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ABSTRACT 
 
 
ALEXANDER HOHL. Accelerating The Detection Of Space-Time Patterns Under Non-

Stationary Background Population 
(Under the direction of Dr. Eric Delmelle) 

 
 

 The advancement of technology has enabled us to collect increasing quantities of 

spatial and spatiotemporal data at rapidly increasing rate through sensor systems, 

automated geocoding abilities and social media platforms, such as Facebook or Twitter. 

Processing, analyzing and making sense of big data, which is characterized by high 

volume, velocity and variety, is challenging and hence, calls for increased computing 

performance. Exploratory spatial data analysis approaches, such as kernel density 

estimation, allow us to detect patterns that facilitate the formation of hypotheses about 

their driving processes. However, it is important to recognize that patterns of disease and 

other social phenomena emerge from an underlying population, which has to be 

accounted for in order to extract actual trends from the data. My dissertation research 

challenges a key assumption of many prominent methods of estimating disease risk, 

which is that population is static through time. I put forward the method of adaptive 

kernel density estimation by accounting for spatially and temporally inhomogeneous 

background populations. In addition, I develop a flexible spatiotemporal domain 

decomposition approach, which allows for tackling the big data challenge of developing 

scalable approaches to compute spatiotemporal statistics, using high-performance parallel 

computing. Last, I propose a framework for sensitivity analysis of spatiotemporal 

computing, which allows for quantifying the effect of model parameter values on 

computing performance and scalability. The results of my dissertation contribute to 
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scalable applications for analyzing social geographic phenomena and elucidate the 

computational requirements of spatiotemporal statistics. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background  

Cyberinfrastructure and high-performance computing (HPC) are transforming 

many disciplines such as Geography, Engineering or Biology, by enabling them to solve 

computational problems that were previously inconceivable or intractable (Armstrong 

2000).  This has led the scientific community to extend the classic method of science, 

which links the two pillars of Theory and Experimentation, by adding the third and fourth 

pillars, Simulation and Data-Intensive Computing (Karin and Graham 1998; Hey, 

Tansley, and Tolle 2009). Even prominent computer scientists who oppose such 

extension of the existing model agree that HPC is an universal enabler of science, which 

substantially supports theory and experimentation, essentially making the initial pillars 

thoroughly computational (Vardi 2010). Therefore, most if not all of the diverse scientific 

disciplines share a consistent integrating principle: Using mathematical models to gain 

knowledge, to conduct scientific investigations, and to assist decision making. Models of 

complex human and natural phenomena require computation in order to produce results, 

and geographers have been creating and applying them for many years (Armstrong 

2000). Therefore, we are well equipped to capitalize on the strengths and opportunities of 

HPC for understanding and modelling spatial processes. 

 

The advancement of technology has enabled us to collect increasing volumes of 

spatial and spatiotemporal data at rapidly increasing rate through sensor systems, 

automated geocoding abilities and social media platforms, such as Facebook or Twitter 
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(Goodchild 2007). These data are characterized by unprecedented volume, velocity and 

variety, and hence, call for increased computing performance which is indicative for the 

big data era we live in (Zikopoulos and Eaton 2011). On the other hand, geographic 

models are computationally intensive, because their underlying algorithms are typically 

of exponential complexity. Furthermore, the computational burden increases manifold 

when simulations (e.g. Monte-Carlo) are used for significance testing (Tang, Feng, and 

Jia 2015). Last, the recent trend to include a true representation of time in geographic 

models, together with the advent of big spatiotemporal data, further increases the 

importance of strategies to handle complex computations on massive datasets (Kwan and 

Neutens 2014). 

 

Due to the recent abundance of geospatial information, scientists have developed 

methods for spatial and temporal analysis of georeferenced data (Anselin 2011). The 

combination of geographical information systems (GIS) and space-time analytics has 

enabled them to explore large databases of individual-level observations. Examples 

include crime or disease, which usually form a non-random spatiotemporal pattern, for 

instance clustering at city centers or exhibiting seasonal cyclic patterns. Knowledge about 

the intensity, spatial location and time of such clusters can inform authorities on their 

decision to allocate resources, such as staff for disease prevention efforts (Casas, 

Delmelle, and Varela 2010). Spatial and spatiotemporal statistics are a set of popular 

analytical methods for identifying and quantifying such patterns, as they capture 

geospatial phenomena and their variability in space and time (Bailey and Gatrell 1995; 

Cressie and Wikle 2015). They can be grouped into geostatistical appraoches, 
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autocorrelation-oriented approaches, and point pattern analysis, whereas the latter is 

particularly suited to analyzing individual-level point events (Diggle 2013). Among the 

armada of exploratory statistics to characterize a given spatiotemporal point pattern, 

space-time kernel density estimation (STKDE; Nakaya and Yano 2010) stands out. It 

allows for visualizing the occurrence of events in space and time by computing the 

localized intensity of the point process at hand and hence, summarizing the distribution of 

a spatial variable through time. STKDE has been employed as a key analytical procedure 

for identifying clusters of crime (Nakaya and Yano 2010), exploring human mobility 

patterns (Gao 2015), as well as outbreaks of dengue fever (Delmelle et al. 2014). 

However, methods for analyzing spatiotemporal data of increasing size, diversity and 

availability are limited by their exorbitant computational cost, which results in 

prohibitively slow execution times, coarse resolutions, and low statistical significance 

levels. High-performance and parallel computing (HPC) offer solutions to 

computationally demanding problems in limited time frame.  

 

HPC meets the demand for increased computing performance for big data 

analytics by deploying multiple computing resources concurrently (Wilkinson and Allen 

2004). A general approach for parallel problem solving is to decompose the 

spatiotemporal domain of a dataset into smaller subsets, distribute them to multiple 

concurrent processors, i.e. computing a spatial statistic, and finally collect and reassemble 

the results (Ding and Densham 1996). Balancing computational intensity among 

processors by accounting for the explicit characteristics of the data is crucial for 

developing scalable applications (Wang and Armstrong 2003; Wang 2008). Recursive 
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domain decomposition methods, such as quadtrees and octrees, have been widely used 

for mitigating workload imbalance for spatially and temporally heterogeneous data 

(Turton 2000; Hohl, Delmelle, et al. 2016). At each step of this procedure, one has to 

make choices about parameters, which determine the result of the analysis, as well as the 

execution time of the computation. Hence, we face a considerable uncertainty about the 

computational cost of our analysis, especially if parameter values are not set in stone. If 

we knew how computing performance relates to different parameter values and their 

combinations, we could allocate parallel resources in a more efficient way. Sensitivity 

Analysis (SA) offers a solution to investigate this relationship in a systematic way.     

 

SA is a domain that studies “how the uncertainty in the output of a model 

(numerical or otherwise) can be apportioned to different sources of uncertainty in the 

model input” (Saltelli et al. 2004). It allows for evaluating the contribution of model 

parameters to variability in model outputs in a quantitative manner, and facilitates the 

understanding of driving factors and model structure. Sensitivity Analysis has been useful 

for applications in ecology, hydrology, engineering and economy (Saltelli et al. 2008; 

Lilburne and Tarantola 2009; Tang and Jia 2014). There exist multiple approaches for SA 

that have unique characteristics pertaining to model dependency, computational 

requirements, and compatibility with spatiotemporal variables: local, regression, and 

global variance-based. Sobol’s approach is an example of the variance-based approaches, 

which is particularly interesting because of its model independency, support of 

nonlinearity and spatially explicit data (Sobol 1993).  
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With the computational power of HPC and SA, we gain the capability to run 

spatiotemporal analysis at scale. This enables us to solve real-world problems by 

applying this capability towards a problem domain, such as spatial epidemiology. The 

transformation of spatial epidemiology through the advent of cyberinfrastructure is 

particularly interesting due to the increase of emerging and re-emerging infectious 

diseases (EIDs), caused by demographic, environmental, social and technological 

changes in human ecology which reshape the relationship between humans and microbes 

(McMichael 2004). EIDs transmission cycles are complex processes, which require 

monitoring strategies for effective public health responses to disease outbreaks under 

critical space-time conditions (Eisen and Eisen 2011). Identifying  clusters of illness 

facilitates  timely measures to cope with outbreaks and is thus a critical element to reduce 

the burdens associated with diseases (Grubesic, Wei, and Murray 2014). Spatial and 

spatiotemporal statistics, such as STKDE, are suited for disease-surveillance because they 

enable discovery of  previously concealed patterns, such as intensity and risk of diffusion 

to new regions, directionality, the rate of disease spread, and cyclic patterns, (Jacquez, 

Greiling, and Kaufmann 2005; Rogerson and Yamada 2008; Robertson and Nelson 2010; 

Kulldorff 2010).  

 

Many challenges of using advanced computational methods to enable 

spatiotemporal analytics at a large scale have remained unaddressed. First, when mapping 

disease risk (density of disease cases for instance), conventional STKDE conveys the 

assumption of a spatially and temporally homogeneous background (population at risk). 

Therefore, a cluster of elevated disease risk might merely be due to a high population 
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density. Approaches exist to adjust for spatially varying background by allowing for 

variable bandwidths to gain constant population support (Shi 2010; Davies and Hazelton 

2010; Davies, Jones, and Hazelton 2016; Tiwari and Rushton 2005), but their temporal 

extensions have not been addressed so far. Hence, adjusting for a spatially varying 

background is a common procedure to date, but by assuming a temporally homogeneous 

background, existing approaches are unable to capture population that may increase or 

dwindle through time. In the face of the current rapid urbanization and migration 

(Castles, De Haas, and Miller 2013), this assumption no longer holds, and methods for 

mapping disease risk need to be updated accordingly. Second, spatiotemporal domain 

decomposition methods suffer from inefficiency because they repetitively split the 

dataset, thereby introducing new boundaries, along with undesired boundary effects. 

Methods to deal with this problem have so far been unsatisfactory (Hohl, Delmelle, and 

Tang 2015), and improving spatiotemporal domain decomposition strategies by making 

educated choices about the bisection positions holds a substantial potential for gaining 

efficiency and  therefore, scalability. Third, quantifying computational intensity for load 

balancing using a single set of parameters is not realistic. It ignores uncertainty that arises 

from variable parameter values along with their interactions and therefore, is only valid 

for one specific case. Accelerating spatiotemporal data mining algorithms for all 

reasonable inputs necessitates analyzing the sensitivity of computing performance to 

various parameter sets in systematic ways. Employing concepts from the domain of 

sensitivity analysis (Saltelli et al. 2004) for studying the influence of model parameters 

on scalability of spatiotemporal domain decomposition for parallel space-time analytics 

remains an effort that is missing in the literature so far. Finally, we need to design, 
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modify, or extend new geographic algorithms, taking advantage of HPC and 

cyberinfrastructure, allowing us to mitigate performance and computational complexity 

issues for better support of scientific discovery and decision making. 

 

1.2 Research objectives  

My dissertation contributes to the body of literature on high-performance 

computing of spatiotemporal statistics within the domain of GIScience. Specifically, I 

challenge a key assumption of many prominent population adjustment methods for kernel 

density estimation of disease risk, a popular point pattern analysis application. I present 

Space-Time Kernel Density Estimation for Spatially and Temporally Inhomogeneous 

Background Populations (ST-IB), an improvement upon existing work by taking into 

account a spatially and temporally inhomogeneous background population. In addition, I 

develop a spatiotemporal domain decomposition approach called Flexible Spatiotemporal 

Domain Decomposition (ST-FLEX-D), which allows for tackling the big data challenge 

of developing scalable approaches to compute spatiotemporal statistics, using high-

performance parallel computing. Lastly, I propose Sensitivity Analysis for 

Spatiotemporal Computing (ST-SA), a framework for assessing the effect of model 

parameter values on computing performance and scalability. The results of ST-SA might 

guide practitioners on the computational requirements of their application of 

spatiotemporal statistics on large scales. Therefore, I aim for advancing the body of 

knowledge with three distinct contributions:      
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1.2.1 Objective 1 

Develop and implement adaptive kernel density estimation to address spatially 

and temporally inhomogeneous background populations (ST-IB). Develop a metric to 

measure its performance in detecting clusters of elevated disease risk. Compare the 

performance of ST-IB to an existing approach that ignores the temporal dimension and 

assume temporal homogeneity (Shi 2010).  

 

1.2.2 Objective 2 

Accelerate kernel density estimation using spatiotemporal domain decomposition 

for parallel processing. Develop a flexible splits heuristic to minimize domain replication 

(ST-FLEX-D). Compare flexible decomposition to static decomposition (ST-STATIC-D) 

using execution time of decomposition, as well as standard parallel performance metrics 

for subsequent STKDE. 

 

1.2.3 Objective 3 

Using Sobol’s method, a variance-based approach for global sensitivity analysis, 

as well as multivariate regression, study how uncertainty in the computational cost of a 

model can be apportioned to different sources of uncertainty in the model input 

parameters. Use spatiotemporal domain decomposition (ST-STATIC-D) for parallel 

STKDE as case study. 
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1.3 Road map 

 This dissertation is organized as follows: Chapter 2 provides a literature review on 

four main parts: spatiotemporal statistics (point pattern analysis, kernel density 

estimation), disease mapping (inhomogeneous population support, spatial relative risk 

function), parallel strategies for spatiotemporal statistics (HPC, domain decomposition), 

global sensitivity analysis. Chapter 3 describes the methodology for each of the 3 

research objectives. Chapter 4 contains results for each of the 3 research objectives. 

Chapter 5 contains discussion and conclusions. 
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CHAPTER 2: LITERATURE REVIEW 

 

This section contains a thorough literature review of relevant topics with regard to 

the research objectives, including 1) spatiotemporal statistics and its subfields of 

autocorrelation-based approaches, geostatistics, and point pattern analysis, 2) parallel 

strategies, focusing on spatiotemporal domain decomposition, 3) sensitivity analysis with 

its local approaches, regression, and variance-based approaches. 

 

2.1 Spatial and spatiotemporal statistics 

The domain of spatiotemporal analysis encompasses the three subfields of 

spatiotemporal statistics, optimization, and simulation. Here, I focus on point pattern 

analysis, a subfield of spatiotemporal statistics, which also includes autocorrelation-

based approaches and geostatistics.  

 

2.1.1 Autocorrelation-based approaches 

The first law of geography states that “Everything is related to everything else, 

but near things are more related than distant things” (Tobler 1970). Therefore, strong 

positive spatial autocorrelation indicates that within the area of interest, objects that are 

located close to each other are very similar compared to distant objects (attraction). On 

the other hand, negative spatial autocorrelation means that close objects are dissimilar 

(repulsion). Moran’s I (Moran 1950) is an instance of an autocorrelation-based approach 

within the field of spatial statistics. For a given set of points in geographic space, it 
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measures whether the values of an attribute of interest are clustered, dispersed, or 

random. Moran’s I has many practical applications in geography, ecology, epidemiology, 

criminology, and econometrics, to name a few (Assuncao and Reis 1999; Zhang et al. 

2008; Lin and Zhang 2007). Efforts for parallelizing the computation of Moran’s I 

statistic have been taken early on by using Linda, a coordination language that supports 

parallel processing (Rokos and Armstrong 1996). Similarly, the G* statistic measures 

spatial association of high/low attribute values (Getis and Ord 1992). Parallel 

implementations exist (Armstrong, Pavlik, and Marciano 1994), utilizing algorithmic 

decomposition, and by deployment on a grid computing platform (Wang, Cowles, and 

Armstrong 2008). The analysis of computational intensity by reference of the spatial 

domain was formulated using the G* statistic (Wang and Armstrong 2009). In addition, 

geospatial analysis capabilities using  G* have been taken to the MapReduce platform 

(Liu et al. 2010) for true big data processing, and cyberinfrastructure was employed to 

host Web-GIS services accessing TeraGrid computational resources (Wang and Liu 

2009).  

 

So far, I discussed global autocorrelation-based approaches, which produce one 

statistic for the entire study area. However, we may be interested in knowing where 

clustering (or repulsion) occurs. Global statistics can be decomposed into their local 

constituents. Therefore, local indicators of spatial autocorrelation (LISA) allow for 

mapping clustering of attribute values (Anselin 1995). Local Moran’s I has been 

extended from purely spatial to space-time and applied to analyzing water distribution 
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networks and cancer mortality rates (Difallah, Cudre-Mauroux, and McKenna 2013; 

Goovaerts and Jacquez 2005). 

 

2.1.2 Geostatistics 

Geostatistical methods were developed to predict probability distributions for ore 

grades in the mining industry and therefore, are frequently used in the petroleum industry 

and engineering (Cressie 1990). Kriging is a popular geostatistical method, which 

spatially interpolates attribute values assuming a gaussian process. As kriging involves 

costly computations, scientists developed parallel approaches utilizing general purpose 

graphics processing units (GPGPU), message passing interface (MPI), and advanced data 

structures (Cheng 2013; Wei et al. 2015; Hu and Shu 2015). Spatiotemporal Kriging is 

challenging because characterizing correlation requires advanced statistics for the space-

time domain, therefore further increasing the computational burden (Heuvelink and 

Griffith 2010). Kriging examples include the modelling of copper deposits in 

southeastern Iran (Daya and Bejari 2015), and estimation of coal layer quality for 

reducing the costly use of borehole drilling during geophysical exploration (Webber, 

Costa, and Salvadoretti 2013).  

    

2.1.3 Point pattern analysis 

Spatial and spatiotemporal point pattern analysis studies the arrangement of 

points and aims to distinguish random, clustered and dispersed patterns (Cressie and 

Wikle 2015). As opposed to autocorrelation-based approaches and geostatistics, spatial 

and spatiotemporal point pattern analysis do not focus on attribute values. This approach 
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has been useful for many applications, such as disease ecology (Kelly and Meentemeyer 

2002), neurology (Jafari-Mamaghani, Andersson, and Krieger 2010), epidemiology (Shi 

2010; Delmelle et al. 2014), and criminology (Nakaya and Yano 2010). 

 

2.3.3.1 Ripley’s K function 

Ripley’s K function (Ripley 1976) is a popular quantitative approach within the 

domain of spatial and spatiotemporal point pattern analysis. It characterizes a point 

pattern as either random, clustered or regular, by estimating the second-order property 

(variance) of the data. It considers 1) the number of and 2) the distance between points, to 

quantify the deviation of the observed pattern from randomness at multiple spatial scales 

(Bailey and Gatrell 1995; Dixon 2002). Essentially, Ripley’s K function centers a circular 

search window on each data point and counts the number of neighboring points observed 

in the window. This process is repeated using varying search radii (a.k.a. spatial scales). 

To gain statistical confirmation on the regular, clustered or random pattern, at each of the 

tested radii, Monte Carlo simulations are used: Each simulation run randomly generates a 

number of points (the number is equal to the number of observed points). The K function 

can be transformed to L-function to obtain a benchmark of zero, which allows for direct 

comparison across all spatial scales assessed. Therefore, a point pattern is clustered if L > 

0, within a given spatial distance. If L < 0, then the point pattern is regular, and if L = 0, 

the pattern conforms to complete spatial randomness (CSR). If the observed number L is 

above the upper envelope resulting from the simulations, clustering at the corresponding 

spatial scale is significant. The radius that yields the largest difference between observed 

K function and upper envelope is considered the most significant (and therefore, optimal 
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in that sense) scale. L values below the lower simulation envelope indicate regularity. 

Undesired edge effects may arise upon intersection of the search windows with the study 

area boundary. Methods to cope with edge effects have been studied intensively, and 

include the circumference method, toroidal method and inner guard method (Yamada and 

Rogerson 2003).  

 

The Ripley’s K function has applications in many scientific domains: early 

detection of breast cancer (de Oliveira Martins et al. 2009), analyzing oak mortality in 

California (Kelly and Meentemeyer 2002), and analyzing the geographic distribution of 

road traffic accidents (Jones, Langford, and Bentham 1996), to name a few examples. 

There are multiple improvements to the original formulation of Ripley’s K function. The 

incremental K function improves the ability to detect the scale of clustering by altering 

the search window to a search band formed by two concentric circles, just like a 

doughnut (Yamada and Thill 2007; Tao, Thill, and Yamada 2015). The multivariate 

(cross) K function evaluates clustering of marked point patterns (Dixon 2002; Boots and 

Okabe 2007). Therefore, it measures the scale at which one set of points (e.g. crime 

events) cluster around another set of points (e.g. train stations). The cross K function was 

extended to test the association between spatial objects of differing dimensionality, such 

as points, lines, and polygons (Guo et al. 2013). The local K function belongs to the class 

of local indicators of spatial association (LISA; Anselin 1995) and allows for detecting 

and mapping clusters of points, as well as the spatial scale at which the clustering occurs 

(Getis and Franklin 1987). The network-constrained K function evaluates clustering of 

points along networks, such as roads, railways, or utility grids, which is advantageous, 
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i.e. for studying vehicle collisions or power outages. It has been enhanced by the 

incremental K function, as well as by corrections for network geometry (Okabe and 

Yamada 2001; Yamada and Thill 2007; Ang, Baddeley, and Nair 2012). Based on the 

network –constrained K function, Tao (2017) develops three new methods for exploratory 

spatial flow data analysis. Flow data quantifies the stream of goods, people or any object 

between two or more locations. Lastly, GPU were utilized to speed up the computation of 

Ripley’s K for spatial point pattern analysis (Tang, Feng, and Jia 2015).  

 

2.3.3.2 Kernel density estimation 

Kernel density estimation (KDE; Silverman 1986) is a popular technique for 

producing heat maps. It essentially generates a regular grid of points (sites) that hold 

density estimates which depend on the number and position of surrounding data points. 

Each pair of data point and site that are separated by less than a maximum distance 

contributes to density at the site by applying a weight determined by the kernel function 

(the smaller the distance between data point and site, the higher the weight). Many 

different kernel functions exist: Quartic, Gaussian, Epanechnikov, to name a few. Space-

Time Kernel Density Estimation (STKDE; Nakaya and Yano 2010) produces a density 

volume, which consists of regularly spaced points (sites, voxels) for which a density 

estimate is calculated. It illustrates that the computational burden is very high and 

depends on the spatial or spatiotemporal distribution of the point-events to be analyzed. 

STKDE is great for identifying space-time clusters, and has been implemented for 

visualizing disease patterns (Delmelle et al. 2014), identifying clusters of crime (Nakaya 

and Yano 2010), exploring human mobility patterns (Gao 2015). 
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Unlike the selection of bandwidth, the choice of kernel function is not critical for 

the distribution of the resulting density estimates and the visual properties of the heat map 

(Bowman and Azzalini 1997; Silverman 1986). If the bandwidth is chosen too large, 

important details of the point pattern disappear, as they are oversmoothed. On the other 

hand, if the bandwidth is too small, the density surface is too rough or spikey and 

important patterns are unobservable. There are a number of bandwidth selection 

techniques: The spatial (and temporal) scale resulting from analyzing spatial data using K 

function can be used as bandwidth (search radius) for KDE, optimization approaches, 

least squares cross validation, and several rules of thumb have been developed (Wand 

and Jones 1994). So far, a consensus about which method is universally best does not 

exist.  

 

2.2 Kernel methods for disease mapping 

 

2.2.1 Spatial filters 

Spatial filters (a.k.a. box kernels) are a special case of kernels, where the weight 

does not decrease within bandwidth. Spatial filters are used for detecting local hot spots 

and significance tests on case and control data, for instance to compute birth defect rates 

in Iowa (Rushton and Lolonis 1996). The problems of using aggregated disease data 

within artificial (administrative) units, such as census tracts, motivated Rushton’s work. 

Hence, he and his colleagues use individual geocoded maternal addresses of births, as 

well as birth defects. They evaluate the birth defect rates at regular grid points, by 
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imposing circles within which births and defects are considered. They test for 

significance by simulating 1000 random datasets in which points were marked as “birth” 

or “defect” according to the probability arising from their ratio in the observed data. 

Therefore, the birth defect rate at each grid point (site) can be compared to the upper 

simulation envelope for significance. Spatially adaptive filters address the problems of 1) 

losing geographic detail and 2) producing unreliable estimates in sparsely populated areas 

(Tiwari and Rushton 2005). An adaptive filter is a circle centered on a grid point, which 

increases its radius until it achieves a minimum population support. Hence, they achieve 

statistical stability in less populous areas and high spatial certainty in more populous 

areas. Cai, Rushton and Bhaduri investigate the multiple testing problem, where large 

numbers of individual tests result in inflated type 1 error, whereas autocorrelation arises 

from overlapping neighboring filters. They improve upon spatially adaptive filters by 

weighting observations according to their proximity to the center of the filter using a 

staircase kernel (Cai, Rushton, and Bhaduri 2012).  

 

2.2.2 The spatial relative risk function 

The spatial relative risk function, computed as the ratio between density of 

disease cases and density population at risk, is another important kernel approach in 

health geography, with applications in mapping Type 2 Diabetes Mellitus (Kauhl et al. 

2016), and cancer incidences (Lemke et al. 2015). Fixed and adaptive bandwidths can be 

used and produce different results for detecting risk areas. Lemke and colleagues (2015) 

found that the fixed kernels tend to oversmooth in urban areas, while overestimating the 

risk in rural areas. An adaptive bandwidth kernel can reduce the effect. They choose a 
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fixed bandwidth using the oversmoothing principle (Terrell 1990), and the adaptive 

kernel bandwidth as a function of population density. Other efforts towards case-based 

adaptive bandwidth relative risk function (Davies and Hazelton 2010) use case and 

control bandwidths computed for each evaluation point, depending on density of 

surrounding observations. Essentially, this includes computing  pilot densities using cross 

validation to determine fixed pilot bandwidths separate for cases and controls (Bowman 

and Azzalini 1997), a global bandwidth (chosen by the maximal smoothing principle, 

common to case and control densities) and a geometric mean term. Davies and 

Hazelton’s simulation study suggests that the adaptive density estimator is more desirable 

because the fixed bandwidth estimators are not able to properly capture clusters while 

maintaining a sufficient degree of smoothness over the rest of the region. However, the 

authors admit that their method of bandwidth selection is rather ad-hoc and that there is 

scope for new methods of bandwidth selection for relative risk estimation.  

 

Adaptive kernels using different bandwidths for computing the case- and control 

densities are likely to produce artificial risk halos, which are undesired artefacts in the 

resulting risk surface (Davies, Jones, and Hazelton 2016). Applying a symmetric adaptive 

smoothing scheme addresses the problem. The case and control bandwidths are the same, 

and determined by population density, similar as in (Lemke et al. 2015). Martin Hazelton 

considers the problem of statistically comparing relative risk between two time periods 

and develops a statistic to test for change in the pattern of relative risk (Hazelton 2017). 

Note that this is a global measure of change, i.e. it tests the entire study area, which raises 

the question whether a localized test is feasible. The observed test statistic is compared to 
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a null distribution, which is generated by either 1) randomization with a substantial 

number of replications (~1000), or 2) using asymptotic theory, which shows that a kernel 

estimator has an asymptotically normal distribution.  

 

Fernando and Hazelton postulate the generalized spatial relative risk function 

(Fernando and Hazelton 2014). Most interestingly, their approach generalizes the spatial 

relative risk function to the spatiotemporal relative risk function by making the 

assumption of constant control density through time. However, if this assumption does 

not hold, the spatial relative risk function generalizes to the conditional spatiotemporal 

relative risk function. It uses common bandwidths for case and control densities, which 

has been shown to be advantageous, see (Davies, Jones, and Hazelton 2016). In addition, 

tolerance contours delineate statistically significant areas/times of elevated risk using 

asymptotic theory (as an alternative to the computationally costly Monte Carlo methods). 

For lack of better alternatives, Fernando and Hazelton select optimal bandwidths by 

minimizing the mean integrated squared error (MISE) using approximate least-squares 

cross-validation (LSCV), but admit that the procedure is unsatisfactory in practice due to 

high variability of outcomes. They conclude that the generalized spatial relative risk 

function is a useful data visualization tool, but admit that it suffers from problems in data-

driven bandwidth selection. Further research towards selecting bandwidth for the spatial 

relative risk function is critically needed.  
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2.3 Parallel strategies for spatial and spatiotemporal statistics  

 There are two classes of parallel computing architectures: 1) SIMD (Single 

Instruction stream, Multiple Data stream) architectures focus on data parallelism, where 

multiple processors concurrently execute the same set of instructions on different 

datasets. In 2) MIMD (Multiple Instruction stream, Multiple Data stream) architectures, 

multiple processors execute different instructions on different datasets (Ding and 

Densham 1996). There are two popular paradigms for high-performance and parallel 

computing that base off SIMD and MIMD: multi-core and many-core computing. Multi-

core computing extends single core computing through shared memory modules that are 

accessed by multiple processors (Wilkinson and Allen 2004). Using graphics processing 

units (GPUs) that receive instructions from CPUs to tackle large computations is a good 

example of many-core computing. GPUs have been originally developed to support 

graphic displays, but have been adapted to speed up scientific computations because of 

their suitability to exploit data parallelism (Tang and Bennett 2011). There are three 

parallel approaches for multi- and many-core computing: 1) embarrassingly parallel, 2) 

shared memory, and 3) message passing (Wilkinson and Allen 2004). Every approach has 

its unique characteristics, advantages and shortcomings and therefore, suits different 

parallel applications. The embarrassingly parallel approach does not allow concurrent 

processors to exchange data and instructions. If communication among processors is 

necessary, the shared memory and message passing approaches are preferred. In shared 

memory approaches, each memory module is accessible by multiple processors and data 

is exchanged through common memory space. Message-passing computing allows for 

communication among processors by sending or receiving messages. However, the 
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message-passing and shared memory approaches, suffer from communication overhead 

that reduces computing performance. On the other hand, the embarrassingly parallel 

approach requires prior decomposition of the computation, which may introduce issues of 

load balancing. 

 

Spatial problems can be classified based on their domains into regular/irregular 

and homogeneous/inhomogeneous (Ding and Densham 1996). One remarkable feature of 

spatial modelling is the divisibility of its domain, for instance by using square or 

rectangular tessellations that are suitable partitioning strategies due to nature of spatial 

coordinate systems. The resulting subdomains can assigned to multiple concurrent 

processors, i.e. to compute a spatial statistic, using the embarrassingly parallel approach. 

The spatial domain decomposition can be one-dimensional, forming horizontal or vertical 

stripes, or many-dimensional, i.e. forming a checkerboard pattern. However, regular 

partitioning of irregular or inhomogeneous domains introduce workload imbalance, 

where computing resources are not used to their full potential because some processors 

might be finished earlier than others and therefore, stay idle. Hence, recursive 

approaches, such as quadtrees (Samet 1984) are used to partition the spatial domain into a 

hierarchical set of rectangles/squares, a.k.a. subdomains, which contain a more or less 

equal number of data elements and which then are assigned to processors for evenly 

balanced workloads. However, combining the results from non-overlapping subdomains 

may result in incorrect results due to the dependence of many spatial analysis and 

modelling approaches on neighborhood information, for instance through nearest-

neighbor search. Using quadtrees for recursive spatial domain decomposition introduces 
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new boundaries due to the splits at axis midpoints, which cause edge effects in kernel 

density estimates if not properly dealt with (Hohl, Delmelle, and Tang 2015).  

 

 There are many applications and extensions to spatial domain decomposition 

procedures for various scientific disciplines: Inverse–distance interpolation (IDW) has 

been parallelized using quadtree spatial domain decomposition and task scheduling 

within a grid computing environment (Wang and Armstrong 2003; Desjardins et al. 

2017). Interpolating massive LIDAR point clouds to create DEMs calls for accelerated 

processing capabilities. Guan and Wu (2010) use thread-based parallelism for multi-core 

CPUs, as well as regular spatial domain decomposition for their hybrid nearest neighbor 

search procedure: The search either terminates if there are no points found within a 

specified distance d from the unknown location, or if the maximum number of nearest 

neighbors k, is reached. d is determined by average point density, spacing,  as well as the 

total number of points and area. Similarly, parallel implementations exist for the G*(d) 

statistic: Wang, Cowles and Armstrong (2008) decompose the spatial domain using an 

improved quadtree, where the size of the quads is restricted to twice the bandwidth (d). It 

allows for reducing distance computations across neighboring quads, while Morton quad 

indexing minimizes the use of points outside quads. Zhang and You (2013) construct 

BMMQ (binned min-max quadtrees) on raster datasets for spatial indexing to support 

range queries. The BMMQ tree stores statistics (minimum and maximum values) with 

each quadtree node, while the contained raster cells are binned to reduce tree complexity. 

A MapReduce (Dean and Ghemawat 2008) version of the G*(d) statistic, using quadtrees 

for spatial indexing was presented by Liu et al. (2010). They solve the boundary problem 
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by storing a matrix of the minimum distances between each quadtree node (subdomain). 

If the distance between node a and node b is larger than the bandwidth, node b does not 

have to be taken into consideration when querying from node a. This is an alternative 

approach to the buffer implementation, where we replicate points within bandwidth from 

subdomains. Finally, Hohl et al. (2016) used octree decomposition for accelerating the 

STKDE algorithm, and tackle the boundary problem by implementing subdomain 

buffers, for which data points are replicated and assigned to multiple subdomains. 

However, as already evidenced by Gu (2011), the inclusion of time complicates 

requirements for spatial indexing, resulting in low retrieval efficiency. For further 

acceleration, Hohl, Casas et al. (2016) use a hybrid strategy, performing octree-based 

recursive decomposition of the space-time domain and using k-d tree indexing within 

octree leaf nodes (Liu et al. 2008) for parallel computation of STKDE. K-d tree is a 

binary tree structure for arranging points in k-dimensional space (Bentley 1975), allows 

for efficient retrieval, and has been widely used for NN search. Merging multiple 

indexing methods to form hybrid spatiotemporal indices was recently proposed by Azri et 

al. (2013).  

 

 Recent advancements of cyberinfrastructure and HPC in the domain of geospatial 

applications (or GIScience) had significant impacts on health and wellbeing in urban 

settings through participatory data collection using mobile devices (Yin, Gao, and Wang 

2017). The ability to process exorbitant amounts of data through HPC has enabled the 

study of human digital footprints (i.e. Tweets), which led to an understanding of urban 

land use at high resolution, as well as mobility patterns (Soliman et al. 2017). The 
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analysis of social media data enabled by cyberinfrastructure, has thrust a series of 

applications at the intersection of spatiotemporal analysis and health (Gao et al. 2018; 

Padmanabhan et al. 2014; Ye et al. 2016; Shi and Wang 2015). Other application 

domains include hydrologic modelling (Survila et al. 2016; Ye et al. 2014; Y. et al.), 

biomass and carbon assessment (Tang et al. 2017; Tang et al. 2016; Stringer et al. 2015), 

andagent-based modelling (Shook, Wang, and Tang 2013; Fachada et al. 2017; Tang 

2008; Tang and Bennett 2010, 2012; Tang and Wang 2009; Tang et al. 2011).          

 

2.4 Sensitivity analysis 

Sensitivity analysis (SA) studies “how the uncertainty in the output of a model 

(numerical or otherwise) can be apportioned to different sources of uncertainty in the 

model input” (Saltelli et al. 2004, 45). It facilitates the understanding of relationships 

between the results of a model (i.e. regression coefficients) and its input factors (i.e. data 

and parameters), such as the polynomial degree, identifies driving factors, as well as 

model structure. Applications of SA are found in many scientific domains, such as 

ecology, hydrology, engineering and economy (Saltelli et al. 2008; Lilburne and 

Tarantola 2009; Tang and Jia 2014). SA encompasses the following steps: 1) defining an 

objective function, 2) selecting input factors, as well as their distribution functions, 3) 

random sampling, 4) model evaluation, 5) and analyzing model outputs. SA approaches 

are grouped into local, regression, and variance-based, each with their own advantages 

and drawbacks in terms of model dependency, computational requirements, and support 

of spatiotemporal variables. Sobol’s approach is an example of the latter, which is 

particularly interesting because of its model independency, support of nonlinearity and 
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spatially explicit data (Sobol 1993). SA has proven useful for many applications within 

GIScience, i.e. to investigate the computational aspects of agent-based modelling (Tang 

and Jia 2014), or to study uncertainty in cellular-automata modelling for urban growth 

simulation (Şalap-Ayça et al. 2018).  

 

2.4.1 Local approaches 

The effect of a given model input factor on a given output defines local 

approaches (not to be confused with the notion of “local” in the context of spatial 

statistics). This is either obtained by changing one factor at a time (OAT), or by 

computing derivatives, i.e. the instantaneous rate of change, the ratio of the instantaneous 

change in model output to that of the input factor (parameter, variable) under study 

(Rabitz 1989; Turányi 1990). However, in different settings, such as the analysis of risk 

(financial, industrial, disease, disaster), a quantitative assessment of the uncertainty 

around the model output is desired. For the risk analyst, the degree of variation is 

important, which may not be captured by OAT or derivative-based approaches, especially 

when analyzing highly non-linear models. In addition, local methods for sensitivity 

analysis discard the possibility of interactions between factors: factors interact if their 

compound effect on the output cannot be expressed as a sum of their single effects. 

Hence, it is impossible to rank them in order of their importance, i.e. the amount of 

variance they account for in the model output (Saltelli et al. 2004). The only advantage of 

local approaches is their computational efficiency, as the number of model evaluations is 

small. 
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2.4.2 Regression approaches 

 Regression-based sensitivity analysis uses standardized regression coefficients 

(SRCs; Draper and Smith 2014), Pearson correlation measures, or partial correlation 

coefficients (PCC), to quantify the effect of uncertainty in model inputs. Hence, using 

standardized model inputs as independent variables and model outputs as dependent 

variable of a least-squares regression model quantifies the effects of model parameter 

values on model outputs. This method allows for ranking input factors according to their 

influence on output variance. We can sample the parameter values distributions, 

including non-uniform ones, and quantify the fraction of the output variance that is 

accounted for by regression model using the model coefficient of determination (R2) 

(Saltelli 1999). Therefore, the closer the R2 to 1.0, the better are the results. A low R2 

implies that there is a considerable fraction of the output variance left unaccounted for 

(Saltelli, Tarantola, and Chan 1999). In that case, the ranking of input factors might 

change if one were able to attribute the remaining fraction of the variance to the factors. 

Regression-based approaches belong to the class of global sensitivity analysis, and have 

the advantage of exploring the entire defined range of values for each parameter. They 

stand in contrast to local approaches, which only perform model evaluations for a 

predefined local set of parameter values (Saltelli et al. 2004). However, besides being 

model-dependent, discovering and quantifying interaction effects between factors is a key 

weakness of regression-based sensitivity analysis approaches (Saltelli et al. 2008).     
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2.4.3 Variance-based approaches 

Variance-based approaches for global sensitivity analysis perform the 

decomposition of model output variance (Sobol 1993). Hence, they study how variance 

of the output relates to uncertain input factors. They are recommended because of model 

independence, ability to incorporate the full range of variation of each input factor, 

appreciation of interaction between inputs, support of nonlinearity, and spatially explicit 

variables (Archer, Saltelli, and Sobol 1997). Variance of model output is an important 

property that naturally arises within a Monte Carlo framework (Saltelli et al. 2004), and is 

seen as a summary measure of uncertainty (Saltelli et al. 2008). Variance-based 

sensitivity analysis comes at a high computational cost because the model is evaluated 

many times for different factor values. 

 

Variance-based approaches were first employed by chemists who proposed to use 

conditional variances for sensitivity analysis (Cukier et al. 1973). The Fourier Amplitude 

Sensitivity Test (FAST) uses search-curves which explore the multidimensional 

parameter space (Cukier, Levine and Shuler 1978), to compute the contribution of each 

input factor to total variance. An extension of FAST (EFAST) allows capturing higher-

order effects and therefore, interactions between factors, by computing sensitivity indexes 

of arbitrary groups of factors. EFAST employs Monte Carlo methods to overcome the 

curse of dimensionality resulting from enumerating and computing all possible 

combinations of factors (Saltelli and Bolado 1998; Saltelli, Tarantola, and Chan 1999). . 

Interaction is present if extreme output values are uniquely associated with a certain 

combination of model inputs in a way that cannot be described by first-order effects. 
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They represent important features of models, give insight on model structure, and are 

harder to detect than first-order effects (Saltelli et al. 2008). A first-order effect describes 

the contribution of each input factor to the variance of the output. It can be quantified by 

a first-order sensitivity index, which is obtained by computing the ratio between the 

variance of the expected output, conditioned on a given input factor value and the 

unconditional variance (Homma and Saltelli 1996). As an alternative, Sobol’s method 

(Sobol 2001) decomposes the variance into its constituents, meaning the model inputs. 

Hence, it allows for identifying interaction effects by computing higher-order terms, 

whereas the second-order effect is computed by the joint effect of two model inputs 

minus their first-order effects. It differs from EFAST by its sampling scheme, which 

makes it computationally more expensive to compute higher-order effects.  

  



29 
 

CHAPTER 3: Methodology 

 

3.1 Overview 

This section introduces the methodology developed for my research, addressing 

each of my research questions. Figure 1 shows the framework used in my dissertation. It 

includes: 1) developing the case-side adaptive-bandwidth kernel density estimator for 

spatially and temporally inhomogeneous backgrounds (ST-IB), 2) implementing a 

flexible splits heuristic for adaptive spatiotemporal domain decomposition (ST-FLEX-D), 

and 3) performing global sensitivity analysis of computing performance (ST-SA). Figure 

2 shows each of the components and their areas of contribution. Component 1) takes data 

and threshold parameters as inputs. It produces spatiotemporal risk estimates, clustering, 

as well as odds ratios as a measure to evaluate clustering performance. The odds ratios 

allow for comparing performance with other methods for computing risk estimates.The 

spatiotemporal risk estimates can be visualized and therefore, allow for visual assessment 

and comparison to other methods, i.e. STKDE of component 2). The case data and a set 

of parameters serve as inputs of component 2), which includes spatiotemporal domain 

decomposition for subsequent parallel STKDE. It produces kernel density estimates and 

computing performance metrics, allowing for comparison with the methodology in 

component 3). Component 3) takes the case data and parameter ranges as inputs. It 

performs sensitivity analysis on the two-stage procedure of spatiotemporal domain 

decomposition and parallel STKDE. Hence, it outputs sensitivity indexes and computing 

performance metrics.     
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Figure 1: Three issues of space-time pattern detection. 
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Figure 2: The contribution map. Domain areas of influence and contribution of each of 
the products developed in this research (ST-SA, ST-FLEX-D, ST-IB). 

 

3.2 Research objective 1 methodology 

In this section, I develop and implement ST-IB, an adaptive-bandwidth kernel 

density estimation approach, which addresses spatially and temporally inhomogeneous 

background populations. I do so within the framework of space-time cube (Nakaya and 

Yano 2010), which contains two planar spatial dimensions (x, y), whereas the vertical 

dimension reflects the temporal component, time (t). 
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3.2.1 Case-side adaptive bandwidth kernel density estimator 

 

3.2.1.1 Kernel density estimation  

 Kernel density estimation (KDE) is a popular technique to visualize patterns of 

spatial point events (a.k.a data points). It imposes a regular grid of points (a.k.a pixels) on 

the study area, and evaluates density for each of them, based on surrounding point events: 

A circular window, defined by its radius hs (s stands for “spatial”, forming a distinction to 

“temporal” later on), is centered on a data point. Grid points that fall within the circle 

receive a contribution (a.k.a. weight) to their density value, which is determined by the 

kernel function and their distance to the center. I repeat the process for each data point 

and hence, create a density surface based on the observed point data. 

 

𝑓𝑓(𝑥𝑥,𝑦𝑦) =  1
𝑛𝑛ℎ𝑠𝑠2

 ∑ 𝑘𝑘𝑠𝑠 �
𝑑𝑑𝑖𝑖(𝑥𝑥,𝑦𝑦)

ℎ𝑠𝑠
�𝑛𝑛

𝑖𝑖=1     (1) 

 

Equation 1 shows how density estimates for a given grid point 𝑓𝑓(𝑥𝑥,𝑦𝑦) is calculated. n is 

the number of data points within the study area, hs is the radius of the circular window. ks 

is the kernel function, which characterizes the contribution of each data point i as a 

function of its distance to the grid point di(x,y). Popular kernel functions are Epanechnikov, 

Gaussian, or Biweight (Bowman and Azzalini 1997). 
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3.2.1.2 Kernel density estimation with inhomogeneous background  

 Computing density as the distance-weighted number of points per unit area is not 

realistic for many geographical applications (Bithell 1990). For instance, when mapping 

disease risk, we are interested in the number of (disease) cases (a.k.a data points) per unit 

population-at-risk, which might exhibit an uneven distribution in space and time. 

Depending on the phenomenon under study, the population-at-risk may include all 

population, or only certain strata. It may be a sample or the full population-at-risk and it 

is also referred to as background population, or simply background. As a result, an area 

of elevated disease risk identified by kernel density estimation might merely reflect a 

large local background population (Bithell 2000). A generic method to deal with 

inhomogeneous background population is to compute risk (�̂�𝑟) by dividing density of 

cases (c) by the density of the background population (p), shown in Equation 2 (Davies 

and Hazelton 2010).  

 

�̂�𝑟(𝑥𝑥,𝑦𝑦) = 𝑐𝑐
𝑝𝑝
      (2) 

 

 When considering an inhomogeneous background population, the distinction 

between site-side and case-side kernel density estimation becomes important (Shi 2010). 

From an epidemiological perspective, it makes more sense to assess population around 

the disease case instead of around a site (grid point), which is what the case-side method 

does. It is hard to justify that the contribution of a case to disease risk at the site is based 

on the population around the site, which is the idea behind the site-side method (Shi 

2010). Figure 3 illustrates the distinction between site-side and case-side methods, where 
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the circles represent kernels that both have equal bandwidth. The two cases (red dots) 

both have equal distances to the two sites (black dots). Using the site-side method, both 

cases are of equal importance to the sites, but they are equally more important to the left 

site because of the low population (blue dots) within the left circle, compared to the high 

population in the right circle (indicated by the thick and thin blue arrows). This results in 

higher disease risk for the left site. The Case-side method assigns higher importance to 

the upper case because of low population within its circle. It is key to recognize that each 

case contributes equal weight to both sites. Hence, the resulting disease risk is the same at 

both sites. I conclude that site-side and case-side kernel methods might produce different 

results for a given scenario.    

 

 

Figure 3: Distinction between Site-side and Case-side kernel density estimation with 
inhomogeneous background population. 
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 Now that I established the importance of distinguishing site-side and case-side 

kernel density estimation over inhomogeneous backgrounds, I shift focus on the 

difference between fixed and adaptive kernels. Fixed kernels have constant bandwidth 

whereas adaptive kernels allow the bandwidth to adapt to local conditions. A kernel that 

adapts to the background population is useful to establish constant population support 

(constant p in Equation 2), rather than constant areal support, which is the case with fixed 

bandwidth kernels. Alternatively, it makes sense to adapt the bandwidth to the 

surrounding cases when computing risk of communicable disease, such as dengue fever, 

the local case density is more informative than the population density. I achieve this by 

imposing the kernel on a disease case and start increasing the bandwidth until a specified 

(population or disease case) support is reached (Figure 4). Note that as the kernel 

expands, the case in its center will expand the range of its contribution to disease risk. In 

other words, as the circle grows outwards, seeking for support, more sites will receive 

contribution from the disease case in its center. 

 

Figure 4: Adaptive bandwidth kernel with inhomogeneous background. 
Right: Kernel adapts to population. Left: Kernel adapts to cases. 
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Shi (2010) proposes the case-side adaptive bandwidth kernel density estimator (Equation 

3): 

 

�̂�𝑟𝐶𝐶𝐶𝐶(𝑥𝑥,𝑦𝑦) =  ∑ 𝑘𝑘𝑠𝑠 �
𝑑𝑑𝑖𝑖,(𝑥𝑥,𝑦𝑦)

ℎ𝑠𝑠[𝑝𝑝(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)]�
𝑛𝑛
𝑖𝑖=1    (3) 

 

Where the bandwidth hs is a function of the local population density at the location (xi, yi) 

of case i. This method results in disease risk values that are defensible in health studies, 

while being more statistically comparable (Carlos et al. 2010; Shi 2010; Shi and Wang 

2015). 

 

3.2.1.3 Space-time kernel density estimation 

So far, I completely ignored the temporal dimension in the discussion. Many 

geographic studies employ time-flattening: collapsing the temporal dimension into one 

single 2D map, which represents the entire study period (Bach et al. 2016). Other 

approaches discretize time into a number of time slices, which can be displayed as small 

multiples (Boyandin, Bertini, and Lalanne 2012). However, none of these approaches 

represent time as a real continuous dimension, which is necessary for depicting 

spatiotemporal patterns of point events. Space-time kernel density estimation (STKDE) is 

a temporal extension of KDE, used for identifying spatiotemporal patterns of spatial point 

events with a timestamp. Different from the concepts of space-time paths and space-time 

prism to analyze individual movement patterns (Kwan 2000; Kwan 2004; Miller 1991), 

STKDE considers each point as an independent observation. We can visualize the density 
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estimates within the space-time cube framework using two spatial (x, y) and a temporal 

dimension (t). STKDE outputs a regular 3D grid of points (a.k.a. voxels) that hold a 

density estimate based on the surrounding point data (Delmelle et al. 2014; Brunsdon, 

Corcoran, and Higgs 2007). The space-time kernel density is estimated by Equation 4: 

 

𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑡𝑡) =  1
𝑛𝑛ℎ𝑠𝑠2ℎ𝑡𝑡

 ∑ 𝑘𝑘𝑠𝑠 �
𝑑𝑑𝑖𝑖,(𝑥𝑥,𝑦𝑦)

ℎ𝑠𝑠
� 𝑘𝑘𝑡𝑡 �

𝑑𝑑𝑖𝑖,(𝑡𝑡)

ℎ𝑡𝑡
�𝑖𝑖      (4) 

 

 Density 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑡𝑡) of each voxel s with coordinates (x,y,t) is estimated based on 

neighboring data points i. Each point located within neighborhood of s is weighted using 

the spatial and temporal kernel functions, ks and kt, respectively (the closer the data point, 

the higher the weight. The spatial and temporal distances between voxel and data point 

are given by di,(x,y) and di,(t) respectively. Normalization or scaling of all dimensions to a 

common range of values would allow for computing true 3D kernel density, which would 

simplify the procedure if STKDE to Equation (1). Defining a weight, or conversion factor 

between the spatial and temporal dimension would achieve the same thing. However, this 

would make the result of our analysis dependent on the distribution and extent of the data 

or the subjective choice of weighing time versus space, and hence, hurt its comparability 

and general applicability.   

 

3.2.1.4 Space-time kernel density estimation with inhomogeneous background 

 Since we are able to compute disease risk for spatially inhomogeneous 

background populations, we could use STKDE to generate maps of disease risk over 

time, assuming a temporally homogeneous (static) background. However, we find 
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ourselves in the age of migration (Castles, De Haas, and Miller 2013), where people 

move their residential location for many reasons: forced migration due to climate change 

(Martin 2001), conflicts (Mitchell 2011), or to find labor (Münz 2007). Cities experience 

waves of urbanization (Meentemeyer et al. 2013), suburbanization (Lang and Simmons 

2001), re-urbanization and counter-urbanization (Champion 2001). Hence, the temporally 

homogeneous background population assumption might no longer hold true. In addition, 

population data are becoming available at finer spatial and temporal resolutions, and 

given the current technological advancement, it is foreseeable that this development will 

continue (Bhaduri et al. 2007), calling for an extension of the current kernel methods for 

computing disease risk to address temporally inhomogeneous background populations.    

 

 Equation 5 denotes a case-side adaptive-bandwidth space-time kernel density 

estimator for spatially and temporally inhomogeneous background (ST-IB): 

 

�̂�𝑟𝑆𝑆𝑆𝑆−𝐼𝐼𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡) =  ∑ 𝑘𝑘𝑠𝑠 �
𝑑𝑑𝑖𝑖,(𝑥𝑥,𝑦𝑦)

ℎ𝑠𝑠[𝑝𝑝(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)]� 𝑘𝑘𝑡𝑡 �
𝑑𝑑𝑖𝑖,(𝑡𝑡)

ℎ𝑡𝑡[𝑝𝑝(𝑡𝑡𝑖𝑖)]�𝑖𝑖    (5) 

 

Here the spatial- and temporal bandwidths hs and ht, respectively, are a function of the 

local population density p(xi, yi), p(ti) at space-time location (xi, yi, ti) of case i. The 

population is assessed within a half ball moving through 3D space, which means that 

only the population present before the disease case contributes to the population 

adjustment. However, as seen in Section 3.2.1.2, it may make sense to adapt the 

bandwidth to the surrounding cases c(xi, yi), c(ti) instead of the underlying population. For 
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instance, when computing risk of communicable disease, the local case density is more 

informative than the population density (Equation 6). 

 

�̂�𝑟𝑆𝑆𝑆𝑆−𝐼𝐼𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑡𝑡) =  ∑ 𝑘𝑘𝑠𝑠 �
𝑑𝑑𝑖𝑖,(𝑥𝑥,𝑦𝑦)

ℎ𝑠𝑠[𝑐𝑐(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖)]� 𝑘𝑘𝑡𝑡 �
𝑑𝑑𝑖𝑖,(𝑡𝑡)

ℎ𝑡𝑡[𝑐𝑐(𝑡𝑡𝑖𝑖)]�𝑖𝑖    (6) 

 

 Both estimators suffer from the multiway problem: There are multiple ways to 

achieve the specified support (of either neighboring cases or population). When searching 

for support, we could either extend the spatial bandwidth (Figure 5a), or the temporal 

bandwidth (Figure 5b), or both.  

 

 

Figure 5: The multiway problem. a) extending the spatial bandwidth, b) extending the 
temporal bandwidth. 

 

Clearly, we need to overcome the orthogonal relationship between space and time 

(Nakaya 2013), and unify them into the same space. I chose to use the k-nearest 

neighbors (kNN) method to deal with the issue (Jacquez 1996). Figure 6 illustrates the 



40 
 
process: Because we cannot compute a meaningful Euclidean distance between objects 

using the spatial and temporal dimensions, I generate two ordered sets for each disease 

case: 1) the spatial k-nearest neighbors and 2) the temporal k-nearest neighbors of the 

case. I then increase k and compute the cardinality card() of the intersection between the 

two sets. I keep increasing k until card() equals the specified support. I then compute the 

spatial and temporal bandwidths hs, ht, respectively, as the spatial and temporal distance 

of the farthest point in the intersection set to the case. 

 

 

Figure 6: Spatiotemporal nearest neighbors. 

 

Using this procedure, I unify the spatial and temporal dimensions, enabling search for 

support of adaptive-bandwidth kernel density estimation for spatially and temporally 

inhomogeneous backgrounds. I do so by discretizing the continuous spatial and temporal 
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dimensions into sets of nearest (case or population) neighbors of disease cases. Therefore, 

I solve the multiway problem for the kernel density estimator in Equations 5 and 6. 

 

3.2.3 Case data  

I illustrate our implementation of ST-IB using a spatiotemporal explicit set of 

dengue fever cases in the city of Cali, Colombia (Figure 7), for the years 2010-2011. 

Cali, the third largest metropolitan area in the country with a total population of around 

2.3 million and a population density of 4,140/km2 in 2013, is located in the southwest of 

Colombia (Cali 2014). Cali experiences two rainy seasons: the first from April to July 

and the second from September to December. Located at approximately 1,000 m above 

sea level, it has an average temperature of 26°C and an average precipitation of 1,000 

mm over most of the metropolitan area (Cali 2014). The city, as most colonial cities in 

Latin America, grew from its central core, following the city spine, and towards the 

periphery. Peripheral neighborhoods are typically characterized by high density and low 

income since they have been the result of squatter settlements and poor urban planning 

(Restrepo 2011).  
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Figure 7: The city of Cali, Colombia. 

 

I use a dataset of dengue fever cases within the city of Cali in this study. The data 

is extracted from the “Sistema de Vigilancia en Salud Pública (SIVIGILA)” (English: 

Public Health Surveillance System) for the city of Cali for the years 2010 and 2011. The 
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SIVIGILA system has as a main responsibility to observe and analyze health events with 

the objective of planning, follow up, and evaluation of public health practices (Colombia 

2017). Reported cases of dengue fever are entered into the system daily. Each case 

includes personal information about the patient such as their home address and when they 

were diagnosed. A total of 11,056 cases were geocoded to the closest intersection to 

guarantee a level of privacy, for both years. There were 9,606 cases in 2010 and 1,562 in 

2011. The difference in the number of cases is explained by the fact that 2010 was 

identified as an epidemic year (Varela, Aristizabal, and Rojas 2010). 

 

3.2.4 Population data  

Population information at fine spatial and temporal scales might be available in 

different formats and conceptualizations. Apart from census data, scientists have used 

tweets as a proxy for population (Malleson and Andresen 2015), trajectories of 

individuals created through retrospective activity diaries (Chen et al. 2011), migration 

history datasets (Shaw, Yu, and Bombom 2008), or multi-dimensional dasymetric 

modelling approaches (Bhaduri et al. 2007). These population datasets are profoundly 

different: In social media, a tweet is a point in space and time and although it can suggest 

that the person was at location (x,y) at time t, we have no information regarding his/her 

whereabouts at any other time than t. On the other hand, activity diaries allow for 

knowing a person’s whereabouts at any t, which permits drawing the space-time path. 

Besides availability, the following principle should guide the choice of population data: 

The level of detail of the population data should match the level of detail of the case data. 
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For instance, if we use patient residential locations, possibly geomasked for privacy, 

activity diaries population information might be too detailed.  

 

I obtained annual population counts on the neighborhood level of Cali from 2000 

to 2014, as well as the geometries as ESRI shapefile (Cali 2014). The city is 

administratively divided into 22 communes covering 120.9 km2, and composed of 340 

neighborhoods (see Figure 7).  A commune is a grouping of neighborhoods based on 

homogenous demographic and socioeconomic characteristics. Neighborhoods are 

classified using a stratification system composed of six classes, one being the lowest and 

six the highest. The strata are developed by evaluating the type of housing, urban 

environment and context. However, communes and years are coarse spatial and temporal 

units, but we need population data at fine resolution to achieve meaningful disease 

estimates. I draw inspiration from studies that disaggregate disease data, for instance, 

Jacquez and Jacquez (1999), who introduce a procedures to disaggregate areal data by 

assigning random locations within the area. This approach is extended to the restricted 

and controlled Monte Carlo (RCMC) process by Shi (2009). Luo, McLafferty and Wang 

(2010) use Monte Carlo simulation to disaggregate cancer data and identify risk factors 

using a hierarchical logistic model.  I do so in a similar way for the Cali population data 

using the following steps (see Figure 8):  

1. I distribute the population of the first year (2010) within each of the 340  

neighborhoods as random points. Every neighborhood receives a number of 

points equal to its total population of 2010.  
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2. Using the yearly neighborhood population counts 2010 – 2011, I compute annual 

population change (increase/decrease) for each neighborhood. I scale down the 

annual change to daily values, assuming linear change. Hence, I compute the 

daily change of population by dividing the annual change by 52. 

3. For each day within 2010 – 2011 (which amounts to 730 timesteps), I replicate 

the population points from the previous day. For each neighborhood, I add as 

many random points as there is population increase. In case of population decline, 

I randomly delete as many existing points as there is population decline. 
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Figure 8: Flowchart for population disaggregation. 
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Hence, I create a structured spatiotemporal grid of population points. Due to the random 

elements of the procedure, I use Monte Carlo approach to obtain 100 simulated 

population datasets. This results in variance of the resulting disease risk estimates, which 

is a measure of uncertainty resulting from aggregation of population data. 

 

3.2.5 Research objective 1 analysis  

 I assess whether ST-IB, which challenges the temporally homogeneous 

background assumption of Shi’s method (Shi 2010), actually improves the ability to 

detect high disease risk areas/periods. Therefore, I need to define what a good 

performance is: Disease risk maps allow for identifying areas/periods that have increased 

disease risk, provide measures of risk differences between regions, and enable targeting 

areas for intervention, or for allocating resources (Charras-Garrido et al. 2012). The 

general public might benefit from such maps by knowing which areas to avoid. 

Therefore, disease risk within the identified and clearly delineated areas/periods (a.k.a. 

“clusters”) should be substantially higher than outside. In a case-control scenario, risk is 

the ratio of cases to controls. The ratio between risk inside and outside of the identified 

areas is called odds ratio (Bland and Altman 2000). A high odds ratio means the disease 

cluster has been delineated well, as the ratio between cases and controls inside the cluster 

is much higher than outside. I employ odds ratios to compare ST-IB with other kernel 

methods using the same data: Method A produces a better disease risk estimates and 

cluster delineations than method B if it identifies risk areas/periods that produce a higher 

odds ratio. Hence, A performs better than B if it produces higher odds ratios. Odds ratios 
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are to some extent similar to likelihood ratios of the SaTScan method (Kulldorff 1997). 

However, while SaTScan uses expected disease counts, I use the underlying population 

directly. Also, while SaTScan uses likelihood ratios to determine the most likely cluster, I 

use them to compare two different methods. In addition to using odds ratios to measure 

cluster strength, I use Monte Carlo simulation to measure their statistical significance. 

Hence, method A is only better than B if it produces higher odds ratios that are 

statistically significant.  

 

3.2.5.1 Uncertainty from population simulation 

 Before comparing ST-IB and any other method, I quantify uncertainty that stems 

from the population simulation: I perform kernel density estimation for spatially and 

temporally inhomogeneous backgrounds using the case dataset (Section 3.2.3) and each 

of the 99 simulated population datasets (Section 3.2.4). Therefore, I compute 99 grids of 

density estimates, which allows us to extract upper and lower envelopes as the maximum 

and minimum value for each site (a.k.a. grid point, voxel). The spatiotemporal resolution 

of the grid is 100m / 1 day. To quantify the uncertainty, 1) I compute a histogram of the 

differences between upper and lower envelope for each site as a measure of how far they 

spread, and 2) visualize them within the space-time cube. If the histogram indicates that 

the difference is mostly small, I conclude that uncertainty from population simulation is 

small. In addition, the depiction within the space-time cube enables for detecting patterns 

of where and when the results may be subject to high uncertainty. 
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3.2.5.2 Benefit of considering time and cluster significance 

 Since I quantified uncertainty from population simulation (Section 3.2.5.1), I 

acknowledge that any subsequent result is subject to variability according to the range of 

values we observed in the previous step. Hence, I can pick one of the 100 population 

simulations, and am now able to produce random simulations of the disease cases for 

significance testing. 

 

 In a this step, I am interested in comparing ST-IB with with it’s purely spatial 

equivalent S-IB (kernel density estimation for spatially inhomogeneous backgrounds), to 

answer the question whether including the temporal dimension in our analysis achieves 

more realistic disease risk estimates. S-IB is inspired by the work of (Shi 2010), and 

corresponds to Equation 3 in section 3.2.1.2 with the exception that the bandwidth does 

not adapt to the local population, but to neighboring disease cases. Hence, S-IB centers 

the kernel (circle) on each disease case and increases the radius until it contains a chosen 

number of nearest disease neighbors.  

 

 Such comparison is feasible and meaningful, as I run both methods with the same 

data, but collapse the temporal dimension for S-IB. Hence, I pick the population from 

week 26, the most central time step during our study period. While ST-IB produces a 3D 

grid of risk estimates, S-IB produces a 2D grid. S-IB Therefore, I are not comparing 

apples to oranges because both methods are fed with the same data. I pick the nth- 

percentile of sites that exhibit the highest risk and label the corresponding areas as 

disease cluster. I compute the odds ratios of disease risk inside versus outside the cluster 
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area, and do so for each combination of percentiles [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 

99.9, 99.99] and disease case support values [5, 10, 15, 20, 25, 30, 35, 40, 45] (see 

Section 3.2.1.2), resulting in a total of 108 treatments. This allows us to draw odds ratio 

surfaces in dependence of the parameter values, and to compute the difference between 

ST-IB and S-IB.  

 

 It is important to note that the “winner” of the comparison between ST-IB and S-

IB is not better in a universal sense as it may merely result in different conclusions. 

Explicitly simulating space-time clusters may be the only way to determine whether 

method A is truly better than B. In addition, the reader should note that ST-IB refers to 

the kernel density estimator in Equation (6), and does not include the procedure of 

delineating clusters by picking the nth-percentile highest disease risk sites and calculating 

odds ratios, as outlined above. This procedure merely serves for validation and 

comparison purposes.   

 

 In addition to knowing which method produces higher odds ratios, we may want 

to determine the statistical significance of the delineated clusters. With the goal of 

illustrating the utility of my approach, I pick one parameter combination (percentile: 95, 

support: 45) for significance testing, and I do so for ST-IB only, even though it would be 

feasible and interesting to do so for both algorithms and for all 108 treatments. I am using 

odds ratio as a statistic to measure the strength of a cluster, and report statistical 

significance of the odds ratios as p-values. I simulate 99 datasets by the following 

procedure: I take the observed dengue cases, which are a dataset of 11056 [x, y, t] tuples. 
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Maintaining the temporal intensity of the observed dengue cases, I randomize their 

spatial locations. In other words, I leave the t-value untouched and instead, randomize the 

x- and y-values for each observation. The randomization is restricted to the city limits of 

Cali, and I use the R-packages rgeos, spatstat, and maptools to perform the necessary 

point-in-polygon operation. The point-in-polygon operation provided by the R-packages 

creates a specified (=11056) number of random points within a given polygon, which 

corresponds to the city limits of Cali. Every location has an equal probability of 

“receiving” a point, therefore resulting in a random uniform scenario. In summary, our 

reference scenario is complete spatial randomness (CSR) with a temporal trend. For each 

of the 99 simulations, as well as for the observed dataset, I compute kernel density using 

ST-IB, delineate disease clusters using the parameter combination (percentile: 95, 

support: 45), and compute the corresponding odds ratios. The rank of the observed odds 

ratio among the simulated ones is considered as its p-value. For instance, if the observed 

odds ratio is among the top 5% of simulated odds ratios, the p-value is <= 0.05, which 

indicates strong evidence against the null hypothesis of CSR with a temporal trend. In 

addition to assessing statistical significance, I visualize significant clusters within the 

space-time cube using Voxler (Golden Software, Colorado), an interactive 3D modeling 

environment. 

 

3.3 Research objective 2 methodology 

In this section, I develop a method (ST-FLEX-D) to accelerate spatiotemporal 

analysis algorithms, such as space-time kernel density estimation (STKDE). I improve 

upon an existing methodology (Hohl, Delmelle, and Tang 2015), which consists of the 
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following two stages: 1) spatiotemporal domain decomposition of the input point set (ST-

STATIC-D), 2) parallel computing of any spatiotemporal analysis that fits the domain 

decomposition strategy. I solve one of the key problems of ST-STATIC-D and develop a 

flexible splits heuristic to minimize domain replication for parallel processing of STKDE. 

I make the following key assumption: The spatiotemporal analysis in stage 2 uses a 

known, fixed bandwidth. Otherwise, the bandwidth has to be determined prior to the 

decomposition procedure. This also applies to point patterns that are characterized by 

anisotropy, which results in an elliptic base of the search cylinder at stage 2. It requires 

finding the equation of the ellipse using the quantification of anisotropy provided by the 

data (angle, length). Then, the maximum search distance in X, Y, and T directions can be 

found easily, which dictates the buffer distance during decomposition.  

 

3.3.1 The existing method 

 ST-STATIC-D decomposes the spatiotemporal domain of a set of points for 

subsequent distribution of the resulting subdomains to processor queues for concurrent 

processing. It creates subdomains of similar computational intensity, which promotes 

equal workloads among CPUs. Computational intensity of spatiotemporal analysis 

algorithms may depend on 1) the number of data points within the subdomain, 2) the 

number of voxels, given by subdomain size, as voxels are structured within a regularly 

spaced 3D grid. Recursive spatiotemporal domain decomposition accounts for input data 

structure, which might exhibit a heavily clustered distribution. Recursion is a method 

where the solution to a problem depends on solutions to smaller instances of the same 

problem (Graham 1994). 
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The ST-STATIC-D decomposition algorithm works as follows (see Figure 9): 

First, I compute the minimum and maximum x, y and t values of the point set (a.k.a its 

spatiotemporal domain, or bounding box). Second, I bisect the domain midway of every 

of the three dimensions, resulting in 8 subdomains of equal size and cuboid shape. Third, 

I decompose each of the 8 cuboids recursively until either one of the two thresholds T1 

and T2 are crossed for every subdomain I create. T1 is the number of points within the 

subdomain, whereas T2 is the proportion of the subdomain volume within the buffer 

volume (see next paragraph). Low thresholds yield a fine-grained decomposition and a 

reduced search space, as empty subdomains are discarded from further processing. A 

fine-grained decomposition is desirable because a high number of small tasks rather than 

a low number of large tasks will likely balance workloads among processors. On the 

other hand, low thresholds increase recursion depth, causing the program to terminate if 

the maximum depth is surpassed. 
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Figure 9: Octree-based recursive spatiotemporal domain decomposition. Note that this is 
a 2D representation of a 3D problem. Same concepts apply in 3D. 

 

The decomposition procedure introduces new (subdomain-) boundaries, which 

may result in edge effects that degrade the results of the subsequent spatiotemporal 

analysis, due to spatial and temporal neighborhood search. I cope with the issue by 

creating buffers around each subdomain of distance equal to the spatial and temporal 

search radius (Figure 10). Therefore, a point located within a buffer bh(sd1) of subdomain 

sd1 is assigned to sd1, even if it does not fall inside it. As subdomains share borders with 

others, their buffer zones overlap, causing multiple replications of data points (up to 8), 

which are assigned to different subdomains, and therefore, data redundancy.  
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Figure 10: Buffer implementation for handling edge effects. Note that this is a 2D 

representation of a 3D problem. Same concepts apply in 3D. 

 

For each subdomain SDi that results from the decomposition, I quantify 

computational intensity CI (Wang 2008) as a function of the product of 1) the number of 

data points Np(SDi) and 2) the number of voxels Nv(SDi) that are contained in the 

corresponding subdomain (Equation 7). 

 

𝐶𝐶𝐶𝐶(𝑆𝑆𝑆𝑆𝑖𝑖) = 𝑓𝑓 �𝑁𝑁𝑝𝑝(𝑆𝑆𝑆𝑆𝑖𝑖) ∗ 𝑁𝑁𝑣𝑣(𝑆𝑆𝑆𝑆𝑖𝑖)�      (7) 

 

To ensure balanced workloads, I distribute the sequence of subdomains (SD1, SD2, 

…, SDi), resulting from 3D to 1D mapping by space filling curve (Bader 2012), to the 

processors by equalizing the cumulative CI. Therefore, processors receive variable 

numbers of subdomains but similar workloads. The importance of accurately quantifying 
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CI for our endeavor cannot be stressed enough, as failure of doing so results in failure of 

balancing workloads.  

 

3.3.2 The ST-FLEX-D approach 

 Here, I present ST-FLEX-D_base, ST-FLEX-D_uneven, and ST-FLEX-

D_alternate, three improved versions of ST-STATIC-D, which focus on minimizing the 

redundancy caused by replication of points within the subdomain buffers. The 

improvement is based on the observation that ST-STATIC-D bisects domains at the 

midpoint in each dimension.  

 

3.3.2.1 ST_FLEX_D_base 

 For the ST-FLEX-D_base implementation, I relax the midway bisection dictate 

and allow for multiple candidate split positions. I define candidate split positions by 

regular increments along each axis (see Figures 11 – 13), and pick one split for bisection 

according to the following rules:  

• Rule 1 – Pick the minimum replication split: the candidate split that results in the 

lowest number of replicated points. A point is replicated if the splitting line/plane 

cuts the circle/cylinder centered on a data point that has radius equal to the kernel 

bandwidth(s) (Figure 11). 

• Rule 2 – In case of a tie (two candidate splits have the lowest number of 

replicated points), pick the most even split: split that bisects the set of points most 

evenly among splits in consideration (Figure 12). 
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• Rule 3 – If still tied, pick the most central split: candidate split that is most central 

among splits in consideration (Figure 13).  

Figure 14 shows an illustrative example of the entire process. Note that all illustrations 

related to ST_FLEX_D are 2D, whereas the actual application is 3D (2D + time). It is 

much easier to explain the concepts on paper medium in 2D, but the procedure is the 

same for the added temporal dimension. First, I focus on the x-axis, where the minimum 

number of cuts is tied between two candidate splits: SX1 and SX5. Hence, I apply Rule 2 

and pick SX5 because its evenness (9/1) is higher than SX1 (0/10). I then focus on the y-

axis, where the minimum number of cuts is again tied between SY1 and SY5. I pick SY1 

by applying Rule 2 (evenness of 1/9 over evenness of 10/0). 

 

Figure 11: Rule 1 of ST-FLEX-D. In this example, I choose S4 because it minimizes the 
number of circles cut by the bisection line. 
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Figure 12: Rule 2 of ST-FLEX-D. Here, the minimum number of cut circles ties between 
S4 and S5 (Rule 1). Hence, I pick S4, which bisects the set of points more evenly. 
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Figure 13: Rule 3 of ST-FLEX-D. Here, the minimum number of cut circles ties between 
candidate splits S2, S3 and S4 (Rule 1). Split evenness ties between S3 and S4 (Rule 2). I 

pick S3, which is more central than S4. 
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Figure 14: Example of ST-FLEX-D. 

 

3.3.2.2 ST_FLEX_D_uneven 

 The implementation of ST_FLEX_D_base brings the danger of picking “bad 

splits”. Bad splits do not advance the decomposition procedure at all and the issue arises 

by picking the outermost split (SX1, SX5, SY1, SY5) when points are distributed more 
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centrally within the domain. While bad splits may cut zero circles (and therefore are 

chosen by our procedure), all points potentially lie on the same side of the split. This is 

does not advance the decomposition and is therefore not desired. ST_FLEX_D_uneven 

attempts to solve the problem by candidate split locations that are not evenly distributed 

along the axis, do not cover the entire range of values within that dimension, but 

congregate around the midway split (Figure 15). This regime maintains flexible split 

locations while reducing the odds of choosing bad splits. Rules 1-3 of ST_FLEX_D_base 

for picking the bisection split still apply for ST_FLEX_D_uneven.  

 

 

Figure 15: Uneven candidate splits. 

 



62 
 
3.3.2.3 ST_FLEX_D_alternate 

 So far, I assumed that our domain is perfectly square, hence bisecting all 

dimensions simultaneously made sense. However, when using real data, such as disease 

cases, we may face less compact (elongated) rectangular domains, and the decomposition 

procedure may even decrease the compactness (increase elongation) for the subdomains 

it produces. For instance, the domain of the dengue fever dataset (see Section 3.2.3) is 

elongated in N-S direction. Subdomain compactness may have effect on the efficiency of 

the decomposition and the subsequent parallel processing of spatiotemporal statistics 

because compact subdomains can foster workload balance and reduce the overall 

computational intensity of the applications. ST_STATIC_D, ST_FLEX_D_base or 

ST_FLEX_D_uneven may result in subdomains that are highly elongated, especially if I 

choose bad candidate splits from the beginning for (more so for ST_FLEX_D_base and 

less so for ST_FLEX_D_uneven). 

 

 With ST_FLEX_D_alternate, I address the issue by dropping the requirement of 

bisecting all dimensions simultaneously. At each node of the tree, I chose one dimension 

for bisection (instead of bisecting all three of them). Hence, I no longer perform octree 

decomposition, as our procedure results in a binary tree. At each node, I pick the 

dimension that exhibits the largest range (i.e. difference between minimum and 

maximum value), i.e. the “longest” dimension for bisection. That way, I balance the 

ranges for each dimension and hence, achieve more compact subdomains (see Figure 16). 

Rules 1-3 of ST_FLEX_D_base for picking the bisection split still apply for 

ST_FLEX_D_alternate.   
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Figure 16: ST-FLEX-D-alternate. 

 

3.3.3 Research objective 2 analysis 

I compare the performance of ST_STATIC_D with all three implementations of  

ST-FLEX-D (ST_FLEX_D_base, ST_FLEX_D_uneven, ST_FLEX_D_alternate) using 

the following metrics:  

 

1) execution time of decomposition  

2) total number of cut circles 

3) average leaf node depth 

4) average leaf node size  



64 
 

 

The execution time of decomposition is the total amount of time the computer needs to 

decompose the dataset, disregarding I/O. The total number of cut circles is equal to the 

number of replicated data points that result from the decomposition. It is a measure of the 

redundancy within the decomposition procedure and our goal is to minimize it. The 

decomposition procedure is inherently hierarchical, where a domain splits into multiple 

subdomains. Therefore, it is common to illustrate the procedure as a tree, where the root 

is the initial domain to be decomposed, and the subdomains resulting from the first split 

are children nodes linked to the root node (see Figure 17 for illustration and example, 

Figure 16 is another example). Since the recursion does not go equally deep in all of its 

branches, I compute the average leaf node depth, which measures how many times on 

average I split the initial domain to form a particular subdomain. The average leaf node 

size is just the number of data points it contains and measures the granularity of the 

decomposition. The largest leaf node ultimately determines the parallel performance as it 

is the largest chunk of workload.    

   

 

Figure 17: Domain decomposition. Spatial depiction (left), tree (right). Leaf nodes of the 
tree are denoted by grey color. The average leaf node depth is (1+1+1+2+2+2+2)/7=1.57. 
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The following parameters determine the outcomes of our implementations of 

spatiotemporal domain decomposition: 1) the maximum number of points per subdomain 

(threshold T1, see paragraph 3.2.1), 2) the buffer ratio (threshold T2 paragraph 3.2.1), 3) 

spatial and temporal bandwidths, 4) output grid resolution, 5) number of data points. I set 

parameters 1 - 5 to the values given in Table 1, where all values are kept steady but 

values for spatial and temporal bandwidth vary (spatial: 200m – 2500m in steps of 100m; 

temporal: 1 day – 14 days in steps of 1 day). Hence, I have 336 different parameter 

configurations (treatments) for which I compute the metrics introduced above for all 

implementations (ST_STATIC_D, ST_FLEX_D_base, ST_FLEX_D_uneven, 

ST_FLEX_D_alternate).  

 

 

Figure 18: Performance metrics and their influencing factors. 
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Table 1: Parameter values for ST-STATIC-D and ST-FLEX-D. 
Parameter Name Value 

1 

Maximum 

number of 

points per 

subdomain 

50 

2 Buffer ratio 0.01 

3 Grid resolution 100m, 1day 

4 
Number of data 

points 
11056 

5 

Spatial and 

temporal 

bandwidths 

[200m, 300m, 400m, 500m, 600m, 700m, 800m, 900m, 

1000m, 1100m, 1200m, 1300m, 1400m, 1500m, 1600m, 

1700m, 1800m, 1900m, 2000m, 2100m, 2200m, 2300m, 

2400m, 2500m], [1 day, 2 days, 3 days, 4 days, 5 days, 6 

days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 

days, 14 days] 

 

3.4 Research objective 3 methodology 

 In this section, I conduct computational sensitivity analysis (ST-SA) on ST-

STATIC-D. I used a single set of parameters to assess the computational performance of 

ST-STATIC-D in section 3.3. Hence, I now focus on assessing the sensitivity of 

computational performance to various parameter values in a systematic way.  
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3.4.1 Global sensitivity analysis 

Spatiotemporally explicit data, as well as statistical models and their outputs are 

often nonlinear and nonmonotonic. Therefore, analyzing the sensitivity to input 

parameters requires approaches that handle nonlinear, nonmonotonic, and 

spatiotemporally explicit characteristics while not relying on model structure (Saltelli et 

al. 2008; Saltelli et al. 2004). Sobol’s approach is a variance-based approach for global 

sensitivity analysis, and provides support for analyzing spatiotemporal statistical models 

(Lilburne and Tarantola 2009). Essentially, Sobol’s approach is based on the 

decomposition of variance in model output (V; see Equation 8) into first-order effects due 

to single input parameters (Vi) and higher order effects contributed by interactions among 

input parameters (e.g., Vij, Vijk) 

 

𝑉𝑉 = ∑ 𝑉𝑉𝑖𝑖 + ∑ 𝑉𝑉𝑖𝑖𝑖𝑖 + ∑ 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑉𝑉12…𝑚𝑚𝑖𝑖<𝑖𝑖<𝑖𝑖𝑖𝑖<𝑖𝑖𝑖𝑖    (8) 

 

where Vi is the first-order effect of input parameter i on output variance, m the number of 

input parameters, and Vij the second-order effect of interactions between input i and j on 

output variance. Vijk is the third-order effect of interactions among input variables i, j, and 

k. V12...m is the highest order effect on output variance, explained by interactions among 

all input variables. For each model input parameter i, I compute first- and total-order 

sensitivity indexes based on the decomposition of output variance (see Equation 9): 

 

� 𝑆𝑆𝑖𝑖 = 𝑉𝑉𝑖𝑖 𝑉𝑉⁄
𝑆𝑆𝑆𝑆𝑖𝑖 = 1 − 𝑉𝑉~𝑖𝑖 𝑉𝑉⁄

    (9) 
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where Si is the first-order sensitivity index and STi is the total-order sensitivity index for 

input parameter i. V∼i is the conditional variance explained by all input parameters except 

parameter i. Jointly using first- and total-order sensitivity indexes allows us to identify 

the singular and compounded effects of model inputs on variance in model outputs. 

Therefore, Sobol’s approach is a good choice for sensitivity analysis and is preferred over 

local approaches or regression, which often have no support for high-order effects. The 

numerical derivation of Sobol’s sensitivity indexes requires Monte Carlo integration 

(Saltelli et al. 2004; Saltelli et al. 2008) and a random sampling of multidimensional 

parameter space. I use quasi-random sequences, where the determination of a random 

number depends on previously generated numbers (Gentle 2006), to sample our model 

input parameters (Saltelli et al. 2010). Quasi-random sequences have better performance 

for multidimensional sampling than pseudo-random sequences because of their low 

discrepancy and fast convergence (Sobol 1967; Niederreiter 1978). There exist 

alternative approaches to generate quasi-random sequences (see Gentle 2003). I used 

Sobol’s quasi-random sequences (see Sobol 1967) in this study. 

 

Based on Sobol’s method, the number of required samples N is computed by 

Equation 10: 

 

𝑁𝑁 = (2 ∗ 𝑘𝑘 + 2) ∗ 𝑁𝑁𝑚𝑚𝑐𝑐    (10) 

 

where Nmc is the number of Monto Carlo runs, and k is the number of input parameters. 

For relatively simple linear models, Nmc is set to a value within the range of [20, 100]. For 
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sophisticated nonlinear models, Nmc is usually larger than 100, typically suggested within 

the range of [100, 500] or higher. I generate the first 2*Nmc samples using Sobol’s quasi-

random method (Sobol 1967): For each input parameter sample, the initial quasi-random 

number q is chosen between 0-1. I compute the final number f based on the given range 

of the parameter (Equation 11): 

 

𝑓𝑓 = 𝑝𝑝𝑚𝑚𝑖𝑖𝑛𝑛 + (𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑝𝑝𝑚𝑚𝑖𝑖𝑛𝑛) ∗ 𝑞𝑞   (11) 

 

where pmin is the minimum and pmax the maximum parameter value as specified and 

justified by the analyst. Depending on the data type of the input parameter, f might have 

to be rounded to the next integer. Samples are organized in matrices A and B, of 

dimension Nmc × k, hence A contains samples 0 to Nmc and B contains samples Nmc + 1 to 

2*Nmc. Then, I generate another 2*Nmc samples for parameter i, which are denoted as 

matrices Ci and Di. The relationship between Ci, Di and A, B is illustrated in Figure 19 

(adapted from Lilburne and Tarantola 2009): All the values in Di are the same as in A, 

except those for the ith parameter, which are the same as in B. All the values in Ci are the 

same as in B, except those for the ith parameter, which are the same as in A. Then I have 

all the k*2*Nmc samples for all parameters. Adding the initial 2*Nmc samples, we totally 

have N samples (see Equation 10). 
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Figure 19: Matrices A, B, Ci and Di. 

 

To obtain first- and total-order sensitivity indexes (Si and STi, respectively), I 

evaluate our model for the parameter values in A, B, Ci and Di, which results in four 

vectors of model output values (YA, YB, YCi, YDi), each of dimension N × 1. Then, I use the 

following estimators to compute the sensitivity indexes (see Lilburne and Tarantola 

2009): 

 

𝑆𝑆𝑖𝑖 =
1
𝑁𝑁
∑ 𝑌𝑌𝐴𝐴(𝑖𝑖)𝑌𝑌𝐶𝐶𝑖𝑖(𝑖𝑖)𝑁𝑁
𝑗𝑗=1 −�1𝑁𝑁∑ 𝑌𝑌𝐴𝐴(𝑖𝑖)𝑁𝑁

𝑗𝑗=1 ��1𝑁𝑁∑ 𝑌𝑌𝐵𝐵(𝑖𝑖)𝑁𝑁
𝑗𝑗=1 �

1
𝑁𝑁
∑ 𝑌𝑌𝐴𝐴

2𝑁𝑁
𝑗𝑗=1 (𝑖𝑖)−�1𝑁𝑁∑ 𝑌𝑌𝐴𝐴(𝑖𝑖)𝑁𝑁

𝑗𝑗=1 ��1𝑁𝑁∑ 𝑌𝑌𝐵𝐵(𝑖𝑖)𝑁𝑁
𝑗𝑗=1 �

  (12) 

 

𝑆𝑆𝑆𝑆𝑖𝑖 =
1
𝑁𝑁
∑ 𝑌𝑌𝐴𝐴(𝑖𝑖)𝑌𝑌𝐷𝐷𝑖𝑖(𝑖𝑖)𝑁𝑁
𝑗𝑗=1 −�1𝑁𝑁∑ 𝑌𝑌𝐴𝐴(𝑖𝑖)𝑁𝑁

𝑗𝑗=1 ��1𝑁𝑁∑ 𝑌𝑌𝐵𝐵(𝑖𝑖)𝑁𝑁
𝑗𝑗=1 �

1
𝑁𝑁
∑ 𝑌𝑌𝐴𝐴

2𝑁𝑁
𝑗𝑗=1 (𝑖𝑖)−�1𝑁𝑁∑ 𝑌𝑌𝐴𝐴(𝑖𝑖)𝑁𝑁

𝑗𝑗=1 ��1𝑁𝑁∑ 𝑌𝑌𝐵𝐵(𝑖𝑖)𝑁𝑁
𝑗𝑗=1 �

   (13) 
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The estimators presented in Equations 12 and 13 are part of a group of eight estimators 

each for first- and total-order sensitivity indexes, which have been developed by Saltelli 

(2002), and Tarantola et al. (2006). Computing the average of all eight estimators leads to 

better accuracy than only using one of them (Lilburne and Tarantola 2009). Si indicates 

the average potential reduction of output variance if a given model input parameter i 

could be fixed, regardless of interactions. By the same token, 𝑆𝑆𝑖𝑖1,𝑖𝑖2,…,𝑖𝑖𝑠𝑠 
𝑐𝑐  indicates the 

average potential reduction of output variance if we fixed model input parameters i1, i2, 

…, is. STi is greater or equal to Si if model input parameter i is not involved in any 

interaction. The difference STi – Si allows for estimating the degree by which parameter i 

is involved in interactions with other input parameters. STi = 0 means that i has no 

influence on output variance. ∑ 𝑆𝑆𝑖𝑖𝑖𝑖  is 1 for additive models and less than 1 for non-

additive models. The difference 1 − ∑ 𝑆𝑆𝑖𝑖𝑖𝑖  indicates the presence of interactions in the 

model. The sum ∑ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = 1 means that the model is perfectly additive, ∑ 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 > 1 if not. 

Negative values of Si and STi are possible, however, they are usually close to zero and 

hence, can be set to zero. Increasing the number of Monte Carlo runs (Nmc) might reduce 

the occurrence of negative indexes (Saltelli et al. 2004; Saltelli et al. 2008). 

 

3.4.2 Research objective 3 analysis 

 Here, I conduct computational sensitivity analysis (ST-SA) on the computational 

model that consists of the two-stage procedure of: 1) spatiotemporal domain 

decomposition of a set of points (ST-STATIC-D), 2) parallel computing of STKDE. I use 

the dengue fever dataset (Section 3.2.3) to compute STKDE of dengue fever cases in 

Cali, Colombia. From a sensitivity analysis perspective, I input the dengue fever data and 
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parameters into our computational model, which outputs density estimates and 

computational performance metrics (Figure 20). ST-SA aims for assessing the sensitivity 

of variance in computational performance due to uncertainty of input parameters. I are 

aware that the data, its size and distribution are additional important sources of variance 

in the computational performance metrics but focus on the uncertainty that stems from 

parameters of the two-stage procedure (ST-STATIC-D, STKDE) for now. ST-SA does 

not assess sensitivity for standard model outputs, such as regression coefficients, or a 

prediction, or as is the case here, density estimates resulting from STKDE. ST-SA solely 

focuses on analyzing variance in computational performance of a model. 

 

 

Figure 20: Inputs, Model and Outputs. 
 

Our computational model has six parameters (Table 2): 1) Spatial bandwidth, 2) 

temporal bandwidth, 3) spatial voxel resolution, 4) temporal voxel resolution, 5) the 

maximum number of points per subdomain threshold (T1 in section 3.2.1), 6) the buffer 

ratio threshold (T2 in section 3.2.1). The parameter ranges given in Table 2 are based on 

domain knowledge and computational feasibility. For instance, the minimum spatial and 

temporal voxel resolutions are informed by the positional accuracy of the dengue fever 

data. On the output side, I focus on execution time and speedup of parallel STKDE the 
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second step of the two-stage procedure outlined above. Hence, I analyze the sensitivity of 

the variance in execution time and speedup to the six input parameters. I do so for 

multiple treatments, for which I vary the number of concurrent processors used from 1 

(sequential scenario, only for execution time), to 10 to 100 in increments of 10 (equals 11 

separate treatments for execution time, 10 for speedup). I choose 700 Monte Carlo runs 

which, together with the number of parameters, results in (2*6+2)*700 = 9,800 samples 

(see Equation 11). Hence, I need to evaluate the model 9,800 times, which is a massive 

computational burden.  

 

Apart from Sobol’s method, I use multivariate linear regression to quantify the 

effects of model parameter values on model outputs. I contrast and compare the two 

approaches and keep in mind that the linear model I use cannot account for interaction 

effects among factors. I use Box-Cox transform of variables to stabilize variance and 

transform non-normal predictors into normal shape (Box and Cox 1964). I develop a 

separate model for each treatment outlined above and report significance values, as well 

as coefficient of determination (R2).  
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Table 2: Input parameters and ranges. 
PID Parameter Relevance Range Data 

type 

1 Spatial bandwidth Decomposition & 
STKDE 

250 - 2500 float 

2 Temporal bandwidth Decomposition & 
STKDE 

3 - 14 integer 

3 Spatial voxel resolution Decomposition & 
STKDE 

50 - 500 float 

4 Temporal voxel 
resolution 

Decomposition & 
STKDE 

1 - 14 integer 

5 Maximum #points 
threshold, T1 

Decomposition 5 - 1000 integer 

6 Buffer ratio threshold, T2 Decomposition 0.000013 - 0.17 float 
 

I run all computations on the Copperhead high-performance computing cluster at 

the University of North Carolina at Charlotte, which has 59 nodes connected through an 

infiniband network switch (Pfister 2001), and 708 CPUs that are dual Intel Xeon 2.93 

GHz 6 core X5670 processors with 36 GBs of RAM. When varying the number of CPUs 

in several treatments, I varied the number of nodes, choosing one CPU per node to 

exclude overhead through memory usage by other jobs. Copperhead is a Linux-based 

cluster that runs TORQUE resource and queue managing software.  

 

I employ Copperhead in a shared-nothing architecture, where each job is executed 

on one processor within a self-sufficient node, which has no single point of contention 

across the system. Therefore, I use following fixed task scheduling method: First, I 

compute the ideal target workload, which is the same for each concurrent processor, by 

dividing the cost of the entire computation by the number of processors. Second, I use 
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space filling curve (Bader 2012) to map the subdomains resulting from decomposition to 

a 1D sequence. Third, I assign subdomains from the sequence to the first processor until I 

reach the target load, and employ the same procedure for the remaining processors. 

Although the number of assigned subdomains may vary among processors, the workload 

is similar (Hohl, Delmelle, and Tang 2015; Hohl, Delmelle, et al. 2016). Note that 

dynamic task scheduling methods may result in substantially different performance 

(Casavant and Kuhl 1988). 

 

There are three points to mention about choices we made for ST-SA: First, we 

used the “naïve” algorithm for STKDE with complexity O(n*m) (n = number of voxels, 

m = number of data points) for simplicity. Second, ST-SA means choosing 

experimentation over theory to establish a relationship between parameter values and 

uncertainty in computational performance. In other words, we ran computation and 

measured execution time rather than making inference using computational performance 

models based on complexity theory, a seemingly valid and efficient alternative to ST-SA. 

However, it is the cost and outcome of decomposition that to our best knowledge are not 

easily captured by a model, especially because they are dictated by two exit conditions 

(number of points threshold, buffer ratio threshold), as well as the distribution of the 

observed points. With that uncertainty in our workflow, predicting execution time 

(especially parallel execution time) of STKDE based on parameter values seems very 

hard. In addition, due to our static scheduling procedure, the effects of subdomains that 

are outliers in computational cost (extremely high cost) are hard to foresee, as they could 

be bigger than the target workload for each processor, especially at high levels of 
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parallelization. Third, in support of our second point, we argue that complexity theory 

may inadequately capture computational requirements of spatial analysis because the 

spatial characteristics of data and operations, which have profound effects on 

computational intensity, are not sufficiently represented in complexity theory (Wang 

2008).  
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CHAPTER 4: RESULTS 

 

4.1 Research objective 1 results 

 

4.1.1 The uncertainty from population simulation 

 The 99 population simulations result in 99 density estimates for each site. 

Therefore, I compute the difference between maximum and minimum value for each site 

(upper and lower envelope) and plot their frequency within a histogram (Figure 21). The 

vast majority of differences lies within a range of 0.0 – 0.005 (first column), which is a 

very small deviation, considering a range of density values within 0.0 – 0. 27 (Figure 22). 

All differences are below 0.0037, which means that the envelopes are very close to each 

other. Therefore, the uncertainty from population simulation is rather small.  

 

 

Figure 21: Histogram of differences between upper and lower envelope. 
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 Visualizing both, the upper and lower envelopes within the space-time cube made 

no sense because the envelopes may not be distinguishable due to their small separating 

distance. Hence, I plotted the upper envelope within the space-time cube (Figure 22) to 

provide a spatiotemporal depiction of the density estimates. We can clearly see the two 

clusters of increased disease risk within the southwestern part of the city (Figure 2, 1 & 

2), commensurate with the findings of Delmelle et. al (2014) and Hohl et al. (2016). 

These clusters are active from the very beginning of the study period and remain so for 

the first quarter of the study period. We also see another risk zone within the more central 

part of the city (Figure 2, 3) which exhibits elevated disease risk estimates for about the 

first half of the study period. 
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Figure 22: The upper simulation envelope (population simulation). 
 

 The spatiotemporal distribution of the difference between upper and lower 

envelope reveals the differences are relatively large where density estimates are large as 

well (Figure 23). Hence, the differences redraw the distribution of kernel density 

estimates. This result is expected and confirms that the uncertainty from population 

simulation is relatively small while following the spatiotemporal distribution of density 

estimates (Section 4.1.1). 
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Figure 23: Difference between upper and lower simulation envelope. 
 

 

4.1.2 Benefit of adding the temporal to our analysis 

 Comparing the S-IB and ST-IB reveals that there are parts of the parameter space 

assessed, where ST-IB performs better. Figure 24 shows the difference between odds 

ratios produced by S-IB and ST-IB. The blue region of the parameter space in Figure 24 

shows a negative differences, i.e. ST-IB outperforms S-IB. The blue region stretches 

between a case support parameter value of 30 – 45 and from a percentile threshold of 90 

– 97. In other words, if I use the 30 – 45 nearest case neighbors to determine kernel 

bandwidths, and if I delineate disease clusters by choosing voxels that exhibit densities 
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above the 90 – 97 percentile, ST-IB outperforms S-IB. S-IB outperforms ST-IB for the 

rest of the parameter space assessed. The difference in odds ratios are mostly small, but 

with percentile threshold values of 99 and above, they increase to a maximum of 58.38, 

indicating substantial superiority of S-IB. This superiority seems to decrease with an 

increasing case support, as the difference is around 0 – 19.31 at high values (35 - 45) of 

this parameter.  

 

 

Figure 24: Difference between odds ratios S-IB - ST-IB. X-axis: Percentile of highest 
density sites selected for cluster delineation. Y-axis: Support parameter. Number of 

neighboring cases to search for bandwidth selection.  
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4.1.3 Significant clusters 

 Significance testing using Monte Carlo simulation (see Section 3.2.5.3) yields a 

cluster of elevated dengue fever risk, using the parameter values of 45 for case support 

and 95 percentile threshold value. As I ran 99 Monte Carlo simulations, the cluster is 

significant at the 0.01-level. The simulated odds rations range from 5.365 to 5.373, 

whereas the observed odds ratio was 5.501. The clustered voxels are distributed within 

the center of the city and within the first 314 days of the study period. The cluster has a 

large base at the beginning of the study period, which becomes thinner as time 

progresses. Therefore, distinct patterns of cluster shape are visible towards the upper end 

of the 314 period. For instance, the cluster seems to consist of a southern (Figure 25, 1) 

and a northern (Figure 25, 2) part. The northern part is substantially higher, meaning the 

cluster has a longer duration than the southern part. We are also able to make out 

detached “clouds” of voxels that have been chosen as cluster (Figure 25, 3). These 

“clouds” indicate regions that experienced a resurgence of dengue cases after a period of 

little activity.  
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Figure 25: Voxels that form a significant cluster at the 0.01-level. 
95-percentile highest densities. Support parameter = 45. 

 

4.2 Research objective 2 results 

 

4.2.1 Execution time of decomposition  

 Figure 26 shows decomposition execution times in seconds for each 

implementation (ST_STATIC_D, ST_FLEX_D_base, ST_FLEX_D_uneven, 

ST_FLX_D_alternate). Due to the varying parameter configurations, I have 336 

treatments for which I recorded execution times for all implementations. Figure 26 
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clearly illustrates that ST_STATIC_D is the fastest in terms of decomposition time, 

followed by ST_FLEX_D_uneven, then ST_FLEX_D_base, and with 

ST_FLEX_D_alternate being the slowest implementation with the largest spread of 

values. The explanation is straightforward: ST_FLEX_D_alternate is a binary tree 

decomposition, whereas all other implementations are octree-based. It means that 

ST_FLEX_D_alternate splits each node into two children, whereas the other 

implementations split into eight, which causes the relatively slow execution times. Hence, 

ST_FLEX_D_alternate is profoundly different from the other implementations and any 

comparison between them requires caution.     

  

 

Figure 26: Average execution time in seconds. 
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4.3.2 Total number of cut circles 

 Figure 27 shows that the number of cut circles in very high in general, as it ranges 

from around 55,000 to 5,500,000. What initially seems to be a absurdly high number, 

especially keeping in mind that the initial number of data points is only 11,056. 

ST_STATIC_D is not necessarily the worst performing implementation when it comes to 

the total number of cut circles (Figure 27). Although it exhibits the largest spread, its 

median is lower than ST_FLEX_D_base and ST_FLEX_D_uneven, whereas 

ST_FLEX_D_alternate clearly performs best. Why do ST_FLEX_D_base and 

ST_FLEX_D_uneven perform worse than the initial implementation, even though I 

created them exactly to reduce that redundancy? The answer lies in sections 4.3.3 and 

4.3.4, which compare the average leaf node depth and size.   

 

 
Figure 27: Number of cut circles. 
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 Figure 28 shows the number of cut circles for each implementation across all 

parameter configurations. I varied the spatial and temporal bandwidths and calculated the 

number of cut circles for each of the 336 treatments. For ST_STATIC_D, the number of 

cut circles is mainly driven by the spatial bandwidth, at least more so than the other 

implementations. The maximum number of cut circles is achieved by a spatial bandwidth 

of around 1,400m-2,000m. Further increase of the spatial bandwidth results in a sharp 

drop of the number of cut circles and a subsequent increase (sawtooth pattern). I 

speculate that the interplay between various decomposition parameters (bandwidths, 

maximum number of points per subdomain, buffer ratio) causes the pattern. For instance, 

as the spatial bandwidth increases beyond the 1,400m -2,000m range, the buffer ratio 

threshold may kick in to prevent further decomposition (and cutting circles). 

ST_FLEX_D_base and ST_FLEX_D_uneven exhibit a similar pattern, where the number 

of cut circles grows with increasing bandwidths. ST_FLEX_D_alternate exhibits a 

distinct pattern, where the number of cut circles does not further grow with increasing 

bandwidths beyond 600m-1,200m. Again, this is not surprising as its decomposition 

mechanism is very different from the rest.  
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Figure 28: Number of cut circles vs. bandwidths. 
 

4.3.3 Average leaf node depth 

 Here we see that ST_STATIC_D produces the shallowest tree out of all 

implementations (Figure 29). On average, the subdomains resulting from the 

decomposition procedure are created by splitting the initial domain 5.4 times. 

ST_FLEX_D_base has a substantially deeper tree, which explains the higher number of 

cut circles as compared with ST_STATIC_D (more splits lead to more cut circles), as 

seen in section 4.2.2. ST_FLEX_D_uneven has a similar average depth than 

ST_STATIC_D because the candidate split locations do not cover the entire the entire 

ranges. Therefore, the split locations are more similar to those if ST_STATIC_D than to 
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those of ST_FLEX_D_base. ST_FLEX_D_alternate naturally has a higher leaf node 

depths because it is binary tree.     

 

 

Figure 29: Average leaf node depth. 
 

4.3.4 Average leaf node size  

 This indicator is relevant for parallel processing performance. Figures 30 and 31 

show that ST_FLEX_D_base and ST_FLEX_D_uneven result in slightly smaller 

subdomains than ST_STATIC_D, which is beneficial for computational performance, 

given the parallel resources at hand. ST_FLEX_D_alternate results in much larger 

subdomains. I think this is due to the different, more compact shape of the resulting 
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subdomains, which calls for an adjustment of the buffer ratio parameter (which I hold 

steady in all our treatments).  

 

 

Figure 30: Average leaf node size ST_STATIC_D, ST_FLEX_D_base, 
ST_FLEX_D_uneven. 
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Figure 31: Average leaf node size. ST_FLEX_D_alternate. 
 

4.3 Research objective 3 results 

 

4.3.1 Logistic regression 

 The results of the regression modelling using boxcox transform indicates a good 

model fit (R2 ~.9, Table 3) for execution time, but less for Speedup (R2 ~ 0.6-0.7). All 

parameters are significant at the 0.001-level for execution time, but some of them become 

insignificant for Speedup and Efficiency. 

 

 From Table 3, the number of CPUs does not have any substantial impact on 

regression result for execution time. Sequential time (R2 ~ 0.94) has a slight better 
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performance than parallel time (maximum R2 ~ 0.93). The shape of R2’s distribution of 

speedup likes bell-shape, the highest adjusted R2 is around 0.69 when the number of 

CPUs is 30. All situations of P1, P3 and P5 for speedup are significant at the 0.001 level, 

P6 are insignificant when #CPUs = 90. Meanwhile, P4 only significant when 30 and 40 

CPUs was involved. P2 are significant at 0.001 level (#CPUs: 10), 0.05 level (#CPUs: 20, 

40, 80, 100) and 0.1 level (#CPUs: 90). As the model coefficients are generated for Box-

Cox transformed predictors, their actual value does not provide much information in our 

case.  

 

Table 3. Logistic regression results. Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 
‘.’ 0.1 ‘ ’ 1 

  #CPUs 
Adjusted  
R2 

Parameters 
P1 P2 P3 P4 P5 P6 

Execution 
time 

Sequential 1 0.9374 *** *** *** *** *** *** 

Parallel 

10 0.9282 *** *** *** *** *** *** 
20 0.9267 *** *** *** *** *** *** 
30 0.9288 *** *** *** *** *** *** 
40 0.9279 *** *** *** *** *** *** 
50 0.9262 *** *** *** *** *** *** 
60 0.926 *** *** *** *** *** *** 
70 0.9255 *** *** *** *** *** *** 
80 0.925 *** *** *** *** *** *** 
90 0.9249 *** *** *** *** *** *** 
100 0.9236 *** *** *** *** *** *** 

Speedup 

10 0.6185 *** *** ***   *** *** 
20 0.655 *** * ***   *** *** 
30 0.6924 ***   *** . *** *** 
40 0.6795 *** * *** * *** *** 
50 0.6742 ***   ***   *** *** 
60 0.6682 ***   ***   *** *** 
70 0.6644 ***   ***   *** *** 
80 0.6303 *** * ***   *** ** 
90 0.6301 *** . ***   ***   
100 0.6125 *** * ***   *** *** 
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4.3.2 Sensitivity Indexes

 With regard to the interpretation of sensitivity indexes (see section 3.4.1), the 

results (Tables 3, 4, and 5) indicate that: Fixing P5 reduces the variance in the Execution 

time output group (sequential and parallel). However, the effect is very small, as 

indicated by the low levels of Si. The remaining parameters have no such effect. All 

parameters reduce variance in Speedup and Efficiency, although there are no apparent 

patterns with varying levels of parallelization. Again, the levels of Si are very low (0.0185 

– 0.0952). The difference values STi – Si are close to 1 across all parameters and 

treatments, which means that all parameters are clearly and heavily involved in 

interaction. However, there is some variability, although small, that is worth noticing: 1) 

The values are greater for execution times (sequential and parallel) than for Speedup and 

Efficiency, 2) Among the output group of Execution time, P5 has the smallest values, 

which are consistently below 1, whereas P1 – P4 are consistently above 1, while P6 

exhibits mixed values. All Total-order sensitivity indexes STi are above 0, suggesting that 

all of the parameters have an influence on output variance. 

  

 The sum of first-order sensitivity indexes ∑ 𝑆𝑆𝑖𝑖𝑖𝑖  is below 1 across all parameters 

and treatments, which strongly suggests that our computational model is non-additive. 

The difference 1 − ∑ 𝑆𝑆𝑖𝑖𝑖𝑖 , which is  above 1 for all parameters for execution time and 

around 0.6 for speedup. 
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Table 4. First-order Sensitivity Indexes. 

P1 P2 P3 P4 P5 P6
Sequential 1 -0.0205 -0.0249 -0.0255 -0.0202 0.0498 -0.0279

10 -0.0229 -0.0298 -0.0284 -0.0228 0.036 -0.0305
20 -0.0205 -0.0284 -0.0306 -0.0214 0.041 -0.0304
30 -0.0215 -0.0308 -0.0293 -0.0213 0.0358 -0.0322
40 -0.0212 -0.0287 -0.0301 -0.0218 0.0289 -0.0319
50 -0.0222 -0.0292 -0.0289 -0.0224 0.028 -0.0317
60 -0.0211 -0.0297 -0.0279 -0.0221 0.0298 -0.0308
70 -0.0208 -0.0306 -0.0281 -0.0218 0.0295 -0.0305
80 -0.0232 -0.0304 -0.0281 -0.0216 0.0319 -0.0314
90 -0.0208 -0.0252 -0.0255 -0.0231 0.0307 -0.029

100 -0.0216 -0.0285 -0.0281 -0.0225 0.0291 -0.029
10 0.0599 0.0828 0.0713 0.0185 0.06 0.0813
20 0.0762 0.0892 0.0701 0.0418 0.0946 0.0905
30 0.0658 0.0645 0.0387 0.0438 0.0713 0.0702
40 0.0603 0.0721 0.0524 0.0559 0.0528 0.0926
50 0.0718 0.0643 0.0657 0.0392 0.0721 0.0768
60 0.0677 0.0615 0.0699 0.0502 0.0806 0.0769
70 0.068 0.0626 0.0657 0.0647 0.0636 0.0952
80 0.0443 0.0482 0.0394 0.0635 0.0519 0.074
90 0.0595 0.0517 0.0459 0.0668 0.0633 0.0747

100 0.0567 0.0426 0.0303 0.0469 0.0706 0.0558

#C
PU

s Parameters
Ex

ec
ut

io
n 

tim
e

Parallel

Speedup



94 
 
Table 5. Total-order Sensitivity Indexes. 

 

P1 P2 P3 P4 P5 P6
Sequential 1 1.0301 1.0157 1.0229 1.0179 1.0209 0.9666

10 1.0307 1.0194 1.0227 1.0179 1.0233 0.9694
20 1.03 1.019 1.0228 1.0174 1.0234 0.964
30 1.0324 1.0212 1.0221 1.0169 1.0223 0.9713
40 1.032 1.02 1.022 1.0167 1.0238 0.965
50 1.0319 1.0207 1.0218 1.018 1.0212 0.9776
60 1.0325 1.0219 1.021 1.0171 1.024 0.9726
70 1.032 1.0212 1.0214 1.0192 1.0218 0.9654
80 1.0356 1.0225 1.0228 1.0186 1.0201 0.9801
90 1.0307 1.023 1.0212 1.0181 1.0205 0.9769

100 1.0324 1.021 1.0226 1.0167 1.0222 0.9747
10 0.933 0.9184 0.9888 0.9011 0.9513 0.913
20 0.9165 0.9229 0.9589 0.9246 0.9179 0.8988
30 0.9378 0.9312 0.9867 0.9746 0.9293 0.9316
40 0.9378 0.9089 0.9755 0.9717 0.9377 0.8998
50 0.9285 0.9263 0.9741 0.9708 0.9285 0.9288
60 0.9346 0.924 0.9745 0.9616 0.9218 0.9218
70 0.9391 0.9136 0.9783 0.9573 0.9271 0.9002
80 0.9565 0.9354 0.9898 0.978 0.9455 0.9125
90 0.9435 0.9344 0.9906 0.97 0.9343 0.9218

100 0.9417 0.9516 0.9949 0.9718 0.9409 0.9225

Speedup

#C
PU

s Parameters
Ex

ec
ut

io
n 

tim
e

Parallel
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Table 6. Difference between Total-order and First-order Sensitivity Indexes. 

  

P1 P2 P3 P4 P5 P6
Sequential 1 1.0506 1.0406 1.0484 1.0381 0.9711 0.9945

10 1.0536 1.0492 1.0511 1.0407 0.9873 0.9999
20 1.0505 1.0474 1.0534 1.0388 0.9824 0.9944
30 1.0539 1.052 1.0514 1.0382 0.9865 1.0035
40 1.0532 1.0487 1.0521 1.0385 0.9949 0.9969
50 1.0541 1.0499 1.0507 1.0404 0.9932 1.0093
60 1.0536 1.0516 1.0489 1.0392 0.9942 1.0034
70 1.0528 1.0518 1.0495 1.041 0.9923 0.9959
80 1.0588 1.0529 1.0509 1.0402 0.9882 1.0115
90 1.0515 1.0482 1.0467 1.0412 0.9898 1.0059

100 1.054 1.0495 1.0507 1.0392 0.9931 1.0037
10 0.8731 0.8356 0.9175 0.8826 0.8913 0.8317
20 0.8403 0.8337 0.8888 0.8828 0.8233 0.8083
30 0.872 0.8667 0.948 0.9308 0.858 0.8614
40 0.8775 0.8368 0.9231 0.9158 0.8849 0.8072
50 0.8567 0.862 0.9084 0.9316 0.8564 0.852
60 0.8669 0.8625 0.9046 0.9114 0.8412 0.8449
70 0.8711 0.851 0.9126 0.8926 0.8635 0.805
80 0.9122 0.8872 0.9504 0.9145 0.8936 0.8385
90 0.884 0.8827 0.9447 0.9032 0.871 0.8471

100 0.885 0.909 0.9646 0.9249 0.8703 0.8667

Speedup

#C
PU

s Parameters
Ex

ec
ut

io
n 

tim
e

Parallel
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Table 7. 1 – sum of First-order Sensitivity Indexes. 

#CPUs 1 - ∑Si
Sequential 1 1.0692

10 1.0984
20 1.0903
30 1.0993
40 1.1048
50 1.1064
60 1.1018
70 1.1023
80 1.1028
90 1.0929

100 1.1006
10 0.6262
20 0.5376
30 0.6457
40 0.6139
50 0.6101
60 0.5932
70 0.5802
80 0.6787
90 0.6381

100 0.6971

Execution 
time Parallel

Speedup
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

 

5.1 General discussion 

 In this study, I investigate the computational aspects detecting and analyzing 

space-time patterns under non-stationary backgrounds. The objectives are met by 

implementing and applying methodologies that allow for 1) visualizing and delineating 

space-time clusters of disease, 2) accelerating and scaling the computation necessary for 

spatiotemporal analysis, and 3) characterizing the sensitivity of computational 

performance to varying parameters. The three objectives have in common: 1) the use of 

the dengue fever dataset, study area and period, 2) the focus on space-time statistics, 

point pattern analysis, kernel density estimation, 3) introduction of methods that are 

generally applicable, but focus on the domain of spatial epidemiology. 

 

 Objective 1 concentrates on an analytical method that incorporates spatially and 

temporally inhomogeneous backgrounds for kernel density estimation (ST-IB). Objective 

2 focuses on spatiotemporal domain decomposition accelerating and scaling kernel 

density estimation, allowing for big data processing. As the methods introduced in 

objective 2 (ST-STATIC-D, ST-FLEX-D-base, ST-FLEX-D-uneven, ST-FLEX-D-

alternate) make use of overlapping subdomains, the connection to objective 1 is the 

bandwidth. All subdomains created by the decomposition methods introduced here are of 

cuboid shape and so are their overlapping (buffer) zones. The bandwidth of the 

underlying spatiotemporal analysis method (i.e. STKDE) determines the amount of 

overlap (the side length of the overlapping zone of cuboid shape). For objective 2, I make 
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the assumption that the bandwidth is static and known beforehand. As this is not the case 

for the kernel density method from objective 1 (ST-IB), I would need to find the 

bandwidth for each data point (procedure described by Figure 6) before decomposing, 

should I use spatiotemporal domain decomposition to accelerate ST-IB. So far, I 

implemented this step in a sequential manner, and I would need to find ways to 

parallelize it for handling big data. Objective 3 again focuses on the two-step procedure 

of domain decomposition for parallel space-time analysis. More specifically, the two-step 

procedure of ST-STATIC-D and STKDE is used to assess the sensitivity of 

computational performance to input parameters. While Objective 2 aimed for 

acceleration and improving scalability of the procedure, objective 3 asks the deeper 

question of how acceleration is influenced by parameter choices one inevitably needs to 

make for the two-step procedure. It is the parameters, such as space-time bandwidth and 

resolution of the regular grid of sites that connects objective 3 with objective 1. Whereas 

the resolution is held constant for objective 1 (and 2), all parameters vary in objective 3. 

Objective 3 shares two threshold parameters with objective 2: 1) the number of points 

and 2) the buffer ratio threshold. Variation of these has shown to cause variation in 

computational performance.    

    

 The research presented here contributes to the current body of knowledge in 

several ways: First, ST-IB is an important addition to the collection of analytical methods 

within the field of GIScience. It is an improvement over existing kernel density 

estimators because of its explicit consideration of the temporal dimension for population 

adjustment. It allows to discover patterns in geographic phenomena within the context of 
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spatiotemporally dynamic background populations, which is a necessity in today’s age of 

migration and urbanization. Hence, it fills a gap where there is no such spatiotemporal 

statistics approach to characterize the distribution of point data under non-stationary 

background, despite an abundance of methods for point data without consideration of 

either the temporal component of the background or without acknowledgement of its 

existence at all (Shi 2010; Delmelle et al. 2014; Hohl, Delmelle, et al. 2016; Hazelton 

2017; Zhang, Zhu, and Huang 2017; Marcon and Puech 2009; Ruckthongsook et al. 

2018). ST-IB inherits the strengths of kernel density estimation methods to characterize a 

of variety of patterns, including changing point densities, seasonal cycles, and diffusion 

to new areas. It easily exposes clusters hierarchies by visualization, and allows for a 

certain level of subjectivity due to parameter choice. To our best knowledge, ST-IB is the 

first method to delineate space-time clusters under non-stationary background, measure 

their strength as well as statistical significance. Second, ST-FLEX-D focuses on 

computational aspects of spatiotemporal statistics and therefore, represents an 

advancement within the Geocomputation domain. Previous efforts have tackled the 

challenge of preventing edge effects from domain decomposition for spatial analysis by 

replicating overlapping domains (Hohl, Delmelle, and Tang 2015; Zheng et al. 2018) or 

by interprocessor communication (Shashidharan et al. 2016; Shepard 2000; Deveci et al. 

2018; Liu et al. 2017). While either approach is limited in terms of scalability, ST-FLEX-

D explicitly raises and analyzes the issue, and introduces a novel way of minimizing 

computational overhead from overlapping spatiotemporal domain decomposition by 

flexible partitioning. Third, ST-SA bridges the domains of sensitivity analysis and high-

performance computing in a unique and novel way. The explicit focus on directly 
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measurable performance metrics (execution time and speedup) instead of proxys like the 

number of simulation runs (Tang and Jia 2014; Şalap-Ayça et al. 2018) is a new take on 

sensitivity analysis for computational performance of spatiotemporal analytics. ST-IB is a 

valid and important way for assessing the sensitivity of computational performance to 

input parameters. Alternatively, I could employ computational complexity in a prognostic 

manner to predict execution time. However, this may result in inaccurate predictions, as 

computational complexity theory inadequately captures the computational requirements 

for spatial and spatiotemporal analysis (Wang 2008). Sobol’s method presents a 

diagnostic way to understand the laws about the computational cost of such analyses. Our 

focus on variance forms a clear distinction to other approaches which may not be able to 

capture the full range of variation while appreciating interaction effects among groups of 

input factors (Huang et al. 2010).  

 

 Specific plans to expand on the research presented here include developing a 

parallel version of ST-IB, the population-adjusted kernel density estimation approach. A 

parallel version of ST-IB would allow harnessing the processing power of high-

performance computing, which benefits the general applicability of the method, besides 

having the advantages of scalability. As the domain decomposition strategy (i.e. ST-

FELX-D) might not be feasible to solve this problem (see section 3.3), I intend to search 

for parallel algorithms developed to accelerate k-nearest neighbor (kNN) search in 

computer science. In order to increase its applicability to a broad range of scientific 

domains I aim for conducting sensitivity analysis on parallel ST-IB to gain an 

understanding of: 1) The factors that influence its computational performance (ST-SA), 
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and 2) The contribution of model parameters (i.e. support parameter and density 

threshold) on uncertainties in the ST clusters detected by KDE. In addition, I would like 

to address current limitations, which include spatial and temporal isotropy assumption of 

ST-IB and other kernel density estimators and developing methods following an 

anisotropic model. In addition, exploring the portability of parallel strategies (domain 

decomposition, kNN) to other space-time tests, such as the LISA statistic or Ripley’s K 

function is key for increasing its application domain. 

 

 Further, I have a strong interest in generating population data at high spatial and 

temporal resolutions for use in the applications presented here. The field of population 

modelling might provide valuable insight on how to incorporate fine-scale human activity 

data that has the potential to account for daily movement of individuals in spatiotemporal 

models. Hence, I propose to integrate population information from heterogeneous 

sources, such as social media, location-aware technology, surveillance, census, and very 

high resolution satellite data, often differing in data model and conceptualization of space 

and time, to capture the underlying population structure. In addition to knowing how 

many people live in a given area, being able to derive their background information, such 

as demographics and socioeconomic status is critical, i.e. for disease cluster detection. If I 

can overcome these hurdles, I achieve a tighter definition of the “population at risk” and 

therefore, more reliable risk estimates. 

 

 Lastly, an investigation of the bias (e.g. uncertainty) that arises by deriving 

population structure from such novel data sources is useful for their applicability. 
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Simulation approaches have the potential to produce an estimate of the uncertainty due to 

the integration of heterogeneous data, thereby tackling an existing research objective 

within GIScience. In conclusion, I have the ambition to develop and apply advanced 

techniques for tackling significant challenges related to the wellbeing of our society. 

These challenges are semantic, computational, and methodological, and their solution 

might lead us to the forefront of an applied data science for practitioners. 

 

 I expect to publish three papers in high-impact peer-reviewed journals related to 

this dissertation. All publications include Alexander Hohl as first and author, as well as 

Eric Delmelle and Wenwu Tang. A first paper bases on a collaboration with Dr. Xun Shi 

from Dartmouth College, NH, draws from research objective 1 and fits outlets focusing 

on spatiotemporal analysis and modelling for health applications, such as the 

International Journal of Health Geographics (IJHG), or Epidemiology. Tentative title of 

the paper is “Kernel Density Estimation for Spatially and Temporally Inhomogeneous 

Backgrounds”. In collaboration with Dr. Erik Saule from the Department of Computer 

Science of University of North Carolina at Charlotte (UNCC), we plan to submit the 

second paper, titles “A Flexible Splits Algorithm for Spatiotemporal Domain 

Decomposition” which extends the concepts introduced in the second dissertation 

chapter. We have identified suitable outlets that focus on spatial informatics, algorithms 

and high-performance computing, such as ACM Transactions on Spatial Algorithms and 

Systems (TSAS), or Parallel Computing. A group effort among colleagues at the Center 

for Applied GIScience at UNCC to submit a paper that corresponds to objective 3 to the 

International Journal of Geographic Information Science (IJGIS) is currently ongoing. 
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The paper is tentatively titled “Computational Sensitivity Analysis: Establishing a 

Relationship between Model Parameters and Computational Cost” and collaborators 

include Minrui Zheng and Meijuan Jia. 

 

5.2 Research objective 1 discussion 

 ST-IB outperforms S-IB for certain parameter configurations. This is a positive 

result, which means that there is a benefit of adding the temporal dimension to such 

analyses. In other words, adding the temporal dimension yields higher odds ratios for 

certain parameter configurations, which means that it improves our ability to delineate 

clusters of disease occurrence under spatial and temporal inhomogeneous backgrounds. 

The choice of parameters is admittedly arbitrary, but I confirmed the validity of the 

resulting clusters by significance testing. Therefore, I created two measures of describing 

clusters: 1) I quantify the strength of a cluster by its odds ratio. The higher the ratio, the 

greater the difference in odds pf contracting the disease inside vs. outside the cluster. 2) I 

quantify the significance of the cluster by its p-value. Therefore, the clustering of 

observed dengue cases by admittedly choosing arbitrary parameter values generates 

higher odds ratios compared to all of the randomly simulated datasets.    

 

 The results obtained here point towards the following weaknesses and discussion 

points, some of which need to be addressed in the future. The following passages provide 

a collection of these points, as well as comments on them: First, I determine kernel 

bandwidth by the n-nearest neighbors in space and time. I only search for past 

neighboring cases, which is reasonable in a disease setting. However, depending on the 
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parameter setting, this procedure creates a boundary effect at the beginning of the study 

period, as I have no case data prior to the start of the data collection. I handled this issue 

by ignoring the first 5 days of data collection. More specifically, I only used the first 5 

days of case data for determining bandwidths of kernels centered on cases that appear 

later than the 5 first days. This cut-off point is arbitrary and a data driven solution has yet 

to be found. If the cut-off is not properly chosen, the following scenario might play out: 

The search for spatial and temporal neighbors cannot go further into the past for 

additional temporal support, so I expand the search spatially, which leads to larger spatial 

kernel bandwidths at the beginning of the study period. This mechanism is evident in 

Figures 22 and 23, where high density values seem to form a large base at the beginning 

of the study period, indicative of large spatial bandwidths. Second, I like to clearly state 

that our goal and main contribution is kernel density estimation for spatially and 

temporally inhomogeneous backgrounds. I merely use the procedure of delineating 

clusters and quantifying their strength and significance by odds ratios as a means of 

validation and comparison  against S-IB. With that said, an alternative to our clustering 

procedure would be to assess statistical significance of the kernel density estimates 

directly. Therefore, for each site, I would rank the density estimates of the observed 

dataset among the simulated ones and denote significant sites as part of the cluster. Third, 

we clearly saw that uncertainty from population simulation was low. This result is due to 

the small rates of population change within the study period. The simulation procedure 

(Figure 8) may be improved through dasymetric mapping to better reflect population 

concentration. Fourth, in order to apply ST-IB to domains other than spatial 

epidemiology, it may be of interest to handle more than the three dimensions (X, Y, T) 
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used here. While adding dimensions is rather straightforward computationally, 

visualization of the resulting density estimates becomes more difficult. Hohl et al. (2018) 

discuss visualization of 3D point data over time, thus offering an approach to solve the 

challenge. Fifth, ST-IB assumes that cases and population are distributed on an infinitely 

continuous planar space, which justifies the use of Euclidean distance. However, as 

people and goods move along the road network, it is necessary to adapting ST-IB towards 

network distance, drawing from existing research about kernel density estimation for 

networks (Okabe, Satoh, and Sugihara 2009), space-time hotspot detection for street-

level incidents (Shiode and Shiode 2013), and local indicators of network‐constrained 

clusters (Yamada and Thill 2007). Sixth, I may implement a more sophisticated 

population modelling approach, which omits the admittedly very strong assumption of 

linear population change. In addition, a dasymetric mapping approach (Wright 1936; 

Eicher and Brewer 2001; Mennis 2003) would certainly help further increase the 

accuracy of spatiotemporal population distribution. Seventh, I use epidemiological data 

under the assumption that people contracted the disease at their residential location. 

However, this is not necessarily true, as people move around the city for daily commutes 

or leisure time activities. Therefore, I should address the question whether uncertainty in 

the spatiotemporal location of disease cases has an effect on our results. In a first step, I 

may quantify this uncertainty by a measure of the offset of our case locations in space 

and time through analysis of activity diary data (Chen et al. 2011). Achieving an estimate 

of people’s space-time prism (Miller 1991) then allows us to perturb the case data and 

compute the effect of locational uncertainty on our results. Eighth, it is evident from 

Equation (6) that spatial and temporal components of kernel density are of equal 
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importance. However, for certain applications, a bi-weighted approach might be 

warranted, where the importance of space is weighted against the importance of time, 

guided by domain expertise. Li et al. (2014) present a more general approach to weigh 

space against time, which scales the temporal extent of a spatiotemporal dataset to 

achieve an equal range to the average spatial extent. 

 

5.3 Research objective 2 discussion 

 I implemented and compared four different spatiotemporal domain decomposition 

methods with respect to replication of data points that fall within buffer zones around 

subdomains. The results indicate that I am able to reduce the number of replicated points 

during decomposition. This is a positive result because the redundancy stemming from 

replication is what ultimately limits scalability. However, a more detailed look at the 

results reveals that reducing redundancy comes at the price of increased execution time 

and/or decreased granularity of the decomposition. Both of these results are troublesome: 

I apply domain decomposition to accelerate subsequent spatiotemporal analysis and slow 

decomposition defeats its own purpose. In addition, if the granularity of the 

decomposition is not fine enough, subsequent parallel processing performance will be 

limited by the largest subdomain resulting from decomposition.  

  

 I found that our metrics to analyze decomposition (number of cut circles, leaf 

node depth, leaf node size) exhibit substantial variation across the bandwidths assessed 

(Figure X), especially for ST_STATIC_D. The all implementations of ST_FLEX_D 

exhibit less variation and are therefore more predictable in their behavior. Future efforts 
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include assessing sensitivity of ST_FLEX_D implementations to variations of parameters 

I held steady, such as the spatial and temporal grid resolutions (P3 & P4), the number of 

data points threshold (P5) and the buffer ratio threshold (P6). In addition, I identified 

considerable potential to accelerate the decomposition procedure: First, using a fast 

programming language, such as C++ may improve the overall performance (I currently 

use Python). Second, I could replace our extensive use of the “append” method in Python 

by initializing arrays of fixed size (maximum number of elements is known), then 

populating them by indexing. Third, the procedure of finding the best split creates 

redundancy because I iterate over the array twice (once for finding the best split, once for 

assigning the data points to their respective subdomains).     

  

5.4 Research objective 3 discussion 

 Sobol’s sensitivity indexes are a reliable quantitative measurement of evaluating 

the impact of factors (e.g., buffer distance, grid resolution) on uncertainty of 

computational model response (e.g., execution time and speedup). It allows for 

expressing and contrasting the power of interactions among model parameters (by a 

combination of both, first-order and total-order sensitivity indexes). In this chapter, I 

assess the robustness of computational performance with respect to uncertainty in 

parameter values of the two-stage procedure of ST_STATIC_D and parallel STKDE. Our 

parallel implementation of Sobol’s approach allows for computationally tractable the 

sensitivity analysis and, therefore has the potential to increase our comprehension of 

complex spatial algorithms. 
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APPENDIX: PSEUDOCODES 

------------------------------------------- 
ALGORITHM ST_IB(sCoord, tCoord, NN)  
Inputs: sorted arrays of spatial and temporal coordinates, number of nearest ST neighbors to 
search for 
BEGIN ALGORITHM 
    i = 0 
    while i < len(sCoord):   
        sNeigh = ordered array of spatial nearest neighbors for sCoord[i] 
        tNeigh = ordered array of past temporal nearest neighbors for tCoord[i]    
        stNeigh = intersect(sNeigh, tNeigh) 
        sMax = max(sCoord[i] - stNeigh[0:NN]) 
        tMax = max(tCoord[i] - stNeigh[0:NN]) 
        sDist = sCoord[i] – sMax  
        tDist = tCoord[i] – tMax          
        i += 1 
END ALGORITHM 
------------------------------------------- 
 
ST_IB algorithm: Computes spatial and temporal bandwidths for each disease case based on a 
specified number of neighboring cases. This pseudocode assumes knowledge of some widespread 
general functions, such as len(), intersect(), and max(), which are inspired from Python 
programming language. In addition, ordered arrays of nearest neighbors are found through K/D-
tree indexing. 
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------------------------------------------- 
ALGORITHM ST_STATIC_D (inX, inY, inT, xmin, xmax, ymin, ymax, tmin, tmax) 
Inputs: arrays of spatiotemporal coordinates, domain boundaries 
Global variables: mpt (maximum number of points threshold), brt (buffer ratio threshold), hs 
(spatial bandwidth), ht (temporal bandwidth) 
BEGIN ALGORITHM 
    xDim = xmax - xmin 
    yDim = ymax - ymin 
    tDim = tmax - tmin 
    sdVolume = xDim * yDim * tDim 
    bufVolume = (xDim + 2 * hs) * (yDim + 2 * hs) * (tDim + 2 * ht) 
    bufRatio = sdVolume / bufVolume 
    if len(inX) <= mpt or bufRatio <= brt: 
        writeToFile(inX, inY, inT)           
    else:   
        sXYT, sDom = assign(inX, inY, inT, xmax, xmin, ymax, ymin, tmax, tmin) 
        decompose(sXYT[0], sXYT[1], sXYT[2], xmin, sDom[0], ymin, sDom[1], tmin, sDom[2]) 
        decompose(sXYT[3], sXYT[4], sXYT[5], sXYT[-3], xmax, ymin, sDom[1], tmin, sDom[2])  
        decompose(sXYT[6], sXYT[7], sXYT[8], xmin, sDom[0], sDom[1], ymax, tmin, sDom[2])      
        decompose(sXYT[9], sXYT[10], sXYT[11], sDom[0], xmax, sDom[1], ymax, tmin, 
sDom[2]) 
        decompose(sXYT[12], sXYT[13], sXYT[14], xmin, sDom[0], ymin, sDom[1], sDom[2], 
tmax) 
        decompose(sXYT[15], sXYT[16], sXYT[17], sDom[0], xmax, ymin, sDom[1], sDom[2], 
tmax) 
        decompose(sXYT[18], sXYT[19], sXYT[20], xmin, sDom[0], sDom[1], ymax, sDom[3], 
tmax)  
        decompose(sXYT[21], sXYT[22], sXYT[23], sDom[0], xmax, sDom[1], ymax, sDom[2], 
tmax) 
END ALGORITHM 
------------------------------------------- 
 
ST_STATIC_D algorithm: Octree-based recursive decomposition of the spatiotemporal domain 
of point-data. Assumes known static spatial and temporal bandwidths. Maximum number of 
points threshold and buffer ratio threshold guide the granularity of the decomposition. The 
algorithm uses an ASSIGN function, which is specified below. The writeToFile function writes 
the spatiotemporal coordinates of the corresponding data points to a text file, therefore, stopping 
the decomposition procedure for the current branch of the tree.   
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------------------------------------------- 
ALGORITHM ASSIGN(inX, inY, inT, xmax, xmin, ymax, ymin, tmax, tmin): 
Inputs: arrays of spatiotemporal coordinates, domain boundaries 
Global variables: mpt (maximum number of points threshold), brt (buffer ratio threshold), hs 
(spatial bandwidth), ht (temporal bandwidth) 
BEGIN ALGORITHM  
    xr2 = split_mid(xmin, xmax)      
    yr2 = split_mid(ymin, ymax)      
    tr2 = split_mid(tmin, tmax)      
    sX1, sX2, sX3, sX4, sX5, sX6, sX7, sX8 = [], [], [], [], [], [], [], [] 
    sY1, sY2, sY3, sY4, sY5, sY6, sY7, sY8 = [], [], [], [], [], [], [], [] 
    sT1, sT2, sT3, sT4, sT5, sT6, sT7, sT8 = [], [], [], [], [], [], [], []  
    for x, y, t in inX, inY, inZ:       # assign each data point to subdomain 
        if x < xr2 - hs: 
            if y < yr2 - hs: 
                if t < tr2 - ht: 
                    sX1.append(x), sY1.append(y), sT1.append(t) 
                elif t < tr2 + ht: 
                    sX1.append(x), sY1.append(y), sT1.append(t) 
                    sX5.append(x), sY5.append(y), sZ5.append(t) 
                else: 
                    sX5.append(x), sY5.append(y), sT5.append(t) 
            elif y < yr2 + hs: 
                if t < tr2 - ht: 
                    sX1.append(x), sY1.append(y), sT1.append(t) 
                    sX3.append(x), sY3.append(y), sT3.append(t) 
                elif t < tr2 + ht: 
                    sX1.append(x), sY1.append(y), sT1.append(t) 
                    sX3.append(x), sY3.append(y), sT3.append(t) 
                    sX5.append(x), sY5.append(y), sT5.append(t) 
                    sX7.append(x), sY7.append(y), sT7.append(t) 
                else: 
                    sX5.append(x), sY5.append(y), sT5.append(t) 
                    sX7.append(x), sY7.append(y), sT7.append(t)     
            else: 
                if t < tr2 - ht: 
                    sX3.append(x), sY3.append(y), sT3.append(t) 
                elif  < tr2 + ht: 
                    sX3.append(x), sY3.append(y), sT3.append(t) 
                    sX7.append(x), sY7.append(y), sT7.append(t) 
                else: 
                    sX7.append(x), sY7.append(y), sT7.append(t) 
        elif x < xr2 + hs: 
            if y < yr2 - hs: 
                if t < tr2 - ht: 
                    sX1.append(x), sY1.append(y), sT1.append(t) 
                    sX2.append(x), sY2.append(y), sT2.append(t) 
                elif t < tr2 + ht: 
                    sX1.append(x), sY1.append(y), sT1.append(t) 
                    sX2.append(x), sY2.append(y), sT2.append(t) 
                    sX5.append(x), sY5.append(y), sT5.append(t) 
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                    sX6.append(x), sY6.append(y), sT6.append(t) 
                else: 
                    sX5.append(x), sY5.append(y), sT5.append(t) 
                    sX6.append(x), sY6.append(y), sT6.append(t) 
            elif y < yr2 + hs: 
                if t < tr2 - ht: 
                    sX1.append(x), sY1.append(y), sT1.append(t) 
                    sX2.append(x), sY2.append(y), sT2.append(t) 
                    sX3.append(x), sY3.append(y), sT3.append(t) 
                    sX4.append(x), sY4.append(y), sT4.append(t) 
                elif t < tr2 + ht: 
                    sX1.append(x), sY1.append(y), sT1.append(t) 
                    sX2.append(x), sY2.append(y), sT2.append(t) 
                    sX3.append(x), sY3.append(y), sT3.append(t) 
                    sX4.append(x), sY4.append(y), sT4.append(t) 
                    sX5.append(x), sY5.append(y), sT5.append(t) 
                    sX6.append(x), sY6.append(y), sT6.append(t) 
                    sX7.append(x), sY7.append(y), sT7.append(t) 
                    sX8.append(x), sY8.append(y), sT8.append(t) 
                else: 
                    sX5.append(x), sY5.append(y), sT5.append(t) 
                    sX6.append(x), sY6.append(y), sT6.append(t) 
                    sX7.append(x), sY7.append(y), sT7.append(t) 
                    sX8.append(x), sY8.append(y), sT8.append(t) 
            else: 
                if t < tr2 - ht: 
                    sX3.append(x), sY3.append(y), sT3.append(t) 
                    sX4.append(x), sY4.append(y), sT4.append(t) 
                elif t < tr2 + ht: 
                    sX3.append(x), sY3.append(y), sT3.append(t) 
                    sX4.append(x), sY4.append(y), sT4.append(t) 
                    sX7.append(x), sY7.append(y), sT7.append(t) 
                    sX8.append(x), sY8.append(y), sT8.append(t) 
                else: 
                    sX7.append(x), sY7.append(y), sT7.append(t) 
                    sX8.append(x), sY8.append(y), sT8.append(t) 
        else: 
            if y < yr2 - hs: 
                if t < tr2 - ht: 
                    sX2.append(x), sY2.append(y), sT2.append(t) 
                elif t < tr2 + ht: 
                    sX2.append(x), sY2.append(y), sT2.append(t) 
                    sX6.append(x), sY6.append(y), sT6.append(t) 
                else: 
                    sX6.append(x), sY6.append(y), sT6.append(t) 
            elif y < yr2 + hs: 
                if t < tr2 - ht: 
                    sX2.append(x), sY2.append(y), sT2.append(t) 
                    sX4.append(x), sY4.append(y), sT4.append(t) 
                elif t < tr2 + ht: 
                    sX2.append(x), sY2.append(y), sT2.append(t) 
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                    sX4.append(x), sY4.append(y), sT4.append(t) 
                    sX6.append(x), sY6.append(y), sT6.append(t) 
                    sX8.append(x), sY8.append(y), sT8.append(t) 
                else: 
                    sX6.append(x), sY6.append(y), sT6.append(t) 
                    sX8.append(x), sY8.append(y), sT8.append(t) 
            else: 
                if t < tr2 - ht: 
                    sX4.append(x), sY4.append(y), sT4.append(t) 
                elif t < tr2 + ht: 
                    sX4.append(x), sY4.append(y), sT4.append(t) 
                    sX8.append(x), sY8.append(y), sT8.append(t) 
                else: 
                    sX8.append(x), sY8.append(y), sT8.append(t) 
    sXYT = [sX1, sY1, sT1, sX2, sY2, sT2, sX3, sY3, sT3, sX4, sY4, sT4, sX5, sY5, sT5, sX6, 
sY6, sT6,             sX7, sY7, sT7, sX8, sY8, sT8] 
    sDom = [xr2, yr2, tr2] 
        return sXYZ, sDom 
END ALGORITHM 
------------------------------------------- 
 
ASSIGN algorithm: Helper function for spatiotemporal domain decomposition. Allocates each 
point (disease case) to the respective subdomain(s), depending on their location. This particular 
example uses the SPLIT_MID function (defined below), which performs static midway splits of 
each dimension for the ST-STATIC-D algorithm. The SPLIT_MID function can be replaced with 
SPLIT_FLEX (see below) for implementing ST_FLEX_D_BASE, ST_FLEX_D_UNEVEN and 
ST_FLEX_D_ALTERNATE algorithms.      
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------------------------------------------- 
ALGORITHM SPLIT_MID(dmin, dmax) 
Inputs: domain boundaries 
BEGIN ALGORITHM 
return (dmax + dmin)/2 
END ALGORITHM 
------------------------------------------- 
    
SPLIT_MID algorithm: Simply returns the average of two numbers (midway point).  
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------------------------------------------- 
ALGORITHM SPLIT_FLEX(inList, max, min, buf, level): 
Parameter 1: input coordinates (1D), Parameter 2: maximum of coordinate range, Parameter 3: 
minimum of coordinate range, Parameter 4: buffer distance 
BEGIN ALGORITHM 
    for each point in in List 
        for each candidate split 
            check whether circle is cut, keep track of count    
    if minimum number of cut circles is tied between two or more candidate splits 
        pick split that balances partitions more evenly  
        if balance tied between two or more candidate splits 
            pick split that is more central  
END ALGORITHM 
------------------------------------------- 
 
SPLIT_FLEX algorithm: Finds split that cuts the minimum number of circles among a predefined 
number of candidate splits. For ST_FLEX_D_BASE and ST_FLEX_D_ALTERNATE (see 
below) candidate splits are chosen in equal intervals, for ST_FLEX_D_UNEVEN, they are 
chosen to congregate around the midway split. 
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------------------------------------------- 
ALGORITHM ST_FLEX_D_ALTERNATE(inX, inY, inT, dim): 
Inputs: arrays of spatiotemporal coordinates, domain boundaries 
Global variables: mpt (maximum number of points threshold), brt (buffer ratio threshold), hs 
(spatial bandwidth), ht (temporal bandwidth) 
BEGIN ALGORITHM 
    xDim = dim[1] - dim[0] 
    yDim = dim[3] - dim[2] 
    tDim = dim[5] - dim[4] 
 
    decompDim = argmax(xDim, yDim, tDim)      
 
    sdVolume = xDim * yDim * tDim 
    bufVolume = (xDim + 2 * hs) * (yDim + 2 * hs) * (tDim + 2 * ht) 
    bufRatio = sdVolume / bufVolume 
 
    if len(inX) <= mpt or bufRatio <= brt:    
        writeToFile(inX, inY, inT)           
    else:   
        sXYZ = assign(inX, inY, inT, dim, decompDim) 
        decomp(sXYZ[0], sXYZ[2], dim)   
        decomp(sXYZ[1], sXYZ[3], dim)   
END ALGORITHM 
------------------------------------------- 
 
ST_FLEX_D_ALTERNATE algorithm: Binary tree-based recursive decomposition of the 
spatiotemporal domain of point-data, promoting compact subdomains. Assumes known static 
spatial and temporal bandwidths. Maximum number of points threshold and buffer ratio threshold 
guide the granularity of the decomposition. The ASSIGN function is adapted to the binary 
decomposition in a straightforward manner. 
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