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ABSTRACT 

 
 

JONG-HO BYUN. Effective data parallel computing on multicore processors. 
(Under direction of DR. ARUN RAVINDRAN) 

 
 
The rise of chip multiprocessing or the integration of multiple general purpose 

processing cores on a single chip (multicores), has impacted all computing platforms 

including high performance, servers, desktops, mobile, and embedded processors. 

Programmers can no longer expect continued increases in software performance without 

developing parallel, memory hierarchy friendly software that can effectively exploit the 

chip level multiprocessing paradigm of multicores. The goal of this dissertation is to 

demonstrate a design process for data parallel problems that starts with a sequential 

algorithm and ends with a high performance implementation on a multicore platform. 

Our design process combines theoretical algorithm analysis with practical optimization 

techniques. Our target multicores are quad-core processors from Intel and the eight-SPE 

IBM Cell B.E. Target applications include Matrix Multiplications (MM), Finite 

Difference Time Domain (FDTD), LU Decomposition (LUD), and Power Flow Solver 

based on Gauss-Seidel (PFS-GS) algorithms. These applications are popular computation 

methods in science and engineering problems and are characterized by unit-stride (MM, 

LUD, and PFS-GS) or 2-point stencil (FDTD) memory access pattern. The main 

contributions of this dissertation include a cache- and space-efficient algorithm model, 

integrated data pre-fetching and caching strategies, and in-core optimization techniques. 

Our multicore efficient implementations of the above described applications outperform 

naïve parallel implementations by at least 2x and scales well with problem size and with 

the number of processing cores. 
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CHAPTER 1: INTRODUCTION 
 
 

1.1 Rise of Multicore Computing 

Since the introduction of the microprocessor in the mid-70s the computer industry 

has pursued a uniprocessor hardware architecture paradigm accompanied by a sequential 

programming model. The steady growth in performance over the years was achieved 

primarily through a steady increase of clock frequency enabled by scaling of the 

underlying transistors. Architectural innovations such as hardware controlled on-chip 

memory hierarchies (caches) were introduced so that the increasing gap between the 

processor speeds and the memory access latencies could be hidden from the programmer. 

At the chip level, application parallelism was primarily exploited at the instruction level 

in a manner transparent to the programmer through multiple execution pipelines and out-

of-order processing controlled by complex logic.   

However, by the middle of this decade, the traditional uniprocessor architecture 

performance had hit a roadblock due to a combination of factors, such as excessive power 

dissipation due to high operating frequencies, growing memory access latencies, 

diminishing returns on deeper instruction pipelines, and a saturation of available 

instruction level parallelism in applications. An attractive and viable alternative to 

improve performance are multicore processors where multiple processor cores, 

interconnects, and both shared and private caches are integrated on a single chip. The 

individual cores are often simpler than uniprocessor counterparts, exploit instruction level 



2 
parallelism adequately, and typically achieve better performance-power figures. 

Moreover, multicore architectures allow the programmer to exploit multiple levels of 

parallelism at the data and task level than was possible with a traditional uniprocessor. 

From a modest beginning of dual and quad cores, multicore processors are expected to 

include hundreds of cores in a single chip in the near future. Currently almost all of the 

high performance processors offered by leading industry vendors such as Intel, IBM, 

AMD and Sun subscribe to the multicore paradigm.  

1.2 Research Goals 

As discussed in the previous section, programmers can no longer expect 

continued increases in software performance without developing parallel, memory 

hierarchy friendly software that can effectively exploit the chip level multiprocessing 

paradigm of multicores. Further, due to power issues favoring architectures with lower 

clock frequencies and simpler in-order processing cores, the single threaded performance 

of commercial multicores may actually suffer in the coming years. Unfortunately, there is 

no easy solution to this problem. In many cases, serial code cannot be parallelized 

without investing considerable time and effort. Also, existing parallel libraries are often 

not designed to exploit the on-chip shared memory hierarchy characteristic of multicore 

processors. Piecemeal solutions developed for specific architectures run the risk of being 

non-portable not only across different architectures, but also across future versions of the 

same architecture. Considerable effort continues to be made in developing tools that seek 

to generate parallel code starting from a serial code base with minimal effort. Although 

this approach has its merits in terms of short term productivity, we argue in this 

dissertation that over the long term, a systematic design process that starts from the 
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sequential algorithm of the problem and develops a scalable, parallel, memory hierarchy 

friendly algorithm with tunable parameters has the best chance of avoiding technology 

obsolescence. Note that the choice of an appropriate machine model is an important 

element of this approach. The goal of this dissertation is to demonstrate a design process 

for data parallel problems that starts with a sequential algorithm and ends with a high 

performance implementation on a multicore platform. The dissertation focuses on data 

parallel algorithms since they are the basis of several scientific computing kernels where 

high performance is critical.  

While elements of the proposed design process have been reported previously, the 

focus has tended to be either on theoretical algorithm analysis or on code engineering, 

limiting its utility to programmers. The focus of our work is to provide the programmer 

with a design process that integrates algorithm development with actual implementation 

on commercial multicores. We identify and integrate recently reported research results 

into this design process and innovate where necessary. The flowchart shown in Figure 1.1 

summarizes the multicore-efficient software design process proposed in this dissertation.  
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FIGURE 1.1: Design flow for multicore-efficient software design. 
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The inputs to the design process shown in Figure 1.1 are the target multicore 

platform, the parallel programming tools available for the multicore platform, and the 

sequential workload for the problem. The design process consists of four major steps -  

We first profile the sequential workload on the target architecture to determine the 

set of candidate compute tasks whose multicore efficient implementation would improve 

the overall performance of the workload. This step uses available statistical profilers such 

as GNU’s gprof, Oprofile, Intel Vtune Performance Analyzer, and Sun CoolTool. Note 

that in this dissertation we do not explicitly demonstrate this step but assume that the 

candidate compute kernels are known.  

The second step theoretically analyzes the candidate tasks with the goals of 

identifying data and task parallelism, improving data locality for cache-efficient and 

space-efficient implementation, and identifying opportunities for overlapping computing 

and data transfer. The theoretical analysis is based on an appropriate machine model for 

the target multicore platform. The primary outputs of this step are parallel schedules for 

computation at different levels of the memory hierarchy, theoretical bounds on execution 

time under these schedules, and candidate tuning parameters.  

The third step focuses on developing multicore-efficient software 

implementations of the candidate tasks by integrating the results of the theoretical 

analysis with processor specific performance optimization techniques utilizing 

appropriate parallel programming tools. While this step is platform and programming 

environment specific, many of the optimization techniques are portable across different 

multicore platforms. 
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The fourth step involves verification and tuning of the performance of multicore-

efficient implementation using available performance analysis tools, such as Intel 

Performance Analyzer, Intel ThreadChecker, Intel ThreadProfiler, Sun Microsystems 

CoolTool, Sun Microsystems Thread Analyzer and IBM Cell B.E. SDK (see Chapter 2 

and 5 for more details). These tools help in monitoring parallel performance including 

parallel overhead, synchronization and load-balance. The programmers can attempt to 

optimize the run-time performance by varying the tuning parameters. 

The steps outline above may have to be repeated iteratively until the desired 

performance is achieved.  

1.3 Dissertation Contributions 

The goal of our research is to help programmers analyze and improve the 

performance of data parallel applications on multicore architectures. The major 

contributions of this dissertation are: 

(1)  We present a novel weighted-vertex pebble strategy for determining efficient 

block size to improve data locality on multicores. The weighted-vertex pebble 

strategy is an extended pebble game for devising space-efficient and cache-

efficient algorithm through maximal data sharing between concurrent tasks under 

a given scheduling strategy. 

(2)   We describe an innovative data prefetching and caching strategy to determine the 

optimal multi-buffering scheme for compute bound and data transfer bound 

algorithms. The integrated data prefetching and caching strategy improves the 

performance by overlapping between computations and data transfers while 

simultaneously effectively exploiting data locality. 
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(3)  We illustrate a muliticore efficient design process that blends theoretical results 

with practical performance optimization techniques on commercial multicores. 

Specifically, we integrate our theoretical results with a series of in-core 

optimizations to develop a robust set of design techniques that scale well both 

with the problem size and the number of cores on a variety of multicore 

architectures. 

(4)  We develop multicore efficient high performance computing kernels for several 

important scientific computing algorithms such as matrix multiplication, finite 

difference time domain, LU decomposition and power flow solver based on 

Gauss-Seidel method. These highly optimized, multithreaded libraries could be 

used in science and engineering applications that require maximum performance. 

1.4 Dissertation Outline 

This dissertation describes effective data parallel computing on multicore 

platforms motivated by our experiences working with commercial multicore platforms. 

The dissertation begins with an overview of trends multicore computing in Chapter 2. We 

focus on the important developments in multicore architecture, programming tools and 

system software.   

Chapter 3 presents a design methodology that aids in the development of parallel 

cache-efficient and space-efficient algorithms for shared cache multicore processors. The 

methodology uses a weighted vertex pebbling game for maximal data sharing between 

concurrent tasks under a given scheduling strategy at each level of the memory hierarchy.  

Chapter 4 presents algorithm specific integrated software caching and pre-

fetching strategies. We introduce a general purpose machine model and present 
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conditions for when the total execution time is compute bound or data transfer bound. 

Through case studies we illustrate the choice of optimal buffering strategy when both 

pre-fetching and caching is considered.   

Chapter 5 describes the multicore-efficient implementations of data parallel 

algorithms on commercial multicore platforms. In this chapter we highlight the synthesis 

of the theoretical results of Chapters 3 and 4 with practical in-core optimization 

techniques to derive scalable multicore efficient implementations of some of the widely 

used scientific computing kernels. Extensive measurement results are presented on the 

Intel Clovertown and IBM Cell/B.E. platforms. 

Chapter 6 concludes the dissertation and provides directions for future work on 

programming of emerging multicore architectures. 

  



 

CHAPTER 2: TRENDS IN MULTICORE COMPUTING 
 
 

2.1 Introduction 

The rise of chip multiprocessing or the integration of multiple general purpose 

processing cores on a single chip (multicores), has impacted all computing platforms 

including high performance, servers, desktops, mobile, and embedded processors. As 

discussed in Chapter 1, the introduction of parallel computing at the chip level was 

motivated by the need to deliver Moore’s law type advances in computing performance 

within an acceptable power budget. With this paradigm shift in computing still its early 

years, open questions remain on architecturally the best way to achieve this objective. 

Moreover, a large part of the performance of multicores hinges on the performance of 

parallel software that runs on them. Unfortunately, despite the progress made in 

developing parallel algorithms and software in the past two decades, the considerable 

challenges remain in its widespread adoption to the entire software stack. 

Traditionally, parallel computing was largely confined to scientific computing 

where either custom made supercomputers or clusters of general purpose computers were 

employed. The parallel code necessary for these platforms were developed by application 

domain specialists. The rise of internet led to the development of data centers with 

clusters consisting of thousands of computing nodes and terabytes of storage. In the past 

few years, the rising costs in maintaining these data centers as well as the availability of 

broadband connections, has led to the emergence of “cloud computing” where both 
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computing resources and software are available on the “cloud” as a service [81]. 

However, the parallel code running on these platforms is largely web based applications 

characterized by embarrassing amounts of parallelism.  

We note that the successful adoption of multicore processors for general purpose, 

scientific, and embedded computing will depend on jointly developing both the processor 

architecture and the software stack necessary for code developers to efficiently exploit 

the many types of parallelism that may exist in a computing problem. In this chapter, we 

review the state-of-the-art in multicore architectures (Section 2.2), parallel programming 

languages and tools (Section 2.3), and system software (Section 2.4). We pay special 

attention to the underlying trends that portend developments in each of these areas in the 

next few years.  

2.2 Multicore Architectures  

In this section we examine the architectures of popular commercial multicore 

processors. While a plethora of such architectures exists in the embedded domain, we 

limit ourselves to high performance multicores where power dissipation is an important 

but not a dominating design issue.  

2.2.1 Historical Trends 

The architectures of today’s multicore processors are based on the uniprocessor 

and the shared addressed space and message passing parallel architecture designs from 

the past two decades. Uniprocessors have evolved from a simple RISC based pipeline of 

the eighties to the superscalar, RISC-CISC architectures with deep execution pipelines 

and out-of-order execution. Also, the increasing gap between processor and the external 

memory latencies requires the use of deep on-chip cache hierarchies for good memory 
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performance. The architectural goal of these processors was to exploit as much single 

thread performance as possible through aggressive exploitation of Instruction Level 

Parallelism (ILP). Considerable logic and power budget was devoted to dynamically 

finding and scheduling instructions to maximally utilize the pipelines. However, the 

diminishing returns on the power-performance of this approach limited the continued 

pursuit of performance solely through ILP. 

Parallel machines evolved from the Cray vector machines implementing the 

Single Instruction Multiple Data (SIMD) paradigm to commodity processors connected 

by Commercial-Off-The-Shelf (COTS) network implementing the Single Program 

Multiple Data (SPMD) paradigm. Parallel machine organization can be classified into 

two main types – a) Shared Memory Processors (SMP) where all the processors share a 

common memory address space and b) Message Passing Processors (MPP) where the 

memory address space is disjoint and explicit messages are sent between the processors. 

Commercial SMPs typically employ a bus based interconnect and provide hardware 

cache coherence. Bus contention and the difficulties in scaling the cache coherence 

protocols limit the number of processors to around 32. MPPs employ point-to-point 

COTS network such as Ethernet (Beowulf cluster) or specialized network (IBM Blue 

Gene/L). The disjoint address space, lack of hardware memory coherence, and the use of 

scalable interconnect allows for MPPs with hundreds of processors. A great majority of 

the TOP500 supercomputers are MPPs.  

As will be seen in the next couple of sub-sections chip level multiprocessing has 

borrowed a number of ideas from the above described sequential and parallel computer 

architectures.  
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2.2.2 Architectural Elements 

Architecturally multicore processors can be classified on the basis of a) the 

processing elements, b) the memory system, and c) interconnect.  

Processing Elements: 

High performance multicore processors today adopt a mix of two design extremes 

– for a given transistor budget integrate a small number of complex superscalar, super-

pipelined cores with out-of-order processing (example Intel Xeon Clovertown quadcore), 

or a large number of simple in-order cores (example Sun UltraSPARC T1). The complex 

cores are geared towards applications requiring good single thread performance while the 

large number of simple cores target applications with abundant thread level parallelism. 

Interestingly in multicores with simple cores, the operating frequency is far below the 

maximum allowed by the process technology so as to manage the power budget. In either 

case, Symmetric Multi-Threaded (SMT) cores are utilized to manage the memory 

latency. While most high performance multicores have homogenous cores, processors 

with heterogeneous cores specialized for different application domains have also made 

their appearance. The Instruction Set Architecture (ISA) of the cores is an extension of 

the ISA of the corresponding unicores (example x86, SPARC, Power) with additional 

instructions such as atomic operations to support synchronization. The use of legacy ISAs 

allows the execution of the existing software without recompilation. 

Memory System: 

Most of the high performance multicore processors in the market today follow the 

shared address space architecture described in Section 2.2.1. However, shared memory 

multicore processors differ from traditional SMPs in the following three significant ways- 
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(1)   The processing cores, the interconnect, and a part of the shared memory hierarchy 

are on the same chip/module resulting in potentially lower communication and 

synchronization costs.  

(2)   The shared memory (typically the L2 or L3 cache) is not only shared by all or a 

subset of the processing cores but is of a limited size.  

(3)   The integration of the processing cores, the interconnect, and the cache hierarchy 

on a single chip necessitates micro-architectural tradeoffs between the 

performance, die area, and power budgeted to the different components.  

Hardware support for cache coherence is typically provided following either the 

broadcast (ordered interconnect) or directory based protocols (ordered and unordered 

interconnects). In principle the concept of a shared addressed space makes programming 

simple. However, in practice, since shared memory does not provide implicit 

synchronization of parallel tasks, memory consistency models and synchronizations 

routines are needed to provide the necessary synchronization. The complex interaction of 

synchronization, coherence, and consistency has the potential to complicate the 

programming and also limit the core scaling in these processors. An example of a 

commercial processor using the shared memory paradigm is the Intel Xeon Clovertown 

quad-core processor (see Section 2.2.3). 

Message passing multicores have also made their appearance commercially. Here 

the processing cores are cache-less but instead has software managed local memory. 

Messages are passed between the cores on high speed on chip interconnect through 

Direct Memory Access (DMA) type operation. The sending and receiving of the 

messages implicitly synchronizes the processors. While a better hardware 
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power/performance is possible with this approach, the machines are harder to program. 

An example of a commercial processor using the shared memory paradigm is the IBM 

Cell Broadband Engine Processor (See Section 2.2.3). 

Taking advantage of the ample on-chip bandwidth in multicores, a new protocol 

known as Transactional memory Coherence and Consistency (TCC) has been introduced. 

TCC is an extension of the shared address space paradigm, where, instead of load/store 

operations, atomic transactions are the basic unit of parallel work, communication, 

coherence, and consistency [36]. As described by Hammond et. al. “TCC hardware 

combines all writes from each transaction region in a program into a single packet and 

broadcasts this packet to the permanent shared memory state atomically as a large block. 

This simplifies the coherence hardware because it reduces the need for small, low-latency 

messages and completely eliminates the need for conventional broadcast cache coherence 

protocols, as multiple speculatively written versions of a cache line may safely coexist 

within the system. Meanwhile, automatic, hardware-controlled rollback of speculative 

transactions resolves any correctness violations that may occur when several processors 

attempt to read and write the same data simultaneously. The cost of this simplified 

scheme is higher interprocessor bandwidth”. A commercial processor incorporating TCC 

is the Sun Microsystems’ Rock multicore (see Section 2.2.3).  

Interconnect: 

The on-chip interconnect found in today’s commercial high performance 

multicores include point-to-point, ring, bus, and crossbar. Bus has the simplest design and 

has global ordering that supports broadcast cache coherence protocols. However, buses 

do not scale well. Crossbar is unordered and offers low latency but does not scale well 
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either. Point-to-point interconnect (such as Intel QPI and AMD Hyper transport) has 

good performance but scales poorly.  

2.2.3 Case Studies 

In this section, we briefly describe the architectural features of the state-of-the-art 

high performance multicores available in the market today. The multicore processors 

presented illustrate the different design elements described in the previous sections. 

2.2.3.1 Intel Gainestown  

Intel Gainestown (Xeon W5500 series) was released in November 2008 by Intel 

based on the Nehalem microarchitecture and is currently manufactured in a 45 nm 

process. Nehalem is based on a multicore design philosophy of integrating a modest 

number of homogeneous complex cores with good single thread performance. Figure 2.1 

shows the organization of the Nehalem processors.  

 

 

FIGURE 2.1: Organization of the Nehalem processors. 
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Processor Cores: 

Gainestown is a true quad core processor with an operation frequency of up to 3.2 

GHz consuming about 130W. The x86 based cores are out-of-order and is 

Simultaneously Multi Threaded (SMT) supporting two threads per core. Each core can 

issue 4-double precision floating point operations per clock. The cores incorporate Intel’s 

Turbo Boost Technology which allows active processor cores to run faster when there is 

available headroom with power, temperature, and temperature specification limits. 

Gainestown also incorporates Application Targeted Accelerators (ATA) which are low 

latency, low power, and fixed function accelerators on the processor die targeted at 

specific applications. The seven ATAs target string and text processing operations. 

Integrated power gates allow the individual idling cores to be reduced to near-zero power 

independent of other cores, reducing the idle power consumption to 10 W.  

Memory System:  

Gainestown has a three level on-chip cache hierarchy with private 64 KB L1 

cache (32 KB data + 32 KB instruction), 256 KB L2 cache, and an 8 MB L3 cache shared 

by all cores [82]. A 512 entry second level TLB is included to improve performance. The 

Nehalem implements a cache coherent Non Uniform Memory Architecture (ccNUMA) 

with a broadcast based MESIF cache coherence protocol [53]. The MESIF protocol 

extends the MESI protocol with a “Forwarding” state that allows unmodified data shared 

by two processors to be forwarded to a third processor. Programmers must consider the 

NUMA nature of the architecture in accessing data from a remote socket compared to a 

local DRAM.  
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Interconnect: 

The Nehalem micro-architecture uses a point-to-point interconnect that uses the 

Intel QuickPath Technology. The interconnect uses up to 6.4 Giga transfers/second links, 

delivering up to 25 GB/s of total read bandwidth per core. Each processor integrates a 

triple channel integrated memory controller with a peak bandwidth of 32 GB/s with 

DDR3-1333 DIMMs.  

2.2.3.2 Sun UltraSPARC T2 

The Sun UltraSPARC T2 was released in 2007 by Sun Microsystems based on the 

UltraSPARC architecture and the SPARC ISA. The UltraSPARC T2 is currently 

manufactured in a 65 nm process. UltraSPARC micro-architecture is based on a 

multicore design philosophy of integrating a large number of homogeneous simple highly 

multithreaded cores targeting application task level parallelism. Figure 2.2 shows the 

organization of the UltraSPARC T2 processor. 

 

 

FIGURE 2.2: Organization of the UltraSPARC T2 processor. 
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Processor Cores:  

The UltraSPARC T2 is an 8 core processor each with full hardware support for 

executing 8 independent threads. The in-order cores run at an operating frequency of up 

to 1.4 GHz with a total power consumption of about 84W. Each core consists of two 

integer execution units, a floating point and graphics unit, and a cryptographic stream 

processing unit [63]. UltraSPARC T2 implements a fine-grained multi-threading scheme 

where the threads are switched on a cycle-by-cycle basis between the available threads 

within the two statically partitioned thread groups of 4 threads each. When a thread 

encounters a cache-miss it is made unavailable and the instructions from it are not issued. 

In each cycle two instructions can be issued from each thread group. UltraSPARC T2 

seeks to minimize power consumption through limited execution speculation, control and 

data-path clock gating, and through external power throttling. 

Memory System: 

The UltraSPARC T2 has a two level on-chip cache hierarchy with a private L1 

cache and a shared L2 cache. The 4 MB L2 cache is 16-way set associative with a line 

size of 64 bytes and organized as 8 banks. The L1 data cache is 8 KB and the instruction 

cache is 16 KB. The L1 caches are write through, with allocate on loads and no-allocate 

on stores. The L2 cache maintains a directory of L1 tags. The directory maintains a 

shares list at the level of L1 line granularity. Local caches are not update by stores till the 

L2 is updated. However, in the meantime, the same thread can see its stores.  

Interconnect: 

The UltraSPARC T2 uses non-blocking pipelined crossbars interconnect that 

connects the 8 cores to the 8 banks and the I/O port. The crossbar has a total write 
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bandwidth of 90 GB/s and a read bandwidth of 180 GB/s. The L2 cache connects to a 4 

on-chip memory controllers interfacing to FBDIMM channels. The peak memory 

bandwidth is 50 GB/s for read and 26 GB/s for writes. The crossbar establishes memory 

order between transactions from the same and different L2 banks.  

2.2.3.3 IBM Cell Broadband Engine 

The Cell Broadband Engine introduced by IBM in 2006 is a heterogeneous 

multicore processor initially targeted for game consoles and consumer media 

applications. The processor is currently manufactured in a 45 nm technology. Figure 2.3 

shows the organization of the Cell Broadband Engine.  

 

 

FIGURE 2.3: Organization of the Cell Broadband Engine. 
 

 

The Cell processor consists of a Power Processor Element (PPE) and 8 identical 

Synergistic Processor Elements (SPE). The PPE contains a 64 bit PowerPC architecture 

core and is primarily intended for control processing, running operating systems, 

managing system resources and running SPE threads. The SPE is a vector processor 

supporting a specialized SIMD instruction set architecture for compute intensive 

operations. An important difference between the SPE and the PPE is in the way memory 
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is accessed. The PPE uses load and store instructions to transfer instructions and data 

from the main memory to the register files using a two level cache hierarchy. The SPE 

uses Direct Memory Access (DMA) to transfer data from the main memory to a private 

Local Store (LS) memory through the high speed Element Interconnect Bus (EIB). Note 

that the SPE and PPE have two distinct ISAs necessitating the use of two different 

compilers. A more detailed description of the different units of the Cell processor 

emphasizing the different levels of parallelism supported by each is given below.  

Power Processing Element: 

The PPE is a Power ISA based dual issue, in-order execution design, 2-way 

Symmetric Multi-Threaded (SMT) processor with the design optimized for frequency and 

power efficiency [42]. The two simultaneous threads of execution give software the 

effective appearance of two independent processing units with shared data flow. The PPE 

cache hierarchy consists of a 32 KB L1 data cache, a 32 KB L1 instruction cache, and 

512 KB unified L2 cache. The second-level cache and the address translation caches use 

replacement management tables that allow the software to direct entries with specific 

address ranges to a particular subset of the cache [42]. The PPE consists of the Instruction 

Unit (IU), the fixed point unit (XU) and the vector scalar unit (VSU). The IU fetches four 

instructions per cycle per thread into an instruction buffer and after decode and 

dependency checking dual issues these to the execution unit. All dual issue combinations 

are possible with the exception of instructions to the same execution unit and some 

exceptions as described in [42]. The XU has 32 64-bit general purpose register file per 

thread, a fixed point execution unit and a load store unit. The L1 D-cache associated with 

the XU is non-blocking allowing cache hits under misses. The VSU issue queue 
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decouples vector and floating point pipelines from the other pipelines allowing vector and 

floating point instructions to be issued out of order with respect to other instructions.  The 

VSU floating point units has 32 64-bit register file per thread and a 10-stage double 

precision floating point unit. The VSU vector unit has 32 128-bit vector register file per 

thread and all instructions are 128-bit SIMD with varying lengths [42].  

As can be seen from the above description of the architecture, the PPE allow 

exploitation of parallelism at multiple levels. The dual-issue nature of the architecture 

allows exploitation of ILP [35]. Further, ILP partially hides memory latency by 

concurrently servicing multiple outstanding cache misses [35]. Such Memory Level 

Parallelism (MLP) can also be used between threads to increase overall memory 

bandwidth utilization by enabling interleaving of multiple memory transactions. 

However, lack of instruction re-ordering capability and sharing of execution units limits 

the effective exploitation of ILP on the PPE. The architects favored these limitations of 

dual-issue for power efficiency [35]. The SIMD instruction set enables exploitation of 

Data Level Parallelism (DLP). The dual threaded nature of the PPE supports Thread 

Level Parallelism (TLP). 

Synergistic Processing Element: 

The SPE consists of a Synergistic Processing Unit (SPU) and a Memory Flow 

Controller (MFC). The SPU is a RISC core with a 256 KB software-controlled LS for 

instruction and data, and a 128-bit 128 entry unified register file. The execution units of 

the SPU are 128-bit wide and all instructions are 128-bit SIMD with varying widths [42]. 

The SPE ISA provides a rich set of vector such as arithmetic, logical, and load/store 

operations that can be performed on 128-bit vectors of either fixed point or floating point 
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values. The ISA also provides instructions to access scalars from vector registers 

enabling scalar operations on the SPE. Up to two instructions are issued per cycle, with 

one slot support fixed/floating point instructions and the other slot supporting load/store, 

byte permutation operations, and branch instructions. Single precision instructions are 

performed in 4-way SIMD fashion and are fully pipelined, while double precision 

instructions are performed in 4-way SIMD fashion, and are only partially pipelined. Also, 

double precision operations stalls the dual issue of other instructions making the Cell 

processor less suited for applications with massive use of double-precision instructions. 

The SPU assumes sequential execution of instructions leading to serious performance 

degradation on branch mispredictions. The ISA provides branch hint instructions 

enabling software to pre-fetch instructions at the target branch address. 

Similar to the PPE, the SPE allows exploitation of parallelism at multiple levels. 

The SIMD instructions support DLP. ILP is obtained through the dual issue execution 

unit of the SPE. TLP is supported through the multiple SPE cores available on the Cell 

processor. At 3.2 GHz each SPE provides a theoretical peak performance of 25.6 

GFlops/s of single precision performance and 2.6 GFlops/s of double precision 

performance.  

Memory Flow Controller: 

The MFC implements the communication interface between the SPE and PPE 

elements, and serves as a high-performance data transfer engine between the LS and Cell 

system memory. Data and instructions are transferred between the LS and the system 

memory through asynchronous coherent DMA commands. Since the address translation 

is governed by the PowerPC address and page tables, addresses can be passed between 
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the PPE and the SPE enabling the operating system to share memory and manage all 

resources in the system in a consistent manner. Also, LS to LS DMA transfers between 

SPEs are possible. The MFC controls DMA transfers and communicates with the system 

by means of unidirectional message interfaces known as channels. The channels support 

enqueueing of DMA commands and other facilities such as mailbox and signal-

notification messages. The PPE and other devices in the system, including other SPEs, 

can also access the MFC state of an SPE through the MFC’s memory-mapped I/O 

(MMIO) registers and queues, which are visible to software in the main-storage address 

space [3]. Each MFC can independently process DMA commands from its associated 

SPU and from other devices. Also, the MFC can autonomously process a list of DMA 

commands with up to 2048 such DMA transfers. The MFC supports naturally aligned 

DMA transfer sizes of 1, 2, 4 or 8 bytes and multiples of 16 bytes, with a maximum 

transfer size of 16 KB per DMA transfer. Peak transfer performance is achieved if both 

the effective address and the LS address are 128-byte aligned and the size of the transfer 

is an even multiple of 128 bytes.  

A unique feature of the SPE is support of Compute Transfer Parallelism (CTP) 

where computation is parallelized with data and instruction transfer that feeds the 

computation. CTP is made possible by the asynchronous data transfers made possible by 

the MFC.  

Element Interconnect Bus: 

The Element Interconnect Bus (EIB) connects 12 elements – the PPE, 8 SPEs, the 

Memory Interface Controller (MIC) and the Bus Interface Controller (BIC) to each other 

[46]. The EIB runs at half the processor frequency and can transfer a maximum of 192 
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bytes per processor cycle. It has 12 ports for the elements each of which can read and 

write 16 bytes of data per bus cycle. Physically, the EIB consists of 4 rings with 2 rings 

transferring data clockwise and 2 rings transferring data counter clockwise. Each ring can 

transfer 16 bytes of data and supports 3 concurrent non-overlapping transfers. The EIB 

can thus support 102.4GB/s of coherent commands with transient rates as high as 307.2 

GB/s. The Cell BE's external memory bandwidth is 25.6GB/sec inbound and outbound to 

the Rambus Dual XDR memory controller, roughly 3-8 times the bandwidth of a typical 

DDR memory bus [46]. 

The high bandwidth of the EIB supports streaming of data by allowing the SPEs 

to be arranged in a pipeline fashion, where each SPE kernel acts on the data, produce 

intermediate results, and pass on the data to the next SPE. Compared to SIMD, the stream 

model supports data parallelism at a larger granularity level and supports more complex 

data transformations. Although EIB supports simultaneous transactions, care must be 

taken to ensure that the transactions to do not block each other [46]. 

2.2.3.4 Nvidia Fermi 

GPU computing refers to the use of Graphics Processing Units (GPUs) for high 

performance data parallel applications beyond graphics. The Fermi architecture to be 

released in early 2010, represents the latest in the evolution of Nvidia Compute Unified 

Device Architecture (CUDA), a software and hardware architecture that enables GPUs to 

be programmed with a variety of high level programming languages. The GPU design 

philosophy is based on the integration of a large number of specialized processing cores 

to support massive hardware thread level parallelism. Nvidia Fermi is currently 
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manufactured in the 40 nm process. Figure 2.4 shows the organization of the Nvidia 

Fermi.  

 

 

FIGURE 2.4: Organization of the Nvidia Fermi. 
 
 

Processing Cores: 

The Nvidia Fermi architecture consists of 512 computing cores known as CUDA 

cores designed to execute one instruction per clock cycle for a thread before switching to 

another thread. Each CUDA core has a fully pipelined integer arithmetic logic unit 

(ALU) and floating point unit (FPU). Unlike the general purpose processor cores, the 

CUDA cores lack individual register files, caches, or load store units to access memory. 

Instead, a set of 32 CUDA cores (known as a streaming multiprocessor: SM) share 

resources such as registers, caches/local memory and load store units. The 32 CUDA 

cores operate in parallel on 32 instructions from 32 threads (also known as “warp”). Each 

streaming processor features two warp schedulers and two instruction dispatch units thus 

allowing two warps to be issued and executed concurrently. Each streaming 
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multiprocessor can manage 48 such warps for a total of 1,536 threads. Additionally it 

features 4 texture engines and 4 polymorphic engines for graphics. The Fermi 

architecture consists of 16 such streaming multiprocessors with a capability of handling 

24,575 parallel threads with 512 executed at a time. A central scheduler (Giga Thread 

Scheduler) schedules the warps on to the streaming multiprocessors. The Fermi 

architecture also incorporates 4 Special Function Units (SFUs) for complex math 

operations. The Fermi GPU is expected to run at 1.5 GHz and dissipate about 240 W. 

Memory System: 

Each streaming multiprocessor has a shared L1 instruction cache and a 64 KB of 

configurable local memory that can be partitioned as an L1 data cache and a general-

purpose shared memory. The 16 streaming multiprocessors share a unified cache-

coherent 768 KB L2 cache. The GPU is attached to up to 6 GB of local DRAM through 6 

GDDR5 memory controllers with 172.8GB/s of memory bandwidth. Access to the 

system memory of the host CPU is through a PCI express bus. A special feature of the 

Fermi architecture compared to earlier GPU architectures is the extensive support for 

hardware error-correction codes to protect the external DRAM, L1 and L2 caches, and 

the register files from soft errors. From a programmer’s perspective, unlike its 

predecessors, the Fermi has a unified memory space of shared and global memory 

enabling C++ code to execute on the GPU.   

2.3 Multicore Programming Tools 

Historically, parallel software was limited to high performance computing, where 

domain specialists wrote parallel code which was often optimized for a given parallel 

architecture. With the advent of multicore processors, developing parallel software has 
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become a mainstream requirement. The success of the multicore revolution hinges 

critically on the availability of high productivity programming tools that enable a broad 

class of programmers to effectively develop software that exploits the parallelism 

inherent in the problem. In this section, we review the state-of-the-art programming tools 

to express parallel algorithms. The programming tools reviewed follow three principal 

approaches – parallel libraries, parallel languages, and parallelizing compilers. Since a 

large number of parallel programming libraries and languages exist, we limit our review 

to commercially available tools which support programming of multicore platforms in 

C/C++.  

2.3.1 Parallel Libraries 

The library based approach provides Application Programming Interfaces (API) 

that allows programmers to both explicitly generate parallel tasks and manage the 

communication and synchronization between the tasks. Parallel libraries are available for 

both shared memory and distributed memory machines. Libraries enable programmers to 

operate within the framework of popular sequential languages such as C, C++, Java and 

Fortran and incorporate parallelism through library calls. Although this approach gives 

programmers the greatest degree of control, beyond a small number of threads/processes 

such an explicit management of parallelism is bug prone and does not scale well to a 

large number of processing cores. However, currently the library approach is popular due 

to the availability of standardized parallel libraries on a wide variety of machines, and 

programmer familiarity. A brief review of popular parallel libraries for multicore 

computing is given below.  
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2.3.1.1 Shared Address Space 

PThreads: 

A thread is a single stream of control that can be independently scheduled by the 

operating system. In UNIX environments, threads exist within a process sharing 

resources with other threads while independently maintaining its own stack and data. In 

particular, inter-thread communication occurs within the shared address space. POSIX 

Threads (Pthreads) refers to the IEEE POSIX standard API for creating and managing 

threads. The implementation of the API is available on all commonly used UNIX flavors, 

Windows (Pthreads-win32), and Mac OS X. Pthreads is defined as a set of C language 

programming types and procedure calls implemented with a pthread.h header file. 

Pthreads are popular because of their ease of programming and portability. Some of the 

basic Pthread operations include creation and termination of threads, implementation of 

critical sections through mutual exclusion locks (mutex-locks), and thread 

synchronization through condition variables. While Pthread gives the programmer 

extensive control over threading operations, the inherently low level-API requires 

multiple operations to perform thread management tasks, thus making it more 

challenging to use. Pthreads is a good choice for event based, or I/O based parallelism.  

OpenMP:  

Open MultiProcessing (OpenMP) is a compiler directive based standardized API 

for programming shared address space machines. OpenMP enjoys support for C, C++ 

and Fortran and is available on many UNIX flavors, Windows, and Mac OS X. Unlike 

Pthreads, OpenMP is a higher level API where the user instructs the compiler through 

pragmas the concurrency, synchronization and data handling operations without 
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explicitly setting up and scheduling threads, mutex-locks and so on. It should be noted 

that OpenMP requires compiler support. Widely used compilers such as GNU GCC, IBM 

XL compiler for C/C++/Fortran, Intel compliers for C/C++/Fortran, and Microsoft Visual 

Studio 2008 C++ support OpenMP. A major advantage of OpenMP over Pthreads is that 

it does not tie the application to a pre-set number of threads. Also, the compiler directive 

based approach simplifies parallel programming since many of the tasks associated with 

thread creation and management are handled automatically. OpenMP is a good choice for 

data intensive computing with loop level parallelism.  

Intel TBB:  

Intel Thread Building Blocks (TBB) is a C++ template library from Intel Corp. 

for shared address space parallel programming on multicores. TBB includes algorithms, 

highly concurrent containers, locks and atomic operations, a work stealing task scheduler 

and a scalable memory allocator. Further Intel TBB provides generic parallel patterns 

such as parallel for-loops, parallel while-loops, data-flow pipeline models, parallel sorts, 

and prefixes. Similar to OpenMP, Intel TBB frees programmer from the explicit 

management of threads. However, unlike OpenMP Intel TBB does not require explicit 

compiler support. It is a good choice for compute intensive, highly object oriented C++ 

code. Intel TBB is open-source and is available on many UNIX flavors, Windows, and 

Mac OS X. 

2.3.1.2 Distributed Address Space  

MPI:  

Message Passing Interface (MPI) is a language-independent communications 

library for parallel programming with processes, on distributed address space machines. 
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MPI provides for both point-to-point (send/receive) and collective communication 

(broadcast) operations between processes. Typically, the processes run on separate 

processor cores with no sharing of memory. However, the processes could also be located 

in a shared address space with inter-process communication through explicit memory 

copy. Similar to Pthreads, in MPI, parallelism is explicit since the programmer is 

responsible for generating and managing parallel processes. However, unlike Pthreads, 

the message passing paradigm of MPI implies explicit user control of the inter-process 

communication as well. While this makes it difficult to program with MPI, it encourages 

the development of parallel code with good data locality. MPI implementations such as 

Open MPI are available on all commonly used UNIX flavors, Windows, and Mac OS X. 

MPI is the parallel library of choice for massively parallel machines and workstation 

clusters.  

2.3.1.3 Stream Processing 

Stream processing is a form of data parallelism, where data is streamed through a 

multiple computational units subjecting the data to a series of operations. Stream 

processing works well for certain applications such as signal processing and image 

processing where the data undergoes a series of transformations. Stream processors such 

as Graphics Processing Units (GPUs) employ both shared and distributed memory 

paradigms. The paradigm of GPU computing seeks to extend the use of GPUs for non-

graphics high performance computing applications. We describe the OpenCL framework 

targeted at GPU computing.  
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OpenCL:  

Open Computing Language (OpenCL) is a royalty free C and API based parallel 

programming framework targeted at a heterogeneous computing system consisting of a 

host processor connected to one or more OpenCL devices (processors and GPUs) [54]. 

OpenCL comprises of a C-based language for programming the compute kernel and 

platform and runtime APIs for control and communication operations. Compute kernels 

is the basic unit of executable code and is similar to C functions. The execution domain 

of a kernel is defined by an N-dimensional computation domain. Each element in the 

execution domain is a work-item and OpenCL provides the ability to group together 

work-items into work-groups for synchronization and communication purposes. OpenCL 

defines a multi-level memory model with memory ranging from private memory visible 

only to the individual compute units in the device to global memory that is visible to all 

compute units on the device. Depending on the actual memory subsystem, different 

memory spaces are allowed to be collapsed together.  OpenCL is supported by a number 

of GPU vendors including Nvidia (GeForce and Qaudro series) and AMD (ATI Radeon 

series).  

2.3.2 Parallel Languages 

The language based approach provides new language constructs that enables 

programmers to express parallel operations independent of the underlying machine. 

Although numerous parallel languages have been developed by the research community, 

this approach has not been popular due to the diversity of parallel architectures and the 

corresponding support need to develop the compiler infrastructure. However, the 

emergence of multicores and the need parallel programming productivity has given 
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impetus to developing parallel languages. In this section we briefly review the shared 

memory parallel language Cilk++ and the partitioned global address space parallel 

language UPC. 

2.3.2.1 Shared Address Space 

Cilk++:  

Cilk++ is a shared address space parallel programming language based on C++ 

with an associated Cilk++ compiler. Cilk++ extends C++ with a few key words for 

parallel programming while maintaining the serial semantics of the original program. 

Similar to OpenMP and Intel TBB, Cilk++ frees programmers from explicit management 

of threads. However, unlike OpenMP which targets loop-level data parallelism, Cilk++ 

relies on parallelizing function calls through a divide-and-conquer approach. Also, 

compared to OpenMP, Cilk++ has better support for nested parallelism and provides 

guaranteed space bounds (on P processor Cilk++ does not occupy more than P times the 

serial space). The Cilk++ run time system uses a dynamic work-stealing scheduler that 

supports dynamic load balancing. Cilk++ also comes with productivity enhancing tools 

such as a parallel performance analyzer to estimate the parallel code performance (such 

as processor scalability) and a race detector to find race conditions. Cilk++ was recently 

acquired by Intel Corp. from Cilk Arts Inc. and is currently available on Linux and 

Windows for x86 architectures.  

2.3.2.2 Partitioned Global Address Space 

The Partitioned Global Address Space (PGAS) programming model has a 

logically shared global address space that is logically partitioned such that each partition 

is local to one processor. Thus unlike a shared address space programming model, the 
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threads have affinity to one or more of the partitions. The PGAS programming model is 

the basis of Unified Parallel C. 

Unified Parallel C: 

Unified Parallel C (UPC) is a parallel extension of the C programming language 

supporting both shared and distributed memory machines through the PGAS 

programming model. UPC uses a thread based parallel execution model with data 

declared as either shared between threads or private to each thread. For shared data the 

same address refers to the same memory location while for private data the same address 

corresponds to different memory locations. The language provides constructs for 

specifying a thread ownership (affinity) of shared data. All scalar data including pointers 

and user defined aggregate types have affinity with thread 0 while the thread affinity of 

array data is specified at the cyclic, blocked-cyclic, or blocked level. UPC provides 

constructs for explicit synchronization between the threads. Currently available UPC 

compilers include GCC UPC, IBM XL UPC, HP UPC, Cary UPC, and Berkeley UPC. 

The Berkeley UPC compiler infrastructure is a layered design including a top level 

Open64 compiler based UPC to C translator, followed by a run time system (performance 

instrumentation, communication tracing and debugging), and a GASNet communication 

system (language and network independent low-level networking layer providing high 

performance communication primitives) [15]. UPC is available on all commonly used 

UNIX flavors, Windows (Pthreads-win32) and Mac OS X. Hardware platforms supported 

including x86, SPARC, MIPS, PA-RISC and PowerPC architectures, clusters (Ethernet, 

Infiniband, Myrinet) and massively parallel processors (Cray XT3, IBM Blue Gene).  
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2.3.3 Parallelizing Compilers 

Parallel compilers seek to automatically recognize parallel structures and generate 

multi-threaded a sequential code with minimum programmer input. While successful 

automatic parallelization of sequential code can greatly enhance programmer 

productivity, in practice efficient parallelization of sequential code continues to be a 

challenging task. Parallelizing compilers have been most successful on array loops where 

precise memory dependence analysis is possible. However, the use of pointers, recursion, 

and dynamic data structures in C/C++ code makes hard for compilers to analyze 

dependences. Recently the technique of Thread Level Speculation, where possibly 

parallel sections of the code are speculatively executed and the execution rolled back if 

dependence violations are detected, have been used in research compilers [49]. Profile 

driven parallelization, where sequential code instrumentation of memory access is used to 

detect parallelization opportunities, has also been proposed in the literature as a means to 

find parallelizable tasks [49, 67]. Automatic parallelization option is available on popular 

compilers such as GNU GCC, Intel ICC, and IBM XLC.  

2.4 Multicore System Software 

Operating System (OS) serves as an interface between the hardware architecture 

and user level applications. Unlike traditional high performance computing applications, 

general purpose parallel computing using multicore processors require much more OS 

support spanning a diverse range of applications. Moreover, the diversity in multicore 

architectures implies that portability of architecture specific OS optimizations is limited 

across architectures and even among successive generations of the same architecture, 

making design of OS for multicores a challenging task. 
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The types of parallel OS are closely tied to the underlying parallel architecture. 

Common parallel OS designs include – 1) Separate OS per processor, common in 

message passing clusters 2) Master-Slave OS where the master processor runs the OS, 

while the slave processor runs the user processes. This paradigm is common in 

Asymmetric Multiprocessing Systems (ASMPs) and 3) Shared memory OS for shared 

memory multiprocessors, where the OS can run on any of the processors. Since most of 

the commercial general purpose multicore processors today use the shared memory 

paradigm, we briefly review support for shared memory in popular operating systems. 

However, scalability limitations of the shared memory OS design approach have led to 

research on message passing approaches as used in the multi-kernel OS design and the 

factored OS (FOS) [74, 75]. We briefly review the recently introduced multi-kernel 

Barrefish OS. A related development in dealing with scalability limitations of complex 

monolithic OS is the use of virtualization, where multiple (and often diverse) operating 

systems run on a hypervisor layer, with the hypervisor layer managing the machine’s 

physical resources. We briefly review the benefits of OS virtualization of multicores.  

2.4.1 Shared Memory OS  

Shared memory OS associated with shared memory processors has one copy of 

the OS kernel in memory which can be executed by any of the processors. System calls 

are trapped and served by the processor on which it is issued. However, the need to 

prevent concurrent access to shared resources such as OS tables results in performance 

bottlenecks. Although splitting the shared resources into fine-grained critical sections 

ameliorates some of these bottlenecks, the need to keep track of these critical sections 

and guard against deadlocks and race conditions limits the robustness and portability of 
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this approach. Popular OS such as Linux and Windows have shared memory support. We 

briefly review SMP support in Linux.  

Linux: 

From its early days Unix (and its flavors such as Linux) has provided abstractions 

that that enable memory sharing of well defined regions of the process space as well as 

synchronous and asynchronous inter-process communication through semaphores and 

message queues. Support for shared memory in Linux has improved considerably with 

the introduction of Linux kernel 2.6. The pre-2.6 scheduler used a poorly scaling O(n) 

scheduling algorithm. Also, the pre-2.6 scheduler used a single run-queue for all 

processors which meant that a task could be scheduled on any processor. While this was 

good for load balancing, it was resulted in poor cache efficiency. The pre-2.6 scheduler 

also used a single run-queue lock resulting in decreased efficiency when processors were 

idled waiting for release of the lock. Also, the earlier scheduler did not allow preemption, 

resulting in possible execution of lower priority tasks when the higher priority tasks were 

awaiting execution. The Linux 2.6 version, uses an O(1) scheduler based on the  number 

of task priorities rather than the number of active tasks resulting in good scaling of the 

performance of the scheduler with the number of threads. Moreover, each processor now 

maintains a separate run-queue with a separate lock on each run-queue. The separate run-

queue per processor allows for better cache affinity of the task. To maintain load balance 

across the processors, every 200 ms, the scheduler does a cross-CPU balancing of tasks. 

The Linux 2.6 scheduler also supports task preemption and dynamic task prioritization.  
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2.4.2 Multikernel OS  

Microsoft in collaboration with ETH Zurich has unveiled a new multicore 

oriented message-based OS known as the Barrelfish [7]. As shown in Figure 2.5, the OS 

is designed as a distributed system of cores that communicate using messages and share 

no memory. The motivation behind the multikernel approach include the emergence of 

on-chip message passing interconnects, portability limitations of shared memory OS 

kernel optimizations, and the scalability limitations of cache coherent shared memory. 

Note that although the microkernel approach also uses messages between processes, 

unlike the multikernels, it follows a shared memory paradigm with multithreaded micro 

kernels.  

 

 

FIGURE 2.5: Multikernel model. 
 
 
 

Baumann et. al. list the following three design principles behind the multi-kernel 

design [7] −  

(1) Make all inter-core communication explicit through the use of explicit messages. 
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(2) Make OS structure hardware-neutral by separating the OS structure as much as 

possible from the hardware with only the message transport mechanism and 

interface to hardware being dependent on the machine. 

(3) View state as replicated instead of shared by treating access and updates of shared 

states in a multi-kernel as local replicas while maintaining consistency through 

messaging.  

The organization of Barrelfish is shown in Figure 2.6. The privileged mode CPU 

drivers are local to a core and handles functions such as protection, authorization, time 

slicing of processes and interface to hardware. The CPU driver is event-driven, single 

threaded and non-preemptable. These features make it easier to develop and maintain the 

CPU driver compared to a conventional kernel. The user mode monitor process 

collectively co-ordinates system wide states such as memory allocation tables and 

address space mappings through inter-core message based agreement protocols. Initial 

evaluation results show good core scaling on microbench marks such as TLB shootdown 

and compute bound parallel benchmarks such as NAS and SPLASH.  

 

 

FIGURE 2.6: Organization of Barrelfish. 
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2.4.3 Virtualization 

Xen: 

Hypervisor is a hardware/software platform that serves as an interface between 

the hardware and the OS. Hypervisor enables virtualization where multiple OS can run on 

the same hardware. Processor vendors have recently introduced hardware support for 

virtualization such as the Intel VT-x technology in the Nehalem architecture, allowing for 

root operation for hypervisors, and non-root operation for guest OS. Virtualization 

provides several benefits including better utilization of hardware, better security through 

isolation of virtual operating systems, and the ability to run legacy software and OS. 

Figure 2.7 demonstrates one approach proposed by Youseff and Wolski for using the 

virtualization paradigm as a means for customizing the OS for the core architecture and 

the associated workloads in heterogeneous multicores [80]. The virtualization paradigm 

also leads to better cache efficiency on cc-NUMA multicore architectures by pinning 

virtual OS instances to a core thus improving cache locality. Moreover, virtualization can 

also help in saving power by consolidating low utilization loads to one processing core, 

and turning the other processing cores off.  

 
FIGURE 2.7: A simplified representation of the virtualized software stack, demonstrating 
the deployment of a hypervisor and several VMs, each of which is managing a subset of 
the cores and a subset of the processes. 



 

CHAPTER 3: DESIGNING CACHE- AND SPACE-EFFICIENT DATA PARALLEL 
ALGORITHMS FOR MULTICORES 

 
 

3.1 Introduction 

In this chapter, we present a design methodology that aids in the development of 

parallel cache-efficient and space-efficient algorithms for shared cache multicore 

processors. Shared cache multicore processors differ from traditional shared memory 

processors in two significant ways (See Chapter 2) – 

 (1) The processing cores, the interconnect, and a part of the shared memory hierarchy 

are on the same chip/module resulting in potentially lower communication and 

synchronization costs. For example the Sun UltraSparc T2 processor has 8 cores, 

a crossbar interconnect, L1, and L2 cache integrated on a single chip. The Intel 

Clovertown processor has four cores, the bus interconnect, L1 and L2 caches 

integrated on a single chip/module.  

 (2) The shared memory (typically the L2 or L3 cache) is not only shared by all or a 

subset of the processing cores but is of a limited size. For example in the Sun 

UltraSparc T2, the 4MB L2 cache (8 banks) is shared by all 8 processing cores. 

The quad-core Intel Clovertown processor has private L1 caches, pairs of cores 

sharing the 4MB L2 cache while all 4 cores share the main memory.  

The integration of the processing cores, the interconnect, and the cache hierarchy 

on a single chip necessitates micro-architectural tradeoffs between the performance, die 
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area, and power budgeted to the different components. Power constraints have led 

processors vendors to incorporate lower frequency simple in-order processing cores. For 

example, the Sun UltraSparc T2 processor cores have a simple 8-stage pipeline and 

operate at a frequency of 1.4 GHz. The reduction in single threaded performance in favor 

of better multithreaded performance requires algorithms that are parallel and scalable for 

continued high performance on multicores. The increasing latencies up the multiple 

levels of the memory hierarchy, and sharing of the limited sized cache between multiple 

processing cores motivates the need to formulate scalable parallel algorithms that are 

optimal both with respect to the memory used (space-efficient), and to the number of 

read/write operations between the different levels of the cache hierarchy (cache-

efficient). While utilizing the concurrency in the problem enables development of work 

efficient parallel algorithms, space- and cache-efficiency can be achieved by exploiting 

the data locality in the problem.  

In achieving the above described objectives, we note the importance of a 

computational model of the targeted multicore architecture that offers a good trade-off 

between simplicity and accuracy. Cache-aware and cache-oblivious algorithms that are 

both cache-efficient and space-efficient can then formulated on this model. Scheduling 

algorithms are then employed that map the concurrent tasks to the computing cores such 

that the load is balanced and the data locality demands of shared and private caches are 

satisfied. In the past few years considerable work has been reported on computational 

models, cache-oblivious algorithms, and schedulers for multicore processors. In this 

chapter, we contribute to the existing body of knowledge by proposing a parallel cache-
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oblivious algorithm design methodology for devising space-efficient and cache-efficient 

algorithms through maximal data sharing between concurrent tasks.  

The computing problems considered in this chapter are data parallel where the 

concurrency in the problem is best described in terms of decomposition of the underlying 

data structures. Further, we limit ourselves to problems where the underlying data 

structures are multidimensional arrays usually representing the inherent geometry of the 

problem. In such cases, the decomposition of the arrays along one or more dimensions 

into sub-arrays represents a geometric decomposition of the problem. Computations with 

the above mentioned characteristics are widespread in scientific computing especially in 

numerical solutions of partial differential equations, and in image processing. Owing to 

the increasingly large data sizes inherent in these applications, a geometric decomposition 

of the problem facilitates the effective utilization of limited size cache hierarchies as well 

as a parallel solution of the problem.  

The remainder of the chapter is organized as follows – Section 3.2 reviews the 

existing literature on computational models, design of cache-oblivious algorithms, and 

schedulers for multicore processors. In Section 3.3, we describe the proposed parallel 

cache-oblivious algorithm design methodology for multicores. In Section 3.4, we present 

case studies on the application of the proposed methodology to two representative data 

parallel problems from scientific computing – matrix algebra (dense matrix 

multiplication), and stencil computing (Finite Difference Time Domain). Section 3.5 

concludes this chapter with a step-by-step elucidation of the design methodology for 

developing space-efficient and cache-efficient algorithms on multicores.  
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3.2 Background 

In this section we review the existing literature on parallel computational models, 

the cache-oblivious model, and scheduling strategies that have been proposed for 

multicore computing.  

3.2.1 Computational Models 

The development of sequential algorithms has benefitted greatly from the 

Random Access Model (RAM) of computing which has been very successful in 

abstracting a great variety of uniprocessors. However, the parallel extension of the RAM, 

the Parallel RAM (PRAM) has been far less successful in accurately capturing the 

behavior of parallel machines primarily due to its assumption of a global infinite address 

space shared by P processors accessible in constant time [50]. A variety of parallel 

computational models such as the Bulk Synchronous Processor model (BSP) [66, 68], 

Parallel Disk Model (PDM) [72, 73], and the Log-P model [24] have been proposed to 

remedy the situation. In general, these models seek to include all or a subset of 

parameters such as computational parallelism, communication latency, communication 

overhead, communication bandwidth, execution synchronization, memory hierarchy, and 

network topology [50]. With the introduction of parallel machines in the form of chip 

multiprocessors (multicores), researchers have sought to adapt the existing parallel 

computational models to this new platform.  

In [69] Valiant extends the BSP model to multicore processors. The model uses 

4d parameters {pi, gi, Li, and Mi} where d is the depth of the memory hierarchy, and at 

level-i, pi is the number of i-1 components in i, gi is the communication bandwidth, Li is 

the latency, and Mi is the size of the memory not inside an immediately lower level. 
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General lower bounds are established for communication and synchronization 

complexities and optimal multi-BSP algorithms are derived for matrix multiplication, 

FFT, and sorting. Savage and Zubair [62] have proposed a Unified Model for multicores, 

where for a d-level memory hierarchy, the parameters at level-i include, pi the number of 

cores sharing a cache, �i the number of caches, and �i the size of the cache. The 

application of the model is illustrated for matrix multiplication, FFT, and binomial 

options pricing. Blelloch et. al. [11] have proposed a computational model for multicores 

based on the Parallel Disk Model (PDM) with a two level cache hierarchy with a private 

L1 cache and a shared L2 cache. The model parameters include p the number of 

processing cores, C1 the size of the L1 cache, C2 the size of the L2 cache, and B the size 

of the L1 and L2 cache blocks transfers. An online scheduler is proposed for divide-and-

conquer algorithms including matrix multiplication, matrix inversion, sorting, and the 

Gaussian elimination paradigm. A similar multicore model is used by Chowdhury and 

Ramachandran [23] with additional parameters B1 and B2 for the size of the L1 and L2 

cache blocks. The model is applied to derive parallel dynamic programming algorithms 

for the local dependence dynamic programming problems, the Gaussian elimination 

paradigm, and the parenthesis problem.  

While the multi-BSP model is the most general of the multicore models, the large 

number of parameters makes the model difficult to use. The model used by Blelloch et. 

al. [11] and Chowdhury et. al. [23] are limited to a two level memory hierarchy with 

private and shared caches. However, modern processors have deep memory hierarchies 

(upto three levels of on-chip cache, main memory and disk storage), which is more 

accurately modeled by Savage and Zubair’s Unified Model for Multicores [62]. In our 
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work on cache-oblivious multicore algorithms, we therefore utilize the Unified Model for 

Multicores. 

3.2.2 Cache-oblivious Model 

The cache oblivious model was proposed by Frigo et. al. to design portable 

algorithms for uniprocessors with deep memory hierarchies [29, 32]. The model 

simplifies the Parallel Disk Model (PDM) by ignoring the parameters B (the cache line 

size or block size) and M (size of the memory). Further the model assumes an optimal 

cache-line replacement strategy where the cache line evicted will be accessed furthest in 

the future. Note that the real caches use replacement policies such as Least Recently Used 

(LRU) or replacing the oldest block (FIFO). However, as shown in [29], the cache- and 

space-complexity of the optimal replacement policy differs from those of LRU and FIFO 

by a constant factor. Also, the caches are assumed to be fully associative and the cache is 

assumed to be taller than it is wide. Among the advantages of the model are [27] – 

 (1) If the algorithms perform well for two levels of memory, it easily extends to any 

two levels in an arbitrarily deep memory hierarchy due to the inclusion property.  

 (2) If the memory transfers are optimal to within a constant factor between any two 

levels of the memory hierarchy, then any weighted combination of the memory 

transfers between different levels of the memory hierarchy, with weights 

corresponding to the relative memory speeds, is optimal to within a constant 

factor.  

(3) Since the model makes minimal assumptions about the machine, the resulting 

algorithms are portable on a wide variety of machines. However, in practice, the 

cache parameters B and M are required to determine the base case of recursions.  
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Note that the algorithms designed using the cache-oblivious model does not 

explicitly manage the cache since that would involve explicit use of cache parameters. As 

described in Chapter 2, in many of today’s multicore shared cache architectures the block 

replacement is decided by the cache hardware according to a fixed cache-line 

replacement strategy and is not under programmer control. However, emerging multicore 

architectures such as the IBM Cell/B.E. (See Chapter 2) are cache-less and allow the 

programmer to explicitly control of the local memory.  

Cache-oblivious algorithms are formulated typically using the recursive divide-

and-conquer strategy where the underlying problem is repeatedly divided until the 

smallest instance fits into the cache (base case of recursion). Recurrence relations for the 

number of memory transfers are then developed and solved to estimate performance 

bounds [27]. Cache-oblivious algorithms rely on cache-oblivious data structures where 

data is laid out in the cache in a recursive fashion. Examples of cache-oblivious data 

structures include space filling Peano curves for matrix operations [6], van Emde Boas 

layout for static search trees [70], cache-oblivious B-trees [8], priority queues [4], and 

linked lists [9]. Similar to the memory transfers, the space requirements for cache-

oblivious data structures are estimated by solving appropriate recurrence relations [27]. 

Cache-oblivious algorithms and data structures have been developed for a number of 

problems including searching, sorting, and matrix operations [29], graph operations, 

computational geometry [4], stencil computing [31], and dynamic programming 

algorithms [22].  
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3.2.3 Multicore Schedulers 

Consider the computations as modeled by Directed Acyclic Graphs (DAGs). The 

number of vertices in the DAG determines the total work while the depth corresponds to 

the longest path in the DAG. A scheduler maps each vertex to a (time step, processor) 

pair such that each processor has at most one task per time step and no dependence is 

violated [10]. An off-line scheduler has knowledge of the DAG before start of the 

computation, while the structure of the DAG is revealed to an on-line scheduler as the 

computation proceeds. In our work, we only consider problems amenable to off-line 

scheduling. 

Different sequential and parallel scheduling algorithms have been proposed in the 

literature. In a breadth-first sequential schedule (1BF), a node is scheduled only after all 

the higher level nodes have been scheduled. In a depth-first sequential schedule (1DF) the 

scheduling is as follows – at each step, if there are no scheduled nodes with a ready child, 

a root node is scheduled; else the ready child of the most recently scheduled node with a 

ready child is scheduled. A greedy parallel p-schedule schedules nodes such that if at 

least p nodes are ready then p nodes are scheduled; else if fewer than p nodes are ready, 

all the ready nodes are scheduled. A greedy scheduler thus attempts to do as much work 

as possible on each time step. Among the state-of-the-art greedy schedulers are Parallel 

Depth First (PDF) and Work Stealing (WS). In a depth-first parallel schedule (PDF) the 

ready-to-execute nodes are prioritized based on a 1DF schedule. In a WS scheduler each 

processor maintains a local queue of ready-to-execute nodes. If the local-queue of a 

processor is empty, then the nodes from the bottom of a non-empty queue are scheduled 

on that processor. Recent work suggests that for computation with fine-grained data 
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parallelism, a PDF scheduler performs better then a WS scheduler on shared cache 

multicores due to constructive cache sharing [21]. Hybrid schedulers that combine the 

PDF with WS [55] and the 1DF with PDF [11] have also been reported. While the former 

has only been evaluated experimentally for certain benchmarks, the latter has been shown 

to have provably good performance on multicores for many divide-and-conquer 

algorithms.  

3.3 Parallel Cache-oblivious Design Methodology 

We now describe a parallel cache-oblivious algorithm design methodology for 

developing cache-efficient and space-efficient data parallel algorithms using a weighted-

vertex red-blue pebbling game. 

3.3.1 Computational Model 

We use Savage and Zubair’s Unified Model for Multicores [62] as a basis for 

developing cache and space-efficient algorithms. Our model consists of 2d parameters 

where d is the depth of the shared cache hierarchy. For a multicore processor, the RAM 

storage can be considered to be the top most level of the memory hierarchy (level-d). The 

level-d memory is shared by all the processing cores and is considered to be sufficiently 

large enough to hold the input data set. For 1 ≤ i ≤ d, the model parameters include – 

o Pi : The effective number of level-(i-1) caches (or processing components) 

contained in level-i. P1 is the number of processing cores/threads associated with 

the L1 cache.   

o Mi  : Total memory available (in bytes) on a component at level-i.  

To simplify analysis with this model we adopt the following assumptions 

proposed by Blelloch et.al. for a tree-of-caches hierarchy [12] – 
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 (1) The memory hierarchy is considered to be inclusive – each cache line at level-i is 

also cached in its parent cache at level-(i+1).  Further we assume that Mi+1 > �iMi 

where �i ≥ Pi. 

 (2) The caches in the hierarchy are considered to be fully associative. 

 (3) The model assumes a variant of the DAG consistency cache consistency model 

that uses an optimal cache-line replacement strategy where the cache line evicted 

will be accessed furthest in the future. 

 (4) Caches are considered non-interfering in that cache misses by one processor can 

be analyzed independently of other processors. To maintain this property, the 

BACKER cache-coherence protocol proposed by Blumofe et.al. [14] is used. The 

protocol ensures that while instructions in a DAG see writes by their ancestors, 

concurrent writes by instructions with no path between them are not seen. Such 

writes are only seen in the shared memory and are reflected in other cache copies 

when the descendant instructions tires to access them. 

The proposed set of parameters models most commercially available homogenous 

multicore processors with all inter-processor communication occurring through the 

memory hierarchy. The values of the parameters Pi, and Mi, can be obtained from the 

processor data sheets. For the Intel Clovertown processor (d = 3), our computational 

model uses a total of 6 parameters. Here, level-1 of the cache hierarchy is the L1 cache 

and level-3 is the main memory. As shown in Figure 3.1, the effective number of 

processors for each level-i are P1 = 1, P2 = 2, and P3 = 2.  
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FIGURE 3.1: The cache hierarchy of the Intel quad-core Clovertown processor. 

 

We now detail a design methodology that enables the development of scalable 

cache-efficient and space-efficient parallel algorithms under the above described 

computational model. The resulting algorithms seek to be optimal with respect to the 

memory used (space-efficient), and with respect to the number of read/write operations 

between the different levels of the cache hierarchy (cache-efficient).   

3.3.2 Recursive Geometric Decomposition  

As mentioned in the introduction, the computing problems considered in this 

chapter employ multidimensional arrays with the arrays typically representing the 

inherent geometry of the problem. The arrays can be broken along one or more 

dimensions into sub-arrays (also known as blocks) and the computation described in 

terms of updates of these blocks. Further, these blocks can be divided recursively without 

explicit consideration of the cache parameters into smaller blocks representing a finer 

granularity of decomposition. Blocking exploits the temporal locality inherent in these 

computations thus reducing the memory traffic. If the updates require the use of boundary 

values, the decomposition may require overlapping of blocks which include the boundary 

values needed to update that block. For a size limited cache-hierarchy, the goal is to find 

the maximum size of the recursively decomposed block Bi at memory hierarchy level-i 
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such that the read-write operations between the different levels of memory are minimized 

by maximally exploiting the temporal locality of the decomposed Bi problem. We now 

describe the use of Hong-Kung’s red-blue pebble game [40] to achieve this objective. 

3.3.3 Red-Blue Pebble Game 

The red-blue pebble game proposed by Hong and Kung [40] is a graph pebbling 

game that enables the determination of the lower bound for memory read/writes in a 

computing machine with a two level memory hierarchy. Red pebbles represent the lower 

level faster memory while the blue pebbles represent the higher level slower memory. 

The number of red pebbles is finite, modeling the limited size of the faster memory while 

the number of blue pebbles is infinite, modeling the large size of the slower memory. We 

represent the computation as a Directed Acyclic Graph (DAG) G(V,E) with V vertices 

and E edges. Here the vertices represent the input, output, and intermediate data while the 

edges represent the data dependencies. The input nodes of G(V,E) are initially pebbled 

with blue pebbles. Red pebbles can replace blue pebbles and vice-versa modeling the 

read/write operations between the faster and slower levels of memory. However, red 

pebbles can only be placed on non-input vertices of G(V,E) if all the parent vertices hold 

red pebbles. This constraint models the fact that a vertex can only be computed if all the 

parent vertices are present in the faster memory. Also, a pebble holding the input to a 

vertex can be reused to hold the results of the computation of a vertex. The goal of the 

red-blue pebble game is to pebble all the output vertices of G(V,E) with red pebbles. The 

red pebbles on the output vertices are then replaced by blue pebbles thus completing the 

pebble game. The total memory read/write between the faster and slower memory is then 

calculated by the number of times the red and blue pebbles replace each other. Note that 
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for a given G(V,E) and a finite number of red pebbles, different pebbling strategies are 

possible.  

For a graph G(V,E) and a pebbling strategy �, the total number of two level 

memory read/write operations is at least equal to the number of input and output vertices 

since the input has to be read from the slower to the faster memory and the output has to 

be written from the faster to the slower memory. Also, the number of red pebbles 

required to play the red-blue pebble game is at least as much as the maximum degree of 

input to any vertex in G(V,E). This follows from the requirement that a vertex can only be 

pebbled with a red pebbled if its parent vertices hold red pebbles. These observations are 

stated in the following two lemmas. 

Lemma 3.1 Let NR/W be the number of two level memory read/write operations and 

|In(G)| and |Out(G)| be the number of input and output vertices respectively of G(V,E). 

Then, 

NR/W ≥ |In(G)| + |Out(G)|    (3.1) 

Lemma 3.2 Let S be the number of red pebbles used by a pebbling strategy � and � be 

the maximum input degree of G(V,E). Then, 

S  ≥ �                (3.2) 

Lemma 3.1 gives the lower bound on the number of memory operations required 

for computing a graph G(V,E) such that the temporal locality of the problem is fully 

exploited. For a pebbling game with a finite number of red-pebbles S, we use the 

following result originally by Hong and Kung and modified by Savage [60, 61] to 

estimate the lower bound on NR/W.  
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Lemma 3.3 Let �(S,G) be the S-span of G(V,E) where the S-span of DAG G(V,E) is 

defined as the maximum number of vertices of G that can be pebbled with S red pebbles 

in the red-blue pebble game maximized over all initial placements of S red pebbles [61]. 

Let NR/W be the number of two level memory read/write operations and let |In(G)| and 

|Out(G)| be the number of input and output vertices respectively of G(V,E). Then,  

/ (| | | ( ) |)
(2 , )

R W S V In G
N

S Gρ
−≥

     
(3.3) 

Intuitively, the Hong-Kung lower bound given by Lemma 3.3 represents the 

tradeoff between the data read/write time and memory usage. For a finite number of red-

pebbles S, our goal is to develop a pebbling strategy � that is optimal with respect to the 

Hong-Kung lower bound. By ensuring the minimum number of read/write operations 

between two levels of memory, the computation determined by such a pebbling strategy 

best exploits the temporal locality of data.     

3.3.4 Nominal Parallel Pebbling Strategy  

For the data parallel problems considered in this chapter, the computation at 

memory hierarchy level-i can be described using a DAG Gi(V,E) with Gd(V,E) describing 

the computation on the whole problem. From a data point of view, Gi+1(V,E) represents 

computation on the data block Bo
i+1 at level-(i+1) with the vertices of size |Bo

i|. Due to 

the recursive geometric decomposition of the problem as described in Section 3.3.2, Bo
i is 

a subset of Bo
i+1 with Bo

d representing the whole data set. Thus Gi(V,E) is a sub-DAG of 

Gi+1(V,E) with ko
i such sub-DAGs modeling the computation at level-i where ko

i is given 

by,  

1| |
| |

o
o i
i o

i

B
k

B
+=

      
(3.4) 
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We then utilize the red-blue pebble game and develop a pebbling strategy �o 

utilizing So number of pebbles at level-i to pebble the DAG Gi(V,E) while seeking to be 

optimal to within a constant factor of the Hong-Kung lower bound. Here level-i is 

considered to be the faster memory while level-(i+1) is considered to be the slower 

memory. Note that the due to the recursive geometric decomposition of the problem, the 

DAGs and sub-DAGs at all levels of the memory hierarchy have the same topology but 

differ in the size of the data represented by their vertices. Hence the number of pebbles So 

used by the pebbling strategy �o is the same for all the DAGs at all levels. The block size 

|Bo
i| is then given by the inequality,  

1

1

| |o i
i o

i

M
B

S P
+

+

≤                      (3.5) 

Here |Bo
0| is the size in bytes of the underlying data type.  Note that assuming a 

work-efficient scheduling strategy, Pi such DAGs Gi(V,E) are pebbled in parallel. The 

details of the scheduling strategy are presented in Section 3.3.6. 

The nominal pebbling strategy thus helps determine the block size at each level-i. 

In the cache-oblivious model the block size represents the base case of the recursions 

used to determine the space complexity and cache complexity of the algorithm (See 

Section 3.2.2).  

3.3.5 Weighted-vertex Parallel Pebbling Strategy 

The nominal pebbling strategy �o pebbles a given DAG Gi+1(V,E) by parallel 

pebbling Pi sub-DAGs Gi(V,E) independently such that the pebbling of each Gi(V,E) is 

optimal respect to the Hong-Kung lower bound. However, the resulting pebbling of the 

parent DAG Gi+1 is not optimal since, depending on the degree of sharing, the shared 

vertices between the individual sub-DAGs Gis may be pebbled more than once. We now 
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outline a weighted-vertex DAG pebbling strategy �s that considers the degree of vertex 

sharing in pebbling the sub-DAGs Gis to minimize multiple pebbling of these vertices. 

As shown in Section 3.4, the pebbling strategy �s thus results in an equal or lower 

number of read-writes between memory hierarchy levels i and i+1 compared to �o. 

Consider the ks
i sub-DAGS Gi(V,E) of DAG Gi+1(V,E) where ks

i is given by,  
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| |
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i s
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B
k

B
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(3.6) 

Here |Bs
i| is the size of the block under �s. As in the nominal case, we assume a 

work-efficient scheduling strategy (See Section 3.3.6) such that Pi such sub-DAGs are 

computed in parallel. The pebbling strategy �s in pebbling this Pi sub-set of Gis is as 

follows – 

(1) Assign a weight w to each vertex corresponding to its out-degree. In determining 

w, presence of the vertex in other Gis of the subset (sibling DAGs) must be 

considered. 

(2) Decide on a computational order in calculating the sub-set of Gis. 

(3) To start the game, pebble any �i input vertices of Gi with red pebbles following 

the pebbling strategy �o following computational order of the problem.  

(4) When a vertex is pebbled, all the vertices representing the same data in the sibling 

DAGs (data sharing) is also covered by that pebble. We refer to this pebbling 

operation as pebble cloning.  

(5) To pebble the remaining vertices use the following rules consistent as follows:   

(a) If w > 1, the red pebble on a vertex can neither be deleted nor moved to 

another vertex. 
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(b) If w = 1, a red pebble on a vertex can only be moved to the immediate child 

vertex. 

(c) If w = 0, a red pebble on a vertex is moved to any other vertex.  

(d) A new pebble is introduced into the game when no currently used pebble can 

neither be deleted nor moved. 

(e) When a vertex is pebbled, the weights w of the parent vertices are decreased 

by 1. 

(6) When all the output vertices of the sub-set of Gis are pebbled once, the game 

ends.  

(7) Repeat this game for the different ks
i/Pi subsets. Note that sharing of pebbles 

between the different ks
i/Pi subsets may also be possible.   

Let Ss be the average number of pebbles required for pebbling sub-DAGs Gis at 

level-i. Assuming the typical case of ks
i >> Pi, the block size |Bs

i| is then given by the 

inequality,  
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Note that |Bo
0| = |Bs

0| and |Bo
d| = |Bs

d|. The weighted DAG pebbling strategy is 

applied to all levels of the cache hierarchy to obtain the parallel algorithm for the 

problem.  

3.3.6 Data-aware Scheduling 

Scheduling for multicores is challenging due to the conflicting data sharing 

demands of private and shared caches. Private cache performance is good when the 

processors work on disjoint cache sets. On the contrary shared cache performance is good 

when the processors work on the same cache blocks at the same time.  For the parallel 
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pebbling strategies described in Sections 3.3.5 and 3.3.6, we use the CONTROLLED-

PDF scheduling algorithm [11] proposed by Blelloch et. al. for divide-and-conquer 

problems. The algorithm is a hybrid combination of the 1DF and PDF schedulers outlined 

in Section 3.2.3. The scheduler assumes a multicore computational model with a two 

level cache hierarchy having a private L1 cache and a shared L2 cache. The model 

parameters include p the number of processing cores, C1 the size of the L1 cache, C2 the 

size of the L2 cache, and B the size of the L1 and L2 cache blocks transfers.  

Similar to the hierarchical DAGs described in Section 3.3.4, a given computation 

DAG G(V,E) with n nodes is contracted to n2 L2-supernodes each of which are in turn 

recursively contracted into n1 L1-supernodes. The L2-supernodes (L1-supernodes) 

represent the granularity of computation at the L2 (L1) cache level. Blelloch et. al. [11] 

describes the CONTROLLED-PDF scheduling as follows – the L2-supernodes are 

scheduled one at a time following the 1DF schedule. Within each L2-supernode the L1-

supernodes are scheduled based on the PDF schedule using all p processors. Each L1-

supernode scheduled is entirely executed on that processor. After all L1-supernodes of an 

L2-supernode have been executed, the scheduler moves on to the next L2-supernode. The 

number of cache misses is then proved to be within a constant factor of the sequential 

cache complexity through the following Lemma. 

Lemma 3.4 Consider the multicore-cache model in which C2 ≥ � · C1, where � ≥ p is a 

constant. If a multicore hierarchical recursive algorithm incurs QL1(n) L1 cache-misses 

and QL2(n) L2 cache-misses under the CONTROLLED-PDF scheduler, then 

(a) QL1 (n) = O(Q (C1, n)), and (b) QL2 (n) = O(Q (C2, n)).    (3.8) 

where Q is the sequential cache complexity. 
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Proof: See [11]. 

The following Lemma gives the parallel time complexity of the CONTROLLED-

PDF scheduler. 

Lemma 3.5 For an L2-supernode, let T(n2) denote the sequential time complexity, Tp(n2) 

denote the p processor parallel time complexity under the CONTROLLED-PDF 

scheduling and T�(n2,n1)) denote the inherent parallel time complexity. Then we have, 

2
2 2 1

( )
( ) ( , )p

T n
T n T n n

p ∞≤ +                    (3.9) 

Proof: The upper bound follows from the standard Brent-Graham scheduling. For details 

see [11] and [13]. 

For our computation model described in Section 3.3.1, Lemmas 3.4 and 3.5 hold 

for any level-i of the d-level hierarchy, because of the following assumption in our 

computation model (see Section 3.3.1) – 

(1) An inclusive memory hierarchy implies that misses at level-i do not affect the 

misses at level > i. 

(2) An inclusive memory hierarchy also implies that cache lines evicted at level-i are 

also evicted for level < i.  

(3) Mi+1 > �iMi where �i ≥ Pi  

3.4 Case Studies 

We demonstrate the parallel algorithm design methodology using two widely used 

data parallel problems – matrix multiplication and the solution of Maxwell’s equations 

using the Finite Difference Time Domain (FDTD) method. In each case, the data 

structures used are arrays – 2D for matrix multiplication, and 3D for FDTD. We state the 

equations describing the computations, highlight the opportunities for recursive array 
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decomposition, and demonstrate the parallel pebbling of the associated DAGs under the 

weighted vertex (�s) pebbling strategy. Further, for these two cases, we derive problem 

specific bounds for communication (cache) and space complexities.  

3.4.1 Matrix Multiplication  

Matrix multiplication refers to the standard dense matrix multiplication algorithm 

for multiplying two n×n square matrices A and B to get a result matrix C = AB. The 

computational complexity of the algorithm is O(n3) while the data access time and space 

requirements are O(n2). As shown in Figure 3.2, a possible geometric decomposition of 

the problem involves recursive binary decompositions of the A, B and C matrices into 

sub-matrices (blocks) along both the dimensions.  

Level-(i+1) DAGs and the level-i sub-DAGs for a possible two level 

decomposition of the A, B, and C matrices are shown in Figure 3.3. Note from Figure 3.3 

that all the Ci level-(i+1) DAGs can be computed independently but each share data with 

the other sub-DAGs.  

In formulating the weighted pebbling strategy for level-(i+1) DAGs of Figure 3.3, 

we first assign weights to the individual vertices as outlined in Section 3.3.5. Figure 

3.4(a) shows the initial weighting of the vertices of the level-(i+1) DAGs of Figure 3.3 

under �s along with the initial assignment of pebbles. Figure 3.4(b) shows an 

intermediate step in the pebbling of the DAGs associated with the computation of C2 

where all the inputs B0 to B3 have been pebbled. For pebbling the level-(i+1) DAGs of 

Figure 3.3, a total of 6 pebbles are required with 16 read/write operations. Note that here 

we count both the reads and writes of the outputs (matrix C).  
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FIGURE 3.2: A 2-level geometric decomposition of A, B, and C matrices. 

 

 

FIGURE 3.3: Illustrative level-(i+1) and level-i DAGs for matrix multiplication. 

 

 
(a) 

 

 
(b) 

FIGURE 3.4: The weighted-vertex pebble game: (a) Initial vertex weight assignment for 
level-(i+1) DAGs of Figure 3.2 under �s; (b) An intermediate step in the pebbling of the 
level-(i+1) DAGs under �s. 
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We now derive bounds for space and cache complexities under �s with d=2 (2-

level memory hierarchy) and P2 = P1 = 1 (a single core) for matrix multiplication. 

Theorem 3.1 Consider the multiplication of matrices A and B each of size n×n to 

generate an n×n matrix C. Let |Bi| be the size of the geometrically decomposed square 

sub-matrix of A, B, and C at level-i such that |B2| = n2, |B1|= b2, and |B0|=1 (single 

element) for a two level cache hierarchy. Let G2 be a DAG with vertices of size|B1| with  

G2 representing the computation of a single block of the C matrix at level-2, while let G1 

be a sub-DAG of G2 with vertices of size |B0| representing the computations of a single 

element of the C matrix at level-1. The level-2 memory is considered infinite while level-1 

memory is of size M. The number of two level memory read/write operations Nb
R/W 

required in computing the b2 G1s representing the single block level multiplication of A 

and B satisfies the following lower bound: 

/ 24R W
bN b≥       (3.10) 

Proof:  From Lemma 3.1, each sub-DAG G1 requires at least |In(G1)| + |Out(G1)| = 

(2b+1) +1 read and write operations, and there are b2 G1s. Thus, a total b2×(2b+2) 

read/write operations are required to compute  b2 G1s. Each element of the input sub-

matrix A and B can be reused at most (b-1) times between the b2 G1s. Since there are 2b2 

elements of sub-matrices A and B, a total of at most 2b2×(b-1) pebbles can be reused 

without any additional read/write operation between the b2 sub-DAGs G1s. Therefore, at 

least b2×(2b+2) – 2b2×(b-1) = 4b2 read/write operations are required for b2 G1s.   

Theorem 3.2 Consider the multiplication of matrices A and B each of size n×n to 

generate an n×n matrix C. Let |Bi| be the size of the geometrically decomposed square 

sub-matrix of A, B, and C at level-i such that |B2| = n2, |B1|= b2, and |B0|=1 (single 
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element) for a two level cache hierarchy. Let G2 be a DAG with vertices of size|B1| with  

G2 representing the computation of a single block of the C matrix at level-2, while let G1 

be a sub-DAG of G2 with vertices of size |B0| representing the computations of a single 

element of the C matrix at level-1. The level-2 memory is considered infinite while level-1 

memory is of size M. Then, the lower bound on the number of pebbles Ss required to 

pebble b2 G1s under the weighted-vertex pebbling such that the cache read/write lower 

bound of Theorem 3.1 is satisfied is  

2 2sS b b≥ + +  , where b>2     (3.11) 

Proof: Consider a row major computation of C. Pebbling the b2 G1s requires at most b2 

pebbles for A (input), b3 pebbles for B (input), 1 pebble for C (output), and 1 pebble for 

the intermediate node. However, the weighted-vertex pebbling strategy (See Section 

3.3.5), assigns an initial weight w=b for the input vertices representing elements of 

matrix A and B since these are shared (cloned) by b such G1s. Further, w=1 is assigned to 

the intermediate vertices of G1 and w=0 for the output node. The number of pebbles 

required is thus reduced by a factor of b - that is b pebbles for A, and b2 pebbles for B. 

Therefore, the total number of pebbles needed is no more than b2 + b + 2.  Also, since 

the elements of the blocks of A and B are reused b-1 times in the weighted pebbling 

strategy, following the arguments presented in the proof of Theorem 3.1, the resulting 

number of read/write operations is lower bounded by 4b2.  

Corollary 3.1 As a consequence of Theorem 3.2 and Equation 3.7, the block size b 

satisfies the following upper bound:  

1 4 3
2

M
b

� �− + −≤ � �� �
� �

                   (3.12) 
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Theorem 3.3 Consider the multiplication of matrices A and B each of size n×n to 

generate an n×n matrix C. Let |Bi| be the size of the geometrically decomposed square 

sub-matrix of A, B, and C at level-i such that |B2| = n2, |B1|= b2, and |B0|=1 (single 

element) for a two level cache hierarchy. Let G2 be a DAG with vertices of size|B1| with  

G2 representing the computation of a single block of the C matrix at level-2, while let G1 

be a sub-DAG of G2 with vertices of size |B0| representing the computations of a single 

element of the C matrix at level-1. The level-2 memory is considered infinite while level-1 

memory is of size M. The total number of two level memory read/write operations Ntotal
R/W 

required in the multiplication of A and B satisfies the following lower bound: 

3
/ 23R W
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                   (3.13) 

Proof: There are a total (n/b)3 sets of G1s at level-1 with b2 G1s per set. From Theorem 

3.1 the total number of read/write operations without considering data sharing between 

these sets is at least 4b2×(n/b)3 = 4(n3/b). Since from Theorem 3.2 level-1 can hold at 

least one complete block of size b2, the total data sharing that is possible between the G1 

sets is at most b2×((n/b)3 – 1). Hence the lower bound on the number of read/write 

operations between level-1 and level-2 cache is at least 4(n3/b) – b2×((n/b)3 – 1) = 3(n3/b) 

+ b2. 

We refer to [30] for extending our two-level cache tree to multilevel cache tree.  

We invoke the same assumptions as [30]; (a) that caches satisfy the inclusion property 

[39], which says that the data stored in cache at level-i are also stored in cache at level-

(i+1), and (b) that if two elements belong to the same cache line at level-i, then they 

belong to the same line at level-(i+1). Additionally, we assume that Mi+1 > �iMi where �i 

≥ Pi (See Section 3.3.1). These assumptions ensure that each cache at level-(i+1) includes 
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at least the contents of Pi caches at level-i. Therefore, we can also apply the weighted-

vertex pebble game between level-i and level-(i+1) with the vertex size |Bi|. 

3.4.2 Finite Difference Time Domain  

Finite-Difference Time-Domain (FDTD) method is based on Yee’s algorithm and 

computes the electric-field (E-field) and magnetic-field (H-filed) in both time and space 

domain. The characteristic features of our 3D-FDTD algorithm are (a) it is  a 

computation and data-intensive problem performing O(n3) computations with O(n3) data 

access time and space requirement, (b) there is data dependency between E- and H-field 

computation in time domain, (c) there is no risk of a race condition for each field 

computation in space domain, and (d) a cell (e.g. Ex(i,j,k)) computation of each field in 

each direction refers to nearest-neighbors as 2-point stencil communication pattern in the 

space domain. The following difference Equations 3.14 and 3.15 describe the FDTD 

computations for Ex and Hx components. Similar equations hold for the other Ey, Hy and 

Ez, Hz. 

��������	
� �� � � ���������	
� �� � �� ����	������ ����	����������	���������� ��� �	�������� �	���������! "   (3.14) 

#�	����	
� �� � � �#��	
� �� � ����$ %& ��'
���	�������& ��'���	���������! ��&���'���	�������&���'���	���������� (   (3.15) 

As shown in Figure 3.5, a possible geometric decomposition of the problem 

involves recursive binary decompositions of the 3D Ex, Ey, Ez and Hx, Hy, Hz matrices 

into sub-matrices (blocks) along both x-, y-, z-directions.  

The DAGs describing the FDTD computation are shown in Figure 3.6. Note the 

data dependence between the E- and H-field DAGs. 
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FIGURE 3.5: A 2-level geometric decomposition of the E- and H-field cubes. 
 
 
 

 
FIGURE 3.6: DAGs for FDTD: Note that there are 6 DAGs corresponding to Ex, Ey, Ez 
and Hx, Hy, Hz. 

 
 
 
We now derive bounds for space and cache complexities under �s with d=2 (2-

level memory hierarchy) and P2 = P1 = 1 (a single core) for 3D-FDTD. Note that we 

compute E-field first and then H-field since there is data dependency between the two in 

the time domain. Here we only consider E-field computations. 
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Theorem 3.4 Consider the E-field computation in a cube of size n3. Let |Bi| be the size of 

the geometrically decomposed sub-cube at level-i such that |B2| = n3, |B1|= b3, and 

|B0|=1 (single cell) for a two level cache hierarchy. Let G2 be a DAG with vertices of size 

|B1| with  G2 representing the computation of the E-field of a single block at level-2, 

while let G1 be a sub-DAG of G2 with vertices of size |B0| representing the computations 

of a single cell at level-1. The level-2 memory is considered infinite while level-1 memory 

is of size M. The number of two level memory read/write operations Nb
R/W required in 

computing the 3b3 G1s representing the single block level E-field computation satisfies 

the following lower bound: 

/ 3 2 12   6  4R W
bN b b≥ + +                    (3.16) 

Proof:  From Lemma 3.1, each sub-DAG G1 requires at least |In(G1)| + |Out(G1)| = 10 

read/write operations (See Figure 3.6). Since there are 3b3 sub-DAGs for each Ex, Ey and 

Ez computation, a total of at least 3×b3×(10) read/write operations are required. The input 

constant parameter (∆t) can be reused at most 3b3–1 times while the input constant 

parameters ∆x, ∆y and ∆z each can be reused at most 2b3–1 times.  The input Hx is used 

in the computation of both Ey and Ez. Also, the input Hx is shared between two adjacent 

cells and hence can be reused at least b3 + 2b2(b-1) = 3b3-2b2 times. The same argument 

applies for Hy and Hz. Therefore, the total number of two level memory read/write 

operations is at least 30×b3 – (3b3 – 1) – 3× (2b3 – 1) – 3× (3b3-2b2) = 12b3 + 6b2 + 4.  

Theorem 3.5 Consider the E-field computations in a cube of size n3. Let |Bi| be the size 

of the geometrically decomposed sub-cube at level-i such that |B2| = n3, |B1|= b3, and 

|B0|=1 (single cell) for a two level cache hierarchy. Let G2 be a DAG with vertices of size 

|B1| with  G2 representing the computation of the E-field of a single block at level-2, 
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while let G1 be a sub-DAG of G2 with vertices of size |B0| representing the computations 

of a single cell at level-1. The level-2 memory is considered infinite while level-1 memory 

is of size M. Then, the lower bound on the number of pebbles Ss required to pebble 3b3 

G1s under the weighted-vertex pebbling such that the cache read/write lower bound of 

Theorem 3.4 is satisfied is  

22 2 10sS b b≥ + +                  (3.17) 

Proof: Based on the degree of sharing, the weighted-vertex pebbling strategy (See section 

3.3.5), assigns initial weights w to the G1 vertices as follows – w∆t = 3b3, w∆x = w∆y = w∆z 

= 2b3, and wHx = wHy = wHz = 4. Without loss of generality, we assume the computation 

proceeds along the z-direction followed by y-direction, and x-direction. In that case, at 

least b pebbles are required for Hx due to data dependency along the z- (at least 2 pebbles 

to hold values Hx along the z-direction) and y-directions (at least b pebbles to hold b Hx 

values along the z-direction). For Hy due to data dependency along the z- (at least 2 

pebbles to hold Hy values along the z-direction) and x-direction (at least b2 pebbles to 

hold b2 Hx values on the yz-plane) at least b2+2 pebbles are required. For Hz due to data 

dependency along the x- (at least b2 pebbles to hold b2 Hz values on the yz-plane) and the 

y-direction (at least b pebbles to hold b Hz values along the x-direction). Following the 

weight assignments of ∆t, ∆x, ∆y and ∆z described above a total of at least 4 pebbles are 

required to hold these parameters. Similarly, at least 3 pebbles are required for holding 

the epx, epy, and epz values, at least 2 pebbles for storing intermediate vertices and one at 

least pebbles for the DAG output. Thus, summing up all the pebbles the calculation of 

3b3 G1 DAGs requires at least 2b2+2b+10 pebbles. Since the above pebble estimation 
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considers data sharing as described in Theorem 3.4, the resulting number of read/write 

operations is lower bounded by 12b3 + 6b2 + 4.  

Corollary 3.2 As a consequence of Theorem 3.5 and Equation 3.7, the block size b 

satisfies the following upper bound:  

11 8
2
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b
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                   (3.18) 

Theorem 3.6 Consider the E-field computations in a cube of size n3. Let |Bi| be the size 

of the geometrically decomposed sub-cube at level-i such that |B2| = n3, |B1|= b3, and 

|B0|=1 (single cell) for a two level cache hierarchy. Let G2 be a DAG with vertices of size 

|B1| with  G2 representing the computation of the E-field of a single block at level-2, 

while let G1 be a sub-DAG of G2 with vertices of size |B0| representing the computations 

of a single cell at level-1. The level-2 memory is considered infinite while level-1 memory 

is of size M. The total number of two level memory read/write operations Ntotal
R/W 

required in the E-field computation satisfies the following lower bound:  

33
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total

n n
N n b
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� �� �
    (3.19) 

Proof: We have a total (n/b)3 sets of sub-DAGs G1s at level-1 (total number of block 

computations). Since from Theorem 3.4, each G1 requires at least 12b3 + 6b2 + 4 

read/write operations, a total of at least 12(n3) + 6(n3/b) + 4(n/b)3 read/write operations 

are required when data sharing between the blocks is not considered. Since at most 3b2 

cells can be shared between any neighboring b3-sets of G1 (corresponding to a block), the 

total number of read/write operations is at least 12(n3) + 6(n3/b) + 4(n/b)3 – 3b2×((n/b)3 – 

1) = 12(n3) + 3(n3/b) + 4(n/b)3  + 4b2. 
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As shown in Figure 3.6, DAGs for H-field computations are similar as DAGs for 

E-field computations. Instead of three parameters epx, epy and epz for E-field 

computations, we consider only one parameter � for H-field computations.  

3.5 Conclusion  

In order to derive scalable parallel algorithms for shared cache multicore 

machines with the properties described above, we propose the following design 

methodology in formulating space- and cache-efficient parallel algorithms for the 

geometrically decomposable problems – 

 (1) Develop a computational model that captures the salient features of the multicore 

processor under consideration. Although a variety of multicore architectures exist 

today, many of them have a shared cache architectural paradigm where a subset of 

processing cores share the cache hierarchy. 

 (2) Recursively decompose the data arrays representing the problem into sub-arrays 

such that overall solution is obtained by solving the problem on the sub-arrays. 

The depth of the recursive decomposition is determined by the depth of the cache 

hierarchy.  

 (3) Express the computation on the arrays as Directed Acyclic Graphs (DAG) G(V,E) 

with V vertices and E edges. Here the vertices represent the input, output, and 

intermediate data while the edges represent the data dependencies.  

 (4) At each level of the memory hierarchy, map the DAGs representing the sub-array 

computations between the processing components sharing that level of the cache 

hierarchy such that the load is balanced.   
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 (5) Between each pair of levels of the memory hierarchy formulate a weighted vertex 

red-blue pebbling strategy on the DAGs so as to determine the minimum number 

of pebbles that minimizes the memory read/write operations. The pebbling 

strategy essentially describes the parallel algorithm for the problem.  

 (6) Based on the computational model, estimate bounds on the space, compute, 

cache, and synchronization complexities.  

 (7) Using a suitable parallel programming model, implement the algorithm on the 

targeted multicore processor. Measure the performance and if necessary, tune the 

performance of the code using machine specific optimizations.  

  



 

CHAPTER 4: INTEGRATED DATA PREFETCHING AND CACHING IN 
MULTICORES 

 
 

4.1 Introduction 

To bridge the growing latency gap between the processing cores and the memory 

hierarchy, multicore processor designers have sought to exploit Compute Transfer 

Parallelism (CTP) where data transfer and computing are decoupled and can be executed 

in parallel. Compute transfer parallelism utilizes the architecture’s ability to explicitly 

and independently sequence data transfer operations. Using application-level knowledge 

the software programmer can explicitly fetch large blocks of data ahead of time thus 

reducing resource idle time. A related technique in reducing processor stall time 

examined extensively in Chapter 3 is caching, where temporal and spatial data locality is 

exploited to minimize data movement (cache efficiency). Although the two techniques 

CTP and caching are architecturally independent, in practice there is a strong interaction. 

Given the limited sizes of the cache hierarchy, if data is pre-fetched too early, cache 

blocks needed in the near future could get evicted thus adversely affecting temporal 

locality. On the other hand, holding the blocks in cache for too long, negatively affects 

the ability to pre-fetch data. While previous work has considered both caching and pre-

fetching in multicores separately, in this chapter, we propose algorithm specific 

integrated software caching and pre-fetching strategies. Specifically, by using a simple 

model for data transfer, we attempt to theoretically determine the size and number of 
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read buffers implemented on machines with a limited size local memory and different 

compute and data transfer capabilities.  

The rest of the chapter is organized as follows – In Section 4.2 we examine 

related work done in integrated caching and pre-fetching for managing disk access 

latencies. We also review work done in pre-fetching on multicores. Section 4.3 briefly 

reviews the capability of the Cell Broadband Engine as an example of a multicore 

processor that supports compute transfer parallelism. In Section 4.4 we introduce a 

general purpose machine model and present conditions for when the total elapsed time is 

compute bound or data transfer bound. Section 4.5 and 4.6 illustrate our approach for 

integrating caching and prefetching in multicores using matrix multiplication and the 

FDTD algorithms as case studies. Section 4.7 concludes the chapter with our 

observations on the choice of an optimal buffering strategy when both pre-fetching and 

caching is considered.   

4.2 Background 

Integrated caching and pre-fetching techniques for disk systems have been 

reported in the literature since the mid 90s. Since the disk access latencies are far larger 

(~ 1 million times) the memory access latencies, pre-fetching is important in the hiding of 

expensive disk access latencies. Cao et. al. [17] introduced two integrated caching-

prefetching algorithms - Conservative and Aggressive for single disks. The Conservative 

algorithm pre-fetches a missing block by evicting a cache block that is used as far as 

possible in the future. The Aggressive algorithm pre-fetches blocks as soon as possible. 

Specifically, a missing block in a computational sequence is pre-fetched if it can evict a 

cache block that is not used before the missing block. [43] and [44] extend these 
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algorithms to parallel disk systems. Albers and Buttner [2] generalized these algorithms 

by introducing a family of algorithms called Delay(d) where the pre-fetch operation is 

delayed for d time units.  

Regarding pre-fetching in multicore processors, Chen et. al. [20] investigated the 

choice of buffering scheme and the size of the buffer on the IBM Cell processor. They 

introduced a DMA model that accounted for the set-up time latency and transfer rates. 

However, their work was focused on pre-fetching only and did not consider its interaction 

with caching. Sancho and Kerbyson [59] experimentally investigated the performance of 

double buffering on the quadcore AMD Opteron and the IBM Cell processor. They 

observed a performance improvement of 1.4x and 2.2x for the Opteron and the Cell 

processors when double buffering was employed for fictitious computing and data access 

patterns. Again, the effects of caching were not considered. Also, the reliance on 

empirical study without analytical performance modeling limits the extrapolation of their 

results to realistic data parallel benchmarks. Experimental studies on the performance 

bottlenecks in pre-fetching on the Cell architecture for an encryption/decryption 

workload were reported in [57].  

4.3 Computation and Data Transfer Parallelism in the IBM Cell/B.E. 

The architectural features of the IBM Cell/B.E. processor were introduced in 

Chapter 2. In this section we focus on the DMA capabilities of the Synergistic Processing 

Elements (SPEs). Each SPE consists of a Synergistic Processor Unit (SPU) and a 

Memory Flow Controller (MFC). The SPU is a RISC-style processor with a 256 KB non-

cached Local Store (LS) that holds program instructions and data. The SPU cannot access 

main memory directly, but it can issue DMA commands to the MFC to bring data into LS 
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or write computation results back to main memory [45]. The MFC includes a DMA 

controller, a Memory Management Unit (MMU), a bus interface unit, and an atomic unit 

for synchronization with other SPUs and the PPE. The MFC supports naturally aligned 

DMA transfer size of 1, 2, 4 or 8 bytes and multiples of 16 bytes. The maximum size of a 

DMA transaction is 16 KB and the minimum recommended size is 128 bytes, the size of 

a cache line of the PowerPC processor. In addition, larger DMA transactions can be 

issued by DMA-list operation. The DMA-list transaction can be composed of up to 2,048 

regular DMA transactions. The user can initiate multiple DMA transactions at a time that 

are queued for processing by the DMA engine [59]. The queue has 16 entries, and so the 

total number of outstanding DMA transactions can be 16×2,048 using DMA-list. 

Moreover, the SPE dual-pipelines allow the overlap of data transfer and computation, 

with one pipeline performing most of the arithmetic instructions while the other pipeline 

performing load and store instructions [47].   

 

 

FIGURE 4.1: Simultaneous computing and DMA transfer: (a) Execution sequence for 
single read buffering; (b) Execution sequence for double read buffering. 
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Figure 4.1 illustrates a possible execution sequence highlighting the possible 

overlap of compute and DMA operations. In Figure 4.1(a), no overlapping is possible 

since DMA transfer as well as computing utilizes a single buffer. However, with an 

additional buffer, data transfer and computing operations can be overlapping from 

separate buffers with the buffers swapped in alternate cycles. For example as shown in 

Figure 4.1(b), while the computing operation uses the data in buffer 1, data is pre-fetched 

into buffer 2. The computing operation then utilizes data from buffer 2, while data is pre-

fetched into buffer 1. Note that double buffering is only effective if the data to be pre-

fetched in known in advance of the current computation. Also, additional buffers (n-

buffering scheme) can be utilized for better overlap between the computations and data 

transfer. However, the limited size of the local store limits the number of additional 

buffers that can be employed.  

4.4 Machine Model and General Bounds 

We utilize a simple model of the data transfer operation of a machine fetching 

data from the main memory to its local memory. For a single data transfer operation, the 

total data transfer time (Tdata) includes a setup time (Ts), the transfer time for one byte 

(Tmem) from the memory to the local store, and the number of bytes transferred (B). 

Tdata = Ts + B×Tmem     (4.1) 

The total elapsed time (Ttotal) for execution sequence with single buffering is 
 

Ttotal   =   Ndata×Tdata  + Ncomp×BTcomp    (4.2) 
 

where Ndata is a number of data transfer operations, Ncomp is a total number of 

computations, and BTcomp is a computing time associated with a single B data transfer. In 

a machine capable of concurrently scheduling compute and data transfer operations, with 
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double buffering scheme the total elapsed time (Ttotal) can be reduced by overlapping the 

two operations. Depending on the relative magnitudes of the machine specific parameters 

we can classify program execution into two regimes – data transfer bound and compute 

bound.  

Let BTcomp be the time required to perform computations on data of size B 

transferred to the local memory from the main memory in time BTmem with setup time Ts. 

Then, the resulting program execution is data transfer bound if the data transfer 

operations can be scheduled back-to-back without a break. This condition holds when 

BTcomp  ≤  BTmem – Ts. Such a back-to-back data transfer operations can help hide the 

setup time of an individual data transfer through overlap with subsequent data transfers. 

Note that data transfer bound execution results in stalling of the processor. Similarly, the 

program execution is compute bound if computations can be scheduled back-to-back 

without the processor stalling. This condition holds when BTcomp ≥  BTmem + Ts.  Note that 

compute bound execution does not allow overlap of the setup time. If program execution 

is such that BTmem – Ts < BTcomp < BTmem + Ts, then stalls occur both in computation and 

data transfer. However, for large enough size B, the set up time Ts can be ignored, and 

hence program execution is either only compute bound or only data transfer bound. 

Ignoring temporal locality of data if we let Ndata be the equal number of Ncomp, then the 

total number of operations (Noper) that can be overlapped between compute and data 

transfer operations is at most (Ncomp – 1) for data transfer bound and at most (Ndata – 1) 

for compute bound. Using the double buffering scheme, the overlap of computations with 

data transfer reduces the total elapsed time (Ttotal) as follows: 

Ttotal   ≥  Ts + Ndata×(BTmem) + BTcomp        for data transfer bound (4.3) 

Ttotal   ≥  Ts + BTmem + Ncomp×BTcomp    for compute bound (4.4) 
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Note that if the application has sufficient temporal locality between DMA 

transfers then caching can reduce the total elapsed time (Ttotal) by reducing the number of 

data transfers (Ndata). 

4.5 Matrix Multiplication 

4.5.1 Theoretical Bounds 

We consider the multiplication of two n×n matrices A and B to obtain an output 

n×n matrix C. The matrices are partitioned into blocks of size b×b such that all 

multiplication operations are carried out at the block level. As described in Chapter 3, 

blocking promotes cache efficient computation. Let the number of blocks in each matrix 

be N×N where N is (n/b).  The example of N=3 is shown in Figure 4.2. 

 

 
FIGURE 4.2: Matrix multiplication with 3×3 blocks. 

 
 
 
To simplify our analysis we only consider the integrated caching and pre-fetching 

involving the reading of matrices A and B. Let M be the size of memory available for the 

input buffers and let Tcomp be the computation time required for a floating point operation 

(double or single precision). We consider the data transfer operation from the main 

memory to the local memory (cache) to involve a set-up time and a data transfer time and 

use Equation 4.1 to model the time taken to transfer a block of data. We derive upper and 

lower bounds for the total elapsed time for different buffering strategies. Here total 
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elapsed time is defined as the total time taken to multiply the two matrices and includes 

both the computation and the data transfer time.  

Case I: Single buffer each for matrix A and B 

Initially two data blocks of both A and B matrices have to be fetched before 

computation proceeds. Since only a single buffer is used for matrix A and B, we need to 

complete the computation involving the two blocks before the next data transfer 

operation is scheduled. Theorem 4.1 provides bounds for the total number of data 

transfers involved and Theorem 4.2 provides bounds on the total elapsed time.  

Theorem 4.1 Let A and B be two N×N matrices each consisting of N2 blocks. If the local 

memory (cache) is large enough to hold not more than a single block each of A and B, 

the upper and lower bounds for the total number of block-level data transfers Ndata is 

given by  

N3 + N ≤ Ndata ≤ 2N3     (4.5) 

Proof: The upper bound is obtained by considering no reuse of the data present in the 

local memory. Thus two blocks of data needs to be fetched for each multiplication. Since 

there are N3 such computations in multiplying matrices A and B, a total of not more than 

2N3 blocks transfers block level data transfers is required. The lower bound is obtained 

by considering reuse of the data present in the local memory (temporal locality). We note 

that each block of matrix A is multiplied with an N-block row of matrix B. Thus, each 

block of matrix A can be re-used at most N-1 times. Since there are N2 blocks of matrix A, 

a total of at most N2×(N-1) blocks can be reused without additional data fetches. 

Therefore, the total number of data transfer operations transfers of matrix A is at least N3 

– (N2×(N-1)) = N2.  For matrix B, at most one block from each row of matrix B can be 
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reused. Since each row of matrix B is required N times for multiplying with one column 

of matrix A, at most N-1 blocks can be reused across all operations involving a single row 

of matrix B. There are N rows of B, so at most N×(N-1) blocks  can be reused. Hence the 

total number of block data transfer operations for matrix B is at least N3 – (N× (N-1)) = 

N3 –N2 + N. Thus, the total number of data transfer operations for both A and B is at least 

N3 + N. 

 

 
(a) 

 
(b) 

FIGURE 4.3: Simultaneous computing and data transfer for single buffer each for matrix 
A and B: (a) Execution sequence obtained by considering no reuse of the data present in 
the local memory; (b) Execution sequence obtained by considering reuse of the data 
present in the local memory. 
 
 

Corollary 4.1 If Ts is the set up time for each data transfer operation, Tmem the time 

required to transfer one data from the main memory to the local memory (cache), and 

Tcomp the time required for a single floating point operation, then the total elapsed time 

(Ttotal) satisfies the following upper and lower bounds,  
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Ts×N3 + Tmem×b2×(N3+N) + Tcomp×2b3×N3 ≤ Ttotal  ≤  Ts ×N3 + Tmem × b2×(2N3) + Tcomp 

× 2b3×N3                    (4.6) 

Proof: The upper bound is obtained by considering no reuse of the data present in the 

local memory. As shown in Figure 4.3(a), single buffering of A and B permits no overlap 

of data transfer and computation, the total elapsed time is at most the sum of the times 

required for computation (N3) and data transfer (2N3, Theorem 4.1). However, the set up 

time for transfer of a block of B can be overlapped with the data transfer of block of A, 

the setup need be done at most N3 times. A similar argument holds for the lower bound as 

well with the lower bound on the number of data transfers (see Figure 4.3(b)) given by 

Theorem 4.1. 

Case II: Single buffer for matrix A and double buffer for matrix B 

The bound on the number of data transfers of matrix A is same as Case I since 

only a single buffer is used for matrix A. However, the number of data transfers of matrix 

B can potentially be reduced due to the double buffering of B. Moreover, the double 

buffering allows for overlap of data transfer and computation times, potentially reducing 

the total elapsed time.  

Theorem 4.2 Let A and B be two N×N matrices each consisting of N2 blocks. If the local 

memory (cache) is large enough to hold not more than a single block of A and two blocks 

of B, the upper and lower bounds for the total number of block-level data transfers Ndata 

is given by  

N3 – N2 + 2N   ≤   Ndata   ≤   2N3     (4.7) 

Proof: The upper bound on the number of data transfers for matrix A and B considering 

no reuse of data is same as Theorem 4.1. The lower bound on the number of data 
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transfers for matrix A considering data reuse is N2 and follows the same argument given 

in the proof of Theorem 4.1. Double buffering for matrix B, enables the sharing of two 

blocks of data for every row of B. Since each row of matrix B is required N times for 

multiplying with one column of matrix A, at most 2×(N -1) blocks can be re-used across 

all operations involving a single row of matrix B. There are N rows of B, so at most 

2×N×(N-1) blocks can be reused. Hence the total number of block data transfer 

operations for matrix B is at least N3 – (2×N×(N-1)) = N3 –2N2 + 2N. Thus, the total 

number of data transfer operations for both A and B is at least N2 + (N3 –2N2 + 2N) = N3 

– N2 + 2N. 

Theorem 4.3 Let A and B be two N×N matrices each consisting of N2 blocks. If the local 

memory (cache) is large enough to hold not more than a single block of A and two blocks 

of B, the lower bound for the total number of operations Noper  that cannot be overlapped 

is given by   

Noper   ≥   N3 + N2 +1     (4.8) 

Proof: We note that double buffering of B possibly allows for overlapping of all data 

transfer operations of B with computations operations except for the first block. However, 

since A is single buffered at least N2 block data transfer operations are required for A. 

Since there are a total of N3 computations, the total number of operations is at least N3 + 

N2 +1.  

Corollary 4.2 If Ts is the set up time for each data transfer operation, Tmem the time 

required to transfer one data from the main memory to the local memory (cache), and 

Tcomp the time required for a single floating point operation, then the total elapsed time 

(Ttotal) satisfies the following upper and lower bounds,  
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Data Transfer Bound: b2×Tmem > 2b3×Tcomp + Ts  

Ts×N2 + Tmem×b2×(N3 – N2+ 2N) + Tcomp×2b3×(2N2 – 2N+1)  ≤  Ttotal  ≤  Ts×N3 + 

Tmem×b2×(2N3) + 2b3×Tcomp                (4.9) 

Compute Bound: 2b3×Tcomp > b2×Tmem + Ts  

Ts×N2 + Tmem×b2× (N2+1) + Tcomp×2b3×N3  ≤ Ttotal  ≤  Ts ×N3 + Tmem×b2×(N3 + 1) + 

2b3×Tcomp ×N3                      (4.10) 

Proof: The upper bound for the total elapsed time is obtained by considering no reuse of 

the data present in the local memory. For the data transfer bound case, at most N3 – 1 of a 

total of N3 block multiplications can be overlapped with the 2N3 data transfer operations. 

The total elapsed time is thus at most the sum of the times required for the maximum 

number of data transfer operations (upper bound of Theorem 4.2), the set up time for the 

single buffered blocks of A, and the computation time for one block. In the compute 

bound case, at most N3 -1 data transfer operations can be overlapped with the N3 

computations. Thus, the total elapsed time consists of at least 2N3 – (N3 – 1) = N3 + 1 

data transfers, N3 computations, and N3 set up time for blocks of A.  

The lower bound is obtained by considering reuse of the data present in the local 

memory. From Theorem 4.2 the number of block-level data transfer operations is at least 

N3 – N2+ 2N, while from Theorem 4.3 the total number of non-overlapped operations is 

at least N3 + N2 +1.  For the data transfer bound case (see Figure 4.4(a)), the number of 

compute operations that cannot be overlapped with is at least (N3 + N2 +1) – (N3 – N2+ 

2×N) = (2N2 -2N + 1).  On the other hand, in the compute bound case (see Figure 4.4(b)), 

the number of data transfer operations that cannot be overlapped with computations is (N3 

+ N2 + 1) – N3. In either case, the single buffering of A requires at least N2 setup times. 
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And in data transfer bound case, N2–N additional setup times are required. The lower 

bound is given by the sum of the setup time, non-overlapped (compute bound) data 

transfer time and non-overlapped (data transfer) compute time.  

 

 
(a) 

 
(b) 

FIGURE 4.4: Simultaneous computing and data transfer for single buffer for matrix A 
and double buffer for matrix B obtained by considering reuse of the data present in the 
local memory: (a) Data transfer bound case; (b) Compute bound case. 
 
 

Case III: Double buffers for matrix A and B 

The bound on the number of data transfers is same as given by Theorem 4.2 since 

the added double buffering of A cannot reduce the total number of data transfer 

operations required to less than N2. However, double buffering of A the increases 

possibility of overlap between computations and the data transfer reducing the total 

number of operations that cannot be overlapped. 
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Theorem 4.4 Let A and B be two N×N matrices each consisting of N2 blocks. If the local 

memory (cache) is large enough to hold at most two blocks each of A and B, the lower 

bound for the total number of operations Noper that cannot be overlapped is given by   

N3 + 2 ≤ Noper      (4.11) 

Proof: We note that double buffering of A and B possibly allows for overlapping of all 

data transfer operations of A and B with computations operations except for the first 

block of A and B. Since there are a total of N3 computations, the total number of 

operations is at least N3 + 2.  

Corollary 4.2 If Ts is the set up time for each data transfer operation, Tmem the time 

required to transfer a single data from the main memory to the local memory (cache), 

and Tcomp the time required for a single floating point operation, then the total elapsed 

time (Ttotal) satisfies the following upper and lower bounds,  

Data Transfer Bound: (b2Tmem > 2b3Tcomp + Ts)  

Ts + Tmem×b2×(N3 – N2+ 2N) + Tcomp×2b3×(N2 – 2N+2)  ≤  Ttotal  ≤  Ts + Tmem×b2×(2N3) 

+ 2b3×Tcomp              (4.12) 

Compute Bound: (2b3Tcomp > b2Tmem + Ts)  

Ts + 2×Tmem×b2 + Tcomp×2b3×N3  ≤   Ttotal  ≤  Ts + Tmem×b2×(N3 + 1) + 2b3×Tcomp ×N3        

  (4.13) 

Proof: The upper bound for the total elapsed time is obtained by considering no reuse of 

the data present in the local memory. For the data transfer bound case, at most N3 – 1 of a 

total of N3 block multiplications can be overlapped with the 2N3 data transfer operations. 

Also, the double buffering of both A and B implies that only the initial set time involved 

in the data transfer of the first block cannot be overlapped. The total elapsed time is thus 
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at most the sum of the times required for the maximum number of data transfer 

operations (upper bound of Theorem 4.2), the set up time for a single block, and the 

computation time for one block. In the compute bound case, at most N3 – 1 data transfer 

operations can be overlapped with the N3 computations. Thus, the total elapsed time 

consists of at least 2N3 – (N3 – 1) data transfers, N3 computations, and the set up time for 

a single block.  

 

 
(a) 

 
(b) 

FIGURE 4.5: Simultaneous computing and data transfer for double buffer for both matrix 
A and B obtained by considering reuse of the data present in the local memory: (a) Data 
transfer bound case; (b) Compute bound case. 
 

The lower bound is obtained by considering reuse of the data present in the local 

memory. From Theorem 4.2 the number of data transfer operations is at least N3–N2+2N 

while from Theorem 4.4 the total number of non-overlapped operations is at least N3 + 2.  

For the data transfer bound case (see Figure 4.5(a)), the number of compute operations 
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that cannot be overlapped with data transfer is at least (N3+2) – (N3–N+2N) = (N2–

2N+2). On the other hand, in the compute bound case (see Figure 4.5(b)), the number of 

data transfer operations that cannot be overlapped with computations is (N3 + 2) – N3. In 

either case, the double buffering of A and B requires a setup time only for the data 

transfer of the first block. The lower bound is given by the sum of the setup time, non-

overlapped (compute bound) data transfer time and non-overlapped (data transfer) 

compute time.  

4.5.2 Discussion 

A fair comparison between the different buffering schemes presented above 

requires the expressing the total elapsed time in terms of the problem size n (number is 

single precision floats) and the size of the local storage M (expressed in terms of number 

of single precision floats). Although use of a higher order buffering scheme enables a 

better overlap between the computations and the data transfer, with a fixed size memory, 

the block size is smaller, resulting in lesser opportunities for exploiting temporal locality. 

Note that buffer size is same as the block size. We assume the maximum size of a single 

buffer to be M and scale the buffer size down by the number of buffers that needs to be 

maintained in memory. The theoretical lower bounds for the elapsed time can then be 

expressed as follows –  

Case I: Single buffer each for matrix A and B 

)* + �,-,.�/ + 0/ ��)1 21 + �,-,. + 0/ � ,.,- + 0�� ��)341 5 + 	6 + 0/�  (4.14) 
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Case II: Single buffer for matrix A and double buffer for matrix B 

Data transfer bound: 

)* + 7�8,9,:;
- + 0-< � )1 21 + 8,9,: + 0/ ��0- � 6 + ,:,9 + 0�; 

���������������������)341 5 + 76 + �6 + ,.,/ + 0- � �6 + �,.,/�- + 0 ���,.,/�/"<    (4.15) 

Compute bound: 

)* + �,/,.�- + 0- ��)1 21 + �0- � �,.,/�-�" ��)341 5 + 	60/�         (4.16) 

Case III: Double buffers for matrix A and B 

Data transfer bound: 

)* � )1 21 + 8,=,: + 0/ � 0- � 6 + ,:,= + 0�; 

�)341 5 + 76 + �,.,> + 0- � 6 + �,.,>�- + 0 � 6 + �,.,>�/"<   (4.17) 

Compute bound: 

)* ��)1 21 + �6 + �,.,>�-�" ��)341 5 + 	60/�  (4.18) 

Performance Evaluation on the Cell B.E.: 

We evaluate the lower bound performance for the three buffering schemes 

discussed above on the Cell BE. For the Cell/B.E. the setup time is on the order of 130 ns 

[20], while Tmem is the order of 0.018 ns per single precision float (the theoretical peak 

data bandwidth of 204.8 GB/s). Note that Equation 4.1 is an approximation of the DMA 

transfer time of the Cell/B.E. since the setup time depends on the data alignment in 

memory and the transfer time depends on the congestion in the network. Tcomp is the order 
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of 0.036 ns for one single precision floating operation calculated from theoretical peak 

25.6 GFLOPS performance per SPU. We assume the local memory size M available for 

computation is 0.25 million single precision floats (100 KB) per LS. For these machine 

parameters matrix multiplication is a compute bound application. Figure 4.6 shows the 

theoretical lower bound for the three different buffering schemes. As shown in Figure 

4.6, all three buffering schemes show similar performance with scaling of problem size 

with double buffering of A and B (Case III) showing less than 1% performance 

improvement than the single buffering of A and double buffering of B (Case II). This 

surprising result can be explained by the fact that on the Cell/B.E. the compute time is 

about 99% of the total elapsed time. 

 

 

FIGURE 4.6: Theoretical lower bounds for matrix multiplication on IBM Cell/B.E. 
 
 

4.6 Finite Difference Time Domain (FDTD) 

4.6.1 Theoretical Bounds 

We consider the E-field computation in cubes of size n3. The cubes are partitioned 

into blocks of size b3 such that all E-field operations are carried out at the block level. As 

�

��

���

���

���

���

���

���

��� ���� ���� ��	
 ��	� �
���

�
�
��
�
��

�
�
	�

�
�

�
�
	�
�

�

��
�

�������
����
���

����� ������ �������



89 

 

described in Chapter 3, blocking promotes cache efficient computation. Let the number 

of blocks in a cube be N3 where N is n/b.   

We analyze the integrated caching and pre-fetching involving the reading of the 

nine parameters Ex, Ey, Ez, Hx, Hy, Hz, epx, epy and epz. To simplify our analysis we only 

consider sharing of boundary data within a block and not between blocks. Note that the 

constant parameters ∆t, ∆x, ∆y and ∆z are not considered in our analysis since they need 

only be fetched once and stored in the local memory. Let M be the size of memory 

available for the input buffers and let Tcomp be the computation time required for a 

floating point operation (double or single precision). We consider the data transfer 

operation from the main memory to the local memory (cache) to involve a setup time and 

a data transfer time and use Equation 4.1 to model the time taken to transfer a block of 

data. We derive upper and lower bounds for the total elapsed time for different buffering 

strategies. Here the total elapsed time is defined as the total time taken to both E-filed 

computations and the data transfer time.  

Case I: Single buffer for E-field computations 

Initially at least four data blocks of data have to be fetched before computation of 

either Ex, or Ey or Ez can proceed. Since only a single buffer is used for each data set, we 

need to complete the computation involving the data set before the next data set transfer 

operation is scheduled. Theorem 4.5 provides bounds for the total number of data 

transfers involved and Corollary 4.3 provides bounds on the total elapsed time.  

Theorem 4.5 Let Ex, Ey, Ez, Hx, Hy, Hz, epx, epy and epz each be b3 sized blocks with a 

total of 9N3such blocks. If the local memory (cache) is large enough to hold not more 
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than a single block each of Ex, Ey, Ez, Hx, Hy, Hz, epx, epy and epz, the upper and lower 

bounds for the total number of block-level data transfers Ndata is given by  

9N3 ≤  Ndata  ≤ 12N3     (4.19) 

Proof: The upper bound is obtained by considering no reuse of the data present in the 

local memory to compute Ex, Ey and Ez (see Figure 4.7(a)). Here four blocks of data 

needs to be fetched for each computation. Since there are at most N3 such computations 

in computing each of Ex, Ey and Ez, a total of not more than 12N3 block level data 

transfers are required. The lower bound is obtained by considering reuse of the data 

present in the local memory between Ex, Ey and Ez computations (see Figure 4.7(d)). We 

note that each of Hx, Hy and Hz data blocks are used at most twice to compute Ex, Ey and 

Ez. Hence, at most 3N3 blocks can be reused. Thus, the total number of block data transfer 

operations for E-field computations is at least 12N3 – 3N3 = 9N3.  

Corollary 4.3 If Ts is the set up time for each data transfer operation, Tmem the time 

required to transfer one data from the main memory to the local memory (cache), and 

Tcomp the time required for a single floating point operation, then the total elapsed time 

(Ttotal) satisfies the following upper and lower bounds,  

N3×(Ts + 9b3 ×Tmem + 27b3×Tcomp) ≤ Ttotal  ≤  N3×(3Ts + 12b3 ×Tmem + 27b3×Tcomp) 

(4.20) 

Proof: The upper bound is obtained by considering no reuse of the data present in the 

local memory. As shown in Figure 4.7(a), single buffering of data transfer permits no 

overlap of data transfer and computation, the total elapsed time is at most the sum of the 

times required for computation (9×3N3) and data transfer (12N3, Theorem 4.5). However, 

the setup time for transfer of a set of blocks can be overlapped with the data transfer of 
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blocks, the setup need be done at most 3N3 times. A similar argument holds for the lower 

bound as well with the lower bound on the number of data transfers (see Figure 4.7(d)) 

given by Theorem 4.5. A set time of at least N3 is required if all the data required for 

computing Ex, Ey, and Ez are fetched initially.  

 

 (a) 

 (b) 

 (c) 

 (d) 

FIGURE 4.7: Simultaneous computing and data transfer for single buffer for E-field 
computation: (a) Execution sequence obtained by considering no reuse of the data present 
in the local memory. This scheme requires the storage of 4 blocks of data in the local 
memory; (b) Execution sequence obtained by considering reuse of the data present in the 
local memory between Ex, Ey and Ey, Ez. This scheme requires the storage of 4 blocks of 
data in the local memory; (c) Execution sequence obtained by considering reuse of the 
data present in the local memory between Ex, Ey, and Ez. This scheme requires the storage 
of 5 blocks of data in the local memory; (d) Execution sequence obtained by considering 
reuse of the data present in the local memory between Ex, Ey, and Ez but with all the data 
fetched initially. This scheme requires the storage of 9 blocks of data in the local 
memory. 
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Case II: Double buffers for E-field computations 

The bound on the number of data transfers is same as given by Theorem 4.5 since 

the added double buffering cannot reduce the total number of data transfer operations 

required to less than N3. However, double buffering increases possibility of overlap 

between computations and the data transfer reducing the total number of non-overlapped 

operations. 

 

(a) 

(b) 

FIGURE 4.8: Simultaneous computing and data transfer for double buffers for E-field 
computation as data transfer bound cases: (a) Execution sequence obtained by 
considering no reuse of the data present in the local memory. This scheme requires the 
storage of 4 blocks of data in the local memory; (b) Execution sequence obtained by 
considering reuse of the data present in the local memory between Ex, Ey, and Ez but with 
all the data fetched initially. This scheme requires the storage of 9 blocks of data in the 
local memory.  

 
 

Theorem 4.6 Let Ex, Ey, Ez, Hx, Hy, Hz, epx, epy and epz each be b3 sized blocks with a 

total of 9N3such blocks. If the local memory (cache) is large enough to hold not more 
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than two blocks each of Ex, Ey, Ez, Hx, Hy, Hz, epx, epy and epz, the lower bound for the 

total number of operations Noper that cannot be overlapped is given by   

N3 + 1 ≤ Noper      (4.21) 

Proof: We note that double buffering possibly allows for overlapping of all data transfer 

operations with computations except for the initial set of blocks. Since there are a total of 

N3 E-field computations, the total number of operations with maximal overlap between 

computing and data transfer is at least N3 + 1.  

Corollary 4.4 If Ts is the set up time for each data transfer operation, Tmem the time 

required to transfer data from the main memory to the local memory (cache), and Tcomp 

the time required for a single floating point operation, then the total elapsed time (Ttotal) 

satisfies the following upper and lower bounds,  

Data Transfer Bound:  

Case A (max. data sharing): (9b3Tmem > 27b3Tcomp + Ts) 

Ttotal ≥ Ts+ Tmem×9b3×N3+ Tcomp×27b3   (4.22) 

Case B (no data sharing): (4b3Tmem > 9b3Tcomp + Ts) 

Ttotal ≥ Ts + Tmem×12b3×N3 + Tcomp×9b3   (4.23) 

Compute Bound:  

Case A: (27b3Tcomp > 9b3Tmem + Ts) 

Ttotal ≥ Ts+ Tmem×9b3+ Tcomp×27b3×N3   (4.24) 

Case B: (9b3Tcomp > 4b3Tmem + Ts) 

Ttotal ≥ Ts + Tmem×4b3 + Tcomp×27b3×N3   (4.25) 

Proof:  To achieve maximal data sharing between the blocks (Case A), the memory must 

be capable of holding at least 18 blocks needed to compute Ex, Ey, and Ez under the 
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double buffering scheme. If the total elapsed time is data transfer bound (see Figure 

4.8(b)), then the (N3 + 1) non-overlapped operations given by Theorem 4.6 consists of N3 

data transfers of 9 blocks each and E-field computations for a single block. On the other 

hand if the total elapsed time is compute bound, then the (N3 + 1) non-overlapped 

operations given by Theorem 4.6 consists of E-field computations for N3 blocks and an 

initial transfer of 9 blocks. When no data sharing between the blocks is considered, the 

memory need only hold the minimum of 8 blocks needed to compute Ex (or Ey, or Ez) 

under the double buffering scheme. However, without data sharing at least (3N3+1) 

operations (computation or data transfer) cannot be overlapped. If the total elapsed time 

is data transfer bound (see Figure 4.8(a)), then the (3N3+1) operations consists of 

(4b3×3N3) data transfers and the Ex (or Ey, or Ez) computation for a single block. For the 

compute bound case, the (3N3 + 1) operations consist of 9b3×3N3 E-field computations, 

and initial data transfer of 4 blocks required to calculate Ex (or Ey, or Ez). In all cases, all 

setup times except for the initial one can be overlapped with either data transfer or 

computation.  

4.6.2 Discussion 

A fair comparison between the theoretical lower bounds presented above requires 

the expressing the total elapsed time in terms of the problem size n and the size of the 

local storage M. Although use of a higher order buffering scheme enables a better overlap 

between the computations and the data transfer, with a fixed size memory, the block size 

is smaller, resulting in lesser opportunities for exploiting temporal locality. Also, unlike 

matrix multiplication in the FDTD algorithm, the number of blocks to be held in memory 

depends on the degree of data sharing between the blocks. Note that buffer size is same 
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as the block size. We assume the maximum size of a single buffer to be M and scale the 

buffer size down by the number of buffers that needs to be maintained in memory. The 

theoretical lower bounds for the elapsed time can then be expressed as follows –  

Case I: Single buffer  

)�4�?@�A �)* + B. + 0/ ��)1 21 + 	C + 0/�� ��)341 5 + 	6D+ 0/�  (4.26) 

Case II: Double buffers 

Data transfer bound: 

Case A: (9b3Tmem > 27b3Tcomp + Ts)   for 9 blocks space 

Ttotal ≥ Ts+ Tmem×9n3+ Tcomp×27(M/9)   (4.27) 

Case B: (4b3Tmem > 9b3Tcomp + Ts)   for 4 blocks space 

Ttotal ≥ Ts + Tmem×12n3 + Tcomp×9(M/4)   (4.28) 

Compute Bound:  

Case A: (27b3Tcomp > 9b3Tmem + Ts) 

Ttotal ≥ Ts+ Tmem×(M/2)+ Tcomp×27n3    (4.29) 

Case B: (9b3Tcomp > 4b3Tmem + Ts) 

Ttotal ≥ Ts + Tmem×(M/2) + Tcomp×27n3   (4.30) 

Performance Evaluation on the Cell B.E.: 

We evaluate the lower bound performance for the three buffering schemes 

discussed above on the Cell BE. For the Cell/B.E. the setup time is on the order of 130 ns 

[20], while Tmem is the order of 0.018 ns per single precision float (the theoretical peak 

data bandwidth of 204.8 GB/s). Tcomp is the order of 0.036 ns for one single-precision 

floating-point operation calculated from theoretical peak 25.6 GFLOPS performance per 

SPU. We assume the local memory size M available for computation is 0.25 million 
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single precision floats (100 KB) per LS. For these machine parameters FDTD is a 

compute bound application with the compute time constituting about 80% of the total 

elapsed time. Figure 4.9 shows the theoretical lower bound for the two buffering 

schemes. As shown in Figure 4.9, double-buffering with integrated caching shows 14% 

better performance over single buffering with integrated caching.  

 

 

FIGURE 4.9: Theoretical lower bounds for FDTD on IBM Cell/B.E. 
 
 

4.7 Conclusion  

In order to derive efficient data transfers for multicore, we propose algorithm 

specific integrated prefetching and caching strategies for realizing compute-transfer 

parallelism. The goal of our analysis is to determine the best buffering strategy for 

limited memory size while simultaneously exploiting data locality. Higher performance 

improvement is expected on data transfer bound problem with prefetching while a lesser 

performance improvement is expected for compute bound problems. For example, for 

matrix multiplication on the IBM Cell BE, where computing is 99% of the total elapsed 

time, we predict less than 1% performance improvement for prefetching with double 
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buffering, as compared to  the case when prefetching is not used. On the other hand, for 

the FDTD algorithm on the IBM Cell BE, where computing is about 80% of the total 

elapsed time, the double-buffering with prefetching is expected to show a 14% 

performance improvement over the case when prefetching is not used. We conclude that 

even in compute bound problems prefetching can result in improvement in the overall 

performance. Note that we have considered system peak performance of the IBM 

Cell/B.E. platform in our analysis. Measuring the actual system parameters using micro-

kernels that capture the compute and data transfer characteristics of the algorithms under 

consideration can result in better accuracy. For example, the data transfer time Tmem 

depends on data transfer size [45] while Tcomp is independent with data transfer size.  



 

CHAPTER 5: EXPERIMENTAL STUDIES IN COMPUTING ON COMMERCIAL 
MULTICORE PROCESSORS 

 
 

5.1 Introduction 

In this chapter, we investigate multicore efficient implementations of data parallel 

algorithms on commercial multicore platforms. We initially identify a set of in-core 

optimization techniques that allow us to improve the sequential performance of an 

algorithm on a single core. While the exact implementation of these in-core optimization 

techniques depends on the architecture, compiler and the parallel programming tools, 

most of the commercial multicores architectures, compilers and parallel programming 

tools support these techniques is some fashion. We utilize the effective blocking and data 

prefetching techniques discussed in Chapters 3 and 4 to obtain multicore efficient 

implementations of the algorithms under considerations. The algorithms considered are 

data parallel algorithms drawn from scientific computing and includes matrix 

multiplication, FDTD, LU decomposition and Gauss-Seidel power flow solver. We 

present extensive measurements of the performance of these algorithms on the Intel 

Colvertown and IBM Cell BE multicores. The two architectures represent two ends of the 

multicore architecture design philosophies. The Intel Colvertown is a shared cache quad-

core processor with complex out-of-order processors and hardware controlled cache 

coherence. On the other hand, the IBM Cell BE has 8 self contained vector processors 

with programmer controlled local memory.    
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The chapter is organized as follows – we briefly discuss about our experimental 

systems in Section 5.2. We illustrate in-core optimization techniques in Section 5.3. We 

discuss about case studies in Section 5.4. The conclusion is in Section 5.5. 

5.2 Experimental Systems 

In this section, we briefly discuss about our experimental systems based on 

multicore processors. For our experimental studies, we consider two commercial 

platforms: (1) Intel Clovertown platform: Dell Precision-690 as a homogenous multicore 

platform and (2) IBM Cell/B.E. platform: SONY PlayStation3 as a heterogeneous 

multicore platform.  

Intel Clovertown Platform:  

Intel Clovertown platform consists of two Intel Xeon E5345 quad-core processors 

(Clovertown) on a dual-socket shown in Figure 5.1. 

 

 

FIGURE 5.1: Dell Precision 690 with dual Intel quad-core Xeon E5345. 

 

The characteristics of our system are that a) each core runs at 2.33 GHz, b) it is 

capable of fetching and decoding four instructions per cycle, and fully support 128-bit 

SSE for the theoretical peak performance of 9.32 GFLOPS per core for single-precision 

floating-point operations, c) each socket provides the theoretical peak memory bandwidth 
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of 10.66 GB/s, and d) all 8 cores share 16 GB off-chip memory interfaced to four FB-

DIMM DDR2-533 SDRAM channels providing 17 GB/s of the theoretical memory 

bandwidth. Each core has a private 32 KB L1 cache, and each chip (two cores) has a 

shared 4 MB L2 cache.  

IBM Cell/B.E. Platform: 

IBM Cell/B.E. platform consists of IBM PowerPC-based Power Processing 

Element (PPE) and eight Synergistic Processing Elements (SPEs) shown in Figure 5.2. 

The characteristics of the platform are that a) each SPE runs at 3.2 GHz, b) it is capable 

of fetching and decoding four instruction per cycle, and fully support 128-entry 128-bit 

SIMD organization for the theoretical peak performance of 25.6 GFLOPS per SPE for 

single-precision floating-point operations, c) Element Interconnect Bus (EIB) provides 

the theoretical peak data bandwidth of 204.8 GB/s, and d) all 8 SPEs share 200 MB 

DRAM off-chip memory interfaced to EIB. Each SPE has an efficient software-

controlled DMA engine which transfers data between DRAM and the private 256 KB 

Local-Store (LS) from execution. The LS holds both instructions and data.  

 

 

FIGURE 5.2: SONY PlayStation3 with one PPE and eight SPEs. 
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As shown in Figure 5.3, there are three ways in which the SPEs can be used in the 

PPE-centric model. Figure 5.3(a) shows the multistage pipeline model, the parallel stages 

model is shown in Figure 5.3(b) and the services model is shown in Figure 5.3(c). The 

multistage pipeline model is typically avoided because of the difficulty of load balancing. 

In addition, the multistage model increases the data-movement requirement because data 

must be moved for each stage of the pipeline. The parallel stages model is used for a task 

which has a large amount of data that can be partitioned and acted on at the same time. In 

the services model, the PPE assigns different services to different SPEs, and the PPE’s 

main process calls upon the appropriate SPE when a particular service is needed. We use 

parallel stages model for our IBM Cell/B.E. implementations.  

 

 
           (a) Multistage Pipeline Model    (b) Parallel Stage Model    (c) Service Model 

FIGURE 5.3: The PPE-centric programming models. 
 
 

Operating Systems, Compilers and Performance Analysis Tools: 

The Intel Clovertown platform runs Fedora-9 with version 2.6 of the Linux 

kernel, and the IBM Cell/B.E. platform runs Yellow Dog Linux-6.1 with version 2.6 of 

the Linux kernel. All of our applications use single-precision floating-point across both 

architectures. Intel compiler icc-11.0 is used with –O3 compiler optimization option for 

all implementations on the Intel platform, and IBM spu-gcc compiler is used with –O3 

compiler optimization option for all implementations on the IBM Cell/B.E. platform. 
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Additionally, we use Intel VtuneTM Performance Analyzer with Intel Thread Profiler to 

analyze multi-thread and cache performance for Intel Clovertown platform. 

5.3 In-core Optimization Techniques 

Many data parallel scientific and engineering algorithms spend most of their 

execution time on loop iterations and use multi-dimensional arrays as the principal data 

structure.  

When the referenced data is reused in an algorithm, the deep cache hierarchy of 

multicore processor allows the exploitation of data locality [48, 52, 58, 77]. The two 

forms of data reuse are temporal and spatial reuse. Temporal reuse (temporal locality) 

occurs when the same data is reused in a short time period. Spatial reuse (spatial locality) 

occurs when data in the same cache line or a block of memory at same level of the 

memory hierarchy is used (unit-stride memory access is the most common type of spatial 

locality). Wolf and Lam provide a concise definition and summary of important types of 

data locality [77]. 

The performance of optimization techniques depends on both the algorithm and 

the machine architecture. Recent research has shown ways to improve performance using 

optimization techniques to exploit spatial and temporal locality on multicore architectures 

[25, 26, 28, 41, 76]. However, there exists no such universal way to utilize these 

optimization techniques. Therefore, understanding the use of these optimization 

techniques in developing programs for classes of algorithms and machines is essential in 

achieving high performance on multicore architectures.  

In this section, we describe practical optimization techniques based on data 

transformation, loop transformation and vectorization to improve the single thread 
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performance through the standard dense matrix-vector multiplication with single-

precision floating-point. 

The performance of the in-core optimization techniques described in this section 

has been experimentally evaluated on single core of the Intel Clovertown platform shown 

in Figure 5.1. The platform runs Fedora-9 with version 2.6 of the Linux kernel. In this 

section, we implement all algorithms in C program language and compile using GNU 

gcc-4.3 with optimization level –O3. In general, use of a higher level compiler 

optimization increases the compile time and the resulting code size. Although compilers 

with optimization flags attempt to generate optimized version of the code, compilers 

often fail at effective optimization. Therefore, additional improvements in performance 

are possible through manual optimizations.  

5.3.1 Matrix-Vector Multiplication 

Matrix-vector multiplication is an important computational kernel used in 

scientific computation, signal and image processing, and many other applications. As 

shown in Equation 5.1, the matrix-vector multiplication algorithm multiplies an m×n 

matrix A and n vector b to get a result m vector c. The computational and data read/write 

aspects of the algorithm is shown in Figure 5.4. The computational complexity is O(m×n) 

while the data space requirement is O(m×n).  

c = A×b             (5.1) 

As shown in Figure 5.4, each element of the matrix A is only read once while each 

element of both vectors b and c are used m times and n times respectively. Therefore, 

only spatial locality is critical for matrix A, but both temporal and spatial localities are 

important for c and b vectors. 
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FIGURE 5.4: Matrix-vector multiplication with n=4 and m=4. 

 

5.3.2 Data Transformation: Data Layout Scheme 

Programming languages that offer support for multi-dimensional arrays generally 

use one of two linear layouts − row-major or column-major layout, to translate from 

multi-dimensional array indices to locations in the memory space. C/C++ and Pascal uses 

the row-major layout scheme while Matlab and Fortran uses the column-major layout 

scheme.  

 

 
                     (a)                             (b)                            (c)                            (d) 

FIGURE 5.5: Data Layout Schemes of 4×4 Matrix: (a) Row-major order; (b) Column-
major order; (c) Space-filling-curve order; (d) Z-Morton order. 

 
 

A computational order (also known as scheduling) that traverses an array in the 

same order as it is laid out in memory leads to better spatial locality. However, traversing 

a row-major order layout in column-major computational order or vice-versa, can lead to 

reduced performance. Computation orders that seek to exploit data locality also rely on 
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an appropriate data layout scheme [19, 65]. Some of the well-known data layout schemes 

of two-dimensional arrays are shown in Figure 5.5.  

The row-major and column-major order layout schemes shown in Figure 5.5(a) 

and (b), respectively, are generally easy to implement and no extra time is required for re-

structuring the data layout. The space-filling-curve order layout scheme shown in Figure 

5.5(c) potentially achieve better locality than row-major or column-major order layout 

schemes for some applications, such as matrix multiplication. However, since extra effort 

is required to perform with this layout, it may lead to degradation in the overall 

performance. The Morton order layout schemes such as Z-Morton shown in Figure 5.5(d) 

can be useful with loop blocking optimization technique in a limited space. Any of the 

layout schemes can be combined if necessary. Efficient data layout schemes for an 

algorithm should be selected by matching data layout with computational order to 

achieve good performance. 

 

TABLE 5.1: Pseudo code of the matrix-vector multiplication for different data layout 
schemes. 
 

1: 
2: 
3: 

for (i=0;i<m;i++) 
    for (j=0;j<n;j++) 
       c[i]+=A[i][j]*b[j]; 

1: 
2: 
3: 

for (i=0;i<m;i++) 
    for (j=0;j<n;j++) 
        c[i]+=A[j][i]*b[j]; 

1: 
2: 
3: 
4: 
5: 
6: 

for (i=0;i<m;i++) 
    for (j=0;j<n;j++) { 
        if (i%2==0)    
            c[i] +=  A[i][j]*b[j]; 
        if (i%2==1)    
            c[i] +=  A[i][j]*b[n-j]; } 

(a) Row-major layout (b) Column-major layout (c) Space-filling-curve layout 

 
 

The pseudo code describing the nested loop of the matrix-vector multiplication 

algorithm is shown in Table 5.1. In Table 5.1(a) the algorithm traverses matrix A in row-

major computing order. As shown in Table 5.1(b) and (c) respectively, the computations 
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are re-ordered in both column-major order layout and space-filling-curve order layout for 

correctness of the original row-major computational order algorithm. 

Performance Analysis: 

Figure 5.6 shows the performance of the layout schemes described above for 

matrix-vector multiplication with varying problem size n with m fixed at 1024. The 

computational order is same as the row-major order for all layout schemes. In this study, 

we vary the layout schemes for matrix A while vectors c and b are stored in memory as 

unit-stride fashion.  

 

 
(a)       (b) 

FIGURE 5.6: Performance of data layout schemes for matrix-vector multiplication with 
fixed m = 1024: (a) The performance in seconds; (b) The performance in MFLOPS. 

 
 

The row-major order layout scheme incurs (m-1)-times non-unit-stride memory 

access penalty in accessing vector b while matrix A and vector c are accessed in unit-

stride fashion. The non-unit-stride memory access can lead poor locality. An example 

memory access pattern for a 4×4 array laid out in a row-major layout scheme is shown in 

Table 5.2. 
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TABLE 5.2: The memory access pattern obtained by following a row-major 
computational order in the nested loop with the 4×4 matrix A laid out in a row-major 
layout scheme. 

 
Memory address by each column of matrix A 

Column 1 Column 2 Column 3 Column 4 

Matrix A 1 � 2 � 3 � 4� 5 � 6 � 7 � 8� 9 � 10 � 11 � 12� 13 � 14 � 15 � 16 

Vector b 1 � 2 � 3 � 4� 1 � 2 � 3 � 4� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4 

Vector c 1 � 1 � 1 � 1� 2 � 2 � 2 � 2� 3 � 3 � 3 � 3 � 4 � 4 � 4 � 4 

 
 

From Figure 5.6 we observe that the column-major order layout is more than 

twice slower compared to the row-major order layout. Note that the matrix A laid out in 

the column-major order is traversed following the row-major computation order of the 

nested loop algorithm. The column-major order layout scheme has (n×m+m-2)-times 

non-unit-stride memory access penalty in accessing vector b and matrix A. An example 

memory access pattern for a 4×4 array laid out in a column-major layout scheme is 

shown in Table 5.3. 

 

TABLE 5.3: The memory access pattern obtained by following a row-major 
computational order in the nested loop with the 4×4 matrix A laid out in a column-major 
order layout scheme. 

 
Memory address by each column of matrix A 

Column 1 Column 2 Column 3 Column 4 

Matrix A 1 � 5 � 9 � 13 � 2 � 6 �10 � 14� 3 � 7� 11� 15 � 4� 8� 12 � 16 

Vector b 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4 

Vector c 1 � 1 � 1 � 1 � 2 � 2 � 2 � 2� 3 � 3 � 3 � 3 � 4 � 4 � 4 � 4 

 
 

From Figure 5.6 we note that the space-filling-curve layout scheme shows slightly 

better performance than the row-major order scheme for large problem sizes. In this case, 

the temporal locality of vector b is increased by the triangular-stride memory access 
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pattern when all of vector b does not fit in the cache due to space limitations. An example 

memory access pattern for a 4×4 array laid out in a column-major layout scheme is 

shown in Table 5.4. As shown in Table 5.4, all arrays are accessed in unit-stride fashion. 

However, the performance is slightly worse than row-major order layout scheme with 

small problem size (n < 32786) as shown in Figure 5.6. In this case, the size of vector b 

which has temporal locality is less than 128 KB.  Here a trade off exists between the gain 

due to temporal locality and the extra computation required for the triangular stride 

access pattern [48]. 

 

TABLE 5.4: The memory access pattern obtained by following a row-major 
computational order in the nested loop with the 4×4 matrix A laid out in a space-filling 
curve order layout scheme. 

 
Memory address by each column of matrix A 

Column 1 Column 2 Column 3 Column 4 

Matrix A 1 � 2 � 3 � 4� 5 � 6 � 7 � 8� 9 � 10 � 11 � 12� 13 � 14 � 15 � 16 

Vector b 1 � 2 � 3 � 4� 4 � 3 � 2 � 1� 1 � 2 � 3 � 4 � 4 � 3 � 2 � 1 

Vector c 1 � 1 � 1 � 1� 2 � 2 � 2 � 2� 3 � 3 � 3 � 3 � 4 � 4 � 4 � 4 

 
 

5.3.3 Loop Transformation: Loop Blocking (Loop Tiling) 

Loop blocking (tiling) is a well-known compiler optimization that helps improve 

cache performance by dividing the loop iteration space into smaller blocks (tiles) [56]. 

Loop blocking has been shown to be useful for many algorithms in linear algebra. For 

example, the Basic Linear Algebra Library (BLAS) provides high-level matrix operations 

using blocked algorithms. Previous research has shown the utility of multi-level blocking 

techniques such as cache blocking and register blocking (also known as unrolling-and-

jam), when applied to multicore architectures with deep memory hierarchy. The optimal 
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block sizes can be determined by the cache-efficient and space-efficient data parallel 

algorithm design methods discussed in Chapter 3.  

Advantages of loop blocking include improvement in the data locality (temporal 

and spatial) when memory is limited and better utilization of the memory bandwidth by 

reducing communication cost. However, loop blocking may require extra index 

computations and an increase in non-unit-stride memory access penalties.  

 

TABLE 5.5: An example of matrix vector multiplication with m×n matrix A using loop 
blocking (c = A×b). 

1: 
2: 
3: 

for (i=0;i<m;i++) 
for (j=0;j<n;j++) 

c[i] = c[i] + A[i][j]*b[j]; 

1: 
2: 
3: 
4: 
5: 

for (i=0;i<m;i+=2) 
for (j=0;j<n;j+=2) 

for (ii=i;ii<i+2;ii++) 
for (jj=j;jj<j+2;jj++) 

c[ii] = c[ii] + A[ii][jj]*b[jj]; 

(a) Without loop blocking (b) Loop blocking with 2×2 blocks 

 
 

 
FIGURE 5.7: Implementation of loop blocking algorithm in row-major layout scheme 
with n=4, m=4 and 2×2 blocks. 

 
 

For the matrix-vector multiplication algorithms shown in Table 5.5 matrix A is 

laid out in a row-major order. The loop blocking algorithm with a block size of 2×2 is 

shown in Table 5.5(b). The loop blocking algorithm uses a row-major computing order 
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both within a block and in traversing the individual blocks of matrix A. An example 

implementation of the loop blocking algorithm in row-major order layout scheme is also 

shown in Figure 5.7. 

Performance Analysis: 

Figure 5.8 shows the memory access pattern with and without blocking for doubly 

nested matrix-vector multiplication algorithm. Both implementations use a row-major 

order layout for 4×4 matrix A. We note that the loop blocking algorithm leads to a 

memory access pattern of matrix A in the same order as the Z-Morton order while the 

algorithm with blocking traverses matrix A in the same order as laid out in memory 

space.  

 

 
                    (a) Without blocking   (b) Loop blocking with 2×2 blocks  

FIGURE 5.8: Memory access pattern of matrix-vector multiplication with n=4 and m=4. 

 

Traversing matrix A using the loop blocking algorithm reduces spatial locality by 

increasing the non-unit-stride memory access penalties. As shown in Figure 5.6, 

accessing vector b in the loop blocking algorithm improves temporal locality, but reduces 

spatial locality if the block size of vector b is greater than 2 (n>2). If due to space 
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limitations, blocked vector c does not fit in memory, accessing vector c in the loop 

blocking algorithm leads to poor temporal locality compared to the non-blocked 

algorithm.  

The performance of the loop blocking algorithm for matrix-vector multiplication 

with varying block size is shown in Table 5.6. We use a fixed problem size with m=1024 

and n=1048576 and double precision floating point.  

 

TABLE 5.6: The performance of loop blocking algorithm with varying block size. 

Block size 1 × 1 4 × 4 8 × 8 16 × 16 32 ×32 64 × 64 128×128 

Vector b in Byte 4 16 32 64 128 256 512 

Execution time (s) 6.4 4.5 5.2 10.6 15.6 10.5 7.8 
 

Block size 256×256 512×512 1k × 1k 2k × 2k 2k × 4k 2k × 8k 2k × 16k 

Vector b in Byte 1 K 2 K 4 K 8 K 16 K 32 K 64 K 
Execution time (s) 5.7 4.6 4.3 4.0 3.9 3.9 4.0 

 

Block size 2k× 32k 2k × 64k 2k×128k 2k×256k 2k×512k 2k×1M 

Vector b in Byte 128 K 256 K 512 K 1 M 2 M 4 M 

Execution time (s) 4.0 3.9 4.0 4.4 5.4 6.4 

 
 

As shown in Table 5.6, the loop blocking algorithm reduces the execution time in 

most cases. The highest speed-up of loop blocking algorithm over the non-blocked 

version is about 1.4 and is achieved for several different block sizes. However, some 

block sizes of the block algorithm lead to a worse performance than the non-blocked 

case. For example, the performance with 32×32 block size shows 2.4 times slower worst 

case performance. Note that even if the block size is small enough as compared to the 

cache size, the other factors such as replacement policy and set-associative can lead to 

poor locality by replacing useful entries leading to degradation in cache performance. 

Also, other optimization techniques, such as choice of layout, padding (for alignment) 
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and computational reordering may be required to realize the potential benefits of loop 

blocking.  

5.3.4 Loop Transformation: Loop Unrolling 

Loop unrolling is a well-known compiler optimization technique to convert a loop 

into straight-line code. This technique helps in the elimination of branch instructions and 

enables the implementation of a scheduling for efficient cache usage. However, it can 

lead to an increase in the code size and extra computations with a compiler that does not 

optimize well. Table 5.7 shows pseudo codes for multiplying (m×n) matrix A by n vector 

b to get a result m vector c. The pseudo code describing the nested loop of the matrix-

vector multiplication algorithm is shown in Table 5.7. The nested loop implementation is 

shown in Table 5.7(a), and the partial loop unrolling implementation with 

unrolling_factor = 2 is shown in Table 5.7(b).  

 

TABLE 5.7: An example of matrix-vector multiplication with m×n matrix A using loop 
unrolling (c = A×b). 

1: 
2: 
3: 

for (i=0; i<m; i++) 
for (j=0; j<n; j++) 
    c[i] = c[i] + A[i][j]*b[j]; 

1: 
2: 
3: 
4: 

for (i=0; i<m; i++) 
for (j=0; j<n; j+=2) { 

             c[i] = c[i] + A[i][j]*b[j]; 
       c[i] = c[i] + A[i][j+1]*b[j+1]; } 

(a) Nest loop implementation (b) Partial loop unrolling implementation with 
unrolling_factor=2 

 
 

Performance Analysis: 

We investigate the performance of different loop unrolling factors with the 

compiler optimization level –O3. We use a fixed problem size of m=1024 and n=1024 

which performs in 7.6 milliseconds (260 MFLOPS) for the nested loop implementation, 

unrolling_factor=0, with single-precision floating-point. Note that all implementations 
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use row-major layout scheme. As shown in Table 5.8, the highest performance of 365 

MFLOPS is achieved with unrolling_factor=8. The performance does not vary much 

when unrolling_factor is greater than 4. 

 

TABLE 5.8: The performance of loop unrolling algorithm with varying unrolling factor. 
 

unrolling_factor 0 2 4 8 16 32 

Performance in MFLOPS 260 302 353 365 360 364 

Execution time (ms) 7.6 6.6 5.6 5.4 5.5 5.4 

 
 

5.3.5 Loop Transformation: Loop Interchange (computational reordering) 

Loop interchange also known as loop permutation is the process of exchanging 

the order of multiple loop iterations. This technique is useful in achieving simple 

computational reordering [37]. For the matrix-vector multiplication shown in Table 5.9, 

the outer loop becomes the inner loop or vice versa. This implies that the loop 

interchange technique simply changes the computational ordering for matrix-vector 

multiplication between depth first (1DF) and breadth first (1BF) ordering (see Chapter 3). 

The effectiveness of loop interchange depends on the behavior of an algorithm and layout 

scheme.  

 

TABLE 5.9: Examples of matrix-vector multiplication with m×n matrix A using loop 
interchange(c = A×b). 
 

for (j=0; j<n; j++) 
for (i=0; i<m; i++)  

            c[i] = c[i] + A[i][j]*b[j]; 

for (j=0; j<n; j++) 
    for (i=0; i<m; i++) 
        c[i] +=  A[j][i]*b[j]; 

(a) Loop interchange in row-major order layout (b) Loop interchange in column order layout 
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As shown in Table 5.9, both implementations follow 1BF computational ordering, 

but each implementation uses different layout schemes. The implementation shown in 

Table 5.9(a) uses row-major order layout, and the implementation shown in Table 5.9(b) 

uses column-major order layout scheme. The memory access pattern for the 

implementation, shown in Table 5.9(b), for matrix multiplication with 4×4 matrix A is 

shown in Table 5.10.  

 

TABLE 5.10: The memory access pattern for the loop interchange algorithm with 4×4 
matrix A in column-major order layout scheme shown in Table 5.9 (b). 
 

 
Memory address by each column of matrix A 

Column 1 Column 2 Column 3 Column 4 

Matrix A 1 � 2 � 3 � 4� 5 � 6 � 7 � 8� 9 � 10 � 11 � 12� 13 � 14 � 15 � 16 

Vector b 1 � 1 � 1 � 1� 2 � 2 � 2 � 2� 3 � 3 � 3 � 3 � 4 � 4 � 4 � 4 

Vector c 1 � 2 � 3 � 4� 1 � 2 � 3 � 4� 1 � 2 � 3 � 4 � 1 � 2 � 3 � 4 

 
 

Performance Analysis: 

The performance of the loop interchange algorithm for matrix-vector 

multiplication with varying problem size n is shown in Table 5.11. We use single 

precision floating point and fix m=1024, and vary n. The performance of the nest loop 

algorithm with row-major and column-major order layouts is shown in Table 5.11.  The 

implementation with loop interchange, which changes the computational ordering from 

1DF to 1BF for matrix multiplication algorithm, shows better performance for the 

column-major order layout scheme.  
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TABLE 5.11: The performance of loop interchange algorithm with varying problem size 
n. 

(a) The performance in row-major order layout with loop interchange 
n 512 1024 2048 4096 8192 16384 

MFLOPS 477 270.16 214.89 183.39 154 154 

ms 2.1 7.4 18.61 43.62 103.7 207.2 
 

n 32768 65536 1311072 262144 524288 1048576 
MFLOPS 30.57 30.1 29.56 30 29 28 

ms 2093.4 4252.3 8659.4 16847.2 35208 72877.2 
 

(b) The performance in column-major order layout with loop interchange 
n 512 1024 2048 4096 8192 16384 

MFLOPS 1377 1276 1153 1087 1087 1085 
ms 0.73 1.56 3.5 7.35 14.7 29.4 

 

n 32768 65536 1311072 262144 524288 1048576 
MFLOPS 1080 1087 1086 1088 1086 1085 

ms 59.24 117.73 235.57 470.23 942.28 1886.75 

 
 

5.3.6 Vectorization  

Vectorization is the process of converting a program from a scalar 

implementation to a vector implementation. While the scalar implementation operates on 

a pair of operands at a time, the vector implementation can perform multiple operations 

on a pair of vector (series of adjacent values) operands at a time. Most of general purpose 

commercial multicores support vectorization using Single Instruction Multiple Data 

(SIMD) vector extensions to achieve high performance. However, vectorization is a 

machine dependent optimization and depends on the alignment of data in memory. In 

order to understand some of the possible vectorization implementation techniques on our 

experimental setups, several SIMD vectorization (SIMDize) examples using pragmas or 

Intel x86_64 SSE2 intrinsics are shown in Table 5.12. The pragmas are machine- or 

operating system-specific by definition, and are usually different for every compiler. The 
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pragmas directive offer a way for each compiler to offer machine- and operating system-

specific features while retaining overall compatibility with the C and C++ languages. The 

pragmas can be used in conditional statements, to provide new preprocessor 

functionality, or to provide implementation-defined information to the compiler. 

In the Table 5.12, we show six sample implementations of the SIMD 

vectorization techniques for matrix-vector multiplication algorithm. The implementations 

shown in Table 5.12(a), (b) and (c) use the pragmas directive and the loop unrolling 

technique with unrolling_factor=4 (see Section 5.3.2) for performing four single-

precision floating-point operations simultaneously. We use the pragmas vector aligned to 

support vectorization with unit-stride fashion. We also use the row-major order layout 

scheme since the computational order is row-major. Note that the row-major order for 

matrix-vector multiplication is same as following 1DF scheduling. The implementation 

shown in Table 5.12(a) is a vector implementation without using any local variables 

where as 5.12(b) and (c) employs local variables. The use of local variables enables 

register level of intermediate results without incurring memory accesses. The 

implementation shown in Table 5.12(b) uses one local parameter t to store the 

intermediate computing value and updates output vector c in the inner loop. The 

implementation shown in Table 5.12(c) uses four local parameters to store the 

intermediate computing values, and updates output vector c in the outer loop.  
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TABLE 5.12: The example of matrix-vector multiplication with m×n matrix A using 
vectorization (c = A×b). 
 

for (i=0; i<m; i++) 
    for (j=0; j<n; j+=4) 
        #pragma vector aligned 
        c[i] += A[i][j]*b[j]; 
        c[i] += A[i][j+1]*b[j+1]; 
        c[i] += A[i][j+2]*b[j+2]; 
        c[i] += A[i][j+3]*b[j+3]; 
    end for 
end for 

for (i=0;i<m;i++) 
    for (j=0;j<n;j+=4) 
        #pragma vector aligned 
         t = A[i][j]*b[j] + A[i][j+1]*b[j+1] 
              + A[i][j+2]*b[j+2] + A[i][j+3]*b[j+3]; 
        c[i] += t; 
    end for 
end for 

(a) Row-major using pragma (b) Row-major using pragma and a local variable 
  

for (i=0;i<m;i++) 
    t[0]=0.0; t[1]=0.0; t[2]=0.0; t[3]=0.0; 
    for (j=0;j<n;j+=4) 
        #pragma vector aligned 
        t[0] += A[i][j]*b[j]; 
        t[1] += A[i][j+1]*b[j+1]; 
        t[2] += A[i][j+2]*b[j+2]; 
        t[3] += A[i][j+3]*b[j+3]; 
   end for 
    c[i] += t[0] + t[1] + t[2] + t[3]; 
end for 

for (i=0;i<m;i++) 
    for (j=0;j<n;j+=4) 
        __m128 va = _mm_load_ps(&A[i][j]); 
        __m128 vb = _mm_load_ps(&b[j]); 
        __m128 vt = _mm_mul_ps(va,vb); 
        _mm_store_ps(&t[0],vt); 
        c[i] +=  t[0] +t[1]+t[2]+t[3]; 
    end for 
end for 

(c)  Row-major using pragma and local variables (d) Row-major using Intel x86_64 SSE2 intrinsics 

 

for (i=0;i<m;i++) 
    __m128 vt = _mm_load_ps1(0.0); 
    for (j=0;j<n;j+=4) 
        __m128 va = _mm_load_ps(&A[i][j]); 
        __m128 vb = _mm_load_ps(&b[j]); 
        vt = _mm_add_ps(_mm_mul_ps(va,vb),vt); 
    end for 
    _mm_store_ps(&t[0],vt); 
    c[i] += t[0] + t[1] + t[2] + t[3]; 
end for 

for (j=0;j<n;j++) 
    for (i=0;i<m;i+=4) 
        __m128 va = _mm_load_ps(&A[j][i]); 
        __m128 vb = _mm_load_ps1(&b[j]); 
        __m128 vc = _mm_load_ps(&c[i]); 
        vc=_mm_add_ps(_mm_mul_ps(va,vb),vc); 
        _mm_store_ps(&c[i],vc); 
    end for 
end for 

(e) Row-major using Intel x86_64 SSE2 intrinsics 
and local variables in outer loop 

(f) Colum-major with loop interchange using Intel 
x86_64 SSE2 intrinsics 
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The implementations shown in Table 5.12(d), (e) and (f) use Intel x86_64 SSE2 

intrinsics with loop unrolling technique with unrolling_factor=4 for four single-precision 

floating-point operations simultaneously. Similar to the pragma implementations, Table 

5.12(d) and (e) uses local variables. The implementation shown in Table 5.12(d) uses 

row-major scheme and updates output vector c in the inner loop. The implementation 

shown in Table 5.12(e) uses row-major scheme and updates output vector c in the outer 

loop. The implementation shown in Table 5.12(f) uses column-major scheme and loop 

interchange, and updates output vector c in the inner loop. 

Performance Analysis: 

The performance of vectorization techniques for matrix-vector multiplication with 

varying problem size n is shown in Table 5.13. In this study, we use a fixed m=1024, 

while varying the problem size n. All implementations for vecctorization techniques use 

single precision floating point.  

As shown in Table 5.13(a) and (b), the pragma implementations using 

intermediate local variables to update output vector c in the inner loop, shows at most 2 

times speed-up (n=512) compared with the simple implementation shown in 5.12(a). As 

shown in Table 5.13(c), we observe similar performance for the implementations 

irrespective of whether the vector c is updated in the inner or outer loop. 

As shown in Table 5.13(d) and (e), when the vectorization is implemented using 

the Intel x86_64 SSE2 intrinsics, the implementation using intermediate local variables to 

update output vector c in inner loop, (Table 5.12(d)), shows similar performance as the 

simple implementation (Table 5.12(a)). However, as shown in Table 5.13(f) the 

implementation using intermediate local variables to update output vector c in the outer 
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loop, (Table 5.12(e)), performs at most 4.3 times speed-up (n=512) as compared to the 

simple implementation (Table 5.12(a)).  

 
 
TABLE 5.13: The performance of vectorization algorithms with a varying problem size n 
and a fixed m=1024. 

(a) The performance in row-major layout scheme using pragma 
n 512 1024 2048 4096 8192 16384 32768 65536 1311072 262144 524288 1048576 

MFLOPS 956 900 868 885 873 883 858 848 836 779 733 645 

ms 1.04 2.22 4.6 9.03 18.3 36.2 74.57 150.87 306.19 656.54 1396.49 3172.56 

(b) The performance in row-major layout scheme using pragma and a local variable 
n 512 1024 2048 4096 8192 16384 32768 65536 1311072 262144 524288 1048576 

MFLOPS 1901 1464 1196 1162 1142 1146 1086 1074 1040 907 786 707 
ms 0.52 1.36 3.34 6.88 14.01 27.92 58.9 119.07 246.03 564.25 1301.77 2895 

(c) The performance in row-major layout scheme using pragma and local variables 
n 512 1024 2048 4096 8192 16384 32768 65536 1311072 262144 524288 1048576 

MFLOPS 1893 1567 1205 1154 1148 1162 1074 1056 1015 908 785 662 
ms 0.528 1.27 3.31 6.92 13.93 27.52 59.56 121.12 252.00 563.53 1303.14 3092 

(d) The performance in row-major layout scheme SSE2 intrinsics  
n 512 1024 2048 4096 8192 16384 32768 65536 1311072 262144 524288 1048576 

MFLOPS 959 928 895 890 882 886 886 871 859 810 757 678 
ms 1.04 2.15 4.46 8.97 18.12 36.09 72.23 126.88 297.88 632.09 1352.61 3019.65 

(e) The performance in row-major layout scheme using SSE2 intrinsics and local 
variables 

n 512 1024 2048 4096 8192 16384 32768 65536 1311072 262144 524288 1048576 

MFLOPS 4149 2328 1419 1275 1285 1315 1262 1270 1205 1100 897.9 739 

ms 0.24 0.85 2.81 6.27 12.44 24.32 50.67 100.72 212.42 465.1 1140.43 2769.2 

(f) The performance in column-major layout scheme with loop interchange using SSE2 
intrinsics 

n 512 1024 2048 4096 8192 16384 32768 65536 1311072 262144 524288 1048576 

MFLOPS 3597 2249 1548 1361 1321 1317 1322 1324 1317 1327 1324 1323 

ms 0.27 0.88 2.58 5.87 12.1 24.28 48.39 96.66 194.31 385.79 772.9 1547.06 

 
 

Use of row-major order for both layout and computational order for vectorization 

requires scalar operation to the update output vector c. The implementation shown in 

Table 12(f) uses column-major layout and computational order to eliminate scalar 
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computations to update output vector c. The performance of this scheme, shown in Table 

5.12(f), shows the highest performance for large problem sizes (n > 2048).  

Therefore, for a given algorithm, efficient vectorization techniques depend on 

both the layout and the computational order. 

5.4 Case Studies: Experimental Results and Performance Analysis 

In this section, we demonstrate the effectiveness of the proposed parallel 

programming design methodology using several algorithms as benchmarks: Dense 

Matrix Multiplication (DMM), Finite Difference Time Domain (FDTD), LU 

Decomposition, and Power Flow Solver with Gauss-Seidel (PFS-GS). The algorithms are 

popular computational methods in science and engineering. Moreover, the applications 

have different memory access patterns on multi-dimensional arrays. The experimental 

results and performance analysis of each algorithm are summarized in the following 

sections. The performance analysis can be applied for other applications which have 

similar memory access patterns. 

5.4.1 Dense Matrix Multiplication (DMM) 

In this subsection, we discuss the parallel implementations of the matrix 

multiplication algorithm for multiplying two n×n square matrices A and B to get a result 

n×n square matrix C = A×B where n is a power of 2 on both the Intel Clovertown and the 

IBM Cell/B.E. platforms. The matrix multiplication is an important kernel in science and 

engineering problems. Also it is closely related to other linear algebra algorithms and is 

one of the most-studied algorithms in high performance computing [5, 6, 33, 38]. The 

computational complexity of the conventional serial matrix multiplication algorithm 

shown in Table 5.14 is O(n3) while the data access time and space requirements are 
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O(n2). The data dependency of the standard matrix multiplication is shown in Figure 5.9. 

In the standard matrix multiplication operation, each output element of matrix C is 

updated with the dot product of one row of matrix A and one column of matrix B. 

Therefore, with O(n) = O(n3/n2) times of data reused for each element of the three 

matrices, ensuring efficient memory access is an  important challenges on multicores. 

Moreover, for cache- and space-efficient computing, integrated prefetching and caching, 

and the use of appropriate in-core optimization are also important factors in improving 

the parallel performance on multicore platforms. 

 
 
TABLE 5.14: The conventional serial algorithm for multiplying of two n×n square 
matrices. 
 

1: 
2: 
3: 
4: 

for (i=0;i<n;i++) 
   for (j=0;j<n;j++) 
      for (k=0;k<n;k++) 
          C[i][j] = C[i][j] +A[i][k]×B[k][j]; 

 
 

 

FIGURE 5.9: The data dependency of the standard matrix multiplication with n×n square 
matrices. 
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5.4.1.1 Multicore-efficient Implementation 

We develop our multicore-efficient implementations on both the Intel Clovertown 

and IBM Cell/B.E. platforms following our parallel programming methodology discussed 

in Chapter 1. For benchmarking, we compare the effectiveness of our approach to that of 

the naïve parallel implementation which uses three nested loops on the both platforms. 

Additionally, on the Intel Clovertown platform we compare the effectiveness of our 

approach to that of the General Matrix Multiply (GEMM) implementation from the Intel 

Math Kernel Library (MKL). Intel MKL is a library of highly optimized, extensively 

threaded math routines including Basic Linear Algebra Subprograms (BLAS) for science, 

engineering, and financial applications that require high performance. Note all 

implementations in this subsection are based on the conventional serial algorithm shown 

in Table 5.14. 

Naïve Parallel Implementation: 

The naïve parallel implementation uses row-major order of the array layout for 

matrix A and C, and column-major order of the array layout for matrix B. For 

parallelizing the data among the cores, the row-wise array distribution [34] based on one-

dimensional partitioning of the output matrix C is used. Then the computing order of 

each output partition follows depth first scheduling which is the computing order of the 

conventional serial algorithm. We use the OpenMP parallel programming library for the 

Intel Clovertown platform and the IBM libspe parallel programming library for the IBM 

Cell/B.E. platform (see Chapter 2). Since DMA transfer of data is required on the IBM 

Cell/B.E. platform, we use single buffer each for all matrices without considering caching 

and prefetching (see Chapter 4). A total of 4 buffers are used (three reads and one write). 
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The each buffer size is chosen to be 16 KB corresponding to the maximum size of the 

DMA transfer. The total buffer size of 64 KB is less than the available size of the SPE 

local store. The GEMM implementation of Intel MKL uses the same data layout as our 

naïve implementation. GEMM can be parallelized using OpenMP. 

Mutlicore-efficient Implementation: 

We design our multicore-efficient implementation based on our parallel 

programming methodology (see Chapter 1) to improve the performance on both the Intel 

Clovertown and the IBM Cell/B.E. platforms. The design steps for our multicore-efficient 

implementation are as follows − 

First, we determine the architecture characteristics of the target platforms to find 

the model parameters (see Chapter 3) which include the depth of memory hierarchy (d), 

the effective number of processing components (Pi) at each level, and the size of the 

available memory on a component (Mi) at level-i where 0 ≤ i ≤ d. Note that level-d is the 

main memory level and level-0 is the register level.  

Our Intel Clovertown platform shown in Figure 5.1 has d=3, P1=1, P2=2, P3=4, 

M1= 32KB, M2=4MB and M3=16GB. Our IBM Cell/B.E. platform shown in Figure 5.2 

has that d=2, P1=1, P2=8, M1=256KB and M2=200MB. 

Next, we use the Unified Multicore computational model, the weighted-vertex 

parallel pebble strategy and data-aware scheduling on hierarchical DAGs (see Chapter 3) 

to analyze the algorithm and to find the block sizes and scheduling at each level. 

Additionally, we use integrated data prefetching and caching model discussed in Chapter 

4 to analyze overlaps between computation and data transfer and determine the multi-
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buffering scheme for data transfer. We then modify the block sizes based on the choice of 

the multi-buffering scheme.  

For our Intel Clovertown platform, we choose a three levels of blocking − L2-

block for L2 cache, L1-block for L1 cache and register-block for registers. Then, the 

entire problem of n×n of each matrix (A, B and C) is partitioned into smaller L2-blocks 

of size B2=|b2×b2|. Each L2-block is further partitioned into L1-blocks of size 

B1=|b1×b1|. Then each L1-block is partitioned into register-block B0=|b0×b0|. We then 

determine the size of block at each level using the weighted-vertex parallel pebble 

strategy based on CONTROLLED-PDF scheduling illustrated in Chapter 3. The size of 

the blocks at each level is shown in Table 5.15. The scheduling of the blocks among the 

effective number of components is based on the CONTROLLED-PDF schedule at each 

level.  

For our IBM Cell/B.E. platform, we choose a two-level blocking, LS-block for 

LS, and register-block for registers. The entire problem of n×n of each matrix (A, B and 

C) is partitioned into smaller LS-blocks of size B1=|b1×b1|. Then, each LS-block is 

further partitioned into register-blocks of size B0=|b0×b0|. We determine the size of block 

at each level using the weighted-vertex parallel pebble strategy based on 

CONTROLLED-PDF scheduling. Since we use DMA transfer between main memory 

and LS, the size of LS-block is modified according to the double-buffering scheme used. 

The LS-block size is chosen such that eight LS-blocks, three inputs (matrix A, B and C) 

and one output (matrix C), is less than the available size of each LS. Note that we 

consider the matrix C for both input and output. The size of the blocks at each level is 
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shown in Table 5.15. The distribution of blocks among the effective number of 

components is based on CONTROLLED-PDF scheduling at each level.  

In the third step, we design our multicore-efficient implementation with the 

optimal block sizes and scheduling scheme determined in the second step. We use 

parallel threading model libraries (see Chapter 2) and in-core optimization techniques 

(see Section 5.3) to achieve close to theoretical performance of the machine. The 

following in-core optimization techniques are used − 

(1) To avoid the penalties of non-unit-stride memory access in multi-level blocking, 

we determine optimal data layout scheme of the input/output arrays at each level.  

(2) We use loop tiling technique to implement multi-level blocking and we reorder 

computations using such as loop unrolling and loop interchange techniques to 

achieve our computational scheduling at each level.  

(3) We use vectorization technique for computation of the register-block to deliver 

better performance since both Intel Clovertown and IBM Cell/B.E. support 128-

bit SIMD intrinsics. Although compiler with optimization flags attempt to 

generate “SIMDized” version of the code, compilers often fail at effective 

vectorization. We modify the scheduling at the register level as shown in Figure 

5.10. Then we use loop unrolling and SIMD intrinsics techniques to implement 

effective vectorization for register level as shown in Figure 5.10. Further details 

of the scheduling and vectorization techniques at the register level are provided in 

Section 5.4.1.2. 
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For our Intel Clovertown platform, we use Z-Morton order layout scheme of the 

input/output arrays for 3-level blocking. We use Intel x86_64 SSE2 intrinsics for 

vectorization and OpenMP for threading model library.  

For our IBM Cell/B.E. platform, we use Z-Morton order layout scheme of the 

input/output arrays for 2-level blocking. We use IBM SPU intrinsics for vectorization and 

IBM libspe for threading model library.  

The summary of our multicore-efficient implementation techniques is shown in 

Table 5.15.  

 

TABLE 5.15: The summary of our implementation techniques of matrix multiplication 
used for our platforms. 
 

Optimization 
Techniques 

Multicore Platforms 

Intel Clovertown IBM Cell/B.E. 

Multi-level blocking 3-level blocking (b0=4, b1=64, b2=512) 2-level blocking (b0=4, b1= 64) 

Scheduling CONTROLLED-PDF 
(except at register level) 

CONTROLLED-PDF 
(except at register level) 

Layout Scheme Z-Morton ordering Z-Morton ordering 

Multi-buffering Single buffering Double buffering 

Vectorization for 
register level 

Intel x86_64 SSE2 intrinsics 
with 128-bit registers 

IBM Cell/B.E. SPU intrinsics 
with 128-bit registers 

Loop unrolling for 
Vectorization unrolling factor=4 for register-block unrolling factor=4 for register-block 

Threading OpenMP IBM libspe 

 

5.4.1.2 Optimization at Register Level  

Scheduling at Register Level: 

As mentioned in Section 5.4.1, we use CONTROLLED-PDF scheduling at each 

level of the memory hierarchy. The CONTROLLED-PDF schedule (see Chapter 3) uses 
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a 1DF scheduling scheme is used at register level blocking. However, we modify the 

scheduling at register level blocking to better accommodate vectorication. We show the 

example of scheduling schemes on the weighted DAGs for register level blocking with 

b0=2 in Figure 5.10.  

 

(a) Depth-First sequential Scheduling scheme (1DF) 

(b) Breadth-First sequential Scheduling scheme (1BF) 

(c) Hybrid scheduling scheme that combines the 1DF with 1BF 

FIGURE 5.10: The example of the scheduling schemes on the weighted DAGs at register 
level blocking with b0=2; Note, the number on right side of each computational vertex 
represents the sequential scheduling order. 

 
 

In Figure 5.10, the number on the right side of computational vertices for each 

scheduling scheme indicates the sequential scheduling order. Figure 5.10(a) shows 1DF 

scheduling scheme which is used in the CONTROLLED-PDF scheduling at register level 

blocking. Figure 5.10(b) shows 1BF scheduling scheme and Figure 5.10(c) shows hybrid 

scheduling scheme that combines 1DF and 1BF on weighted DAGs at the register level. 

To motivate the choice of the scheduling scheme that supports vectorization efficiently, 
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consider the computation of the elements of the matrix C as shown in Figure 5.11. The 

vectorization based on 1DF and 1BF the vector multiplication computes partial products 

for the same element of matrix C (such as c00+=a00×b00 and c00+=a01×b10) as 

shown in Figure 5.11(a). Scalar addition of the elements of the output vector is required 

to obtain the final result. On the other hand, vectorization based on hybrid scheduling 

scheme computes partial products for different elements of matrix C (such as 

c00+=a00×b00 and c01+=a00×b0) as shown in Figure 5.11(b). The final result is then 

obtained by vector addition of the output vectors. The hybrid scheme thus allows for 

vector pipelining and hence is the preferred scheduling method at the register level.  

 

 
(a)     (b) 

FIGURE 5.11: The example of vector computations for two multiplications following by 
two addition operations simultaneously: (a) Based on 1DF or 1BF scheduling scheme; (b) 
Based on hybrid scheduling scheme. 

 
 

Vectorization at Register Level: 

We now present the implementation details of vectorization using hybrid 

scheduling at the register level on the Intel Clovertown platform. Intel x86_64 SSE2 

intrinsics are used at with a register level block size of b0=4.  
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.  

FIGURE 5.12: Vectorization implementation at register level blocking with b0=4 using 
hybrid scheduling scheme and Intel x86_64 SSE2 intrinsics for Intel Clovertown 
platform. 

 
 

In Figure 5.12, first we load each element of the matrix A into a 128-bit register 

using _mm_load_ps1 which is an instruction supported by Intel x86_64 SSE2 intrinsics 

to load one single-precision floating-point data and copy it into all four words of a 128-

bit register. Note that each 128-bit register of matrix A represents four pebbles cloning on 

the weighted-vertex pebble strategy. Then one corresponding row of the matrix B, is 

loaded into a 128-bit register using _mm_load_ps which is an instruction supported by 

Intel x86_64 SSE2 intrinsics to load four aligned single-precision floating-point into a 

128-bit register. Also one-row of the matrix C, which is product one element of matrix A 

and one-row of matrix B, is loaded into a 128-bit register using _mm_load_ps. Then we 

multiply two 128-bit registers of matrix A and B using _mm_mul_ps which is an 

instruction supported by Intel x86_64 SSE2 intrinsics to multiply two 128-bit registers 

with single-precision floating-point data at a time, and we add into the 128-bit register of 

matrix C using _mm_add_ps which is an instruction supported by Intel x86_64 SSE2 

intrinsics to add two 128-bit registers with single-precision floating-point data at a time. 

We repeat these operations until the multiplication of the two register-blocks with b0=4 
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of matrix A and B complete. We then store the matrix C into the upper level memory 

using _mm_store_ps which is an instruction supported by Intel x86_64 SSE2 intrinsics to 

store four single-precision floating-point data into the upper level memory. For our IBM 

Cell/B.E. platform, we use the IBM SPU intrinsics instead of the Intel x86_64 SSE2 

following the same processes as shown in Figure 5.12. Note that we also use loop 

unrolling technique with unrolling_factor=4 (see Section 5.3) to implement vectorization 

at register level blocking with b0=4. 

5.4.1.3 Performance Analysis 

Now, we compare the effectiveness of the multicore-efficient implementation to 

that of the naïve parallel implementation on both platforms. Additionally for the Intel 

Clovertown platform, we compare our multicore-efficient implementation to that of the 

Intel MKL GEMM implementation. 

Performance on Intel Clovertown Platform: 

First, we show the effect of the L1 block size and register level scheduling on the 

performance on a single core of the Intel Clovertown platform.  The problem size is fixed 

at n = 4096 (corresponding to 16 GB), L2 block size is fixed at b2 = 512 and the register 

block size is fixed at b0 = 4. 1DF scheduling is used at the L1 and L2 cache levels.  

 

TABLE 5.16: The performance (GFLOPS) for varying schedules and sizes of L1-block 
(b1) with fixed size of L2-block (b2=512) and register-block (b0=4) on a single core of 
Intel Clovertown platform. We use 1DF scheduling scheme for L1-level and L2-level 
blocking, and vary the scheduling scheme at the register level. 
 

The size of L1-block b1 4 8 16 32 64 128 256 

The size of 3b1
2 in bytes 0.18 KB 0.75 KB 3 KB 12 KB 48 KB 192 KB 768 KB 

Scheduling 
scheme at 
register level 

1DF 5.78 5.35 5.18 5.95 5.22 5.69 5.02 

1BF 5.88 5.75 5.78 5.85 5.32 5.39 4.92 

Hybrid 5.91 5.90 5.99 6.01 6.19 5.82 5.64 
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As shown in Table 5.16, the highest performance of 6.19 GFLOPS on a single 

core is achieved with the L1-block size of 64 and a hybrid scheduling scheme at the 

register level. With an L1-block size of 64, the memory space required for all three L1-

blocks of matrix A, B and C is 48 KB. Unfortunately, this exceeds the 32 KB capacity of 

the L1 cache of the Intel Clovertown processor. However, the maximum size of the L1-

block is b1=90 for a 32 KB L1 cache size. Thus the weighted vertex pebbling strategy 

allows for larger block size compared to the nominal pebbling strategy (See Chapter 3 for 

details). 

To study the impact of multi-level blocking on performance, we show the cache 

miss rates (%) and the system bus utilization (%) with respect to scaling of the problem 

size (problem-scaling) and the number of cores (core-scaling) for both naïve parallel and 

multicore-efficient implementations on the Intel Clovertown platform.  

As shown in Table 5.17, our multicore-efficient implementation has negligibly 

low miss rates demonstrating the benefits of data sharing (temporal locality) among the 

block computation at each level of the memory hierarchy of the Intel Clovertown 

platform. Moreover, the Z-Morton order layout minimizes the non-unit-stride access 

penalties due to multi-level blocking. As seen in Table 5.17 the cache miss rates of the 

multicore-efficient implementation is independent of core-scaling and problem-scaling 

with low cache miss rates of 0.001% for the L2 cache miss rate and 1.7% for the L1 

cache miss rate. On the other hand, the naïve parallel implementation shows almost a 

linear increase in miss rate with problem scaling while showing no clearly identifiable 

trend in core-scaling. 

 



132 

 

TABLE 5.17: Cache miss rate (%) and system bus bandwidth utilization (%) on Intel 
Clovertown platform. 
 

Problem 
size (n) 

# 
cores 

L2 cache miss rate (%) L1 cache miss rate (%) Bus utilization (%) 

naïve 
parallel 

Multicore-
efficient 

naïve 
parallel 

Multicore-
efficient  

naïve 
parallel 

Multicore-
efficient  

1024 

1 0.7 0.001 2.5 1.7 69.77 1.23 
2 1.1 0.001 1.5 1.7 48.24 1.5 
4 1.7 0.001 2.1 1.7 30.14 1.34 
8 1.6 0.001 2.2 1.7 34.14 1.14 

2048 

1 3.1 0.001 5.1 1.7 73.36 0.71 
2 4.7 0.001 4.9 1.7 65.95 0.95 
4 3.7 0.001 5.3 1.7 66.53 1.11 
8 2.6 0.001 4.6 1.7 71.96 2.04 

4096 

1 4.2 0.001 10.3 1.7 72.7 0.82 
2 8.1 0.001 10.6 1.7 71.1 1.12 
4 5.2 0.001 10.4 1.7 87.09 1.52 
8 4.2 0.001 10.2 1.7 76.2 0.69 

 
 

The bus utilization is another concern because memory access times worsen with 

increasing amounts of traffic on the bus. The low bus utilization (<2%) of our approach 

correlates with the low L2 cache miss rate. On the contrary, the maximum bus utilization 

is over 80% for the naïve parallel implementation. From Intel internal measurements and 

experiments, the memory latencies increase at a rapid rate after ~60% FSB utilization 

[51].  

In Figure 5.13, we show the overall performance in GFLOPS per for problem-

scaling and core-scaling for both naïve parallel, Intel MKL, and our multicore-efficient 

implementation on the Intel Clovertown platform. 
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            (a)                 (b) 

FIGURE 5.13: Overall performance on Intel Clovertown platform: (a) Performance in 
GFLOPS per core; (b) Execution time in seconds on single core. 

 
 

In Figure 5.13(a), the naïve parallel implementation shows performance of 1.7 

GFLOPS with small size of problem (n=1024). Here the total problem size of 12 MB for 

each matrix A, B and C can fit into the four L2 caches. However, for larger problem sizes 

(n=2048 and n=4096), the naïve parallel approach achieves only 0.2 GFLOPS 

corresponding to the increased cache miss rates shown in Table 5.17. Our multicore-

efficient implementation performs at a performance of 6.2 GFLOPS/core for n=4096. 

Similar performances are attained for smaller problems sizes (n=1024, n=2048). These 

performance figures correspond to the low cache miss rates independent of the problem 

size (see Table 5.17). The Intel MKL GEMM shows a peak performance of 6 

GFLOPS/core. In all of our implementations, we observe an almost linear scaling of 

performance with respect to the number of cores (core-scaling) when the problem size is 

large (n=2048 and n=4096). However, for a smaller problem size (n=1024), the 

performance per core gets reduced beyond four cores for both the GEMM 

implementation of Intel MKL and our multicore-efficient implementation. We believe 

that for small problem sizes (n=1024, 12MB) where the data fits into the four L2 caches, 
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while the benefits of data sharing between level-2 blocks is not prominent, the L2 

latencies increase with core scaling due to contention on the shared bus. 

In Figure 5.13(b), we compare the performance of the naïve and the multicore-

efficient implementation with to the ideal computing performance on the Intel 

Clovertown processor. The ideal execution time for matrix multiplication is the time 

required for 2n3 floating point operations with the theoretical peak core performance of 

9.32 GFLOPS on the Intel Clovertown processor. As seen in Figure 5.13(b) the 

multicore-efficient implementation performs close ideal.  

Performance on IBM Cell/B.E. Platform: 

First, we show the effect of the LS block size (b1) and multi-buffering on the 

performance on a single SPE of the IBM Cell/B.E. platform.  The problem size is fixed at 

n = 2048, the register block size is fixed at b0 = 4. 1DF scheduling is used at both levels.  

 

TABLE 5.18: The performance (GFLOPS) for different multi-buffering schemes and size 
of LS-block (b1) with fixed size of the register-block (b0=4) on a single SPE of IBM 
Cell/B.E. platform. We use the 1DF scheduling scheme for both level blocking.  
 

The size of LS-block b1 4 8 16 32 64 

The size of 4b1
2  in bytes 0.24 KB 1 KB 4 KB 16 KB 64 KB 

Single-buffering 
with caching and prefetching 5.9 6.3 6.5 6.6 6.6 

Double-buffering 
without caching and prefetching 6.3 6.6 6.7 6.7 6.8 

Double-buffering 
with caching and prefetching 6.8 7.0 7.1 7.1 7.1 

 
 

As shown in Table 5.18, the highest performance of 7.1 GFLOPS on a single SPE 

is achieved with the LS-block sizes (b1=16, 32, and 64) and double-buffering with 

caching and prefetching scheme at the LS-block level. With an LS-block size of 64, the 
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memory space required for all four LS-blocks of matrix A, B and C is 64-KB for single-

buffering scheme. However, with the block size the double-buffering scheme requires 

128 KB (See Chapter 4). For a fixed memory size, the implementation using double-

buffering with caching and prefetching scheme shows an 8% improvement in 

performance (in GFLOPS) compared to the single-buffering scheme with caching and 

pre-fetching. This suggests that the gain performance due to overlapping of computation 

and communication when double buffering offsets the reduced temporarily locality due to 

smaller block sizes. 

In Figure 5.14 we show the overall performance in GFLOPS per for problem-

scaling and core-scaling for both naïve parallel and our multicore-efficient 

implementation on the IBM Cell/B.E. platform. 

 

  
(a)                 (b) 

FIGURE 5.14: Overall performance on IBM Cell/B.E. platform: (a) Performance in 
GFLOPS per SPE; (b) Execution time in seconds on single SPE. 

 
 

In Figure 5.14(a), the naïve parallel implementation shows a performance of 0.43 

GFLOPS/SPE with the problem size (n=1024, n=2048). However, for a larger problem 

size (n=4096), the performance per SPE reduces to 0.35 GFLOPS/SPE. For n=4096 the 
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total memory space requires is 192 MB which exceeds the available size of main memory 

(180 MB) of our IBM Cell/B.E. platform. Hence swap space is needed on high latency 

disk which in turn reduces the performance. Our multicore-efficient implementation 

shows a performance of 7.1 GFLOPS/SPE for small problem sizes (n=1024, n=2048) 

and 2.15 GFLOPS for a larger problem size (n=4096). In all of our implementations, we 

observe an almost linear scaling of performance with respect to the number of cores 

(core-scaling) for all problem sizes.  

In Figure 5.14(b), we compare the performance of the multicore-efficient 

implementation with that the ideal computing performance on the IBM Cell/B.E. 

platform. The ideal time for matrix multiplication is the time required for 2n3 floating 

point operations with the theoretical peak performance of 25.6 GFLOPS per SPE for 

single precision floating point data on the IBM Cell/B.E. platform. As seen in Figure 

5.14(b) the multicore-efficient implementation performs close ideal with the problem size 

(n=1024, n=2048). However, as explained before, the high disk access latencies incurred 

with n=4096, reduces the performance of our multicore efficient implementation. 

5.4.2 Finite Difference Time Domain (FDTD) 

In this section, we discuss the parallel implementations of the three-dimensional 

Finite Difference Time Domain (3D-FDTD) method which is a numerical technique 

proposed by Yee to solve Maxwell’s equations [79]. The FDTD method is based on Yee 

Space Grid [1] and computes the electric-field (E-field) and magnetic-field (H-field) 

vectors in both time and space domain [64, 71, 78]. E-field and H-field vectors are 

updated at alternate half time steps in a leapfrog scheme [78] in time domain. Our 
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computational equations of E-field and H-field of the 3D-FDTD for analyzing planar 

microstrip circuits are as follows – 

��������	
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where, the indices i, j, k and t refer to the space and time of the standard Yee’s cell in the 

x-, y-, z-direction and time step, respectively, and ∆x, ∆y, ∆z, and ∆t represent the unit 

space interval in the x-, y-, z-direction and unit time interval, respectively. The dielectric 

parameters are epx (�x), epy(�x), epz(�x) and � is the permeability.  

The characteristic features of the 3D-FDTD method are (a) it is a computation and 

data-intensive problem performing O(n3) computations with O(n3) space requirement, (b) 

there is data dependency between E- and H-field computation in time domain, (c) there is 

no risk of a race condition for each field computation in space domain since the Yee cells 

can be computed independently for the E- and H-fields, and (d) a cell (e.g. Ex(i,j,k)) 

computation of each field in each direction refers to nearest-neighbors following a 2-

points stencil communication pattern in the space domain. For example, as shown in 
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Figure 5.15, in each cell, the x-directed E-filed (Ex) is updated with one cell of x-directed 

dielectric parameter (epx), two cells of y-directed H-field (Hy) and two cells of z-directed 

H-field (Hz).  

 

 
FIGURE 5.15: Example of data dependency in space domain for a cell of Ex 
computation. 
 
 

TABLE 5.19: The naïve serial 3D-FDTD algorithm. 

Algorithm: The naïve serial 3D-FDTD algorithm 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 

for t =1 to tmax do 
   /* E-field computation */ 
   for i,j,k =1 to imax, jmax, kmax do 
           update Electric-field of all-directions using Magnetic-fields 
   end for; 
   /* H-field computation */ 
   for i,j,k =1 to imax, jmax, kmax do 
           update Magnetic-field of all-directions using Electric-fields 
   end for 
end for 

 
 

5.4.2.1 Multicore-efficient Implementations 

For both the Intel Clovertown and IBM Cell/B.E. platforms, we develop our 

multicore-efficient implementations following our parallel programming methodology 
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discussed in Chapter 1. We compare the effectiveness of our approach to that of the naïve 

parallel implementation based on the naïve serial algorithm shown in Table 5.19.  

Naïve Parallel Implementation:  

The naïve parallel implementation uses row-major order of the array layout for a 

series of 2D yz-slices (yz-plane in x-direction) of each 3D Yee’s cells. The naïve parallel 

implementation computes all E-field computations in space domain first, followed by all 

H-field computations as shown in Table 5.19. The parallelization scheme for P cores uses 

a data partitioning scheme in the x-direction (a series of 2D yz- slices) as shown in Figure 

5.16(a). We implement naïve parallel algorithm using the OpenMP and IBM libspe in a 

straightforward manner on the Intel Clovertown and IBM Cell/B.E. platform 

respectively, relying mostly on compiler optimizations for performance. Additionally, we 

synchronize all P cores between E- and H-field computations in the time domain so that 

adjacent cores can update boundary data.  

 

        (a)           (b)                  (c) 

FIGURE 5.16: An example distribution of threads among four cores: (a) Data 
partitioning scheme for the naïve parallel algorithm; (b) Mapping threads to cores for 
both (a) and (c) data partitioning schemes; (c) Data partitioning scheme for the multicore 
efficient algorithm. 
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Multicore-efficient Implementation: 

We design our multicore-efficient implementation based on our parallel 

programming methodology (see Chapter 1) to improve the performance on both the Intel 

Clovertown and IBM Cell/B.E. platforms. The design steps for our multicore-efficient 

implementation are the same as for matrix multiplication implementation (see Section 

5.4.1).  

 

TABLE 5.20: The summary of our implementation techniques of 3D FDTD for our 
platforms. 
 

Optimization 
Techniques  

Multicore Platforms 

Intel Clovertown  IBM Cell/B.E.  

Multi-level blocking 3-level blocking (b0=4, b1=16, b2=64) 2-level blocking (b0=4, b1=16) 

Scheduling  CONTROLLED-PDF  
(except at register level) 

CONTROLLED-PDF  
(except at register level) 

Layout Scheme Row-major ordering Row-major ordering 

Multi-buffering Single buffering Double buffering 

Vectorization for 
register level 

Intel x86_64 SSE2 intrinsics  
with 128-bit registers 

IBM Cell/B.E. SPU intrinsics  
with 128-bit registers 

Loop unrolling for 
Vectorization  unrolling factor=4 for register-block unrolling factor=4 for register-block 

Threading OpenMP IBM libspe 

 
 

The summary of our mutlicore-efficient implementation techniques for 3D FDTD 

is shown in Table 5.20. For both platforms, similar to the naïve parallel implementation, 

we use a row-major order layout scheme for the series of 2D yz-slices in the x-direction. 

Unlike matrix multiplication, the Z-Morton layout for multi-level blockings suffers from 

performance penalties due to need to access boundary data between nearest-neighbor 

blocks at each level. As shown in Figure 5.16(c), the 3D blocks are divided into P 2D yz-

slices which are distributed among the P cores according to the CONTROLLED-PDF 
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schedule. Such a parallelization scheme simplifies the data movement between the cores 

associated with the update of boundary conditions. Within each core a 1DF scheduling 

scheme is used for blocks at each level. Additionally, for the IBM Cell/B.E. platform, we 

fetch all the required LS-blocks of data associated with Ex (Hx), Ey (Hy), and Ez (Hz) 

components initially prior to computation of the E-field (see Chapter 4). Similar to matrix 

multiplication, we modify the scheduling and use vectorization techniques at the register 

level for both platforms. Further details for register level scheduling are discussed in 

Section 5.4.2.2.  

5.4.2.2 Optimization at Register Level 

Scheduling at Register Level: 

Similar to matrix multiplication, we use a hybrid 1BF-1DF scheduling for register 

level blocking to better accommodate vectorization. In Figure 5.17, we show the hybrid 

scheduling scheme on the weighted DAGs for four Ex computations at the register level 

blocking with b0=4. The hybrid scheduling scheme allows for vector pipelining and 

hence is the preferred scheduling method at the register level. 

 

 

FIGURE 5.17: The hybrid scheduling scheme for the four Ex computations for the 
register level blocking; the number on the right side of each computational vertices 
indicates the SIMDize scheduling order. 
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Vectorization at Register Level: 

Although SIMD extensions are a cost effective way to exploit data level 

parallelism, they show poor performance for unaligned (or misaligned) accesses on 

memory. When there is an attempt to access an unaligned location, it is necessary to 

perform a realignment process. As shown in Figure 5.18, the access of the boundary 

values Hy(i,j,k-1) is un-aligned with respect to the aligned data Hy(i,j,k) where k is in unit-

stride direction.  

 

 

FIGURE 5.18: The example of the conflict alignment of 128-bit vector registers for 
Hy(i,j,k) and Hy(i,j,k-1). 

 
 

Intel x86_64 SSE2 intrinsics supports _mm_loadu_ps vector instruction to load 

unaligned four single-precision floating-point words into a 128-bit register even though it 

is 4-times slower than _mm_load_ps to load aligned four single-precision floating-point 

into a 128-bit register. For IBM Cell/B.E. platform, we load one row of the aligned 

Hy(i,j,k) and for the unaligned Hy(i,j,k-1) data we shift by one in the k-direction. The 

boundary data is stored into the first element of the next register-block in the k-direction. 

Note that we also use loop unrolling technique with unrolling_factor=4 to implement 

vectorization at the register block level.  
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In Table 5.21, we show the pseudo code for the multicore-efficient 3D-FDTD 

implementation for SPEs. There are a total 15 data sets, including boundary data between 

LS-blocks, required to compute the E-field. A total 13 DMA transfers from the main 

memory to the LS are required before starting the computation, and 2 block sized spaces 

for data alignment. Since we use the double-buffering scheme, there are a total 30 LS-

blocks in the LS. Three DMA transfers from the LS to the main memory are needed to 

update the Ex, Ey, and Ez data in main memory. The boundary values of a current block 

are stored into the first element of the next LS-block buffer in the k-direction as shown in 

Figure 5.18. 

 

TABLE 5.21: The pseudo code for the SPE 3D-FDTD E-field computation using double 
buffers.  
 

Algorithm: SPE thread main() 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 
28: 
29: 
30: 

reserve  tags for MFC (Memory Flow Controller)  
initialize   Double buffer for DMA Inputs / outputs  
fetch   effective addresses of initial parameters  
wait   for a “mailbox” message to start 3D-FDTD computations  
for   iter = 1 to ITERATIONS do  
       // E-field computation 
       DMA_get() for Ex, Ey, Ez, epx, epy, epz, Hx, Hy, Hz, Hx_j, Hy_i, Hz_i, Hz_j into in-buffers tin 
       for j=1 to number_blocks do 
           SWAP_in_buffer() between tin and tin^1 
           DMA_get() for Ex, Ey, Ez, epx, epy, epz, Hx, Hy, Hz, Hx_j, Hy_i, Hz_i, Hz_j into in-buffers tin 
           DMA_get_wait() for in-buffer tin 
           Memcpy (Hx_k, Hx) for aligned Hx_k in k-direction 
           Memcpy (Hy_k, Hy) for aligned Hy_k in k-direction 
           DMA_put_wait() for out-buffers tout 
           Call E-field computation() 
           DMA_put() for Ex, Ey, Ez into out-buffers tout 
           SWAP_out_buffer() between out-buffers tout and tout^1 
       End for 
       Swap_in_buffer() between tin and tin^1 
       DMA_get_wait() for in-buffers tin 
       Memcpy (Hx_k, Hx) for aligned Hx_k in k-direction 
       Memcpy (Hy_k, Hy) for aligned Hy_k in k-direction 
       Call  E-field computation() 
       DMA_put() for Ex, Ey, Ez into out-buffers  tout 
       DMA_put_wait() for out-buffers tout 
       synchronize  all SPEs 
       // H-field computation  
       // Similar processes as E-field computation 
       synchronize  all SPEs 
end  for  
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5.4.2.3 Performance analysis 

We now compare the effectiveness of the multicore-efficient implementation to 

that of the naïve parallel implementation on both platforms.  

Performance on Intel Clovertown Platform: 

First, we show the effect of the L1 block size and register level scheduling on the 

performance on a single core of the Intel Clovertown platform.  The problem size is fixed 

at n = 512 (corresponding to 16 GB), L2 block size is fixed at b2 = 64 and the register 

block size is fixed at b0 = 4. 1DF scheduling is used at the L1 and L2 cache levels.  

 

TABLE 5.22: The performance (GFLOPS) for different register level schedules and sizes 
of L1-block (b1) with fixed size of L2-block (b2=64) and register-block (b0=4) on a single 
core of the Intel Clovertown platform. We use 1DF scheduling scheme for L1-level and 
L2-level blocking, and vary the scheduling scheme at the register level. 

 Single core 
The size of L1-block b1 4 8 16 32 64 
The size of 4b1

3 in bytes 1 KB 8 KB 64 KB 512 KB 4096 KB 

Scheduling scheme 
at register level 

1DF 0.75 0.81 0.84 0.79 0.76 
1BF 0.76 0.8 0.82 0.78 0.76 

Hybrid 0.76 0.82 0.86 0.81 0.77 
 
 

As shown in Table 5.22, the highest performance of 0.86 GFLOPS on a single 

core is achieved with the L1-block size of 16 and a hybrid scheduling scheme at the 

register level. This is an agreement with the theoretical L1 block size shown in Table 

5.20. Note that for Ex computations if we attempt to hold all four L1-blocks of cubes Ex, 

Hy, Hz, and epx in the L1 cache as traditional algorithms do, the L1 cache size would 

have to 64 KB for b1=16.  

To study the impact of multi-level blocking scheme on performance, we show the 

cache miss rates (%) and the system bus utilization (%) with respect to scaling of the 
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problem size (problem-scaling) and the number of cores (core-scaling) for both naïve 

parallel and multicore-efficient implementations on the Intel Clovertown platform. 

 

TABLE 5.23: Cache miss rate (%) and system bus bandwidth utilization (%) on Intel 
Clovertown platform. 
 

Problem 
size (n) # cores 

L2 cache miss rate (%) L1 cache miss rate (%) Bus utilization (%) 

naïve 
parallel 

Multicore-
efficient  

naïve 
parallel 

Multicore-
efficient  

naïve 
parallel 

Multicore-
efficient  

128 

1 0.2 1.2 0.6 1.2 25.85 15.92 
2 0.5 1 0.6 1.1 28.42 15.96 
4 0.5 0.4 0.8 0.5 27.87 16.43 
8 0.4 0.4 0.8 0.4 29.15 26.92 

256 

1 0.6 1.6 0.8 1.2 29.17 17.66 
2 0.7 1.4 0.8 1.1 27.74 33.13 
4 0.7 1.1 0.8 1 26.4 27.4 
8 0.7 0.7 0.8 0.8 29.56 31.67 

512 

1 0.9 1.5 1.2 1.2 30.61 17.35 
2 0.8 1.4 1.4 1.2 28.62 23.13 
4 0.8 1.1 1.5 1.1 27.36 26.12 
8 0.7 0.9 1.5 1.1 31.91 36.87 

 
 

As shown in Table 5.23, our multicore-efficient implementation has a high L2 

miss rate although the theoretical analysis of Chapter 3 indicates good temporal locality 

using multi-level blocking. We postulate that the non-unit-stride penalties due to blocking 

outweigh the increased temporal locality. The miss rate is highest for the one core case 

and falls as the number of cores increases since the available L2 cache size increases with 

the number of cores. The L2 cache miss rate of the naïve parallel implementation on a 

single core increases with respect to scaling of the problem size while the L2 cache miss 

rate of the cache-efficient implementation does not vary much. Although we expect the 

miss rate to be independent of the problem size, we have non-unit stride access along two 

of the three directions using multi-level blocking for each Ex, Ey, Ez, Hx, Hy, or Hz 
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computations. The behavior of the L1D cache miss rate is similar to both L2 cache miss 

rate behavior both for core and problem size scaling. However, note that the L1D cache is 

more dependent on the L2 blocks and less on the problem size. The higher bus utilization 

compared to matrix multiplication in Table 5.17 is due to the higher data access to 

computation ratio for FDTD and possibly more cache coherence traffic due to boundary 

value sharing.  

In Figure 5.19, we show the overall performance in GFLOPS per for problem-

scaling and core-scaling for both our naïve parallel and our mutlicore-efficient 

implementations on the Intel Clovertown platform. 

 

 
(a)         (b) 

FIGURE 5.19: Overall performance on Intel platform: (a) Performance in GFLOPS per 
core; (b) Execution time in seconds on a single core. 

 
 

In Figure 5.19(a), the naïve parallel implementation shows a performance of 

about 0.5 GFLOPS on single core which does not vary much with problem scaling. We 

observe that our multicore-efficient implementation performs almost 1.8 times faster on a 

single core compared to the naïve algorithm. However, for implementations the 

performance decreases with core-scaling. For small problems sizes and level-2 block size 

b2=64, the parallelism at level-2 is limited. For each core, we believe that the benefits of 
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data sharing among the block computations are less than the penalties of non-unit-stride 

memory access between blocks. Moreover, where the data closely fits into the L2 cache, 

the benefits of data sharing between level-2 blocks is not prominent, but the L2 latencies 

increase with core scaling due to contention on the bus. Since there is only boundary data 

reused, the performance of both implementation remains almost unchanged as the 

problem size is scaled on a single core.  

In Figure 5.19(b), we compare the performance of the multicore-efficient 

implementation with an ideal computing performance on the Intel Clovertown processor. 

The ideal time for 3D-FDTD is the time required for 48n3 floating point operations for 

both E- and H-field computations at the theoretical peak core performance of the Intel 

Clovertown processor.  

Performance on IBM cell B.E. Platform: 

Figure 5.20 shows the performance of our implementations on the IBM Cell/B.E. 

platform. In Figure 5.20(a), we compare the naïve parallel and our multicore-efficient 

implementations with respect to problem-scaling and core-scaling. The single buffering 

scheme used in naïve algorithm allows a DMA size per transfer of 32KB (b=32) while 

the double buffering scheme used in the multicore efficient algorithm limits the block 

size to 4KB (b=16). Both algorithms require 120 KB of LS for all parameters including 

boundary data. The naïve parallel implementation shows about 0.3 GFLOPS/SPE with 

respect to both problem-scaling and core-scaling. We observe that our multicore-efficient 

implementation achieves 4.6 times speedup over the naïve implementation for n=128. 

Unlike the naïve implementation the multicore-efficient implementation has better 

performance with problem-scaling as shown in Figure 5.20(a). The increased temporal 
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locality between blocks increases for large problem sizes. Moreover, unlike the poor 

scalability on the Intel Clovertown platform with respect to core scaling, we achieve 

almost linear performance increase with core scaling on the IBM Cell B.E. On the 

Clovertown processor, the hardware cache coherence policy affects the amount of data 

that can be shared between the cores. On the other hand, on the IBM Cell BE the explicit 

control of the boundary data shared between the cores allows for maximal data sharing 

between the cores. 

 

  
(a)              (b) 

FIGURE 5.20: Overall performance on IBM platform: (a) Performance in GFLOPS per 
SPE; (b) Execution time in seconds on a single SPE. 

 
 
 
 In Figure 5.20(b), we compare the performance of the multicore-efficient 

implementation to an ideal computing performance on the IBM Cell/B.E. platform. The 

ideal computing time for the 3D-FDTD is the time required for 48n3 floating point 

operations for both E- and H-field computations at the theoretical peak core performance 

of the SPE.  

5.4.3 LU Decomposition  

In this section, we describe our multicore efficient implementation of the LU 

decomposition algorithm. LU is a matrix decomposition algorithm which decomposes a 

�

�&�

�&�

�&


�&�

�

�&�

�&�

�&


� � � 
 � � � 
 � � � 


G
FL

O
PS

/S
PE

n=32                  n=64                  n=128

naïve parallel multicore-efficient

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

32 64 128

E
xe

cu
tio

n 
tim

e 
(s

ec
)

�������
����
���

�  ��!�"��#�$$!�!���

!%��



149 

 

matrix A into a lower triangular matrix L and an upper triangular matrix U (such that 

A=LU). The computational complexity of the LU decomposition algorithm based on the 

Gaussian elimination method shown in Table 5.24 is O(n3) while the data space 

requirements are O(n2) for a n×n square matrix A. The data dependency of the algorithm 

is shown in Figure 5.21. Notice that we use only one matrix A, with the triangular 

matrices L and U overwriting matrix A.   

 

TABLE 5.24: The LU decomposition based on Gaussian elimination method with n×n 
square matrix A. 
 

Algorithm: LU decomposition based on Gaussian eliminate method 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 

for (k=0; k<n; k++)  
     for (i=(k+1); i<n; i++)  
          A[i][k] = A[i][k] / A[k][k]; 
          for (j=(k+1); j<n; j++)  
               A[i][j] = A[i][j] – A[i][k]*A[k][j]; 
         end for 
    end for 
end for 

 
 

Let Ak denote the sub-matrix which is the computing domain including only 

elements a(i,j) with k < i ≤ n and k ≤ j ≤ n at k iteration step, where i, j and k refer to ith 

row elements, jth column elements and kth element elimination step, respectively. As 

shown in Figure 5.21, only the sub-matrix Ak is updated at k iteration step. As shown in 

Table 5.24, the computation scheduling of 1DF in k iteration step consists of first 

updating the element in the first column of Ak as shown in Line 3 of the pseudo-code of 

Table 5.24, and then updating the remaining elements of a(i,j) of Ak as shown in Line 5 of 

the pseudo-code of Table 5.24. Thus, for computing the element a(i,j), the updated k 

elements of the ith row and jth column are required.  
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FIGURE 5.21: The data dependency of the LU decomposition based on Gaussian 
elimination method. 

 
 

5.4.3.1 Multicore-efficient Implementations  

For both the Intel Clovertown and IBM Cell/B.E. platforms, we develop our 

multicore-efficient implementations following our parallel programming methodology 

discussed in Chapter 1. We compare the effectiveness of our approaches to that of the 

naïve parallel implementation based on the Gaussian-elimination method shown in Table 

5.24.  

Naïve Parallel Implementation: 

The naïve parallel implementation uses a row-major order of the array layout for 

matrix A. For the parallelization scheme for P cores, we use the row-wise one 

dimensional partitioning of the sub-matrix Ak in k iteration step. Notice that the kth row in 

Ak is shared for all P cores at k iteration step. Then the computing order of each partition 

follows the 1DF scheduling which is the computing order of the serial algorithm shown 

in Table 5.24. We use OpenMP parallel programming library for the Intel Clovertown 

platform and the IBM libspe for the IBM Cell/B.E. platform (see Chapter 2). Since DMA 

transfer of data is required on the IBM Cell/B.E. platform, we use the single buffer 

scheme without considering prefetching (see Chapter 4). A total of 4 buffers are used 
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(three reads and one write). The size of each buffer is chosen to be 16KB corresponding 

to the maximum size of the DMA transfer. The total buffer size of 64KB is less than the 

available size of the SPE LS.  

Multicore-efficient Implementation: 

We design our multicore-efficient implementation based on our parallel 

programming methodology (see Chapter 1) to improve the performance on both 

platforms. The design steps for our multicore-efficient implementations are the same as 

for matrix multiplication implementations (see Section 5.4.1). The summary of the 

multicore-efficient implementation techniques for LU decomposition is shown in Table 

5.25.  

 
 
TABLE 5.25: The summary of our implementation techniques of LU decomposition for 
our platforms. 

Optimization 
Techniques  

Multicore Platforms 

Intel Clovertown IBM Cell/B.E. 

Multi-level blocking 3-level blocking (b0=4, b1=64, b2=256) 2-level blocking (b0=4, b1=32) 

Scheduling  CONTROLLED-PDF  
(except at register level) 

CONTROLLED-PDF  
(except at register level) 

Layout Scheme Z-Morton ordering Z-Morton ordering 

Multi-buffering Single buffering Double buffering 

Vectorization for 
register level 

Intel x86_64 SSE2 intrinsics 
with 128-bit registers 

IBM Cell/B.E. SPU intrinsics 
with 128-bit registers 

Loop unrolling for 
Vectorization unrolling factor=4 for register-block unrolling factor=4 for register-block 

Threading OpenMP IBM libspe 

 

For both platforms, we use Z-Morton order layout scheme of the matrix A for d-

level blocking to avoid the penalties of non-unit-stride memory access at each level 
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blocking. Here d=3 and d=2 for Intel Clovertown and IBM Cell/B.E. platform, 

respectively.  

Unlike matrix multiplication, the blocks for LU decomposition have different 

types of computation. Let Ak denote the sub-matrix which is the computing area including 

only block-(i,j) with k ≤ i,j ≤ n at k iteration step, where i, j and k refer to ith row blocks, 

jth column blocks and kth block elimination step, respectively. At level-d the four different 

types of computations (LUD-, L-, U-, and M-block) in sub-matrix Ak is shown in Figure 

5.22. Note that the blocks with the same type (same color) can be executed in parallel in 

each elimination step. Depending on the parent block, the computations of the remaining 

blocks are a subset of the four types of computations described above. The computations 

details for the different types of blocks are discussed later. For parallelism the d-level 

blocks among P cores, the following steps are used – 1) First, the algorithm starts by 

processing the LU-block on one core, 2) then, the U-blocks distributed among P cores are 

updated, 3) finally, the remaining blocks (L-blocks and M-blocks), which are distributed 

using the row-wise one-dimensional partitioning of sub-matrix Ak among P cores, are 

updated in each k iteration step. The P cores synchronize at each step. Note that the 

algorithm continues to iterate until it processes the last block as a LU-block. Within each 

core, the computing order of the partitioned blocks at each level follows the 1DF 

scheduling. Additionally, for the IBM Cell/B.E. platform, the L-block is stored until all 

the computations of all M-blocks at the same row are completed (refer Chapter 4). 

Similar to matrix multiplication, we modify the scheduling and use vectorization 

techniques at the register level for both platforms. Further details for scheduling at the 

register level are discussed in Section 5.4.3.2. 
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FIGURE 5.22: The block partition with the four different types in sub-matrix Ak at d-
level. 

 
 

TABLE 5.26: The different tasks of the four blocks at d-level. 

 LUD-block L-block U-block M-block 

First Row No computation Multiplication (×) No computation Multiplication (×) 

First 
Column Divide (/) Divide (/) Multiplication (×) Multiplication (×) 

Remaining 
elements Multiplication (×) Multiplication (×) Multiplication (×) Multiplication (×) 

Data 
dependency Local LUD-block LUD-block 

Local L-block 
LUD-block 

Local U-block 

L-block in same row 
U-block in same column 

Local M-block 

 
 

As mentioned previously, the four different types of blocks at d-level for LU 

decomposition have different tasks as shown in Table 5.26. The LUD-block performs the 

same computation as LU decomposition, and it requires only data of the current LUD-

block. The L-block performs similar computations as the LUD-block on all rows 

excluding the first row. The first row elements are computed by multiplying the 

corresponding element in the LUD block with the element in the previous column (same 

row) of the L-block. Thus the L-block computation requires data of one LUD-block and 

the current L-block. Excluding the first row, the U-block elements are computed by 

multiplying the corresponding element of the LUD block with the element in the previous 
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row (same column) of the U-block. Thus the U-block computation requires data of one 

LUD-block and the current U-block. The M-block is computed by multiplying the 

corresponding element of the L-block with the corresponding element of the U-block. 

Thus the M-block computation requires one L-block, one U-block, and the current M-

block. The example of the data dependency is shown in Figure 5.23.  
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FIGURE 5.23: The example of data dependency of LU decomposition for a matrix A 
with 4×4 blocks.  
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As shown in Figure 5.23, for the LU decomposition of the matrix A, there are a 

total of N elimination steps with N×N blocks (elements), where N is the number of blocks 

(elements) in row (column). Each elimination step except the last requires three 

synchronizations between the computations of the LUD-block, L- and U-blocks, and M-

block. Note that the L- and U-blocks can be computed in parallel and require no 

synchronization between them. The last kth elimination step requires only an LUD-block 

computation of the sub-matrix Ak. The depth of the DAG is (3×(N – 1) + 1). Unlike, the 

matrix multiplication or FDTD algorithms, the LU decomposition can be described with 

only one DAG. Thus, the parallelism at each level is limited to the breadth of the DAG.  

5.4.3.2 Optimization at Register Level 

For the register level, we modify the scheduling scheme and use vectorization 

only for the M-block while other types of blocks use the 1DF scheduling scheme. The 

implementation of M-block vectorization is similar to matrix multiplication (see Figure 

5.12 in Section 5.4.1). The M-block vectorization uses a subtract operation instead of an 

addition operation. We also use loop unrolling for register level blocking. 

5.4.3.3 Performance Analysis  

Performance on Intel Clovertown Platform: 

In Figure 5.24, we show the overall performance in GFLOPS per core for 

problem-scaling and core-scaling for both our naïve parallel and multicore-efficient 

implementations on the Intel Clovertown platform. 
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(a)                   (b) 

FIGURE 5.24: Overall performance on Intel platform: (a) Performance in GFLOPS per 
core; (b) Execution times in seconds on a single core. 

 
 

In Figure 5.24(a), for problem-scaling, the naïve parallel implementation shows a 

performance of 1.3 GFLOPS on single core with the smaller size of problem (n=512). 

Here the total problem size of 1 MB for the matrix A can fit into the single L2 cache. 

However, the naïve parallel implementation shows 0.7 and 0.5 GFLOPS for n=1024 (4 

MB) and n=2048 (16 MB), respectively. Our multicore-efficient implementation shows a 

performance of 1.4 GFLOPS on single core which does not vary much with the problem-

scaling. We expect this performance trend to continue for larger sized (n > 2048) 

problems. Our multicore-efficient implementation achieves 2.8 times speedup over the 

naïve parallel implementation for n=2048. However, for both implementations, the 

performance with respect to core-scaling shows poor scalability corresponding to the 

reduced parallelism associated with the shrinking computing area (sub-matrix Ak) in each 

k elimination step. Moreover, the number of available blocks in each parallel phase is 

usually not exactly divisible by the number of cores. This creates a load imbalance at 

each elimination step, with the associated overhead accumulating over time. 

In Figure 5.24(b), we compare the efficiency of the multicore-efficient 

implementation with the ideal computing performance on the Intel Clovertown platform. 
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The ideal time for LU decomposition is the time required for O(n3) floating point 

operations at the theoretical peak core performance of a single core of the Intel 

Clovertown.  

Performance on IBM Cell/B.E. Platform: 

In Figure 5.25, we show the overall performance in GFLOPS per SPE for 

problem-scaling and core-scaling for both naïve parallel and multicore-efficient 

implementations on the IBM Cell/B.E. platform. 

 

(a)         (b) 

FIGURE 5.25: Overall performance on IBM Cell BE platform: (a) Performance in 
GFLOPS per SPE; (b) Execution time in seconds on a single SPE. 

 
 

Figure 5.25(a) shows a single SPE performance of 40 MFLOPS (n=512) for the 

naïve parallel implementation and 180 MFLOPS (n=512) for the multicore efficient 

implementation. For both implementations performance does not vary much with 

problem-scaling. We expect this performance trend to continue for larger sized (n>2048) 

problems. We observe that our multicore-efficient implementation achieves almost 2.8 

times speedup over the naïve parallel implementation for all problem sizes. For both the 

naïve and multicore efficient implementation, although the performance with respect to 

core-scaling degrades with increasing number of cores, core-scalability is better than the 
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Intel Colvertown platform. The smaller LS-blocks (32×32) used on the IBM Cell BE 

allows for better load balance compared to the larger blocks of the Intel Clovertown 

(64×64) platform.  

In Figure 5.25(b), we compare the efficiency of the multicore-efficient 

implementation with that the ideal computing performance on the IBM Cell BE platform. 

The ideal time for LU decomposition is the time required for O(n3) floating point 

operations with the theoretical peak core performance on single core of the IBM Cell BE. 

For both platforms, the dynamic repartitioning can be used to reduce load 

imbalance at each step. 

5.4.4 Power Flow Solver based on Gauss-Seidel method (PFS-GS) 

In this section, we illustrate and analyze our multicore-efficient parallel 

implementation of the Power Flow Solver based on Gauss-Seidel method (PFS-GS). It 

determines the voltage magnitude and phase angle for each bus (network node) in a 

power system network under balanced three-phase steady-state conditions. PFS-GS is 

modeled as a set of buses (network nodes) interconnected by transmission branches 

(network links) expressed as [16, 18]: 
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�
    (5.8) 

where, E	F� � �G� HI�� �+ �FJKL , #	F� � � HF �+�I�MK I��L  in which N� and G� represent 

the complex voltage and the complex power at each bus k, respectively, and I�M is 

admittance between bus k and n. To compute the line current in a branch # in the power 

network, we calculate admittance and line current injections from the source and 
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destination buses. This calculation depends on the line currents of all incident branches of 

the source and destination buses. 

The buses are categorized as SWING, PQ and PV. The SWING bus is a node that 

is designated to compensate residual error and is also used for power generators which 

control both real and reactive power injections. The PQ bus is a node that has both 

constant real and reactive power injections. The PV bus is a node that has constant real 

power injection but can control reactive power injections. The voltage and power 

calculations of a bus do not depend on other bus computations as the line currents are 

calculated during the branch computations. 

The data dependency of a sample power network with 5 buses and 5 branches is 

shown in Figure 5.26, and the pseudo-code of naïve serial algorithm for PFS-GS is shown 

in Table 5.27. 

 

 
FIGURE 5.26: The sample power network computation with 5 buses and 5 branches. 

 
 

As shown in Table 5.27, the naïve serial algorithm first performs all branch 

computations and then proceeds to the bus computations. For each branch computation, 

data from the two buses connected by the branch is required. The branch computations 

can be represented as matrix vector computations involving the multiplication of the 



160 

 

TABLE 5.27:  Pseudo-code of naïve serial algorithm for the bus and branch computation. 

Inputs:  
 

Bus voltage Vold, Bus Power Sold, Admittance matrix Y, Acceleration factor ACC, Reactive 
power limits Qmax and Qmin, Bus shunt conductance G and reactance B and Bus type 
(PV/PQ/Swing) 

Outputs: 
 

Branch: self admittance Ys, self current Is 
Bus: new bus voltage Vnew, New bus power Snew 

Prototype Gauss-Seidel Solver Algorithm 
1: 
2: 
3: 
4: 
5: 

For iter = 1  to ITERATION Do 
   Call  Branch Function 
   Call  Bus Function 
   Check CONVERGENCE; Continue if necessary 
End for 

Branch function() 
1: 
2: 
3: 
4: 

For each branch between bus n and k on the network Do 
   Calculate the self admittance vector term Ys with admittance matrix Y and voltage vector  Vold 
   Calculate the self  current vector term Is with admittance matrix Y and voltage vector Vold 
 End for  

Bus function()  
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 
23: 
24: 
25: 
26: 
27: 

For  each bus on the network Do 
   If non-zero admittance matrix OR swing bus type Then 
      Case bus type Of 
         PV bus:  
            Calculate new reactive power Qnew using Gauss-Seidel Algorithm  
            If new reactive power Qnew exceeds Qlimit [Qmin, Qmax] Then 
               Set new reactive power Qnew with Qlimit =  [Qmax,Qmin] 
               Continue Calculate new voltage Vnew as PQ bus 
            Else 
               Calculate intermediate voltage Vint with new reactive power Qnew using GS  
               Calculate the new voltage Vnew with Magnitude of Vold and phase angle of Vint 
               Break 
            End if 
         PQ bus: 
            If non-zero current voltage Vold Then 
               Calculate the intermediate voltage Vint with reactive power Qold for PQ or Qnew for PV using GS 
               Calculate the new voltage Vnew = Vold + (Vint – Vold)×ACC   
               Break 
            End if 
         SWING bus: 
            Calculate the new power injection Snew  
            Break 
         OTHERS:  
            Break 
      End Case 
   End if 
End for  
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admittance matrix term Y (current matrix term I) by voltage vector V to compute the self 

admittance vector Ys (current vector Is) for all buses. The bus computations involve 

update of the voltage and power vectors and are independent of each other. Thus, in 

principle all buses can be computed in parallel without considering any data dependency 

as the self currents and admittances of all buses are calculated during the branch 

computations.  

5.4.4.1 Multicore-efficient Implementations  

For both the Intel Clovertown and IBM Cell/B.E. platforms, we develop our 

multicore-efficient implementations following our parallel programming methodology 

discussed in Chapter 1. We compare the effectiveness of our approach to that of the naïve 

parallel implementation. 

Naïve Parallel Implementation: 

 The naïve parallel implementation uses a row-major order of the array layout for 

the matrices (admittance matrix Y and current matrix I). For the parallelization scheme 

for P cores, we use row-wise one-dimensional partitioning of the matrices for the branch 

computations, and we divide the total number of buses by P for the bus computations. 

Then the computing order of each partition follows the 1DF scheduling. Additionally, we 

synchronize all P cores between branch and bus computations. We use OpenMP parallel 

programming library for the Intel Clovertown platform and the IBM libspe for the IBM 

Cell/B.E. platform (see Chapter 2). Since DMA transfer of data is required on the IBM 

Cell/B.E. platform, we use the single buffer scheme without considering caching and 

prefetching (see Chapter 4). Note that each core (or SPE) performs assigned branch 



162 

 

computation followed by the bus computation. The total numbers of data transfers per 

core (or SPE) for the branch and bus computations are given by:  

OPQ0RST����	U + VWXY� =� + VWXYZ[        (5.9) 

O\]T�����������	 _̂ + VWXY�Z[            (5.10) 

And, the total numbers of computations per core (or SPE) for the branch and bus 

computations are given by: 

OPQ0RST���	 =̂ + VWXY+ VWXY�Z[        (5.11) 

O\]T����������	_^+ V`a� � bb+ V`c� � b̂+ VYd efg� �                 (5.12) 

where, NBUS is the number of buses in the network, P is the number of used cores (or 

SPEs), and NPV
i, NPQ

i, and NSWING
i represent the number of total PV, PQ, and SWING 

buses assigned to corei (or SPEi), were 1≤ i ≤ P. 

Multicore-efficient Implementation: 

We design our mutlicore-efficient implementation based on our programming 

methodology (see Chapter 1) to improve the performance on both platforms. The design 

steps for our multicore-efficient implementations are similar to the multicore-efficient 

matrix multiplication (see Section 5.4.1). The summary of the multicore-efficient 

implementation techniques for PFS-GS is shown in Table 5.28. 

For both platforms, we use the Z-Morton order layout scheme of the matrices Y 

and I for d-level blocking to avoid the penalties of non-unit-stride memory access. Here 

d=3 and d=2 for Intel Clovertown and IBM Cell/B.E. platform, respectively. We use the 

same parallelization scheme for P cores as the naïve parallel implementation. For IBM 

Cell/B.E. platform, we use double-buffering scheme with considering caching and 

prefetching (see Chapter 4) for DMA transfer. However, there is no caching advantage 
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for bus computation since there is no data reused between buses. Similar to the 

previously described algorithms, we modify the scheduling and use vectorization 

techniques at the register level for both platforms. Further details for scheduling and 

vectorization at the register level are discussed in Section 5.4.4.2. 

 

TABLE 5.28: The summary of our implementation techniques of PFS_GS for our 
platforms. 

Optimization 
Techniques  

Multicore Platforms 

Intel Clovertown  IBM Cell/B.E.  

Multi-level blocking 3-level blocking (b0=4, b1=32, b2=128) 2-level blocking (b0=4, b1=32) 

Scheduling  CONTROLLED-PDF  
(except at register level) 

CONTROLLED-PDF  
(except at register level) 

Layout Scheme Z-Morton ordering Z-Morton ordering 

Multi-buffering Single buffering Double buffering 

Vectorization for 
register level 

Intel x86_64 SSE2 intrinsics  
with 128-bit registers 

IBM Cell/B.E. SPU intrinsics  
with 128-bit registers 

Loop unrolling for 
Vectorization  unrolling factor=4 for register-block unrolling factor=4 for register-block 

Threading OpenMP IBM libspe 

 
 

5.4.4.2 Optimization at Register Level 

Scheduling and Vectorization at the Register Level: 

As mentioned previously, the branch computations use matrix-vector 

multiplication by multiplying the admittance matrix by the voltage vector to compute the 

self admittance vector and the self current vector for all buses. Hence we use similar 

scheduling and vectorization scheme as the matrix multiplication algorithm at the register 

level for branch computations (see Section 5.4.1.2).  

For bus computations at register level, all bus types share some of the 

computation with different input data. For example, the intermediate bus voltage 
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calculation is computed for both PV and PQ buses using the Gauss-Seidel method. We 

can therefore take advantage of the shared computations between the different bus types. 

However, the different types of buses require different computations, which can lead to 

mispredictions in conditional statements. Each bus type executes conditional statements 

depending on the voltage and power values. The mispredictions in these conditional 

executions can lead to poor performance due to hardware pipeline stalls and limited 

vectorization on the multicore platforms. Therefore, we implement a vectorized unified-

bus-computation module for all bus types to avoid such undesirable performance 

degradation and to take advantage of the shared computations. For IBM Cell/B.E. 

platform with IBM SPU intrinsics, the vectorized unified-bus-computation module with 

single-precision floating-point data is shown in Figure 5.27. Each vector bus 

computations consist of 4 scalar bus computations drawn from same or different bus 

types depending on the network.  

 

 

FIGURE 5.27: Vectorized Unified-Bus-Computation Module. 
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As shown in Figure 5.27, we design the vectorized unified-bus-computation 

module to eliminate conditional statements and to take advantage of the shared 

computations through the following steps – (1) compute intermediate power S_new 

which is used for all three types of buses, (2) update new power S for each bus, (3) 

compute intermediate voltage V_int which is used for PV and PQ bus, (4) compute new 

PQ voltage Vnew_PQ, (5) compute new PV voltage Vnew_PV, (6) and then update new 

voltage V for each bus. We use spe_sel intrinsic to select the individual bus power and 

voltage from the vector registers. The select-bits instruction is the key in eliminating 

branches for simple control-flow statements (for example, if and if-then constructs). An 

if-then-else statement can be made branchless by computing the results of both the branch 

conditions, and then the select-bits choose the result depending on the evaluation of the 

if-then-else statement. If computing both the results costs less than a mispredicted branch, 

then we have additional saving. Also, the select_bits enables efficient vectorization of if-

then-else statements. For the Intel Clovertown platform with Intel x86_64 SSE2 

intrinsics, the design steps of the vectorized unified-bus-computation module are same as 

those for the IBM Cell/B.E. platform. For our multicore-efficient implementation using 

the vectorized unified-bus-computation at register revel, the total number of all bus 

computations per core is given by: 

O\]T���������_b+ 	V`a� �V`c� �Z=� � 	_ + VYd efg� �   (5.13) 

where, NPV
i, NPQ

i, and NSWING
i represent the number of total PV, PQ, and SWING buses 

assigned to corei (SPEi), were 1≤ i ≤ P. Note that the numbers of data requirement and 

branch computation are same as the naïve parallel implementation.  
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TABLE 5.29: Pseudo code of the multicore-efficient implementation for PFS-GS on the 
IBM Cell/B.E. platform. 

Algorithm: PPE main()  
1: 
2:  
3:  
4:  
5:  

Initialize   Branch and Bus data  
Create   SPE threads for PFS-GS computations  
Send   “mailboxes” to instruct SPEs to SPE threads  
Wait   until PFS-GS computation of all SPEs is done  
Terminate   SPE threads  

SPE thread main()  
1: 
2:  
3:  
4:  
5:  
6:  
7:  
8:  
9:  
10:  
11:  

Reserve  tags for MFC (Memory Flow Controller)  
Initialize   Double buffer for DMA Inputs/outputs  
Fetch   effective addresses of initial parameters  
Wait   for a “mailbox” message to start PFS-GS computations  
For   iter = 1 to ITERATIONS Do  
     Call   SPE Branch Function  
     Synchronize  all SPEs  
     Call   SPE Bus Function  
     Synchronize  all SPEs  
     Check  CONVERGENCE; Continue if necessary  
End  for         

SPE Branch () 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 

For i=0 to BLOCKS Do 
     DMA FETCH for M input data (Ys, YVs) of i block 
     DMA WAIT for input data (Ys, YVs) of M buses 
     For j=0 to M Do 
          DMA FETCH for M input data (Ymatrix, Bmatrix, V) 
          For k=1 to (TOTAL_BUSES/M) Do 
               SWAP input buffers of M input data (Y, B, V) 
               DMA FETCH for M input data (Y, B, V) of k 
               DMA WAIT for M input data (Y, B, V) of k-1 
               Computing Branch of k-1  
               Update M output data (Ys, Is) of i block 
          End for 
          DMA STORE for M output data (Ys, Is) of i block 
          DMA WAIT for M output data to main memory 
     End for 
End for 

SPE Bus ()           
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 

DMA FETCH for M input data (Type, V, S, G, B, Qmax, Qmin, Ys, Is) 
For i=1 to BLOKCS Do 
     SWAP input buffers of M input data (Type, V, S, G, B, Qmax, Qmin, Ys, Is) of i block 
     DMA WAIT for input data (Type, V, S, G, B, Qmax, Qmin, Ys, Is) of (i-1) block 
     DMA WAIT for output data (V, S, Ys, Is) of (i-1) block 
     Computing  the vectorized unified-bus-computation of (i-1) block 
     DMA STORE for M output data (V, S, Ys, Is) of (i-1) block 
     SWAP output buffers 
End for 
SWAP input buffers 
DMA WAIT for M input data (Type, V, S, G, B, Qmax, Qmin, Ys, Is) of BLOCKS block 
Computing  the vectorized unified-bus-computation of (BLOCKS) block 
DMA STORE for M output data (V, S) of (BLOCKS) block 
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Pseudo Code for Multicore-efficient Implementation: 

In Table 5.29, we show the pseudo code for multicore-efficient implementation 

on the IBM Cell/B.E. platform.  

5.4.4.3 Performance Analysis 

For all implementations, we setup a network configuration with n number of 

buses and n×n branches. The network includes 60% of PQ buses, 40% of PV buses, and 

one SWING bus. The network is simulated for 100 iterations. 

Performance on Intel Clovertown Platform:  

In Figure 5.28, we show the overall performance in GFLOPS per core for 

problem-scaling and core-scaling for both the naïve parallel and our multicore-efficient 

implementation on the Intel Clovertown platform. 

 

   
(a)                (b) 

FIGURE 5.28: Overall performance on Intel Clovertown platform: (a) Performance in 
GFLOPS per core; (b) Execution time in seconds on a single core. 

 
 

In Figure 5.28(a), the naïve parallel implementation shows performance of 0.38 

GFLOPS on single core which does not vary much with respect to problem-scaling. We 

observe that for n=3072, our multicore-efficient implementation performs 2.3 times 

faster on a single core compared to the naïve parallel algorithm. In all of our 
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implementations, we observe an almost linear scaling of performance with respect to the 

core-scaling. 

In Figure 5.28(b), we compare the efficiency of the multicore-efficient 

implementation with an ideal computing performance on the Intel Clovertown platform. 

The ideal time for PFS-GS is the time required for only computations following 

Equations 5.11 and 5.12 assuming theoretical peak core performance on a single core of 

the Intel Clovertown.   

Performance on IBM Cell/B.E. Platform: 

In Table 5.30, we show the effect of the LS-block size on the performance of 

single SPE of the IBM Cell/B.E. platform for branch and bus computations. The problem 

size is fixed at n=768. The best case performance is achieved with LS-block size of 

b1=32 and b1=16 for branch and bus computations respectively.   

 

TABLE 5.30: GFLOPS with varying DMA transfer size in bytes on single SPE. 

LS-block size b1 
Performance in GFLOPS 

Bus Branch Bus + Branch 
8 1.97 2.11 2.11 
16 2.06 2.37 2.37 
32 2.02 2.46 2.47 
64 2.04 2.42 2.44 

128 2.05 2.37 2.37 
 
 

Table 5.31 shows the speedup and percentage computation times for four different 

implementations of the PFS-GS algorithm on a single SPE. Here the problem size is 

n=768. Our multicore-efficient implementation, which combines double-buffering 

scheme and vectorized unified-bus-computation module, achieves the highest 

performance improvement of 9.2 times speedup for bus computations, and 5.3 times 
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speedup in branch computations with respect to the naïve serial implementation. Both bus 

and branch computations are compute bound. An interesting point here is that for the 

naïve implementation (97% compute time) of the bus computations with double-

buffering shows poorer performance compared to single buffering. However, for the 

vectorized unified-bus-computation technique (75% of compute bound) double buffering 

(multicore-efficient) performs better than single buffering by about 20%. Here double 

buffering enables overlap of DMA transfers with the vectorized operations in the SPE 

dual pipeline.  

 

TABLE 5.31: Distributed speedup and % of computation on single SPE; Note our 
multicore-efficient implementation combines both double-buffering scheme and 
vectorized unified-bus-computation module. 

Optimization Performance Bus Branch Bus + Branch 

The naïve serial 
implementation  

Speedup 1 1 1 

% Computation 97 % 77 % 87 % 

Double-buffering scheme 
Speedup 0.96 1.13 1.15 

% Computation 99 % 95 % 96 % 

Vectorized  
unified-bus-computation  

Speedup 7.74 4.80 7.7 

% Computation 75 % 62 % 72 % 

Multicore-efficient 
Speedup 9.25 5.31 9.2 

% Computation 90 % 79 % 87 % 

 
 

   
(a)        (b) 

FIGURE 5.29: Overall performance on IBM Cell/B.E. platform: (a) Performance in 
GFLOPS per SPE; (b) Execution time in seconds on a single SPE. 
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In Figure 5.29, we show the overall performance in GFLOPS per core for 

problem-scaling and core-scaling for both naïve parallel and our multicore-efficient 

implementation on the IBM Cell/B.E. platform.  

In Figure 5.29(a), the naïve parallel implementation shows a performance of 0.25 

GFLOPS/SPE with the problem size (n=768 and n=1536). However, for a larger 

problem size (n=3072), the performance on single SPE reduces to 0.05 GFLOPS. Our 

multicore-efficient implementation shows performs well with problem scaling and 

achieves a performance of 2.7 GFLOPS/SPE with the problem size n=1536. For both the 

naïve parallel and multicore-efficient implementations, we observe an almost linear 

scaling of performance with respect to the core-scaling for the problem sizes with n=768 

and n=1536. For n=3072, the total required memory space exceeds the available size of 

main memory of out IBM Cell/B.E. platform. Thus, the high disk access latencies 

incurred with n=3072 reduces the performance of our implementations.  

In Figure 5.29(b), we compare the efficiency of the multicore-efficient 

implementation with that the ideal computing performance on the IBM Cell/B.E. 

platform. The ideal time for PFS-GS is the time required for only computations with the 

theoretical peak core performance on single core of the IBM Cell/B.E. platform.  

5.5 Conclusion 

In this chapter, we have presented experimental studies based on our effective 

data parallel design methodology for two commercial available mutlicore platforms, Intel 

Clovertown and IBM Cell/B.E. platform. Based on a weighted-vertex pebbling strategy, 

data-aware scheduling, data prefetching and caching strategies (see Chapter 3 and 4), we 

discuss multicore-efficient implementations of four algorithms, matrix multiplication, 
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FDTD, LU decomposition and power flow solver based on GS method. Note that the 

theoretical case studies for matrix multiplication and FDTD algorithms are illustrated in 

Chapter 3 and 4. For multicore efficient implementation, we present the in-core 

optimization techniques of data transformation, loop transformations and vectorization in 

Chapter 5. From theoretical bounds, we determine the size of each the block at each level 

of the memory hierarchy, parallel scheduling strategy, and data buffering schemes 

considering both the architecture and algorithm. At the register level, we illustrate the 

computational ordering based on weighted-vertex pebbling strategy to achieve efficient 

vectorized implementations. Also, the effects of data layout on performance are 

investigated. 

Our multicore efficient implementations seek to aggressively exploit data locality 

to achieve good performance. For Intel Clovertown platform, our measurement results of 

multicore-efficient implementations indicate a speed-up per core of 31x, 1.8x, 2.8x and 

2.4x for matrix multiplication (n=4096), the FDTD algorithm (n=256), the LU 

decomposition (n=2048) and the PFS-GS algorithm (n=3072), respectively, compared to 

compiler optimized naïve parallel implementations. For IBM Cell/B.E. platform, our 

measurement results of multicore-efficient implementations indicate a speed-up per SPE 

of 16x, 4.3x, 4.7x and 10.6x for matrix multiplication (n=2048), the FDTD algorithm 

(n=128), the LU decomposition (n=2048) and the PFS-GS algorithm (n=1536), 

respectively, compared to compiler optimized naïve parallel implementations. We 

observe good performance scalability both with the number cores (core-scaling) and the 

problems size (problem-scaling) for both platforms. We also note that in algorithms 
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where data locality is limited, efficient vectorization can result in an overall improvement 

in performance.  

  



 

CHAPTER 6: CONCLUSION AND FUTURE WORK 
 
 

6.1 Conclusion 

Multicore architectures attempt to achieve power efficient performance by 

exploiting data locality, and data and task level parallelism in an application through 

multiple processing cores and deep memory hierarchies integrated on a single chip. 

Often, this performance is only realized by designing code that effectively maps the 

application to the underlying architecture. A variety of multicore architectures exists in 

the market today subscribing to different philosophies regarding the processing 

complexity of the core, hardware control of the memory hierarchy and the nature of the 

on-chip interconnect.  

In this dissertation, we argue that robust portable multicore software is best 

designed by focusing on designing algorithms that are parallel, cache friendly, and are 

capable of exploiting compute-transfer parallelism. Further, optimization techniques that 

are well established across a wide variety of architectures and programming platforms 

need to be integrated into this design process to obtain the highest performance. In this 

regards, we have presented an efficient software design process that combines algorithm 

analysis with practical optimization techniques for data parallel algorithms. The resulting 

code shows high performance on diverse commercial multicore platforms, and scales 

well both with problem size and the number of cores. Among the algorithm analysis 

techniques are a) weighted vertex pebbling game for designing space- and cache-
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efficient algorithms targeting shared memory hierarchies b) parallel scheduling for 

computations at different levels of the memory hierarchy and c) integrated data 

prefetching and caching schemes for overlapping data transfer and computation. Among 

the optimization techniques are a) efficient cache-friendly data transformation, b) loop 

transformations and c) vectorization.  

We developed multicore-efficient software developments based on weighted-

vertex pebbling strategy, integrated data prefetching and caching and in-core 

optimization techniques for commercial available multicore platforms.  

We present detailed case studies that highlight the approach listed above for 

different data parallel kernels. In general our multicore efficient implementations 

outperform naïve parallel implementation. In particular our multicore efficient 

implementation scales well both with respect to problem size and the number of cores. 

The multicore efficient matrix multiplication algorithm outperforms the Intel MKL 

matrix multiplication library without the use of assembly code. For LU decomposition, 

there are trade-offs between larger block sizes and load balancing and less parallel 

partitioning. Large block size improve data locality but may result in reduced parallel 

data partitions which resulting in poor load balance with core-scaling. For FDTD, we 

observe trade-offs between spatial and temporal locality. Layouts such as Z-Morton that 

promotes spatial locality within a block adversely affects spatial locality between blocks.  

For PFS-GS, we note that although locality of data is limited exploiting data parallelism 

through efficient vectorization can improve the overall performance. Also, in all the 

above kernels we note that the choice of the scheduling scheme at the register level is 

critical in promoting efficient vectorization.  
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6.2 Future work 

Our design process identifies algorithm (for example block size) and 

implementation parameters (for example loop unrolling depth) that can be tuned to 

improve performance on a given multicore platform. For our multicore efficient 

implementations on the Intel Clovertown and IBM Cell BE platforms, these parameters 

were tuned manually to obtain the highest performance. An extension of our work is to 

incorporate an autotuning framework that can automatically identify the best combination 

of setting for these parameters that can result in the highest performance on the target 

multicore computing platform. Note that since there are a large number of such 

parameters with a large range of values combined with the execution time for each 

iteration, an exhaustive search of the design space is computationally prohibitive.  

Recently auto-tuning frameworks have been proposed for stencil based algorithms on 

multicore platforms. Our design process can help identify the best set of tuning 

parameters and their nominal values such that the design space exploration time is 

minimized.   

On the theoretical side, we have considered only static blocking at each level of 

the memory hierarchy. In algorithms where there exists a trade-off between block size 

and the number of blocks that can be processed in parallel (for example LU 

decomposition), dynamically adjusting the block size may result in a better load balance 

with good data locality. Such dynamic adjustment of block size may also be important in 

virtualized environments where more than one operating system shares the processor. In 

this dissertation our focus was on modeling the temporal data locality. In the future we 

seek to model spatial data locality as well. 



176 

 

Experimentally, we have verified the applicability of the proposed design flow in 

developing high performance kernels on the Intel Clovertown and the IBM Cell BE 

platforms. In future projects, we will extend the applicability of the design process to 

other commercial multicore platforms such as the Sun UltraSPARC T2 and GPUs (for 

example Nvidia Tesla). Also, we have applied the integrated caching and prefetching 

scheme only to the IBM Cell BE platform. Other multicores such as the Intel Clovertown 

and AMD Barcelona have both hardware and software support for prefetching. However, 

the cache is hardware controlled and it remains to be seen if the proposed integrated 

prefetching and caching schemes will work well on these processors.  
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