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ABSTRACT

NHAT ‘RICH’ NGUYEN. Reducing training effort in biological image classification.
(Under the direction of DR. MIN C. SHIN)

To automatically classify biological images, machine learning techniques have been

widely used to train the classifiers from labeled images. For a new category of biologi-

cal object, a tedious and expensive labeling process is needed from a human expert. With

the growing amount of biological data and the increasing number of categories to recog-

nize, a more efficient method to train the classification system is required. The aim of this

dissertation research is to effectively reduce the labeling effort of human experts in training

the image classification methods. The contributions of this research consist of the following

key components: First, the size differential regularization is employed to refine the ranking

of classification rules to alleviate the risk of over-fitting in the case of a small number of

training samples. Second, the spatiotemporal connectivity among the unlabeled samples is

utilized to determine the weighting scheme of the existing classifiers from multiple sources.

Third, the target directed sampling is proposed to focus the search for additional samples

which are most likely to belong to the new class. The approaches are demonstrated to be

effective in biological experiments including cell detection, insect detection, and pollen

classification. The experimental results indicate that the proposed methods can achieve

comparable performance to the current machine learning approaches while significantly

reduce the amount of training data.
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CHAPTER 1: INTRODUCTION

1.1 Biological Image Classification

Along with the maturity of information technology in biological fields and the emergence

of in-vivo tissue staining, the number of biological images (e.g., single-organism images as

well as cellular and molecular images) acquired in digital forms is growing rapidly [51].

The advances in imaging equipment have resulted in a significant number of images avail-

able to biologists and medical researchers and consequently, have led to a need for the

automatic image analysis. Figure 1.1 illustrates an example of many biological images that

need to be analyzed. In this figure, the different types of pollen is revealed under a micro-

scope with diverse shapes and textures 1. Analyzing these images is critical to find answers

to many important questions in various fields of the life sciences including cell biology,

developmental biology, and the medical sciences [79, 7].

For cell biologists, studying the cell population in the microscopy images enables the

quantification of the cellular behaviors in response to different biological stimuli. For in-

stance, images captured under a fluorescent microscope permit statistical analysis of var-

ious cell parameters such as apoptosis, adherence, morphology, and motility [36]. Thus,

it has the potential to identify even subtle effects of many physiological stimuli on many

cell types that keep humans healthy and shed light on new ways to treat disease. For ecol-

ogists, images of pollen grains provide a record of different flowers pollinators such as

1provided by Dr. Matina Matasci’s group at the University of Arizona
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Figure 1.1: Top: a typical image of pollen contains a dense population of many pollen types
viewed under a microscope. Bottom: several representative samples from different pollen
types are enlarged to show a diverse shapes and textures among the pollen population.
Automatic classification methods enable analysis of a large amount of image data without
a biologist spending hours of labeling.

honeybees and butterflies have visited. Analysis of these images opens a window into the

complex network of interactions between plants and pollinators in a community [38]. In

agriculture and conservation biology, studying pollen images have practical implications

for which plants are receiving pollination services, as well as the nutrition and health of the

pollinators themselves.

Classification is an important technique for image analysis. It enables automatic pre-

diction of a large number of unseen images which are usually required to give sufficient

data to analyze in a large scale experiment. While gathering large quantities of images has

become relatively fast and easy, categorizing them into different classes remains slow and

time-consuming. Biology technicians usually spend hours in the laboratory to manually

label each biological object into a specific class. Considering the labeling process is too te-



3

Figure 1.2: Automatic Classification Procedure.

dious, automated classification methods have been applied to analyze thousands of images.

Supervised learning algorithms [82, 86, 47, 81] have been utilized to train the classification

model given the labeled images as training samples. Since classification methods require

the annotation of a number training samples which takes a significant amount of human

effort, a major bottleneck becomes the laborious process of annotating the labels for these

training samples. For the rest of the dissertation, this process will be referred as the training

effort. A typical automatic classification procedure is illustrated in Figure 1.2.

With the diverse nature of biological classes to classify, obtaining training samples for

automatic classification methods tends to be expensive in terms of training effort. Training

samples could be obtained using crowd-sourcing label acquisition systems such as Ama-
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zon Mechanical Turk (AMT) which allows any person to label the object images. For the

majority of traditional object categories (e.g., car, table or chair), AMT has provided cost-

effective training samples by a non-expert person. Unfortunately, these label acquisition

systems are not suitable for biological data as the recognition of training images usually

requires the skills and knowledge of a professionally trained expert. Consequently, the bi-

ology experts must obtain additional training samples on new image data. As it becomes

increasingly important to save time and labor of biology experts in training the classifier,

there is a great need for a classification method that can significantly reduce the training ef-

fort while producing a comparable performance to traditional machine learning approaches

on new datasets.

1.2 Challenges in Reducing Training Effort

This dissertation aims to reduce the number of training samples that require specific

expert knowledge in order to classify the biological images. However, reducing the number

of training samples for automatic classification poses a few challenges:

First, training the classifier without a sufficient number of samples could often lead to

poor performance because it is susceptible to overfitting [70]. For example, a classifier

is overfit when it is 100% accurate on the training data but only 60% accurate on test

data; in fact, it could have been 80% accurate on both. Overfitting can be analyzed in

terms of the bias-variance trade-off [20]. Figure 1.3 explains overfitting as the relationship

between bias and variance. When the size of training data is relatively small, the variance

of the classification model is high although its bias on the training data is small. High-

variance learning methods may be able to represent their training set well, yet are at risk
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Figure 1.3: A visualization of bias and variance using a bulls-eye diagram of four differ-
ent cases representing combinations of both high and low bias and variance (adapted from
[21]). Imagine that the center of the target is a model that perfectly predicts the correct
values. As we move away from the bulls-eye, our predictions get worse and worse. Un-
derfitting is shown as high bias low variance while overfitting is shown as low bias high
variance.

of overfitting to noise or unrepresentative training data [21]. In contrast, algorithms with

high bias typically produce simpler models that don’t tend to overfit, but may underfit

their training data, failing to capture important regularities. Due to an insufficient number

of training samples, the overfitting issue happens as the classification model becomes too

sensitive to a few noisy training samples. However, the number of available samples of

a new biological class can be limited when the class is encountered for the first time in a

biological experiment. This condition can also happen when the setting changes in image

capturing equipment and imaging modalities, or the image data is captured differently by

separate research groups. As a result, the limited samples from the new class may be

insufficient to describe its properties or to be discriminated from other classes.

Second, the distribution of training samples in biological images is usually unbalanced.
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For example, images available for tumor cells may be much less than normal cell types.

On a highly unbalanced class distribution, it is particularly time-consuming to obtain these

samples when the human experts have to search for them in a significant number of un-

labeled samples. While the samples of some classes are rather abundant, other classes

can have significantly less training samples. Thus, a majority of training effort is spent

on searching for appropriate samples to be labeled. Since the labeling cost is expensive,

the labeling should only be done on the most useful training samples from a certain class

that needs additional training samples. The effort required to obtain training samples of a

biological class can be related to its distribution in the available set of unlabeled samples.

1.3 Main Contributions

Motivated by the challenges above, this dissertation provides a few approaches to re-

ducing the effort by the human expert in training the classifier. In particular, the proposed

research reduces the number of labeled samples by leveraging previously learned knowl-

edge: the existing classes that are acquired from other experiments. The existing classes

are assumed to be abundant and may contain some useful information to help improve the

classification of the new class. In such cases, the use of this knowledge can save a signifi-

cant amount of labeling effort. The reason behind this is that classification models among

visually correlated categories are strongly inter-related, and the generalization power of the

classifier is determined by the correlation between two sets of training samples [24]. In this

classification framework, the problem is known as transfer learning, and the new class is

also known as the target class, and existing classes are the source classes [59].

This dissertation extends the transfer learning framework by Yao and Doretto (2010) [86]
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in three ways. First, we incorporate a size regularization into the transfer learning model to

avoid overfitting when the training data is limited. Second, we minimize the difference in

predicted labels between two samples which are spatiotemporally connected and construct

a graph to learn the weighting scheme of the existing classifiers from multiple sources to

supplement the small number of labeled samples. Third, we combine the transfer learning

model with a sampling method to provide a more efficient way to select additional training

samples. Specifically, the research contributions of this dissertation consist of the following

key components:

• Size-distribution Regularization: To alleviate the risk of over-fitting in the case of

a small number of training samples, a size distribution regularization is used to refine

the ranking of classification rules. In such cases, the rules should rely on a separate

estimator which can be computed from a collection of training samples. The selec-

tion of the classification rules is intended to conform with a side-distribution regular-

ization in addition to minimizing the empirical training error. In the biological cell

context, we particularly choose the cell size distribution as a regularization because

it represents a common biological characteristic of cells which can quickly be esti-

mated from the training images; thus it requires minimal effort to measure manually.

Several different cell datasets are evaluated to demonstrate the applicability of our

approach.

• Spatiotemporal Regularization: Another way to combat overfitting is leveraging

the information from multiple images in a video. The regularization can penalize

classifiers with more structure, thereby favoring smaller ones with less room to over-
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fit. In this dissertation, we propose a transfer learning method that employs the spa-

tiotemporal relationship among the unlabeled data. The spatiotemporal consists of

the pixel coordinate as well as the time frame in the video from which an image patch

is obtained. The unlabeled samples are the image patches available abundantly in the

video and require no manual labeling effort. We estimate the spatiotemporal con-

nectivity between pairs of unlabeled samples using the optical flow throughout the

video. Our approach is based on the assumption that two unlabeled samples which

are connected by the optical flow should have the same predicted label. This moti-

vates us to minimize the difference in predicted labels between two samples which

are spatiotemporally connected. The evaluation on three data sets of social insects

such as ants and termites demonstrates that the proposed method is able to reduce the

training effort while maintaining comparable accuracy to previous approaches.

• Target-Directed Sampling to Select Training Data: To effectively select additional

training samples, Target-Directed Sampling (TDS) is proposed to focus the search to-

ward the samples of the new (target) class. Initially, the number of training samples

from the target class is small, additional target samples are more beneficial to the

classifier than other samples. However, target samples are more difficult to find due

to the imbalanced in training data. TDS is an active learning approach, as a more

specific case of margin sampling, to select the most useful training samples from the

unlabeled data [48, 73]. Particularly, the unlabeled samples which are most likely

to be confused between a target class and another class are chosen first for train-

ing. Additionally, the confidence which is employed by TDS is constructed from the
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classification rules extracted from the existing classes. These classification rules are

assumed to be reliable enough to build the initial classifier. The approach has been

successfully applied to classify various pollen classes.

Experimental evaluation validates that the proposed method requires significantly less

training effort than some widely used learning approaches.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follow. As the objective of the pro-

posed research is to reduce training effort, Chapter 2 reviews relevant work on reducing

training effort in both leveraging knowledge from existing data and selecting more effec-

tive training samples. The chapter also discusses the benefits and issues associated with the

approaches, motivating the need for the proposed research.

Chapter 3 establishes formal definitions and mathematical constructs of boosting meth-

ods which are used extensively throughout this dissertation research. This chapter also

describes a transfer learning framework necessary to understand the proposed methods.

Chapter 4 presents a regularization of the new class to refine the ranking of its classifica-

tion rules to avoid over-fitting in the case of a small number of new training data. The size

distribution is chosen as a regularization because it can effectively quantify the character-

istics of object population in an image. For each cell type, the regularization is determined

during the training step and does not need to be re-trained for each image.

Chapter 5 utilizes the spatiotemporal connectivity of the unlabeled data to regulate the

training of a detector on a new insect type. Our key contribution is integrating the spa-

tiotemporal connectivity among the unlabeled samples to determine the weighting scheme
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of the existing classifiers from multiple sources. The evaluation on 3 data sets of social

insects demonstrates that our method can achieve comparable performance to previous ap-

proaches while reducing the training labels.

Chapter 6 proposes a target-directed sampling method designed to reduce the amount

of training effort required to classify a new object class. In order to reduce the number of

labeled samples, auxiliary knowledge is exploited in two ways: First, the existing data is

leveraged to build the classifier with a small number of target samples. Second, unlabeled

samples that are likely to be valuable to the training data are identified.

Finally, Chapter 7 summarizes the future exploration of this dissertation research. This

chapter also outlines open problems and directions for future research on reducing training

effort and relates this dissertation to future studies.



CHAPTER 2: RELATED WORK

Automated image classification is an important field for a broad range of applications

because it enables statistical analysis in large-scale biological experiments [36]. In recent

years, there has been a strong research interest in the classification methods for biological

objects in images [36, 40, 58, 53], some of which have resulted in software applications

[10, 41]. In this chapter, we will first discuss the construction of feature representations

which have been used in the context of biological images (Section 2.1). Subsequently, we

will explore different training methods for biological image classification (Section 2.2). Fi-

nally, we will establish some literature review on various training reducing methods which

motivate this dissertation (Section 2.3).

2.1 Local Feature Representation

Many classification methods have focused on developing some feature descriptors that

work well for a particular object type. Morphological operations such as multi-scale corre-

lation kernels [1, 75], two-level adaptive thresholding [4], and weighted medial axis trans-

form [33] can result in unsuccessful classification over a large range of object appearance.

Depending on the biological application, active contour methods [85] and sliding window

methods [22] has been applied to build the feature representation in biological images.
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2.1.1 Active Contour Methods

In the context of biological images, classification has also been performed using an ac-

tive contour to model the bright halo which surrounds the object, then extract representative

features from the region within the boundary [50, 61, 62]. To localize the precise the bound-

ary of each object, we utilize active contours proposed by Xu et al. [85] which have been

used extensively in many applications. Active contour methods are able to segment the

object boundary, but requires manual initialization for each individual objects. The initial-

ization is often a time-consuming process and require much effort from the human experts.

In this dissertation, we automatically estimate the initial boundary of active contours by

detecting circles using the circular Hough transform (CHT) [88] under the assumption that

the shapes of some biological objects (such as cells and pollens) are varied from circular to

elliptical. The detection accuracy of circular Hough transform (CHT) [88] also depends on

a threshold to compromise number of actual grains and errors. This threshold is difficult

to determine because the image of pollen usually exhibits a high density of grains with

different intensity values as well as many inhomogeneous background region. From the

initial boundary estimation, a snake iteratively conforms to the boundary according to the

internal energy (elasticity and rigidity) as well as the external energy which is computed

from the gradient vector flow. We compute the GVF from an edge image obtained by the

Canny edge operator on a Gaussian smoothed image. The parameters of the Hough trans-

form and the active contour are empirically selected based on visual inspections and used

for all images.
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2.1.2 Sliding Windows Methods

To separate an object in an image, sliding window approaches have been well established

in the literature [14, 25]. Typically, the differ in the form in which the location of an object

is represented as bounding box, center point, or contour. Because the number of rectangles

in an n × n image is of the order n4, this process usually cannot be done exhaustively.

Instead, several heuristics have been proposed to speed up the search. Typically, these

consist of reducing the number of necessary function evaluations by searching only over

a coarse grid of possible rectangle locations and by allowing only rectangles of certain

fixed sizes as candidates [64]. When biological objects are overlap and in clusters, the

classification problem becomes even more challenging. In our cases, the image used for

training was selected in such way that minimizes the overlap of cells and therefore did

not heavily affect the experiment. However, in cases where there are clusters among the

classifying objects, segmenting the neighbor objects can be done by procedures presented

in [1, 22, 87]. Recently, a rich set of carefully designed feature descriptors which adapt to

the object appearance has been proposed to detect different types of objects [58]. However,

the training task is still highly difficult when it is applied to various object types without

some effort of parameter tuning.

2.1.3 Feature Descriptors

Even when taken with advanced biological imaging systems such as phase-contrast mi-

croscopy, the appearance of different biological objects types are highly diverse. To repre-

sent the diverse appearance of these objects, many of early studies on building feature types

have been proposed and explored, including lines [32], edges [52], corners [90], regions
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[8], among many other. While these features have worked well for certain object classes,

using a single feature representation cannot handle the diversity and therefore is difficult to

achieve high performance with unseen images from a new object type. In the following, we

will discuss the recent work on developing a collections of features for biological objects

based on boundary, texture, region, and gradient.

Boundary-based Previous studies have compiled a set of shape and texture features de-

rived from the boundary [45, 3, 63]. From the boundary constructed by the active contour,

we construct a feature descriptor consisting of 34 features based on pollen boundary shape,

internal texture. The shape features computed from the boundary of the active contours in-

clude area, diameter, ratio of area and perimeter, compactness, roundness, rates of changes,

thickness, elongation, centroid, Euclidean norm, mean size, eccentricity, and circularity.

While shape features utilize the extracted boundary, the texture features are derived from

the rectangular region which encloses the extracted boundary. Our texture features in-

clude the first-order statistics, Haralick’s Coefficients from the gray level occurrence ma-

trix (GLCM), and the gray-level run length. The computation details of these features are

described in [63].

Texture-based The first procedure is first-order statistics which contained the distribu-

tion of the gray level in the region such as mean, variance, statistical moments, energy, and

entropy of the gray-level. The second procedure is based on the gray level co-occurrence

matrix (GLCM). From the GLCM, we computed the Haralick’s Coefficients such as En-

ergy, Entropy, Correlation, Inverse Difference Moment, Inertia, cluster shade, and cluster

prominence [74]. The third procedure is the gray-level-run which consists of a set of con-
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secutive pixels in a image with the same gray value [13]. Then, several texture features

such as the short run emphasis, long run emphasis, gray level non-uniformity, run length

non-uniformity and run percentage.

Region-based We adapted the features from previous work [53, 1, 54] since they were

shown to work well for cell detection task. Depending on the application, additional fea-

tures could be added for potential improvement. We briefly described the features as follow.

First, the normalized radial mean response of sample i was computed as the ratio between

the mean intensity of the inner and outer circular regions surrounding the pixel location

of i. Six different scales for the inner and outer regions were applied to accommodate a

variety of cell appearances. Second, the mean of gradient magnitude was calculated within

a square window around sample i. The length of the square window was same as the outer

region from above. Third, filtering responses of sample i were collected from circular aver-

aging, low-pass Gaussian and isotropic Laplacian of Gaussian kernels. The response values

were normalized by dividing with the maximum value within the entire image.

HOG-based In our experiment of insect classification, the features are computed based

on the Histogram of Oriented Gradients (HOG) feature descriptor [18]. HOG was formu-

lated based on an idea that local object appearance and shape can often be characterized

adequately by the distribution of local intensity gradients or edge directions, without prior

knowledge of the corresponding gradient or edge positions. HOG has been used widely

for human detection application, here we apply it to biological images. Specifically, the

biological image is divided into small m×m pixel spatial region called image patch. Each

image patch is divided into 4 blocks each block has 3 × 3 cells with one overlapping cell
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between adjacent blocks. Each cell has a size of p × p pixel with 8 bins contains the ori-

entation histogram. Note that depending on the applications, additional features can be

incorporated.

2.2 Biological Images Classification Methods

The training of biological image classification is still a tedious and time-consuming pro-

cess that must be performed by highly skilled biologists who specialize in their field of

study. Recently, several groups have developed training methods for biological classifica-

tion. Most training methods involve a small number of object classes and require a large

count of training labels per class. [45, 63, 38]. As the number of types increases, it seems

that more and more training labels are required for each class. For example, a pollen clas-

sification system proposed Allen et al. requires 40 training labels per type to classify 7

types, but as many as 150 training labels per type for 17 types [3]. To build a more com-

prehensive classifier that could deal with an increasing number of types over time, the

number of samples required for training would thus likely be prohibitive. Another study

has shown good performance up to 30 classes with as few as 18 training samples per class

[9]; however, the classification rules are derived by their human experts. Such an approach

is likely to scale poorly as the number of classes increases, because the complexity of the

classification model and the amount of expert knowledge required to build them will grow

rapidly as more similar classes are added. In the following sections, we will discuss the

training of three major classification methods including boosting, support vector machines,

and convoluted neural network.
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2.2.1 Boosting Methods

Boosting has been extensively successful method for image classification. Since its first

introduced, AdaBoost has been shown to be equivalent to forward stage-wise additive mod-

eling method that minimizes the exponential loss [29]. The AdaBoost algorithm is an it-

erative procedure that tries to approximate a strong classifier by combining many weak

classifiers. If a training data point is misclassified, the weight of that training data point

is increased (boosted). A subsequent classifier is built using the new weights, which are

no longer equal. Again, misclassified training data have their weights boosted and the pro-

cedure is repeated. Typically, one may build 100 or 1000 classifiers this way. A score

is assigned to each classifier, and the final classifier is defined as the linear combination

of the classifiers from each stage. As an successful example of boosting based methods,

Viola el al. use AdaBoost to build an efficient moving person detector to train a chain of

progressively more complex region rejection rules based on Haar-like wavelets and space-

time differences [82]. AdaBoost is similar to most traditional machine learning methods by

assuming the distributions of training and test data to be identical. In this dissertation, we

extend AdaBoost to transfer knowledge from the source domains and add regularization on

unlabeled samples.

Decision Stumps Decision stump is one level decision tree that classify image samples

by sorting them based on feature values. Each node in a decision stump represents a feature

of the sample to be classified, and each branch represents a value that the node can take.

Trained on a single dimension in the feature vector of a sample in an image, the decision

stump can produce a label of either object or non-object with better accuracy than a random
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guess. At its worst, a decision stump will reproduce the most common sense baseline, and

may do better if the selected feature is particularly informative. An exponential decrease

of an upper bound of the training error rate is guaranteed as long as the error rates of the

decision strmps are less than 1
2

[29].

2.2.2 Support Vector Machines Methods

Aside from boosting based methods, Wu and Dietterich propose a support vector ma-

chines (SVM) framework for image classification [84]. Their method uses previously

trained data, which they refer to as auxiliary data, to constrain the SVM learning and iden-

tify support vectors that are applicable to a target task. Farhadi et al. [27] use SVM to learn

word signs consisted of SIFT features [46] for head and hands among different signers at

frontal and three-fourth view for building word models for American Sign Language.

2.2.3 Convolutional Neural Network Methods

Recently, some detection methods which are based on machine learning algorithms have

been proposed on a pedestrian dataset based on hand-crafted features [16]. Notably, some

methods which are based on convolutional neural network (CNN) have shown impressive

performance on object detection [42]. Although reliable detection can be achieved for a

particular type of object, the training task remains difficult. For instance, the training of

CNN usually requires a large number of labels to fine-tune the deep learning network [76].

Unlike general object data (such as PASCAL-VOC), biological data is less suitable for

labeling based on crowd-sourcing (e.g. Amazon Mechanical Turks). Instead, the training

task of biological data entails an extensive collection of samples labeled by the human

experts. To save the expert’s time in training detection methods, there is a great need for
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a method that can significantly reduce the training labels while maintaining a comparable

performance to previous approaches. To this end, transfer learning has been shown to

reduce in training effort by leveraging the previously acquired data (source) to new data

(target) [59, 17].

2.3 Reduction of Training Effort

The reduction of training effort has been studied extensively in machine learning and

data mining fields [16, 59]. One way to reduce the human effort in labeling new train-

ing data is applying some transfer learning algorithms [67, 31, 26, 59] which leverage the

knowledge from the existing classes (sources) to learn the new class (target). For a classifi-

cation system, the ability to transfer previous knowledge has a potential of quickly learning

new tasks to achieve the objectives, thus reducing users’ training effort. Transfer knowl-

edge is effective when the classification system is able to learn a new concept with only a

few labeled samples available for training [59].

2.3.1 Transfer Learning

Early transfer learning works raised some important issues, such as learning to learn

[71], learning one more thing [77], and multi-task learning [11].

Transfer learning can provide some combination of three possible benefits to learn the

new task: better initial performance, more rapid learning, or higher achievable performance

[24]. Figure 2.1 demonstrates the three benefits of transfer learning and illustrates their cor-

responding effects on a learning curve. Ideally, transfer learning would provide all three

benefits in learning the new task. If the objective is to reduce training effort, transfer learn-

ing typically yields better initial performance or more rapid learning. Additional effort in
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Figure 2.1: The three possible benefits of transfer and their effect on the learning curve of
a new task, adapted from a 2005 DARPA publication.

training can be greatly reduced when the initial performance is almost satisfactory. Simi-

larly, more rapid learning can help the classification method to achieve good performance

with smaller number of training samples. As the right sub-figure suggests, transfer can

enable a higher level of performance when the supply of training data is limited.

Research on transfer learning has been prolific in recent years over a wide variety of

applications, such as sign language recognition [28], text classification [67], document

categorization [2], and vehicle tracking [86]. Transferring from similar distribution sources

can be intuitively understood: although the source classes cannot be reused directly, there

are certain parts of the classes that can still be reused together with a few labeled data in the

target [19]. Given a large training samples from the data which have been collected, transfer

learning could use these training samples to build a classifier for the new data. Most recent

research studies on transfer learning focus on what to transfer by implicitly assuming that

the source and target domains be related to each other [59]. Based on what knowledge to

leverage, we can distinguish three notable approaches: First, transferring instances from

similar sources is especially useful when there is a lack of sufficient training data for the
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target task, and the target task shares components of its underlying distribution with some

of the source tasks. Second, sharing a common feature aims at finding “good” feature

representations to minimize domain divergence and classification model error. Strategies

to find effective feature representations are different depending on the types of the source

data. If a lot of labeled data in the source are available, supervised learning methods can be

used to construct a feature representation. Third, biassing toward previously learned model

parameters can often be characterized by a vector of parameters that are fit to the training

data; transfer can then bias the learning of a new model toward a specific set of parameters.

Among the first successful application instance transfer learning, TrAdaBoost proposed

by Dai et al. employs a boosting approach to re-weight the source training samples accord-

ing to their likelihood to be similar to the target samples [17]. The main idea of TrAdaBoost

is to use boosting to lower the weight of the irrelevant samples in the source data in each

iteration. The weights of the misclassified source samples are decreased to weaken their

impact on the weak learner. The correctly classified samples, treated as the additional

training data, boost the confidence of the learned model from the target data even when

the number of target samples is small. TrAdaBoost discards the weak learners from the

first half of the iterations, and the final classifier is constructed as the linear combination

of weak learners from latter half of the iteration. However, in the boosting mechanism,

each additional learner added by a boosting algorithm has, on average, less influence on

the final classifier’s prediction than its predecessors [69]. When existing data are shared

among different groups, Dai et al. provide a model for transfer learning which is shown to

be effective while using a small number of labels [17]. Their method extends the boosting

framework to predict the label of the target data is simply to combine the training data from
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the source with the target, then build a classifier based on the combined data. However,

this approach will not work well with various type of biological objects because it relies on

only one source at a time.

In transfer learning, weak relationship between source data and target data might lead

to poor performance of the target classifier (negative transfer). Yao et al. argue that TrAd-

aBoost algorithm was vulnerable to negative transfer because it relies only on one source

[86]. Thus, they extended the transfer algorithm into MultiSourceTrAdaBoost which trans-

fers from multiple sources. The authors extracted a subset of training samples, coming

from various available sources, that were the most closely related to the target. A selection

criterion has been introduced such that a weak classifier is selected from the source that

appears to be the most closely related to the target, at the current iteration. Negative trans-

fer tend to be reduce using such approach because it overcomes the imposition to transfer

knowledge from a single source, potentially loosely related to the target.

An alternative to the above approach is to learn the individual classifier for each source

class, then combine these classifiers by some similarity distances between the source data

and target data. As a notable method in this area, TaskTrAdaBoost [86] proposed by Yao

et al. is closely related to our method. Along with the instance transfer mentioned above,

Yao and Dorretto also presented a parameter transfer framework, TaskTrAdaBoost [86],

that jointly selected classification rules from multiple sources. The method identified the

parameters, which came from various sources, to be reused together with the target train-

ing data to improve the target classifier. The transferring parameters in this work were

represented as weak classifiers. The authors assume that the new data will share some

parameters with existing data and builds a classifier based on those parameters.
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In address some limitations inherent in TrAdaBoost’s design, Eaton introduces the Trans-

ferBoost algorithm [24] which employs set-based boosting technique to automatically se-

lect individual data from the source tasks to augment the target task’s training data. Similar

to TrAdaBoost, TransferBoost employs boosting scheme to automatically determine the

weight assigned to each source samples in order to learn the target classifier. However,

the algorithm boosts each source task based on a notion of transferability from the source

task to the target task. Transferability is defined to be the change in performance on the

target task between learning with and without transfer [23]. TransferBoost boosts each set

of instances from the same task, increasing the weights of all instances from a source task

if the source task shows positive transferability to the target task.

2.3.2 Regularization to Transfer Learning Models

Besides transferring classifier from multiple sources, several researchers investigated on

a regularization framework to transfer parameters [26, 6, 5]. In a regularization framework

one assumes the existence of task-specific parameters for each task and shared parameters

that parameterize a family of underlying transformations. Both the structural parameters

and the task-specific parameters are learned together via joint risk minimization on some

supervised training data for related tasks.

Ando and Zhang [6] combine an L2 regularization penalty on the task-specific param-

eters with an orthonormal constraint on the shared parameters. This transfer algorithm is

applied in the context of asymmetric transfer where source training sets are utilized to learn

the shared parameter. The shared parameter is then used to project the samples of the tar-

get and train a classifier on the new space. In their experiment on text categorization, the
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source training sets were automatically derived from unlabeled data. More precisely, the

source is consisted of predicting frequent content words for a set of unlabeled documents.

Evgeniou and Pontil proposed a regularization framework to transfer parameters of SVM

[26]. The authors applied Hierarchical Bayesian (HB) framework for SVM from multitask

learning. They modeled the relation between different tasks in terms of a novel kernel func-

tion that used a task coupling parameter. The presented method assumes that the parameter

in SVM for each task can be separated into two terms: one is a common term over tasks

and the other is a task-specific term. They utilize Hinge loss as the Loss function and the

inner product of the parameters as regularization function.

Amit et al. proposed a regularization scheme for transfer learning based on a trace norm

regularization penalty [5]. This norm is used because it is known to induce solution matri-

ces W of low rank. In addition to the primal formulation, the paper presented a kerneled

version. It is shown that although the weigh vectors can not be directly retrieved from

the dual solution, they can be found by solving a linear program on m variables. The au-

thors conducted experiments on a multiclass image classification task where the goal is to

distinguish between 72 classes of mammals. The performance of their transfer learning

algorithm is compared to that of a baseline SVM multiclass classifier. Their results show

that the trace-norm penalty can improve multiclass accuracy when only a few samples are

available for training. Furthermore, when the new data is assumed to share some common

parameters with existing data, Sarinnapakorn et al. propose a few transfer methods attempt

to identify the shared parameters coming from various existing data in the form of classi-

fication rules [67]. These approaches have two potential shortcomings. First, they assume

all sources classes are independent which means no interaction among multiple sources.
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Thus, they minimize the empirical loss on the source training data separately which might

not agree with the minimal loss on the target data. Second, they rely solely on the labeled

training samples which require human effort and ignore the unlabeled target samples which

can be useful in their variety and abundance. These shortcomings motivate the determina-

tion of the weights of the unlabeled target samples in respect of the classifiers learned from

the source classes.

To combine multiple models, Chattopadhyay et al. estimate the weights of source classi-

fiers based on the smoothness assumption to minimizing the difference in predicted labels

between two nearby unlabeled samples in feature space [12]. Their method is able to in-

tegrate a large number of unlabeled data to supplement for the lack of labeled data into a

loss minimization framework. Also following a similar approach, Gao et al. proposed a

locally weighted ensemble (LWE) learning framework for parameter transfer [31]. They

propose a graph-based approach to approximate the optimal model weights where the local

weight for a source model is computed by first mapping and then measuring the similarity

between the model and the target local structure around its labeled samples. This similarity

is measured by comparing neighborhood graphs, and quantified in the weight assignment

equation. They dynamically assigned weights of multiple classification models according

to a model’s predictive power on training samples in the target data. Table 2.1 summarizes

the qualitative comparisons among the transfer learning methods. Our research focuses on

reducing the number of training samples for transfer learning models using several regu-

larizations. To the best of our knowledge, none of the previous methods takes into account

the spatiotemporal connectivity between the pairs of unlabeled samples. We note that our

method requires the connectivity of unlabeled samples collected through time, so its train-
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Table 2.1: Qualitative comparisons of transfer learning approaches which transfer the clas-
sification models similarly to this research. The approaches in last three rows are the re-
search of this dissertation.

Author Transfer Classifier Domain Regularization

Ando [6] Parameter SVD Text L2

Gao [31] Parameter LWE Text Local Structure
Harpale [34] Parameter Regression Text Utility Gain
Rai [60] Parameter ANN General -
Amit [5] Parameter SVM Text Trace Norm
Evgeniou [26] Parameter SVM General Hier. Bayesian
Chattopadhyay [12] Parameter SVM Biological Feature Distance
Sarinnapakorn [67] Parameter Boosting Text -
Yao [86] Parameter Boosting General Utility Gain
Nguyen [54] Parameter Boosting Biological Size Distribution
Nguyen [55] Parameter Boosting Biological Target Directed
Nguyen [in review] Parameter Boosting Biological Spatio-Temporal

ing is only possible only when training data is available in video form. In the following

section, we employ this spatiotemporal position to regulate the training of a target classifier.

2.3.3 Active Learning to Select Training Samples

Although many approaches have successfully exploited the knowledge from the existing

classes to construct the new classifier, little attention was paid on how to apply the same

knowledge to select appropriate training samples on the new class. On the basis of select-

ing the most useful training samples which were most likely to improve the classification,

many research studies demonstrated different active learning strategies which effectively

reduce the training effort [49, 48, 39, 73]. Widely regarded as a querying technique, un-

certainty sampling approach selected the instances which has the least confident about the

label. Uncertainty sampling consisted of two components: training and querying. The

training step could be employed by many kinds of classifiers such as decision tree [83],

nearest neighbor [30], and support vector machines [78]. Recently, Lughofer compared
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and showed that these classifiers performed comparatively in several classification systems

[47]. The querying step selected unlabeled instances to be labeled by an expert, then added

those instances to the training set to train the classifier again. In particular, there were three

main strategies in uncertainty sampling: posterior entropy, least confidence and margin

sampling.

To minimize the training set size, uncertainty sampling aimed to optimize the order in

which the samples are labeled. In such way, the samples with the most information were

labeled first [73]. Uncertainty sampling is a popular setting in real-world problems where

large collection of unlabeled data (or unlabeled pool) can be collected at once. For ex-

ample, active learning were applied in text classification [37], image classification and

retrieval [89], speech recognition [80], and object recognition [81]. The main motivation

behind active learning is that unlabeled samples are usually inexpensive and available in

abundance, while annotating those samples can be expensive or time-consuming. Thus,

the human annotator often wishes to select only the most informative samples to be la-

beled, thus reducing redundancy to some extent, compared to the baseline of selecting the

examples randomly.

Roy et al. used a probability model to label example which maximizes the posterior

entropy on the unlabeled dataset [65]. Although this method was applied with naive Bayes

classifiers, it could be extended to any classifier with probabilistic output. Nuzhnaya et

al. approximated the probability function that measured the likelihood of a given sample

belong to a class in multi-class boosting framework using a sigmoid function [57]. If the

objective is to reduce the classification error, Culotta et al. proposed a least confident

strategy to prefer instances that would help the model better discriminate among specific
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classes using conditional random field (CRF) [15]. The approach, however, only considered

instances of the most probable label, and disregard to the distribution of other labels. To

correct this problem, Lou et al. proposed a Margin query strategy, called “Breaking Ties”,

to select the instances that minimize the margin between the most and second most probable

label [48]. Joshi et al. compared uncertainty sampling approaches and argued that margin

query strategy, such as Breaking Ties, worked best on their selected datasets [39].

However, a recent study [47] argued that active learning strategies still required an initial

classifier which already had a reasonable accuracy in order to decide which samples should

be selected for further labeling and consequently offered an unsupervised approach for the

training of the initial classifier. Unfortunately, the study ignored the situation where the

labeled training samples from existing classes were available and could have been useful

to train the initial classifier. The open problem remains about how to regularize transfer

learning when the number of new samples is limited, and how to effectively select addi-

tional training samples based on the existing classes. This dissertation research focuses on

these problems and contributes a few solutions to reduce training effort in biological image

classification.



CHAPTER 3: BACKGROUND

In this chapter we develop a general notation and background framework to obtain the

necessary knowledge for understanding the remaining of the dissertation. First, we intro-

duce some relevant background information for the classification problem (Section 3.1).

Next, we describe the improvement in classification performance on a new class by us-

ing the rules from other existing classes (Section 3.2). Specially, we provide some details

about a related transfer learning framework and its limitation that leads into our proposed

solution. The size-differential regularization that we present in chapter 4 is constructed

upon the transfer learning framework. Subsequently, we describe the incorporation of the

regularization into a minimization framework which will be relevant in chapter 5. Finally,

we describe the classification confidence which is used the sampling selection algorithm

for additional training samples presented later in Chapter 6.

3.1 Notations and Frameworks

We first introduce the notation and define the problem statement. In the feature space

X ∈ RN with N dimensions correspond to the feature representation and the label space

Y = {−1,+1}, a classifier is trained by estimating a function f : X → Y . In order to train

a classifier, samples consisted of the feature vector xi ∈ X with the manually label yi ∈ Y

are collected. The detection of an object of interest is in an image the same as to classify

the image patch contained the object as a positive label yi = 1 and otherwise as a negative
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label yi = 1. The target class consists of small labeled dataDτ
l = {(xi, yi)|1 ≤ i ≤ nl} and

abundance of unlabeled data Dτ
u = {(xj)|1 ≤ j ≤ nu} where nl and nu are the numbers of

labeled and unlabeled target samples (nl � nu). Table 3.1 summarizes the notations used

throughout this dissertation.

Table 3.1: Notations used in this dissertation and their explanation
Notation Explanation

X The feature space ∈ RN of N dimensions
Y The label space of {−1,+1}
xi The feature vector of the ith sample
yi The label of the ith sample
f̂ The estimated (composite) classifier
H The set of possible classifiers
ht The base classifier which is trained at boosting iteration t
αt The weight of the base classifier at boosting iteration t
εt The empirical loss (training error) at boosting iteration t
Dt The weight distribution of the labeled samples at boosting iteration t
k Total number of source classes
f τ The target classifier
f s The sth source classifier
Hc The set of candidate classifiers which are trained from the source classes
Ds The data of the sth source classes
Dτ The data of the target domain
Dτl The labeled data of the target class
Dτu The unlabeled data of the target class
ns Number of samples in the sth class
nτ Number of total target domain samples
nl Number of labeled samples
nu Number of unlabeled samples
ŷj The estimated label or pseudo-label of the unlabeled sample xj
λ The parameter controls the trade-off between loss and regularization
Bs k × 1 weight vector of the source classes
Fs
i 1× k vector of predicted values of source classifiers for the ith sample

Wi,j The weight matrix of member wi,j indicating the weight between the ith and
jth unlabeled samples
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3.1.1 Adaptive Boosting

Boosting is an iterative method of constructing an accurate classifier by combining many

weak classifiers, each of which may only need to be reasonably accurate [29]. One of the

most popular boosting method, Adaptive Boosting (also known as AdaBoost), is used to

train our classifier. Adaptive Boosting weights each base classifier based on its prediction

accuracy. AdaBoost constructs an initial distribution of weights over the training set. Then,

the boosting mechanism selects a base classifier that gives the least error, where the error is

proportional to the weights of the misclassified samples. The training of the base classifier

is executed similarly to the following minimization

min
ht

1

nl

nl∑
i=1

L(ht(xi), yi, di), (3.1)

where L(.) is the empirical loss of the base classifier ht on the labeled samples, and di is

the sample weight. Initially, AdaBoost often constructs an initial distribution of weights

D1 = {di|di = 1
nl
, 1 ≤ i ≤ nl} over the training data. For each t = 1 to T iterations,

AdaBoost selects a base classifier that gives the least error

h′t = arg min
H

nl∑
i=1

(ht(xi)− yi)2di. (3.2)

Next, the weights associated with the samples misclassified by the selected weak classi-

fier are increased. The weight distribution is updated at each iteration so that previously

incorrect training samples are weighted higher. Specifically, the weight of the classifier is

determined based on the corresponding training error:

αt =
1

2
ln

1−
∑

i(ht(xi)− yi)2di∑
i(ht(xi)− yi)2di

. (3.3)
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In the next iteration, the weights associated with the samples misclassified by the selected

base classifier are increased as di ← die
−αtyiht(xi). Finally, the strong classifier f̂ is com-

puted as the signum function of the weighted linear combination of T base classifiers

f̂ = sign(
T∑
t=1

αtht). (3.4)

3.1.2 Extension to Multi-class Problem

To extend the binary learning problem into k-class, the “one-versus-one” strategy, also

known as pairwise coupling [35], is adapted for the boosting framework. Instead of using

the positive samples from a source class and the rest negative samples from the rest of the

source classes as suggested in [86], they train a set of base classifiers which distinguished

the samples of one source class from those of another source class. This approach uses

a binary learning algorithm to distinguish the samples of one class from, the samples of

another class. For k classes, a total of k(k−1)
2

binary classifiers are trained for all possible

class pairs.

Let Ps1(s2|xi) be the probability output for the binary boosting algorithm to classify

class s1 against class s2 (1 ≤ s1, s2 ≤ k and s1 6= s2). From the composite classifier, the

probability output can be directly computed using a sigmoid function:

Ps1(x) =
1

1 + exp(−f̂ s1)
. (3.5)

Assume that all P (.) are independent, the posterior probability for class s1 can be computed

as

P (yi = s1|x) =
∏
k

Ps1(sk|x). (3.6)
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Subsequently, the class label of example xi is predicted as:

ŷi = arg max
k

P (yi = k|xi). (3.7)

After transferring the base classifiers, the boosted classifier f̂ τ and the target label yτ were

derived similarly as equation (3.4) and (3.7), respectively. Dictated by the above equation,

the total weight of positive and negative training samples are set to be equal; and the in-

dividual weights are inversely proportional to the number of training samples. After the

additional training samples are obtained from a human expert, the weights distribution is

adjusted accordingly. Note that the highest probability class ŷ1 = arg maxk P (k|x) and

second highest probability class ŷ2 = arg maxŷ2 6=ŷ1 P (k|x) will be used to compute the

classification margin in the later chapters.

3.2 Transfer Learning

In this section, we aim apply the previously knowledge from the existing classes to

build the classifier. Let the sth source class (1 ≤ s ≤ k where k is the number of source

classes) contain the source data Ds = {(xi, yi)|1 ≤ i ≤ ns} where ns is the number of

source training samples. The target class T has some training data Dτ = {(xi, yi)|1 ≤

i ≤ nτ} where nτ is the number of target training samples (note that nτ � ns). Our

main assumption is that labeled training samples from sth source classes are available and

unlabeled data contains some target samples that can be used to improve the learning of the

target classifier function f̂ τ : X → Y .
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3.2.1 Collecting Classification Rules from Existing Data

When the number of samples of the target class is small, previous research suggested

to improve the classification by leveraging some transferable knowledge from the source

classes [67, 31, 26]. By conducting the training under AdaBoost [29], we are able to collect

all base classifiers hc from f s of k source classes into set Hc = {hc(xi)|hc(xi) ∈ f s, 1 ≤

c ≤ C} where C = k × T where T is the number of boosting iterations. To ensure the

quality of set Hc, we extract only the classification rules that yielded a training error less

than a threshold value. Additionally, we find a redundancy problem where some rules from

multiple sources were practically identical. To this end, we sort the classification rules

on their splitting attributes and then eliminated ones which had a negligible difference to

others. Note that this extraction process could be done off-line and prior to the encounter

of a new class.

3.2.2 Transferring Classification Rules to New Data

A recent study [86] suggested using boosting to extract k sets of base classifiers using the

positive samples from a source class and the negative samples from the rest of the source

classes. Subsequently, all base classifiers are collected into a candidate set Hc. as describe

in the above section. As the result, k binary boosted classifiers were trained, each classifier

is from a source class.

The formation of the target boosted classifier is illustrated in Figure 3.1. The target train-

ing set consisted of positive samples from the τ and negative samples from s. Instead of

training the base classifier directly from a small number of positive samples, the candidate

set Hc was exploited and the target training set was used for evaluating a candidate base
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Figure 3.1: The formation of the boosted classifier of the target class with small number of
target samples. Dashed blue lines represent a base classifier. Solid green line is the target
classifier constructed by the base classifiers transferred from the source classes.

classifier. For each boosting iteration t, a base classifier h′t ∈ Hc which minimizes the error

over Dτ was chosen as:

h′t = arg min
Hc

nτ∑
i=1

(ht(xi)− yi)2di. (3.8)

Interestingly, it was possible that a base classifier had the classification error over the tar-

get training data exceeds 50%, which is a violation of the boosting assumption [29]. This

could have happened because the base classifiers were transferred from source classes in-

stead of training using target samples. For instance, a base classifier captured a relationship

that is opposite from the target class. In binary form, the base classifier had the opposite

side of the decision boundary for positive class. In such case, the rule of that base classi-

fier was inverted as h∗t ← −ht. As a result, the base classifier was adapted to the target

data and the classification error consequently dropped below 50%. Similar to boosting, the

computation of weight αt is given by (3.3) and the update of weight distribution Dt is same

as (3.4).
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3.3 Adding Regularizations

So far, the classifiers have been trained using only the empirical loss term as training

error in (4.1). Since the objective is to learn a target classifier ht using only a small number

of labeled samples, we can take advantage of the large number of unlabeled samples. The

unlabeled samples are the image patches available abundantly in the video and required no

manual labeling effort. In [12], the training of a classifier ht are presented as the following

optimization:

min
ht

nl∑
i=1

L(ht(xi), yi) + λ
nu∑
j=1

R(ht(xj)), (3.9)

where the first term L(.) is the empirical loss of the target classifier ht on the labeled

samples; and the second term R(.) is the regularization which constraints ht based on

the unlabeled samples. The regularization parameter λ controls the trade-off between the

empirical loss and the regularization.

3.3.1 Determining the Weights of Existing Classifiers

To estimate the target classifier, a recent method in [12] proposes to construct a weighted

combination of the k source classifiers f s. Let βs be the measure of relevancy of the sth

source class on the target class, and f sj = f s(xj) be the predicted value of the sth source

classifier on xj . The estimated label or pseudo-label ŷj of the unlabeled sample xj based

on the k source classifiers is given by

ŷj =
k∑
s=1

(βsf sj ) = Fs
jB

s (3.10)
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where FS
i = [f 1

j . . . f
k
j ] is the 1× k vector of predicted value of k source classifiers for the

jth target sample, and Bs = [β1 . . . βk]′ is the k × 1 weight vector, where βs is the weight

corresponding to the sth source class.

Vector Bs can be estimated under the smoothness assumption that the predicted labels

between any two ”nearby” samples in the feature space should be similar, the ith and jth

unlabeled samples are determined to be ”nearby” according to their distance given by the

edge weight wi,j ∈ Wi,j as the distance in feature space. The weight vector Bs was

computed by solving the following minimization problem

min
Bs

nu∑
i,j=1

(Fs
iB

s − Fs
jB

s)2Wi,j

subject to
k∑
s=1

βs = 1 and βs > 0,

(3.11)

where Fs
iB

s and Fs
jB

s are the pseudo-labels, and wi,j = e−

∥∥xi−xj

∥∥2

σ as the distance in

feature space of for ith and jth samples of the target class.

The optimization in (3.11) can be rewritten into a standard quadratic problem and be

solved accordingly as presented in [12]. By enforcing that nearby points in the feature space

should have similar labels, the weighting scheme of Bs is likely to give higher weights to

the source classes which provide consistent labels to similar target samples. On the other

hand, those source classes which provide inconsistent labels to similar target samples is

likely to get a low weight. Furthermore, this minimization problem allows the evaluation

of Bs for all k source classes simultaneously, thus taking into account any potential inter-

actions among multiple source classes.
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3.3.2 Selecting Training Samples

A simple approach for selecting additional training samples is to uniformly sample the

unlabeled data at random and then use the training samples which are labeled as the target

class. However, in a classification problem with a large number of classes, the random

sampling approach obtains only a small portion of the labeled samples as target training

samples. Consequently, much labeling effort from the human annotator can be wasted.

Margin Sampling To help select more effective training samples, margin sampling has

been frequently used in active learning literature [31, 30, 48]. In feature space, a margin of

an example is defined as the distance of that example to the classifier’s decision boundary.

Intuitively, samples with large margins are easy to classify, since the classifier has little

doubt in differentiating between the two most likely class labels. Conversely, samples

with small margins are more confusing, therefore knowing the true label would help the

classifier discriminate more effectively between them. An unlabeled example is said to

have the smallest margin if the difference between its probabilities of belonging to two

classes is minimal. Thus, we consider only the most and second most probable classes

ignored the remaining ones. Consequently, we select the unlabeled example x ∈ Dτ
u which

has minimal difference between its highest probability class ŷ1 = arg maxk P (k|x) and

second highest probability class ŷ2 = arg maxŷ2 6=ŷ1 P (k|x). Following margin sampling

principle, a new training sample is selected by the following function:

arg min
x∈Dτu

P (ŷ1|x)− P (ŷ2|x) (3.12)
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where ŷ1 and ŷ2 are the classes which return the highest and second highest posterior prob-

ability. It projects the input feature space xj of a unlabeled sample into a margin in proba-

bility space and select the minimum margin among the classes. v

3.4 Metrics for Classification Evaluation

The ground truth data consists all centroid locations of biological objects in the image.

Depending on the object type, a biologist technician can collect from 25 to 100 centroids

locations per an training image.

Let us consider a binary classification problem in which the outcomes are labeled either

as positive or negative. There are four possible outcomes from a binary classifier. The

object detected by an methods was determined as true positive (TP) if there was a corre-

sponding ground truth location within the diameter of the object type; otherwise it is a false

positive (FP). Any undetected object is considered a false negative (FP).

We compute the Recall (also called True Positive Rate) TPR = TP
TP+FN

and Precision

(also called Positive Predictive Value) PPV = TP
TP+FP

. To measure the overall performance,

we used F-score as 2 × Precision×Recall
Precision+Recall

. By definition, a higher F-score value, which was

ranged from 0 to 1, corresponded to a better detection performance. Our aim was to use

a single metric such as F-score for the experiment to allow easy interpretation among the

training methods yet ensure satisfactory assessment since F-score encompass both recall

and precision values.

For some experiments, we provide AROC as the area under the curve of the receiver

operating characteristics (ROC) as the standard metric to determine the detection accuracy

of all evaluating classifiers. The ROC curve is created by plotting the true positive rate
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(TPR) against the false positive rate (FPR) at various threshold settings. By definition,

True Positive Rate = TP
TP+FP

and False Positive Rate = FP
FP+TN

where TP is the number of

true positives, TN is true negatives, and FP is false positives.



CHAPTER 4: CELL DETECTION WITH SIZE-DISTRIBUTION REGULARIZATION

The goal of this chapter is to reduce the number of samples required to train a classifier

in the cell detection context. Learning-based cell detection tend to be specific to a particular

imaging protocol and cell type. For a new cell type, a tedious re-training process must be

performed by human experts. To reduce the amount of effort required by the experts to train

a cell detector on the new cell type, previously collected information from the existing cell

types can be exploited. Similar to the transfer learning algorithm described in Chapter 3,

the cell detection in this chapter leverages useful information from existing rules of other

cell types which have already been observed (Section 4.1). When the number of samples

is very small, training is still susceptible to overfitting to those small number of samples.

We address the overfitting issues by introducing a regularization for the new type to refine

the ranking of the existing rules (Section 4.2). Since the Size-Differential (SDR) could

effectively quantify the characteristic cells in an image, it is selected as a regularization for

the cell detection task. For each cell type, the SDR is determined during the training step

and does not need to be re-trained for each individual image. The evaluation on five cell

types with 2,660 individual cells (50 real images) demonstrates that a cell detector trained

using the proposed method is able to achieve good performance on the new cell type with

only 10% of the training effort. We demonstrate that our method achieves the accuracy

of previous approaches while reduces the training effort up to 10 times. Additionally, we

evaluate the sensitivity of the SDR and show that only a few training samples are needed to
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Microscopy AdaBoost with AdaBoost with Proposed method with
Image 10 training samples 100 training samples 10 training samples

Figure 4.1: Sample detection results from a cell detector trained by a traditional machine
learning method (AdaBoost) compared to one trained by the proposed method. With 10
training samples, AdaBoost yields several incorrectly detected regions (denoted as red
squares) and undetected cells (denoted as yellow asterisks). In order to detect most cells
correctly (denoted as green circles), AdaBoost requires up to 100 training samples. Our
method only needs 10 training samples to achieve a similar performance.

Figure 4.2: The overview of the cell detection process. Given an input cell image, the cell
pixel classifier using the proposed method returns a binary image of cell pixels. Then, a cell
centroid detector groups cell pixels into cell regions (using connected component labeling)
and computes the location of cell centroids.

reliably estimate the SDR in our dataset. The proposed work and its applications presented

in this section were published in[54, 56]. An example of detection results is shown in

Figure 5.2.

4.1 Overview

A classification model in this chapter is described as a binary pixel classifier in the the

context of cell detection. In this context, the first step is to detect cell from a given grayscale
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Figure 4.3: The overview of the proposed cell pixel classification method.

image where each pixel is classified as either cell or non-cell. This is the main part of our

method and such step has been optimized using the proposed method. The next step is to

take the binary image and group them into cell regions. This is simply done by performing

connected component labeling [66]. All evaluations are conducted at the cell region level

by comparing the distance to the center of cell. The overview of the cell detection process

can be found in Figure 4.2.

In the feature space X of pixels in a microscopy image, and the label space Y =

{−1,+1} denoting each pixel in the image as cell or non-cell, training a cell pixel clas-

sifier is the same as estimating a function f : X → Y . In order to train the cell pixel

classifier, multiple training samples consist of the feature vector xi ∈ X and the label
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yi ∈ Y are collected from a user expert by clicking on a training image. A cell sample

(labeled as yi = 1) has the corresponding feature vector xi computed at the centroid pixel

of a cell.

Leveraging Classification Rules on a New Type For a new (or target) cell type τ , train-

ing the pixel classifier without a sufficient number of samples could often lead to poor

performance [70]. Rather, we leveraged the classification rules extracted in Hc to train the

cell detector similarly to a recent transfer learning algorithm, TaskTrAdaBoost [86]. In

such way, the classification rules from Hc were employed to build the final pixel classifier

fτ for the new cell type given training data Dτ = {(xj, yj)|1 ≤ j ≤ nτ} where nτ is

the number of target training samples (note that nτ � ns). The target weight distribution

is initialized as wτ = {wj|wj = 1
2nτ

, 1 ≤ j ≤ nτ}. For each iteration, we selected a

transferable rule hβ that minimizes the error over Dτ as:

hβ(xj) = arg min
hc∈Hc

(
∑
j

wj[yj 6= hc(xj)]). (4.1)

Overfitting Issues The overfitting problem was previously referred as having a set of

rules that is too specific to a particular dataset thus not having a diverse enough of clas-

sification rules [86]. Such problem was addressed in TaskTrAdaBoost by using multiple

sources. With a sufficient number of samples, training would certainly be improved by hav-

ing a more diverse thus relevant rules available. However, when the number of samples is

very small, training is susceptible to overfitting to those small number of samples. Training

step involves the selection of the most valuable classification rules by assessing the training

samples. We attempt to improve such assessment by using a new criterion (regularization).

Additionally, this problem is not specific to the cell detection; and our experiments also in-
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clude the multi-source framework. In the next section, we proposed to use a regularization

to refine the ranking of classification rules.

4.2 Size-Differential Regularization

In addition to minimizing the error on the training samples of the new cell type as in

Equation (4.1), the transferable rules hβ were selected to conform to a regularization. We

particularly chose the Size-Differential as a regularization (SDR) because of the following

reasons:

• It represents a common biological characteristic of cells.

• It can be quickly estimated from a training image.

• It requires minimal effort to measure manually.

In order to compute the feature vector of a cell training sample, the centroid location of a

cell is collected by a single mouse click performed by a biology technician on an image.

Under the assumption that the cells were approximately circular, measuring the cell size

needed only one additional mouse click on the cell boundary after collecting the centroid

location. We acknowledged that some cells were elliptical and measuring the exact cell size

in such case might require two clicks for the major and minor axes. Alternatively, other

regularizations such as shape and color features could be integrated into our framework

depending on the application domain. Under in vivo microscopy, the florescent intensities

within the cells were different depending on the location of a cell with respect to the mi-

croscope focal lens resulting in various cell sizes [50]. We modeled the cell sizes using a

Gaussian distribution. Figure 4.4 explains the selection of a classification rule based on the
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cell size distribution on the training image.

Let us define a distributionP ∼ N (µm, σ
2
m) to model the cell size with µm = 1

M

∑
m(rm),

and σm =
√

1
M

∑
m(rm − µm)2 where rm is the cell radius. In other words, the cell size

distribution P was estimated using set R = {rm|1 ≤ m ≤ M} where M is the number

of size samples. On a training image Iτ of the new cell type, a user measured the cell

radius rm by one additional mouse click on the cell boundary after getting the cell loca-

tion. Thus, acquiring M samples of cell sizes required only additional M mouse clicks. In

Section 4.3.3, we showed that the estimation of P was robust enough to maintain a stable

performance with M = 6.

After acquiring P , we collect every classification rule hc and apply each rule to classify

the training image Iτ to obtain a binary classification image containing cell and non-cell

pixels. Neighboring cell pixels were grouped into U cell regions using the connected com-

ponent labeling procedure [66]. This procedure uniquely labels a group of pixels based

on its connectivity with the neighboring pixels. Assumed that cells were approximately

circular, cell radius ru were automatically derived from each cell region and formed a set

Rc = {ru|1 ≤ u ≤ U}. To ensure the quality of Rc, we filtered out the outlier regions

which are smaller than a threshold value. Subsequently, we used set Rc to compute the

detected cell size distribution Qc as a discrete probability distribution where the values of

cell sizes inRc is equally spaced and contained within a discrete bin.

On training image Iτ , we evaluated the conformity of classification rule hc, which re-

sulted in the detected size distribution Qc, to the user estimated cell size distribution P

using the Kullback-Leibler divergence [43]. In particular, we selected the classification
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rule h∗β as:

h∗β(xj) = arg min
hc∈Hc

((
∑
j

wj[yj 6= hc(xj)]) + λDKL(P||Qc)) (4.2)

where DKL(P||Qc) is the Kullback-Leibler divergence between distribution P and Qc:

DKL(P||Qc) =
∑
p

P(p) log
P(p)

Qc(p)
(4.3)

and p is a bin containing the equally-spaced values of possible cell sizes. As the result, the

classification rule h∗β conformed with the cell size distribution P besides minimizing the

target training error.

Following the boosting scheme of T classification rules h∗β(xj), the detector of the new

cell type fτ was constructed as:

fτ = sign(
T∑
β=1

αβh
∗
β(xj)) (4.4)

where the boosting coefficient αβ is computed similarly as in [86]. In our dataset, cells

do not often overlap with others and the paper focuses on reducing the number of training

samples. However, we noted that there were several cases where some cells were in a clus-

ter and touch each other. In such cases, rather than using connected component labeling,

the grouping of cell pixels can be coupled with methods such as [1, 22, 87]. Thus, our

method of improving training efficiency could be integrated with other works on handling

occlusion and cell clusters.

Implementation Details The proposed method, which was implemented in Matlab R2012a

on an Intel Core 2 Duo 2.66GHz workstation, ran at an average speed of 1.8 seconds when

detecting approximately 25 to 100 cells in an 1000× 1000 pixel image.
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Table 4.1: The description of the experimental datasets
ID Cell Type Imaging Protocol Mag. Source
NKT Natural Killer T in-vivo Intravital 10X [75]
WBC White Blood Cell in-vivo Intravital 20X [53]
RBC Red Blood Cell in-vivo Intravital 40X [40]
DSP Drosophila Fluorescence Light 40X [10]
HTC HT29 Colon Cancer Fluorescence Light 40X [10]

NKT WBC RBC DSP HTC

Figure 4.5: Representative images with different appearances of five cell types that are
captured from various sources.

4.3 Experiments on Cell Detection

Data Description: Five different cell types including white blood cells (WBC), natural

killer T-cells (NKT), red blood cells (RBC), drosophila (DSP), and HT29 colon cancer

(HTC) were acquired using 2 imaging protocols (in vivo epi-fluorescence and isolated flu-

orescently labeled) and 3 magnification levels (10X, 20X, and 40X). We evaluated the

performance of the detection algorithms on a total of 50 real images (10 images from each

cell type). Each image might contain from 25 to 100 cells (total of 2660 cells). We di-

vided the images from each cell type into two halves for training and evaluating. A biology

technician manually determined the center and the radius of the cells in 50 images. For

each cell type in our experiment, we only selected training samples from a set of 5 images

and evaluate on another set of 5 images to ensure there is no possible overlap between the

training and testing data. The details of each cell types were described in Table 4.1 and



50

sample images were shown in Figure 4.5.

Compared Methods: To evaluate the performance, we consider two components of the

proposed method: the Size-Differential Regularization integration and the transfer learning

strategy. The CSD was proposed as a Size-Differential Regularization to be integrated with

the transfer learning framework (as described in Section 4.2) to form the GlobalTrAdaBoost

algorithm. This proposed method is compared with two existing boosting methods that

were used to train the cell detector. First, AdaBoost algorithm [29] was considered as the

baseline method. Second, TaskTrAdaBoost [86] was employed to transfer knowledge from

previous data to the training of new data. We showed some detection results of the proposed

method compared to those of AdaBoost, and TaskTrAdaBoost in Figure 4.6.

In this section, we examined the effect of the Size-Differential Regularization on the

performance of AdaBoost, TaskTrAdaBoost, and GlobalTrAdaBoost. Additionally, we dis-

cussed the sensitivity of the cell size distribution and explained how our approach was able

to estimate the distribution with just a few samples. To objectively evaluate the detection

performance, we replicated the training and testing of each method 30 times on each of 5

cell types. In each evaluation, one cell type was chosen as the new type, and the remaining

cell types were used as the existing types.

4.3.1 The Effect of the Size-Differential Regularization

To evaluate the effect of the Size-Differential Regularization on the detection accuracy,

the F-measures of GlobalTrAdaBoost are compared against those of AdaBoost and Task-

TrAdaBoost. We measure the training effort Eτ as the number of new training samples and

the number of size samples required to obtain the global regularizer (Eτ = nτ +M where
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M = 6 for GlobalTrAdaBoost and M = 0 for AdaBoost and TaskTrAdaBoost). Training

is conducted withEτ varying from 10 to 100. In each execution, the target training samples

Dτ are randomly selected. To keep the training set balanced, an equal number of non-cell

samples are also randomly selected for all methods.

The performance of the final detector would be dependent on the training data as shown

in Table 4.2; and the maximum attainable performance would be the performance with

the maximum number of training samples. When trained with a large number of sam-

ples (Eτ = 100), all AdaBoost, TaskTrAdaBoost, and GlobalTrAdaBoost expectedly reach

similar F-measures of 0.82, 0.83, and 0.84, respectively). Theoretically, the performance of

all compared methods should approach similar results with large amount of training data.

The focus of the our experiment is not on the improving the final detection performance

but rather reducing the training effort. Thus, we focus on comparing how the performance

improves especially when the training size is small. However, GlobalTrAdaBoost show sig-

nificant improvement in accuracy as well as stability to other methods with small training

efforts. In particular, at training effort Eτ = 10, 20, and 30, integrating the size distri-

bution (as described in Section 4.2) improves accuracy as the average improvement over

TaskTrAdaBoost is 17%, 14%, and 8%, respectively (see Table 4.2). The stability of the

GlobalTrAdaBoost is also improved as the standard error reduces from TaskTrAdaBoost by

22%, 39%, and 27%. Evidently, the CSD regularizes the detection by refining the ranking

of classification rules when only a few training samples were available.

Compared to AdaBoost, GlobalTrAdaBoost reduces the training effort up to 10 times

(Eτ = 10 versus 100) to achieve equal performance. When AdaBoost encounters a new

cell type which has a different size from what had been seen before, providing few train-
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Table 4.3: Comparison of Cell Size Distributions (Mean ± Standard Deviation in pixels)
constructed using 6 selected samples and all available samples. ∆µ is the difference of the
means and ∆σ is the difference of the standard deviations. Note that the differences across
the cell types are quite small (less than 1 pixel).

Data All Samples 6 Samples ∆µ ∆σ

NKT 4.95 ± 1.40 4.73 ± 1.48 0.22 0.08
WBC 9.34 ± 2.15 8.30 ±2.02 1.04 0.13
RBC 12.17 ± 2.75 12.79 ± 2.79 0.62 0.04
DSP 6.86 ± 1.17 7.35 ± 0.81 0.49 0.36
HTC 5.26 ±1.63 5.51 ± 1.91 0.25 0.28

ing samples from the new cell type usually yields poor performance (F-measure= 0.57

when Eτ = 10). However, with the same number of training samples, GlobalTrAdaBoost

rapidly adapts to the new cell type by regularizing the classification rules from existing

types to conform with CSD (as described in Section 4.2). In fact, with just 10 training

samples, GlobalTrAdaBoost’s F-measure was already 0.81, which was only 4% lower than

its maximum performance.

4.3.2 The Estimation of the Size-Differential Regularization

The estimation of the Size-Differential Regularization played an important role in the

detection performance when only a few training samples were available. The cell size

distribution was estimated using a Gaussian model constructed by a few manually collected

samples. Per each cell type, 6 cell samples which were most frequently selected upon the

user’s inputs were used to construct the estimated cell size distribution. In each set, we

computed the mean and standard deviation of cell sizes per each value of M . We observed

that the mean of the standard deviations of multiple sets start converging when M ≥ 6. We

compared this distribution with the true cell size distribution which were constructed using

all available cell samples in a dataset.



54

Original Image AdaBoost TaskTrAdaBoost GlobalTrAdaBoost
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Figure 4.6: Sample results from five different cell type comparing AdaBoost, TaskTrAd-
aBoost and the proposed method when trained with only 10 training samples. The num-
ber under each image is the corresponding detection performance, in terms of F-measure.
When provided with as few as 10 training samples, both AdaBoost and TaskTrAdaBoost
provide many false positives (red squares) and false negatives (yellow asterisks). Global-
TrAdaBoost is able to achieve high numbers of true positives (green circles) using the same
amount of training effort.
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Table 4.3 showed the cell size distributions with mean and standard deviation in pixel

values. It was notable that the standard deviations of the size distribution in WBC (at 2.02

pixels) and RBC (at 2.79 pixels) were slightly higher than other cell types because these

types had more cells that are appeared to be elliptical which made them more difficult to

be accurately measured under the circular assumption. This also explained why the mean

difference in WBC and RBC were higher than other types at 1.04 and 0.62 pixels respec-

tively. However, the differences between the two distributions averaged across all cell types

yielded as low as 0.45 pixel in mean and 0.18 pixel in standard deviation implied that 6 se-

lected samples were reliable enough to estimate the cell size distribution. Additionally, the

experiments show that CSD works well for all of the cell types in our dataset.

4.3.3 The Sensitivity of the Size-distribution Regularization

The estimation of the Size-distribution Regularization plays an important role in the

detection performance when only a few training samples were available. The cell size

distribution is estimated using a Gaussian model constructed by a few manually collected

samples. To evaluate the detection performance against the range of cell sizes, we ran-

domly select 30 sets of M , which is up to 16 samples, from each cell type. In each set, we

compute the mean and standard deviation of cell sizes per each value of M . As described

in Section 4.3.3, the mean of the standard deviations of multiple sets starts converging

when M ≥ 6. Thereafter, we compute the mean µ∆ and standard deviation σ∆ of mul-

tiple sets of 6 samples. If the GlobalTrAdaBoost performance is still higher than other

methods when the Size-distribution Regularization estimation varied by the value of σ∆,

then we could infer the Size-distribution Regularization of 6 cell size samples (M = 6) are



56

sufficient to improve the detection performance. We integrate the GlobalTrAdaBoost with

two fluctuated values of the Size-distribution Regularization Punder ∼ N (µ∆ − σ∆, σ
2
∆),

and Pover ∼ N (µ∆ + σ∆, σ
2
∆). The corresponding methods Globalunder and Globalover

are executed 30 times in the same procedure described in Section 4.3.1. We show the F-

measures in conjunction with other detection methods in Table 4.2. The performance of

both Globalunder and Globalover at each Eτ are significantly better (p < 0.05) than both

AdaBoost and TaskTrAdaBoost up to Eτ = 60.

4.4 Summary

To reduce the amount of effort required by the experts to train a cell detector on the new

cell type, previously collected information from the existing cell types can be exploited.

The classification rules extracted from existing cell types are combined with the training

samples of the new cell type using transfer learning. However, when the number of samples

is very small, training is still susceptible to overfitting to those small number of samples.

We address the overfitting issues by introducing a regularization for the new cell type to

refine the ranking of the existing rules. We particularly choose the Size-Differential (SDR)

as a regularization because it could effectively quantify the characteristic cells in an image.

For each cell type, the SDR is determined during the training step and does not need to be

re-trained for each individual image. The estimation of the SDR played an important role in

the detection performance when only a few training samples were available. Besides SDR,

the proposed framework can potentially employ other regularizations such as cell shape

variance and area of cell cluster. One direction of future research can be investigating

on how these regularizers would be used to reduce the number of training samples. We
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believe that these results demonstrated the potential of the proposed method for greater

applicability in cell detection by reducing the amount of human effort.



CHAPTER 5: SOCIAL INSECT DETECTION WITH SPATIO-TEMPORAL
REGULARIZATION

5.1 Overview

A network formed by social insects (ants, bees, and termites) is of significant interest to

biologists to understand the division of labor and task specialization, collective search and

retrieval, adaptive networks, and other types of distributed problem-solving [72]. The stud-

ies of such social network require the analysis of movements and interactions over a long

period of time. Traditionally, the detection process has been done by manually observing

many insects in a colony. For example, two colonies containing dozens of individual in-

sects are illustrated in Figure 5.1. Since this manual process is extremely time-consuming,

it is not feasible for handling a large amount of data and limits the research progress in

this field. Therefore, recently there have been many attempts to automate the detection for

social insects.

In this chapter, we propose a transfer learning method that employs the spatiotemporal

relationship among the unlabeled data. The spatiotemporal consists of the pixel coordi-

nate as well as the time frame in the video from which an image patch is obtained. The

unlabeled samples are the image patches available abundantly in the video and required

no manual labeling effort. We estimate the spatiotemporal connectivity between pairs of

unlabeled samples using the optical flow throughout the video. Our approach is based on

the assumption that two unlabeled samples which are connected by the optical flow should
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Figure 5.1: Typical images of ants and termites in colony contain at least dozens of indi-
vidual objects within a controlled laboratory environment. A few positive samples of ants
and termites (in green) as well as negative samples of dirt, eggs, container, and noise (in
orange) are zoomed in to show greater details.

have the same predicted label. This motivates us to minimize the difference in predicted

labels between two samples which are spatiotemporally connected. After that, we construct

a graph to learn the weighting scheme of the existing classifiers from multiple sources to

supplement the small number of labeled samples. The evaluation on three data sets of social

insects such as ants and termites with over 6,000 samples demonstrates that the proposed

method is able to reduce the training effort up to 16 times while maintaining comparable

accuracy to previous approaches. An example of detection results is shown in Figure 5.2.

5.2 SpatioTemporally Regularized Adaptive Learning

In this paper, we investigate on the regularization term and formulate the proposed

method in three parts. First, we provide some background on determining the relevancy

of the source classifiers (Section 3.3.1). Next, we propose to weight the unlabeled sam-

ples based on the spatiotemporal connectivity (Section 5.2.1). Finally, we train the target

classifier in a boosting framework (Section 5.2.2).
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Image of an ant
colony

TaskTrAdaBoost
with 4 training
labels

TaskTrAdaBoost
with 64 training
labels

Proposed with 4
training labels

Figure 5.2: Detection results from a classifier trained by a transfer learning algorithm
(TaskTrAdaboost) compared to one trained by the proposed method. With 4 training sam-
ples, TaskTrAdaBoost yields many false positives (denoted as red squares) and false nega-
tives (denoted as blue squares). In order to detect most object correctly (denoted as green
squares), TaskTrAdaBoost requires up to 64 training samples. Our method only needs 4
training samples to achieve a comparable accuracy.

5.2.1 Spatiotemporal Regularization

Matrix Wi,j was computed in Equation (3.11) using only the distance in feature space

in the previous section. In this section, we propose a new way to compute Wi,j using a

spatiotemporal regularization which is based on optical flow. The rationale behind this ap-

proach is based on the assumption that two image patches which are connected in image

coordinates at some time t in the video should be the same predicted label. This motivates

us to minimize the difference in predicted labels between two samples which are spatiotem-

porally connected. Thus, the weightwi,j between spatiotemporal connected samples should

be high because they are likely to be the same labels. Formally, in an image at the temporal

frame t from a video, an optical flow vector was computed at every pixel location in the

image. Subsequently, all of the optical flow vectors within a non-overlapping image area,

called block bt, was summed up into a single vector vt of the block in the image at time t.

By summing up with vectors, each block now consists of a single optical flow vector which
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(a) Connectivity using feature space (b) Connectivity using spa-
tiotemporal graph

Figure 5.3: Visualization of the distance between a sample to its nearest neighbors in fea-
ture space (left) and in the spatiotemporal graph (right). The neighbors on the left figure
have mixture of negative samples while almost all neighbor on the right figure are positive.

approximates the general orientation and magnitude of the motion of the objects contained

inside the block.

After collecting these blocks, we construct a graph structure GST = 〈VST ,EST 〉 con-

sists of a set of nodes and each node nt ∈ VST representing block bt and contains the

block’s spatial coordination (cbt , rbt , t) where cbt and rbt are the column and the row of

block bt in an image, and t is the temporal frame. Together with the nodes in GST is a set

of edges ett+1 ∈ EST connecting node nt and one of its 9-connected temporal neighbors

node nt+1. The neighbor node nt+1 is determined based on the orientation and magnitude

of vector vt and the edge is associated with a numeric value indicating the cost to connect.

For example, if node nt has the vector magnitude less than a motion threshold which indi-

cates that little movement has been reported, it will be connected to block nt+1 which has
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the same position in the next frame. On the other hand, if node has a magnitude over a

threshold value, we then determine to which of the 9-connected neighbors it will be con-

nected using the orientation of its vt. As a result, we are able to construct a connected

graph representing the relationship among all blocks in an image sequence.

From GST , we build the weight matrix Wi,j which contains weights between unlabeled

samples. Given any arbitrary pair of unlabeled samples xi,xj ∈ Dτ
u, we can using (ci, ri, ti)

and (cj, rj, tj) where c, r is the image coordinate at time t to map them directly to the

corresponding nodes ni and nj ∈ VST . Subsequently, we calculate weight wi,j ∈ Wi,j

between two nodes ni to nj as the shortest path between them using Dijkstra’s algorithm

as follows

wi,j = shortestPathDijkstra′s(ni, nj) (5.1)

Using an adjacency matrix, the time complexity to add an additional node is O(|VST |2)

where |VST | is the total number of nodes. While the total number of nodes is increased over

time, its maximum value is the product between the total number of images in the video the

total number of block per image. The number of blocks per image is carefully chosen to

keep balance between the resolution of optical flow vectors and the computational expense

when constructing graph GST . Additionally, we recognize that it is sometime challenging

to determine the neighbor node based solely on the optical flow vector, so we consider al-

ternative possibilities by creating extra edges to all of the other neighbor nodes where each

edge is assigned a higher associated cost. Figure 5.3 illustrates the effectiveness of sample

comparison using GST instead of distance in feature space. While the connections using
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the distance in feature space contain a mixture of negative samples and positive samples,

almost all unlabeled samples connected to the same samples can be seen as positive.

5.2.2 Learning the Target Classifier

We learn the target classifier f τ using only a few labeled target samples and a large

amount of unlabeled samples. Using Equation (3.10), we can predict the pseudo-label ŷj

of any unlabeled sample xj based on the weighted combination of source classifiers. Each

source classifier f s is learned from the source labeled data Ds = {(xi, yi)|1 ≤ i ≤ ns}

where ns is the number of labeled samples from a source class. By conducting the training

under the boosting framework, we are able to collect all base classifiers hc from f s of k

source classes into setHc = {hc(xi)|hc(xi) ∈ f s, 1 ≤ c ≤ C} where C = k × T where T

is the number of boosting iterations.

Similarly on the target class, we adopt the boosting framework to train a composite

classifier f τ from multiple base classifiers. At boosting iteration t, we learn a base classifier

h′t by rewriting the empirical loss and regularization in (3.9) into the following:

h′t = arg min
Hc

1

nl

nl∑
i=1

(ht(xi)− yi)2di + λ
1

nu

nu∑
j=1

(ht(xj)− ŷj)2dj, (5.2)

where ht(xi), yi, di are respectively the label by base classifier hc, the actual label, and the

weight of the ith labeled sample; ht(xj), yj , dj are respectively the label of base classifier

ht, the pseudo-label, and the weight of the jth unlabeled sample; and λ is the regularization

parameter.

It can be observed that parameter λ in (5.2) and the source classes play a role in the

error bound of the target class. When λ = 0, the error bound reduces to one that uses only
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Algorithm 1: Spatio-Temporally Regularized Adaptive Learning (STRAL)
Input: k source classifiers f s, labeled data Dτ

l and unlabeled data Dτ
u, distribution di

and dj to be uniformly distributed, and regularization parameter λ
Output: Target classifier function f τ : X → Y

1: Construct graph GST with optical flows through the video
2: Compute Wi,j using the shortest path between 2 nodes in GST using (5.1)
3: Learn source relevancy Bs by solving (3.11)
4: Predict the pseudo labels ŷj using (3.10)
5: for t = 1 to T do
6: Find the classifier ht that minimizes (5.2) resulting in regularized loss εt
7: Set αt = 1

2
ln 1−εt

εt
where εt < 1

2

8: Update the weight distribution
di ← di × e−αtht(xi)yi
dj ← dj × e−αtht(xj)ŷj

9: end for
10: return f τ (x) = sign(

∑
t αtht(x))

labeled target samples. Thus, the proposed method is degraded into a traditional approach

such as AdaBoost. As λ increases, the influence of the source classifiers becomes higher.

We recommend a larger value of λ under the scenario of lack of labeled target samples and

the training must resolve around the regularization. To this end, the effect of transferring

knowledge from the source classes is greater than within the target class. In the extreme

case when λ → ∞, the target samples will no longer be meaningful and the proposed

method relies solely on weighted source classifiers. Thus, effective transfer is possible

only if the difference between source and target classes is small.

Since the proposed method is based on regularizing the unlabeled samples with re-

spect to their spatiotemporal connectivity, we refer to it as the Spatio-Temporally Reg-

ularized Adaptive Learning (STRAL). Algorithm 1 summarizes the main procedure in

STRAL. As STRAL is directly based on the boosting framework, its convergence prop-

erties can be inherited from AdaBoost [68]. Furthermore, since the condition εt <
1
2
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is satisfied in algorithm 1, the prediction error ε over the target data Dτ is bounded by

ε ≤ 2M
∏T

t=1

√
εt(1− εt), and the upper bound of the associated generalization error is

given by ε+O(
√

MdV C
nl

), where dV C is the VC-dimension of the base classifier [86].

5.3 Experiments

We conduct a series of experiments on images of ants and termites to demonstrate the

performance of the proposed method STRAL against three classification methods: Ad-

aBoost [68], TaskTrAdaBoost [86], and FeatReg which is a version of the proposed method

but uses the feature distance of unlabeled samples instead of using the spatiotemporal infor-

mation and loosely based on a method in [12]. The AdaBoost does not employ either the

transferred knowledge from the source domains or any regularization on unlabeled sam-

ples. A transfer learning approach, TaskTrAdaBoost, exploits the knowledge from source

domains to be re-used on the target domain. Since TaskTrAdaBoost does not explicitly

provide a regularization term, it does not take advantage of any regularization on unlabeled

data. When the target training data is small, TaskTrAdaBoost is demonstrated to be ef-

fective in exploiting the existing knowledge to learn the new data in [86]. To isolate the

effect of spatiotemporal regularization on the classification accuracy, we form FeatReg, a

method adopted from [12] which determines the relevancy of the source classifiers solely

on the feature distance of unlabeled samples instead of using the spatiotemporal informa-

tion. For simplicity, we used decision stumps as base classifiers to illustrate the relative

performance of the proposed method. Slightly better accuracy may be achieved by using

more complex base classifiers such as decision trees or SVMs, but we do not expect the

relative performance gain to differ.



66

Table 5.1: Description of the experimental datasets
Species Frames Image Dim Objects Marking Common Size

Messor 4000 1240 X 960 49 Light Tint 15 X 35
Temnothorax 5000 960 X 540 50 Color Paint 20 X 55
Macrotermes 2500 982 X 982 29 Unmarked 35 X 70

5.3.1 Procedures

Data Our data consist of three videos each taken by a difference biological research

group. The first video contains a colony of 50 Temnothorax ants taken at thirty frames

per second. Some of the ants are painted to assist in identification. The second video con-

tains a colony of 49 Messor ants taken at a higher resolution. We also obtain 2,500 frame

video of 29 Macrotermes termites which are unmarked (see Figure 5.1). In each video,

the positions of ants and termites were manually labeled in all frames as their respective

biology experts. To evaluate the effectiveness of the proposed method, we collected 6,000

image patches (2,000 image patches from each video). One half of the image patch are

positive samples while the other half are negative samples. Each image patch is cropped

from each video randomly, and the label is determine as positive if its center is less than

half of the average length of the respective insect from the ground truth position. In the

experiment, we select the Messor dataset as the target and other data sets serve as sources.

In the target data, we divide the samples into non-overlapping two halves: one half for

training and another half for testing. The details of each data set are described in Table 5.1.

5.3.2 Reduction on Training Effort

We measure the training effort nl as the number of labeled samples. We conduct an

experiment with nl varying from 4 to 256. Note that nl consists of equal number of positive
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Table 5.2: AROC (Mean ± Standard Deviation) of boosting-based classification methods
for different number of labeled samples nl. A performance number is highlighted in bold
if it is significantly better than all other methods based on a paired t-test at p = 0.05.
nl AdaBoost TaskTrAdaBoost FeatReg STRAL

4 0.71 ± 0.11 0.72 ± 0.09 0.81 ± 0.03 0.83 ± 0.02
8 0.72 ± 0.08 0.78 ± 0.07 0.83 ± 0.02 0.84 ± 0.01
16 0.76 ± 0.05 0.81 ± 0.03 0.84 ± 0.02 0.85 ± 0.01
32 0.80 ± 0.04 0.81 ± 0.03 0.84 ± 0.01 0.85 ± 0.00
64 0.82 ± 0.03 0.83 ± 0.02 0.85 ± 0.01 0.85 ± 0.00
128 0.84 ± 0.02 0.84 ± 0.02 0.85 ± 0.01 0.85 ± 0.01
256 0.85 ± 0.01 0.85 ± 0.01 0.86 ± 0.01 0.86 ± 0.01

and negative samples. For every number of labeled samples, we replicated the experiment

30 times and record the average performance of each method. The performance of the

detector would be dependent on the training data as shown in Table 5.2; and the maximum

attainable accuracy would be the performance with the highest number of training samples.

We note that as expected AdaBoost, TaskTrAdaBoost, FeatReg, and STRAL reach the

similar maximum accuracy close to AROC = 0.86 when trained with a large number of

samples (nl = 256). The main objective of our experiment is to reduce the training effort.

Thus, we focus on comparing how the accuracy improves especially when the training size

is small.

First, STRAL reduces the training effort significantly while achieving comparable per-

formance to TaskTrAdaBoost and FeatReg, respectively. For example, STRAL employs

only nl = 16 to achieve similar accuracy of AROC = 0.85 as the TaskTrAdaBoost with

nl = 256 samples. Similarly, in order to reach the same 0.85 performance, FeatReg re-

quires up to 64 labels comparing to only 16 labels in STRAL. Second, the stability of the

STRAL is also improved as the standard deviation of AROC reduces from TaskTrAdaBoost

by at least 3 times when the number of training labels is small (nl = 4, 8, 16) as indicated
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Figure 5.4: Comparisons of classification accuracy of evaluating methods using only 4
labels to simulate the rapid training ability of all evaluating methods

in the first 3 rows of Table 5.2. This result provides evidence that the usage of regular-

ization on unlabeled samples is indeed beneficial supplement the weighting of the existing

classifier and subsequently reducing the number of training labels. Third, at training effort

nl = 8, 16, and 32, STRAL yields higher accuracy over FeatReg which does not use the

spatiotemporal regularization. Using the sample t-test with 95% confidence level, STRAIL

accuracy is statistically higher than that of FeatReg. Evidently, the usage of spatiotem-

poral information to construct matrix Wi,j is helpful to regulate the training of the target

classifier even when only a few labeled samples are available.

5.3.3 Improvement on the Initial Accuracy

To simulate rapid training, we compate the accuracy of STRAL against those of Ad-

aBoost, TaskTrAdaBoost, and FeatReg at the initial round of training. We evaluate the

impact of the spatiotemporal regularization on the initial detection accuracy by employing

only 2 positive labels which are randomly selected for all evaluating methods. An equal

number of negative labels are also selected to keep the training set balanced. To eliminate



69

the bias of selecting the target training samples, we also replicated the experiment 30 times,

and record the average performance of each method.

Figure 5.4 illustrates the ROC curve of all comparing methods with only 4 training sam-

ples. The proposed method gives the highest area under the curve. When encountered

a new object type which has a different from what had been seen before, providing few

training samples from the new domain yields poor accuracy in AdaBoost (AROC = 0.71)

as well as TaskTrAdaBoost (AROC = 0.72). However, with the same number of training

samples, STRAL rapidly adapted to the new object type and produces AROC already at

0.83, which was only 4% lower than its maximum performance (as seen in Table 5.2).

5.4 Summary

In this paper, we proposed a rapid training for a biological object detection method by

leveraging the spatiotemporal connections among the unlabeled data to transfer the ex-

isting knowledge from multiple sources. Our key contribution is the development of a

spatiotemporal regularization term to the standard loss minimization formulation. Based

on the smoothness in the predicted labels on the spatiotemporal connected samples, our

proposed method learns the weights of the classifiers from multiple source classes. The

evaluation on three data sets of social insects with 6,000 samples demonstrates that our

method reduces the training up to 16 times while maintaining a comparable performance to

previous approaches. For future studies, we plan to investigate on a more efficient learning

of the source weights by addressing the unlabeled labels that display fast movements in our

experiment.



CHAPTER 6: POLLEN CLASSIFICATION WITH TARGET-DIRECTED SAMPLING

In this chapter we propose the target-directed sampling (TDS) method to reduce the

amount of training effort required to classify the new (target) class. A majority of training

effort is spent on searching for the appropriate samples to label in a pool of unlabeled

samples. The distribution of unlabeled samples in biological images is usually unbalanced,

which means that while the samples of some classes is rather abundant, other classes can

have significantly less samples. On a highly unbalanced class distribution, it is particularly

time-consuming to obtain these samples when the human experts have to search for them

in a large number of unlabeled samples. Rather than having a human expert submit a set

of labeled images as training samples, TDS chooses particular samples from the unlabeled

pool for a human expert to label. Since the goal is to reduce training effort of the experts,

the labeling should only be done on the most useful training samples from the target class

that needs additional training samples. Initially, the number of training samples available

for the target class is usually small, thus additional training samples from the target class

is more needed than that from other classes. Thus, we propose the TDS method to search

for the most confusing samples that are most likely to belong to the target class in a pool

of unlabeled samples.
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Figure 6.1: A training iteration of the proposed method. Initially, a classifier is constructed
using Transfer Learning as discussed in Chapter 3. This classifier is then employed to
classify the unlabeled samples with some confidence scores. These confidence scores are
utilized in the Target-Directed Sampling to select valuable training samples that are most
likely to belong to the target class. The selected samples are presented to the expert to
provide the class labels. Then, the labeled samples in added into the training data for the
next iteration.

6.1 Overview

The overview of the method proposed in this chapter is briefly explained in Figure 6.1.

In particular, a new approach for training a classification system is discussed as follow:

The target-directed sampling (TDS) is proposed to effectively choose the unlabeled sam-

ples which are likely to be from the target class. Particularly, the unlabeled samples which

are most likely to be confused between a target class and another class are chosen first for

training. Without loss of generality, we assume there are some existing data with available

class labels and a large number of unlabeled data. As discussed in details in Chapter 3,

the classification rules are trained on a few existing object classes (the sources) and is able

to extrapolate some of that knowledge into the target class. These classification rules are

demonstrated to be reliable enough to build the initial classifier which a small number of
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new samples. The approaches have been successfully applied into pollen grains classifica-

tion. The method presented in this chapter has been published in [55].

6.2 Target Directed Sampling

For our classification problem, the unlabeled samples with a small margin between the

target class and a source class are more likely to be valuable. In this context, the limitations

of Equation 3.12 are in its incapability to looking for the training samples from the target

class. Since there’s a lacking of training samples from the target class, an additional target

training example would have more influence to the construction of the target classifier than

an additional source training example. In other words, knowing additional target samples

would help learning the target classifier more effectively. A constraint on the minimization

problem is needed to guide the search for the target samples in the unlabeled pool In such

way, the problem is reformulated as:

arg min
x∈DU

P (ŷ1|x)− P (ŷ2|x)

subject to ŷ1 = τ

(6.1)

where ŷ1 is the maximum confident label and τ is the target class. Such formulation ensures

that the samples with a small margin but has a highest confidence of the target label are

selected. This would help the selection method chooses more target training samples.

Handling Initial Classification The formulation in Equation (6.1) works well for some

scenarios where the classifier has predict the correct label of the highest confidence score.

However, there is still one limitation with considering only the highest confidence label ŷ1.

Since the initially there are only very few training samples, the quality of the classification
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Figure 6.2: TDS employed the transferred classification rules to select the most valuable
samples (in red circles) along the decision boundary between the most and the second most
confusing classes. These samples are most likely to contribute to the improvement of the
decision boundary.

is rather low. As a result, the confident score can be incorrect about the highest confidence

level. Thus the highest confidence samples may not be the actual target class since the con-

fident was computed on incomplete training data. To alleviate this problem, we explicitly

incorporate the second highest confidence label into minimization constraint as:

arg min
x∈DU

P (ŷ1|x)− P (ŷ2|x)

subject to (ŷ1 − τ)(ŷ2 − τ) = 0

(6.2)

In the above equation, we can rewrite the minimization constraint into its equivalency ŷ1 =

τ , or ŷ2 = τ to focus the search on the most probable target samples, while the margin

sampling incorporated the posterior probabilities of both the most the second most likely

label. Constrained by Equation (6.2), samples with a small margin between the target class

and a source class are more likely to be selected. The selection criterion does not only

differentiate the target class from other source classes but also improves the acquisition of

target training sample, thus benefited the classification.
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Handling multiple target classes The objective function in (6.2) can be further gen-

eralized to handle multiple target classes. This can be achieve by simply incorporating

additional terms into the minimization constraints. Specifically, we can derive as the fol-

lowing:

arg min
x∈DU

P (ŷ1|x)− P (ŷ2|x)

subject to
m∏
j=1

(ŷ1 − τj)(ŷ2 − τj) = 0

(6.3)

where m is the number of target classes. At this point, multiple target classes can be

acquired in order to improve the classification performance. The minimization constraint

is still restricted enough so that it only allows specific classes to be considered.

Generalizing the Formulations The objective function in Equation (6.3) used only the

margin from two probability terms P (ŷ1|x) and P (ŷ2|x). Additional confident label which

may include the target class does not considered in the current formulation. In order to

make this formulation applicable in the general case, the margin in the objective function

can be relaxed as:

arg min
x∈DU

P (ŷ1|x)− P (ŷn|x)

subject to
m∏
j=1

n∏
i=1

(ŷi − τj) = 0

(6.4)

where n indicates the number of predicted class labels to be consider as possible target

samples. This formulation is also considered as the general form of the proposed Target-

directed Sampling (TDS) method. The selection of valuable training samples using TDS is

illustrated in Figure 6.2.

Relations to Other Sampling Methods Depending on the settings of n and the presence

of the minimization constraint, Equation (6.4) can be related to other sampling methods:
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• If n = 1, TDS would select the predicted target label with the least confident score.

When there’s no minimization constraint, the objective function would reduce to the

least confidence sampling method [73].

• If n = 2, TDS would consider only the most and second most confident term which

are likely to be target class. Without the minimization constraint, TDS degenerates

into the Margin Sampling method.

• If n = k(k > 2), TDS becomes more generalized and consider the margin between

the most and kth most confident term which broaden the search for the target samples

that might have been mis calculated as low classification confidence.

The insight of Equation (6.4) reveals the connections of the TDS with some other sam-

pling methods. Those methods can be regarded as special cases of TDS. In other words,

TDS provides a unified framework to deal with different challenges of effectively sampling

the unlabeled data. TDS can also provide flexibility to meet the requirements of different

applications by adjusting parameter n and the the minimization constraint. In our biological

applications, TDS works best under n = 2 with the minimization constraint.

Probability of Selecting a Target Sample Figure 6.3 depicts the effectiveness of the pro-

posed formulation. As seen in figure 3(a), the probability of selecting a target samples in a

biological dataset from [48] with 3 selection methods: random sampling, margin sampling,

and proposed. While margin selection has been shown to be able to select more target

training samples than random selection (30% compared to 20%), our formulation has the

highest probability (upper 40%) to select training samples from the target class both mar-

gin and random methods. Initially, our formulation yields a significantly high probability
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(a) Target Example Probability (b) Classification Error Reduction

Figure 6.3: The probability of selecting a target example in the unlabeled data.

of selecting a target samples. The reason behind this effect is that the transferred classifiers

are likely to be over the true decision boundary of the target class where there is more target

samples. As our selection formulation encouraged the selection of target samples, more of

those samples are selected for training. Having more target training samples, the resulted

classifiers has considerably less error than other selection method. As shown in the figure

3(b), the classification error is reduced significantly particularly in the early training iter-

ation. This effect shows that the selection criterion has coupled well with the transferred

classifiers to select the most valuable training samples. Using this selection criterion, we

rank all unlabeled samples into an order set. The top samples of this ordered set is selected

to be labeled by the human annotator for the next iteration of training.

Although our focus is on selecting the target training samples, it is still worth mentioning

that many other methods can also achieve guiding the selection into the target samples such

as iterative clustering [44]. In our model, we choose to modify the minimization constraint

because it is easy to interpreted and supports multiple options of the target selection. By

incorporating this selection criterion, we ensure the most valuable samples for the target
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classifier will be selected. While the traditional margin sampling have focused on selecting

a minimal margin example from any class, this selection criterion favors the confusing

samples that most likely to belong to the target class.

Details of the implementation Our method is implemented in MATLAB on an Intel

Xeon with 4GB memory. The codes are currently available as a MATLAB toolbox on

our website2. The base classifier is implemented as a decision stump. We expect easy

integration into other datasets or frameworks. The researchers and collaborators who are

interested are encouraged to use the toolbox and provide feedback and suggestions.

6.3 Experiment: Pollen Classification

In this section, we evaluate an automatic classification method to discriminate pollen

grains coming from a variety of taxonomic types. Our experiment demonstrates that the

proposed method reduces the training effort of a human expert up to 80% compared to

other classification methods while achieving 92% accuracy in pollen classification.

6.3.1 Biological Background

The pollen grains of different plant taxa exhibit many different shapes and sizes, often

bearing characteristic ornaments like spines or furrows. This structural diversity has made

the identification of pollen grains an important tool in a variety of fields. Despite the myr-

iad of applications, the classification of pollen grains is still a tedious and time-consuming

process that must be performed by highly skilled specialists. Paleoecologists use layers

of lake sediments of pollen to reconstruct the past history of vegetation in different parts

of the world. Aerobiologists identify and quantify wind-borne pollen to warn allergy suf-

2http://fcl.uncc.edu/nhnguye1/ActiveTransfer.html
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(a) (b) (c) (d)

Figure 6.4: An example of pollen classification using the proposed method. (a) A cropped
region from a microscopic image containing a few pollen types. (b) The pollen grains are
detected with active contours where features are extracted. (c) The classification pollen
grains shown in unique colors. (d) The corresponding manual labels from a human expert.

ferers in periods of elevated risk. Since the vast majority of plant species, including most

agricultural crops, depend on animal pollination for their reproduction, there are many ap-

plications for the classification of animal-borne pollen. Classifying pollen collected from

pollinators like bees, hummingbirds and butterflies provides a record of different flower

taxa each individual has visited. For ecologists, this provides a window into the complex

network of interactions between plants and pollinators in a community. In agriculture and

conservation biology, pollen classification has practical implications for which plants are

actually receiving pollination services, as well as the nutrition and health of the pollinators

themselves.

In chapter 6, we have shown the framework for reducing the number of training sam-

ples by using an active transfer learning approach with a minimization constraint. In this

section, using a set of pollen images containing various mixtures of nine pollen types, we

demonstrate that the proposed method reduces the training effort of a human expert as

much as 80% compared to other classification methods while achieving 92% classification

accuracy. Additionally, we show an application of the proposed method in pollen counting.

Figure 6.4 illustrates an example of the pollen classification using the proposed method.
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Spike Count Besides adopting some generic shape and texture features, we added a new

feature to capture the pollen spikes and spores. Spikes and spores are important features

that can be discriminative among some pollen types. Figure 6.5 provides details on the ex-

traction of the spikes. Due to the inherent image quality and resolution, the active contours

are unable to capture the spikes and spores which often are too noisy and faint. However,

knowing the final position of the active contour will help identify these spikes. Thus, we

extract a “ring-like” binary mask along the active contour to estimate the region of the

spikes. Within this mask, a spike usually appears as a fluctuation in intensity. For each

pollen grain, the average intensity of pixels at each angle is computed. Then, a 1-D signal

formed by the intensity values at every angle is generated. A local minimum in the signal

is detected as a spike if its difference to the values at both adjacent local maxima are within

a range of [0.05, 0.40]. Note that we are able to distinguish a spike from the border of a

neighbor grain which yields a large intensity difference (as seen in Figure 6.5). The spike

count is computed as the number of local minima which satisfies the above condition.

6.3.2 Experimental Setup

We conduct a series of experiments on pollen images to demonstrate the performance of

the proposed method against two boosting-based classification algorithms: AdaBoost [29]

and TaskTrAdaBoost [86]. The AdaBoost algorithm does not employ either the transferred

knowledge from the source types or any selection strategy for new training samples. A

recent transfer learning approach, TaskTrAdaBoost, exploits the knowledge from source

types to be re-used on the target types. Since TaskTrAdaBoost does not explicitly provide

a strategy to select new samples, its new training samples are selected randomly from the
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Figure 6.5: The spike count discriminates pollen type which has many spikes (upper row)
from no spike (lower row). Left column: the active contour is unable to capture the spikes.
Middle column: the radial mask indicates the estimated region of the spikes. Right column:
a radial intensity curve consists of the average intensity of the pixels at each angle. The
local minima which satisfies a specific condition are counted as spikes (as black dots along
the curve). Note that although the pollen in the lower row has a neighbor with spikes, no
spike is counted as the intensity fluctuation at the boundary is too large.

unlabeled data. When the target training data is small, TaskTrAdaBoost is demonstrated to

be effective in exploiting the existing knowledge to learn the new data in [86]. In the fol-

lowing sections, we described in details the evaluation dataset, the detection performance,

and the classification procedure.

Data The pollen images used to test the proposed method were taken from an experi-

ment done on domestic honey bees housed at the Sonoran Arthropod Studies Institute in

Tucson, Arizona. On a microscope with a motorized stage, non-overlapping regions of the

microscope slide are scanned at 40x magnification into a digital image using the software

NIS-Elements (Nikon). Each image covers approximately 1mm2 at a resolution of 0.23
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Figure 6.6: Representative samples of each pollen type.

µm/pixel. Previous classification by a human expert indicates that these samples contain

a various mixtures of pollen types. We collect a total of 768 grains of 9 pollen types as

shown in Figure 1.1. Types 1-3 were most common, with a frequency of at least 16% in

at least one sample, while the other types were more rare, but nonetheless had a frequency

of at least 3% in at least one sample. A subset of the pollen grains in these images were

individually labeled for use as training and testing samples (see Table 6.1).
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Table 6.1: Description of the pollen types.
Type Name # Labeled Samples

1 Asteraceae 289
2 Larrea 120
3 Trixis 145
4 Phacelia 39
5 Lamiaceae 31
6 Carnegiea gigantea 26
7 Cylindropuntia 22
8 Datura 63
9 Prosopis 33

Table 6.2: The classification accuracy of the proposed method (in %) with respect to the
spike count feature. The spike count improves the classification accuracy in many types
(bold faced).

Pollen Type 1 2 3 4 5 6 7 8 9 Mean
Without Spike Count 96 100 97 89 72 93 92 93 70 89
With Spike Count 100 100 97 89 77 93 89 98 83 92

Classification Procedure A robust assessment of the performance of the pollen classi-

fication system has been made by comparing the classified pollen grains obtained auto-

matically by the classification system with those determined manually by a experienced

palynologists. To evaluate the accuracy of a classification method, we select each pollen

type as the target and execute a 3-fold cross validation. For each target, we choose ran-

domly 6 other types from the training set to be used as the source types. All classification

methods are provided initially with only 3 target samples which are selected randomly, and

the rest of samples form the unlabeled pool. At each iteration of training, 5 additional un-

labeled samples are selected for a human expert to label; then the classifier is re-trained

based on the newly labeled samples. We repeat the training for 50 iterations. The classifi-

cation accuracy on the target type is evaluated by the ratio between the number of correctly
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classified target samples and the total number of target samples in the test set. We record

the classification accuracy of the target type per each iteration. The overall accuracy is

computed as the average over all types. To eliminate the bias of selecting the initial tar-

get training samples, the experiment is replicated 30 times and the average performance of

each method is recorded.

Figure 6.7: Comparison of the classification methods with respect to the number labeled
samples. The proposed method achieve a comparative performance to other method while
requires 80% less number of labeled samples.

6.3.3 Results

We assess the effectiveness of the proposed method on three different aspects: (1) the

accuracy improvement with respect to the spike count feature; (2) the reduction of the num-

ber of labeled samples to achieve reasonable performance to other classification methods;

and (3) the consistency to a human expert in a biological application.
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Figure 6.8: Comparison of classification methods with the same number of target samples.
The proposed method yields a higher accuracy than other methods implying that it selects
more valuable target samples which is likely to improve the classification.

Improvement in Classification Accuracy We first measure the improvement in classifi-

cation accuracy by integrating the spike count feature. Table 6.2 provides the accuracy of

the proposed method with and without the spike count. Without the spike count, type 5 and

9 are confused with type 1 with the errors rates of 13% and 18% respectively. The spike

count feature improves the accuracy by 5% for type 5 and 13% for type 9 since it discrimi-

nates them with type 1 which has many spikes. Additionally, the accuracy improves in type

8 by 5% since it has a smooth boundary with no spike. We also observe a slight increase

in error rate for type 7 due to its confusion to type 6 which has a similar number of spike.

Overall, the error rate is reduced over 3% in all types resulting in 92% accuracy.

Reduction in Training Effort Figure 6.7 displays the average testing accuracy on all

target types with respect to the number of labeled samples. Note that the accuracy im-
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proves with the proposed method at any number of labeled samples. The improvement

with a small number of labeled samples is especially large: 11% over TaskTrAdaBoost and

23% over AdaBoost when trained with 10 samples. While TaskTrAdaBoost and AdaBoost

require more than 250 labeled samples to achieve a 91% accuracy, the proposed method

only requires 20% of the training effort, or 50 samples, to achieve a similar performance

(as shown in the red dotted lines in Figure 6.7). This result suggests that the proposed

method reduces the workload of the human annotator as high as 80% and still achieves a

comparative performance to other methods. The reduction in training effort is caused by

two reasons. First, the proposed method selects more target samples, on average 23 target

samples out of the first 50 unlabeled samples while TaskTrAdaBoost and AdaBoost select

only 11 target samples. Second, the selection criterion selects more useful training sam-

ples. Figure 6.8 compares the results of all three methods with the same number of target

samples. The performance of TaskTrAdaBoost is higher AdaBoost due to the transfer of

rules which is consistent with [86]. Our method shows an additional improvement over

TaskTrAdaBoost supporting that it selects not only more target samples but also the more

effective ones.

Application in Pollen Counting Counting the grains of each pollen type on the micro-

scope slides is a slow laborious process that must be performed by highly skilled palynol-

ogists. We compute the pollen distribution from the classified grains and compare to the

ground truth established by a palynologist on the data set (described in Section 6.3.2). Us-

ing t-tests with 90% confidence level, there is no statistically significant difference between

manual and automated methods; and the average error is as small as 3.6% (refer to Table
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6.3). Higher error rates are observed on type 6 (6.6%) and 7 (9.8%) due to the low sample

frequency of such types. Compared to other automated pollen counters such as in [38], the

difference in count in our case is indeed small (on average ≤ 2 grains per type). In the

identification of pollen collected from pollinators to record the number of visited flowers,

an average error under 4% is a small fraction of the total variational responses. Thus, we

believe the method has enabled a reliable pollen counter for the biology community.

6.4 Summary

In this chapter, we propose a target-directed sampling (TDS) method designed to reduce

the amount of training effort required to classify a new object class (the target). The train-

ing effort can be directly relate to the number of labeled samples which the human experts

have to annotate. TDS is proposed to effectively choose the unlabeled samples which are

likely to be from the target class. In particular, the unlabeled samples which are believed

most likely to improve the performance of the new classifier are chosen first for training.

The classification model which is employed in TDS is constructed from the classification

rules extracted from the existing classes. These classification rules are demonstrated to be

reliable enough to build the initial classifier which a small number of new samples. As

a result, the initial classification model is reliable enough to be used to select additional

training samples. The structural diversity made the classification of pollen grains an impor-

tant tool in a variety of fields. We discriminate pollen grains with a variety of taxonomic

types. The pollen classifier achieves 92% accuracy in pollen classification while reducing

the training effort up to 80% compared to other classification methods. We believe the

proposed method shows great potential toward the automation of pollen identification and
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counting which is commonly done by palynologists. We believe these results will enable

a wide range of application for a object classification system with minimal training effort

from a human annotator.



CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS

To automatically classify the biological images, machine learning techniques have been

widely used to train the classifiers from labeled images. For a new class of biological ob-

ject, a tedious and expensive labeling process is required from a human annotator. With

the growing amount of biological data and the increasing number of classes to recognize,

training a classification system needs a significant amount of manual labeling effort. The

aim of this research is to effectively reduce the training effort by applying the previous

knowledge from the existing classes as well as selecting the most valuable samples from

the unlabeled data. The contributions of this dissertation research consists the following

key components: First, a size-differential regularization is employed to refine the rank-

ing of classification rules to alleviate the risk of over-fitting in case of small number of

training samples. Second, a spatiotemporal regularization term to the standard loss mini-

mization formulation is developed based on the smoothness in the predicted labels on the

spatiotemporal connected samples, our proposed method learns the weights of the classi-

fiers from multiple source classes. Third, the Target-Directed Sampling is proposed to fo-

cus the search toward the samples of the new class. In this dissertation we demonstrate the

first two components and propose a solution for constructing a classifiers to achieve jointly

training of correlated classifiers. Further research and experiments need to be in progress to

conduct a viable solution for using size-differential regularization to effectively select addi-

tional training samples. We test the proposed methods with several real datasets including
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biological cells, pollen grains, and planktons. The experiments indicate that the proposed

framework achieves better performance than current machine learning approaches while

requires as low as 10% of the labeled data.

7.1 Future Directions

There are several future directions of the research in this dissertation. We have demon-

strated that the proposed method shows potential toward the automation of pollen identi-

fication and counting which is commonly done by biologists. One direction would be to

improve the accuracy of detection methods using a variety of regularization. In this dis-

sertation, we have demonstrated that the proposed method shows the reduction in training

labels in biological experiment. However, the accuracy of the proposed methods can be

improved in order to give it full potential to software application. To this end, advanced

classification methods such as deep learning can be a possible solution.

Additionally, an interesting direction would be to explore the applications of spatiotem-

poral regularization on video analysis in team sports. Many videos in sport settings are

collected with much spatiotemporal information. These meta data can potentially provide

regularizations to a variety of classification task with little training effort.

Finally, one can investigate on large-scale adaptations of the proposed methods as the

number of classes increases over time. It would be interesting to know if the proposed

method could be applied in a situation where the number of classes are increasing over

time. As one plans to investigate on a transfer learning approach to scale with an increasing

number of classes, a possible direction can be aggregating the knowledge from a class

as it is learned. As more classes are acquired, this collection of classification rules will
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become larger and more diverse. Extensive experiments need to be conducted in order to

demonstrate if this can be scaled as the number of new classes are incorporated.
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[60] P. Rai, A. Saha, H. Daumé III, and S. Venkatasubramanian. Domain adaptation meets
active learning. Proceedings of the NAACL HLT 2010 Workshop on Active Learning
for Natural Language Processing, pages 27–32, June 2010.

[61] N. Ray and S. Acton. Motion gradient vector flow: an external force for tracking
rolling leukocytes with shape and size constrained active contours. Medical Imaging,
IEEE Transactions on, 23(12):1466–1478, Dec. 2004.

[62] N. Ray, S. Acton, and K. Ley. Tracking leukocytes in vivo with shape and size con-
strained active contours. Medical Imaging, IEEE Transactions on, 21(10):1222–1235,
Oct. 2002.

[63] M. Rodriguez-Damian, E. Cernadas, A. Formella, M. Fernandez-Delgado, and P. D.
Sa-Otero. Automatic detection and classification of grains of pollen based on shape
and texture. Systems, Man, and Cybernetics, Part C, IEEE Transactions on, 36(4):531
–542, July 2006.

[64] H. A. Rowley, S. Baluja, T. Kanade, et al. Human face detection in visual scenes.
Carnegie-Mellon University. Department of Computer Science, 1995.

[65] N. Roy and A. McCallum. Toward optimal active learning through monte carlo esti-
mation of error reduction. ICML, Williamstown, pages 441–448, 2001.

[66] H. Samet and M. Tamminen. Efficient component labeling of images of arbitrary
dimension represented by linear bintrees. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 10(4):579–586, 1988.

[67] K. Sarinnapakorn and M. Kubat. Combining Subclassifiers in Text Categorization: A
DST-Based Solution and a Case Study. IEEE Transactions on Knowledge and Data
Engineering, 19(12):1638–1651, 2007.

[68] R. E. Schapire. The boosting approach to machine learning: an overview. Nonlinear
Estimation and Classification, 171:149–171, 2003.



97

[69] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee. Boosting the margin: A new
explanation for the effectiveness of voting methods. pages 1651–1686. JSTOR, 1998.

[70] R. E. Schapire and Y. Singer. Improved Boosting Algorithms Using Confidence-rated
Predictions. Machine Learning, 37(3), Dec. 1999.

[71] J. Schmidhuber. On learning how to learn learning strategies. Technical report, Tech-
nische Universitt Mnchen, 1995.

[72] T. D. Seeley. Honeybee democracy. Princeton Univ. Press, 2010.

[73] B. Settles. Active learning literature survey. University of Wisconsin, Madison, 52(55-
66):11, 2010.

[74] L. Shapiro and R. Haralick. Computer and robot vision. Reading: Addison-Wesley,
8, 1992.

[75] R. Souvenir, J. Kraftchick, S. Lee, M. Clemens, and M. Shin. Cell motion analysis
without explicit tracking. Computer Vision and Pattern Recognition (CVPR), pages 1
– 7, 2008.

[76] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. pages 1–9, 2015.

[77] S. Thrun and T. Mitchell. Learning one more thing. In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence (IJCAI), San Mateo, CA,
1995. Morgan Kaufmann.

[78] S. Tong and D. Koller. Support vector machine active learning with applications to
text classification. J. Mach. Learn. Res., 2:45–66, March 2002.

[79] D. Toomre and J. Bewersdorf. A new wave of cellular imaging. Annual review of cell
and developmental biology, 26:285–314, 2010.

[80] G. Tur, D. Hakkani-Tür, and R. E. Schapire. Combining active and semi-supervised
learning for spoken language understanding. Speech Communication, 45(2):171–186,
Feb. 2005.

[81] S. Vijayanarasimhan and K. Grauman. Large-scale live active learning: Training
object detectors with crawled data and crowds. International Journal of Computer
Vision, 108(1-2):97–114, 2014.

[82] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple fea-
tures. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings
of the 2001 IEEE Computer Society Conference on, volume 1, pages I–511. IEEE,
2001.



98

[83] X.-Z. Wang, J.-H. Yan, R. Wang, and C.-R. Dong. A sample selection algorithm
in fuzzy decision tree induction and its theoretical analyses. In Systems, Man and
Cybernetics, 2007. ISIC. IEEE International Conference on, pages 3621 –3626, oct.
2007.

[84] P. Wu and T. G. Dietterich. Improving svm accuracy by training on auxiliary data
sources. In Proceedings of the twenty-first international conference on Machine learn-
ing, page 110. ACM, 2004.

[85] C. Xu and J. Prince. Snakes, shapes, and gradient vector flow. Image Processing,
IEEE Transactions on, 7(3):359 –369, Mar 1998.

[86] Y. Yao and G. Doretto. Boosting for transfer learning with multiple sources. In
Computer Vision and Pattern Recognition (CVPR) IEEE Conference on, pages 1855
–1862, Jun 2010.

[87] Z. Yin, R. Bise, and M. Chen. Cell segmentation in microscopy imagery using a
bag of local Bayesian classifiers. Biomedical Imaging: From Nano to Macro, IEEE
International Symposium on, pages 125–128, 2010.

[88] A. Yla-Jaaski and N. Kiryati. Adaptive termination of voting in the probabilistic
circular Hough transform. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 16(9):911–915, 1994.

[89] C. Zhang and T. Chen. An active learning framework for content-based information
retrieval. IEEE Transactions on Multimedia, 4(2):260–268, 2002.

[90] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong. A robust technique for matching
two uncalibrated images through the recovery of the unknown epipolar geometry.
Artificial intelligence, 78(1):87–119, 1995.


	LIST OF FIGURES
	LIST OF TABLES
	1 INTRODUCTION
	1.1 Biological Image Classification
	1.2 Challenges in Reducing Training Effort
	1.3 Main Contributions
	1.4 Dissertation Outline
	2 RELATED WORK
	2.1 Local Feature Representation
	2.1.1 Active Contour Methods
	2.1.2 Sliding Windows Methods
	2.1.3 Feature Descriptors
	2.2 Biological Images Classification Methods
	2.2.1 Boosting Methods
	2.2.2 Support Vector Machines Methods
	2.2.3 Convolutional Neural Network Methods
	2.3 Reduction of Training Effort
	2.3.1 Transfer Learning
	2.3.2 Regularization to Transfer Learning Models
	2.3.3 Active Learning to Select Training Samples
	3 BACKGROUND
	3.1 Notations and Frameworks
	3.1.1 Adaptive Boosting
	3.1.2 Extension to Multi-class Problem
	3.2 Transfer Learning
	3.2.1 Collecting Classification Rules from Existing Data
	3.2.2 Transferring Classification Rules to New Data
	3.3 Adding Regularizations
	3.3.1 Determining the Weights of Existing Classifiers
	3.3.2 Selecting Training Samples
	3.4 Metrics for Classification Evaluation
	4 CELL DETECTION WITH SIZE-DISTRIBUTION REGULARIZATION
	4.1 Overview
	4.2 Size-Differential Regularization
	4.3 Experiments on Cell Detection
	4.3.1 The Effect of the Size-Differential Regularization
	4.3.2 The Estimation of the Size-Differential Regularization
	4.3.3 The Sensitivity of the Size-distribution Regularization
	4.4 Summary
	5 SOCIAL INSECT DETECTION WITH SPATIO-TEMPORAL REGULARIZATION
	5.1 Overview
	5.2 SpatioTemporally Regularized Adaptive Learning
	5.2.1 Spatiotemporal Regularization
	5.2.2 Learning the Target Classifier
	5.3 Experiments
	5.3.1 Procedures
	5.3.2 Reduction on Training Effort
	5.3.3 Improvement on the Initial Accuracy
	5.4 Summary
	6 POLLEN CLASSIFICATION WITH TARGET-DIRECTED SAMPLING
	6.1 Overview
	6.2 Target Directed Sampling
	6.3 Experiment: Pollen Classification
	6.3.1 Biological Background
	6.3.2 Experimental Setup
	6.3.3 Results
	6.4 Summary
	7 CONCLUSIONS AND FUTURE DIRECTIONS
	7.1 Future Directions
	REFERENCES

