Money was available to 

offer drivers‘ training to only 40 high school students. If 125 

students signed up to take drivers‘ training how many of those 

students would not be able to receive it? 

 

Problem 3: In order to improve its image, the Clown Brothers 

Carnival Co. agreed to give all the parking fees to the local 

school to buy computer equipment. Parking cost $3 per car. On 

the night of the carnival, 400 parking spaces were empty in the 

lot. The lot could park 6,000 cars. How much money was 

raised parking cars?—Blue p. 37 

 

 

 

Problem 5: Elizabeth and 2 of her friends ordered from Pizza 
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Hut for dinner. Elizabeth‘s parents gave the three of them 

$20.00 to spend. They split the rest of the cost evenly between 

them. The cost of the pizza dinner was $44.00 total. How much 

did each of them have to pay for the dinner? Answer- $8.00 

 

 

Problem 6: Sam wants to build a low fence around his garden. 

The length of the garden is 15 feet and the width is 10 feet. 

How much fencing material will Sam need to enclose the 

garden? Answer-50 feet 

 

 

Problem 7: Mark worked for a lawn service during the summer. 

He earned $10 for each yard he mowed and $6 for each set of 

hedges he trimmed. He mowed 3 hours each day. How much 

did he make last week if he mowed 4 yards and trimmed 3 sets 

of hedges?—Blue p. 37 

 

Problem 8: John set a goal of swimming 20 laps in the pool 

every week during the summer. On Monday and Wednesday, 

he swam 5 laps each day. On Tuesday and Thursday he swam 2 

laps each day. How many laps does he need to swim on Friday 

to complete his laps for the week? Answer 6 laps—Blue p. T51 

 

 

____Describe the second step of the SOLVE Strategy ―Great 

job everyone; it appears that everyone has the hang of the ‗S‘ 

step. Now it is time to move to the next step. The second step 

of the SOLVE Strategy is Organize the Facts. When we 

organize the facts there are three things that we do. Let‘s write 

the steps in our foldables: (1) Identify each fact, (2) Cross out 

unnecessary facts, (3) List all necessary facts. Student will 

write these steps on their foldable.  

 

 ____Model for students exactly what to do for problems 1-4 of 

the above word problems to complete the ‗O‘ step.  Mention 

that not all word problems will have unnecessary information. 

―Let‘s look at the first four word problems that we looked at 

together. Okay, as I read the word problem I want you to say 

‗FACT‘ every time I come to a different fact in the problem.‖ It 

helps engage students when you read the problem out loud to 

have them separate out the facts by saying ―FACT‖ or softly 

tapping their desks at the end of each fact. When you first 

introduce ―O‖ you will want to clearly identify each individual 

fact. ―Now that we have identified all of the facts it is time for 

us to eliminate all unnecessary information. Let‘s go through 
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each fact one at a time to see if the information is needed to 

answer the question.‖ Making a list of the facts is very 

important. ―Now that we have eliminated unnecessary 

information we need to list all necessary facts.‖ Follow the 

same procedures for word problems 2-4. Identifying 

unnecessary data is a very important part of ―O‖. Make sure 

you constantly ask your students ―WHY‖ a fact is necessary or 

unnecessary. In training, we used an index card with ―U‖ (for 

unnecessary) on the top and ―N‖ (for necessary) on the bottom. 

You could also have your students give a ―thumbs up‖ for 

necessary and a ―thumbs down‖ for unnecessary. Remember 

that some facts could be necessary to one student, but 

unnecessary to another student. It is acceptable as long as they 

give you accurate reasons as to why they feel the fact is 

necessary or unnecessary. 

 

 

____ Conduct the Independent Practice Activity. ―Now you are 

ready to try using the ‗O‘ step on your own. I will give you 

some word problems, and you will complete the O step of the 

SOLVE Strategy.‖  

 

 

Students will complete problems 5-8 independently and receive 

corrective feedback from the instructor.  

____ 

Summarize: (5 minute Q & A) (1) What is the main question in 

Step ―S‖? Answer: What is the question asking me to find? (2) 

What is the difference between the problem and the question? 

Answer above (3) What is the main benefit of Step ―S‖? 

Answer: It gives a starting point (4) What do most facts deal 

with in word problems? Answer: Numbers (5) Can a fact be 

included in the question? Answer: Yes (6) Are all facts 

necessary, so need to be listed? Answer: No (7) What should be 

considered when determining whether a fact is necessary? 

Answer: look at the ―S‖ question: what is the problem asking 

me to find?  

 

___Preview the next lesson. ―Today you learned how to study 

the problem and organize the facts in a word problem. 

Tomorrow we are going to learn how to line up plans to solve 

word problems. Place your Cue Cards and worksheets in your 

folders.‖ 

 

___Solicit and answer any questions the students may have. 

File completed word problems.   
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APPENDIX H: SCRIPTED LESSON PLANS (CONTINUED) 
 

Lesson 3 

Stages 2 & 3: Describe & Model – L-Step 

 

Materials 

Essential Question(s):  Why is it important to have a plan before 

trying to solve a problem?  

 

 

___ Introduce and describe 

 Review the purpose of the previous lesson. ―In the last lesson, 

you were introduced to the first two steps of the SOLVE 

Strategy.‖ Ask the following questions: 1) What is the main 

question in Step ―S‖? Answer: What is the question asking me 

to find? (2) What is the difference between the problem and the 

question? Answer above (3) What is the main benefit of Step 

―S‖? Answer: It gives a starting point (4) What do most facts 

deal with in word problems? Answer: Numbers (5) Can a fact 

be included in the question? Answer: Yes (6) Are all facts 

necessary, so need to be listed? Answer: No (7) What should be 

considered when determining whether a fact is necessary? 

Answer: look at the ―S‖ question: what is the problem asking 

me to find? 

 

 State the purpose of today‘s lesson. ―As we reviewed, there are 

5 steps to the SOLVE Strategy. You have already learned the 

first two. Today, you are going to learn how to line up a plan 

based on the information you gathered from the first two steps 

of SOLVE.‖ 

 

 State expectations. ―Your job today is to listen carefully, take 

notes, and participate in the discussion. Later you will be 

completing at least two word problems on your own.‖  

   

 What to do: 

  

____Teacher will facilitate a discussion on the hardest step for 

students. Stress that the rule of L is, ―There is never only one right 

way‖! You will be discussing your different plans to the word problems 

that we will be solving. As long as a plan is mathematically sound, it 

can be correct.‖ All students do not look at problems the same way and 

often create several different ways to solve them. They need to be able 

1. Smartboard 

2. Foldables 

3. Pens, and 

pencils 

4. Note sheets 

with word 

problems.  

5. Cue Card 

6. Student 

folders 
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to answer WHY their plan works.  

 

____Have students take out their foldable that they started the previous 

class session.  

 

 

___ Describe the first ‗L‘ step of the SOLVE Strategy.‖L stands for 

Line Up a Plan.‖ When we line up a plan there are several things we 

need to remember. (1) Choose an operation or operations you think will 

solve the problem, (2) Verbally state the plan for solving (there should 

be no numbers used at this state). The facts listed in ―O‖ should be used 

in writing the plan. The plan can be referred to as a verbal expression. 

The main rule of ―L‖ is that there is ―Never Only One Right Way.‖ As 

long as the plan will answer what the problem is asking you to find it is 

correct. Students need to be able to answer WHY their plan works.  

 

____Model for students exactly what to do for each of the following 

word problems to complete the ‗L‘ step.  

 

Students will complete problems 5-8 independently and receive 

corrective feedback from the instructor.  

 

Problem 1: Spence shot three times as many baskets as Drew, while 

Carney shot 12 more baskets than Drew. If Spence and Carney shot the 

same number of baskets, how many baskets did each of them shoot? 

 

 

Problem 2: The school board had to make budget cuts to avoid going 

into the negative. One item they cut was funding for drivers education 

in the high schools. Money was available to offer drivers‘ training to 

only 40 high school students. If 125 students signed up to take drivers‘ 

training how many of those students would not be able to receive it? 

 

Problem 3: In order to improve its image, the Clown Brothers Carnival 

Co. agreed to give all the parking fees to the local school to buy 

computer equipment. Parking cost $3 per car. On the night of the 

carnival, 400 parking spaces were empty in the lot. The lot could park 

6,000 cars. How much money was raised parking cars?—Blue p. 37 

 

Problem 5: Elizabeth and 2 of her friends ordered from Pizza Hut for 

dinner. Elizabeth‘s parents gave the three of them $20.00 to spend. 

They split the rest of the cost evenly between them. The cost of the 

pizza dinner was $44.00 total. How much did each of them have to pay 

for the dinner? Answer- $8.00 
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Problem 6: Sam wants to build a low fence around his garden. The 

length of the garden is 15 feet and the width is 10 feet. How much 

fencing material will Sam need to enclose the garden? Answer-50 feet 

 

 

Problem 7: Mark worked for a lawn service during the summer. He 

earned $10 for each yard he mowed and $6 for each set of hedges he 

trimmed. He mowed 3 hours each day. How much did he make last 

week if he mowed 4 yards and trimmed 3 sets of hedges?—Blue p. 37 

 

Problem 8: John set a goal of swimming 20 laps in the pool every 

week during the summer. On Monday and Wednesday, he swam 5 laps 

each day. On Tuesday and Thursday he swam 2 laps each day. How 

many laps does he need to swim on Friday to complete his laps for the 

week? Answer 6 laps—Blue p. T51 

 

____Summarize: (5 minute Q & A) (1) Why is it important in Step L to 

use words instead of the numbers from the problem? Answer: If words 

are used, the plan will work no matter what numbers are used (2) What 

four operations need to be remembered when setting up a plan? 

Answer: Addition, subtraction, multiplication, division (3) Does Step 

L need to be very detailed with a great deal of words? Answer: It 

depends on the word problem itself. Some will be very simple, so do 

not need as many words or details. (4) Is there only one correct way to 

solve a problem? Answer: No, people think differently so many 

solutions may be correct. (5) When calculating 5 + 4 • 7, what might 

happen if one student added before multiplying, and another student 

multiplied before adding? Answer: Due to order of operations, they 

would arrive at different solutions. (6) How would you organize your 

plan for a word problem with many facts included? Answers will vary, 

but should have a logical basis. (7) How would you determine which 

operation(s) to choose when reading a word problem? Answer: Variety 

of answers will be given, but should include: looking at the word wall, 

looking for key phrases, words, ideas, and visualizing the data in a real 

world way that makes sense to them. 

 

___Preview the next lesson. ―Today you learned how to line up a plan 

for one- and two-step word problems. Tomorrow we are going to learn 

how to verify your plan with action and examine your results.‖ 

 

___Solicit and answer any questions the students may have.  

 

___File completed word problems.   
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APPENDIX H: SCRIPTED LESSON PLANS (CONTINUED) 

 

 

Lesson 4 

Stages 2 & 3: Describe & Model – V- and E-Steps 

 

Materials 

Essential Question(s):  How do you determine what operations and 

steps are needed when creating a plan for word problems? Why is it 

helpful to check your work once you calculate an answer?  

 

___ Introduce and describe 

 Review the purpose of the previous lesson. ―In the last 2 

lessons, you were introduced to the first three steps of the 

SOLVE Strategy.‖ Ask the following questions: 1) What is the 

main question in Step ―S‖? Answer: What is the question 

asking me to find? (2) What is the difference between the 

problem and the question? Answer above (3) What is the main 

benefit of Step ―S‖? Answer: It gives a starting point (4) What 

do most facts deal with in word problems? Answer: Numbers 

(5) Can a fact be included in the question? Answer: Yes (6) Are 

all facts necessary, so need to be listed? Answer: No (7) What 

should be considered when determining whether a fact is 

necessary? Answer: look at the ―S‖ question: what is the 

problem asking me to find? 

 

 State the purpose of today‘s lesson. ―So far you have learned 

the first three steps of the SOLVE Strategy. Today, you are 

going to learn the last two steps which are "Verify your plan 

with action," and "Examine your results." 

 

 State expectations. ―Your job today is to listen carefully, take 

notes, and participate in the discussion. Later you will be 

completing at least three word problems on your own.‖  

   

 What to do: 

  

_____This lesson focuses on making an estimate, and then carrying out 

the plan from Step ―L‖.  The same problems from Lessons 1 & 2 are 

used to best show the connection between Step ―L‖ and Step ―V‖. It is 

not necessary to have students recopy the SOL step from those 

problems. They can just add the ―V‖ step on to what they have already 

completed so far.  
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____Have students take out their foldable that they started the previous 

class session.  

 

___ Describe the first V step of the SOLVE Strategy. ―Once we have 

come up with a plan for our word problem, the next step is to Verify 

your plan with action. The first thing you do is make an estimate of the 

answer. The second thing you do is to carry out the plan you wrote in 

the ‗L‘ step with action. This means that you are actually going to solve 

the numerical expression or equation that you created.‖ 

 

_____Estimation is an important part of ―V‖. Discuss how estimation is 

a mental math process. Students with good estimation skills can 

eliminate 2 answers on a standardized test, which makes the chance of 

a correct answer even greater. It is much harder for students who don‘t 

know their facts to make an estimate. Take 5 minutes for this 

discussion.  

 

_____Go over the ―V‖ step on the first 3 problems from Lessons 1 & 2.  

 

 

____Model for students exactly what to do for each of the following 

word problems to complete the ‗V‘ step. 

 

____ Help students come up with better estimations by asking 

questions like, ―Will the answer be greater than zero?,‖ ―Will the 

answer be larger than the numbers in your facts?,‖ ―Will you end up 

with a smaller number?‖  

  

Students will complete problems 5-8 independently and receive 

corrective feedback from the instructor.  

 

 

____After students have completed all 8 of the previous problems 

move on to the last step of the SOLVE Strategy—Examine Your 

Results. 

 

____ We have come to the point where everything is pulled together 

with the addition of final step ―E‖. ―E‖ is very important because by re-

reading the question, checking your work, and writing your answer as a 

complete thought, students normally find any mistakes that they may 

have made in solving the problem.‖  

 

____ ―The last step in the SOLVE Strategy requires you to Examine 

Your Results. To do this there are 3 questions that you need to ask 

yourself. (1) Did I answer what I was asked to find in ‗S‘? (2) Is my 

answer accurate? (3) Is my answer reasonable?‖  
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____‖You check for accuracy by looking over your computation in 

‗V.‘ You can check to see if your answer is reasonable by comparing it 

to your estimate. The last step in ‗E‘ is for you to write your answer as 

a complete thought.‖ 

 

____Model for students exactly what to do for each of the above word 

problems (i.e., problems 1-3) to complete the ‗E‘ step. 

 

Students will complete problems 5-8 independently and receive 

corrective feedback from the instructor.  

 

____Summarize: (5 minute Q & A) (1) In Step ―V‖, what needs to be 

done before calculating with the numbers? Answer: Make an 

estimation. (2) How should Step ―V‖ compare with Step ―L‖? Answer: 

The number calculations should match the word plan. (3) How should 

Step ―V‖ compare with Step ―O‖? Answer: The numbers to be used in 

the calculations should be the ones listed in Step ―O‖. (4) Before 

writing out the complete sentence in Step ―E‖, what is the first thing to 

check? Answer: S: Does my answer make sense? (Check Step ―S‖). (5) 

Before writing out the complete sentence in Step ―E‖, what is the 

second thing to check? Answer: R: Is my answer reasonable? (Check 

the estimate). (6) Before writing out the complete sentence in Step ―E‖, 

what is the third thing to check? Answer: A: Is my answer accurate? 

(Check with another student, the teacher, a calculator, or redo the 

math.) (7) How do all five steps of SOLVE link together? Answer: To 

determine which facts to write in O, you need to look at the S question. 

To determine the plan for L, you have to look at the question from S 

and the facts from O. To do the math work in Step V, you have to use 

the plan from L and the numbers from O. To write out the sentence in 

E, you have to answer the S question with the answer calculated in V.  

 

 

___Preview the next lesson. ―Today we completed the last two steps of 

the SOLVE Strategy. Tomorrow we are going practice all of the steps 

of the strategy verbally. All of you need to make sure that you know 

the process for each step, and that you are able to verbally tell me what 

to do for each step. You will also have some practice problems to 

complete using all 5 steps.‖ 

 

___Solicit and answer any questions the students may have.  

 

 

___File completed word problems.   
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APPENDIX H: SCRIPTED LESSON PLANS (CONTINUED) 

 

 

Lesson 5 

Stage 4: Verbal Practice 

 

Materials 

___Advance organizer:  

a. Review the purpose of the previous lesson. ―Over the past few 

days you have been learning how to use the SOLVE Strategy to 

solve mathematical word problems.‖ 

b. State the purpose of this lesson. ―Today we will discuss what 

you have learned and ensure that you know what to do as you 

use the strategy. Then you will learn to name the steps of the 

SOLVE Strategy.‖ 

c. Provide a rationale for the lesson: ―If you understand and can 

name the steps, you will be able to tell yourself what to do when 

you are trying to use the strategy while solving a word 

problem.‖ 

d. State expectations: ―During our discussion, I expect you to pay 

close attention and to participate when I call on you. Later I will 

give each of you a quiz, and you will have to answer all my 

questions correctly to move to the next stage of instruction.‖ 

 

___Conduct the verbal elaboration exercise. ―First, let‘s make sure you 

understand what you are to do for each step of the strategy and why 

you are to do it. I will as you some questions, and I want you to answer 

them to show your understanding.  

 

 What is the main question in Step ―S‖? Answer: What is the 

question asking me to find?  

 What is the difference between the problem and the question? 

Answer above  

 What is the main benefit of Step ―S‖? Answer: It gives a 

starting point  

 What do most facts deal with in word problems? Answer: 

Numbers  

 Can a fact be included in the question? Answer: Yes  

 Are all facts necessary, so need to be listed? Answer: No  

 What should be considered when determining whether a fact is 

necessary? Answer: look at the ―S‖ question: what is the 

problem asking me to find?  

 Why is it important in Step L to use words instead of the 

numbers from the problem? Answer: If words are used, the 

plan will work no matter what numbers are used  

 What four operations need to be remembered when setting up a 
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plan? Answer: Addition, subtraction, multiplication, division  

 Does Step L need to be very detailed with a great deal of 

words? Answer: It depends on the word problem itself. Some 

will be very simple, so do not need as many words or details.  

 Is there only one correct way to solve a problem? Answer: No, 

people think differently so many solutions may be correct.  

 When calculating 5 + 4 • 7, what might happen if one student 

added before multiplying, and another student multiplied before 

adding? Answer: Due to order of operations, they would arrive 

at different solutions.  

 How would you organize your plan for a word problem with 

many facts included? Answers will vary, but should have a 

logical basis.  

 How would you determine which operation(s) to choose when 

reading a word problem? Answer: Variety of answers will be 

given, but should include: looking at the word wall, looking for 

key phrases, words, ideas, and visualizing the data in a real 

world way that makes sense to them. 

 In Step ―V‖, what needs to be done before calculating with the 

numbers? Answer: Make an estimation.  

 How should Step ―V‖ compare with Step ―L‖? Answer: The 

number calculations should match the word plan.  

 How should Step ―V‖ compare with Step ―O‖? Answer: The 

numbers to be used in the calculations should be the ones listed 

in Step ―O‖.  

 Before writing out the complete sentence in Step ―E‖, what is 

the first thing to check? Answer: S: Does my answer make 

sense? (Check Step ―S‖).  

 Before writing out the complete sentence in Step ―E‖, what is 

the second thing to check? Answer: R: Is my answer 

reasonable? (Check the estimate).  

 Before writing out the complete sentence in Step ―E‖, what is 

the third thing to check? Answer: A: Is my answer accurate? 

(Check with another student, the teacher, a calculator, or redo 

the math.)  

 How do all five steps of SOLVE link together? Answer: To 

determine which facts to write in O, you need to look at the S 

question. To determine the plan for L, you have to look at the 

question from S and the facts from O. To do the math work in 

Step V, you have to use the plan from L and the numbers from 

O. To write out the sentence in E, you have to answer the S 

question with the answer calculated in V. 

 

___Introduce the rapid-fire verbal rehearsal exercise. ―To help you 

memorize the strategy steps, we are going to do an exercise called 

‗rapid-fire verbal rehearsal.‘ I will show you how to do it. I will act as 
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the leader of the group. I‘ll be pointing to each person in the 

succession. When I point to you, I want you to name the next step of 

the SOLVE Strategy. This is called ‗rapid-fire‘ because you are trying 

to fire back the name of the step to me as rapidly or quickly as you can 

after I point to you. Thus, when I point to you, name the step as quickly 

as you can, and try not to look at the board, you may; however, don‘t 

rely on it too much because I am going to take it away after a few 

rounds of the activity. Instead, try to rely on the mnemonic devise 

‗SOLVE‘ and your own memory.‖ 

___Explain what to say. ―This is what you should say when you name 

the steps: The first person I point to will say, ‗Study the Problem;‘ the 

second person will say, ‗Organize the facts.‘ The third person will say, 

‗Line up a Plan,‘ and we will continue until we get through all of the 

steps.  

 

___Lead the verbal rehearsal exercise with cues on the Smartboard. 

―Let‘s see how fast we can go and how quickly we can memorize the 

steps. This should be easy for you since you know most of the steps 

already. Okay, let‘s begin.‖ 

 

___Lead the exercise without cues on the Smartboard.  

 

___Administer the written quiz.  

 

___Instruct the students to begin, and monitor their work. (Students 

will be given 20 minutes to complete the test. Additional time will be 

given if needed) 

 

___Collect and review the quizzes 

 

___Provide feedback 

 

___Fill out the Management Chart  
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APPENDIX H: SCRIPTED LESSON PLANS (CONTINUED) 

 

 

Lesson 6—3Days 

Stage 5: Controlled Practice 

 

Materials 

___Advance organizer:  

1. Review the purpose of the previous lesson. ―Last time 

we met, you practiced talking about the SOLVE 

Strategy.‖ 

2. State the purpose of this lesson. ―Today and several 

more days you will practice using all the steps of the 

SOLVE Strategy on mathematical word problems.‖ 

 

___Distribute Probe.  

 

___Direct the students to begin practicing. Remind students to tell 

themselves the SOLVE Steps as they practice to ensure that they use 

all the steps. 

 

___Supervise the practice activity. Listen to and watch the way 

students are using the steps of the strategy. Score one or two 

problems for each student. Give immediate corrective feedback if 

necessary.  

 

___Collect the materials. 

 

___Score each student‘s performance. Using the appropriate answer 

key, score each student‘s products. Calculate the percentage of points 

the student earned.  

 

___Provide feedback to students. 

a. Provide positive feedback. 

b. Provide corrective feedback. 

c. Stress fluency in using the strategy 

d. Review the answer results 

 

___File completed probe in student folders.  

 

___Fill out the Management Chart  

 

**Note: 80% mastery required to move to next grade level** 
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APPENDIX H: SCRIPTED LESSON PLANS (CONTINUED) 

 

 

Lesson 7—Several Days 

Stage 6: Advanced Practice and Feedback 

 

Materials 

___Advance organizer:  

3. Review the purpose of the SOLVE Strategy.  

4. Introduce the practice activity. ―Today and the next 

few days, you will practice using the SOLVE Strategy 

on more and more difficult mathematical word 

problems.‖ 

5. State expectations. ―You will begin today by 

practicing the strategy with materials on your grade 

level.  

6. Provide instructions. ―Each time you are assigned a 

new set of words problems. After you get your word 

problems, how will you begin?‖ Answer: By using the 

SOLVE Strategy or the S-step.  

7. Explain what to do. ―I think you know what to do 

now. I will be circulating among you, but raise your 

hand if you have completed the assignment. I will 

check that it is complete.‖ 

 

___Ensure the students have the materials, and instruct them to begin.  

 

___Circulate, record progress, and provide help and feedback.  

 

___Collect the materials.  

 

___Score each student‘s performance. Calculate the percentage of 

points the student earned. Identify students who will need individual 

help the next session.  

 

___Provide feedback to students. Provide positive feedback     b. 

Provide corrective feedback. 

 

___Instruct students to progress through the grade levels. When 

records indicate that a student is using the strategy correctly and 

independently AND is earning scores of 80% and above, tell the 

student that he/she can move up to the next grade level for the next 

practice activity (This will be written down for students).  

 

___File completed probe in student folders. Fill out the Management 

Chart  

**Note: 80% mastery required to move to next grade level** 
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APPENDIX H: SCRIPTED LESSON PLANS (CONTINUED) 

 

 

Lesson 8 

Stage 7: Posttest 

 

Materials 

___Advance organizer: ―Today we are going to find out two things. 

First, we need to know whether you can solve one- and two-step 

equations. Second, we need to know if you can solve those same 

equations when they are asked in a word problem. For that reason, I 

will give you some math problems that were written for students at 

your grade level.‖ 

 

___Distribute the materials. (1) Test paper, (2) Steps of the SOLVE 

strategy and helpful hints Card 

 

___Give instructions for the posttest. ―Each of you should have a test 

paper in front of you. You may write on the test paper. Be sure to 

show all of your work and use any strategy that you know to help you 

complete your work.‖ 

 

___Solicit and answer questions. 

 

___Instruct the students to begin, and monitor their work. (Students 

will be given 20 minutes to complete the test. Additional time will be 

given if needed) 

 

___Collect the tests. [Students should place their test in their folder 

provided by the instructor] 

 

___Score the tests.  

 

___Communicate the results to the students 

 

___Fill out the Management Chart  
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APPENDIX H: SCRIPTED LESSON PLANS (CONTINUED) 

 

 

Lesson 9 

Stage 8: Generalization 

 

Materials 

___Have students bring their textbooks to the session along with their 

homework.  

 

___Advance organizer:  

a. Review the previous lesson(s). ―Now that you are masters of 

the SOLVE Strategy, you can use your new tool in lots of 

places, on a variety of reading materials, and in combination 

with the other strategies you know.‖ 

b. State the purpose of this stage of instruction. ―Remember, this 

strategy is like money in your savings account in the bank. 

You have invested a lot of time in learning the SOLVE 

Strategy. Now you‘re going to learn how to use that 

investment wisely. Just like money, if you try to use the 

strategy in the wrong places, it won‘t pay off for you. Thus, 

today we‘ll discuss situations where you might use the 

SOLVE Strategy. We‘re going to get ready to recognize those 

situations and use the strategy.‖  

c. State expectations. ―As we discuss how you will be using this 

strategy, I expect you to pay attention and contribute to the 

discussion.‖ 

 

___Discuss rationales for generalizing the SOLVE Strategy. ―What 

are some of the reasons why you should use the SOLVE Strategy 

outside of this classroom along with other strategies you know?‖ 

 

___Discuss the importance of individual effort in the generalization 

process. ―We‘re going to be spending some time on generalization 

because often students learn something new and forget to use it. It‘s 

similar to buying a new CD for which you‘ve saved for several 

weeks, and never playing it.‖ 

 

―You have already expended a great deal of effort learning this new 

strategy. Unfortunately, you won‘t have success unless you expend a 

bit more effort each time using it is appropriate. In the long run, that 

effort will pay off in higher test scores, better grades, improved 

understanding, and a base of knowledge that you can use for the rest 

of your life.‖ 

 

___Discuss situations where the strategy is applicable. Example Math 

class, science class, etc. 

1. Copies of 

generalizatio

n probes 

2. Management 

chart 

3. Scoring 

sheets 

4. Steps of the 

SOLVE 

strategy and 

helpful hints 

Cards 

5. Probes 

6. Student 

folders 
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___Discuss using the strategy in combination with other strategies.  

 

 

___Discuss adapting the strategy. 

 

___Discuss the tool box analogy. ―The SOLVE Strategy is one of the 

tools in your learning toolbox. It‘s like one of the tools you might use 

to build a house. If you leave the hammer in your toolbox and never 

use it, you won‘t get very far in building a house. That tool is critical 

to the building process. Likewise, the SOLVE Strategy is a critical 

tool to the learning process. You use the SOLVE Strategy to make 

sure that you understand and can solve the word problems that are 

presented to you. It is one of the ways that you build your knowledge 

base.‖ 

 

___Discuss the knowledge-base analogy. ―Your knowledge base 

refers to all the information you know and can use to help you live 

your life successfully. Your knowledge base is like a huge building 

with many floors. In a tall building, each floor is built solidly before 

the next floor can be added. This is how your knowledge base grows. 

If you know something, you can add new knowledge on top of it. 

You won‘t be able to add new knowledge until the first floor of your 

knowledge base is stable. That means you have to understand some 

information before you can add more.‖  

 

___Introduce the generalization assignments. ―You will be applying 

the SOLVE Strategy and the other strategies you know to a variety of 

materials.‖ 

 

___Distribute the generalization probe. 

 

___Circulate, monitor the student‘s work, and provide help and 

feedback 

 

___Score the probe.  

 

___Communicate the results to the students 

 

___Fill out the Management Chart  
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APPENDIX I: SOCIAL VALIDITY QUESTIONNAIRES 

 

 

Social Validity Questionnaire (Teacher Form) 

Teacher: ___________________________   Date: ____________________ 

This questionnaire consists of 7 items. For each item, please indicate the extent to which 

you agree or disagree with the statement. Please indicate your response to each item by 

circling one of the five responses to the right for questions 1-6 and provide a written 

response for questions 7. 

Questions Responses 

 

1.  Instruction in the SOLVE Strategy is 

relevant for my students based on the 

mathematics curriculum and required 

testing.  

Strongly 

Agree 

Agree Not 

Sure 

Disagre

e 

Strongly 

Disagree 

2. Given the time required to teach the 

SOLVE Strategy; I feel that it could 

be taught in the general education 

classroom with a larger group of 

students.  

Strongly 

Agree 

Agree Not 

Sure 

Disagre

e 

Strongly 

Disagree 

 

3.  Given the outcomes, I would use the 

strategy following the prescribed 

instructional procedures. 

Strongly 

Agree 

Agree Not 

Sure 

Disagre

e 

Strongly 

Disagree 

4.  I am considering using the 

intervention for other students in 

future. 

Strongly 

Agree 

Agree Not 

Sure 

Disagre

e 

Strongly 

Disagree 

5.  Student‘s ability to solve word 

problems increased in accuracy and 

consistency during the intervention.  

Strongly 

Agree 

Agree Not 

Sure 

Disagre

e 

Strongly 

Disagree 

6.  I am considering sharing this 

information with other teachers 

within my school. 

Strongly 

Agree 

Agree Not 

Sure 

Disagre

e 

Strongly 

Disagree 

7.    What changes/additions would you suggest for the intervention? (Use the back if 

necessary) 
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APPENDIX I: SOCIAL VALIDITY QUESTIONNAIRES (CONTINUED) 
 
 

Social Validity Questionnaire (Student Form) 

 

Student: ___________________________   Date: ____________________ 

This questionnaire consists of 7 items. For each item, please indicate the extent to which 

you agree or disagree with the statement. Please indicate your response to each item by 

circling one of the five responses to the right for questions 1-7 and provide a written 

response for questions 8. 

Questions Responses 

 

1.  Before I learned the SOLVE 

Strategy I was not good at solving 

mathematical word problems. 

Strongly 

Agree 

Agree Not 

Sure 

Disagre

e 

Strongly 

Disagree 

2. After I learned the SOLVE Strategy 

I was able to attack and solve word 

problems correctly.  

Strongly 

Agree 

Agree Not 

Sure 

Disagre

e 

Strongly 

Disagree 

 

3.  I know what steps I can take to get 

started solving a word problem. 

Strongly 

Agree 

Agree Not 

Sure 

Disagre

e 

Strongly 

Disagree 

4.  I have started using the SOLVE 

Strategy in my math class.  

Strongly 

Agree 

Agree Not 

Sure 

Disagre

e 

Strongly 

Disagree 

5.  I feel comfortable using the SOLVE 

Strategy while I solve word 

problems in class. 

Strongly 

Agree 

Agree Not 

Sure 

Disagre

e 

Strongly 

Disagree 

6.  I would consider sharing the SOLVE 

Strategy with other students at my 

school.  

Strongly 

Agree 

Agree Not 

Sure 

Disagre

e 

Strongly 

Disagree 

7. Since learning the SOLVE Strategy I 

can see a change in my grades in my 

math class.  

Strongly 

Agree 

Agree Not 

Sure 

Disagre

e 

Strongly 

Disagree 

8. What changes/additions would you suggest if this strategy was to be taught to another 

group of students? (Use the back if necessary) 
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APPENDIX J: LETTERS OF CONSENT AND ASSENT 

 
The University of North Carolina at Charlotte 

9201 University City Boulevard 

Charlotte, NC 28223-0001 

       

 

 

 

 

Parent Consent Form for 

Participation in Educational Research 

November 1, 2012 

 

 

Dear Parent or Guardian: 

 

I am Shaqwana Freeman, a doctoral student of Dr. Christopher O‘Brien, from the Special 

Education Department at the University of North Carolina at Charlotte. I am excited to request 

permission for your child to participate in a research study to be used for my dissertation. I am 

conducting a research study on how well instruction in the SOLVE Strategy, a mathematical 

word problem solving strategy; will increase student‘s ability to successfully solve mathematical 

word problems.  In other words, I want to find out if teaching students a way to attack 

mathematical word problems (SOLVE Strategy) will improve their math scores. 

 

Students who participate in the study will meet the following inclusion criteria: a) identified as 

having a specific learning disability; b) able to compute one-step mathematical equations, but not 

in word problem format as measured by a pretest;  c) obtain a score on a standardized math test, 

the Woodcock-Johnson® III (WJ III; Woodcock, McGrew, & Mather, 2001) that is at least two 

grade levels below their current grade level; d) has consistent attendance (i.e., absent less than 

two times per month); and e) recommended by his teacher to participate.  

 

 If you agree for your child to participate in this study, your child will be asked to complete the 

following activities: 

  

7. Take part in 10 instructional sessions over the course of 2 weeks. Each instructional session 

will last for 30 minutes during study hall as not to interfere with instructional class time.  

8. During these instructional sessions your child will: (1) be taught the SOLVE Strategy, (2) 

create a foldable that includes all of the steps of the SOLVE Strategy that can be used in 

their regular mathematics class, (3) practice using the strategy by solving word problems 

from their math class.  

 

The study will be explained in terms that your child can understand, and your child will 

participate only if he or she is willing to do so. Only Dr. O‘Brien and I will have access to 

information from your child. Participation in this study is voluntary. Your decision whether or not  

 

College of Education  

Department of  Special Education 

and Child Development 

704/687-2531 

FAX 704/687-2916 
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APPENDIX J: LETTERS OF CONSENT AND ASSENT (CONTINUED) 
 

 

to allow your child to participate will not affect the services normally provided to your child. 

Even if you give your permission for your child to participate, your child is free to refuse to 

participate. If your child agrees to participate, he or she is free to end participation at any time. 

You and your child are not waiving any legal claims, rights, or remedies because of your child‘s 

participation in this research study.   

 

As teachers we are always seeking effective strategies for improving academic performance. We 

hope to use what we learn from this study to offer suggestions of how to better teach students 

how to solve mathematical word problems.   

 

Any information about your child‘s participation, including their identity and the school, is 

completely confidential.  The following steps will be taken to ensure this confidentiality: 

 

1.  I will code all data using pseudonyms (made up names) before the information is brought 

back to the research team.  Educational data including grade, age, gender, ethnicity, and 

intellegince quotients will be collected, but will not be linked to a specific student in final 

reports or shared with other members of the research team. 

2. Data collected will be stored in my office in a locked cabinet at the University of North 

Carolina at Charlotte.   

3. The data will be presented usings pseudonyms (made up names) in final reports.  

4. All data that will be transferred to a digital format will be inputed on a password protected 

computer on a secure network.   

5. Audio recordings of the sessions will be destroyed at the conclusion of the study. 

 

Should you have any questions or desire further information, please feel free to contact 

  

Ms. Shaqwana Freeman     Dr. Christopher O‘Brien  

Principal Investigator     Associate Professor 

Special Education Department    Special Education Department 

University of North Carolina at Charlotte  University of North Carolina at 

Charlotte 

Charlotte, NC 28223     Charlotte, NC  28223 

(704) 687-5751      (704) 687-8855  

smfreema@uncc.edu     christopher.obrien@uncc.edu 

 

Keep this letter after completing and returning the signature page to me.  

 

UNC Charlotte wants to make sure that you are treated in a fair and respectful manner.  Contact 

the university‘s Research Compliance Office (704-687-1871) if you have questions about how 

you or your child are treated as a study participant.  If you have any questions about the actual 

project or study, please contact Dr. Christopher O‘Brien (704)-687-8855 

christopher.obrien@uncc.edu) 

 

Sincerely,  

 

 

Shaqwana M. Freeman 

Doctoral Candidate 

mailto:smfreema@uncc.edu
mailto:christopher.obrien@uncc.edu
mailto:%20christopher.obrien@uncc.edu
mailto:%20christopher.obrien@uncc.edu
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Please sign and return this page.  

 

I have read the information in this consent form.  I have had the chance to ask questions about 

this study and about my child‘s participation in the study. My questions have been answered to 

my satisfaction. I am at least 18 years of age, and I agree to allow my child to participate in this 

research project. I understand that I will receive a copy of this form after it has been signed by me 

and the researcher of this study. 

 

 

 

 

______________________________  _______________________________ 

Signature of Parent/Guardian    Printed Parent/Guardian Name  

 

 

 

 

______________________________  _______________________________ 

Printed Name of Child     Date 

 

 

 

 

______________________________ _______________________________ 

Researcher‘s Signature    Date 
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The University of North Carolina at Charlotte 

9201 University City Boulevard 

Charlotte, NC 28223-0001 

          
 

Teacher Consent Form for 

Participation in Educational Research 

 

November 1, 2012 

 

 

Dear Teacher: 

 

I am Shaqwana Freeman, a doctoral student of Dr. Christopher O‘Brien from the Special 

Education Department at the University of North Carolina at Charlotte. I am excited to request 

permission for your participation in a research study to be used for my dissertation. I am 

conducting a research study on how well instruction in the SOLVE Strategy will increase 

student‘s scores ability to successfully solve mathematical word problems.  In other words, I want 

to find out if teaching students a way to attack mathematical word problems will improve their 

math scores. All of the instruction will occur during the regular school day (i.e., study hall) and 

take approximately eight weeks. Students will be divided into three groups, and each group will 

receive instruction in the SOLVE Strategy for 30 minutes per day for approximately 2 weeks. 

There will be eight student participants, one teacher, and two researchers.  

 

If you agree to participate in this study, you will be asked to complete the following activities: 

  

1. Provide students with directions to complete their test probe for that day from a scripted 

lesson plan once they have mastered the SOLVE Strategy. 

2. Provide students with corrective feedback based on their work performance as suggested by 

the researchers. 

3. Turn in students completed practice and test problems to the researchers.  

4. Complete a questionnaire at the end of the study about your experience using the SOLVE 

Strategy. 

The study will be explained in terms that your students can understand, and your students will 

participate only if he is willing to do so and I receive parental permission. Only Dr. O‘Brien and I 

will have access to information from you and your students. Participation in this study is 

voluntary. Even if you give your permission to participate you are free to end participation at any 

time. As teachers we are always seeking effective strategies for improving academic 

performance. We hope to use what we learn from this study to offer suggestions of how to better 

teach students how to solve mathematical word problems.   
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Any information about your students‘ and your participation, including their identity and the 

school, is completely confidential.  The following steps will be taken to ensure this 

confidentiality: 

 

6.  I will code all data using pseudonyms (made up names) before the information is brought 

back to the research team.   

7. Data collected will be stored in my office in a locked cabinet at the University of North 

Carolina at Charlotte.   

8. The data will be presented usings pseudonyms (made up names) in final reports.  

9. All data that will be transferred to a digital format will be inputed on a password protected 

computer on a secure network.   

10. For portable devices, such as a laptop computer and a flash drive, will be locked in a 

container for transporting and when not in use. 

 

Should you have any questions or desire further information, please feel free to contact  

 

Ms. Shaqwana Freeman    Dr. Christopher O‘Brien  

Principal Investigator     Associate Professor 

Special Education Department   Special Education Department 

University of North Carolina at Charlotte  University of North Carolina at 

Charlotte 

Charlotte, NC 28223     Charlotte, NC  28223 

(704) 687-5751     (704) 687-8855  

smfreema@uncc.edu     christopher.obrien@uncc.edu 

 

Keep this letter after completing and returning the signature page to me.  

 

UNC Charlotte wants to make sure that you are treated in a fair and respectful manner.  Contact 

the university‘s Research Compliance Office (704-687-1871) if you have questions about how 

you or your child are treated as a study participant.  If you have any questions about the actual 

project or study, please contact Dr. Christopher O‘Brien (704)-687-8855 

christopher.obrien@uncc.edu) 

 

Sincerely,  

  

 

Shaqwana M. Freeman 

Doctoral Candidate 

 

 

 

 

 

 

 

 

 

mailto:smfreema@uncc.edu
mailto:christopher.obrien@uncc.edu
mailto:%20christopher.obrien@uncc.edu
mailto:%20christopher.obrien@uncc.edu
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Please sign and return this page.  

 

 

I have read the information in this consent form.  I have had the chance to ask questions about 

this study and about my participation in the study.  My questions have been answered to my 

satisfaction.   I am at least 18 years of age, and I agree to participate in this research project.  I 

understand that I will receive a copy of this form after it has been signed by me and the researcher 

of this study. 

 

 

____________________________  _______________________________ 

Signature of Teacher    Printed Teacher Name  

 

 

______________________________ 

Date 

 

 

 

_____________________________  _______________________________ 

Researcher‘s Signature    Date 
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The University of North Carolina at Charlotte 

9201 University City Boulevard 

Charlotte, NC 28223-0001 

                    College of Education 

                    Department of Special Education 

                    and Child Development 

                    PHONE 704/687-2531 

                    FAX 704/687-2916 

Student Assent Form for 

Participation in Educational Research 

 

Dear Student: 

 

As you know I attend school just like you do.  I am asking you to take part in my research study 

because I am trying to learn more about how instruction in the SOLVE Strategy will help you 

increase your scores in your mathematics class.  

 

If you agree to be in this study, I will ask you to do a few things over the next few weeks.  

I will ask you to put forth your best effort to learn the strategy, I will ask you to practice solving 

some word problems with me and on your own, and then I will ask you questions about how you 

liked using the SOLVE Strategy. All of the instruction will occur during study hall, and you will 

be placed into one of three groups. Each group will receive instruction in the SOLVE Strategy for 

30 minutes per day for approximately 2 weeks and all sessions will be audio recorded. Once the 

study is complete I will destroy all of the audio recordings.  

  

I hope that this new way of attacking word problems will help you and other students learn to 

solve mathematical word problems better, but I can‘t be sure it will. This study will not hurt you. 

When I am done with the study I will write a report. I will not use your name in the report. 

 

You can ask any questions that you have about the study. If you have a question later that you 

didn‘t think of now, you can ask me next time. Signing your name at the bottom means that you 

agree to be in this study.  

 

________________________________________  

Signature of Student 

 

________________________________________  ____________________ 

Printed Name of Student      Date 

 

___________________      ____________________ 

Researcher‘s Signature                  Date 
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