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ABSTRACT

NIKITA NIKULSIN. Molecular clustering characteristics in ternary trehalose and
choline dihydrogen phosphate solutions. (Under the direction of DR. DONALD

JACOBS)

Spatial and temporal characteristics of molecular structure in ternary solutions of

trehalose and choline dihydrogen phosphate (CDHP) are studied using molecular

dynamics simulations at 300 K for a range of solute concentrations with a 2:1 sto-

ichiometric ratio of trehalose to CDHP. For a given molecular con�guration, water

molecules are classi�ed as interior (only neighboring other waters) or interfacial (at

least one solute neighbor). As a tagged water molecule di�uses, it dynamically ex-

changes between interior and interfacial type as its local environment changes, with

di�erences in hydrogen bond strength between di�erent molecular species creating a

persistent preference for interfacial water. At high solute concentrations, interfacial

and interior water have similar di�usivity, which allows for water to collectively act

as a plasticizer. The percolation threshold for water was found to be between 81.5%

and 83%, which is slightly under the liquid-glass transition, estimated to be near

84.5% solute concentration based on the onset of a volume hysteresis e�ect. This

region of concentrations was further studied using Markov matrices compiled from

the transition probabilities for a water molecule to move from a cluster of size n in

one frame to a cluster of size m in the next frame. The probability distribution func-

tions of the magnitudes of the eigenvalues of these matrices showed a clear signature

of the dynamics of the system slowing down starting at 81.5% solute concentration.

In general, the structure of the systems were observed to be highly inhomogeneous,

with interlaced percolating networks of water and solute coexisting at intermediate

concentrations. The density of interior water was found to decrease with increasing

solute concentration, creating low-density regions within the matrix.
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CHAPTER 1: INTRODUCTION

Anhydrous preservation of biologics may be a less expensive alternative to cry-

opreservation. This approach consists of adding a glass-forming preservative and

removing water from a biologic in solution. Sugar solutions have been used to pre-

vent proteins from being denatured [1, 2]. Trehalose, like other sugars, is capable of

stabilizing lipids and proteins by forming a glassy structure around them [3].

As a general empirical trend, the glass transition temperature, Tg, increases as the

water content in the mixture decreases. At low enough moisture contents, room tem-

perature storage of biologics can be enabled. Understanding the e�ect of water content

is an important practical concern in applications to protein formulation because the

water content is largely a�ected by the humidity of the surrounding environment.

Salts can be added to the sugar-water mixture as a bu�er or to increase Tg [4, 5, 6].

However, a high Tg formulation is not the sole design criteria for anhydrous preserva-

tion. In some cases, it is favorable to decrease the Tg in exchange for a lower fragility

index and suppression of fast dynamics [7]. In the context of a multi-component mix-

ture, di�erent combinations of various sugars and salts mixed in di�erent proportions

with di�erent water contents can be envisioned. Ternary trehalose-salt solutions are

notoriously di�cult to model using just experimental data [5]. Molecular dynamics

(MD) simulations allow one to examine the microscopic-level behavior of the simu-

lated system, providing insight into experimental trends.

The mixture of trehalose with choline dihydrogen phosphate (CDHP), a biocom-

patible organic salt, was previously investigated by Weng et al [4] for preservation

applications. However, that study did not consider the e�ect that water may have

on such a mixture. Here water was introduced as a third component. Due to the
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complexity of the resulting ternary mixture, the main focus will be on the behavior of

the water and its interactions with the other components in the system. As discussed

in previous work [4], the relative strength of inter-component interactions versus self-

associations plays an important role in the Tg behavior of a mixture, as evidenced by

the Kwei equation. In this work, information on hydrogen bond lifetimes obtained

from the literature is referenced and several qualitative trends observed in the ternary

system that are consistent with prior studies are discussed.

As reported in previous work [4], the glass transition temperature of a dry mixture

with a 2:1 stoichiometric ratio of trehalose to CDHP is much higher than 300 K, thus

at 100% solute concentration the system will be a glass, and it is the plasticizing

e�ect of water that will make it a liquid at lower solute concentrations. As such, it is

interesting to see not only how a water molecule interacts with its local environment,

but also the emergent global behavior of all the water in the system. The percolation

behavior of water is one such global property that has only been brie�y touched

upon in previous literature [8]. Here, more attention is devoted to the percolation of

water in general and various subcategories of water, such as interior and interfacial

water. The percolation of solute and trehalose-only clusters is also brie�y considered.

The existence of percolating networks may have implications for sorption/desorption

characteristics of multi-component glasses.

In particular, it may be interesting to use cluster size distributions to quantify the

inhomogeneity of the molecular system as water content is varied. The information

on clustering properties that is extracted from the simulations is relevant on protein

length scales. It has been suggested that protein side chains could position into

pockets of void space, which would allow for high levels of local mobility, and this

could in turn potentially cause faster rates of degradation at these positions [9, 7].

Even variations in water density may be su�cient to create unwanted gradients in

strain. Therefore, the main objective is to investigate the clustering properties of
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water in detail, especially because water normally acts as a plasiticizer in organic salt

solutions.

As water content increases, one can expect the glass transition temperature to

decrease below room temperature. Thus, as water content increases, there will be

a point for which the system will transition from a glassy state to a liquid state.

The glass-liquid transition will be investigated at a �xed temperature of 300 K, while

increasing water content, and subsequently performing cluster analysis along the lines

of percolation theory. Here, both the spatial and temporal properties of the water

clusters will be investigated, and the interactions of various molecular species with

each other will be characterized locally through radial distribution functions. Finally,

it is important to remember that in an experimental setting, the protocol used to

prepare a system in the glass state can have a signi�cant impact on the properties of

the system.

Here, a systematic MD study is conducted on trehalose-CDHP solutions holding

the stoichiometric ratio of trehalose to CDHP �xed at 2:1 as water content is var-

ied. The 2:1 trehalose to CDHP ratio provides a formulation that has markedly good

characteristics for allowing high water content without rapid crystallization [10, 4].

All MD simulations were carried out at 300 K with 30 ns production runs. While

30 ns is incredibly short by many orders of magnitude compared to the timescales

that distinguish the di�erence between liquid and a molecular glass [11], the percola-

tion features for various constituents already show distinctive characteristics as water

content varies.



CHAPTER 2: MOLECULAR DYNAMICS AND METHODS

2.1 Molecular dynamics

A molecular dynamics simulation consists of numerically solving Newton's equa-

tions for all of the atoms in the simulated system. Usually, the initial coordinates of

the atoms are provided in an initial con�guration �le, and the initial velocities are

either randomly generated from a Maxwell-Boltzmann distribution corresponding to

the temperature at which the simulation is started, or can be extracted from a pre-

vious simulation of the same system. The forces on each atom at each time step are

calculated from the positions of all of the other atoms by taking the gradient of the

potential energy function, more often called the force �eld in the context of molecular

modeling [12].

2.1.1 Basic principles and the OPLS force �eld

The Optimized Potential for Liquid Simulations all atom force �eld (OPLS-AA) was

used for the simulations performed in the course of this study. All-atom force �elds

consider hydrogen as an individual atom, in contrast to united-atom force �elds, which

treat carbon atoms and any bound hydrogens as one atom for increased computation

speed. The OPLS-AA force �eld has the following functional form [13]:

E(rN) = Ebonds + Eangles + Etorsion + Enonbond, (1)

where

Ebonds =
∑
i

kr,i(ri − r0,i)2, (2)

Eangles =
∑
i

kθ,i(θi − θ0,i)2, (3)
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Etorsion =
∑
i

[
V1,i
2

(1 + cosφi) +
V2,i
2

(1 + cos 2φi) +
V3,i
2

(1 + cos 3φi) +
V4,i
2

(1 + cos 4φi)

]
,

(4)

Enonbond =
∑
i

∑
j>i

fij

(
qiqje

2

rij
+ 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
])

. (5)

Here, rN is the set of coordinates of all N atoms in the system, ri is the distance

between two bound atoms, θi is the angle formed by three atoms bound together and

φi is the dihedral angle formed by four atoms bound together (Figure 2.1). Strictly

speaking, the coordinates of atoms which comprise water molecules should not be

included in the set rN (see next subsection). The constants kr,i, kθ,i and the Vi's

depend on the types of atoms participating in the bonds. Also, r0,i and θ0,i are the

equilibrium bond length and angle, respectively. The sums in equations (2), (3) and

(4) are taken over all bonds, angles and dihedrals, respectively. In equation (5),

the �rst term is the standard Coulomb interaction, with qi and qj being the partial

charges on atoms i and j, whereas εij and σij are the Lennard-Jones parameters. The

Lennard-Jones parameters need only be de�ned between similar atom types, those

between di�erent atom types can be calculated from combination rules: εij =
√
εiiεjj

and σij =
√
σiiσjj. The sum in equation (5) is taken over all pairs of atoms, and

fij = 0 if atoms i and j are separated by one or two bonds, fij = 0.5 if the atoms are

separated by three bonds and fij = 1 if they are separated by four or more bonds or

if they are in di�erent molecules [13].

The force �eld parameters can be determined from experimental data or quantum

mechanical calculations. For example, the equilibrium bond length and angles can

be determined from crystallographic data. An approach employed in determining the

OPLS force �eld parameters consisted of making plausible guesses and then carrying

out simulations on several liquid systems to see if thermodynamic properties of the

liquid, such as density and heat of vaporization, derived from simulation matched

experimental data. The parameters were then adjusted for better agreement with
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Figure 2.1: Illustration of (a) ri, (b) θi and (c) φi.

experiment. This procedure was repeated until the thermodynamic properties of the

simulated liquid accurately reproduced the experimental values [14].

Once the parameters are known, the motion of atom n can be calculated from

Newton's second law:

m
d2~rn
dt2

= ∇nE(rN). (6)

These equations were numerically integrated using the leap-frog algorithm. For a suf-

�ciently small time step ∆t, the position and velocity of atom n can be approximated

as follows:

~vn

(
t+

∆t

2

)
= ~vn

(
t− ∆t

2

)
+

∆t

m
∇nE(rN(t)),

~rn(t+ ∆t) = ~rn(t) + ∆t ~vn

(
t+

∆t

2

)
. (7)

If the initial conditions at some time t0 are known, Euler's method should �rst be

used to calculate ~vn(t0 + ∆t/2) for all atoms, after which the leap-frog algorithm can

be started. The positions and velocities of all of the atoms are saved to a trajectory

�le in speci�ed intervals of time steps [12].

Finally, it should be noted that most commonly in molecular dynamics, periodic

boundary conditions are imposed on the simulated systems. This means that the
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particles are contained in a simulation box of a speci�ed �nite volume, which is

surrounded by translated copies of itself. Thus, if an atom passes through a box

boundary, it will reappear on the opposite side of the simulation box. This also

means that the shortest distance between two atoms might not be the one that is

given by the distance formula. When calculating short-range (non-electrostatic) non-

bonded interactions, the minimum image convention is employed, i.e. contributions

only from the nearest image of each atom (or the actual atom, if it is closer to the

reference atom than any of its images) are considered. For electrostatic interactions,

ignoring farther images will lead to signi�cant error, so the Particle Mesh Ewald

(PME) method is used to sum over in�nitely many images in Fourier space [12].

2.1.2 The TIP4P water model

Water parameters are usually not included in force �elds, and OPLS-AA is no

exception. In order to simulate the e�ects of water, a special force �eld, known as

a water model, should be used. For the purposes of this study, the Transferable

Intermolecular Potential 4-point (TIP4P) water model was employed. In this model,

the water molecule is a rigid structure, so the potential energy function consists of

only non-bonded terms [15]:

E(rNW ) =
∑
m

∑
n>m

Emn,

Emn =
mol m∑
i

mol n∑
j

qiqje
2

rij
+

A

r12OmOn

− C

r6OmOn

, (8)

where rNW is the set of coordinates of all oxygens in the water molecules along with

the angles specifying the spatial orientation of the molecules, the variables in the

Coulomb term are de�ned similarly to those in equation (5), and A and B are the

Lennard-Jones parameters, with rOmOn being the distance between the oxygen of

molecule m and that of molecule n. The indices i and j enumerate the atoms within
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molecules m and n, respectively [15].

Since the water molecule is considered to be rigid, interactions are only consid-

ered between atoms in distinct molecules. Interactions between water and solute are

accounted for by including the corresponding terms in the non-bonded interaction

potential (5) and using combination rules to get the appropriate Lennard-Jones pa-

rameters. Lennard-Jones interactions involving water hydrogens are not considered.

In the TIP4P water molecule, the negative partial charge is moved o� of the oxygen

atom to a fourth interaction site (hence the name), which is in the direction of the

hydrogens along the bisector of the HOH angle (Figure 2.2) [15].

Figure 2.2: The TIP4P water molecule.

2.1.3 Temperature coupling

The usage of molecular dynamics as described above will produce a microcanonical

ensemble (constant number of particles, constant volume, constant energy). To sim-

ulate more realistic conditions, the system should be coupled to an external thermal

reservoir. A simple way to achieve this is to use a Berendsen thermostat [12].

A Berendsen thermostat aims to gradually make the temperature of the system T

match the temperature of the reservoir T0 by imposing the following condition [16]:

dT

dt
=

1

τ
(T0 − T ), (9)

where τ is a coupling constant. This condition is enforced by scaling the velocities of
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all atoms by a factor λ. When time is discretized, equation (9) becomes:

∆T =
∆t

τ
(T0 − T ). (10)

Since
Nf

2
NkT =

∑
i
1
2
miv

2
i , where Nf is the number of degrees of freedom and k is

Boltzmann's constant,

∆T =
1

NfNk

∑
i

mi(λ
2v2i − v2i ) =

λ2 − 1

NfNk

∑
i

miv
2
i = (λ2 − 1)T. (11)

Substituting equation (11) into (10) and solving for λ, one gets [16]:

λ =

√
1 +

∆t

τ

(
T0
T
− 1

)
. (12)

A problem with the Berendsen thermostat is that it does not correctly reproduce

the canonical ensemble. This can be corrected by adding a stochastic term to equation

(9):

dT = (T0 − T )
dt

τ
+ 2

√
TT0
Nfτ

dW, (13)

where dW is a Wiener process. This modi�cation results in the velocity-rescaling

thermostat. When the temperature of the system is far from the temperature of the

reservoir, the �rst term in equation (13) will dominate, causing the thermostat to

behave as a Berendsen thermostat, with the T quickly approaching the T0, whereas

when the system temperature is close to the reservoir temperature, T is allowed to

�uctuate, more accurately sampling the canonical ensemble [17].

2.1.4 Pressure coupling

In order to simulate a system under constant temperature and pressure, a pressure

coupling is also required. A Berendsen barostat provides a simple way to do this.



10

This time, a condition similar to (9) is imposed on the pressure [16]:

dP

dt
=

1

τP
(P0 − P ), (14)

where τP is a coupling constant for pressure. This condition is enforced by scaling

the box side lengths and the coordinates of all atoms by a factor µ. First, a term

corresponding to the change in coordinates due to scaling is added to the velocity:

ẋ = v + αx. The volume also changes due to the scaling of the box side lengths:

V̇ = 3αV . Using the relation:

dP

dt
=
−1

βV

dV

dt
=
−3α

β
, (15)

where β is the isothermal compressibility, along with equation (14), one can obtain

the following expression for α:

α =
−β
3τP

(P0 − P ). (16)

Using the fact that ∆V = V̇∆t = 3αV∆t and that ∆V = µ3V −V , one can solve for

µ [16]:

µ = 3

√
1− β∆t

τP
(P0 − P ). (17)

Similarly to the thermostat, the Berendsen barostat, even when used with the

velocity rescaling thermostat, does not correctly reproduce the isothermal-isobaric

ensemble. However, it will su�ce if it is only used for system equilibration and then

turned o� during a data collection run, as was done in this study [12].
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2.2 Analysis methods

2.2.1 Radial distribution functions

Let rN be the set of all coordinates of all particles in a conservative system, pN

be the set of all momenta, and f(rN , pN) be the probability density of �nding the

particles with coordinates rN and momenta pN . Then the probability density will be

the ratio of the corresponding Boltzmann factor to the partition function:

f(rN , pN) =
exp[−βH(rN , pN)]∫ ∫

exp[−βH(rN , pN)]drNdpN
, (18)

where β = 1/(kT ) and H(rN , pN) is the Hamiltonian of the system. Since the Hamil-

tonian is the sum of the kinetic energy, which only depends on momenta, and the

potential energy, which only depends on coordinates, the phase space distribution

function factors into the con�guration space distribution and the momentum space

distribution: f(rN , pN) = P (rN)Φ(pN) [18].

The probability density of �nding particle 1 at ~r1 and particle 2 at ~r2 can be found

by integrating out the coordinates of all other particles:

P (2/N)(~r1, ~r2) =

∫
· · ·
∫
P (rN)d3~r3 . . . d

3~rN , (19)

where the (2/N) superscript refers to the fact that two particles are being tracked in

a system of N particles. Since it does not make much sense to care about a speci�c

particle being at some location, it would be more useful to de�ne the distribution

function for �nding any particle at ~r1 and any other particle at ~r2. There are N ways

to select the �rst particle and N − 1 ways to select the second, thus:

ρ(2/N)(~r1, ~r2) = N(N − 1)P (2/N)(~r1, ~r2). (20)

One could also de�ne the distribution function for �nding any one particle at point
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~r1:

ρ(1/N)(~r1) = N

∫
· · ·
∫
P (rN)d3~r2 . . . d

3~rN . (21)

For an isotropic system, this should just be the number density of particles in the

system: ρ(1/N)(~r1) = ρ = N/V . If the positions of di�erent particles are uncorrelated,

then one can write ρ(2/N)(~r1, ~r2) = N(N − 1)/V 2 = N2(1 − 1
N

)/V 2 ≈ ρ2. It would

then make sense to de�ne a fractional deviation of the true distribution function from

the uncorrelated one:

g(~r1, ~r2) = ρ(2/N)(~r1, ~r2)/ρ
2. (22)

For an isotropic system, this function will only depend on |~r1 − ~r2| = r: g(~r1, ~r2) =

g(r). The function g(r) is called the radial distribution function [18].

The conditional distribution function for �nding a particle at ~r given that another

particle is at the origin is ρ(2/N)(0, ~r)/ρ. From equation (22) it follows that ρg(r) =

ρ(2/N)(0, ~r)/ρ, which provides an interpretation for the radial distribution function.

In other words, ρg(r) is the average number density of particles at a distance r from

some reference particle [18].

In this study, radial distribution functions for particles of type A and B were

calculated using the following formula:

gAB(r) =
〈ρB(r)〉A
〈ρB〉R,A

, (23)

where ρB(r) is the number density of type B particles at distance r around an A

particle. It is averaged over all A particles in the numerator and over spheres of

radius R around all A particles in the denominator. In all calculations performed, R

was half of the simulation box length [12].
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2.2.2 Di�usion coe�cients

If a concentration gradient exists in a mixture, it is expected that a di�usion �ux

will appear, with particles moving from areas of higher concentration to those of

lower concentration, driving the system towards equilibrium. Fick's �rst law gives

the relationship between di�usion �ux and concentration gradient [18]:

~j(~r, t) = −D∇n(~r, t), (24)

where ~j(~r, t) is the di�usion �ux through ~r at time t, D is a proportionality constant

called the di�usion coe�cient and n(~r, t) is the concentration at point ~r and time t. If

there are no chemical reactions in the system, the number of particles is a conserved

quantity, and so the concentration will satisfy the continuity equation:

∂n(~r, t)

∂t
= −∇ ·~j(~r, t). (25)

Combining the continuity equation (25) with Fick's �rst law (24) produces Fick's

second law:

∂n(~r, t)

∂t
= D∇2n(~r, t). (26)

The probability density of �nding a particle at point ~r and time t is proportional to

the concentration of particles of that type at the same point and time, thus:

∂P (~r, t)

∂t
= D∇2P (~r, t), (27)

where P (~r, t) is the probability density. Next, de�ne the mean squared displacement

as R2(t) = 〈|~r(t) − ~r(0)|2〉, where the average is taken over all di�using particles.

Further, suppose that at t = 0 all particles are at the origin, i.e. ~r(0) = 0 for all

particles, then R2(t) = 〈~r2(t)〉. This means that R2(t) =
∫
~r2P (~r, t)d3~r. Taking
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the time derivative of the mean squared displacement, using equation (27), and then

integrating by parts twice and using the fact that P (~r, t) is normalized to one, one

obtains:

d

dt
R2(t) =

∫
~r2
∂

∂t
P (~r, t)d3~r = D

∫
~r2∇2P (~r, t)d3~r = 6D

∫
P (~r, t)d3~r = 6D. (28)

Thus, the di�usion coe�cient can be calculated from the derivative of the mean

squared displacement [18].

It should be noted that at short time scales, before a particle encounters its neigh-

bors, it will move inertially, and not di�usively, so equation (28) will not hold. Thus,

the proper formula for the di�usion coe�cient should be:

D =
1

6
lim
t→∞

d

dt
〈|~r(t)− ~r(0)|2〉. (29)

In practice, this means that the molecular dynamics simulations need to be su�ciently

long, so that the mean squared displacement graph will approach a straight line as

a function of time [18]. More generally, non-linear time dependence at shorter times

will re�ect a variety of inter-particle correlations that can be due to persistence in

momentum of the particles on very short time scales or due to structural correlations

arising from molecular clustering.

Fick's law is a macroscopic view of di�usion, and as a partial di�erential equation it

is an approximation to a more accurate microscopic view that comes from statistical

mechanics. Both views are equivalent under the condition that length scales and

time scales are long compared to intermolecular correlation of particles in space and

time. Fick's law, or the di�usion equation that results, describes Brownian motion

of particles in a medium where a di�usion constant describes the rate of spread of

particles through the medium. More generally, it is possible to calculate the mean

squared displacement of a sample of tagged particles in a system, where the time
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dependence of mean squared displacement re�ects all particle correlations. At long

time scales, even if it was assumed that at t = 0 all particles are at the origin,

i.e. their distribution at t = 0 is the delta function, the particles will di�use out so

that the concentration gradient becomes zero. Then, it can be considered that data

collection is started at some time t0 > 0, and the self-di�usion constant for a molecular

species that is captured from microscopic �uctuations in equilibrium is equivalent to

the di�usion coe�cient from Fick's law, as shown above. The microscopic form of

calculating the di�usion constant from self-di�usion is applied.

2.2.3 Reduced second moment

The reduced second moment (RSM, also called the reduced average cluster size)

was used to determine the percolation thresholds [19]. The RSM was de�ned as

follows:

M ′
2 =

1

G

nmax∑
n=1

inn
2 − n2

max

G
, (30)

whereG is the total number of molecules under consideration (interior water molecules

or water molecules in general), in is the number of clusters of size n, and nmax is the

size of the largest cluster. Below the percolation threshold, there are typically several

clusters of size near nmax, so subtracting out one of them does not signi�cantly impact

the value of M ′
2. On the other hand, above the percolation threshold, the percolating

cluster is the largest cluster and contains most of the molecules. All the other clusters

have size much smaller than nmax, so subtracting out the percolating cluster causes

a signi�cant decrease in the value of M ′
2. This produces a sharp peak in the graph of

M ′
2 around the percolation threshold.

2.2.4 Free volume theory

From the standpoint of free volume theory for the liquid/glass transition [20, 21, 22],

a liquid state will exist when the molecular structure supports a percolating network

of free volume among the molecular species within a mixture. Conceptually, this
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means a pair of neighboring molecules both have enough local free volume available

to exchange locations with each other without crossing over a high free energy barrier,

and there is negligible change in free energy after the exchange. This high degree of

degeneracy in molecular con�gurations allows molecules to readily move around each

other, which is the signature property of a liquid. Importantly, the exchange requires

additional free volume to be available from the nearest neighbors of this pair of

molecules to enable the two molecules to pass around each other. This is essentially

the experience one has walking through a crowded room. Other persons must move

a little to make space for a person to pass through, and once passage is made, the

space �lls back up.

A molecule is referred to as liquid-like if it has free volume available; otherwise it

is solid-like. When a cluster of liquid-like molecules percolates, the system is said to

be in a liquid phase. Inevitably, the question of how to identify a molecule as liquid-

like or solid-like arises because computing free volumes from free energy functions, as

prescibed by Cohen and Grest [21, 22] is not straightforward. In some previous studies

[23, 24, 25], the shape of the molecule's Voronoi cell was used as a criterion, with more

spherical cells being considered liquid-like and elongated or irregular-shaped cells

being solid-like. In this work, it is proposed that the percolation of the plasticizer

(water) may be a su�cient condition for the system to exhibit liquid behavior.

The simplistic approach adopted by free volume theory may not accurately re�ect

the reality of multi-component organic glasses, where hydrogen bonds, steric e�ects

and other factors signi�cantly complicate the situation. Thus, at this stage, free

volume theory is invoked under the assumption that water can be treated as the

dominant liquid-like component. The percolation of water could then provide a lower

bound estimate of the glass transition. If water cannot be treated as a liquid-like

component, one would expect to �nd the percolation threshold of water to be above

the glass transition.



CHAPTER 3: SIMULATION PROCEDURE

Simulations were performed on ternary solutions of trehalose and choline dihydro-

gen phosphate (CDHP), dissolved in water. Twenty-three di�erent concentrations

were simulated. All of the systems involved in this study were simulated using the

molecular dynamics software GROMACS [26]. The numbers of molecules and ions in

each system (Table 3.1) were chosen so that they could �t into a box with a volume

of about 1000 nm3. These numbers were calculated from the experimental number

densities for each individual compound under the assumption of ideal mixing. In all

simulations, the stoichiometric ratio of trehalose to CDHP was 2:1. All simulations

used the TIP4P water model, except the 100% compositions, which had no water.

The OPLS-AA force �eld was used for all simulations. The parameters were obtained

from [13, 27, 28], except the partial charges on CDHP atoms, which were generated

using the R.E.D. server [29, 30, 31] with GAMESS-US software [32].

The initial atomic coordinates were generated using the Packmol software [33], us-

ing crystallographic trehalose [34] and CDHP [35] structures as input. Appropriate

numbers of molecules and ions were packed into a cubic box with an edge length of

10 nm. These coordinates were then input into GROMACS for potential energy min-

imization. Energy minimization was stopped once the maximum force in the system

became less than 500 kJ ·mol−1 · nm−1. When this value could not be reached, the

packing was repeated with the same box size, or, if that did not work, the edge length

of the box was increased by 1 nm and the molecules and ions were repacked. After

energy minimization, the systems were coupled to a velocity rescaling thermostat set

to 300 K with a coupling constant of 0.1 ps and a Berendsen barostat set to 1 bar

with a coupling constant of 1 ps and an isothermal compressibility of 4.5 ·10−5 bar−1,
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Table 3.1: Numbers of molecules and ions in the simulated systems with CDHP.

Percent solute Trehalose

molecules

CDHP formula

units

Water

molecules

0 0 0 33427

10 140 70 30975

20 292 146 28713

30 454 227 26042

40 630 315 23231

50 818 409 20109

53 878 439 19141

56 940 470 18157

59 1002 501 17117

62 1068 534 16092

65 1134 567 15011

68 1202 601 13905

71 1272 636 12772

74 1344 672 11609

77 1416 708 10398

80 1492 746 9170

81.5 1532 766 8549

83 1570 785 7905

84.5 1610 805 7260

86 1674 837 6221

89 1734 867 5269

95 1906 953 2466

100 2058 1029 0

and equilibrated for a minimum of 1 ns. During equilibration, the box volume would

decrease in all cases due to the initial packing protocol. Convergence was checked

by plotting the simulation box volume as a function of time and performing a lin-

ear �t on the last 100 ps. If the absolute value of the regression slope was less than

0.02 nm3 · ps−1, the systems were considered to have converged to their �nal volumes.

If this was not the case, the constant temperature and pressure equilibration was ex-

tended. After a system had converged, the barostat was removed, and the system

was equilibrated at constant volume and temperature for an additional 3 ns. After

the equilibration simulations were complete, a 30 ns data collection simulation was

performed. A time step of 2 fs was used in all simulations. Coordinates and velocities
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were saved to the trajectory �le every 500 steps during the equilibration runs and

every 3000 steps during the data collection run.

For the 80% solute by weight system, as well as all systems with 83% solute by

weight or higher, the NPT equilibration run was repeated using a di�erent initial box

volume. For the 95% and 100% cases, the second NPT runs were each followed by a

second NVT run and a second production run.



CHAPTER 4: NEAREST NEIGHBORS AND CLUSTERING

4.1 Radial distribution functions and nearest neighbors

The radial distribution functions between the various species in the system were cal-

culated with the GROMACS tool gmx rdf, which implements formula (23). The "A"

and "B" particles correspond to the oxygens in a reference species and oxygens within

another species, respectively. The plots of the trehalose-trehalose, trehalose-water,

water-water, water-choline, water-phosphate and choline-phosphate RDFs obtained

from the 20%, 50%, 80% and 95% CDHP systems are shown in Figure 4.1.

All RDFs in all systems have a �rst peak followed by a minimum around 0.35 nm.

This peak corresponds to interactions between nearest neighbors, often in the form

of hydrogen bonds [5]. Also, given the van der Waals radii of the atoms [36], an atom

belonging to another molecule cannot be located between two atoms that are 0.35 nm

apart or less. Thus, two molecules are de�ned to be nearest neighbors if a heavy atom

(i.e. any atom that is not a hydrogen) belonging to one molecule is within the cuto�

distance, 0.35 nm, of a heavy atom belonging to the other molecule.

For the trehalose-trehalose RDF, the broad and tall second peak at low solute

concentrations indicates that trehalose molecules cluster together instead of being

evenly distributed throughout the system. This is illustrated in Figure 4.2. The

clustering peaks are still present at higher solute concentrations, but because there is

more trehalose packed within the same volume, the trehalose distribution should be

more uniform with the clustering less pronounced. Hence, the peaks are lower. The

complex set of peaks after the �rst peak in the trehalose-trehalose RDF is attributed

to the trehalose molecule containing eleven oxygens, each of which are contributing

to di�erent peaks. Interestingly, the �rst peak is sharp and well de�ned but has a
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Figure 4.1: Radial distribution functions for the (a) trehalose-trehalose (b) trehalose-
water (c) water-water (d) water-choline (e) water-phosphate and (f) choline-
phosphate pairs.

very small amplitude. This means that while trehalose tends to cluster on length

scales commensurate with its molecular size, there are random orientations between

neighboring trehalose molecules. Conversely, the water-water RDF has a strongly

pronounced �rst peak, after which the packing of water molecules quickly assumes

bulk behavior. This suggests that water molecules also cluster, however, being a

small molecule with only one oxygen, the correlation length scale after which the

water assumes bulk behavior is much smaller than that of trehalose. Although a

quick transition to bulk water in the RDF is not a su�cient indication that water is a
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Figure 4.2: Close-up molecular views of the solution at four di�erent concentrations
of solute: (a) 50%, (b) 77%, (c) 83% and (d) 95%. Trehalose molecules and choline
cations are shown as thick sticks, waters as thin sticks and phosphate anions as
spheres. Choline cations are easily identi�able by the nitrogen atom, which was
colored blue in these �gures.

liquid-like molecule, or that it acts as a plasticizer, this result is consistent with both

of these properties. Finally, the second peak in the trehalose-water RDF suggests

that water tends to cluster around trehalose more readily than to cluster to itself,

even forming a second hydration shell. This e�ect becomes more pronounced at

high concentration of solute, and suggests that water and trehalose will have a high

propensity to form an interface at low water content. This is consistent with Figure

4.2, where water does not form large pools, preferring to cluster to solute.
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Analysis of the water-choline and water-phosphate RDFs shows signi�cantly lower

populations of water associating with choline than with phosphate, as indicated by

the peaks in Figure 4.1 d being signi�cantly lower than in Figure 4.1 e. The results

also suggest that water mediates hydrogen bonds between choline and phosphate.

The peaks around r = 0.45 nm and r = 0.7 nm suggest that water molecules act as a

bridge between choline and phosphate ions. This can be seen in Figure 4.2, especially

in panels (a) and (c).

4.2 Interior water de�nition and properties

Interior water is de�ned as the set of all water molecules in a given frame whose

only nearest neighbors are other water molecules. Thus, at least in a �rst order

approximation, large clusters of interior water will resemble bulk properties of water.

However, narrow channels or small clusters of interior water can form, and these

structures do not have su�cient volume to take on bulk properties. Nevertheless,

interior waters may have distinctly di�erent characteristics than the water molecules

that directly interact with solute. The set of water molecules that are not interior,

i.e. water molecules that have at least one solute nearest neighbor, is referred to as

interfacial water.

As a tagged water molecule di�uses throughout the system, it is classi�ed as either

an interior or interfacial water based on its local environment that is dynamically

changing. Any particular interior water molecule can move to be within the cuto�

distance of a solute heavy atom, thus becoming interfacial water, just as any interfacial

water molecule can become interior water. To quantify how persistent a typical water

molecule is in being interior or interfacial, one calculates, for each water molecule,

the fraction of time that it spends being interior by dividing the number of frames in

which it is interior by the total number of frames. The probability density function

of these fractions for all water molecules in the system is then determined for a

particular concentration using a robust nonparametric probability density estimation
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Figure 4.3: Probability distribution functions P (f) of fractions of time f that a
particular water molecule spends being interior.

algorithm [37]. These distributions are shown in Figure 4.3. As can be observed,

the distributions are Gaussian-like for lower solute concentrations, however, as water

content decreases, the distributions become sharply peaked at f = 0, eventually

becoming exponential-like.

Also, for each water molecule, the number of times that it switches its category

from interior to interfacial and vice versa during the course of a simulation is counted.

The probability density functions for these counts are shown in Figure 4.4. Again,

for lower solute concentrations, the distributions are Gaussian-like. Due to there be-

ing much more water than solute at lower solute concentrations it will, on average,

take an interior water molecule longer to encounter a trehalose molecule or ion, so

the switching events are less frequent. As the solute concentration increases, encoun-
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ters between interior water and solute become more frequent, and so the number of

switchings increases. At this point, the number of interfacial sites is de�ned as the

maximum number of interfacial water molecules that a given amount of solute can

accommodate; it is roughly equivalent to the average water coordination number for

a solute heavy atom multiplied by the total number of solute heavy atoms. As solute

concentration continues to increase, the ratio of water molecules to interfacial sites

decreases, and thus more water molecules can be in the more favorable (as explained

in the following paragraph) interfacial state. With the competition for interfacial

sites becoming less intense, and with less interior water, the number of switchings

decreases. Just as in Figure 4.3, the distributions in Figure 4.4 that correspond to

high solute concentrations are sharply peaked at zero, indicating that many water

molecules remain interfacial throughout the entire simulation.

This data can be interpreted from the standpoint of hydrogen bond strength. Since

in general, water-water hydrogen bonds have a shorter lifetime than water-sugar [38]

and water-ion [39] hydrogen bonds, and since hydrogen bond lifetime correlates with

strength [5], the water-water hydrogen bonds are weaker. Thus, water prefers the

interfacial state. At low solute concentrations, due to the abundance of interior water,

whenever water-solute hydrogen bonds are broken, the interfacial water molecule can

be readily replaced by an interior water molecule, which only has weak water-water

hydrogen bonds. A parallel can be made to the situation in a bad job market, where

high-paying jobs are scarce, and if one losses such a job, the person will most probably

have to settle for a lower-paying one. It is worth noting that the distribution for the

fraction of time a water molecule is interior (Figure 4.3) is not bimodal. A second

peak near f = 0 would imply the presence of a local phase separation, meaning at

least some interfacial water would rarely exchange into interior water. This behavior

may be naively expected due to water-solute hydrogen bonds being stronger than

water-water hydrogen bonds. However, at 300 K the hydrogen bonds readily break
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and reform, allowing water to frequently exchange its category, as can be seen in

Figure 4.4. On the other hand, at high solute concentrations, there are much more

solute molecules and ions available, so many water molecules can remain interfacial

throughout the simulation. Continuing the analogy, this is similar to a situation

where there is an abundance of high-paying jobs and not enough people to �ll them,

and so a quali�ed individual might never need to work a low-paying job.

The coordination number for both interior and interfacial water is shown in Figure

4.5. This is the average number of nearest neighbor heavy atoms of a water molecule.

As can be seen in Figure 4.5, as solute concentration increases, the average number

of water oxygens within 0.35 nm of an interior water molecule's oxygen decreases,

whereas the average number of nearest neighbors of a interfacial water molecule re-

mains about the same. Once the trehalose matrix begins to sti�en, water will be left

to �ll any voids. Due to the interfacial state being preferable, water will mainly sit

at the interfacial sites, with the remaining water becoming interior and forming a

lower-density pool, as opposed to collecting into a bulk-density "droplet" inside the

void. These lower density regions could allow for higher local mobility, which could

enhance the rate of protein degradation.

In addition, the shape of voids is an important consideration. If the voids are
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narrow and channel-like, a side chain is more likely to be positioned across it than

along it, with most of the side chain being restrained within the glassy matrix. On

the other hand, if the void is somewhat spherical, a side chain will have much more

freedom to move within it, even if its other end is restrained in the matrix. In this

study, the shape of a typical void was found to be highly non-spherical. A 2003

paper studying water percolation in sucrose made a similar observation that "water

distribution ... is heterogeneous in the scale of a few angstroms. Water does not form

'pockets' but instead forms scattered clusters with chain-like and star-like portions."

[8] Essentially the same clustering geometries are observed in this system.

Finally, as a measure of global mobility, the di�usivities for interior and interfa-

cial water are reported in Figure 4.6 a. A distinction should be made between the

previously discussed local mobility, which is a measure of the distance a molecule

can travel, e.g. by wiggling around in a void, and global mobility, which relates to

transport in the medium. Global mobility implies local mobility, but not vice versa.

The di�usivities are calculated for water by tracking a particular interior or interfacial

water molecule while it remains interior or interfacial, respectively. Once it switches,

the square of its displacement divided by the time elapsed while it was tracked is

recorded, and the same molecule is then tracked as the opposite type, with the dis-
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placement and time being reset to zero, until it switches again. These records were

then averaged for interior and interfacial waters at a particular concentration. The

same procedure was repeated for the ions. At low solute concentrations, the interior

and interfacial water both have high global mobility, with the interfacial water being

less mobile, due to being bound to heavier solute molecules. At higher solute con-

centrations, as the solute matrix takes up more space, there are less pathways for the

interior water to di�use, decreasing its global mobility and diminishing the di�erence

between interior and interfacial water di�usivities. Nevertheless, interior water always

remains more mobile than interfacial water. Note that the interior/interfacial water

di�usivities follow the same pattern as the di�usivities in Figure 4.6 b, but are greater

by an order of magnitude. None of the di�usivities calculated here are the same as

the macroscopic di�usion constants measured experimentally, since simulations are

performed on much shorter length and time scales. In particular, the ratio of the

di�usion coe�cients of any two components should have been a constant, at least in

the liquid state, due to the Stokes-Einstein relation, however, this was not the case.

A likely reason for this is that the Stokes-Einstein relation is derived under the as-

sumption of a uniform liquid, which is true macroscopically, but on nanometer scales

clustering plays a major e�ect. The interior/interfacial di�usivities are calculated on

an even shorter time scales, due to frequent switching, which causes them to di�er

signi�cantly from the water di�usivity in Figure 4.6 b. Nevertheless, the simulated

di�usion coe�cient is still useful as a qualitative indicator of relative global mobility.

4.3 Molecular clustering analysis

Molecules of a speci�c type are grouped into distinct clusters by a proximity cri-

terion. Various molecular types, including water molecules in general, interior water,

solute in general and trehalose molecules, are considered. Two molecules of the same

type are assigned to belong to the same cluster when a path connects them through

nearest neighbors. Nearest neighbor connection is made when a heavy atom belong-
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ing to one molecule is within 0.35 nm of any heavy atom belonging to the other

molecule. All clusters are identi�ed within a given MD frame by considering each

speci�ed molecule type of interest, and iteratively searching nearest neighbors of the

same type until no new neighbors are added to the search. It should be noted that

water clusters are highly dynamic in the sense of having short persistence times rela-

tive to the time scale of the simulation. Even though the cluster statistics is the same

across frames, clusters of a given size that appear in a given frame are not persistent

over time. Rather, the set of water molecules that are a member of a particular cluster

will likely be redistributed into several di�erent clusters that can be larger or smaller

within a relatively short time (∼50 ps).

The RSM for the various molecular clusters was calculated, and the peak in the

RSM plot was used to identify the percolation threshold. It was found that the

percolation thresholds for interior water and water in general occur around 53% and

81.5% solute concentrations, respectively.

In the cluster analysis, the cluster size distribution for a molecular type of interest

was normalized by dividing the number of molecules in clusters of a particular size by

the total number of molecules (of a speci�ed type) in the system. This normalization

is done per MD frame, and then these distributions are averaged over the entire simu-

lation, which represents the probability distribution for a randomly selected molecule

(of a particular type) to be in a cluster of a given size. From Figure 4.7, it can be

seen that at high concentrations of solute, where there is an absence of a percolating

water cluster, the cluster size distribution resembles an exponential decay. On the

other side of the percolation threshold, there is an additional Gaussian-like distribu-

tion corresponding to the percolating cluster. From Figure 4.7 and the RSM data,

one can see that the percolation threshold for water in general is between 81.5% and

83% solute concentrations.

It was found that the percolation threshold for both general solute clusters and
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Figure 4.7: The probability P (n) for a water molecule to be a member of a cluster of
size n, calculated by dividing the number of water molecules in clusters of a particular
size by the total number of water molecules in the system. Concentrations of solute:
(a) 77%, (b) 81.5% and (c) 83%. Each inset shows a close-up of the interesting part
of the corresponding graph.

trehalose-only clusters is between 30% and 40% solute concentrations. Since the

volume hysteresis e�ect (explained in detail in the following chapter) was observed

starting around 84.5% solute concentration and the experimental glass transition for

trehalose-only (no salt) systems is at ∼90% for temperatures of ∼300 K [40], it can be

safely concluded that neither the solute percolation nor the interior water percolation

are relevant to the glass transition. In summary, there are three regimes. First,

only water percolates at low solute concentrations, followed by an intermediate phase

where solute and water both percolate, and �nally the third regime where only solute

percolates.



CHAPTER 5: THE GLASS TRANSITION

5.1 Volume hysteresis of a glass

To determine what state a system is in, one can check if the system will release

strain. Di�erent amounts of strain can be put into a system by adjusting the initial

box size in Packmol. During NPT equilibration, when the volume of the box is allowed

to change, the system should be able to release strain.

The �nal volumes after both rounds of NPT equilibration are shown in Figure 5.1.

In the �rst round, all equilibrations were run for 1 ns, expect for 81.5%, 83%, 95%

and 100%, which were run for 5 ns, 2 ns, 2 ns and 5 ns, respectively. For all systems,

the �rst round of NPT was followed by NVT equilibration and a production run. For

the second round, which only included solute concentrations of 83% and above as well

as 80%, new initial coordinates were generated with Packmol, energy minimized, and

NPT equilibrated for 5 ns. The initial volume was chosen to be 2744 nm3, which was

the largest initial volume used in the �rst round (81.5% system). The second round

of NPT runs was followed by NVT equilibration and a production run only for the

95% and 100% systems.
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Figure 5.1: Volumes before and after each round of NPT equilibration.
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It can be seen that for solute concentrations of 84.5% and above, the �nal volumes

converge to signi�cantly di�erent values when di�erent starting volumes are used.

To con�rm that this is not due to statistical �uctuation, the NPT equilibration was

repeated four more times for the 84.5% system at an initial volume of 1728 nm3, with

di�erent randomly generated initial coordinates and velocities. The average of all �ve

�nal volumes was 1038.1 nm3 and the standard deviation was 10.4 nm3.

The observed hysteresis was due to the freezing in of strain into a glass [41, 21,

22]. As an independent con�rmation, potential energies were calculated for both

production runs of the 95% and 100% systems. The systems with higher volumes

showed higher potential energies, which is consistent with the higher volume systems

having higher strain. Therefore, one can conclude that the glass transition point

is around 84.5% solute by weight, corresponding closely to the water percolation

threshold.

5.2 An analogy to free volume theory

According to the free volume theory, a system is a liquid when there is a percolating

liquid-like cluster. At low solute concentrations this condition is satis�ed, but at

some point liquid-like clusters will not percolate, since for a dry mixture with a 2:1

stoichiometric ratio of trehalose to CDHP, Tg = 358 K [4], and the simulations were

carried out at 300 K. The glass transition, as determined in the previous section,

occurs around 84.5%, which is close to the water percolation threshold. Although

one case study is insu�cient make de�nitive conclusions about the e�ect of water

content, the results suggest that the plasticizer behaves as a liquid-like molecule.

Under certain circumstances, however, water can act as an antiplasticizer, creating

long-lived hydrogen bonds with the glass-former [42]. In previous studies [43], a

similar e�ect was observed for trehalose, with the absorption of a certain amount of

water by a trehalose sample not a�ecting the glass transition temperature. This is

usually explained by water molecules becoming trapped by trehalose and forming a
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dihydrate. To verify that all water molecules in the systems act as a plasticizer, the

number of water molecules that neighbored the same trehalose molecule for all 30 ns

of the simulation was counted. This number was found to be negligibly small even at

the highest solute concentrations.

While it makes intuitive sense that the plasticizer acts as a liquid-like molecule,

one may ask if there are other liquid-like species in the system. For example, it seems

plausible that a fully solvated ion, which is completely surrounded by water molecules

and does not interact directly with the solute matrix, would also be liquid-like. If

other liquid-like species are indeed present in the system, then the water percolation

threshold would serve merely as a lower bound for the glass transition. This is exactly

the behavior that was observed in the systems considered. As an additional check, the

percolation of clusters consisting of water molecules and fully solvated ions was also

considered, but it did not change the percolation threshold. This is not surprising,

though, given that free volume theory neglects hydrogen bonds and steric e�ects, the

proximity of the percolation threshold to the glass transition is already more than

satisfactory.



CHAPTER 6: AN ANALYSIS OF THE TRANSITION REGION USING

MARKOV CHAINS

6.1 Markov chain model for the dynamics of cluster size statistics

6.1.1 Overview

For a system containing N water molecules, the maximum cluster size cannot

exceed N (all molecules in the same cluster). Thus, the clustering state of the system

in a particular frame can be described by an N -dimensional vector, with the �rst

component being the number of clusters of size 1 (solo waters), the second being the

number of clusters of size 2, etc. This vector can then be normalized via division by

N , so that its components are now the probabilities of �nding a randomly selected

water molecule in a cluster of a particular size.

It seems unlikely that the transition of a tagged water molecule from a cluster of

size n in one frame to a cluster of size m in the next frame would depend on the

sizes of the clusters that the water molecule belonged to in previous frames. Thus,

the size of the cluster that the water molecule belongs to in a given frame can be

analyzed as a Markov chain [44]. The transition probabilities can be represented as

an N ×N matrix T̂ , which, when successively multiplied on to the probability state

vector, will cause the system to evolve and generate the evolution of cluster statistics.

For example, one could consider an initial condition that a particular water molecule

is isolated, being the sole member of a cluster of size 1. Then, for discrete times

(each multiplication), one can track the time evolution of the probability distribution

for size of the cluster that the water will belong to. In the long time limit, this

distribution will approach the equilibrium [44].
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Figure 6.1: Snapshots of the evolution of an initial condition consisting entirely of
solo waters after (a) 1 frame, (b) 5 frames, (c) 10 frames and (d) 20 frames.

To demonstrate the evolution of an initial condition under the action of the tran-

sition matrix, the transition matrix for the 77% solute system was applied to a state

vector with the �rst component equal to one and all others set to zero. This corre-

sponds to a system where all of the waters are solo waters and no clustering exists.

Alternatively, one could also interpret this state vector as it was described in the

previous paragraph, corresponding to a particular isolated water molecule, with the

future state vectors giving the probability distribution for that same molecule to be-

long to a cluster of a certain size. Figure 6.1 illustrates this evolution by showing

snapshots of the cluster size distribution, as it morphs from delta-function-like to an

equilibrium distribution resembling that in Figure 4.7.

One may wonder how fast a system will tend to equilibrium. This question is

addressed in the next section through the use of spectral decomposition. The method

is similar to normal mode analysis, where the total deviation from equilibrium is the

sum of various normal modes, each with its own time constant.
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6.1.2 Calculation of the transition probabilities

The transition probability for a water in a cluster of size n to be in a cluster of size

m in the next frame is calculated according to the formula:

P (n→ m) =

〈
Nw(m|i)

n

〉
. (33)

The ratio in the angle brackets is evaluated for each cluster of size n in each

individual frame; i is an index enumerating the clusters of size n in the current frame

and Nw(m|i) is the number of water molecules in cluster i in the current frame that

will be in clusters of size m in the next frame. The average is taken over all clusters

of size n in all frames, except for frame 5000, since there is no next frame after that.

The formula is derived from the simple de�nition of the average of a physical quantity

over a statistical sample: given a sample of all clusters of size n in frames 0-4999,

one calculates the quantity for each element in the sample and then takes the average

over the sample.

Certain cluster sizes, especially in the intermediate range between small clusters

and the percolating cluster, may be so rare that they never appear in the 30 ns

simulation. Since there is no data for such clusters, one can not average over them,

and the corresponding columns in the matrix T̂ will consist entirely of zeros. Although

this means that T̂ is technically not a stochastic matrix, since not all of its columns

add up to one, it can still be used as such, keeping in mind that the e�ect of the zero

columns would be to produce a zero eigenvalue. Thus, after the matrix is diagonalized,

the zero eigenvalues should be discarded as unphysical artifacts.
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6.2 Eigenvalues of the transition matrices

6.2.1 The eigenvalue spectrum of a stochastic matrix

The eigenvalue spectrum of a transition matrix will always contain the eigenvalue

1. The other eigenvalues can, in general, be complex numbers, as the matrix need not

be symmetric, but their magnitude must be strictly between 0 and 1 [44]. Due to the

asymmetry of the transition matrix, both left and right eigenvectors and eigenvalues

can be introduced. Whether left or right eigenvalues will be considered depends on

how the matrix was constructed, i.e. whether the rows or columns add up to one.

Here, the columns of the matrices will add up to one and right eigenvectors and

eigenvalues will be used.

Any state vector can be decomposed over the basis of eigenvectors of T̂ :

|ψ〉 = |1〉+
N−1∑
n=1

cn|λn〉, (31)

where |1〉 is the eigenvector corresponding to the eigenvalue 1, cn is a decomposition

coe�cient, λn is an eigenvalue not equal to one and |λn〉 is the eigenvector corre-

sponding to that eigenvalue. After applying the matrix T̂ to the vector |ψ〉 M times,

one gets:

T̂M |ψ〉 = |1〉+
N−1∑
n=1

λMn cn|λn〉, (32)

Thus, since the magnitudes of the λn's are strictly less than one, the eigenvector

corresponding to eigenvalue 1 is the equilibrium state, and the system will tend to this

state after su�ciently many frames, regardless of the initial condition. To check if the

method used to calculate transition probabilities gives reliable results, the equilibrium

eigenvectors for the 77%, 81.5% and 83% solute concentration systems were compared

to the distributions in Figure 4.7. It was found that the equilibrium eigenvectors

closely resemble those distributions.
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Figure 6.2: Plots of the eigenvalues on the complex plain for (a) the 80% solute
concentration system and (b) the 89% solute concentration system.

The eigenvectors corresponding to the other eigenvalues can be interpreted as devi-

ations away from equilibrium. The main interest is in the distribution of magnitudes

of these eigenvalues. The existence of a multitude of eigenvalues away from 0 will

indicate slow dynamics, otherwise the system will display fast dynamics. Slow dy-

namics is the hallmark signature of a glass, in contrast to the fast relaxation time

characteristic of a liquid. If a clear-cut signature can be observed, this may help

in solving the long-standing problem of a robust qualitative criterion for the glass

transition [11].

6.2.2 Analysis of the spectra

The transition matrices were diagonalized using the SciPy package [45]. The re-

sulting eigenvalues are mostly complex numbers. For reference, Figure 6.2 shows the

eigenvalues obtained from the 80% and 89% solute concentration systems.

As was previously mentioned, the magnitude of an eigenvalue is what determines

how fast the corresponding eigenvector decays away. To make better sense of this, one

can de�ne a time constant of decay, τn, as follows. Using the identity λn = |λn|ei arg λn ,

one can set λMn = e−t/τn+iωnt, where t = M∆t and ∆t is the time interval between

consecutive frames, which was 6 ps in this study. It then follows that

τn =
−∆t

ln |λn|
, (34)
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Figure 6.3: The maximum time constant (a), and the average time constant (b), both
plotted as functions of solute concentration.

which will be used as the de�nition of the time constant corresponding to the eigen-

value λn. Figure 6.3 a shows the maximum time constant as a function of solute

concentration. As one may expect, this quantity increases monotonically with con-

centration. Thus, at a given concentration, there will always be at least one process

that is slower than all processes at any lower concentration. Another interesting

metric is the average time constant at a given concentration, which is presented in

Figure 6.3 b. Unlike the maximum time constant, the average time constant does not

exhibit monotonic behavior. Instead, it gradually increases until it enters the glass

transition area, after which it rapidly decreases until it reaches a minimum at 86%

and begins to increase again. This interesting behavior may possibly be a signature

of the percolation threshold of water or the glass transition, however an explanation

of this is not yet available.
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Finally, probability distribution functions of the magnitudes of the eigenvalues have

been calculated for various concentrations. As one can see in Figure 6.4, all distri-

butions corresponding to concentrations of 80% solute and below have a prominent

sharp peak at zero, whereas for concentrations of 81.5% solute and above, this fea-

ture is missing. Moreover, at 89% there is a long tail extending to almost one, which

re�ects the fact that this system evolves much more slowly than the ones at lower

concentrations. The sharp peak at zero, which corresponds to the fast dynamics of a

liquid, is exactly the clear-cut signature that was sought after.



CHAPTER 7: CONCLUSIONS

In this study, molecular dynamics simulations were conducted on a range of di�erent

concentrations of ternary mixtures of trehalose and choline dihydrogen phosphate in

water. The solute concentration at which the system under consideration becomes a

glass was determined to be near 84.5% by �nding the point above which a volume

hysteresis e�ect exits. The concept of interior water was introduced, which was de�ned

as the set of water molecules in a particular frame that do not have any non-water

neighbors. The water molecules which do have non-water neighbors were referred to

as interfacial water. It was observed that water molecules favor the interfacial state,

and this was explained in terms of hydrogen bond strength.

The percolation threshold for water was found to be between 81.5% and 83% so-

lute concentrations. In addition to that, it was found that interior water becomes

less tightly packed with increasing solute concentration. However, the di�usion coef-

�cients as calculated over persistent times, show little di�erence between interior and

interfacial water at high solute concentration. Therefore, a distinction between the

global mobilities of interior and interfacial water becomes blurred around the glass

transition, suggesting water in general is behaving as a plasticizer. The proximity

of the plasticizer percolation threshold to the glass transition draws a parallel to the

percolation of liquid-like clusters in the free volume theory of glass transition, sug-

gesting that the plasticizer molecules can be identi�ed as liquid-like molecules. In

the future, this should be checked rigorously by computing the free volumes of water

molecules as prescribed by Cohen and Grest [21, 22].

Finally, the concept of Markov chains was applied to the water cluster sizes.

Stochastic matrices were obtained from the probabilities of a given water molecule
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transitioning from a cluster of size n in one frame to a cluster of size m in the

next frame. These matrices were diagonalized, and probability distribution functions

for the magnitudes of their eigenvalues were calculated. These PDFs show a clear

signature of the transition from the fast dynamics of a liquid to slower dynamics

characteristic of a glass, in the form of a sharp peak at zero. This peak is present in

most liquid PDFs but disappears at 81.5%, which is close to the glass transition as

estimated with volume hysteresis. In addition, the time constants for the exponential

decay of deviations from equilibrium were considered. While the maximum time con-

stant increased monotonically with solute concentration, the average time constant

showed non-monotonic behavior, decreasing around the glass transition. There is not

yet a satisfactory explanation for this behavior. This issue is worth considering in

future work.

The analysis methods developed in this thesis can be readily applied to other

similar systems. For example, most of the analysis programs were written to work

automatically with systems in which CDHP is replaced by choline monohydrogen

phosphate (CMHP). Work is currently underway to simulate CMHP systems, after

which the same analysis programs can be used with no modi�cation to the code. This

will provide a vast amount of data for comparison to the data presented in this thesis.

Such a comparative study may give valuable insight into the role of the salt in the

behavior of the systems.
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