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ABSTRACT

YING ZHU.Social and location based routing in delay tolerant networks. (Under the
direction of DR. YU WANG)

Delay tolerant networks (DTNs) are a special type of wireless mobile networks which

may lack continuous network connectivity. Routing in DTNs is very challenging as it must

handle network partitions, long delays, and dynamic topology in such networks. Recently,

the consideration of social characteristics of mobile nodes provides a new angle of view

in the design of DTNs routing protocols. In many DTNs, a multitude of mobile devices

are used and carried by people (e.g. pocket switched networks and vehicular networks),

whose behaviors are better described by social models. This opens the new possibilities of

social-based routing, in which the knowledge of social characteristics is used for making

better forwarding decision. However, the social relations do not necessarily reflect the true

device communication opportunities in a dynamic DTN. On the other hand, the increasing

availability of location technologies (GPS, GSM networks, etc.) enables mobile devices to

obtain their locations easily. Consider that an individual’s location history in the real world

implies his/her social interests and behaviors to some extent, in this dissertation, we study

new social based DTN routing protocols, which utilize location and/or social features to

achieve efficient and stable routing for delay tolerant networks. We first incorporate the

location features into the social-based DTN routing methods to improve their performance

by treating location similarity among nodes as possible social relationship. Then, we dis-

cuss the possibility and methods to further improve routing performance by adding limited

amount of throw-boxes into the networks to aid the DTN relay. Several throw-boxes based

routing protocols and location selection methods for throw-boxes are proposed. All pro-

posed routing methods are evaluated via extensive simulations with real life trace data (such

as MIT reality, Nokia MDC, and Orange D4D).
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CHAPTER 1: INTRODUCTION

Delay or disruption tolerant networks (DTNs) [46, 88, 97] is a type of wireless mobile

network that does not guarantee continuous network connectivity. In DTNs data delivery

often occurs through physical node movement. Figure 1.1 illustrates the process: if node

A wants to send a message to node C, the path may lead across node B, which moves at a

given time towards the range of node C. The DTN is a network which aims to cope with:

• Network partitioning: Eventually no end-to-end connectivity between sender and

destination is possible due to frequent or constant network partition. These partitions

may occur because of geographical distance, lacking radio signal strength or other

limiting factors.

• Network interruption: DTNs are often deployed in rough and adverse surroundings

and nodes may be subject to numerous operation failures. These failures may cause

network interruptions and disconnect linked nodes. Another assumption is that par-

titioned networks can be of heterogeneous structures, which means not all local net-

works are using the same underlying protocols and applications.

• High error rates: Presumably short connectivity and high mobility in combination

with weak signal strength and/or other aggravating circumstances is leading to a high

link error rate that makes end-to-end reliability difficult.

• Long delay: The intermittent connectivity causes long and hard to estimate delays.

Data often has to be buffered or queued if there is no direct path to the destination

node. Delays may last up to hours or days, depending on the mobility and connec-

tivity within the network.

• Asymmetric data rates: Due to the intermittent characteristics of a DTN most com-
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Figure 1.1: DTNs data delivery occurs often through node movement.

munication between two nodes will be mainly asymmetric. Elapsing time between

request and answer will be rather hours than milliseconds.

• Energy, bandwidth, buffer and cost restrictions: As within ad-hoc networks, energy

is a limited and valuable resource. Nodes may be turned off frequently to save energy

and therefore weaken the already low connectivity. Other limiting factors are band-

width bottlenecks and several cost restrictions. The available buffer-space restriction

is far more limiting than in an ad-hoc network because most data can not be deliv-

ered immediately and directly to the destination and must be buffered at intermediate

nodes.

DTNs have recently drawn much attention from networking researchers due to the wide

applications of these networks in challenging environments, such as space communica-

tions, military operations, and mobile sensor networks. Intermittent connectivity in DTNs

results in the lack of instantaneous end-to-end paths, large transmission delay and unsta-

ble network topology. These characteristics make the classical ad hoc routing protocols

[45, 73, 78] not being applicable for DTNs, since these protocols rely on establishment of

a complete end-to-end route from the source to the destination.

Many routing schemes [8, 10, 54–58, 81, 82, 87, 93, 95, 99, 100] have been proposed

for DTNs. Most of these DTN routing protocols belong to three categories: message-

ferry-based, opportunity-based and prediction-based. In message-ferry-based methods

[10, 81, 99, 100], systems usually employ extra mobile nodes as ferries for message deliv-
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ery. The trajectory of these ferries is controlled to improve delivery performance. However,

controlling these nodes leads to extra cost and overhead. In opportunity-based schemes

[46, 82, 87], nodes forward messages randomly hop by hop with the expectation of even-

tual delivery, but with no guarantees. Generally, messages are exchanged only when two

nodes meet at the same place, and multiple copies of the same message are flooded in the

network to increase the chance of delivery. Some DTN routing protocols [8, 54–57, 95]

make relay selection by estimating metrics relative to successful delivery, such as delivery

probability or expected delay based on a history of observations. Most of these protocols

focus on whether and when two nodes will contact. Liu and Wu [58] also proposed a for-

warding method based on a probabilistic forwarding metric, which is derived by modeling

each forwarding as an optimal stopping rule problem.

All of the current DTN routing methods share a similar paradigm “store and forward”.

If there is no connection available at a particular time, a DTN node can store and carry the

data until it encounters other nodes. When the node has such a forwarding opportunity,

all encountered nodes could be the candidates to relay the data. Thus, relaying selection

and forwarding decision need to be made by the current node based on certain routing

strategy. Various DTN routing approaches adopt different strategies based on different

metrics. Example of such metrics include estimated delivery probability to the destination

node, network resources available (including bandwidth, storage, and energy), estimated

delay and current network congestion level. However, the capricious mobility and restricted

resource in DTNs significantly obstruct us from designing an ideal forwarding mechanism.

1.1 Social Characteristics of DTNs

Recently, the consideration of social characteristics provides a new angle for the de-

sign of DTN routing protocols. In most of the DTN applications (e.g. vehicular networks

[77, 94], mobile social networks [4, 12, 14, 17, 64], disease epidemic spread monitoring and

pocket switched networks (PSNs) [38]), a multitude of mobile devices are used and carried

by people, whose mobility is better described by social characteristics such as the carrier’s
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social relations and behaviors. This opens new possibilities of successfully applying social

network analysis (SNA) methods on DTN routing, in which the knowledge of social char-

acteristics are used to make better forwarding decision. The social characteristics usually

long term and less volatile than node mobility, they usually cost less to maintain and more

reliable. In DTN environment, using them to make forwarding decision may significantly

reduce the control overhead and improve the routing performance. Common social char-

acteristics includes: community [34, 61, 68, 72, 74], centrality [23, 24, 59, 69], similarity

[15, 53, 63] and friendship [7, 62, 96]. More details refer to Chapter 2.

1.2 Social Network Analysis

Social network analysis (SNA)[79, 89], which studies relationships among social enti-

ties, the patterns and implications of these relationships, has been proved a powerful tool

in many research areas such as anthropology, biology, communication studies, economics,

information science, computer science and engineering. The study of information propa-

gation in social networks, which is very relevant to data dissemination and data forwarding

in communication networks (such as routing packages in delay tolerant networks), is one

of the key topic in SNA. Information propagation has been used in epidemiology to help

understand how patterns of human contact aid or inhibit the spread of diseases such as

HIV in a population. There are many success examples on information propagation in

general(online) social networks.

Lind et al. [75] studied a simple model of information propagation in social networks,

by introducing the concepts of spread factor (the average maximal fraction of neighbors

of a given node that interchange information among each other) and spreading time (i.e.

the time needed for the information to reach such a fraction of nodes). They applied this

model to real empirical networks and compared spreading dynamics with different types

of networks. They found that the number of neighboring connections strongly influences

the probability of being gossiped. Yildiz et al. [91] considered the problem of asymmetric

information diffusion with gossiping protocols in both static and dynamic networks. They
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derived conditions under which the network converges to the desired result within limit,

and provided policies that offers a trade-off between accuracy and increased mixing speed

for the dynamic asymmetric diffusion problem. In [84, 85], Tang et al. proposed new

temporal distance metrics to quantify and compare the speed of information diffusion with

the consideration of the evolution of a network from a local and global view. Lee et al.

[52] proposed a method to find influentials by considering link structure and the temporal

order of information adoption in Twitter. In [98], Zhao et al. used communication motifs

and maximum-flow communication motifs as the tools to characterize the patterns of in-

formation propagation in two real-life social networks (networks from cellular call record

and Facebook wall-post history). They concluded that the patterns of information propa-

gation within both social networks are stable overtime, but these patterns are different and

sensitive to the cost of communication in synchronous and asynchronous social networks.

The speed and the amount of information propagated through a network are correlated and

dependent on individual profiles. In [1], Bakshy et al. studied the content propagation

via user-to-user content transfer history in a time-evolving social network (Second Life).

They found that the social network plays a significant role in the propagation of content.

Additionally, adoption rate increases as the number of adopting friends increases, but this

effect varies with the connectivity of a particular user. They also found that sharing among

friends occurs faster than sharing among strangers and some individuals play a more active

role in distributing content than others. Kuhlman et al. [50] studied the problem of inhibit-

ing diffusion of complex contagions such as rumors, undesirable fads and mob behavior

in social networks by removing a small number of critical nodes from the network. They

showed that finding minimum number of such nodes is NP-hard, and proposed efficient

heuristics for such tasks.

All of the studies above confirm that social structures and properties indeed strongly

influence information propagation. These observations inspire the development of social-

aware routing protocols for different communication networks as well. Based on the ob-
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servation of DTN’s social characteristics and taking the recent advances in social network

analysis, several social-based DTN routing methods [7, 15, 27, 37, 40, 96] have been pro-

posed recently to exploit various social characteristics in DTNs (such as community and

centrality) to assist the relay selections. We will introduce details on exiting social-based

DTN routing method in later chapters.

1.3 Location Characteristics of DTNs

Although social characteristics are already proved effective in DTN routing, in real world

for many reasons (privacy), we cannot get information also may not reflect the truly device

communication opportunities. For example, a mother and a daughter live in two cities.

Their mobile device seldom have chance to exchange data directly. On the other hand, the

appearance of mobile device equip with sensors (especially GPS) and contact/event logs

enables pervasive monitoring of mobile user/mobile device behaviors and mobility. There

are several cellular datasets recently collected via smartphone based testbeds: Nokia Data

Collection Campaign [11], MIT reality project [51], Nodobo [71], and Context project

[70]. These real-life tracing data provide abundant resources to study social, spatial, and

temporal characteristics of mobile users in different environments. An individuals location

history in the real world implies, to some extent, his/her interests and behaviors. People

who share similar location histories are likely to have common interests, behaviors and

some kind of relations. Thus, it is possible to analyze the enriched location information

and extract location/social characteristics among users. The social characteristics, which

extracted from location information, will more accurately represent the physic contact op-

portunities among users. By seeking such kind of location and social characteristics, DTN

routing protocols are expected to have better performance.

1.4 Content and Organization

This thesis focus on study of new routing protocols for delay tolerant networks formed

by mobile users, which utilize location and/or social features to achieve efficient and stable

routing. We first present a location-based DTN routing protocol, which uses the new metric
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geo-similarity to make the routing decision. Some simplified location-based DTN routing

protocols are then proposed. After showing the effectiveness of location-based methods,

We explore methods to predict a location’s semantic meaning (the location’s social feature)

using Nokia Data Collection Campaign Dataset [11]. Then propose several location-social

based routing protocols, which incorporate the location characteristics into the social-based

DTN routing methods. At last, We discuss the possibility and methods to further improve

routing performance by adding limited amount of throw-boxes into the networks to aid the

DTN relay. Several throwboxes based routing protocols and location selection methods for

throw-boxes have been proposed.

The rest of this thesis is organized as follows. We first introduce some social analysis

methods, social properties related to social-based DTN routing and available real word

tracing data in Chapter 2. Then, in Chapter 3, We review and analysis the current social-

based routing protocols in DTNs. In Chapter 4, We propose the location-social based

routing methods which use location and/or social features to achieve efficient and stable

routing, and report a study on Nokia Data Collection Campaign Dataset [11]. In Chapter

5, We propose several throw-boxes based routing protocols and location selection methods

for throw-boxes based DTNs. We summarize the thesis and discuss some possible future

works in Chapter 6.



CHAPTER 2: PRELIMINARIES

In this chapter, we will introduce some social analysis methods and social properties

related to social-based DTN routing. And introduce the real-world wireless tracing data we

use in our study.

2.1 SNA Methods and Social Properties

In this section, we will introduce some social analysis methods and social properties

related to social-based DTN routing. Many of these social properties have been studied in

social network analysis.

2.1.1 Social Graph and Contact Graph

The most popular way, to study the social relations among people and extract their social

properties, is building a social graph (also called social network). A social graph is a global

mapping of everybody and how they are related. Such a graph is an abstract graph where

vertices represent individual people and edges describe social ties between individual peo-

ple. Social ties can be expressed in many forms. For example, different types of social ties

may describe different social relationships among people such as friends, family members,

and co-workers. Social graphs have been widely used in many applications, such as analy-

sis of online social networks [65] or terrorist networks [49]. With a social graph, a variety

of social metrics (e.g., communality, centrality, and similarity) can be easily calculated or

estimated, and these metrics can be then used by social-based approaches. Therefore, it is

crucial to obtain social graphs for social-based approaches.

A social graph is an intuitive source for many social metrics such as community and

friendship. Unfortunately it is not always available (due to either privacy or security rea-

sons) or hard to be obtained via disclosed social data. However, with new networking
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technology, we can study relationships among people by observing their interactions and

interests over wireless networks. Building a contact graph is a common way to study the

interactions among people in a network and thus analyze their relationships and estimate

the social metrics among them. In DTNs, each possible packet forwarding happens when

two mobile nodes are in contact (i.e., within transmission range of each other). By record-

ing contacts seen in the past, a contact graph can be generated where each vertex denotes

a mobile node (device or person who carries the device) and each edge represents one or

more past meetings between two nodes. An edge in this contact graph conveys the infor-

mation that two nodes encountered each other in the past. Thus the existence of an edge

intends to have predictive capacity for future contacts. A contact graph can be constructed

separately for each single time slot in the past, or it can be constructed to record the encoun-

ters in a specific period of time by assigning a set of parameters to each edge to record the

time, the frequency and the duration of these encounters. From the observation that people

with close relationships such as friends, family members, etc. tend to meet more often,

more regular and with longer duration, we can extract DTN nodes’ relationships from the

recorded contact graph, estimate their social metrics, and use such information to choose

relays with higher probabilities of successful forwarding.

How to detect people’s relationships and create the relative social graph from the recorded

contact graph may affect estimation accuracy and the efficiency of social-based approaches.

Most of the current social-based DTN routing algorithms [15, 38, 40] directly treat the ag-

gregated contact graph (merging the contact graphs of several time slots into one graph) as

the social graph of all entities in the network, and uses this graph to generate social metrics

for forwarding selection. This strategy is based on the observation that although the con-

tact graph reflects the encounter history while the social graph reflects the social relations

among people, the aggregated contact graph (the sum of contact graph over time) and the

social graph are statistically similar. However, Hossmann et al. [35, 36] showed that the

performance of these algorithms heavily depends on the way the graph is constructed out
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Figure 2.1: Illustration of three different contact graphs using different aggregation periods.

of observed contacts (i.e., contact aggregation) and proposed a method to select an appro-

priate aggregation period for contact aggregation. For example, in Figure2.1, three differ-

ent contact graphs are generated from the observed contact history. Figure2.1(a) shows a

disconnected contact graph which maybe too sparse to detect any useful social structure.

While Figure2.1(c) shows an almost complete graph which is too dense and thus useless.

Figure2.1(b) is an appropriate aggregated contact graph. After building the aggregated con-

tact graph, different social metrics can be obtained. For example, Hui, et al.[13, 39, 41, 92]

proposed several community detection approaches (simple, k-clique, modularity, etc.) with

great potential to detect both static and temporal communities. Bulut et al. [7] introduced

a method of detecting the quality of friendship by calculating the social pressure metric

(SPM) from contact graphs.

2.2 Community

Community is an important concept in ecology and sociology [34, 61, 74]. In ecology,

a community is an assemblage of two or more populations of different species occupying

the same geographical area. In sociology, community is usually defined as a group of

interacting people living in a common location. Community ecologists and sociologists

study the interactions between species/people in communities at many spatial and temporal

scales [34, 61, 68, 72, 74]. It has been shown that a member of a given community is more

likely to interact with another member of the same community than with a randomly chosen

member of the population [72]. Therefore, communities naturally reflect social relationship

among people. Figure2.2 illustrate examples of community structures in Social graphs.
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Figure 2.2: Illustration of community structures in contact/social graphs

Since wireless devices are usually carried by people, it is natural to extend the con-

cept of social community into DTNs to explore interactions among wireless devices. It is

believed that devices within the same community have higher chances to encounter each

other. Therefore, the knowledge of community structures could help a routing protocol to

choose better forwarding relays for particular destinations, and hence improve the chance

of delivery. Many proposed community detection algorithms [13, 39, 41, 92] are available

for identifying social communities from the contact graph of DTNs.

Some of the most common detection methods for communities are summarized as fol-

lows.

Minimum-cut method [66]: The minimum-cut method divides the social graph or the

network into a predetermined number of components such that the number of edges be-

tween components is minimized.

Hierarchical clustering: The hierarchical clustering method uses the concept of similarity

to detect communities. The similarity metric aims to measure the degree of similarity

(usually topological) between node pairs. Common calculation methods include the cosine

similarity, the Jaccard similarity coefficient, and the Hamming distance between rows of

the adjacency matrix of the network. A common community detection strategy is: all nodes

within a community have similarity greater than a given threshold.

Girvan-Newman algorithm [30]: Girvan and Newman proposed a community detection
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method using a graph-theoretic metric, betweenness (we will introduce later), to identify

the bridge edges among communities in the network. By removing these bridge edges, the

communities can be easily detected.

Modularity maximization [16, 67, 68]: The modularity maximization method detects

communities by searching over all possible network divisions to find the one with partic-

ularly high modularity. Modularity is defined as a benefit function, which measures the

quality of a particular division. Optimization methods (such as greedy algorithms or sim-

ulated annealing) are often used because exhaustive search over all possible division is

usually too expensive.

The Louvain method [86]: The Louvain method is a greedy optimization method with

two phases. It first looks for “small” communities by locally optimizing modularity, it

then aggregates nodes in the same community and builds a new network whose nodes are

the communities. These two steps are repeated iteratively until a maximum modularity is

achieved.

Clique based methods [21]: In a graph, a clique is a subgraph in which every node is

connected to every other node in the subgraph. Since a clique is the most tightly connected

structure, there are many community detection approaches based on the detection of cliques

in a graph. As a node can belong to multiple cliques, these methods may lead to overlapping

community structures.

2.2.1 Centrality

In graph theory and network analysis, centrality is a quantitative measure of the topo-

logical importance of a vertex within the graph. A central node, typically, has a stronger

capability of connecting other nodes in the graph. In a social graph, the centrality of a node

describes the social importance of its represented person in the social network. In DTNs,

the sociological centrality metrics [59] can also be used for relay selections (nodes with

high centralities are always good candidates of relay nodes).

There are several ways to define centrality in a graph. Three common centrality mea-



13

d
a b

c

e

f

g

a

b

c

d

e

f

!"# !$#

gh

i

Figure 2.3: Illustration of centrality and similarity measurements over simple social graphs

sures are degree centrality, betweenness centrality, and closeness centrality [23, 24, 69].

Degree centrality is the simplest centrality measure which is defined as the number of links

(i.e., direct contacts) incident upon a given node. For example, in Figure 2.3(a), the degree

centrality of node a and node b are 3 and 4 respectively while those of the other nodes are

1. A node with a high degree centrality is a popular node with a large number of possi-

ble contacts, and thus it is a good candidate of a message forwarder for others (i.e., a hub

for information exchange among its neighborhood). Betweenness centrality measures the

number of shortest paths passing via certain given node. For example, the betweenness

centrality of node a and b in Figure 2.3(a) are 18 and 24, respectively. But for the other

nodes, their betweenness centralities are 0 since they are not on any shortest paths. Nodes

that occur on many shortest paths between other nodes have higher betweenness than those

that do not. A node with high betweenness centrality can control or facilitate many con-

nections between other nodes, thus it is ideal for a bridge node during message exchange.

The closeness centrality of a node is defined as a the inverse of its average shortest distance

to all other nodes in the graph. If a node is near to the center of the graph, it has higher

closeness centrality and is good for quickly spreading messages over the network. For the

example in Figure 2.3(a), the closeness centrality of node a is 2
3

since its average shortest

distance to all others is 1.5. The closeness centralities of b, c/d/e, and f/g and 3
4
, 6
13

,and 3
7
,

respectively.
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2.2.2 Similarity

Similarity [15] is a measurement of the degree of separation. It can be measured by the

number of common neighbors between individuals in social networks. For example, in

Figure 2.3(b), the similarity betwwen a and c is 1, while that between c and e is 3. Sociol-

ogists have long known that there is a higher probability of two people being acquainted if

they have one or more other acquaintances in common. In a network, the probability of two

nodes being connected by a link is higher when they have a common neighbor. When the

neighbors of nodes are unlikely to be in contact with each other, diffusion can be expected

to take longer than when the similarity is high (with more common neighbors). In addition,

there are other ways to define the similarity beyond common neighbors, such as similarity

on user interests [63] and similarity on user locations [53].

2.2.3 Friendship

Friendship is another concept in sociology which describes close personal relationships.

In DTNs, friendship can be defined between a pair of nodes. On the one hand, to be consid-

ered as friends of each other, two nodes need to have long-lasting and regular contacts. On

the other hand, friends usually share more common interests as in real world. In sociology,

it has been shown that individuals often befriend others who have similar interests, per-

form similar actions and frequently meet with each other [62]. This observation is called

homophily phenomenon. Therefore, the friendship in DTNs can be roughly determined by

using either contact history between two nodes [7] or common interests/contents claimed

by two nodes [96].

2.3 Real-World Wireless Tracing Data

To understand the social, spatial and temporal dynamics in DTNs is an essential step of

protocol design for DTN routing. The theoretical methods do not always lead to accurate

observation due to simplified assumptions made for the ease of analysis. Also, none of

the theoretical methods can imitate the DTNs environment exactly the same as the realistic

one. So, it is more convincing to study social from real word tracing.
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Fortunately, with the advance of new wireless devices (smart phones), and social-media

websites, there are tremendous amounts of enriched public real-life wireless tracing data

available, which provide a possibility of study the social relationships among the partici-

pants. For example, the Community Resource for Archiving Wireless Data At Dartmouth

(CRAWDAD) [90], a wireless network data resource for the research community, archives

different wireless trace data (such as contact tracing from a student social network [83] or

a campus bus-based DTN [9] or a Bluetooth network among conference attendees [80] and

mobility tracing of taxi cabs in San Francisco [76]). In addition, there are several public

datasets recently collected via smartphone based testbeds: Nokia Data Collection Cam-

paign [11], MIT reality project [51], Nodobo [71], and Context project [70], which include

multiple social relationships among their users (such as call record, Bluetooth contact,

WiFi access, GPS log, and social network information) These real-life tracing data provide

abundant resources to study social, spatial, and temporal characteristics of different DTNs.

In this thesis we mainly study three datasets: the MIT reality project data [51], the Nokia

Data Collection Campaign data [11] and the D4D datasets [5]. The MIT reality data is a

small-scaled dense campus dataset with rich variety of data source, which is very suitable

for early stage experiment. It has been used in experiment of a lot of research works. The

drawback of this dataset is the social roles of users in this dataset are too flat, they or either

students or professors. So do their relationships. Compare with MIT dataset the users in

Nokia Campaign data have more colorful social roles and relationships since they are from

a citywide region. And its location access information is collected by GPS, which is more

accurate than cell tower logs. The drawback of this dataset is it does not have mapping of

its users ID and relative Phone Number and Mac Address. So even we have both call logs

and Bluetooth trace, we cannot use it for routing algorithm evaluation. We only use it on

Nokia Data Collection Campaign to make semantic place prediction. The D4D Challenge

Dataset is a rare large-scaled dataset. Although it does not have Bluetooth tracing data, it

is the most coincident with our target DTN environment, which is sparse network with rich
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Table 2.1: Characteristics of the datasets
Date set # of users region duration call logs bluetooth tower logs gps
MIT 100 campus 1 year yes yes yes no
Nokia 200 Lake Geneva 1 year yes yes no yes
D4D 46,254 Ivory Coast 150days no no yes no

social relationships between users but without straightforward social relation information.

So in this thesis, we use the MIT reality data on our early stage experiments and D4D

Challenge Dataset for all stage experiments. Table 2.1 summarizes the characteristics of

these three dataset.

2.3.1 MIT Reality Mining Dataset

The MIT Reality Mining Dataset consists of one hundred Nokia 6600 smart phones

which pre-installed with several pieces of software. Seventy-five users are either students

or faculty in the MIT Media Laboratory, while the remaining twenty-five are incoming

students at the MIT Sloan business school adjacent to the laboratory. Of the seventy-five

users at the lab, twenty are incoming masters students and five are incoming MIT freshman.

The information they are collecting includes call logs, Bluetooth devices in proximity, cell

tower IDs, application usage, and phone status (such as charging and idle), which comes

primarily from the Context application. The dataset was collected over nine months period

on users’ location, communication and device usage behavior.

2.3.2 Nokia Data Collection Campaign Dataset

Nokia Research Center Lausanne and its academic partners (EPFL and Idiap) have re-

cently completed a data collection campaign (http ://research.nokia.com/page/11367) in

the Lake Geneva region. Data from smartphones of almost 200 participants were collected

in the course of more than one year. This dataset provides a comprehensive and relatively

unexplored data set including rich social and geographic informations. Detailed content of

the dataset includes:

• Phone usage (complete call message log, application start and close events, audio

being played);
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Table 2.2: Numbers of users, towers, and contacts in four different settings in D4D

Setting # of users # of towers # of encounters
A) subset users within full region 13,436 1,095 617,136
B) subset users within limited region 6,318 496 327,717
C) all users within full region 46,254 1097 6,787,594
D) all users within limited region 21,768 497 3,736,173

• Personal data (list of pictures and videos taken with the camera, full contact list, full

calendar content and update events);

• Environmental data (accelerometer samples, list of available WiFi access points, list

of visible Bluetooth devices);

• Phone status data (current attached GSM cell, GPS readings, battery level, alert

mode, other system status);

• Information provided by the participants through questionnaires( sex, age, occupa-

tion,et al.).

We will introduce more details in Chapter 4.

2.3.3 D4D Challenge Dataset

(a) traffic distribution (b) limited region (c) tower distribution

Figure 2.4: Illustration of the limited region in Settings B and D of D4D.

The released D4D datasets [5] are based on anonymized Call Detail Records (CDR) of

phone calls and SMS exchanges between 50,000 Orange mobile users in Ivory Coast be-

tween December 1, 2011 and April 28, 2012 (150 days). Among the released four datasets,
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we mainly use the second one (SET2): individual trajectories with high spatial resolution.

This dataset contains the access records of antenna (cellular tower) of each mobile user

over two-week periods. Such information provides high resolution trajectories for all mo-

bile users. We will use the sequences of visited cellular towers of all users to generate

contact encounters among mobile users and location profiles of each mobile user. In the

results present in this thesis we only use the first two weeks (December 1 to 14, 2011) data

for our simulations.

Since D4D datasets do not have direct encounter information between phones via short

range communications (such as Bluetooth or WiFi), to support opportunistic communica-

tions we assume that two phones can direct communicate to each other if they share the

same cellular tower at particular time. Though this assumption may not be true in real-

ity, it gives us an approximated environment for opportunistic communications. All of our

experiments are based on the generated encounter databases from SET2.

We will consider four different settings (A-D) for our experiments. Table 2.2 summarizes

some statistics of these settings. In term of number of nodes (mobile users), we either use

all 50,000 users or a subset of users (around 15,000) in the original SET2. When we

pick up the subset of users, we just simply choose the first 15,000 users in our encounter

database. Notice that the number of users in our generated encounter database is less than

the number of users in original SET2 (such as 46, 254 < 50, 000). This shows that there are

many mobile users who do not share any cellular towers with other users. The smaller size

of user set could accelerate the execution time of our simulations. Notice that the number

of encounters is significantly reduced after picking the subset users, though the cellular

towers stay the same level. We also have settings where we limit the physical locations

of encounters to a small region. As shown in Figure 2.4(a), the traffic load distribution

within Ivory Coast is unbalanced. This figure shows the number of calls (both incoming

and outgoing calls) during the first two weeks. Darker color indicates heavier traffic loads.

Therefore, when picking up the small region, we choose the region with the heavies traffic
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load. The longitude and latitude ranges of the region (shown as a tiny blue rectangle in

Figure 2.4(b) around Abidjan) are [−8.49,−2.69] and [4.41, 10.47], respectively. Abidjan

is the economic and former official capital of Ivory Coast and the largest city in the nation.

From Table 2.2 we can see that this region holds a large number of cellular towers and

mobile users. Figure 2.4(c) shows the detailed tower distribution in this region.



CHAPTER 3: EXISTING SOCIAL-BASED ROUTING

In this chapter, we review several social-based DTN routing methods that take advantage

of positive social characteristics in DTN networks.

3.1 Label Routing

Hui and Crowcroft [37] introduced a routing method (called as label routing hereafter)

based on community labels in Pocket Switched Networks (PSNs). A PSN [38] is a type of

DTN where mobile devices are carried by people and communicate with each other when

people meet. To reduce the amount of traffic created by forwarding messages in PSNs, the

proposed routing method uses a labeling strategy to select forwarding relay. Since people

in the same community are likely to meet regularly, they are appropriate forwarders for

messages destined to the members of their community. In their solution, Hui and Crowcroft

assumed that each node has a small label telling others about its affiliation/group (i.e., its

social community), just like name badges used in a conference. Based on the labels, label

routing chooses to forward messages to destinations directly or to next-hop nodes which

belong to the same group (label) with the destinations.

Label routing takes the advantage of the knowledge of social community. It assumes

that people from the same community tends to meet more often than people from different

communities and hence can be good forwarders to relay messages destined to the other

members in the same community (with the same label). Label routing requires very little

information about each individual (only its group/affiliation). This is easy to implement

in PSN applications, by tapping a mobile device and writing down the affiliation of the

owner. In other words, the community (or group) information relies on user inputs in label

routing. However, user-defined communities may not always reflect the position/contact



21

relationship among nodes. For example, two DTN nodes in the same community may be

physically far away and could never meet with each other. In this scenario, using one node

to be the forwarder for the other may not be a good choice. In addition, in label routing, the

message forwarding from the source to the destination is purely via the members within the

same community of the destination. This may significantly increase the delay or even fail

to deliver the message. For instance, message delivery will fail when the source does not

meet any member from the destination’s community, even though there are possible relay

nodes from other communities.

3.2 SimBet Routing

Daly and Haahr [15] proposed a social-based routing protocol (called SimBet rout-

ing hereafter) which uses betweenness centrality and similarity metrics to identify some

“bridge” nodes (with high values of these metrics) in networks. To avoid exchanging in-

formation of the entire network topology, they only estimated the betweenness centrality

Betn for each node n in its local neighborhood. For similarity metric, they considered

the similarity Simn(d), the number of common neighbors, of the current node n with the

destination node d. Both of the social metrics are maintained and updated dynamically in

DTNs. Therefore, the proposed SimBet routing makes forwarding decision by considering

not only the pre-estimated betweenness centrality metric but also the locally determined

social similarity. Nodes with high betweenness centralities are those nodes who can act as

bridges in their neighborhood, while nodes with high similarities with the destination are

more likely to find a common neighbor with the destination which can act as the forwarder.

In SimBet routing, when a DTN node n meets another DTN node m and holds a message

with destination d, n calculates its relative betweenness utility and similarity utility to node

m:

SimUtiln =
Simn(d)

Simn(d) + Simm(d)

BetUtiln =
Betn

Betn +Betm
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Figure 3.1: Illustration of problems of the SimBet routing.

Then node n can compute its SimBet utility, which is a weighted combination of between-

ness utility and similarity utility:

SimBetUtiln(d) = αSimUtiln(d) + (1− α)BetUtiln.

Here, α is an tunable parameter which can adjust the relative importance of the two utilities.

For the message with d as its destination, if SimBetUtilm(d) > SimBetUtiln(d), node n

forwards the message to node m. Otherwise, it continues to hold the message. Via possible

multi-hop relays, the message may eventually reach d.

In summary, SimBet routing uses two social metrics (centrality and similarity) to esti-

mate or predict the probability that potential relay nodes may meet the destination. It is

obvious that both metrics are effective at identifying suitable relays in different scenarios

respectively. Take an example graph, as shown in Figure 3.1, where a few low-degree

bridges (i.e., a, b and c) connect two well-connected components C1 and C2. Assume that

node u wants to send a message to node v. When node u encounters node a, it compares its

SimBet utility with that of node a’s. Both u and a have zero similarity to v, but u’s global

betweenness centrality is less than a’s since a sits on more of the shortest paths. Thus, u

will transfer the message to a based on SimBet routing. In this case, centrality metric helps

to pick the better relay node. On the contrary, if node a wants to send a message to v and it

encounters node b, similarity metric will play a role since the global betweenness centrali-

ties of a and b are the same. Therefore, a has a smaller similarity (zero common neighbor)
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to v than b has (one common neighbor with v). Therefore, combining multiple social met-

rics may make the social-based protocol more effective in broad situations. However, due

to the uncertainty of future encounters and underlying social graph, it is still possible that

the node with high SimBet utility fails to delivery the message to the destination.

To avoid global information exchanges, SimBet routing provides a distributed method

to calculate social metrics locally, which is desirable in a DTN environment. However,

estimating centrality based solely on local information may lead to inaccurate “bridge”

identification. For instance, in the example shown in Figure 3.1, it is assumed that u wants

to send a message to v. When u encounters node a, based on the two-hop information,

u’s local betweenness Betu is much larger than a’s Beta. Since both u and a have zero

similarities to v, the overall SimBetUtilu(v) > SimBetUtila(v). Then, node u will

not pass this message to node a, and thus miss the opportunity to delivery the message.

Nonetheless, considering global betweenness, each of the nodes of a, b and c has highest

betweenness in the entire network (since they form the only path connecting components

C1 and C2), and can then be correctly identified. A possible way to increase the chance

of correct ”bridge” identification is using larger neighborhood information, although this

may increase communication cost. Similarly, to increase the chance of delivery, multiple

relay nodes could be used. The trade-off is always between delivery performance and

communication cost.

3.3 Bubble Rap Forwarding

The forwarding strategy, Bubble Rap Forwarding, proposed by Hui et al. [40] also relied

on two social characteristics (community and centrality). They assumed that each node

belongs to at least one community and its node centrality (either betweenness or degree

centrality) in the community describes the popularity of the node within this community.

Each node has a global centrality across the whole network (or called global community),

and a local centrality within its local community. A node may also belong to multiple

communities and hence have multiple local centralities. Taking advantages of these social
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Figure 3.2: An illustration of the Bubble Rap forwarding from source s to destination d

characteristics, Bubble Rap Forwarding basically includes two phases: a bubble-up phase

based on global centrality and a bubble-up phase based on local centrality. In both phases,

the bubble-up forwarding strategy is utilized to forward messages to nodes which are more

popular than the current node (i.e., with higher centrality). When a node s has a message

with destination of d, it first bubbles the message up based on the global centrality, until

the message reaches a node which is in the same local community Cd as the destination d.

This procedure is shown as blue arrows in Figure 3.2. : The blue and red arrows show the

bubble-up operations based on global centrality in global community and local centrality

in d’s community Cd, respectively. After the message reaches d’s community at node u,

Bubble Rap Forwarding switches to the second phase which uses members of Cd as relays.

This forwarding strategy continues to bubble up the message through the local community

based on local centrality until the destination is reached. This later procedure is shown

as red arrows in Figure 3.2. In order to reduce cost, it is also required that whenever a

message is delivered to the community, the original carrier delete this message from its

buffer to prevent further dissemination.
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Bubble Rap Forwarding uses the concept of community in addition to node centrality

to help with the forwarding decision. The introduction of local centrality inside a commu-

nity is more beneficial than local centrality around local neighborhood (i.e., k-hop) [15].

The bubble-up operations allow fast transfer of a message towards the destination or its

community. However, such a strategy may fail when the destination belongs only to the

communities whose members are all with low global centrality values. In this case, the

bubble-up process in the first phase of Bubble Rap Forwarding cannot find the relay node

which is in the same local community as the destination node. A possible solution for

this problem to have a timeout timer for bubble-up process and exchange to other backup

strategy for data delivery after timeout. In [40], the authors used a flat community (not hi-

erarchical) to demonstrate the efficiency of Bubble Rap Forwarding. However, they did not

provide details about how to handle hierarchical communities where the destination d may

belong to multiple overlapping communities. In that scenario, they may face problems in

the second phase of Bubble Rap Forwarding. For example, if the current encountering node

u shares multiple communities with d, a problem arises regarding which one of d’s local

communities should be chosen to bubble-up. A simple solution to this problem is picking

the local community with which d have highest centrality. This solution also matches the

spirit of Bubble Rap Forwarding which keeps looking for nodes with high centralities.

3.4 Homophily Based Data Diffusion

Zhang et al. [96] proposed a data diffusion scheme based on the “homophily” phe-

nomenon in social networks. Here, data diffusion aims to deliver data to all nodes in

DTNs. In DTNs, data may not be completely delivered from one node to another during a

contact between them, since the contact time is too short to transmit the data or the buffer

available at the receiving node is insufficient to hold the data. Therefore, in the design of

data diffusion protocol, not only the contact probability between nodes but also the data

propagation orders (which data should be propagated first) affect the diffusion speed and

data access delay.
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To choose an appropriate relay node to diffuse and an appropriate data item to buffer,

Zhang et al. introduced a method using the friendship among nodes and the “homophily”

phenomenon. The “homophily” phenomenon describes the trend in real word that friends

usually share more common interests than strangers. By applying the same idea from

“homophily” phenomenon, their proposed data diffusion strategy diffuses the most similar

data items between friends, and diffuses the most different data items between strangers. If

a node meets a new contact who is a friend, it first diffuses the most similar data items of

their common interests to its friend first until the contact time is over. If the new contact

is a stranger, it starts from the data item most different from their common interest. By

theoretical analysis, Zhang et al. showed that this data diffusion scheme achieves better

diffusion speed and data access delay than the other three possible schemes (including

diffusing the most similar data to any encounter, diffusing the most different data to any

encounter, and diffusing the most different data between friends and the most similar data

between strangers).

This proposed method provides a new angle to social-based approaches. It considers the

need of managing data propagation orders which is an important aspect of design issues

in DTN routing. With the same amount of communication opportunity and duration, more

useful information can be transmitted under this proposed method. In addition, the pro-

posed method is not conflicted with other DTN routing protocols. It can be used together

with other DTN routing protocols to make better relay decisions with efficient data propa-

gation orders. In the proposed method, social friendship is the only metric used to predict

the encounter’s needs of information and friendship is defined by users. However, user

defined friendship is not always available in DTNs. Therefore, it is another challenging

direction need to be further explored regarding how to efficiently detect the friendship in

dynamic DTNs .
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3.5 Friendship Based Routing

Bulut et al. [7] also used friendship to aid the delivery of packets in DTNs. They in-

troduced a new metric, social pressures metric (SPM), to accurately detect the quality of

friendship. Different from [96], where friendship is defined by users based on their so-

cial relationships, this approach considered friends as nodes which contact to each other

frequently and have long-lasting and regular contacts. Therefore, the social pressures met-

ric between nodes i and j can be estimated from the encounter histories of these nodes

(recorded by the nodes) as: SPMi,j =
∫ T
t=0 f(t)dt

T
, where f(t) denotes the remaining time to

the first encounter of these nodes after time t and T is the total time period. SPM describes

the average forwarding delay if node i has a message destined to j at each time unit. Then,

the link quality wi,j between each pair of nodes, (i, j), is defined as wi,j = 1
SPMi,j

. The

authors assumed that the bigger value of wi,j represents the closer friendship between i

and j. Using the value of wi,j , each node can construct its friendship community for each

period T as a set of nodes whose link quality with itself is larger than a threshold. When

a node i, having a message destined to d, meets with node j, it forwards the message to j

if and only if (1) j and d are in the same friendship community (in the current period) and

(2) j is a stronger friend of d than i.

In summary, this friendship based routing method uses the node contact information in

each period to calculate the friendship metric (i.e., SPM), and constructs the friendship

community. These social metrics can indeed help with making smarter forwarding deci-

sions. However, the calculation of these metrics needs the whole contact information during

each period, which may not be realistic in most DTNs. To obtain f(t) in the current period,

node i needs to know the time of its first encounter to node j after time t in this period,

which is an event in future. Therefore, either the values in contact history from previous

periods are used for this calculation at the current period or the estimated future contacts

in this period are available for this calculation. This is clearly a drawback of this proposed

method. In addition, this friendship based routing uses a similar forwarding scheme to la-
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bel routing [37], which may lead to the same problem. If the source node fails to meet with

any node in the same friendship community with the destination node, the delivery fails.

Therefore, more felicitous forwarding strategies should be studied for this friendship based

routing.

Although the friendship based method [7] and homophily based method [96] both use

friendship metrics for delivery data in DTNs, they are designed for different purposes. In

[96] the friendship measurement is used to select which data items to diffuse, while in [7]

the friendship metric is used to detect communities and select which relay nodes to forward.

Therefore, different social metrics or various calculation methods need to be designed for

specific design purposes. There is no universal solution for all applications.

3.6 Other Social-Based Routings

Besides the social-based DTN routing strategies reviewed above, there are also a few

recent social-based approaches which define their own social-related metrics to improve

either the scalability or accuracy of routing. We briefly review them in this section.

In [63] Mei et al. took advantage of the observation, that people with similar interests

tend to meet more often, to propose a social-aware and stateless routing (SANE) for pocket

switched networks. This routing strategy represents the interest profile of an individual u

as an k-dimensional vector Iu. To express the interest similarity between two individuals u

and v, the cosine similarity is defined as, Θ(Iu, Iv) = cos(∠IuIv) = IuIv
∥Iu∥∥Iv∥ . In SANE, a

message should be forwarded to individuals whose interest profiles closely resemble that of

the destination. They assume that the interest profile of a message m is the interest profile of

its destination. Thus, a message m will be relayed to a node u only if the cosine similarity

of the interest profile between message m and node u is higher than a given threshold ρ.

One of the advantages of this method is that each node only needs to maintain the interest

profile without extra storage. The cost of maintaining and updating this social metric is

also relevantly easy. These advantages improve the scalability of this routing method.

Gao and Cao [26] proposed a user-centric data dissemination approach which consid-
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ers both social centrality and user interests simultaneously. Different from the concept of

centrality used in [15, 27, 40], this approach creates its own concept of centrality, which

indicates the expected number of interesters (nodes interested in the data item held by i)

that node i can encounter during the remaining time Tk − t of data dissemination. Here, Tk

is the time constraint of the data item and t is the current time. Then their relay selection

makes sure that a new relay always has better capability of disseminating data to inter-

esters than the existing relays based on this newly defined time-varying centrality. They

consider both local centrality (centrality defined over one-hop neighborhood) and multi-

hop centrality (which takes multi-hop opportunistic connection into consideration). With

multi-hop centrality, more forwarding chances are considered, and this strategy may thus

lead to more accurate estimation of forwarding probability.

In [22], Fabbri and Verdone proposed a sociability-based DTN routing, which is based on

the idea that nodes with high degrees of sociability (frequently encountering many different

nodes) are good forwarding candidates. They defined the sociability indicator metric to

evaluate the forwarding ability of a node. This metric quantifies the social behavior of a

node by counting its encounters with all the other nodes in the network over a period T and

is therefore a time-varying parameter. The routing strategy forwards packets to the most

sociable nodes only. It is worth to notice that the strategy also considers both first hop-

based sociability and kth hop-based sociability. For kth hop-based sociability, the highly

sociable neighbors are considered during the calculation of a user’s sociability.

From these new social-aware approaches, we can see that the design of social-based

DTN routing tends to be more sophisticated. It not only directly uses social concepts from

social networks but also considers its own reality in a DTN environment.



CHAPTER 4: LOCATION-SOCIAL BASED ROUTING

Most of the social-based routing methods introduced above are implemented by explor-

ing social properties from social or contact graph (e.g. the community in [37, 40], the

centrality in [15, 40], the friendship in [7], et al. ). However in real word for many reasons

we cannot get them. For example, in Nokia Data Collection Campaign Dataset, although

we can get the list of visible Bluetooth devices (the hashed MAC address of devices), we

cannot infer the contacts information between users since the relations between users and

their relative device’s hashed MAC address is protected.

Even the social and contact relations of users are available, they not necessarily reflect

the truly device communication opportunities. For instance, brothers and sisters are socially

very close, but they may not have chance to see each other for longtime since they are busy

or living in two different countries, etc. On the other side, only look at social relation

may also lose many communication opportunites such as communication between famil-

iar strangers (e.g. Stangers take the same bus everyday). So, although pure social-based

methods has been proved better performance than traditional opportunity-based routing

protocols, their own limitation of accurately represent communication opportunities makes

them hard to have further progress.

In order to design more efficient and stable DTN routing algorithm, we need to explore

new realistic and effective features, which are easy to get, and simple to maintain. The

increasing availability of location technologies (GPS, GSM networks, etc.) enables mobile

devices to obtain their locations easily. An individual’s location history in the real world

implies, to some extent, his/her interests and behaviors. People who share similar location

histories are likely to have common interests behaviors and some kind of relations. For
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example, family members are living at the same place (home) and colleagues stay in the

same office during the day, classmates who take same classes may have the same schedule

and members of the table tennis club may show off at the same time in the gym for an

athletic event. Thus, it is possible to analyze the enriched location information and extract

social features among users, which are stable and easy to maintain. More than this, the

social features, which extracted from location information, will more accurately represent

the physic contact opportunities among users. Hereafter, we name these kinds of features

as location-based social features. By seeking such kind of location-based social features,

DTN routing protocols are expected to have better performance.

4.1 Related Works

Location information has been used for communication protocols in different mobile

networks. The most notable result is position based routing [6, 48, 60] in mobile ad hoc

networks or wireless sensor networks. In position based routing, routing decision is made

based on the position information of neighboring nodes and the destination. No routing

table is needed at each node, which reduces routing overheads and improves its scalability.

The changing topology is reflected as position updates from neighbors, thus routing pro-

tocol can handle topology changes without further procedures. However, position-based

routing suffer a lot from routing loop or dead ends in mobile networks and DTNs.

Recently, location-aware approaches have been applied in DTNs. There are two main

ways to use location information in aid of DTN routing. One is using the current location

information to pick the next-hop relay node as the traditional position-based routing. For

example, GeoDTN+Nav method [29] combines the GPSR method [47] with DTN routing

for a vehicular DTN. Packets are routed to the neighbor who has the smallest distance

to the destination. If all neighbors are further away from the destination than the current

node is, it switches to perimeter mode and routes the packet based on face routing. If the

current node does not have any neighbor at this moment, the protocol switches to DTN

mode by carrying the packet. Until a new neighbor node closer to the destination is found,
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the routing method switches back to position-based forwarding. Another is performing the

mobility prediction via the study of mobility pattern, when historical location information

of all nodes is available. Leguay et al. [53] built a high-dimensional Euclidean space based

on node location patterns. For each node, its coordinates are correspond to its probability

of being found in each possible location. By defining different types of distance between

two nodes to represent their location similarity, they proposed several location-aware DTN

routings. Fan et al. [28] explored the geographic regularity of human mobility in the

network and employed a semi-Markov analytical model to describe such mobility pattern.

By modeling regular users mobility, they further studied how to schedule a superuser to

facilitate data delivery. Gao and Cao [25] studied how to characterize the steady-state and

transient-state user mobility behaviors at a fine-grained level, based on the Hidden Markov

Model (HMM) formulation of user mobility. They showed that their approach is effective

in characterizing user mobility pattern and making accurate mobility prediction.

With the availability of enriched location information, location-aware approaches have

become an emerging topic in DTNs. However, all existing approaches consider the location

information isolated from the social properties. In the following sections, we will explore

possible ways to extract social features from location information and use them on DTN

routing.

4.2 Location-Based Routing

In this section, we will propose our location-based routing protocol, which mines the

similarity between users based on their geographic location history (cell tower ID scan

records). Instead of only taking into account of the geographic regions they accessed alone,

it also considers relative visited duration and frequency of these regions. By maintain a

location profile for each user, when a source/relay node encounters another node, their

geo-similarities with the destination node could be caculated respectively. The higher geo-

similarities they have with the destination, the more related they might be with it. With

the help of this geo-similarity metric, we can easily choose the appropriate relays. We will
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first define the geo-similarity metric, then we will propose the details of the single-copy

location-based routing protocol and extent it into multi-copy scenario.

4.2.1 Geo-Similarity Metric

A user’s visit frequency and duration of a place in the past may imply the possibility

of this user to visit this place in the future. Therefore, by recording the historical visiting

frequency and duration of each location, we can build a location profile of each user, which

reflects how likely this user will visit a particular place. In this paper, we use the location

of each cellular tower as one location. However, our proposed method can work with other

definition of locations. Assume that there are n mobile users (v1, · · · , vn) and m cellular

towers (t1, · · · , tm). Then we can define the location profile of a user vi as follows:

Definition 4.1 (Location Profile): The location profile of user vi is defined as a m-dimensional

vector,

L(vi) = {p(vi, t1), · · · , p(vi, tm)},

where p(vi, tj) =
dij∑m
j=1 dij

· fij∑m
j=1 fij

. Here dij and fij are the total visiting duration and

frequency of user vi to tower tj , repsectively. Thus, p(vi, tj) basically shows the product

of the portion of duration/frequency of user vi to tower tj compared with the total dura-

tion/frequency to all towers. Larger value of p(vi, tj) generally indicates vi visiting tj more

often and staying longer.

Based on location profiles, we can calculate the geo-similarity of two users as follows:

Definition 4.2 (Geo-Similarity): The Geo-Similarity of two users vi and vj is defined as

the inner product of their location profiles, i.e,

Sim(i, j) = L(vi) · L(vj) =
m∑

x=1

p(vi, tx)p(vj, tx).

The definition of the geo-similarity implies the similarity between location visiting pat-

terns of these two users, which hopefully reflects the probability of their meeting at a cell

tower in the future. With the definition of location similarity, the location based routing
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                 <cellspan starttime = '2004-09-04 22:51:44' endtime ='2004-09-04 22:52:01' celltower_oid = '8816'/>

<cellspan starttime = '2004-09-04 22:52:01' endtime ='2004-09-04 22:52:26' celltower_oid = '14998'/>

<cellspan starttime = '2004-09-04 22:52:26' endtime ='2004-09-04 22:54:31' celltower_oid = '8816'/>

<cellspan starttime = '2004-09-04 22:54:31' endtime ='2004-09-04 22:59:31' celltower_oid = '8918'/>

<cellspan starttime = '2004-09-04 22:59:31' endtime ='2004-09-04 23:34:37' celltower_oid = '8816'/>

<cellspan starttime = '2004-09-04 23:34:37' endtime ='2004-09-05 03:10:25' celltower_oid = '8918'/>

<cellspan starttime = '2004-09-05 03:10:25' endtime ='2004-09-05 03:10:34' celltower_oid = '8923'/>

<cellspan starttime = '2004-09-05 03:10:34' endtime ='2004-09-05 10:40:08' celltower_oid = '8918'/>

<cellspan starttime = '2004-09-05 10:40:08' endtime ='2004-09-05 10:40:25' celltower_oid = '8816'/>

Figure 4.1: Sample of cell tower scan records from MIT Reality Mining Dataset.

2 2011-12-18 13:02:00926

2 2011-12-18 16:42:00926

2 2011-12-18 17:01:00926

3 2011-12-06 16:56:001080

3 2011-12-06 17:01:001080

3 2011-12-06 17:48:001080

Figure 4.2: Sample of cell tower scan records from D4D Challenge Dataset.

method is straightforward.

4.2.2 Single-Copy Location-Based Routing

In single-copy location-based routing, when a source/relay node encounters another

node, if the encountered node has higher geo-similarity with the destination, the source/relay

node will choose this encountered node as the new selected relay and delete the message

from itself. The whole network only has one copy of the message. The details of the steps

are as follows.

Step 1 (Each User Setup a Location Profile): Figure 4.1 and Figure 4.2 illustrates exam-

ples of the scan records on MIT reality and D4D challenge dataset respectively. The record

includes the scanned tower ID and the time of this scan. Initially each user vi caculate and

save their location profile following the definition.

Step 2 (Calculate the Geo-similarity): When a source/relay node vi encounters an-

other node vj , vj gives vi his/her location profile, then vi calculate their geo-similarities

Simid and Simjd with the destination node vd respectively following the definition of geo-

similarity (the location profile of vd is included in the message).

Step 3 (Make Routing Decision): After getting the geo-similarities, vi compare them. If
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vj has higher geo-similarity with the destination, vi choose vj as the new selected relay and

delete the message from itself. Otherwise, the vi will hold the message until it encounters

another node and repeat the step 2 or finish routing if it meet the destination.

We now compare the performance of our single-copy scheme with other DTN routing

algorithms listed below.

• Epidemic[87]: A broadcast method, during any encounter, a copy of the message

is forwarded to all encountered nodes and the current node still hold a copy of the

message. The epidemic Forwarding algorithm conducts the upper bound of the suc-

cessful delivery ratio.

• Naive: during any encounter, the message is always forwarded to the encountered

node and the current node will not hold the message after forwarding. If there are

multiple nodes during the same encounter, the next hop is randomly picked. It can

be treated as a single-copy version of Spray and Wait [82]. The naive algorithm

conducts the lower bound of the successful delivery ratio.

• Fresh[18]: the message is only forwarded from the current node vi to the encountered

node vj if vj has met the destination more recently than vi does. If there are multiple

nodes satisfying such a condition during the same encounter, vi forwards the message

to the one who has met the destination most recently.

• Destination Frequency[20]: the message is only forwarded from vi to vj if vj has met

the destination more often than vi does. If there are multiple nodes satisfying such a

condition during the encounters, vi forwards the message to the one who has met the

destination most often.

• Centrality-Based: the message is only forwarded from vi to vj if vj has higher cen-

trality than vi does. Here, we simply consider the degree centrality of each node, i.e.,

how many nodes it has encountered. A node with higher degree centrality is more

popular in the network. If there are multiple nodes satisfying the condition during the

encounter, vi forwards the message to the one who has the highest centrality. Similar
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idea has been used in Greedy-Total [19], SimBet [15] and Bubble Rap [40].

Our evaluations are conducted on the MIT Reality Mining Dataset. The reason we

choose this datasets is it contains enriched cell tower scan trace, which record contacts

among users and cellphone towers. The user carried mobile devices record the nearby

cellphone towers by periodically scan. This gives us the location information we need

to implement our location-based routing protocol. Also it includes various types of data,

which may useful for our further continuous research, such as call logs, Bluetooth devices

in proximity, application usage, and phone status. The Various experiment periods provide

a lot of convenience too. The MIT Reality Mining Dataset is a relatively dense dataset

compare with D4D Challenge dataset as it was collected from students and faculties in the

same lab, their distributions are concentrated in a small area. On the other hand, users

in D4D Challenge dataset are distributed nation wide. Thus compared with D4D Chal-

lenge dataset, MIT Reality Mining Dataset is more suitable for evaluate the performance

of single-copy routing protocols. Because in a sparse network such as D4D Challenge

dataset network, the success ratio of all single-copy routing algorithms are too low to have

perceptible difference between them.

We implement all these six algorithms in a simulator developed by our group. We ran-

domly choose 20, 30, 40, 50 and 60 users respectively from the MIT Reality Mining Dataset

to build the different experiment environment. For each environment, we randomly gen-

erated the data source and destination as the routing assignments, and then apply the six

algorithms. For all the simulations, we repeat the experiment for multiple times and com-

pare each algorithm using the following four metrics:

• Average Successful Delivery Ratio: the average percentage of successfully delivered

message from the sources to the destinations under the same environment (the same

number of users).

• Average Hop count: the average number of hops during each successful delivery

from the sources to the destinations.



37

20 25 30 35 40 45 50 55 60
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

A
ve

ra
ge

 D
el

iv
er

y 
R

at
io

 

 

Naive
Location−based
Centrality−based
Fresh
Dest−Freq
Epidemic

20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

Number of Nodes

A
ve

ra
ge

 H
op

 C
ou

nt

 

 

Naive
Location−based
Centrality−based
Fresh
Dest−Freq
Epidemic

(a) Delivery Ratio (b) Hop Count

20 25 30 35 40 45 50 55 60
0

5

10

15

20

25

30

35

40

Number of Nodes

A
ve

ra
ge

 #
 o

f F
or

w
ar

di
ng

 

 

Naive
Location−based
Centrality−based
Fresh
Dest−Freq
Epidemic

20 25 30 35 40 45 50 55 60
2

3

4

5

6

7

8

9
x 10

5

Number of Nodes
A

ve
ra

ge
 D

el
ay

 

 

Naive
Location−based
Centrality−based
Fresh
Dest−Freq
Epidemic

(c)# of Forwarding (d) Delay

Figure 4.3: Performance comparison for single-copy routing on MIT Reality Dataset.

• Average Number of forwarding: the average number of messages forwarding in the

network during the whole period.

• Average Delay: the average time duration of successfully delivered message from

the source node to the destination node.

Figure 4.3 shows the performance comparison of the six algorithms on the four metrics.

From the evaluation of average successfully delivery ratio in figure 4.3(a), we found that

our location-based routing algorithm has much better average successfully delivery ratio

than Naive algorithm, and similar with the Fresh, Destination Frequency and Centrality-

Based algorithm. This proved that our location-based algorithm could achieve the accept-

able delivery ratio. By observing the average hops and average copies in Figure 4.3(b) and

(c) we can find that our algorithm has the smaller average hops and average copies than

the Centrality-Based and Fresh algorithm. This proves our algorithm uses less network

resources. So the slightly better successful delivery ratio of Centrality-Based and Fresh
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algorithm is obtained with the cost of more communication cost. Comparing the average

delay of our algorithm with the other algorithms we found the transmit delay of our algo-

rithm is acceptable. From all these results above, we can conclude that our location-based

algorithm is an effective routing method in DTNs environment. It is worth for us to explore

location characteristics to improve DTN routing performance.

4.2.3 Multi-Copy Location-Based Routing

Although the single-copy location based algorithm has been proved has high success-

fully delivery ratio in MIT reality environment, there are still a gap between it and the

upper bound (Epidemic Forwarding). Beside, MIT reality dataset is collected from a spe-

cial campus environment, there are many kinds of DTNs (e.g. D4D Challenge Dataset,

vehicular networks, etc.) which are not as dense as it. In such kind of networks, the single-

copy routing paradigm may lead to very poor delivery performance. For example, in D4D

most of algorithms only have less than 20% successful delivery ratio under the single-copy

model. This motivated us to extend our algorithm into multi-copy scenario. In this scenario

we allow limited number of message copies in the whole network. We expect that with the

multiply copies of messages in the network, we could capture better opportunities to reach

the destination.The detailed steps are as follows:

Step 1 (Each Node Setup a Location Profile): Same as in the single-copy location-based

algorithm each user built a location profile.

Step 2 (Calculate the Geo-similarity): When a source/relay node vi encounters another

node vj , vi calculate their geo-similarity with the destination node respectively.

Step 3 (Make Routing Decision): After getting the geo-similarities of vi and vj with

the destination vd respectively, vi compare Simid and Simjd. If Simjd < Simid, nothing

changes. Else if Simjd > Simid, vi choose vj as the new selected relay. At the same

time vi check the number of copies Nc in the network(Nc could be get by broadcasting). If

Nc is less than the copy number limitation Nmax, both vi and vj keep a copy, else vj keep

the copy and delete the copy on vi. All of the selected relay nodes will hold the message
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until they encounter another node, and then they repeat the step 2. The routing process will

finish if one of these selected relays meets the destination.

Performance Evaluation for Multi-Copy Location-Based Routing:
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Figure 4.4: Performance comparison for multi-copy routing on MIT Reality Dataset

We evaluate the performance of multi-copy location-based algorithm on both MIT Re-

ality Dataset and D4D Challenge Dataset. The MIT Reality Dataset is a representation

of small-scale dense delay tolerant network with limited number of mobile users. Mean-

while, the D4D Challenge Dataset is a representation of large-scale sparse DTN. It provides

anonymized call patterns and mobility data of 5000 to 50000 mobile phone users in Ivory

Coast. Besides, the relationships of users in D4D Dataset are full of variety compare with

MIT Dataset. In MIT Dataset all of the users are students or faculty in the school and most

of them are in the same lab. In D4D Dataset, users’ relationships are much more colorful.

They could be friends, classmates, relatives, colleagues, club members, familar strangers,

etc. We believe that the MIT Reality Dataset is the first step of study on data delivery via
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opportunistic communications. And the D4D Dataset represents the more general DTN

scenario.

The evaluation on MIT Reality Dataset uses the same ways as it in single-copy location-

based algorithm. We obtain the results in Figure 4.4. Compare with the results from single-

copy location-based algorithm, we find that the routing performance could be slightly im-

proved by using multi-copy model but not too much. Compare with the increased com-

munication cost using multi-copy way, its may not worth to use multi-copy model in MIT

Reality Dataset scenario. After allowing multiple copies in the network, the successfully

delivery ratio of all routing algorithms has been very close to the upper bound. Notice that

our location-based algorithm is not outstanding among the evaluated algorithms. This is

mainly because the users’ social relations in MIT Reality Dataset are strong, and the users’

activities are always restricted in a small area and very regularly, which means in this kind

of network, people’s social relations do reflect real communication opportunities. This is

not the kind of network scenario, whose routing performance we arms to use location char-

acteristic to improve, as we described at the beginning of this section. So here after, we

mainly use the D4D Challenge Dataset as our experiment environment.

In D4D Dataset environment, we assume that two phones can direct communicate to

each other if they share the same cellular tower at particular time. Though this assumption

may not be true in reality, it gives us an approximated environment for opportunistic com-

munications. All of our experiments are based on the generated encounter databases from

SET2. We will considers four different settings (A-D) in Table 2.2 for our experiments.

• Setting A: The first 15,000 users in the encounter database.

• Setting B: The users within the first 15,000 users whose physical locations of en-

counters limited to Abidjan city.

• Setting C: All 50,000 users in the encounter database.

• Setting D: The users within all 50,000 users whose physical locations of encounters

limited to Abidjan city.
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We implement seven algorithms (Epidemic, Naive, Fresh, Destination Frequency, Centrality-

Based and Location-Based) in these four Setting respectively and compare each algorithm

using the following four metrics: average successful delivery ratio, average hop count, aver-

age number of forwarding, average delay. For all experiments, we perform 5, 000 random

routing tasks among the selected participators. All results reported here are the average

over these tasks. For each experiment, we pick different number of nodes to participate

the opportunistic communications, ranging from 50 to 500. Here we always pick the most

active nodes (based on overall centrality) in the user set, since they are better candidates

for opportunistic forwarding. For all opportunistic routing methods except for Epidemic,

we allow multiple copies of the same message but limit the number of copies by a small

constant. In the default setting, we use 10 as the constant bound.
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Figure 4.5: Performance results over Setting A (the number of copies is fixed at 10).

In the first set of simulations, we use Setting A (with around 15, 000 selected users

and within the full region). Figure 4.5 illustrate the results. From Figure 4.5(a), we can
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see that our location-based methods can achieves better delivery ratio than other methods

except the Epidemic algorithm which is the upper bound of the routing performance. This

confirms that the understanding and usage of location relationships among mobile users is

beneficial for making smarter forwarding decision. Notice that that even though Epidemic

routing has the best delivery ratio, it costs extremely large amount of forwarding as shown

in Figure 4.5(d). It is also noticeable that the delivery ratio is decreasing as the number of

nodes increases. This is reasonable since we always choose the most active nodes as the

participators. With more nodes included, more routing tasks are among less active nodes.

In terms of hop count and number of forwarding, all opportunistic routing methods are at

the similar level except for Epidemic. Notice that for delay since we only consider the

successful routes, thus Epidemic usually has the largest delay.

0 10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Copies

A
ve

ra
ge

 D
el

iv
er

y 
R

at
io

 

 

Epidemic
Naive
Fresh
Dest−Freq
Centrality−based
Location−based

0 10 20 30 40 50 60 70 80
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Number of Copies

A
ve

ra
ge

 H
op

 C
ou

nt

 

 

Epidemic
Naive
Fresh
Dest−Freq
Centrality−based
Location−based

(a) Delivery Ratio (b) Hop Count

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

Number of Copies

A
ve

ra
ge

 #
 o

f F
or

w
ar

di
ng

 

 

Epidemic
Naive
Fresh
Dest−Freq
Centrality−based
Location−based

0 10 20 30 40 50 60 70 80
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Number of Copies

A
ve

ra
ge

 D
el

ay

 

 

Epidemic
Naive
Fresh
Dest−Freq
Centrality−based
Location−based

(c)# of Forwarding (d) Delay

Figure 4.6: Performance results over Setting A (the number of nodes is fixed at 100 ).

For the same Setting A, we then test the effect of the number of copies in multi-copy

opportunistic routing. We fixed with 100 nodes and change the number of copies from 3 to
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80. Figure 4.6 shows the results. It is obvious that with more message copies all methods

can achieve higher delivery ratio but increase the number of forwarding too. There is

clearly a trade-off between number of copies and forwarding overhead. When the number

of copies reaches certain value, the delivery ratio will be stable. Further adding more copies

does not help. For different methods, such critical value of copy number may vary.

To test the performance of all methods in a small and dense region, we then test our

methods on Setting B, which limits the region around a rectangle region near Abidjan.

Compared with the results in the full region (Setting A), all methods can achieve better

performances in this setting. This is reasonable since a limited dense network provides

more close opportunities for message delivery among mobile users than a larger and sparser

network does.
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Figure 4.7: Performance results over Setting B (the number of copies is fixed at 10).

Last, we also perform simulation over the full population of D4D dataset (Settings C

and D). Figure 4.8 and Figure 4.9 show the results, respectively. Compared with previous
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results, all methods can achieve better performances too. The reason is still the same that

within larger population the selected participants are more active thus lead to better chances

for mobile delivery. Once again, better performance can also be achieved in a smaller and

denser area.

In summary, via the above simulations over the D4D dataset, we can have the following

overall conclusions.

• Epidemic can achieve the highest delivery ratio since it takes every forwarding op-

portunities and does not have limitation on the number of copies. However, it suffers

from the large number of forwarding, especially when the number of nodes is large. It

could be used as the upper bound of the multi-copy algorithm’s routing performance.

• Location-based, Centrality-based, and Destination Frequency can achieve relevant

high delivery ratios while still use reasonable number of forwarding. In D4D Chal-

lenge Dataset environment, our Location-based algorithm can achieve better routing

performance than other social or traditional DTN routing algorithms.

• Compared with different settings, all opportunistic routing can achieve better perfor-

mance when the participants are active users and the physical region is small and

dense. This can be shown in Figure 4.10 which summarizes the average delivery

ratios over four different settings under the same parameters.

Since the number of encounters is significantly reduced after picking the subset users,

the smaller size of user set could accelerate the execution time of our simulations. More

important, the cellular towers stay the same level. So, here after we only evaluate our

algorithms on Set B (among the first 15000 users who limits the region around Abidjan).

4.2.4 Simplified Location-Based Routing

Our location-based routing protocol has been showed effective on MIT Reality Dataset

and excellent performance on D4D Challenge Dataset. However, this method needs to

keep a location profile for each user and include the location profile of the destination node

into the message. It works when the method is used for small-scale networks, however
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Figure 4.8: Performance results over Setting C (the number of copies is fixed at 10).
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Figure 4.9: Performance results over Setting D (the number of copies is fixed at 10).



46

Epidemic Naive Fresh Dest−Freq Centrality Location
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 D
el

iv
er

y 
R

at
io

 

 
Setting A
Setting B
Setting C
Setting D

Figure 4.10: Average deliver ratios over Settings A to D (the number of nodes and the
number of copies are 50 and 10, respectively).

for large-scale networks such as D4D Challenge Dataset network the huge size of location

profile could result in considerable communication overhead. In the worst case the location

profile of a D4D node could include around 1000 towers which could dramatically enlarge

the message size. Motived by these consideration, we expect to design some simplified

location-based algorithm.

Table 4.1: A D4D user’s visited frequency and duration on cell towers.
Cell Tower ID 750 1129 953 898 303 163 1022 404 · · ·

Total Visit Duration 33720 25354 15723 4268 210 113 36 29 · · ·
Total Visit Frequency 216 187 135 52 8 5 2 1 · · ·

From the observation of users location profile, we find that the towers which the user

visited with large frequency and long duration are mainly limited among a small number

of towers. Table 4.1 gives an example of one user’s visited frequency and duration on

cell towers in D4D Challenge Dataset. We can also observe that for most of the towers

their visited duration has direct proportion with visited frequency. Considers short term

opportunity encounters are already long enough to finish message transmission, we assume

that the most frequently visited towers of a user could be enough to represent the users
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location characteristics. Therefore instead of using location profile, we use the user’s top

10 frequent visited towers to describe his/her location characteristic. We name these towers

as top 10 towers in short here after, and represent the top 10 towers of node vi as a vector

(ti1, ti2, ·, ti10).

Then we can define a new metric to approximatively measure the geo-simularity of two

node:

Definition 4.3 (Number of Common Top Towers): Assume the top 10 towers of user vi and

user vj are (ti1, ti2, · · · , ti10) and (tj1, tj2, · · · , tj10) respectively.

Ikk′ =


0,when tik ̸= tjk′

1,when tik = tjk′

The number of common top towers for node vi and node vj is COMTij =
∑10

k=1

∑10
k′=1 Ikk′ .

By using this new location-based metric, we modify our multi-copy location-based al-

gorithm as follows:

Step 1 (Get the top 10 towers for Each Node): Based on the user’s cell tower scan

records, each user saves the top 10 towers, which they visited the most frequently as their

top 10 towers.

Step 2 (Calculate the number of common top towers): When a source/relay node vi

encounters another node vj , vi calculate their number of common top towers with the des-

tination node vd respectively.

Step 3 (Make Routing Decision): After getting the number of common top towers of

vi and vj with the destination vd respectively, vi compare COMTid and COMTjd. If

COMTjd < COMTid, nothing changes. Else if COMTjd > COMTid, vi choose vj as

the new selected relay. At the same time vi check the number of copies Nc in the network.

If Nc is less than the copy number limitation, both vi and vj keep a copy, else vj keep the

copy and delete the copy on vi. All of the selected relay nodes will hold the message until

they encounter another node, and then they repeat the step 2. The routing process will finish
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if one of these selected relays meets the destination.

We only introduce the multi-copy form of this algorithm, because we will only evaluate

its performance on the D4D Challenge Dataset, which is a sparse network and unsuitable

for single-copy routing model. Hear after, we only introduce and evaluate our designed

algorithms in multi-copy model, and we believe its easy to extend them into single-copy

model also. Using the number of common top towers instead of the location profile we

only need to add 10 tower Ids onto each message and into the user’s storage. This way will

significant reduce the communication and network management overhead.
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Figure 4.11: Performance results of simplified location-based method over Setting B of
D4D.

We now evaluate the performance of simplified location-based algorithm on Setting B

of D4D Challenge Dataset. We compare the simplified location-based algorithm with five

algorithms(Epidemic, Destination Frequency, Centrality-Based and Location-Based) using

the following four metrics: average successful delivery ratio, average hop count, average

number of forwarding, average delay. For all experiments, we perform 5, 000 random
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routing tasks among the selected participators. All results reported here are the average

over these tasks. For each experiment, we pick different number of nodes to participate

the opportunistic communications, ranging from 50 to 200. Here we always pick the most

active nodes (based on overall centrality) in the user set, since they are better candidates

for opportunistic forwarding. For all opportunistic routing methods except for Epidemic,

we allow multiple copies of the same message but limit the number of copies by a small

constant. In the default setting, we use 20 as the constant bound.

Figure 4.11 illustrate the results. From Figure 4.11(a), we can see that our simplified

location-based method can achieves better delivery ratio than Destination Frequency algo-

rithm, and very close to Centrality-Based and Location-Based algorithm. This confirms

that the simplified metric do capture the main characteristics of users location features.

4.3 Nokia Mobile Data Challenge: Location Analysis

Location information has been proved very useful on DTN routing. It is interesting to

study on the real-world tracing data and answer the following questions:

1. What kind of features we can get from these location information?

2. How could we get them?

3. Are they helpful on DTN routing?

We participated in the Nokia Mobile Data Challenge (MDC)[11], which gives us an

opportunity to work with a unique and relatively unexplored rich mobile dataset. One of the

task of Nokia Mobile Data Challenge is semantic place prediction. The available data for

the Challenge was collected by the Nokia Data Collection Campaign with 200 participants

carried the smartphones in the course of more than one year. We name this dataset as

MDC dataset for short hearafter. MDC dataset include rich data related to location. For

competition purpose, only a subset of 80 users’ dataset is released as the training data. For

each user in the MDC data, the raw location data (based on GPS and WLAN) was first

transformed into a symbolic space which captures most of the mobility information but

excludes actual geographic coordinates. This was done by first detect the visited (checked-
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in) places and then mapping the sequence of coordinates into the sequence of visits to

checked-in places (represented by a place ID). Places are user-specific and they are ordered

by the time of the first visit ( the visit sequence starts with place ID = 1). Each place

corresponds to a circle with a radius of 100 meters.

The users’ location information we used is in the form of visitsequence20min.csv record

which is the sequence of place visits which are longer than 20 minutes. It includes:

• userid: id of the user

• unixtimestart: unix time of the phone when the visit started.

• tzstart: time zone of the phone when the visit ended.

• unixtimeend: unix time of the phone when the visit end.

• tzend: time zone of the phone when the visit ended.

• trustedstart: the start time is trusted if there are location data points in the period of

10 minutes before the arrival time (0 = false, 1 = true).

• trustedend: the end time is trusted if there are location data points in the period of 10

minutes before the arrival time (0 = false, 1 = true).

• trustedtransition: the transition between the current visit and the next visit is trusted

if there are location data points every 10 minutes between the leaving time of the

current visit and the starting time of the next visit. If the transition is trusted then it

is not possible to have missing more than 20min visit in the transition.

While people travel further and faster than ever before, it is still the case that they spend

much of their time at a few important places. Identifying these key locations is thus

central to understanding human mobility and social patterns. In this task , by analyzing

anonymized cellular network data, we arms to identify the generally important locations

(extracted from location data) and discern the semantic meaning of these places, such as

“work place“, “restaurant“, etc. The list of places to be annotated is belong to one of the

10 categories:

1. Home
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2. Home of a friend, relative or colleague

3. My workplace/school

4. Location related to transportation (bus stop, metro stop, train station, parking lot,

airport)

5. The workplace/school of a friend, relative or colleague

6. Place for outdoor sports (e.g. walking, hiking, skiing)

7. Place for indoor sports (e.g. gym)

8. Restaurant or bar

9. Shop or shopping center

10. Holiday resort or vacation spot

Beside the collected mobile phone data, we also get some ground truth data: semantic

labels of several places that were visited during the data collection period. There are totally

331 instances. This data could be use to verify the classification accuracy of our semantic

prediction method.

Semantic Place Prediction Method:

People’s access of some particular place may follow some regulations. For example,

during weekdays, Bob will get up at 6:00 am and send his daughter to the kindergarten at

6:30 am, he then will came back. After having breakfast, he will go to work at 8:00 am,

he will after work at 4:00 pm, when to gym for one hour and pick up his daughter at 5:30

pm, then he will back home and stay. He repeats this routine everyday. These regulations

very related to the time. For example, from 8:00 am to 4:00 pm Bob probably not at home

because it is his work time. We may distinguish different places by study people’s access

time on them. Figure 4.12 illustrate a MDC user’s access frequency distribution of his

home and work place during a day and a week respectively. It’s easy to find that the user’s

access distributions of his home and work place have significant difference. His home has

very high access frequency at night and equal access frequency on each day during a week,

meanwhile his workplace has very high access frequency at daytime and during weekdays
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Figure 4.12: User A’s access frequency distribution of home and work place.

(Monday to Friday). This implies the features of people’s access on a place could be used

to predict its semantic meaning. Even better, different people may have some similar access

features on a particular type of place. Figure 4.13 illustrate the two different MDC users’

access frequency distribution of their home and workplace respectively. Both users’ home

have very high access frequency at night and equal access frequency on each day during a

week. Their workplaces also both have very high access frequency at daytime and during

weekdays. So we believe, for some specific places there exist common rules to predict

them. Like most of people go to restaurant during 12:00am-2:00pm and 5:00pm-8:00pm,

most of people sleep at night. By reveal these observable factors, we may predict the

semantic meaning of a place.

Studying our ground truth data, we reveal the following observable factors that capture

characteristics, which are useful on distinguishing the places semantic meanings:

• Days in a month: The number of days, the user accessed the place in one mouth.
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Figure 4.13: User B and C’s access frequency distribution of their home and workplace

If the user accessed the place many times on the same day, the day is counted only

once.

• Total access frequency: The sum number of times the place was visited during the

whole data collection period of the MDC data.

• Total access frequency of visits shorter than 2 hours: The sum number of times the

place was visited shorter than 2 hours during the whole data collection period of the

MDC data.

• Total access frequency of visits longer than 2 hours and shorter than 4 hours: The

sum number of times the place was visited longer than 2 hours and shorter than 4

hours during the whole data collection period of the MDC data.

• Total access frequency of visits longer than 4 hours: The sum number of times the

place was visited longer than 4 hours during the whole data collection period of the

MDC data.

• The average access frequency in the weekdays: The sum number of times the place

was visited in the weekdays during the whole data collection period of the MDC data

divide by 5.

• The average access frequency in the weekend: The sum number of times the place

was visited in the weekend during the whole data collection period of the MDC data
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divides by 2.

• Total access frequency in the daytime: The sum number of times the place was visited

between 7:00am to 7:00pm during the whole data collection period of the MDC data.

• Total access frequency at the nighttime: The sum number of times the place was

visited between 7:00pm to 7:00am during the whole data collection period of the

MDC data.

• Total access frequency in the sleeping time (12:00am-6:00am): The sum number

of times the place was visited between 12:00am to 6:00am during the whole data

collection period of the MDC data.

• Total access duration: The sum of duration the place was visited during the whole

data collection period of the MDC data.

• Total access duration of visits shorter than 2 hours: The sum of duration the place

was visited shorter than 2 hours during the whole data collection period of the MDC

data.

• Total access duration of visits longer than 2 hours and shorter than 4 hours: The sum

of duration the place was visited longer than 2 hours and shorter than 4 hours during

the whole data collection period of the MDC data.

• Total access duration of visits longer than 4 hours: The sum of duration the place

was visited longer than 4 hours during the whole data collection period of the MDC

data.

• The average access duration in the weekdays: The sum of durations the place was

visited in the weekdays during the whole data collection period of the MDC data

divide by 5.

• The average access duration in the weekend: The sum of durations the place was

visited in the weekend during the whole data collection period of the MDC data

divides by 2.

• Total access duration in the daytime: The sum of durations the place was visited
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between 7:00am to 7:00pm during the whole data collection period of the MDC

data.

• Total access duration at the nighttime: The sum of duration the place was visited

between 7:00pm to 7:00am during the whole data collection period of the MDC

data.

• Total access duration in the sleeping time: The sum of duration the place was visited

between 12:00am to 6:00am during the whole data collection period of the MDC

data.

4.3.1 Rule Based Prediction: Predict Home and Work Place.

Comparing with other place categories, home and work place are two of the most im-

portant places in people’s life. They normally have the largest “total access frequency” and

they are easier to be detected. An obvious feature of home is: most people sleep at home.

So just use the single factor of the “total access duration in the sleeping time” we can de-

tect people’s home. The workplace detection is a little bit complicated compare with home

detection. As we observed already, most of people’s work places should have high “aver-

age access frequency in the weekdays” and high “total access frequency in the daytime”.

They also should have low “average access frequency in the weekend” and low “total ac-

cess frequency at the nighttime”. Following these rules we make our home and work place

detection strategies:

• Home: Comparing the “total access duration in the sleeping time” of each place ID

for a user, we set the one with highest “total access duration in the sleeping time” as

the user’s home.

• Workplace: Check the places of each user with the top five “total access frequency”.

For the places, whose “average access frequency in the weekdays” is larger than its

“average access frequency in the weekend” and its “total access frequency in the

daytime” is larger than its “total access frequency in the nighttime”, we identify the

place with the largest ”total access frequency” as the user’s work place.
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We applied our home and workplace detection algorithm on the MDC data and vali-

date the results with the ground truth data. We found our home and workplace detection

algorithms have very high classification accuracy. Table 4.2 summarized the detailed clas-

sification accuracy of home. Here the class “Yes” represent the place labels classified as

home, the class “No” represent the place labels classified as not home. The true positive

rate (TP rate) of class “Yes” represent the ratio the real home been classified as home, the

true positive rate of class “No” represent the ratio the place which is not home been classi-

fied as not home, the false positive rate (FP rate) of class “Yes” represent the ratio the place

which is not home been classified as home, the false positive rate of class “No” represent the

ratio the home been classified as not home. Similarly, Table 4.3 summarized the detailed

classification accuracy of work place. Considering not everyone will have distinct home or

work locations: some people work at home, others have no fixed work site, and still others

may not use their cell phones at home, our algorithms produce good approximation of true

home and work locations.

Table 4.2: The detailed classification accuracy of home
Class TP Rate FP Rate
Yes 0.762 0.081
No 0.919 0.238

Table 4.3: The detailed classification accuracy of work place
Class TP Rate FP Rate
Yes 0.765 0.105
No 0.895 0.235

4.3.2 Semantic Place Predict with Machine Learning :

We manually formulated the rules to distinguish home and work place successfully, how-

ever not all categories of the places have such obvious regulation. Figure 4.14 illustrate the

access frequency of friend’s home and friend’s work place of user A, it is hard for us to

find any characteristics. That means we need to explore more smart ways to learn their

regulations.
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Figure 4.14: User A’s access frequency distribution of friend’s home and friend’s work
place

Currently the machine leaning methods are widely used on evolve behaviors based on

empirical data. A learner can take advantage of examples (data) to capture characteristics of

interest of their unknown underlying probability distribution. Data can be seen as examples

that illustrate relations between observed variables. The machine learning methods could

automatically learn to recognize complex patterns and make intelligent decisions based on

data. So we use WEKA [33], a comprehensive tool for machine learning and data mining

to explore the user’s mobility pattern on different categories of places.

Two basic concepts in WEKA are dateset and classifier. A dataset is a collection of

the classified examples/instances. Each instance consists of a number of attributes, any

of which can be nominal ( one of a predefined list of values), numeric (a real or integer

number) or a string (an arbitrary long list of characters, enclosed in ”double quotes”). The

external representation of an instances class is an ARFF file, which consists of a header
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describing the attribute types and the data as comma-separated list. The Classifiers are the

machine learning algorithms. The Classifier use the examples/instances in the dataset to

train a pattern, then using the obtained pattern we can classify the unclassified data.

%!"#$#!%#!&'('#!')#!*+'#$+(,!+(-#!./!')#!0('(&#'

@relation placelabe1_1          
1!2)#&#!,*+#&!0#/*+#!&*3!+4-#$*5!(''$*64'#&!7$#8$#&#+'!.4$!&*3!.6&#$9(6,#!

/(5'.$&:

@attribute Duration numeric   

@attribute Frequency numeric

@attribute Day numeric

@attribute Night numeric

@attribute Weekday numeric

@attribute Weekend numeric
12)#! ,(&'! (''$*64'#! *&! ')#! 0#/(4,'! '($;#'! .$! 5,(&&! 9($*(6,#! 4&#0! /.$!

8$#0*5'*.+<!=+!.4$!5(&#!*'!*&!(!+.-*+(,!(''$*64'#!%*')!'%.!9(,4#&>!?@#&A!

$#8$#&#+'&!')#!8,(5#!*&!).-#>!?B.A!$#8$#&#+'!*'C&!+.'!).-#!

@attribute Label {Yes,No}

%!2)#!$#&'!./!')#!0('(&#'!5.+&*&'&!./!')#!'.D#+!E0('(>!/.,,.%#0!6F!5.--(G

&#8($('#0!9(,4#&!/.$!')#!(''$*64'#&!GG!.+#!,*+#!8#$!#3(-8,#<!=+!.4$!5(&#>!
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,(&'!$#8$#&#+'!')#!;$.4+0!'$4')!%)#')#$!')*&!8,(5#!*&!).-#!.$!+.'<

@data

%107 3 (user and place ID)

7239873,218,74,144,38.8,12.0,Yes

%177 2

3474346,187,175,12,31.0,16.0,No

%081 1

11571846,243,63,180,35.2,33.5,Yes

%146 2

4664400,374,372,2,57.2,44.0,No

%043 11

4641364,275,271,4,40.6,36.0,No

%059 2

2412795,178,167,11,31.0,11.5,No

Figure 4.15: Sample of WEKA dataset.

Here is an example of how we use weka to extract the pattern of a specific category of

place. Figure 4.15 is an commented example of dataset, which is used to extract the pattern

of place category: 1(home). We name this dataset as training set hereafter. This dataset tells

the classifier places with what kind of attribute is home or not home. For example, the first

instance tells the place with total duration 7239873 second, total frequency 218, 74 total

access frequency during the day, 144 total access frequency at night, 38.8 average access

frequency in weekday, 12 average access frequency in the weekend is home. The classifier
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will then automatically train a rule. We save this rule, and apply it on other instances (we

name these instances as testing set hereafter), it will tell us which class the instance belongs

to.

To test the performance of this machine learning method we divide our ground truth data

into two parts. We randomly pick 1/4 of the instances as the testing set and remaining 3/4

instances as training set. Table 4.4 shows the distribution of our instances on different place

categories. We use all the factor we explored(“days in a month”,“total access frequency”,

etc.) as the instance attributes, and we use five different classifiers: NaiveBayes, BayesNet,

IBK, J48 and AdaBoostM1. Table 4.5 list the true positive rate of class “Yes” for each

place category and classifier respectively. Table 4.6 list the true positive rate of the class

“No” for each place category and classifier respectively. Table 4.7 list the false positive

rate of the class “Yes” for each place category and classifier respectively. Table 4.8 list

the false positive rate of the class “No” for each place category and classifier respectively.

We found that different classifier has different predict accuracy especially for place labels

which has less instances. Comparing all the classifier we use, NaiveBayes has the most

stable performance on different place categories.

Table 4.4: The distribution of instances
Place Label(Category) 1 2 3 4 5 6 7 8 9 10

ground truth 84 46 102 23 9 25 14 11 17 5
training set 64 35 70 15 6 20 10 8 12 4
testing set 20 11 32 8 3 5 4 3 5 1

The results show the machine learning method have less accuracy of detecting home

and work place than our manually formulated detection algorithms. We want to find out if

the attributes selection effect the accuracy. Then we again use the single factor “the total

access duration in the sleeping time” as the instance attributes and use the classifier IBK

to detect home. We get the detailed classification accuracy in Table 4.9. The result shows

the detection accuracy is different with the multiply attributes detection. So we found that,

the attributes selection effect the predict accuracy too. The key of improving the machine
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Table 4.5: The true positive rate of class “Yes”
Place Label(Category) NaiveBayes BayesNet IBK J48 AdaBoostM1

1 0.5 0.563 0.688 0.625 0.563
2 1 0 0.556 0.222 0.444
3 0.762 0.429 0.524 0.476 0.333
4 1 1 0.5 0.5 0
5 1 0 0 0 0
6 0.9 0.6 0 0 0
7 0.857 0 0 0.143 0
8 0.8 0 0 0 0
9 1 1 0 0 0

10 1 0 0 0 0

Table 4.6: The true positive rate of class “No”
Place Label(Category) NaiveBayes BayesNet IBK J48 AdaBoostM1

1 0.964 0.909 0.945 0.982 0.982
2 0.21 1 0.774 0.903 0.823
3 0.62 0.96 0.9 0.88 0.9
4 0.701 0.806 0.925 0.925 1
5 0.6 0.729 0.986 1 1
6 0.525 0.639 0.934 1 1
7 0.484 1 1 1 1
8 0.606 1 1 1 1
9 0.464 0.71 0.971 0.957 1

10 0.814 1 0.986 1 0.986

Table 4.7: The false positive rate of class “Yes”
Place Label(Category) NaiveBayes BayesNet IBK J48 AdaBoostM1

1 0.036 0.091 0.055 0.018 0.018
2 0.79 0 0.226 0.097 0.177
3 0.38 0.04 0.1 0.12 0.1
4 0.299 0.194 0.075 0.075 0
5 0.4 0.271 0.014 0 0
6 0.475 0.361 0.066 0 0
7 0.516 0 0 0 0
8 0.394 0 0 0 0
9 0.536 0.29 0.029 0.043 0

10 0.186 0 0.014 0 0.014



61

Table 4.8: The true positive rate of class “No”
Place Label(Category) NaiveBayes BayesNet IBK J48 AdaBoostM1

1 0.5 0.438 0.313 0.375 0.438
2 0 1 0.444 0.778 0.556
3 0.238 0.571 0.476 0.524 0.667
4 0 0 0.5 0.5 1
5 0 1 1 1 1
6 0.1 0.4 1 1 1
7 0.143 1 1 0.857 1
8 0.2 1 1 1 1
9 0 0 1 1 1

10 0 1 1 1 1

learning’s accuracy is to set the appropriate attributes and classifier.

Table 4.9: The detailed classification accuracy of home by machine learning
Class TP Rate FP Rate
Yes 0.625 0
No 1 0.375

We also observed that one category of place may have multiply patterns, such as the

work place. Many people have more than one work places, one of them is their main work

place, another, for example just access once a week. So even both of them are work places

they have some different features. We split the work place instances into two groups. Group

one is the instances for the main work place, group two includes the instances of others.

If a user has only one work place we put it into group one. If a user has multiply work

places we put the one with largest “total access duration” into group one, others into group

two. We train the two groups separately with classifier IBK. Then we use the obtained

patterns to classify our test set. Table 4.10 and 4.11 list the detailed accuracy of these

two patterns respectively. We combines the identified workplace from these two patterns

together, Comparing this result with our manually formulated method, the combined result

has better accuracy Table 4.12 list the detailed accuracy of it.
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Table 4.10: The detailed classification accuracy of work place by machine learning with
pattern obtain from group one

Class TP Rate FP Rate
Yes 0.614 0.082
No 0.918 0.386

Table 4.11: The detailed classification accuracy of work place by machine learning with
pattern obtain from group two

Class TP Rate FP Rate
Yes 0.597 0.041
No 0.959 0.403

4.3.3 Other Tasks in MDC

Besides the task of semantic place prediction, we also participate in the nexplace predic-

tion taks of MDC. In this task, we explore methods of predicting the user’s next destina-

tion using the user’s current context. We also solved this problem using machine learning

method and get a good correct classify ratio. Among all the teams competitor in Nokia

Mobile Data Challenge, the prediction accuracy of our methods rank in the fourth and fifth

for the two tasks.

4.4 Location-Social Based Routing

From the review of previous works on social-based DTN routing and our experimental

results on location-based DTN routing, we found both methods are effective. We are going

to explore the novel joint social- and location-aware approaches to design more efficient

routing protocols for the DTNs’ environment.

A feasible idea is extract user’s social properties from their location information. By

study the Nokia Data Collection Campaign dataset (MDC Dataset), we found some ap-

Table 4.12: The detailed classification accuracy of work place by machine learning with
combining two patterns

Class TP Rate FP Rate
Yes 0.867 0.122
No 0.878 0.133
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proaches to identify important places of user. These analysis results can also help us to

predict user’s social relations. For example if two users’ home are very close, they are

neighbors. If they live at the same place, they are probably family members. If two users

work at the same place they might be colleagues. If the two user’s friends lives or works

at the same place they may also friends. If we found a user visit another user’s home very

often they may be friends. If a user only visits another user’s work place, they may be

business partner but they probably are not friends. In this section we will focus on how to

extract these social relations, which observed from the location information, as useful so-

cial properties for DTN routing. And, we will explore how to apply them on DTN routing.

4.4.1 Location-Social Based Metrics

In Section 4.3, we explored two ways to identify important places of users. One is man-

ually establish some rules; the other is use machine learning method. Using the machine

learning method can get more accurate results and increase the possibility of discovering

some inconspicuous characteristics of certain specific place. However these benefits brings

large computation cost, which is both unaffordable and unworthy for DTN routing. Espe-

cially considers that, most people spend a huge percentage of their time at their home and

work places, (for example, a normal person who sleep eight hours a day and works eight

hours during weekdays, spend at least 8 ∗ 7 + 8 ∗ 5 = 96 hours per week at his/her home

and work place which is more than 57% of time in his/her life), and our manually rules to

detect home and workplace already have very good accuracy, we will explore how to use

these rules to extract user’s social features from location information.

Our simplified location-based method proved that using cell towers, which a user fre-

quently visited, is a good way to represent the user’s location characteristics. Similarly, we

use the towers a user frequently visit during “sleeping time to distinguish a user’s home

feature. This feature describes that the user lives around the location of these towers. Also,

we distinguish a user’s work place feature as the towers the user frequently visit during day-

time of weekdays (Monday to Friday), which describes the user works around the physic
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location of these towers. So we give the definition of the user’s top 5 home-towers and top

5 work-towers as follows:

Definition 4.4 (A User’s Top 5 Home-Towers): A user vi’s top 5 home-towers is five of

the user vi’s visited towers appears in its visited history (visit scan record), which user vi

visited with the longest sum of duration, during 11pm∼7am every day of the test period.

Definition 4.5 (A User’s Top 5 Work-Towers): A user vi’s top 5 work-towers is five of the

user vi’s visited towers appears in its visited history (visit scan record), which user vi visited

with the longest sum of duration, during 8am∼7pm every weekday of the test period.

With the two metrics (top 5 home/work-towers) to describe a individual’s live and work

feature, we can define two new metrics to approximatively measure how likely two nodes

will be colleagues or neighbors:

Definition 4.6 (Number of Common Home-Towers): Assume the top 5 home-towers of

user vi and user vj are (ti1, ti2, ·, ti5) and (tj1, tj2, ·, tj5) respectively.

Ikk′ =


0,when tik ̸= tjk′

1,when tik = tjk′

The number of common home-towers for node vi and node vj is COMHij =
∑5

k=1

∑5
k′=1 Ikk′ .

Definition 4.7 (Number of Common Work-Towers): Assume the top 5 work-towers of user

vi and user vj are (ti1, ti2, ·, ti5) and (tj1, tj2, ·, tj5) respectively.

Ikk′ =


0,when tik ̸= tjk′

1,when tik = tjk′

The number of common work-towers for node vi and node vj is COMWij =
∑5

k=1

∑5
k′=1 Ikk′ .

The more number of common home/work-towers two users have, the more likely they

will live/work in the same area, which means they will probably have more communication

opportunities. Thus, we can roughly construct the users’ home/work contact graph:
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Definition 4.8 (Users’ Home Contact Graph): We model the users’ home contact graph as

a 2-dimensional undirected graph Gh = (V,E). where V = (v1, · · · , vn) denotes the set

of users and E denotes a set of links. A link vivj ∈ E denotes the number of common

home-towers for user vi and vj is larger than 2, which means user vi and vj live within the

same area.

Definition 4.9 (Users’ Work Contact Graph): We model the users’ work contact graph as

a 2-dimensional undirected graph Gw = (V,E). where V = (v1, · · · , vn) denotes the set

of users and E denotes a set of links. A link vivj ∈ E denotes the number of common

work-towers for user vi and vj is larger than 2, which means user vi and vj work within the

same area.

A link in home/work contact graph indicates the two users may have strong connection(

communication opportunity).

With the users’ home and work contact graph, we can have the users’ degree and be-

tweenness centrality on them:

Definition 4.10 (The User’s Home/Work Degree Centrality): The user vi’s degree centrality

is the number of links incident upon vi on the home/work contact graph.

Definition 4.11 (The User’s Home/Work Betweenness Centrality ): The user vi’s between-

ness centrality is the number of shortest paths passing via node vi on the home/work contact

graph.

A user with a high degree centrality on home/work contact graph is a popular user with

a large number of possible contacts. He/she may live/work in the area a large number of

users in the network live in/work at. A user with high betweenness centrality on home/work

contact graph can control or facilitate many connections between other users.

4.4.2 Location-Social Based Routing Protocols

The metrics we explore in the last section represent users social/location characteristic

and their relationships, which could be helpful on DTN routing. Now the question is how
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to smartly use them to make routing decision.

Using multiply metrics as relay selection criterion is a straight forward method to take

advantage of varies information resource. The use of multiply social-based metrics has

been proved effective. In [15], Daly and Haahr uses betweenness centrality to identify

those nodes who can act as bridges in their neighborhood, and uses similarity metrics to

identify nodes are more likely to find a common neighbor with the destination which can

act as the forwarder. Hui et al. [40] also relied on two social characteristics (community

and centrality). They assumed that each node belongs to at least one community and its

node centrality (either betweenness or degree centrality) in the community describes the

popularity of the node within this community. We explore the combination of using social-

and location-based metrics.

We first designed two group of experiments, both of which demonstrated that simple

combination of multiply location and/or social metric may lead to poor routing perfor-

mance.

Our first experiment test the combination of one social and one location metric: the

geo-similarity and degree centrality. We name our new method as Geo-Cen. This method

only forward the data to the node whose geo-similarity to the destination and degree cen-

trality are both larger than that of the current node. We compare the method with the

method which only use geo-similarity and centrality as routing metric (Location-Based

and Centrality-Based). The evaluation is in multi-copy model on the Setting B of D4D

Challenge Dataset. The result in Figure 4.16 shows that such simple combination approach

does not improve the performance. The successful delivery ratio of the Geo-Cen algorithm

is even lower than both the location-based algorithm and the centrality-based algorithm.

The reason is this method only choose the node, whose geo-similarity to the destination

and degree centrality are both larger than that of the current node, as relay node. Surely

such kind of node should be ideal to relay the message, however using such a strict rule, it

is hard for the source node to find a eligible relay. If the source node does not encountered
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such kind of node, it just wait and lose the successful communication opportunities.
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Figure 4.16: Simply combining geo-similarity with degree centrality: poor performance.

Our second experiment test the combination of two location metrics: the number of

common home-towers and number of common work-towers. We compare the performance

of three routing strategies: Geo-Home, Geo-Work, Home-Work. The details of these three

algorithms are listed as follows:

Geo-Home : when a node vi encountered another node vj . If the number of common

home-towers between the encountered node vj and the destination node vd is larger than

the number of common home-towers between the node vi and vd, forward the message.

Geo-Work : when a node vi encountered another node vj . If the number of common

work-towers between the encountered node vj and the destination node vd is larger than the

number of common work-towers between the node vi and vd, forward the message.

Home-Work : when a node vi encountered another node vj . If both the number of

common home-towers and number of common work-towers between the encountered node
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vj and the destination node vd is larger than 1, forward the message.
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Figure 4.17: Simply combining # of common home&work-towers:poor performance.

We also evaluated these protocols in multi-copy model on the Setting B of D4D Chal-

lenge Dataset. The result in Figure 4.17(a) shows that the successful delivery ratio of the

Home-Work algorithm is worse than Geo-Home and Geo-Work algorithm. The reason is

similar with the one in our first experiment. Although the node which both has common

top 5 home tower and top 5 work towers with the destination node could be a good relay,

the number of such kind of nodes is limited. There is very low possibility that a user both

work and live at the same place with the destination user. So making too strict requirement

on relay node selection is not a good way.

Therefore, again, it is an interesting research challenge regarding how to smartly make

use of the advantage from both location-based and social-based metrics to improve the

routing performance.

The good way to take advantage of multiply metrics (various information source) is not
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Figure 4.18: Smartly use multiply metrics significantly improve the routing performance.

only use them to look for a perfect relay node. It is also important to use appropriate metrics

in appropriate situation. Bubble rap forwarding in [40] is a good example. In its bubble-up

phase, it first bubbles the message up based on the global centrality to increase the relay

node’s opportunity to encounter with the more ideal relay node (the node which is in the

same local community as the destination). After the first phase, since the current relay

node already have relatively high probability to meet with the destination node, its relay

selection rule became more rigid (it only choose the node with higher local centrality).

Inspired by this observation, we proposed our new location-social based routing algorithm

which jointly use number of common home-towers, number of common work-towers, home

degree centrality and work degree centrality, We call it Home-Work-Bubble.

The basic idea of this algorithm is when the current node doesn’t have any common top

5 home/work- towers with the destination, which means the current relay node does not

have close home or work place with the destination, the source relay will choose the node
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with higher home/work degree centrality or higher total number of common home and work

towers with the destination as the relay. Until the current relay meet with the node, which

has common top 5 home/work towers with the destination, it begins the second stage. Since

then, it only relays message to the node, which has higher total number of common home

and work towers with the destination. It’s detailed steps are as follows.

Step 1 (Calculate the Top 5 Home/Work Towers): Using the user’s cell tower scan

records, find the top 5 home/ work- towers .

Step 2 (Construct the Home/Work Contact Graph): Create matrix DH to represent the

users’ home contact graph, DW to represent the users’ work contact graph. For each dij ∈

DH , dij = 1 if the number of common home-towers between user vi and vj is larger than

2, otherwise dij = 0. Similarly, for each d′ij ∈ DW , d′ij = 1 if the number of common

work-towers between user vi and vj is larger than 2, otherwise d′ij = 0.

Step 3 (Calculate the Home/Work Degree Centrality): Calculate the home/work degree

Centrality for each user.

Step 4 (Make Routing Decision): When a user vi encounters another user vj , if user vi

doesn’t have any common top 5 home/work-towers with the destination node, vi choose

vj as the relay node if vj have common top 5 home/work-towers with the destination or

the home/work degree centrality of node vj is larger than node vi. If user vi already have

common top 5 home/work- towers with the destination node, vi choose vj as the relay node

only if vj have larger total number of common home/work- towers with the destination node

than vi have .

We evaluate the performance of Home-Work-Bubble algorithm on setting B of D4D

Challenge Dataset in multi-copy model and limit the number of copies by 20. We compare

the simplified location-based algorithm with three algorithms(Geo-Home, Geo-Work and

Centrality-Based) using the following four metrics: average successful delivery ratio, av-

erage hop count, average number of forwarding, average delay. The result in Figure 4.18

shows that Home-Work-Bubble algorithm has much better successfully delivery ratio(about
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two times) than the other three algorithms.

4.5 Time Aware Location-Social Based Routing

By analysis user’s access frequency on cell phone towers in different timeslot, we found

that people has different preferences in different timeslot. Considers people’s natural ac-

tivity features, we divide a day into four timeslot: 12am∼8am, 8am∼1pm, 1pm∼6pm,

7pm∼12am. Table 4.13 lists a D4D user’s top 5 frequently accessed towers in four times-

lots respectively. We can see that in each timeslot, his/her access preferences have big

difference.

Table 4.13: User 3061’s top 5 towers in four time slots
TimeSlot Top1 Top2 Top3 Top4 Top5

12am∼8am 628 455 311 727 707
8am∼1pm 86 925 772 455 38
1pm∼6pm 960 1020 628 707 727
6pm∼12am 38 1020 568 707 960

Enlightened by this observation, we believe accurately establish specific routing strate-

gies for different timeslot may improve the routing performance. We first extend all of the

metrics we use for location-social based DTN routing into timeslot aware version. The

definitions of these metrics are exactly the same as them in the whole time period, the

only difference is the metrics for each timeslot only considers the contact or cell tower

scan records happen in that timeslot. Then we compare two pair of DTN routing meth-

ods, with and without consideration of timeslots on setting B of D4D Challenge Dataset in

multi-copy model and limit the number of copies by 20.

We first compares the betweenness centrality based algorithm with and without the

timeslot consideration:

Betweenness Centrality Based: Calculation the betweenness centrality use the contact

graph get from the top 10 towers of users. (If the two users have more than 3 common top

towers, they have a link in the contact graph). When a node vi encountered another node

vj . If the node vj has larger betweenness centrality than node vi, forward the message.
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Timeslot Aware Betweenness Centrality Based : Calculation the betweenness centrality

use the contact graph get from the top 5 towers of users in each timeslot. (If the two users

have more than 2 common top towers during a timeslot, they have a link in the contact

graph of that timeslot). Then each node has four different betweenness centralities pair

with the four timeslots. When a node vi encountered another node vj . vi first look at the

the timeslot encounter happens in which timeslot. If the node vj has larger betweenness

centrality than node vi in that timeslot, forward the message.

We also compares the simplified location-based algorithm with and without the timeslot

consideration:

Simplified Location-Based: When a node vi encountered another node vj . If the node vj

has larger number of common top towers with the destination node than node vi, forward

the message.

Timeslot Aware Simplified Location-Based : When a node vi encountered another node

vj . Check the encounter happens in which timeslot. If the node vj has larger number of

common top towers with the destination node than node vi in that timeslot, forward the

message.

The result in Figure 4.19 and Figure 4.20 shows that timeslot aware algorithms has much

better successfully delivery ratio than their original ones.

Since the timeslot aware methods achieve higher successful delivery ratio, we extent our

Home-Work-Bubble algorithm into the timeslot aware version. For this algorithm we only

have two timeslots: day time ( 8am 7pm ) and night time (7pm 12am & 12am 8am). It’s

detailed steps are as follows:

Step 1 (Calculate the Top 5 Home/Work Towers): Using the user’s cell tower scan

records, find the top 5 home/ work- towers for each user.

Step 2 (Construct the Home/Work Contact Graph): Create matrix DH to represent the

users’s home contact graph, DW to represent the users’ work contact graph. For each

dij ∈ DH , dij = 1 if the number of common home-towers between user vi and vj is larger
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Figure 4.19: The timeslot aware bet-centrality algorithm achieves higher delivery ratio.
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Figure 4.20: Timeslot aware simp. location-based algorithm achieves higher delivery ratio.
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than 2, otherwise dij = 0. Similarly, for each d′ij ∈ DW , d′ij = 1 if the number of common

work-towers between user vi and vj is larger than 2, otherwise d′ij = 0.

Step 3 (Calculate the Home/Work Degree Centrality): Calculate the home/work degree

Centrality for each user.

Step 4 (Make Routing Decision): When a user vi encounters another user vj , vi first

check the encounter happens in which timeslot. If the encounter happens during day time,

vi aims to looking for relay node close to destination’s work place. If vi doesn’t have any

common top 5 work- towers with the destination node, vi choose vj as the relay node when

vj has common top 5 work- towers with the destination node or vj has higher work degree

centrality. If user vi already have common top 5 work- towers with the destination node,

vi choose vj as the relay node only if vj have larger number of common work-towers with

the destination node than vi have . If the encounter happens during night time, on the

contrary vi aims to looking for relay node close to destination’s home. If vi doesn’t have

any common top 5 home- towers with the destination node, vi choose vj as the relay node

when vj has common top 5 home- towers with the destination node or vj has higher home

degree centrality. If user vi already have common top 5 home-towers with the destination

node, vi choose vj as the relay node only if vj have larger number of common home-towers

with the destination node than vi have .

We evaluate the performance of Home-Work-Bubble algorithm with and without the

timeslot consideration on setting B of D4D Challenge Dataset in multi-copy model and

limit the number of copies by 20. The result in Figure 4.21 shows that timeslot aware

algorithms has better successfully delivery ratio.

4.6 Summary

In this chapter, we study the problem of how to design the DTN routing algorithms using

social and location based methods. We first prove the location features are useful on DTN

routing. Then we explore methods to predict the location’s semantic meaning. Extend the

experimental results into location social based routing, we proposed several location-social
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Figure 4.21: The timeslot aware Home-Work-Bubble algorithm has higher delivery ratio.

based metrics and proposed good ways to design DTN routing algorithms with them. And

we evaluated all proposed routing methods via extensive simulations with real life trace

data (such as MIT reality, Nokia MDC, and Orange D4D).



CHAPTER 5: DTN ROUTING WITH THROW-BOXES

In chapter 4, we proposed location and social based DTN routing algorithms to improve

the DTN routing performance. However due to the intermittent connectivity characteristics

of the DTNs, especially for some sparse networks like D4D Challenge Dataset, the suc-

cessful package delivery ratio is still low. To further increase the successful delivery ratio

and reduce the communication latency in DTN, we use throw-boxes to increase the contact

opportunities in DTN and improve the network performances.

Throw-boxes are small and inexpensive devices equipped with wireless interfaces and

storage. They are stationary, and they relay data between mobile nodes in a store-and-

forward way, thus they can operate without communication with other throw-boxes. They

are especially helpful when the network users move within a region of network field (e.g.

In D4D Challenge Dataset, most of users move around several towers.).

In this chapter, we will first explore different network models using throw-boxes, and

discuss how the number of throw-boxes could effect the routing performance. Then, we

will propose different methods to choose the locations of throw-boxes.

5.1 Related Works

A few research works have already considered routing in DTNs equipped with throw-

boxes. To the best of my knowledge, [101] is the first work in this area. The authors

investigated the gain on the network throughput from deploying throwboxes. They investi-

gated three different deploy scenarios, and for each scenario, evaluated three different relay

schemes: an epidemic, a single path and a multi-path relay scheme. They showed that to

maximize the throw-boxes’ effectiveness, their placement should be considered simultane-

ously with the routing algorithm. They provided guidelines on the design and deployment
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of throwboxes in DTNs.

In [42], Ibrahim et al. studied the impact of adding throwboxes for two common relay

protocols: the epidemic protocol and a multi-copy two-hop relay protocol. Results have

shown that, under the epidemic protocol, the network performance increases greatly in the

presence of throwboxes at the cost of increasing the number of copies in the network. On

the other hand, only marginal improvements can be expected when the use of throwboxes

is restricted to relay data to their corresponding destinations and not to intermediary nodes.

In [43], they proposed and evaluated several relay strategies to minimize the resources

consumption. They introduced a framework to calculate the main performance of each

relay scheme under Markovian assumptions.

In [2], Banerjee et al. concluded that, due to possible energy constraints, deploying

throw-boxes need to consider the energy efficiency. They proposed an energy-efficient

hardware and software architecture for throwboxes. And gave an approximate heuristic for

solving the NP-hard problem of meeting an average power constraint while maximizing the

number of bytes forwarded by it. In [3], they studied infrastructure-enhanced (base stations,

relays, mesh nodes) mobile networks in the context of vehicular networks. They observed

that deploying x base stations can reduce the average packet delivery by a factor of two and

that the same reduction requires 2x mesh nodes and 5x relays. Another conclusion is that

deploying small infrastructures is superior to using ferry nodes. They also complemented

their experimental work with an analytical model of large-scale networks in the presence

of infrastructure and for different spreading (relay) protocols.

In [44], Joel et al. studied the performance impact of deploying stationary relay nodes

on two different application scenarios for vehicular opportunistic networks.

In [31] and [32], Bo Gu et al. introduced a capacity-aware routing protocol which aims

to search the shortest path with the consideration of time-varying delay and capacity of

virtual link. Markov Chain is used to model the evolution of the link delay and capacity.
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5.2 Network Model Using Throw-boxes

We now describe the characteristics of throw-boxes and present the network models we

consider. Throw-boxes can be used in variety of scenarios. Here, we focus on the use of

throw-boxes in mobile DTNs, where the throw-boxes and nodes could communicate with

each other when they are in the transmission range of each other. The throw-boxes are

stationary, and we only consider the locations of the cellphone towers as their candidate

displacement locations. The reason we have this assumption is, these locations (the loca-

tions of the cellphone towers) could be the hot spots of the network nodes (From Table 4.1,

we can find a network node mainly moves around several cellphone towers.), and since we

can get cell tower access record from real tracing data, it’s easy for us to get the network

location and social characteristics of these places for our analysis.

For a normal mobile user in DTN, we extract its location and social characteristics from

its contact information (device to device Bluetooth scan record or synthesized device to

device contact record) and cellphone tower access record. In throw-box scenario, the loca-

tion and social characteristics of normal mobile users are extracted from the same resource

and we synthesize the similar contact information and the cellphone tower access record of

throw-boxes. We treat the network’s cellphone tower access record as the contact informa-

tion of the throw-boxes, which means throw-boxes only have contact record with the mobile

users (which throw-box contact to which user at what time). We use the network’s cell-

phone tower access record and the mobile user’s top 10 towers to synthesize the cellphone

tower access record, which reflect a two hop relation: throw-box to mobile user and then

to the user’s top 10 towers. For example, if we have a cellphone tower record (vi, tj, Tenc),

which describes that node vi contacted to cellphone tower tj at Tenc, and the top 10 tow-

ers of node vi are (ti1, ti2, · · · , ti10), we will synthesize ten cellphone tower access record

for throw-box located at tower tj . They are (tj, ti1, Tenc), (tj, ti2, Tenc), · · · , (tj, ti10, Tenc).

This synthesized record indicate that a at particular time, the messages on a throw box

could be carried by mobile users who has high probability to appears around some partic-
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ular cellphone towers.

Now we can extend our definition of location and social characteristic for network nodes

(normal mobile users) into the throw-box scenario. With contact information and cellphone

tower access record available for both network mobile nodes and throw-boxes, most of the

definitions don’t need to change. We list the modified ones as follows:

The mobile user’s centrality: The mobile user vi’s centrality is the total number of throw-

boxes and users, which vi contact to.

The throw-box’s centrality: The throw-box tk’s centrality is the number of users it con-

tact to.

5.2.1 Different Communication Models

With our modified location and social characteristic in throw-boxes scenario and our

proposed location and social based DTN routing algorithms. We compare three different

mobile nodes and throw-boxes communication models:

Model A: We treat the throw-boxes exactly the same as the mobile users in our routing

algorithms. Which means neither the throw-boxes nor the mobile users could hold the

message permanently. When an encounter happens, between two mobile users or user and

throw-box, the message always will forward to the one with higher evaluated probability

to meet the destination node in our proposed routing algorithms. And for a message, it’s

total number of copies in the whole network (include ones on both throw-boxes and mobile

users) should not be more than Nmax. If the total number of copies for a message is larger

than Nmax, after forwarding, the original one will be delete.

Model B: We treat the throw-boxes and the mobile users differently. The mobile users

in the network could hold no more than Nmax copies of a message. However there is no

constraint on copies on throw-boxes. When a mobile user encounters a throw-box, it will

give a copy to the throw-box, the throw-box will keep the copy permanently (We assume it

can hold long enough until the routing is finished), and the mobile user will still keep the

copy on itself. The throw-boxes here are not allowed to forward message copy to mobile
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users except the destination node.

Model C: The same as in model B, there is no constraint on copies on throw-boxes. The

difference is the throw-boxes are allowed to forward message copy to mobile users. If the

total copies on all the mobile users is less than Nmax, and the throw-box evaluated that the

mobile user has higher probability to meet the destination node than itself, it will give a

copy to this mobile user.

We evaluate these three different communication models on setting B of the D4D Chal-

lenge dataset. We applied these three models on four routing algorithms: Fresh, Destination

Frequency, Centrality-based and Location-based. And compare their routing performance

with the one without throw-boxes using the following four metrics: average successful de-

livery ratio, average hop count, average number of forwarding, average delay. For each

model, we pick 100 nodes and 20 throw-boxes to participate the opportunistic communica-

tions and we allow total 10 message copies on mobile users. The 20 throw-boxes location

are selected from total 268 candidate cellphone tower locations using method A in the next

section. Figure 5.1 illustrates the results. We can see that all of our proposed models

have higher average successful delivery ratio than the one without throw-boxes. Model C

achieves the highest successful delivery ratio, the smallest delay with the cost of largest

number of forwarding. So there is always a tread off between the routing performance and

the communication cost.

5.2.2 Number of Throw-boxes

We also study the effect of the number of throw-boxes using in the networks by eval-

uation on setting B of the D4D Challenge dataset. We applied Model C on Four routing

algorithms: Fresh, Destination Frequency, Centrality-based and Location-based. For each

model, we pick 100 nodes and 5 to 70 throw-boxes to participate the opportunistic commu-

nications and we allow total 10 message copies on mobile users. The throw-boxes location

are selected from total 268 candidate cellphone tower locations. We compare their routing

performance using the following four metrics: average successful delivery ratio, average
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Figure 5.1: Different network models comparison.

hop count, average number of forwarding, average delay. Figure 5.2 illustrate the number

of throw-boxes comparison with throw-box selection Method A in the next section. and

Figure 5.3 illustrate the number of throw-boxes comparison with random throw-box se-

lection. We can see that in both scenarios, the successful delivery ratio increases as the

number of throw-boxes increase. With smart throw-box location selection (Method A),

the successful delivery ratio increase faster than randomly choose the throw-box location,

especially at the beginning of throw-box amount increasing.

5.3 Throw-boxes Location Selection

In last section, we already demonstrated that, the successful delivery ratio increase faster

with carefully throw-box location selection than randomly choose the throw-box loca-

tion, especially at the beginning of throw-box amount increasing. So, it is meaningful

to consider how to choose the appropriate throw-box locations to maximum the benefits of

throw-box, especially when there is only small amount of throw-boxes available. In this
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Figure 5.2: Number of throw-boxes comparison on Model C with throw-box selection
Method D.
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section we study the throw-box location selection problem. For a DTN network, which

has N mobile users V = {v1, v2, · · · , vN}, we set all the top 10 towers of these nodes

T =
∩N

i=1 {ti1, ti2, · · · , ti10} as the candidate throw-box locations. We aim to select M

throw-box locations from T , such that the network’s routing performance(average success-

ful delivery ratio) is maximized.

Here, we propose throw-box selection methods by considering the user and the can-

didate throw-box location’s popularity (degree centrality) and importance on routing (be-

tweenness centrality). We believe that the cellphone tower locations which have contact

with a lot of users or which occur on many shortest paths between mobile nodes could be

good throw-box location candidate. We also believe that the important towers (the top 10

tower) of important users(user with high popularity or betweenness centrality) may have

large contribution on routing performance. From these observation, we have the following

five throw-box selection methods:

Method A: In this method, we only considers the cellphone tower locations’ degree cen-

trality. We define the candidate cellphone tower location’s degree centrality as the number

of mobile users the cellphone tower act as their top 10 towers. And we choose the cellphone

tower locations with the top M degree centrality as the throw-box locations.

Method B: In this method, we only considers the cellphone tower locations’ betweenness

centrality. We virtually add a throw-box on all the candidate cellphone tower locations, and

calculate their betweenness centrality in the network. Then we choose the cellphone tower

locations with the top M betweenness centrality as the throw-box locations.

Method C: In this method, we only considers the users’ betweenness centrality. We

calculate the users’ betweenness centrality in the network. Then we choose the M throw-

box locations by first choose all the top 10 towers of the mobile user which has the highest

betweenness, then choose all the top 10 towers of the mobile user which has the second

highest betweenness . keep going, until we choose enough throw-boxes.

Method D: In this method, we considers both the cellphone tower locations’ degree
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centrality and the users’ degree centrality. We first normalized the user vi’s degree centrality

as ci between 0 and 1. Then we define a metric to describe the candidate cellphone tower

location’s popularity among the mobile users with high degree centrality. We name it

Centre-Centre. The Centre-Centre of the candidate cellphone tower location tj is
∑

i∈U ci,

where U is the set of mobile users whose top 10 towers include tj .

Method E: In this method, we considers both the cellphone tower locations’ degree cen-

trality and the users’ betweenness centrality. We first normalized the user vi’s betweenness

centrality as bi between 0 and 1. Then we define a metric to describe the candidate cell-

phone tower location’s popularity among the mobile users with high betweenness central-

ity. We name it Centre-Between. The Centre-Between of the candidate cellphone tower

location tj is
∑

i∈U bi, where U is the set of mobile users whose top 10 towers include tj .

We compares the five throw-boxes location selection methods using by evaluation on

setting B of the D4D Challenge dataset. We applied Model C on four routing algorithms:

Fresh, Destination Frequency, Centrality-based and Location-based. For each model, we

pick 100 nodes and 5 throw-boxes to participate the opportunistic communications and we

allow total 10 message copies on mobile users. We selected the throw-box location from to-

tal 268 candidate cellphone tower locations using method A to E respectively. We compare

their routing performance with the random selection using the following four metrics: av-

erage successful delivery ratio, average hop count, average number of forwarding, average

delay. Here we considers two different scenarios:

Scenario1: The whole network is well connected in one component;

Scenario2: The network has several separate components, which are not strongly con-

nected to each other.

Figure 5.4 and Figure 5.5 illustrate the results on Scenario 1 and Scenario 2, respectively.

We can see that in Scenario1, all of our social-based methods have similar successful de-

livery ratios which are higher than that of random deployment. Among the five methods,

Method A and Method D have the slightly better delivery ratios in most of routing meth-
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ods. Method B, which considers the locations’ betweenness centrality, has significantly

less number of forwarding than other methods. This may due to that putting throwboxes

at “bridge” locations (locations with high betweenness centrality in the social graph G)

reduces unnecessary forwardings among throwboxes and mobile users. In Scenario2, the

performances are much poorer than those in the previous simulations since the connectivity

between two components are very loose. Now Method B and Method E, which considers

betweenness centrality, have better successful delivery ratio than others. This is mainly

because the locations selected by these two methods can act as “bridge” nodes to connect

the separate components.

Overall, our proposed social-based methods can indeed improve the performances for

all routing methods by smartly pick the locations of deployed throwboxes.
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Figure 5.4: Performance comparison of different throwbox placement schemes, Scenario1.
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Figure 5.5: Performance comparison of different throwbox placement schemes, Scenario2.

5.4 Summary

In this chapter, we study the usage of throw-boxes in DTN routing. We first explore

different network models using throw-boxes, and discuss how the number of throw-boxes

could effect the routing performance and then propose different methods to chose the lo-

cations of throw-boxes. Our experiment results proved that the successful delivery ratio

increases as the number of throw-boxes increase. With smart throw-box location selection,

the successful delivery ratio increase faster than randomly choose the throw-box location,

especially at the beginning of throw-box amount increasing. For the throw-box location

selection, our proposed social-based methods can indeed improve the performances for all

routing methods by smartly pick the locations of deployed throwboxes.



CHAPTER 6: CONCLUSION

We briefly summarized our completed work and future work.

6.1 Summary

We make the following contributions:

• We proposed the geo-similarity metric to measure how similar the two users’ access

regulations are, based on their historic tracing data. According to geo-similarity, we

proposed a location-based routing algorithm (both singlecopy and multicopy version)

and showed our location-based algorithms could achieve the acceptable delivery ratio

in both MIT and D4D datasets.

• We proposed a simplified location-based routing algorithm, which uses the new met-

ric the number of common top towers instead of geo-similarity to make routing deci-

sions. We demonstrated that the simplified metric do capture the main characteristics

of users location features while reducing the communication overhead.

• We studied how to predict semantic meaning of the important places using Nokia

MDC dataset. Both rule-based and machine learning based methods are proposed.

Both methods can produce good accuracy for home and work location.

• We proposed several location-social based metrics to extract users’ social features

from location information. We showed that, simple combination of using multiply

metrics may result in poor performance. The good way to take advantages of multiply

metrics is not only use them to look for a perfect relay node. It is more important to

use appropriate metrics in appropriate situation.

• We proposed the Home-Work-Bubble routing algorithm which jointly use number

of common home-towers, number of common work-towers, home degree centrality
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and work degree centrality. We showed that it achieve much better performance than

purely use one of these metrics.

• We proposed three time aware location-social based routing protocols and we demon-

strated that accurately establish specific routing strategies for different timeslot could

improve the routing performance.

• We considered DTN routing with throw-boxes available scenario. We proposed three

network models and proved both of them can achieve better performance than the one

without throw-boxes.

• We discussed how the number of throw-boxes usage will affect the routing perfor-

mance. We found that the successful delivery ratio increases as the number of throw-

boxes increase. With smart throw-box location selection, the successful delivery

ratio increases faster than randomly choose the throw-box location, especially at the

beginning of throw-box amount increasing

• We proposed five throw-box selection algorithms, and we showed that, our proposed

social-based methods can indeed improve the performances for all routing methods

by smartly pick the locations of deployed throwboxes.

6.2 Future Works

From our research presented in this thesis we found that multiple social, spatial, and

temporal characteristics of both individual components and network structure can affect

the protocol performance in DTNs. We already successfully explored the message delivery

opportunities by joint considering social, location and temporal metrics, and demonstrated

in this way we have better chance to find the appropriate message transmission routine.

There are still several open problems left as our future works. We’d like to explore some

more comprehensive way to design the hybrid social- and location- based routing, such

as constructing a multi-level social- and location-graph to model DTNs. The relationships

between individual devices (i.e., humans) could be very complex: social attributes, such

as age groups, interests, membership of organizations and working relationships; Location
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Figure 6.1: Multi-level graphs for modeling different social/location characteristics in
DTNs.

attributes, such as geo-similarity, common live area, common workplace. We are going to

model this relationships with a multi-level social- location-graph as shown in Figure 6.1.

Different levels of graph represent different social/location relationships among user in the

network, which could abstracted from different data resources. For instance, the first level

may be the contact graph constructed from Buletooth contact records; the second level

could be the call history graph from call and message logs, the third level could be a social

graph constructed from a social network website, the fourth level could be a geo-similarity

graph constructed from the cell phone tower access records, and so on.

We plan to use two kinds of routing strategy with this multi-level graph.

• When a relay node encounters another node, evaluate the successful forwarding prob-

ability of both the current node and the encountered node on each levels, compare

their aggregated successful forwarding probability to make routing decision.

• When a relay node encounters another node, evaluate the successful forwarding prob-

ability of both the current node and the encountered node on each levels, if the en-
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countered node has better successful forwarding probability than the current node on

more than one level, we choose the encountered node as the forwarder. In this way,

we may not find the “best” relay, but we catch the opportunities more quickly and

frequently.
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