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ABSTRACT 
 
 

WANQIU LIU. Terrestrial LiDAR-based bridge evaluation. (Under the direction of DR. 
SHEN-EN CHEN)  

 
 

Considering the over half million bridges in the US state highway system, more 

than 70% of which were built before 1935, it is of little wonder that bridge maintenance 

and management is facing severe challenges and the significant funding scarcity rapidly 

escalates the problem. Commercial remote sensing techniques have the capability of 

covering large areas and are suggested to be cost effective methods for bridge inspection. 

This dissertation introduces several applications of the remote bridge inspection 

technologies using ground-based LiDAR systems. In particular, the application of 

terrestrial LiDAR for bridge health monitoring is studied. An automatic bridge condition 

evaluation system based on terrestrial LiDAR data, LiBE (LiDAR-based Bridge 

Evaluation), is developed.  The research works completed thus far have shown that 

LiDAR technology has the capability for bridge surface defect detection and 

quantification, clearance measurement, and displacement measurement during bridge 

static load testing. Several bridges in Mecklenburg County, NC, and other areas have 

been evaluated using LiBE and quantitative bridge rating mechanisms are proposed. A 

cost-benefit analysis has been conducted that demonstrates the relevancy of the technique 

to current nation-wide bridge management problem, as well as, the potential of reducing 

the bridge maintenance costs to the stack holders. The results generated from these 

technologies are valuable for bridge maintenance decision making.      
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CHAPTER 1: INTRODUCTION 
 
 

A nation’s transportation infrastructure performance is crucial to its economic 

growth and public safety.  The function and condition of roads, rails and ports determine 

the efficiency of goods exchange. State highway bridges are part of the critical 

transportation infrastructure that can be considered as the backbone of this nation (Merkle 

and Myers 2006). The well being of these bridges are essential to the sustained operations 

of our society.  

The importance of bridge safety was brought to the nation’s attention again when 

the I-35W Bridge in Minnesota suddenly collapsed in August 2007. Bridges in the U.S. 

are facing the crisis of high deterioration rates, and scarcity of maintenance and new 

construction funding. More than 70% of in-service bridges in the United States were built 

before 1935 (Abudayyeh et al. 2004). For the most heavily used bridges, which are on the 

interstate highway system, 17% were constructed during 1950s, 44% were built during 

1960s and 20% were built during 1970s (NSTPRSC 2007). American Society of Civil 

Engineers (ASCE) report card for America’s infrastructure showed that more than 26% 

of the nation’s bridges are either classified as structurally deficient or functionally 

obsolete (ASCE 2009).      
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Federal aid funds are issued for public bridge maintenance and rehabilitation. 

Federal funding for surface transportation is mainly coming from the Highway Trust 

Fund (HTF). With the increasing investment needs for national infrastructure 

improvement, HTF is facing the problem of financial deficit. The cumulative gap 

between federal transportation revenues and investment roughly needs $400 billion in 

2010-2015, which may increase to about $2.3 trillion through 2035 (NSTIFC 2009). An 

annual funding need of $17 billion for bridge condition improvement was estimated by 

ASCE with only $10.5 billion can be allocated (ASCE 2009). Therefore, how to 

effectively use the limited funding source becomes extremely important. 

1.1 Bridge inspection and management history 

Before the 1960s, there was no nation-wide bridge safety inspection and 

maintenance regulation in the U.S.  Bridge safety issues, although previously discussed 

and researched among state and local government agencies responsible for bridges, first 

attracted a broad public interest after the collapse of the Silver Bridge at Point Pleasant, 

West Virginia (46 people were killed) in 1967 (Brinckerhoff 1993).  In 1968, a national 

bridge inspection standard was required to be established by action taken by the U.S. 

Congress.  Bridge inspection authorization was added to the “Federal Highway Act of 

1968” (FHWA 2002). The National Bridge Inventory (NBI) system was reauthorized in 

the “Federal Highway Act of 1970” as the basis for funding for the Special Bridge 

Replacement Program (SBRP) (Czepiel 1995).  

In 1971, the Federal Highway Administration (FHWA) Bridge Inspector’s 

Training Manual, the American Association of State Highway Officials (AASHO) 

Manual for Maintenance Inspection of Bridges, and the FHWA Recording and Coding 
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Guide for the Structure Inventory and Appraisal of the Nation’s Bridges were developed 

to form the National Bridge Inspection Standards (NBIS). It is the minimum standard for 

the inspection of the nation’s highway bridges. The Surface Transportation Assistance 

Act of 1978 changed the basis for eligibility of bridges for federal funding. Under this 

act, the National Bridge Inventory Program (NBIP) was expanded to include bridges on 

all public roads, not just principal highways. The SBRP was replaced by the Highway 

Bridge Replacement and Rehabilitation Program (HBRRP), in which funding for bridge 

rehabilitation was added in addition to replacement projects (Czepiel 1995).  

Before the 1980’s, there were no existing bridge management systems, nor were 

there national “management systems” specified for Transit, Safety, Pavements, and other 

components of our highway system.  The AASHTO Guide for Bridge Maintenance 

Management (AASHTO 1980) and Manual for Bridge Maintenance (AASHTO 1987) 

were used as guides for bridge maintenance tasks. Later in 1995, the Intermodal Surface 

Transportation Efficiency Act (ISTEA) legislation required each state implement a 

comprehensive Bridge Management System (BMS), which represented “a remarkable 

challenge” since few states had previously implemented a system that could be 

considered to meet the definition of a comprehensive BMS (FHWA 2002).  North 

Carolina was one state that developed its own version of a comprehensive BMS prior to 

the federal dictate.  Figure 1-1 shows a schematic history of the development of the 

Nation Bridge inspection and management practice that is accomplished by various 

Federal-State-Local partnerships. 
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Figure 1-1 History of bridge management system 

 

1.2 Bridge funding 

There are around 590,750 public bridges in the U.S. Between 2000 and 2003, the 

percentage of U.S. bridges rated structurally deficient or functionally obsolete decreased 

from 28.5% to 27.1%. However, it still may cost $9.4 billion annually for the period of 

20 years to eliminate all bridge deficiencies (ASCE 2005). Establishing a long-term 

development and maintenance plan must become a national priority.  

Federal aid funds are provided for public bridge maintenance and rehabilitation, 

and systematic preventive maintenance is eligible for these funds. Although many steps 

are taken to supervise and manage deficient bridges, most funds are used for building 

new infrastructure rather than rehabilitating the existing deteriorating structures (Biswas 

2004). In fact, funds required for repairing highways, transit systems and bridges have 
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reached several billions of dollars annually. Funding for bridge rehabilitation was first 

added in the HBRRP, in addition to replacement projects, since 1978. The Surface 

Transportation Assistance Act of 1982 countered this problem. Highway, safety and 

transit programs were extended for a period of four years from 1983 to 1986. More focus 

was then given to the bridge replacement and rehabilitation program. The Transportation 

Equity Act for the 21st Century (TEA-21) authorized the set-aside of $100 million for 

each fiscal year from 1999 to 2003 for major bridges to continue under the HBRRP 

(Lwin 2006).  

1.3 Issues in current bridge inspection and management system  

The latest version of NBIS became effective in January 2005. The policies and 

procedures in NBIS have been evaluated by the American Society of Civil Engineering/ 

Structures Engineering Institute (ASCE/SEI), and American Association of State 

Highway and Transportation Officials (AASHTO). These three organizations formed an 

Ad-hoc group with the purpose of ensuring that bridge management would be adequate to 

ensure public safety (ASCE/SEI-AASHTO 2009). It was recognized, however, that 

improvements in particular areas were still needed as identified by this Ad-hoc group. 

The main debates were focused on bridge inspection interval, inspection and rating 

quality and consistency, new inspection methodologies and data management.  

Some state DOTs, such as Illinois, Kansas, New Mexico and California suggested 

to expand the inspection cycle, or reduce the cycle restriction range to only critical 

bridges (FHWA 2005). The Ad-hoc group presented a rational inspection interval 

concept, in which the inspection interval is determined by critical bridge factors, such as 

design, details, material, age and so on. Liu (2008; Appendix B) studied 69 collapsed 
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bridges in the U.S. after 1967. Seventeen of them collapsed during or just after 

construction. Sixteen of them were caused by structural defects and the remaining 36 

were due to collisions and natural disasters. The data showed that new bridges have a 

relatively higher failure rate since the number of collapsed new bridges is higher than 

those in long time service. Therefore the inspection frequency for new bridges should be 

higher for bridges already in service. In Europe, an Interim Memorandum on Bridges (# 

IM13) requires bridges in England to be inspected at least once a year (Jandu 2008). 

Bridge evaluation studies elsewhere in Europe have found that long interval, in depth 

bridge inspection may lead to better inspection quality (ASCE/SEI-AASHTO 2009). 

Therefore, the inspection cycle should be allowed to vary for different conditions. 

However, it is recognized that this would be difficult to set such variable regulations.  

Currently, visual-based inspection is the primary method for bridge inspection in 

the U.S. Errors caused by visual-based inspection are high and ratings generated by 

different inspectors for the same bridge can be different. The process, however, can be 

improved through the development of robust inspection manuals (Parekh 1986), qualified 

inspector training, and utilization of advanced non-destructive equipment. A 2001 bridge 

inspection survey among the states indicated the increase in the utilization of 

nondestructive evaluations and the number of Nondestructive Testing Level III-certified 

personnel since 1993 (Rolander et al. 2001).    

Intelligent bridge maintenance and management systems are important to bridge 

owners, especially for monitoring bridges in critical condition. They can help bridge 

owners make maintenance decisions effectively and hence improve bridge safety (Neves 

2006). The documented bridge data will also benefit the estimation of bridge 
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deterioration rates, which are currently lacking in the U.S. (ASCE/SEI-AASHTO 2009). 

PONTIS, BRIDGIT, and Bridgeware are three bridge management systems currently 

used by the state DOTs. More than 40 states use PONTIS to manage their bridge 

(Jivacate and Najafi 2003). However, these systems are still mainly used for inspection 

data collection and they appear to be underutilized to provide cost analysis, and structural 

maintenance related decision making.   

1.4 Role of remote sensing in bridge inspection and management 

Successful bridge maintenance should be based on reliable bridge inspection data, 

accurate bridge performance prediction and effective maintenance planning. All public 

bridges in the U.S. are required to be inspected once every two years (FHWA 2002). The 

inspections are mainly visual-based. Quantitative data for bridge condition evaluation can 

rarely be found in current bridge inspection records.  

For the past fifty years, several Commercial Remote Sensing (CRS) and Spatial 

Information (SI) technologies for wide-bandwidth spectral information sensing and 

imaging have been developed integrally with satellite/airborne/ground-based surveillance 

platforms such as IKONOS, Quickbird, OrbView-3, orthotropic and small-format aerial 

photography and LiDAR (Light Detection and Ranging) scans. However, CRS-SI 

applications to bridge health monitoring have been extremely limited.  Issues associated 

with the application of CRS-SI technology to bridge monitoring have been identified 

through discussion with individual bridge managers from several states (Ribarsky et al. 

2009), including: 

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bNajafi%2C+F.T.%7d&section1=AU&database=1&yearselect=yearrange&sort=yr�
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1) Limitations in current bridge inspection. Current bridge maintenance is 

a generalized visual inspection process established by the federal government. There is 

no guideline in the use of CRS-SI technologies for bridge management. 

2) Misunderstanding of CRS-SI capabilities. The national survey shows a 

gap in between CRS technologies and their availabilities to bridge managers.  As a result, 

bridge managers generally have limited experiences with CRS-SI technologies. 

3) Complexity in multivariate data integration and presentation.  

Because CRS data typically exists in image format and bridge data in PDF or text-file 

formats, integration of the data so that the bridge managers can “fused” data into 

manageable knowledge can be a challenge. 

Comparing to traditional nondestructive structural inspection methods, remote 

sensing technologies, such as the Scanning LiDAR technique, have the advantage of 

large coverage area, large amount of information, cheap and up-to-date data collection, 

ease of manipulating with computer, and providing repeatable evaluation and inspection 

with high accuracy. The utilization of remote sensing technologies for bridge monitoring 

and management can alter the way we understand bridges and they have the potential to 

be cost effective tools for monitoring a large amount of bridges simultaneously. The 

development of automatic bridge inspection and management system based on remote 

sensing data also standardize the inspection procedure and save investigation and 

inspection time. 

Laser radar system, also called LiDAR, is an optical remote sensing technology 

developed for range measurement. Terrestrial LiDAR scanners have the advantage of 

high speed data collection and large area coverage. Comparing to photogrammetry, 
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LiDAR technology provide data directly in 3D instead of 2D imagery. LiDAR scanners 

are often simple to use and unaffected by lighting condition. With the help of LiDAR 

scanner, bridge inspectors can obtain bridge structure dimension data without the 

restriction of the accessibility to the structure. The measurement resolution is in 

millimeters. The quantitative bridge structure surface shape measurements also have 

strong potential for bridge service status evaluation and prediction.  

1.5 Current research work and dissertation organization 

1.5.1 Research objectives  

The research work introduced in this dissertation is part of the project entitled 

“Integrated Remote Sensing and Visualization (IRSV) System for Transportation 

Infrastructure Operations and Management” supported by the U.S. Department of 

Transportation (USDOT) - Research and Innovative Technology Administration 

(RITA). The intent of this multi-year project is to develop and validate CRS applications 

that can enhance current BMS. This dissertation will focus on exploiting the applications 

of LiDAR technology for bridge health monitoring. The goal of this study in relation to 

ground-based LiDAR application is to investigate the viability of applying LiDAR for 

bridge condition evaluation. This viability study addresses the questions of 1) how 

LiDAR can be applied? and 2) how costly is the technology to state DOTs? Specifically, 

the research objectives include: 

1. Establish a cost-benefit analysis for possible adoption of 3-D LiDAR scanner or 

similar remote sensing technologies for bridge monitoring under current North 

Carolina bridge management operations. 
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2. Develop an automatic bridge damage detection and quantification system based on 

LiDAR data and establish bridge evaluation procedure using the quantification results. 

3. Develop an automatic bridge displacement measurement system for briddge static 

load testing based on LiDAR data.    

4. Develop bridge clearance measurement system based on LiDAR data to evaluate 

bridge service status.   

5. Investigate the resolution requirements of 3-D LiDAR scanner for the proposed 

bridge evaluation applications. 

6. Developed bridge rating criteria based on the quantitative bridge evaluation data from 

LiDAR data and the developed bridge evaluation system.  

1.5.2 Scope of work 

This dissertation will focus on the applications of remote sensing technology, in 

particular terrestrial LiDAR technology, for bridge health monitoring and evaluation. An 

automatic bridge evaluation system based on LiDAR data have been developed and will 

be introduced. Around twenty bridges in Charlotte-Mecklenburg area, NC, were selected 

for study and have been scanned using the LiDAR scanner. Most of these bridges have 

low condition ratings. Several bridges in good condition were also scanned for 

comparison. Eight of them are steel bridges and thirteen of them are concrete bridges. 

The detailed bridge information is listed in Table 1-1. Also, a newly constructed bridge 

over highway I-77, near Charlotte, and Bridge # 640024 on US-74 in Wilmington, NC, 

has been scanned during this study. Since the study in this research is only based on the 

selected bridges, not all the bridge types have been covered. Table 1-1 also referenced 

sections in this dissertation where a particular bridge has been studied in greater detail.    
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1.5.3 Dissertation organization 

In Chapter 2, a literature review of remote sensing technologies in bridge health 

monitoring is first presented. A discussion of the role of high resolution remote sensing 

imagery in structure monitoring is given in Chapter 3. A cost benefit analysis has also 

been implemented for the evaluation of bridge inspection and maintenance investments in 

Chapter 3. The result indicated that appropriate increase for funding of bridge inspection 

and maintenance will result in significant monetary savings in agencies’ bridge 

replacement program. Chapter 4 introduces terrestrial LiDAR scan technology and the 

automatic bridge evaluation system LiBE (LiDAR-based Bridge Evaluation) developed 

by the author. The LiDAR scanner has also been used for displacement measurement in 

bridge static load testing. The developed methodologies and programs are introduced in 

Chapter 5. The LiDAR scan and LiBE system evaluation accuracy have been validated in 

Chapter 6. Bridges are also rated by the LiBE system based on the quantitative evaluation 

of bridge status from LiDAR data. Rating criteria are described in Chapter 6. Chapter 7 is 

the summary and conclusion.     

 

 

 

 

 

 

 

 



 
 

 

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 
 
 

2.1 Introduction 

Advanced structural health monitoring (SHM) techniques provide accurate 

assessment to infrastructure condition and can reduce the cost for unnecessary structure 

replacement through proper maintenance. Sensors, such as electromagnetic acoustic 

transducers, magnetic sensing, laser ultrasonics, infrared or thermal camera, guided 

waves, field measurement probes and strain gages, have been adopted to measure 

structure information including static and dynamic displacement, strain and stress, 

acceleration, surface and interior damage and corrosion (Papaelias et al. 2008).  

Structural condition rating, as well as the remaining life of a structure, can then be 

determined based on the collected information.  

Due to the sheer size of most bridge structures, health monitoring techniques may 

become cost prohibitive: Considering the number of sensors, level of details for 

monitoring, and the long term engagement for meaningful applications for very large 

structures, existing SHM technologies are still not cost effective.  The advancements in 

commercial remote sensing technologies show the potential as cost-effective methods for 

long-term monitoring of infrastructure. 
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For the past fifty years, several CRS-SI technologies for wide-bandwidth spectral 

information sensing and imaging have been developed integrally with 

satellite/airborne/ground-based surveillance platforms such as IKONOS, Quickbird and 

OrbView-3. Additional airborne sensors include ADAR 5500, Intermap STARS-3i, 

TerraPoint; powerful LiDARs including LandSat, SPOT and AVHRR, are technically-

proven and available commercially (Birk et al. 2003). Several of these CRS-SI 

technologies have been implemented for traffic planning and environmental studies 

(NCRST 2000). Conferences, including the “Remote Sensing for Transportation” 

organized by Transportation Research Board, discussed the application of remote sensing 

in transportation engineering (TRB 2000).  Annual Transportation Research Board (TRB) 

meetings also support specialty panels such as “Geospatial Data Acquisition 

Technologies in Design and Construction” and “Exploration and Classification of Earth 

Materials” to explore potential applications of remote sensing. The 4th National 

Transportation Asset Management Workshop in Madison WI, sponsored by AASHTO, 

FHWA, and Midwest Regional University, placed emphasis on applying remote sensing 

techniques in asset management (UTC 2001). This conference identified the advantages 

and opportunities of utilizing remote sensing techniques in transportation infrastructure 

asset management. 

The focus of this chapter is on commercial remote sensing techniques and their 

applications in civil infrastructure health monitoring, in particular for bridges. Resolution 

requirements of remote sensors for structure monitoring are given and spatial resolutions 

of various remote sensors are also summarized in Section 2.2. Section 2.3 describes the 
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applications of satellite or airborne remote sensing for infrastructure health-related 

analysis. Section 2.4 reviews the ground-based remote sensing applications for SHM. 

2.2 Overview of remote sensing resolution requirements 

Remote sensing in this dissertation is defined as the sensing technique that 

collects information of an object, area, or phenomenon from a distance without physically 

contacting it. Typically, remote sensing refers to imagery and image information taken by 

airborne and satellite systems (ACE 2003).  In this chapter, both space borne/airborne and 

ground-based remote sensing systems are discussed. 

Based on spatial resolution, satellite data is classified as coarse resolution data 

and high resolution data. Ranging from dozens of meters to several hundred kilometers, 

coarse resolution satellite data are mainly used for large scale problems, such as weather 

prediction (Glantz et al. 2009) or marine observation (Ahn et al. 2006). High resolution 

wide-bandwidth sensing and imaging also make infrastructure monitoring and 

management possible (Pieraccini, 2004; Lee and Shinozuka 2006; Pieraccini, et al. 2008).  

It is well recognized that spatial resolution, which refers to the ability to 

distinguish between two closely spaced objects (Sabins 1997) is more important than 

spectral resolution, which reflects the ability of differentiating image spectrum for 

structure monitoring (Jensen and Cowen 1999). Hence, the resolution discussed in this 

chapter only refers to spatial resolution. Welch (1982) estimated that the spatial 

resolution requirement for unban scene monitoring to be 0.5-10 m.  

To address resolution issues for bridge monitoring, we first explore the tolerance 

of bridge displacements.  Moulton et al. (1985) collected data from 314 bridges in 39 

U.S. states, the District of Columbia, and four Canadian provinces, and generated bridge 
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movement tolerance criteria.  According to their study, differential settlements of 25 mm 

would be considered intolerable for span lengths less than 18 m. The tolerable differential 

settlements typically increase with the increase in span lengths. Bridge horizontal 

movements were thought to be more critical than its vertical movements. The study 

suggested that horizontal movements less than 51 mm were tolerable in 88 percent of the 

cases. Therefore, the resolution required for bridge movement measurement should be 

better than 25 mm. 

 

Table 2-1 Sensing and measurement attributes for bridges (Chase 2005) 

Damage Deterioration  Operation Service 
Impact  Corrosion  Traffic Counts  Congestion  
Overload  Fatigue  Maximum Stress  Accidents  
Fire  Loss of Prestress Force  Stress Cycles  Reduced Traffic 

Capacity  
Scour  Unintended Structural 

behavior  
Deflection  Reduced Load 

Capacity  
Seismic  Chemical Changes  Displacement  Increasing Traffic  
Cracking  Transportation Property 

Loss  
Clearance  Delay  

Settlement  Water absorption  Bridge 
Geometrics  

Unreliable travel time  

Movement     
Lack of 
Movement  

   

 
 

In another study, the FHWA defined cracks with widths larger than 4.08 mm for 

reinforced concrete, and 0.76 mm for prestressed concrete as wide cracks (FHWA 2002). 

Wide cracks were required to be monitored and recorded. Therefore the resolution 

requirement for monitoring bridge cracks can be defined to be or better than 5 mm. Table 
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2-1 lists the attributes associated with bridge performance monitoring. The italic items 

are the ones that can be collected by remote sensing devices. Table 2-2 summarizes the 

resolution requirements for infrastructure, especially bridge, attributes detection.   

 

Table 2-2 Resolution requirements for infrastructure attribute detection 

Attributes Resolution requirements 
Urban scene  0.5-10 m 
Bridge geometry information 0.5 m 
Traffic counting 1 m 
Clearance 0.3 m 
Bridge intolerable abutment movement 25 mm 
Bridge structure surface defects 13 mm 
Bridge structure surface cracks 5 mm 

 

 

Figure 2-1 Aerial photo of NCDOT Bridge # 590179 provided by InSiteful Imagery 
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Currently, many commercial satellite sensors can provide earth images with a 

resolution near or better than 0.5 m.  GeoEye launched the world’s first one-meter 

commercial remote sensing satellite IKONOS in 1999. The latest launched GeoEye-1 

(September 2008) has a ground resolution of 0.41 m (GeoEye 2009). DigitalGlobe now 

offers commercial panchromatic satellite data reaching the resolution of 0.46 m from 

Worldview-2 satellite (DigitalGlobe 2009).  

 

Table 2-3 Summary of resolution comparison for different data acquisition approaches 
(Welch 1974; Welch 1976; InSiteful Imagery 2007; CCRS 2009) 

 
Provider Technology Resolution 
DMSP satellites  Operational Linescan System (OLS) sensor 2.7 km 
Meteosat satellites Imaging radiometer sensitive to visible band 2.5 km 
GMS satellites Visible and infrared spin scan radiometer 1.25 km 
GOES satellites Multispectral channels imaging radiometer 1 km 
HCMM satellite Visible and thermal infrared radiometer 500 m 
Skylab space station Multispectral camera (S-190A) 60 m 
MOS-1 satellites Multispectral electronic self-scanning radiometer 50 m 
Landsat satellites Thematic mapper (TM) sensor 30 m 
SPOT satellite Scanning HRV sensor 10 m 
IRS satellites 
Worldview-2 
GeoEye-1 

Panchromatic (PAN) high resolution camera 
star trackers 
 

5.8 m 
0.46 m 
0.41 m 

STAR Spaceborne Radar Systems 5 m 
Digital imaging 
systems 

Digital camera 0.3 m 

InSiteful Imagery Small-format aerial photography 0.013 m 
Note: values are taken from the sensor with the highest resolution in corresponding satellite    
 

Compared to satellite imagery, airborne sensors have the potential of providing 

images with higher resolutions. In particular, the Small Format Aerial Photography 

(SFAP) technique that equips low flying small airplanes with professional grade 

photogrammetry equipment can provide extremely high-resolution photos. InSiteful 
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imagery (2007) provides aerial photography with a resolution of 13 mm, which is higher 

than most ortho-photography. Figure 2-1 is a SFAP airborne image (0.013 m resolution) 

of a bridge in Charlotte, North Carolina. The image was taken by a Canon 5D camera on 

a C210L aircraft at 300 m above ground level. The picture shows railing geometry, traffic 

lines, traveling vehicles and wearing surface conditions clearly. The rutting of the bridge 

deck can be detected (circled in Figure 2-1). Table 2-3 compares the resolution between 

different airborne/satellite acquisition approaches.  

 

Table 2-4 Ground-based remote sensing techniques: resolution comparison 

Remote Sensing 
Techniques 

Function Description Resolution or Limitation 

Digital and video 
camera 

Surface images for defect 
detection and displacement 
measurement 

Depending on equipment character 
and distance to the object  

Interferometric 
radar  

Static and dynamic displacement 
measurement   

0.5 mm 

3D laser scanner  Static and dynamic displacement 
measurement and defect detection  

0.5 mm with the distance of 30 m  

Infrared camera Structure interior defect detection 0.25 mm and maximum measure 
depth is 12.7 mm for composite 
reinforcement 

Ground 
penetrating radar 

Structure defect detection and 
material thickness measurement 

2.6% material thickness 
measurement error; for concrete and 
polystyrene maximum measure depth 
is 700 mm  

 

Ground-based sensors provide detailed object information with better resolution 

than satellite and airborne-based sensors. Most ground-based remote sensing devices can 

measure structure with accuracy in millimeters. A number of research projects have 

discussed the applications of using ground-based remote sensing techniques for 

infrastructure monitoring (Tarchi 2000; Sakagami 2002; Fuch et al. 2004a&b). The 
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techniques include, among others, ground-based interferometric SAR, digital and video 

camera, infrared camera, and ground penetrating radar. Table 2-4 lists several popular 

ground-based remote sensing techniques and corresponding resolutions. Notable is a 

recent review on short-range photogrammtry applied to bridge deformation 

measurements that identified the technique with resolutions about 3 mm to 14 mm (Jiang 

2008). 

2.3 General application of remote sensing techniques for infrastructure  

Due to the natural geospatial representation and unique data acquisition features 

of remote sensing, many researchers (Welch 1982; Park et al. 1999; Benson 2000) have 

shown interest in the potential applications of remote sensing for infrastructure 

evaluation.  

Current application areas of remote sensing for infrastructure can be roughly 

classified into three categories: construction planning and management, transportation, 

and SHM, which will be discussed in Sections 2.3.1, 2.3.2 and 2.3.3, respectively. 

Ground-based remote sensing techniques measure structural information with high 

accuracy and record a diversity of information; their applications in SHM are reviewed in 

Section 2.4.   

2.3.1 Construction planning and management 

Satellite imagery provides a large area perspective of the landscape features such 

as forests, lakes and grasslands. Digital Elevation Models (DEM) generated from 

interferometric Synthetic Aperture Radar (SAR) collects topology features of the earth 

surfaces. The image processing and Geographic Information System (GIS) offers great 

opportunities of using satellite data for infrastructure planning and management. Present 
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researches for infrastructure planning and management are largely based on the visual 

interpretation of satellite imagery combining with digital elevation model of the object 

area.  

Han (2007) developed an integrated algorithm that detects over river bridge 

features from satellite imagery. The algorithm detected the rivers and then extracted the 

bridge features from the river occupied area. Satellite and airborne optical imagery and 

SAR have also been investigated for the identification of other bridge types (Lomenie 

2003; Wu 2005; Yang et al. 2006; Chaudhuri and Samal 2008; Schulz 2007; Soergel et 

al. 2007). Similar methods have been applied to disaster management and damage 

assessment (Simonetto and Oriot 1999; Eguchi et al. 2005; Tralli et al. 2005; Stramondo 

et al. 2006). Combinations of optical data have been shown to improve the results: 

Satellite images and digital elevation models combined with other historical cartography 

and site survey data were utilized in selecting optimal site and planning fieldwork for the 

dam installations (Forzieri et al. 2008). The selected sites were identified from the visual 

interpretation of satellite images in GIS environment based on several fathomable 

parameters. A DEM was analyzed to measure one of the key parameter: catchment areas. 

Other GIS and remote sensing applications include landfill sites selection (Eihoz 

2006; Ghose et. al, 2006), urban infrastructure physical and environmental planning 

(Saxena 2001; Amekudzi and Baffour 2002), infrastructure protection from terrorist 

attacks (Morain 2002), highway corridor planning (Uddin 2002) and infrastructure type 

classification (Caceres and Slatton 2007). Digital images (Quinones-Rozo et al. 2008) 

and 3-D laser scans (Filho 2005) have been found practical in tracking excavation. 
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Throughout these studies, remote sensing data were recognized as being efficient in 

assisting infrastructure planning and management. 

2.3.2 Transportation planning and management 

Satellite imagery has been widely used for roadway identification and mapping 

(Hinz and Baumgartner 2000; Butenuth et al. 2003; Hinz and Baumgartner 2003; Herold, 

et al. 2004; Luo et al. 2005; Keskinen 2007; Cai and Rasdorf 2008). Keskinen (2007) 

mapped road infrastructure in Taita Hills, Kenya, using both visual and digital processing 

methods to analyze remote sensing data. Combined uses of remote sensing, image 

processing and GIS techniques for environmental studies in transportation infrastructure 

asset management was investigated by Amekudzi and Baffour (2002). They discussed 

several important considerations for developing remote sensing, GIS databases, and 

analytical methods to integrate infrastructure and environmental asset management. The 

impacts of civil infrastructure development on environment can be monitored and 

analyzed. A conceptual computerized image processing system was provided by Grivas 

that integrates various satellite data for transportation infrastructure assessment (Grivas et 

al. 1997). Gafy and Abdelrazig (2004) reported transportation environment assessment 

using remote sensing data. Abdalla (2004), on the other hand, integrated GIS, Global 

Positioning System (GPS), Global System for Mobile communications (GSM), and 

Remote Sensing in road safety studies. Finally, Kim et al.  (1997) measured traffic 

congestion using scanned high resolution satellite panchromatic imagery.  

2.3.3 Structural health monitoring 

SHM aims to insure operational safety and provide early warning before costly 

repair or failure (Ko and Ni 2005). Non-destructive inspection (NDI) technologies are the 
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basic tools for SHM (Achenbach 2009). The evaluation of a health monitoring system is 

based on the desired sensing type and accuracy of the collected information, capital and 

operating budgets, and technical personnel resources (Shrive 2005). Remote sensing is 

expected to be a cost-effective SHM tool, if structural performance data (displacement, 

strain, acceleration) as well as environmental information (temperature, etc.) can be 

identified. Figure 2-2 compares the system design of conventional SHM sensing system 

in general and that of remote sensing system for health monitoring. Figure 2-3 

summarizes the issues of bridge and its components which can be monitored using 

remote sensing techniques.    

 

 
Figure 2-2 Sensing system design for structure health monitoring (modified from Zhang 

and Aktan 2005) 
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Due to the resolution requirements, the literature review at this point is devoid of 

citations that relate to using satellite data for SHM. However, with the advances in high 

resolution CRS, it is anticipated that health monitoring and related applications will be 

much more widespread in the near future.  The obvious advantage of using remote sensor 

for SHM is the ease of data collection, since no physical contact or surface treatment is 

needed. With innovative testing technique design and use of the off-the-shelf GIS-

application software, very low cost technologies can be developed. 

 

 
 

Figure 2-3 Summarizations of bridge issues which can reflect bridge heath condition and 
can be monitored by remote sensing 

 

To date, most research in SHM using satellite data is concentrated on using GPS 

for structural static and dynamic displacement data collection (Wong et al. 2001; Jiang et 

al. 2002; Roberts et al. 2003; Roberts et al. 2007; Brown and Roberts 2008; Yao et al. 

2008). GPS provides absolute 3D position of receivers fixed on structures with accuracy 
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in millimeters. The number of monitoring points is determined by the installed receiver 

number. Since GPS satellites collect earth surface point position and elevation 

information periodically, with proper data processing system developed, GPS can provide 

real time monitoring of structures.  

Remote sensing in surveying transportation infrastructure was explored by Herold 

et al. (2006), with a main focus is on the understanding of spectral properties of road 

surfaces and urban surfaces of different types, ages and conditions. It was found that 

pavement age and some surface defects, such as raveling, can be described at spatial 

resolutions of four meters; but other pavement quality information such as rutting and 

cracking cannot easily be detected.  

Stoeckeler (1970) presented a technique to compare what is discernible on 

different aerial photos. Herold and Roberts (2005) identified road condition through 

spectral analysis of satellite data and prove the potential of using multiband satellite data 

in road way mapping. Chung and Shinozuka (2004) developed an automated pavement 

inspection and management system based on remote sensing data and geographic 

information. Satellite imaging systems combined with information systems provided a 

solution to address safety issues related to pipelines and oil facilities (Roper and Dutta 

2006). The technology is also effective in helping plan oil spill cleanups. Huertas and 

Nevatia (2000) presented an airborne image-based change detection methodology for 3D 

structures especially buildings. Due to resolution restriction, only relatively large 

dimension changes and missing of buildings can be detected (Perera 1995). ERS SAR 

data (Parcharidis et al. 2008) was used to continuously measure the ground deformation 

of western Greece for structure stability risk assessment.    
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2.4 Ground-based remote sensing technique for SHM  

Ground base remote sensing as a type of SHM tool can obtain more detailed 

structure information than satellite and airborne sensors. Figure 2-4 illustrates how 

ground-based remote sensing techniques can be used to extract structure displacement, 

strain, distress, surface crack, corrosion and collision damage, and critical structural 

factors, such as bridge clearance, degree of curve and skew distance (Birge 1985).These 

data can be extracted directly from surface data provided by remote sensing devices in 

the forms of multi-spectral photography, radar images or 3D geometry data. With proper 

signal processing and analysis methods and structure computer model, surface 

information acquired can be used for subsurface defect identification. Some remote 

sensing techniques such as infrared camera are able to provide subsurface information 

directly (Figure 2-4).   

 

 

Figure 2-4 Role of ground-based remote sensors in structure health monitoring 
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2.4.1 Structure surface monitoring and data acquisition techniques  

Image-based structure inspection system has gained interest during the past 

decades due to the high resolution it provides and its relatively low capital and operating 

cost. Birge reported measurements of stations, offsets and elevations of objects based on 

two photos taken from moving vehicles (Birge 1985). This method has also been used to 

measure bridge critical features such as clearance, degree of curve and skew distances 

with an accuracy of 0.15 m. Computer base image analysis has been used for the 

measurement of wooden, concrete, bitumen and coated plastic structure surface (Abdel-

Qader et al. 2006; Patricio and Maravall 2007; Rosati et al. 2009; Rodriguez-Valverde et 

al. 2008). The resolution of these inspections is determined by the character of the 

imaging system and the capture distance to the objects. Lee and Shinozuka (2006) 

processed digital images for bridges taken from commercial digital video for real time 

dynamic displacement measurement.  

Aircraft or satellite SARs collect earth surface elevations based on quantitative 

comparison of radar images of the same scenes that are taken at different times (Tarchi 

2000). Ground-based differential interferometric SAR was used by Pieraccini for 

displacement measurement of large civil structures, such as bridges, dam and buildings 

with an accuracy of sub millimeter (Tarchi et al. 2000; Pieraccini et al. 2004). SAR has 

also been studied for structure damage and change detection (Shinozuka and Loh 2004). 

Interferometric radar and accelerometer have been used for structural dynamic 

monitoring through measuring structure displacement data (Fratini et al. 2007; Pieraccini 

et al. 2008).  
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Laser radar system, also called LiDAR (Light Detection and Ranging), is an 

optical remote sensing technology developed for range detection. 3D laser scanners have 

the advantage of high speed data collection and large coverage area. They are often 

simple to use and unaffected by lighting condition. A set of points on the object surface 

in three-dimensional a coordinate system, often called point clouds, will be recorded in 

each scan. Currently few works have been found using 3D laser scanner in bridge 

inspection: Fuchs et al. (2004 a&b) introduced a laser system for bridge testing. The 

system has been shown to be useful tool in measuring unprepared surface movements for 

load testing without targets and can reach accuracy in sub millimeters over a 30 m range.   

Pieraccini et al. (2006) used laser scanning to quantify urban site built displacement 

induced by a landslide. A kinematic terrestrial-based laser scanning system that can be 

deployed on moving vehicles or watercrafts was introduced by Glennie (2007). The 

system acquired 360 degrees of coverage and a 3D point cloud was georeferenced using 

high accuracy GPS/INS system. Mobile 3D laser scan systems can reach accuracy in 

centimeters, although less accurate than fixed location scanners. Drawback of the 

kinematic terrestrial-based laser scanning system is that their 3D scan accuracy is directly 

affected by the accuracy of recorded GPS data. Teza et al. (2009) have developed a 

computation-based method for mass loss recognition of concrete bridges. The curvature 

distributions of undamaged reference area information were needed for the detection of 

curvature distributions change in order to identify damage area.   

 Moire techniques, such as moiré interferometry and geometric moire, have been 

recognized as high accuracy surface strain, stress and displacement measuring tools 

(Guralnick and Suen 1991) for engineering materials. Guralnick indicated that, for larger 
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surface coarse measurement, shadow Moiré method was the most appropriated one and 

had applied the method for pavement surface inspection. The displacement resolution of 

geometric Moire used by Chona et al. (1995) for fracture parameters determination is 

0.0125 mm. Shadow Moire has also been applied in out-of-plane deformation measuring 

during heating and cooling of plastic ball grid array with a resolution around 29.2 µm 

(Tsai et al. 2008). Moiré related technology has not been widely used in civil structure 

health monitoring, since it needs structure surface treatment and corresponding data 

processing system in order to obtain desired information. Hence, although Moiré image 

can be detected remotely, it is not a true remote sensing technique in the strict sense.    

2.4.2 The integrating of surface monitoring data with structure numerical model  

Surface damage detection is thought to be the first level of general damage 

identification. Modal analysis method can help locate damage and estimate the severity 

of structural damage. Dutta and Talukdar (2004) developed a method to detect the bridge 

deck cracks by comparing the natural frequencies of the intact and damaged condition: a 

simply supported single span bridge and a two span bridge Finite Element model were 

discussed. The location of cracks can be acquired from the changes in element curvature.  

Internal and non visible cracks can also be detected using this method. Park et al. (2007) 

presented structural vibration approaches to predict prestressed concrete girder bridge 

prestress-loss and detect flexural cracks. A prestress-loss prediction model and a mode 

shape-based damage detection method were utilized in each approach, respectively.  

Righiniotis (2004) studied the relationship between the maximum load and the fracture 

toughness, target failure and the cracks of the bridge. After obtaining crack information 
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using a non-destructive inspection technique, the maximum affordable load can be 

calculated from the derived relationship model.        

2.4.3 Structural subsurface defect detection techniques  

Thermography detects thermal patterns and associated changes by converting 

them to visible images formed by temperature differences. Therefore, thermographic 

investigation is not restricted by lighting condition. Figure 2-5 is an example of using 

thermography to detect bridge defect. The thermography is captured by infrared camera. 

The measured temperature is not only depending on the object surface temperature, but 

also its emissivity and atmosphere absorption (Clark et al. 2003). Therefore, accuracy of 

defect inspection varies for different material types and environmental conditions. 

Standards need to be established for different materials and environmental factors in 

order to utilize infrared camera as an independent defect detection tool. According to 

ASTM standard (ASTM 1997), the defect should have temperature differences of at least 

0.5 degrees Celsius in order to be detected. Avdelidis et al. (2004) classified infrared 

thermography into two approaches: passive and active. The active approach requires 

external stimulus source, such as hot air guns, quartz lamps,  Xenon flash lamps, hot or 

cold water, vortex tubes, sprayed liquid nitrogen and so on (Burleigh and Bohner 1999). 

Most regular applications for infrastructure are based on passive approach, which 

measures material temperature difference than ambient.   

Thermal images have been used for detecting the disbonding in structure 

materials (Burleigh et al. 1999; Sakagami et al. 2002; Miceli et al. 2003). Burleigh 

showed the thickness limitation of 12 mm for composite reinforcement measurement 

(Burleigh and Bohner 1999). The minimum detectable defect identified was about 0.25 
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mm wide. With an increase in material thickness, the detection ability decreases. For 

example, for 12 mm fiberglass, the minimum defect dimension was 6.3 to 25.4 mm. 

Washer et al. (2008) researched the thermal performance of concrete with the influence 

of environmental factors to test the application of infrared cameras for bridge defect 

detection. The initial analysis results indicated the influence of solar radiation on the 

contrast of recorded thermal images. Weil (1998) reviewed and provided a case study for 

the application of thermography and ground penetrating radar etc. in structure void 

detection, but the work was mainly visual-based. 

 

 

Figure 2-5 Bridge abutment defect detection from thermography (Bridge # 590049, 
NCDOT) 

 



32 

 

Ground penetrating radar (GPR) often uses an air-coupled horn antenna to 

generate radar pause with a distance from 0.3 to 0.5 m to target structure. Reflected 

energy is determined by the target structure material properties. By recording and 

analyzing the GPR return signals, structure subsurface defects can be detected. GPR has 

been used in pavement and structure assessment for more than 30 years (Maser 1995; 

Yelf and Carse 2000; Moropoulou 2002; Yehia et al. 2008). Shin and Grivas (2003) 

compared ground truth with GPR measured bridge deck condition and their statistic result 

indicated a 75% true detection rate and a 15% false detection rate. Al-Qadi and Lahouar 

showed that the average error of GPR for concrete slab reinforcing bar location was about 

2.6% (Al-Qadi and Lahouar 2005).  Huston (1999) indicated that the GPR system they 

used was able to detect concrete feature at 360 mm depth. Yelf and Caser (2000) 

suggested a depth limitation of 700 mm for concrete and polystyrene. The restrictions of 

GPR for pervasive structure inspection application are caused by the uncertainty of 

structure material properties and the difficulty in locating individual reflected pulses (Al-

Qadi and Lahouar 2004).  

Although various remote sensing technologies such as infrared and radar imaging 

systems, portable ultrasonic systems, telemetry systems, laser deflection measurement 

systems and so on (Washer 1998), have been  proved to have the ability for SHM, 

evaluation of these tools is still critical before general application. FHWA has created the 

NDE validation center in 1998 especially for NDE methods evaluation.  

2.5 Summary   

This chapter reviewed the applications of remote sensing technologies for 

infrastructure monitoring, especially SHM for bridges. The development of remote 
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sensing techniques attracts researchers to apply them into different fields other than 

traditional uses, such as land observation and weather monitoring. The high resolution 

satellite and ground-based remote sensing data make SHM possible.  Most of the remote 

sensing technologies can provide real time monitoring of the targets. Since they offer 

structure information from an incomparable large scale, appropriate investigation on 

SHM can make it cost efficient.  

Compared to contact testing methods, ground-based testing techniques are more 

sensitive to noise (Rizzo et al. 2005). Improvement of the resolution and reliability of 

available remote sensing data are required for further application. Although remote 

sensing cannot totally substitute for visual inspection, it alters the way to understand 

structure condition and it provides indepth and accurate structure assessment that visual 

inspection can never achieve. There are huge development opportunities for high 

resolution and efficient structure monitoring systems based on remote sensing.  

Validation of remote sensing techniques is also crucial for general application in SHM. 



 
 

 

CHAPTER 3: REMOTE SENSING IMAGERY IN STRUCTURAL EVALUATION 
AND A COST BENEFIT ANALYSIS FOR BRIDGE INSPECTION INVESTMENT 

 
 
3.1 Introduction  

Bridge health monitoring as a method of protecting aging infrastructure 

potentially can produce significant highway safety and economic benefits. Current 

challenges to improve and augment existing health monitoring methods include 

decreasing the cost and operational logistics involved in these techniques. Due to the 

sheer size of many bridge structures, the number of sensors required and the level of 

details, monitoring techniques become expensive, and the long-term search for 

meaningful applications may not be cost effective. Advancements in CRS technology 

make it a very attractive method for long-term monitoring of bridge infrastructure.  

According to NBIS, all public bridges in the U.S. are required to be inspected at 

least once every two years. There are several recent or current studies on whether this 

interval is reasonable (ASCE/SEI-AASHTO 2009). However, considering the costs 

required for the 2-year inspection cycle, there would appear to be only a small prospect of 

increasing the frequency of inspections. Advanced sensing technologies may be helpful 

and represent the focus of this chapter. Unfortunately, most current bridge inspections are 

still visual-based due to the high costs of instrumentation for the majority of bridges in 

this country. It is widely recognized that visual inspections are subjective and the 

inspection results lack accuracy (Chase and Washer 1997).  
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Spatial resolution can be reflected by the number of independent pixel values per 

unit length in an image. For infrastructure monitoring, spatial resolution is recognized to 

be more important than spectral resolution, which reflects the ability of differentiating 

image spectrum. Therefore in this chapter, only spatial resolution of remote sensing is 

discussed. “Remote” refers to any CRS device or methodology that does not actually 

touch, or be embedded in the bridge members. It is suggested in this chapter that remote 

sensing can be a low cost supplement to on-the-ground visual bridge inspection. Data 

produced through these technologies can be relatively easy to be managed comparing to 

the profuse number of conventional digital photographs.    

This chapter investigates the potential applications of high resolution remote 

sensing photography for bridge monitoring. Both satellite and airborne sensors provide a 

large field of view for bridge components. The technology primarily produces two 

dimensional views of the bridge deck and parapets. Possible detectable bridge issues are 

summarized and simulative ratings are given to reflect the severity of detectable bridge 

problems and as a reference for visual-based bridge inspection standard creation, or for 

automatic detection method generation. In Section 3.3, a cost benefit analysis (CBA) has 

been introduced for bridge inspection and maintenance investment. A sample of bridges 

in three counties in North Carolina -  Mecklenburg, Beaufort,  and Rutherford  - were 

chosen as representing metropolitan areas of the Piedmont, coastal, and mountain areas 

respectively. This CBA analysis indicates that appropriate increase for funding of bridge 

inspection with the adoption of advanced bridge inspection technologies will result in 

significant monetary savings in agencies’ bridge replacement program.       
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Table 3-1 Summarized bridge issues reflected from remote sensing photography 

Cause Observations Required 
resolution 

Cause Observations Required 
resolution 

Bridge deck 
Sun shadow Shading 1 m Abutment 

 
Relative 
displacement 

0.025 m 
0.025 m Rain 

 
Shading 0.5 m Pier 

 Car accident  1 m Bridge deck 
displacement 

Section loss 0.5 m Deck punch-
through 

Large openings 0.5 m 

Deterioration 0.1 m Deck 
 

0.5 m 
Chemical 
spill 

Discoloring 0.1 m Wear at joint Gap at 
expansion 
j i  

0.1 m 

Collision Deformation 0.1m    
Wearing surface 

New wear 
surface 

Discoloring 1.0 m Cracking Shading 0.005 m 

Raveling Local 
 

0.5 m Potholing 0.1 m 
   Rutting 0.1 m 

Railing Curb 
Missing 

 
 0.5 m Cracking Shading 0.005 m 

Cracking Shading 0.005 m Spalling 0.1 m 
Section loss 0.1 m Alignment Curb edge 

 
0.5 m 

Spalling 0.1 m Collision 
damage 

Shading, edge 
detection 

0.1 m 

River bank (1 miles) Sidewalk 
Pollution De-vegetation 1m Deterioration Shading 0.1m 
Smaller flow River channel 

widening 
0.5 m Drainage device 

Traffic Scaling potion  0.1 m 
Increase in 

 
 1 m Land use 

Increase in 
trucking 

 Surrounding 
land use 

Changes in 
image 

1 m 

Rush hour 
traffic 

 Geometry of bridge 

Loading 
condition 

 Edge 
detection 

Horizontal 
misalignment 

0.5 m 

Utilities 
Light shape, 
cables 

 0.1 m Traffic line  1 m 

*ADT-Average Daily Traffic 
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3.2 Visual interpretation of satellite and airborne imagery for bridge health 
monitoring     
   

Table 3-1 gives the possible bridge issues that can be detected from the high-

resolution airborne images to enhance visual inspection that can be developed into further 

automatic detection methods. Note that the italic attributes identified in Table 3-1 do not 

directly reveal or cause bridge structural problems. Some of these attributes like sun 

shadows and rain dampness can act as noise for feature extractions for structure-related 

attributes identification. Some attributes may reflect bridge conditions indirectly. For 

example, the definition of the traffic line can indicate the pavement maintenance 

condition and the irregularity of traffic line may be caused by structural component 

movements or surface defects.     

 

Table 3-2 Bridge Deck Surface Deterioration Identification 

Type of 
Deterioration 

Discernible? Rating Type of 
Deterioration 

Discernible? Rating 

Through Deck 
 

Yes 0 Worn-out wearing 
 

Yes 6 
Large relative 

 
Yes 3 Debris Yes 6 

Overload Damage Yes 3 Brand new deck or 
 

Yes 9 
Scaling Yes 3 Delaminations No  
Spalling Yes 4 Pop-outs No  
Slight Collision 

 
Yes 4 Chloride 

 
No  

Cracking Yes 4 Efflorescence No  
Wears (Abrasion) Yes 5 Ettringite Formation No  
Damaged Repair  Yes 5 Honeycombs No  
Grease or chemical 

 
Yes 6    

*Notes: 8, 9 Effective system nearly new condition; 6, 7 No structure service required; 4, 5 
Questionable structure; 2, 3 certain structural problem, immediate service required; 0, 1 No traffic 
allowed 
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Resolution limitation of remote sensing technologies restricts their damage 

assessment capability. Only wide structural cracks (width ≥  0.0048 m) (FHWA 2002) are 

able to be detected from satellite or airborne images. Small pop-out holes and internal 

defects, such as ettringite formations and honeycombs may be identified in surface 

satellite or airborne images. As a result, detectable bridge defects may represent serious 

damages to the bridge structure.  

 

 

Figure 3-1 Sample remote sensing images for bridge deterioration detection (Insiteful 
Imagery 2007; Owen; Google Earth) 
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Table 3-2 also provides cumulative ratings for possible bridge deck problems that 

reflect the severity and their influence that affects the whole structure. The detectable 

cracking at the mid-span of simple span structures and at the supports of continuous span 

structures is one of the visual signs of overload damage. This affects the level of posting 

of the structure. Large amounts of scaling and spalling can represent stiffness loss of 

concrete. Wear and abrasion can be detected by the relative brightness, since wear area 

may be smoother than remaining area of the deck. This kind of deterioration can be a 

traffic safety hazard, especially in wet weather. Figure 3-1 illustrates four sample images 

for bridge deterioration from either satellite or airborne sensors. The upper left of Figure 

3-1 shows a collapsed bridge in Laval, Montreal, Canada. Span displacement can be 

detected from satellite images as in the upper right image in Figure 3-1. Pavement 

spalling and damage repair can be found in the lower two images of Figure 3-1, 

respectively. Pavement spalling may or may not pose serious structural problems, but can 

be a nuisance to traffic and bridge users.  

3.3 Bridge inspection cost-benefit analysis  

3.3.1 Study Area Description and Status of Bridges 

Mecklenburg County, Beaufort County and Rutherford County are selected in this 

project as typical representatives of the State’s Piedmont metropolitan, the coastal, and 

mountain areas, respectively. All three counties are among those counties with the largest 

number of bridges in their regions. Table 3-3 lists the general information of the study 

area and State of North Carolina. Mecklenburg County has the largest population density 

and Beaufort County has the least, ranging from 1321 to 54 persons per square mile. The 

Annual Average Daily Traffic (AADT) of the three selected counties is calculated by 
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summing the AADT data for all routes in the corresponding county and dividing the 

result by the total number of routes using North Carolina Department of Transportation 

(NCDOT) traffic survey data (NCDOT 2007). The data in Table 3-3 shows that the 

AADT is almost proportional to the county population. 

 

Table 3-3 Study Area Description Data (U.S. Census Bureau 2000; NCDOT 2007) 

Region Population Area (Square 
miles) 

Population Density 
(per square mile) 

Average Annual 
Daily Traffic 

Mecklenburg 
County 

659,454 546.22 1,321.5 21,249.27 

Beaufort 
County 

44,958 958.69 
 

54.3 2,854.54 

Rutherford 
County 

62,899 565.90 111.5 2,669.495 

NC 
Statewide 

8,049,313 53,818.51 165.2  

 

 

Figure 3-2 NC County map and study counties  
(Created using Arc Map, data from NCDOT webpage) 
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Mecklenburg County has the largest population in North Carolina. NC’s largest 

city, Charlotte, is located in this county. Charlotte is in the top ten fastest growing metro 

areas in the U.S. Interstate highways I-77, I-85, I-277 and I-485, state highways NC-16, 

NC-24, NC-27, NC-49, NC-51, NC-73 and NC-115 are passing through this county. The 

total number of bridges in this county is around 589, and 88 of them are over water 

(Table 3-4).  

 

Table 3-4 Bridge Statistics of the Study Area (Brent 1996) 

Region Mecklenburg 
County 

Beaufort 
County 

Rutherford 
County 

NC 
Statewide 

Total Num. 589 150 309 1809 
%     

Bridge Num. 401 119 255 13102 
% 68.08 79.3 82.5 72.40 

Culverts Num. 188 31 54 4995 
% 31.92 20.7 17.5 27.60 

SD Num. 26 37 57 2515 
% 4.41 24.7 18.4 13.90 

FO Num. 107 13 66 3138 
% 18.17 9.7 21.4 17.34 

SD+FO Num. 133 50 123 5653 
% 22.58 34.4 39.8 31.24 

Posted Num. 38 63 136 4580 
% 6.45 42 44 25.31 

Over Water Num. 88 114 292  
% 14.9 89.3 94.5  

Definitions: SD - Structural Deficient; FO - Functional Obsolete 

 

Beaufort County is located on the North Carolina coast. Agriculture is the one of 

the most important economic sectors in this county. The county also has an industrial 

park which offers jobs to the residents. The total number of bridges in that county is 150 
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and 114 of them are over water bridges. Rutherford County, like Mecklenburg, is located 

on the North Carolina/South Carolina border (Figure 3-2). It is famous for the natural 

wonders, including Chimney Rock and the Bottomless Pools. Many places in this county 

have been listed on the National Register of Historic Places. The total number of bridges 

in this county is around 309 and 292 of them are over water bridges.  

Appendix A summarizes the bridge replacement plans of the three counties from 

NCDOT 2007-2013 State Transportation Improvement Program (STIP). Although 

Mecklenburg has the largest number of bridges, the planned to be replaced bridges are 

fewer than that of the other counties. The data in Table 3-4 indicated that Mecklenburg 

County’s bridge deficiency rate is lower than Beaufort County and Rutherford County. 

One of the reasons may be that the percentage of bridges over water in Beaufort County 

and Rutherford County are greater than that of Mecklenburg County. Bridge structures 

over water are typically more vulnerable to corrosion than bridges over highways. 

Almost all the bridges listed in the 2007-2013 STIP are over water bridges. Therefore in 

the analysis of this section, only bridges over water are considered.  The average costs for 

bridge replacement are higher in Rutherford County than the others. The possible reasons 

could be the scale differences of the bridges and the inconvenience of construction 

material and labor transport in Rutherford County.          

3.3.2 Cost-Benefit Analysis 

This project focuses on proposing and evaluating bridge maintenance investment 

strategy of state-maintained bridges for these three counties. For the cost-benefit analysis, 

the basic assumption is that the increase in bridge inspection and maintenance investment 

will result in the increase of bridge service life.  
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Investment in bridge inspection and maintenance includes support for new 

inspection technology development and validation, real time problem identification and 

resolution, and systematized bridge maintenance plan development and implementation. 

Global visualization and traffic analysis will help the bridge manager in predicting the 

performance of a bridge. Advanced bridge health monitoring methods can improve the 

inspection accuracy and reduce unnecessary bridge repair or reconstruction.  An example 

for showing the importance of in-time maintenance can be found for Bridge # 590177 in 

Mecklenburg County. The original wooden bridge piers have been hollowed by insects 

based on our inspection in 2009. The new piers have been coated with epoxy which 

curtailed the problem.  If the bridge piers were pre-coated or the damage was discovered 

earlier, the costs for the installation of new piers would have been saved. 

Another assumption is that the bridge service life will increase in each county and 

will be reflected in the reduction of the deficiency rate with proper inspection and 

maintenance. The NCDOT has adopted a pre-requirement for bridge replacement which 

states that bridge should have the sufficiency rating lower than 50 to be put on the STIP. 

The bridge with the sufficiency rating lower than 50 is also considered to be deficient in 

this dissertation. The deficiency rate herein is defined as the total number of deficient 

bridges divided by the total number of bridges.  Hence, if a county has a deficiency rate 

decrease of 5 percent, the county will have 5 percent saving from bridge replacement 

costs. 

Generally, a bridge service life is expected to be 50 years with the maximum of 

80 years. In this thesis, all the bridges are assumed to be designed with a service life of 50 
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years if no maintenance actions are applied during their service lives. With the best 

maintenance before replacement, a bridge is assumed to serve for 80 years.  

Table 3-5 Benefits and Costs for Bridge Inspection and Maintenance Improvement for 
each County 

 
2007 2017 2027 2037 2047 2057 2067 2077 2087 
Mecklenburg County 
Coating Cost 
$17,60
0  $23,890  $32,430  $44,023  $59,758  $81,117  $110,112  $149,471  

$202,8
98 

Inspection Improvement Cost 
$68,
921  $93,556  

$126,99
6  

$172,3
90  

$234,0
09  $317,653  $431,195  $585,321  

$794,53
8 

Cost Reduction from Replacement 
$123
,922  

$166,05
5  

$222,5
14  

$298,1
68  

$399,5
46  

$535,39
1  $717,424  $961,348  

$1,288,2
06 

Beaufort County 
Coating Cost 
$22,
800  

$30,95
0  

$42,01
2  

$57,02
9  

$77,41
3  

$105,08
4  

$142,64
6  

$193,6
33  

$262,8
45 

Inspection Improvement cost 
$89,
284  

$121,19
7  

$164,5
18  

$223,3
23  

$303,1
48  

$411,50
5  $558,594  $758,257  

$1,029,2
89 

Cost reduction from Replacement 
$177
,813  

$238,2
69  

$319,2
80  

$427,8
36  

$573,3
00  

$768,22
2  

$1029,41
7  

$1,379,4
19  

$1,848,
422 

Rutherford County 
Coating Cost 
$58,
400  

$79,27
5  

$107,6
10  

$146,0
75  

$198,2
88  

$269,16
3  

$365,37
3  

$495,9
72  

$673,2
53 

Inspection Improvement Cost 
$228,

691  
$310,4

35  
$421,3

97  
$572,0

21  
$776,4

84  
$1,054,0

31  
$1,430,7

83  
$1,942,2

02  
$2,636,

423 
Cost Reduction from Replacement 
$640
,706  

$858,5
47  

$1,150,4
52  

$1,541,6
06  

$2,065,7
52  

$2,768,1
08  

$3,709,2
65 

$4,970,4
15  

$6,660,
356 

 

Corrosion protection coating will help to prevent bridge damage from corrosion 

damage. Assume that if 100% of the bridge surface is repainted every ten years, there 



45 

 

will be no major bridge structure damage caused by corrosion. Therefore, the maximum 

service life increase is set to be 60%. Following this logic, with 1% recoating of bridge 

surface every 10 years, the bridge deficiency rate of the county will decrease by 0.6%. 

Based on the 50 years bridge service life prediction, 20% of the bridge will depreciate 

every 10 years assuming no recoating maintenance as well as ignoring the differences in 

geometry changes and aging. All the deficient bridges in each county are assumed to be 

eliminated within 10 years with bridge replacement. The new bridge construction 

increase rate in each county is assumed to be 1% every 10 years. 

This cost-benefit analysis is projected for an 80-year period, starting with FY 

2007. The average coating cost per square ft is estimated as $2.5 (AGA 2007). The 

average surface area of a bridge is chosen as 8000 square ft (Better Road 2009). In this 

dissertation, FY 2007 is taken as the base year, since the bridge replacement costs are 

taken from the STIP 2007 data and 7% discount rate is selected for the analysis. The 

budget for research on developing an integrated advanced bridge monitoring system is $ 

922,595 for two years (Chen 2007). The Mecklenburg County land area is 546.22 square 

miles. The research assumes that Geoeye and Quickbird can provide high resolution 

commercial satellite images that are suitable for bridge health monitoring. The price is 

around $26-$78 per square kilometers (Chen 2007). The total cost on satellite images of 

Mecklenburg County could be around $30,000. The NCDOT has planned to spend 

$92,800 for GIS system development in the 2007-2013 STIP.  

Since the IRSV project covers the satellite and GIS part, and the budget for 

purchasing satellite image and GIS development is small comparing to the total cost of 

IRSV project, therefore the IRSV budget is used as an estimate to cover all similar 
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research. Therefore, the corresponding cost on this project is $783.19 per bridge. The 

achievement of the IRSV project not only benefits Mecklenburg County, but also the 

whole State and Nation. Hence, this dissertation estimates that this kind of project will be 

issued once every 10 years in each county to ensure the timely identification of bridge 

problems and efficient bridge maintenance plans. Subsequently the cost will be $783.19 

per bridge per 10 years.  

Table 3-5 lists the benefits and costs for the improvement of bridge inspection and 

maintenance. For the simplicity of the analysis and analytical exercise, the main costs are 

coming from the adoption of advanced inspection techniques and bridge repainting 

program. The benefits are the money savings from the reduction of bridge replacement in 

each county. The nominal net present value and cost benefit ratio and the ones with 

discount rate 7% and 10% are given in Table 3-6 for comparison following Eq. (3-1) and 

Eq. (3-2). 

𝑁𝑁𝑁𝑁𝑁𝑁 = ∑(𝐵𝐵−𝐶𝐶)𝑡𝑡
(1+𝑟𝑟)𝑡𝑡

                                                                         (3-1) 

𝐶𝐶𝐶𝐶𝐶𝐶 = ∑𝐵𝐵
∑𝐶𝐶

                                                                               (3-2) 

in which 𝐵𝐵 and 𝐶𝐶 are the total benefit and cost of FY  𝑡𝑡. 𝑟𝑟 is the discount rate (OMB 

2009). 

 

Table 3-6 Net Present Value (NPV) and Cost-Benefit Ratio (CBR) 

 Nominal 7% Discount Rate 10% Discount Rate 
(Optional) 

 NPV CBR NPV CBR NPV CBR 
Mecklenburg $1,166,692.4 1.329 $112,063.6 1.397 $78,443.6 1.411 
Beaufort $2,168,450.1 1.472 $274,442.7 1.548 $139,108.1 1.564 
Rutherford $12,599,332.1 2.071 $1,150,992.0 2.177 $758,265.4 2.200 
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3.3.3 Solution and conclusion 

The Cost-Benefit analysis shows that in this simple scheme, the investment 

strategies are viable options as they produce large NPV and the benefits are generally 

larger than cost. Mountainous areas may receive more savings from bridge inspection and 

maintenance investment. The analysis in this dissertation is based on bridge statistical 

data in the three counties only. It does not rely on a particular bridge, but included a 

general study of all state-maintained bridges in the three counties. The work of this 

section has demonstrated the importance of efficient bridge inspection and maintenance 

programs, and provides a reference for bridge managers when considering adopting 

advanced technologies such as an IRSV system for bridge monitoring.  



 
 

 

CHAPTER 4: TERRESTERIAL LIDAR-BASED TECHNOLOGY AND ITS 
APPLICATION IN BRIDGE EVALUATION 

 
 
4.1 Introduction to terrestrial LiDAR scanner 

Terrestrial 3D laser scanners operate on the same basic principles as microwave 

Radars (Radio Detection and Ranging), but at a much shorter wavelength. They often 

operate in the ultraviolet, visible, near infrared, mid infrared and far infrared regions. 

Laser scanners can also be considered as LiDAR or LaDAR (Laser Detection And 

Ranging) systems (Jelalian 1992).   

A basic LiDAR system consists of a transmitter, a receiver and a signal 

processing unit. A pulse or a series of light is emitted from the transmitter and part of the 

scattered energy is reflected back to the receiver after reaching the object area (Figure 4-

1). The time the light traveled between the scanner and the object, can be measured. By 

multiplying the speed of light with its travel time, the two way distance between the 

scanner and the object can be calculated. 

Currently, there are mainly two range measuring techniques for laser scanners: 

One is time-of-flight technology and the other is phase shift technology.  The time-of-

flight scanner follows the classic method of measuring the traveling time of emitted light 

pulses between the scanner and the object. With known speed of the laser light, the time 

that the light travels between the emitted light and the returned signal will yield the 
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-distance to the object. For time of flight technology, the range measuring ability is 

determined by the scanner’s time delay measurement accuracy (Carrara et al. 1995).  The 

latter type of scanner emits constant waves with different modulation wavelengths. The 

distance between the scanner and object is then measured by detecting the phase shift of 

the reflected waves. The ability of range determination of phase shift technology can be 

improved by using multiple waves with various modulation lengths. The measured 

distance based on phase shift technology is limited by the maximum modulation length of 

the selected waves. Theoretically, time-of-flight technology has no range measuring 

limitations unless the emitted energy is not strong enough to get a response. Phase-based 

scanners typically have higher speed of acquisition, data density and resolution as 

compared to the time of flight technique (Sgrenzaroli 2005).  

 

 
Figure 4-1 The operation of a LiDAR system 

 

The laser scanner used in this bridge monitoring study is a Faro LS 880HE (Faro 

Technology 2007), which is a phase-based laser system. It operates at a wavelength of 

785nm. Detailed specifications of the Laser scanner system are given in Table 4-1. The 

scanner used in this dissertation is capable of capturing 120,000 points per second.  
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Table 4-1 Specifications of the Laser scanner (adopted from Faro Technology 2007) 

Item Specification Item  Specification 

Range  76m Measurement speed 120,000 points/sec 

Wavelength 785nm Beam diameter 3mm, circular 

Vertical view 320 º Horizontal view 360 º 

Vertical resolution 0.009 º Horizontal resolution 0.00076 º 

Distance error ±3mm at 25m Power consumption ~60W 

Size 400mm×160mm×280mm Weight 14.5kg 

Temperature 5 º ~40 º C Humidity Non considering 

Georeferencing yes Control panel External PC 

 

A laser scanner can only collect the range information of object points along its 

direction of view. To obtain the surrounding surface information instead of a single point, 

a reflection mirror is placed opposite to the scanner transmitter that allows 360 degree 

vertical rotation and the laser head itself also rotates 360 degree horizontally (Figure 4-2). 

After the scanner head rotates 360 degree horizontally, a full scan is finished. The point 

cloud of the object surrounding surface information that is along the scanner’s field of 

view can be measured and recorded in a single scan. For a typical scan in current study, 

around 9,000×4,000 points are measured with 360 ˚ horizontally and 320 ˚ vertically (due 

to the blocking of the scanner underpan). Each scanned physical position point is 

assigned a 3D coordinate value according to its relative position to the scanner with the 

origin located at the position of the scanner head. Comparing to traditional photographic 

image-based defect detection techniques, the laser scan can display the position of the 
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defect over the entire structure without extraneous works to register pixels in single 

images and extrapolate defect information in 3D.   

 

 
Figure 4-2 Schematic of laser scanner operation 

 

To date, the application of laser scanner has been limited to mainly considering 

documentation and data restoration for as-built structures (Lichti and Gordon 2004; 

Kayen et al. 2006). Girardeau-Montaut et al. (2005) presented a method to detect changes 

by comparing point clouds acquired by laser scanner for changes in physical structure 

damage detection. Pieraccini (2007) reported using interferometric radar to measure the 

static and dynamic movements of bridges. Table 4-2 summarized the specific areas that 

LiDAR scan can be used in related to bridges. In this research, the laser scanner has been 

studied for the application in bridge health monitoring. When scanning a bridge, the laser 
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scanner is put underneath the bridge. A LiDAR-based automated bridge structure 

evaluation system, called LiBE, has also been developed with the functions of defect 

detection and quantification, clearance measurement and displacement measurement for 

bridge static load testing. The following parts will introduce the potentials of LiBE for 

bridge health monitoring. Section 4.2 will introduce the methodology that has been used 

for bridge surface automatic defect detection and quantification. Section 4.3 discusses the 

bridge low clearance issues and the application of LiDAR scan for bridge clearance 

measurement. The load testing part will be introduced separately in Chapter 5.  

 

Table 4-2 Possible applications of LiDAR scan in bridge engineering 

LiDAR scan applications 

Construction delivery Image Documentation 

Geometry Estimation Bridge Clearance Determination 

Structural Damage Measurement (impact) Structure Defect Quantification (mass loss) 

Bridge Displacement Measurement During Static Load Tests 

 

4.2 Defect detection 

4.2.1 Introduction 

There has been in place a federal (FHWA) mandate that all bridges built and/or 

maintained with public funds are to be inspected at least every other year since 1968 

(FHWA 2005).  These inspections are commonly done visually by trained inspectors.  

However, there appears to be a growing consensus among bridge engineers that there is a 
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need for additional rapid and non-intrusive methods for bridge damage evaluation that 

would add valuable information to the nation’s BMS.  

Previous attempts of using LiDAR scan to quantify damage involve Gaussian 

curvature computation where damaged surface curvature information was compared with 

an undamaged reference surface (Teza et al. 2009). Since, most of the critical bridge 

components have flat surfaces, such as girders, decks and some of the bridge abutments, 

the LiBE methodology focuses on the defect detection and quantification of bridge 

components with flat surfaces. First, the flat bridge surface plane is identified based on 

the coordinate values of automatic selected boundaries. Second, all the surface points are 

rotated to make the flat plane vertical to Z (out of plane) coordinate. The points on the 

damaged area are identified as irregularity points based on the distances between the 

points to the flat surface and their gradients, and the distance between each point to the 

flat plane can then be calculated based only on the point’s Z value. The interested surface 

is then divided into smaller grids, where if more than half of the points in the grid are 

irregularity points, the grid is classified as irregularity grid. Each defective area on the 

selected surface can be detected by searching the connectivity of the irregularity grids. 

The defective area and volume are quantified by adding up the area and volume of each 

defective grid within the defective area. Defective volume of each grid can be calculated 

as: 

 V = A × D� × γ                                                                   (4-1) 

where D� is the average depth of the irregularity grid and γ is the defective ratio of 

the grid. xi and yi  (i = 1, … ,4) are the coordinate values of the ith  point of the four 
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boundary points, which are numbered counter clockwise. The defective area is then 

defined as: 

 A = (x1 × y2 − x2 × y1 + x2 × y3 − x3 × y2 + x3 × y4 − x4 × y3 + x4 × y1 − x1 × y4)/2   

Most of the bridge surface defects that can be detected by LiDAR scanner are 

visible to human eyes, and sometimes, the defects are documented as digital images.  

However, it is hard for bridge inspectors to quantify the defects especially when the 

bridge components are inaccessible. One LiDAR scan can record surface information of a 

bridge 360 degree horizontally and vertically. The obtained visual information of the 

bridge is organized in the scan. It is easy to get the relative position of a defective area on 

the bridge from the scan, which is difficult to be achieved using local digital images. The 

proposed defect detection technique can also quantify the defects with a minimum 

detectable area of 0.01 m × 0.01 m. The analysis based on LiDAR data is repeatable. If 

the defects of a bridge are studied periodically, the mass loss rate can be determined.  The 

data can then be used to generate or update the deterioration rate prediction model. Detail 

introduction to this methodology will be given in Section 4.2.2. The FORTRAN source 

code for defect detection and quantification is given in APPENDIX E.  

4.2.2 Detailed Methodology 

This part explores a surface damage detection algorithm, as part of LiBE, for 

material mass loss quantification. LiDAR has the potential for providing high-density, 

full-field surface static imaging, hence, can be used to generate volumetric quantification 

of concrete corrosion or steel erosion.  By recording the surface topology of the object, 

the laser radar can detect different damages on the bridge structure and differentiate 

damage types according to the surface flatness and smoothness. The LiBE algorithm 

differentiates information departed from original surface through surface gradient and 
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displacement calculation. The technique is applied to the extended pile cap of a concrete 

bridge (NC county Bridge # 590147, Figure 4-3), which quantifies the mass loss.  The 

aging bridge is built in 1938 and has been listed in the North Carolina 2009 TIP list for 

possible replacement. The bridge is a reinforced concrete girder bridge with three 40 ft 

spans.  The bridge is supported on timber piles with reinforced concrete caps.  Large 

spalls are found underneath three of the four girders (Figure 4-3).   

 

 
Figure 4-3 Substructure of Bridge # 590147 showing distress in pile cap 

 

4.2.2.1 LiBE Damage Detection 

Deteriorations of concrete bridge structure may come in several forms: cracking, 

scaling, spalling, efflorescence and collision damage, etc. (FHWA 2002; Abdel-Qader et 

al. 2006). Cracking in concrete members, in particular, is most common as a result of 

either excessive loading or environmentally-induced internal stressing (such as erosion or 
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corrosion of rebars). Significant research efforts have been spent in the detection of 

cracking in concrete (Dutta and Talukdar 2004; Righiniotis 2004; Abdel-Qader 2006; 

Park et al. 2007).  Scaling, spalling and efflorescence are largely due to environmental 

effects and typically result in material mass loss. 

 

 

Figure 4-4 Flow chart of LiBE damage detection program 
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Using a LiDAR scan to detect surface defects of a bridge, a reference plane is 

necessary to simulate the intact condition of the bridge surface.  The scanner records 3D 

positions of the bridge component, the information is limited to the surface points. Figure 

4-4 shows the flow chart of the LiBE system in its current stage of development for 

bridge structure surface analysis. 

 For a single flat surface, the analysis is actually in 2D, which requires rotating the 

surface-of-interest to make the reference plane parallel to X-Y plane (Figure 4-5).  To 

reduce the error induced by surface roughness in creating the reference plane, the plane 

should go through at least two points on a diagonal line near the boundary of the study 

area and one point on the upper center of the selected area (black points in Figure 4-6). 

The distance between a selected point (gray point in Figure 4-6) on the lower center and 

the reference plane is used to check the accuracy of the reference plane.  For each of the 

four selected points, coordinate values are compared with the corresponding average 

coordinate values of the eight surrounding points. If there is a significant difference 

between the points (often 0.05 m larger than the average), which may be caused by 

environmental noise (such as trees or other non-bridge objects), other neighboring points 

will be used to replace the point. Since a scan point is arranged with column and row 

numbers according to the horizontal and vertical scan angle of the point, the neighboring 

point can be selected by increasing column or row numbers at least three for each 

corresponding selected point.  After rotating the bridge surface-of-interest, the point 

coordinate values in Z-direction will be used to determine the deviation from the 

simulated reference plane and can be used to calculate surface gradient at that point. 
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Figure 4-5 The creation of the reference plane and rotation of study bridge surface 

 

 

Figure 4-6 Location of points for reference plane determination 
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4.2.2.2 Gradient Calculation 

Since the surrounding surface information is recorded point by point with the 

rotation of laser head and oblique mirror, the scanned points are represented in curves 

instead of straight lines, hence, conjugate graticular (latitude and longitude) coordinate 

system is used (Figure 4-7). Gradients in both latitude and longitude directions are 

calculated and the corresponding absolute value is added together to reflect the surface 

irregularity.  Eq. (4-2) shows the approximate method to get the irregularity ),( RCG  for 

a particular point in column C  and row R .  
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where α is the number of points in each interval (interval size), which can be selected by 

the user, and z(C, R), x(C, R) and y(C, R) are position coordinates in Cartesian.  The 

origin of the Cartesian would be defaulted to the position of the laser scanner.  

 

 

Figure 4-7 Point cloud position reference coordinate system 
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4.2.2.3 Defect Area Identification and Mass Loss Calculation  

Surface of bridge components are often rough due to the material (wood, concrete 

and steel) used.  Therefore, the surface gradient calculated may not be continuous. Dirt 

spots and paints also influence the smoothness of the surface.  By increasing the interval 

size for the gradient calculation can help reduce gradient sensitivity-to-noise ratio. 

Detection of defective area can either by comparing gradient or displacement 

information. For relatively large defects (Figure 4-3), it is not efficient to determine the 

defective area point by point. Hence, each selected area for analysis is divided into 

smaller search grids. In the current case, 10 × 10 point grids are selected and can result in 

a 0.01 m × 0.01 m resolution. For cracks or span joint detection, the interval size needs to 

be minimized to increase its sensitivity and 2  1or=α  can be chosen in these cases. For 

relatively large defective area (larger than 0.1 m × 0.1 m), larger interval size 10 ~ 5=α  

should be used. For gradient-based damage detection method, each position point is 

considered to be irregular if it satisfies the following criterion: 

 aveGRCG ×> 1),( β                                                             (4-3) 

For distance-based detection method, the following criterion can be used 

aveDRCD ×> 2),( β                                                             (4-4) 

where ),( RCD  is the distance between the point in column C  and row R  to the reference 

plane. aveG  and aveD are the average of surface gradient and average point distance to the 

reference plane.  1β  and 2β  are the adjusting parameters. They are selected based on the 

proportion of the total defective area to the total study area. Larger defective ratio in the 

study area needs larger 1β  and 2β  and often 0.2 ,0.1 21 ≤≤ ββ .  
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Distance ),( RCD  can be simply defined as: 

( , ) ( , ) ( , )D C R z C R z C R′= −  

                                                

(4-5) 

Since after plane rotation, the distance from scan point to the reference plane is 

equal to the distance from scan point to x-y plane minus the distance from the reference 

plane to x-y plane, ( , )z C R′ . The distance from the reference plane to x-y plane is a fix 

number. In the scan point irregularity identification, Equation (4-4), the value ( , )z C R′

could be added to both sides and the equation remains invariant. Therefore,  

( , ) ( , )D C R z C R=                                                         (4-6) 

After point irregularity check, grids are then searched for defects. The percentage 

of irregularity points within each grid is computed as its irregularity rates γG (i) and γD(i) 

(Eqs. (4-7) and (4-8)).  

𝛾𝛾𝐺𝐺(𝑖𝑖) = 𝑁𝑁𝑁𝑁(𝑖𝑖)
𝐶𝐶𝐶𝐶∗𝑅𝑅𝑅𝑅

, 𝑖𝑖 = 1, … ,𝑀𝑀                                                (4-7) 

𝛾𝛾𝐷𝐷(𝑖𝑖) = 𝑁𝑁𝑁𝑁(𝑖𝑖)
𝐶𝐶𝐶𝐶∗𝑅𝑅𝑅𝑅

, 𝑖𝑖 = 1, … ,𝑀𝑀                                                 (4-8) 

where 𝛾𝛾𝐺𝐺(𝑖𝑖)  and 𝛾𝛾𝐷𝐷(𝑖𝑖) are the gradient irregular rate and distance irregular rate of 

the ith grid, respectively.  𝑁𝑁𝑁𝑁(𝑖𝑖) and 𝑁𝑁𝑁𝑁(𝑖𝑖) are the total number of irregularity points in 

grid i  based on gradient check and distance check, respectively. 𝐶𝐶𝐶𝐶  and 𝑅𝑅𝑅𝑅  are the 

number of columns and rows selected for the grids, respectively, and 𝑀𝑀 represents the 

total number of grids. If both the distance irregular and gradient irregular rates in a grid 

are larger than a predefined threshold, the grid is considered to contain defect. When high 

threshold for gradient irregularity rate is used, it means that almost all the points in a grid 

should have high gradients in order to be considered to contain a defect. Sometimes, a 
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defective area may have small areas with relatively flat surface. In this case, high 

threshold for gradient irregular rate will exclude the grids which contain small flat areas 

from one defective area. Hence, the selected threshold should be small enough to keep 

the integrity of the detective area in the detection and large enough to differentiate defects 

from intact area. Based on numerical experiment, threshold within the range of 0.3~0.8 is 

suitable for use and the value will only influence the selection of the grids on the defect 

boundary. In the example of this dissertation, the thresholds of both distance irregular and 

gradient irregular rates are chosen as 0.5. If only less than 1/16 of the grid area has scan 

points, the grid is ignored in defect detection.  

 

 
Figure 4-8 Omnidirectional grid search concept 

 

Omni-directional search concept is introduced to detect and quantify the defective 

area (Figure 4-8). When one grid is classified as containing defect, a defect number is 

assigned to the grid and eight surrounding grids will be searched for defect, unless the 
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grid has already been assigned a defect number.  If one of the eight grids is classified as 

containing defect, the same defect number is assigned to it and another omni-directional 

search is followed. This process is repeating until all the ramifications of all the 

surrounding grid of the original grid have been checked. 

Grids with the same defect number are considered to belong to the same defective 

area. The volume loss of each defect area can then be computed as: 

N1,...,i  ,)**(
1

== ∑
=

M

j
ijijiji rDAV

                                                (4-9)
 

where iV  represents the volume of i th defect area. ijA   is the area of the j th grid. ijD  

and ijr  are the average point distance to reference plane and irregularity ratio of  the j th 

grid. N is the total number of defects. 

 
4.2.2.4 Damage detection for Bridge # 590147 

As shown in Figure 4-3, the pile cap has three damaged locations.  Since the three 

damaged parts are relatively large, the number of points in each gradient calculating 

interval used is 5=α . Adjusting parameters 0.11 =β  and 8.12 =β are also used.  Two 

damage quantification techniques can be established either based on gradient (Eq. (4-3)) 

or distance (Eq. (4-4)) determinations.  Figures 4-9 and 4-10 display the structure surface 

data based on distance and gradient calculations, separately.  It is clear that both of these 

two methods can be used to identify the three defective parts.  In the first case, distance 

change from the individual points to the reference plane is continuous. Hence, it is hard 

to define the threshold value to separate the defective areas from the rest of the surfaces. 

In the case that the select surface is not smooth enough, like the example in this section, 
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the upper part of the selected area will extrude a little bit. If a smaller adjusting parameter 

for distance ( 7.12 =β ) is used, the calculated defect area will contain part of the extruded 

area. Likewise a higher threshold value will result in smaller calculated defective area 

(Figure 4-11). Using gradient calculation, on the other hand, the surface gradient values 

at the edge of the defect would increase abruptly.  Therefore, for damage identification, 

using gradient information is more efficient to detect the edge of defective area.  The 

drawback using gradient calculation is that there may be flat areas inside the defects, 

whose gradient value is low, which will be assumed by the algorithm as undamaged area. 

Therefore, it is better to combine both two methods for the calculation. The point 

irregularity criterion is then changed to   

aveave DRCDorGRCG ×>×> 21 ),(..),( ββ
                                   (4-10) 

 

 

Figure 4-9 Defect position identification using distance data rendering 
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Figure 4-10 Defect position identification using gradient data rendering 
 

In this dissertation, adjusting parameters are chosen as 0.11 =β  and 8.12 =β . 

Mass loss of defect area is then calculated based on distance information. Figure 4-12 

shows the computed defective area based on the combination of both methods. The 

quantifications of the defects are given in Table 4-3. Due to symmetry, the second and 

third (from left to right) defective areas have almost the same sizes.  

 

 

 
Figure 4-11 Defect calculations using distance value only ( 7.12 =β  and 1.8 respectively) 
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Figure 4-12 Defect calculation using both distance and gradient information 
 

Table 4-3 Defect quantification 

Defect 
Number 

Use Distance Only Use Distance & 
Gradient 7.12 =β  8.12 =β  

Volume 
(m3) 

Area 
(m2) 

Volume 
(m3) Area (m2) Volume 

(m3) 
Area 
(m2) 

1 1.138E-2 9.716E-2 1.132E-2 9.547E-2 1.231E-2 1.191E-1 
2 3.882E-3 5.985E-2 3.783E-3 5.696E-2 4.322E-3 7.042E-2 
3 9.509E-3 2.021E-1 3.464E-3 5.600E-2 4.667E-3 8.589E-2 

 

4.2.3 Failure Analysis for Bridge # 590147  

From the image of the bridge substructure, it is obvious that there are considerable 

mass losses on the extended pile cap under three of the four bridge girders.  Further study 

indicates that all three damages were observed on the right side of the girders. This is 

because the girders are settled in an angle about 60 degrees to the substructure, which 

brings larger shear stresses to the right side than the left side.   
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Table 4-4 Actual height of points on the girders 

Girder Number 1 2 3 4 
Left Side Height (m) 2.361 2.359 2.359 2.352 
Right Side Height (m) 2.356 2.355 2.354 2.358 
Difference (Left-right) (m) 0.005 0.004 0.005 -0.006 

 
 

By exporting the coordinate values of the points from both sides of the girders 

(Figure 4-13), the average relative height for each side of the girders to the scanner can 

be obtained. The data in Table 4-4 shows that except for girder 4, all three girders with 

damages have settled with left side higher than the right side.   

 

 

Figure 4-13 Point samples from both sides of the four girders 
 

Figure 4-14 attempts to demonstrate three likely scenarios of damage causes. In 

the ideal case, if both sides of a girder are of the same height (Figure 4-14, case 1), the 
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weight of the bridge superstructure and traffic load will be distributed evenly at the 

contact area between the floor beam and the pier. However, if the pier is not even, the 

contact area will be reduced and results in concrete overstress at the contact points. The 

worst condition is case 3, where the height difference and bending effect will be added to 

increase the pressure on the edge of the pier. It is obvious that, girder 1, 2 and 3 have 

mass loss as a result of the elevation differential. Further analysis of the cause of the 

elevation differential is needed, which may be due to differential settlements. However, it 

is confident to conclude that even the slightest elevation differential can result in early 

distress of the concrete material, such as the presented bridge pile cap failures. 

 

   
Figure 4-14 Three hypotheses of the different girder sitting scenarios causing pile cap 

distress 
 

4.2.4 Defect detection for bridge # 640024  

Reinforced concrete girder bridges are typical state highway bridges that are 

vulnerable to water and chloride attacks. These attacks will result in the corrosion of the 

inner reinforcement. The corrosion, if not detected, can gradually reduce the strength of 

the girder and volumetric expansions due to oxide formation will result in concrete 

delamination (Liu and Frangopol 2004). If the surface concrete cover of the bridge girder 
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is damaged, the steel reinforcement corrosion will be speed up. Many works have 

focused on predicting the deterioration rate of concrete bridges in order to schedule 

maintenance. Almost all the presented methods are based on the visual inspection results 

of bridge components combining with bridge inventory data (Stewart 2001; Zhao and 

Chen 2001; Sasmal and Ramanjaneyulu 2008). High accuracy quantitative records of 

damages are generally lack in these data sources. LiDAR data can provide quantifications 

to surface defects with high accuracy. Periodical measurements of the corrosion induced 

damage can help to update the deterioration rate prediction model and improve the 

prediction accuracy. 

 

 

Figure 4-15 Bridge # 640024 in Wilmington, NC 
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One of the most difficult challenges in conducting a LiDAR scan of bridge 

superstructure is where bridges traverse a waterway. Bridge # 640024 on US-74 over 

Banks Channel was selected for testing using the laser scanner (Figure 4-15).  The 

research team worked with the Division Bridge Engineer in the Wilmington area (New 

Hanover County) to test out the capability of providing a steady platform and keep it 

level in order to run a LiDAR scan.  In this particular case, a boat that is used by NCDOT 

personnel for inspection and light maintenance work was provided to provide a platform 

on a bridge span.  The experiment worked better than anticipated, with little unsteadiness 

in the 22 ft height. “The Boston Whaler” boat was secured to bridge piers on both ends of 

the boat.  However, one of the factors that made this test successful was a relatively 

moderate current on the inland waterway on the day the test was run. 

 

 

Figure 4-16 Detected defective areas of a girder under Bridge # 640024 
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Built in 1957, this concrete bridge has sixteen spans. Chipping and cracking can 

be found at the lower part of the piles. The pile caps also have cracks and spalls. The 

most damaged parts of the bridge are the reinforced concrete girders, many of which have 

cracks and spall areas. Exposed rebars can also be seen. Analysis using LiBE on part of a 

girder shows concrete spall damages with significant defective areas detected.  Defective 

areas 2 and 3 are two minor irregularities resulted from the exposed ends of stirrups. The 

areas and volumes of the three defective areas are provided in the table on the top right 

corner of Figure 4-16. If this girder can be studied periodically, the mass loss rate, 

corrosion area and depth increasing rate can be determined.  The data can then be used to 

update the deterioration rate prediction model or evaluate the efficiency of maintenance 

coatings.   

4.3 Clearance measurement 

4.3.1 Introduction 

Collision damage to bridge superstructure is a common problem especially for 

bridges with low vertical clearance. Collision between vehicle and bridge can be life 

threatening for drivers and passengers. For example, the collapse of a pedestrian bridge 

over the Baltimore Beltway, Maryland, due to truck impact had killed one person and 

injured three others (Fu et al. 2004). Comparing to ships, which may weigh 5,000 tons 

(small ships) to over 70,000 tons (large ships), trucks with 36 tons weight limit in most 

states, are much lighter in comparison (Sivakumar 2007). From kinetic energy transfer, 

ship impact induced bridge damages should be much more severe than truck impact 

induced damages, even though ships may travel several times slower than trucks. Hence, 

most of the past researches about bridge collision damages were focused on ship impacts 
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(Pedersen et al. 1993; Consolazio and Cowan 2003; Wang et al. 2008). However, 

roadway vehicle collisions with bridges are more common than ship collisions and the 

impacts to roadway user safety and bridge structural deterioration cannot be ignored.       

Study by Fu et al. (2004) showed that the recorded overheight accidents in 

Maryland have increased by 81% between 1995 and 2000, whereupon only 19% of the 

struck bridges have been repaired. Repair of truck-struck bridges can be costly: Structural 

damage of the 10th Street Bridge in Wilmington, DE, induced by a tractor trailer hitting, 

costs about $100,000 for repair (Dawson and Shenton 2005). Harik (1990) analyzed 114 

bridge failures in the U.S. between 1951 and 1988 and found 15% of them were due to 

truck collisions.  

While complete failure may occur, bridge strikes can result in damages with less 

severity including superstructure damage, exposure of rebar of the reinforced concrete 

component, spall on concrete component, deformation and tear of steel girder and nick 

under bridge deck (Horberry 2002). Exposure of rebar to the atmosphere can speed up the 

corrosion rate of the steel reinforcements. The generated rusts will affect the bond 

behavior between steel and concrete, and, with the expansion force induced by rusted 

rebar volume increase, further concrete cracking and spalling may occur. Spalls and nicks 

on concrete surface will increase the possibility of exposed rebar to moisture. Nicks on 

steel component may damage its coating and result in the development of corrosion pits 

(FHWA 2002). Another related issue is severe plastic deformation of steel component 

can increase the risk of fracture failures.       

Vertical clearance has been recognized as an important bridge design parameter to 

reduce the possibility of collision damage (Baba and Ono 1987; Anon 1989; Dunker and 
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Rabbat 1990; Ramey et al. 1997; Thompson and Sobanjo 2003). Various strategies have 

been presented to reduce vehicle-bridge collisions or to reduce the damage level of 

vehicle collision to bridges. Horberry (2002) recommended revising bridge markings in 

order to urge driver vigilance before passing under a low clearance bridge. Energy 

dissipation systems such as different kind of bumpers, and other protection systems have 

been recommended and evaluated to reduce bridge collision damage (Qiao et al. 2004; 

Sharma et al. 2008; Wang et al. 2008). Georgia has elevated over 50 bridges to increase 

their clearance height in order to reduce the possibility of vehicle collision (Hite et al. 

2006).   

 Clearance measurement is critical to the assessment of bridge clearance 

problems. To measure bridge clearance, Lefevre (2000) presented a prototype radar 

system that monitors water level under a bridge. Field tests indicated the accuracy of this 

method reaching 0.009m. Fuchs et al. (2004 a&b) described several applications of laser 

scan on bridges, notably the use in bridge static load tests. This section introduces an 

automatic bridge clearance measurement method based on terrestrial Lidar, which is part 

of a LiBE system. The algorithm for bridge clearance calculation includes a search-and-

match procedure. The system outcome can provide bridge vertical clearance information 

at multiple points under a bridge with accuracy in the order of millimeters. The display of 

clearance change over the entire bridge coverage area can be useful to assess damages 

and help engineers to device bridge improvement planning. Temporal analysis of 

clearance changes can also be performed for monitoring bridge abutment settlement or 

the increase in road pavement thickness. Three low clearance bridges with different 

collision damage level and a non low clearance bridge, in Mecklenburg County, North 
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Carolina, are selected for analysis using the presented methods as application examples at 

the end of the section. The FORTRAN source code for clearance measurement is given in 

APPENDIX F. 

4.3.2 LiBE Clearance Measurement 

For the selected bridges described in this section, a typical full scan collects about 

8000 points per vertical cycle (320 degree) and 9000 points per horizontal cycle (360 

degree). Due to the scanner underpan blocking out part of the light path, only data from a 

320 degree vertical scan are recorded. The coordinate values of each point are stored with 

a column number and a row number assigned to indicate which horizontal and vertical 

cycles, the point belongs to. The origin of the coordinate system for all the points is often 

located at the center of the scanner head.  

A search-and-match procedure is implemented in the proposed bridge clearance 

measurement program, where a point on the surface under a bridge structure is assumed 

to share vertical cycle number with the corresponding point on the ground in the same 

vertical line. However, such assumption can be difficult to measure accurately when 

geometrical mismatch occurs. Figure 4-17 demonstrates the possible error calculation 

that may result based on this assumption. Point 2 is the assumed corresponding point on 

the ground sharing the same vertical line with Point 1; hence, Point 1 and Point 2 are in 

the same vertical scan cycle. Since there are totally 9000 vertical cycles for a full scan, 

the maximum azimuth angle, 𝑎𝑎, between the two vertical planes, which Point 1 and Point 

2 belong to, is equal to 2 ∗ π/9000. Hence the maximum horizontal deviation between 

Point 1 and Point 2 is 

𝐷𝐷1 = 2 ∗ 𝐷𝐷 ∗ tan⁡(𝑎𝑎/2)                                        (4-11) 
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where D is the horizontal distance between the scanner and the point of interest on the 

deck. Therefore for a distance of 25 m (D=25 m), the maximum horizontal difference 

between Point 1 and Point 2 is 0.0087 m. The accuracy of the scanner is determined to be 

0.0030 m at 25 m distance.  

 

 
Figure 4-17 Clearance measurement error 

 

Figure 4-18 gives the flow chart of the clearance measurement algorithm. First, 

the point cloud of bridge deck surface and ground surface are read separately. The ground 

surface is selected as the basis for the clearance measurement and display. Each point on 

the ground surface is searched from the deck surface point cloud to find the 

corresponding point along the same vertical line. In Figure 4-18, StartG_C and StartG_R 

represent the starting column and row numbers of the point cloud on the ground surface; 
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EndG_C and EndG_R represent the ending column and row numbers; and StartD_C and 

EndD_C are the starting and ending column numbers of the point cloud under the deck 

surface, respectively. The search for the matched pair for each point on the ground started 

from the end column of the points on the bridge deck, which means that the searching is 

to find the point with the lowest elevations among the points that share the same X and Y 

coordinate values.  Hence, for the part of a girder surface that is perpendicular to the 

horizontal plane, only the points on the lowest boundary of the surface are measured. To 

check whether point (CG, RG) and point (CD, RG) are along the same vertical line, the 

following criterion is used:  

ℎ1 ≤ 2 ∗ 𝜋𝜋 ∗ 𝐷𝐷𝐷𝐷
9000

                                                (4-12) 

where ℎ1 = �(𝑋𝑋(𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅) − 𝑋𝑋(𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅))2 + (𝑌𝑌(𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅) − 𝑌𝑌(𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅))2     

          𝐷𝐷𝐷𝐷 = �(𝑋𝑋(𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅))2 + (𝑌𝑌(𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅))2 + (𝑍𝑍(𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅))2 

and X(CD, RG), Y(CD, RG) and Z(CD, RG) are the coordinate values of point (CD, RG) 

on the deck surface. ℎ1 is the horizontal distance between point (CG, RG)  on the ground 

and point (CD, RG) on the deck surface. 𝐷𝐷𝐷𝐷 is the distance between the scanner and the 

object point on the deck surface. 

Since the scanner has been calibrated before each scan, only the Z coordinate 

values are needed to measure relative height of the target point to the scanner. Therefore, 

vertical distance, 𝐶𝐶𝐶𝐶𝐶𝐶, between point (CD, RG) and point (CG, RG) can be calculated as   

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑍𝑍(𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅) − 𝑍𝑍(𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅)                                   (4-13) 

 After searching all the points on the ground surface, the bridge clearance at each valid 

ground point can be measured using Eq. (4-13).    
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Figure 4-18 Flow chart of clearance measurement program 
 

4.3.3 Bridge Clearance Status in Mecklenburg County, NC 

AASHTO (1994) recommended the minimum clearance design requirement for 

bridges over freeways as 4.88m and recommended an extra 0.15 m of clearance for future 

resurfacing. Most of the states in the U.S. use a design clearance of 5.03 m for bridges on 

the national network (Fu 2004; Fuchs et al. 2004). NCDOT sets the design requirement 

for bridges over interstates and freeways to be 5.03 m, 4.57 m for over local roads 

bridges and 7.01 m for over rail road bridges, respectively. The clearances also include 
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0.15 m of clearance of future resurfacing and another 0.15 m for “the flexibility necessary 

in the coordination of roadway grades with final superstructure depths” (NCDOT 2000). 

For existing bridges, NCDOT requires a minimum vertical clearance of 4.88 m for over 

interstate highway bridges and 4.27 m for others.     

 States also have their own vehicle height limitations. According to Fu’s study 

(2004), 65% of the states used a limitation of 4.10 m and other states allowed up to 4.40 

m for vehicle heights.  However, such regulations are often violated. For example, the 

overheight vehicle detectors that were set up at the West Friendship Weight Station and 

other stations in Baltimore, MD, have detected vehicle heights reaching 4.50 m between 

May to July 2001 (Fu et al. 2004).     

Public bridges in the Charlotte-Mecklenburg area are maintained both by NCDOT 

and Charlotte DOT (CDOT). Among the 300 bridges that NCDOT maintained, about 180 

bridges are over roadways. Only five (approximately 3%) of the over roadway bridges 

have minimum vertical clearances under 4.60 m. Two of the five bridges have either 

collision damage or scrapes under bridge deck. For CDOT maintained eighty bridges, 22 

of them are over roadway bridges and thirteen (59%) of them are with the vertical 

clearance less than 4.60 m, including one closed bridge and one over a parking lot. Ten of 

the thirteen bridges have either collision damage or scrapes under bridge deck. Although 

none of the damages have indicated the potential of causing structural failures, they do 

speed up the deterioration of the structures through concrete spalls, exposure of rebar, 

deformation of steel bridge component and removal of steel coating. For bridges with 

minimum vertical clearance higher than 4.60 m, fewer damages are found.  
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Table 4-5 Selected features of the four studied bridges 

Bridge No. 590700 590702 590704 590511 
Type Steel girder 

concrete deck 
Steel girder 
concrete deck 

Concrete 
girders 

Steel 

ADT 30600 4800 5100 26000 
Percentage of truck 7% 7% 7% 12% 
System Primary Urban Urban Primary 
Min 
clearance 

Inventory 4.06m 4.24m 3.76m 4.75m 
LiBE 4.11m 4.25m 3.76m 4.98m* 

Damage Deformation of 
bracing, 
scrapes 

Concrete 
spalling, 
scrapes 

Rebar 
exposing, 
palling, scrapes 

No 
obvious 
damage 

* For Bridge # 590512, only one span of the bridge has been studied. 

 

4.3.4 Examples 

In our study, over 20 bridges in Charlotte-Mecklenburg area have been scanned 

using a terrestrial LiDAR scanner. In this section, three specific maintained bridges with 

low clearances studied using LiBE clearance measurement technique, are presented. They 

are Bridge # 590700, 590702 and 590704. These bridges are all over-roadway railroad 

bridges built in 1996.  They have different structure types, average daily traffics (ADTs), 

as well as minimum vertical clearances, which are all below the design limits of NCDOT. 

The photos and clearance plots from LiBE calculations of these bridges are given in 

Figure 4-19~29. Figure 4-19 and left part of Figure 4-22 are taken from the Lidar Scan 

images. Figures 4-21, 4-25, 4-26, and 4-29 are the clearance plots generated from LiBE 

clearance measurement results. Figure 4-20, right part of Figure 4-22, 4-27 and 4-28 are 

digital photos of corresponding bridges. An overpass Bridge # 590511 without clearance 

issue is also presented for comparison. Figure 4-32 is the image of the bridge 

superstructure and Figure 4-33 is its clearance plot. Table 4-5 documents the minimum 

clearance values from both clearance plots and inventory records for the four bridges.   
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Figure 4-19 Bridge # 590700 (laser scan image, looking north) 
 

 

Figure 4-20 Bridge # 590700 (digital photo, looking north 07/14/09) 
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The LiDAR scan data for bridges in service will include noises brought about by 

moving vehicles. For a typical bridge scan, it may take about 5 to 10 minutes for the 

scanner head to rotate 360 degree horizontally to finish a full scan. The passing vehicles 

have much faster speeds than the scanner can scan all the part of their body horizontally, 

although its vertical point collection speed is fast enough to finish a vertical scan cycle 

before the vehicle vanished in its field of sight. Therefore in the final scan data, only 

vertical lines are recorded instead of the whole body of the passing vehicles. These noises 

will block the scanner’s view to certain parts of the structure surface and also induced 

miscalculations in clearance. As a result, vertical lines above the pavement as shown in 

Figure 4-19 and Figure 4-22 are the outcomes of passing vehicles during scanning.  

 

 

Figure 4-21 Vertical clearance plot of Bridge # 590700 
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When measuring the minimum vertical clearance of bridges using LiDAR data, 

the influences of these noises need to be eliminated. First, the data are filtered with 

reasonable thresholds. The false clearance points may still exits but will be much smaller 

in size. An array 𝐶𝐶𝐶𝐶  with dimension 𝑛𝑛  (20 ≤ 𝑛𝑛 ≤ 100 ) is then created to store the 

smallest clearance values. These clearance data are sorted out with the largest values 

stored in 𝐶𝐶𝐶𝐶(1) and the smallest values in 𝐶𝐶𝐶𝐶(𝑛𝑛). Clearance criterion is identified as:  

𝐶𝐶𝐶𝐶(𝑖𝑖 + 10) − 𝐶𝐶𝐶𝐶(𝑖𝑖) < 𝑎𝑎𝑎𝑎, 𝑖𝑖 + 10 ≤ 𝑛𝑛                                 (4-14) 

where 𝑎𝑎𝑎𝑎 is the given accuracy, typically in the range of 0.001~0.05. If the 𝑖𝑖th clearance 

data satisfies the criteria in Eq. (4-14), the minimum clearance of a bridge is equal to 

𝐶𝐶𝐶𝐶(𝑖𝑖). 

 

 

Figure 4-22 Laser scan image of Bridge # 590702 (looking west) 
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Figure 4-23 Digital photo (07/14/09) of Bridge # 590702 (looking west) 
 

Figure 4-21, 4-25, 4-26, and 4-29, are clearance plots of the three low clearance 

bridges from the scan results. The plots also explicitly display the minimum vertical 

clearance locations (circled). Figure 4-21 shows the minimum vertical clearance location 

in an enlarged plot, which is located near the fourth bracing. Figure 4-29 also shows the 

enlarged minimum clearance location. Instead of showing the location within the scan 

result for Bridge # 590702, a separate Figure 4-26 is included. 
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Figure 4-24 Digital photo of Bridge # 590702 (looking east 07/14/09) 
 

 

Figure 4-25 Vertical clearance plot of Bridge # 590702 
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Figure 4-26 Zoom-in view for the lowest clearance locations of Bridge # 590702 
 

Out of the three low clearance bridges, Bridge # 590700 has the highest ADT. 

Both sides of the bridge have observed steel bracings deformations (circled in Figure 4-

19 and Figure 4-31). The clearance plot shown in Figure 4-21 is based on the LiDAR 

scan at the south side of the bridge. It indicates that the minimum vertical clearance area 

of this bridge measured is located on the first girder (around bracings 4 and 5). Scrapes 

on bridge girder can be found at this area. From the locations of these scrapes it can be 

concluded that they are generated by south travelling vehicles. These scrapes vanished 

under the second girder, meaning that the clearance increases from the south side to the 

north side around that location.  

With the highest minimum vertical clearance and lowest ADT, Bridge # 590702 

has the least damage by vehicle collisions among the three low clearance bridges. Two 
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concrete loss areas (circled) on the first girder and scrapes under several girders at the 

east side of the bridge can be seen in the bridge picture (Figure 4-22). From its clearance 

plot (Figure 4-25), it can also be noticed that the clearance of the bridge increased from 

the east side to the west side. This explained the vanishing of the nicks on subsequent 

girders on the east side. The field inspection of the bridge also showed that there was no 

obvious collision damage on the west side of the bridge (Figure 4-24). The minimum 

vertical clearance location is between bracing 1 and bracing 4 under the first three girders 

near the south part of the bridge.  

 

 

Figure 4-27 Bridge # 590704 (looking south 07/14/09) 
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Figure 4-28 Bridge # 590704 (looking north 07/14/09) 
 

Bridge # 590704 has the lowest clearance among these three bridges (Table 4-5) 

and has been damaged mostly by vehicle impacts, even though the ADT of this bridge is 

almost equal to one sixth of that of Bridge # 590700. The deteriorated state of bridge 

included exposed steel reinforcement near the center of the deck on the north side of the 

bridge. The clearance plot in Figure 4-29 shows the highest clearance under the east 

corner of the bridge and the image in Figure 4-27 also shows less collision damage in that 

area. At the south side of the bridge, there is also fewer collision induced spallings 

(Figure 4-28). One possible reason is that this area is near the corner of the roadway; 

therefore, experienced less traffic. The clearance plot for Bridge # 590704 indicated that 

the clearance increased from the north side to the south side.  
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Figure 4-29 Vertical clearance plot of Bridge # 590704 (looking south) 
 

 

Figure 4-30 Deck surface points rendering (with the distances to the ideal deck plane 
colored) for Bridge # 590704 
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Figure 4-30 shows the point cloud rendering of the surface under the 590704 

bridge deck. The image shows that the deck surface is smooth except the areas with 

collision scrapes. The maximum smoothness difference underneath the bridge is about 

0.03 m. However, the clearance difference (measured to the pavement surface) of the 

bridge surface points can reach up to 0.4 m. It is concluded that the pavement height here 

is the main reason that causes the difference of clearance for this bridge. It is suggested 

that, flattening the pavement or reducing the pavement height under the bridge as a way 

to mitigate low clearance induced collision damages.  

 

 

Figure 4-31 Height of collision damage location for Bridge # 590700 
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Finally, Figure 4-33 shows the clearance of Bridge # 590511 which increased 

from the front girder to the inside girders. With the minimum clearance around 4.98 m, 

which is 0.23 m higher than the design requirement, no obvious collision damage can be 

found on the girders of this bridge.   

 

 

Figure 4-32 Superstructure of Bridge # 590511 
 

 

Figure 4-33 Vertical clearance plot of Bridge # 590511 
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4.3.5 Brief summary 

This section discussed the issues that induced by collisions between over height 

vehicles and low clearance bridges. An automatic bridge clearance measurement tool 

based on 3D Lidar data is introduced. The collision damage levels of the reported bridges 

from Mecklenburg, NC, indicate that traffic volume under a bridge is not as significant an 

issue as allowable bridge clearance. For example, the ADT for Bridge # 590704 is much 

less than that for Bridge # 590700, yet it has the highest damage scenario for all three low 

clearance bridges. On the other hand the ADTs under Bridge # 590702 and Bridge # 

590704 are almost the same, but Bridge # 590704 obviously has encountered a much 

larger number of collisions keep than Bridge # 590702.   

The case of Bridge # 590704 indicated that the increasing of the bridge clearance 

to 4.1 m (clearance at the west corner of the bridge in Figure 4-27) can reduce the 

probability of collisions between the bridge and passing vehicles. The damage traces of 

Bridge # 590702 show that few vehicle collisions have been taken place for the bridge 

with minimum clearance higher than 4.5 m (clearance value on the west side of the 

bridge).  

The deformation of steel bracing (circled in Figure 4-19 and Figure 4-31) of 

Bridge # 590700 shows that the bridge has been hit by vehicles higher than 4.3 m. Since 

the vehicles cannot pass under the bridge, the bridge through deformation absorbed the 

energy due to impact. These kind of impacts can threaten the integrity of the bridge and 

the injure rate of drivers and passengers are high. On the north side of the bridge, a 

bracing was hit so hard that the rivet heads at that location have been sheared off (Figure 

4-31, gray image taken in October 2008). By measuring the heights of the damage 
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locations from the LiDAR data, the maximum height of the vehicles that caused the 

damages are estimated to be more than 5.0 m high. Although Bridge # 590700 is over a 

local road, the clearance of 4.6 m is obviously not enough for it to eliminate collision 

damage caused by overheight vehicles.  



 
 

 

CHAPTER 5: THE APPLICATION OF TERRESTRIAL LIDAR IN BRIDGE STATIC 
LOAD TESTING 

 
 

5.1 Introduction 

Bridges are important civil infrastructures that directly relate to the quality of life. 

Due to the large size of highway bridges, uncertainties exist in the design, material 

preparation, site condition estimation, and construction control processes. All of these 

make the prediction of structure performance difficult to achieve. Load testing of bridges 

has been recognized as a practical method to determine the condition of a bridge (Frýba 

and Pirner 2001; Orban and Gutermann 2009). Abnormal behaviors of a bridge under 

load test are a sign for the needs for repair or for more frequent inspections and 

maintenance works. Swiss code recommended load testing for all bridges over 20 m 

(Hassan et al. 1995). Czech and Slovak Republics standardized load testing in situ since 

1968 (Frýba and Pirner 2001) and requires static load testing for bridges over 18 m. In 

the U.S., the National Cooperative Highway Research Program (NCHRP) has developed 

the “Manual for Bridge Rating through Load Testing” to evaluate bridge load carrying 

capacity through load testing (NCHRP 1998).   
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Load testing results can be used for bridge structure health monitoring, load 

carrying capacity evaluation (Faber et al. 2000), crack control (Ryu et al. 2007), fatigue 

failure study (Idriss et al. 1995; Klowak et al. 2006), diagnostics (Nowak et al. 2000), 

damage detection (Wang et al. 1997), and numerical model creation and updating 

(Alaylioglu and Alaylioglu 1997; Ataei et al. 2005). Bridges under given static load are 

often measured for displacement, stress, or strain at selected points using sensors. Strain 

gauges and displacement transducers are the common tools for strain and displacement 

measurements (Chan 2001; Klowak and Mufti. 2009). Numerical models may be built 

and analyzed to compare with test results and to predict the structural condition or 

performance. Dynamic responses of bridges are often thought to be more realistic in 

simulating vehicular traffic induced bridge vibration and have been studied extensively 

for bridge monitoring (Senthilvasan et al. 2002; Gentile and Gallino 2008). Devices such 

as accelerometer, geophone, cable extension transducer, laser doppler vibrometer, can 

provide acceleration and velocity information for dynamic analysis (Nassif et al. 2005). 

However, other than the laser doppler vibrometer, most of the sensors mentioned require 

direct placement on the bridge, which can be challenging considering the sheer size of the 

structure.   

Terrestrial 3D LiDAR Scanner is a type of remote sensing system that can 

automatically acquire 3D surface information of the object without physical contact. The 

relative position of the object surface is achieved by measuring the time the emitted 

LiDAR light signal travels between the scanner and the object. With a single full scan, all 

the surrounding surface position information of the scanner can be measured and 

recorded with accuracy in millimeter range. Fuchs (2004 a&b) first introduced LiDAR 
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scanner as a method for displacement measurement in bridge static load testing. By 

comparing the position change of the scan points at each measurement location, 

deflection of bridge component can be measured. The scanner they used can collect 5×5 

grid of points for each scan location. To monitor multiple lines of a bridge during a load 

test, the scanner needs to be manually placed at multiple locations. The accuracy of this 

measurement method was about ±0.76mm. Comparing to contact methods for load 

testing, non-contact methods are more sensitive to noise and they often have lower 

accuracy. However, non-contact methods are not restricted to the accessibility of the 

bridge and their measurements eliminate the possible damage to the bridge components 

through instrument installation. In this dissertation, 3D scanner is used, which can 

provide the deformation information over a wide area of the bridge surface without 

changing the scanner position.  

In this section, calculations of displacement and strain information are introduced 

using 3D LiDAR scan results. The developed technique is part of a LiBE system that 

fully utilized 3D LiDAR scanner for bridge condition monitoring. With the help of 3D 

data rendering tools, the displacement and strain results of the entire measured surface 

can be calculated. Therefore, it is easy to identify the deformation pattern and critical 

positions. A High Performance Steel (HPS) bridge on Langtree Rd. over Interstate I-77 in 

Iredell County near Charlotte, NC was selected and tested as an example to demonstrate 

the application of this method. The results prove the potential of using LiDAR scanner in 

bridge load testing. 
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5.2 Bridge and load testing description 

The bridge studied is a skewed hybrid HPS bridge located on SR1102 over I-77 in 

Iredell County (TIP I-4411) (Figure 5-1 and Figure 5-2). The bridge consists of two 46 m 

spans with cast-in-place concrete decking. The welded flanges of the plate girders in high 

moment areas are made of HPS100W steel (689 N/mm2) whereas other segments and 

incidental steel members consist of 345 N/mm2 and 483 N/mm2 steel. The length between 

the two abutments is around 90m and the width of the bridge is around 26 m. The use of 

hybrid HPS girder systems in bridges is gaining greater popularity and is still a rather 

new construction as an alternative bridge material in the State of North Carolina. With 

limited case study experiences, there is a need to evaluate and accurately predict the 

behavior of such girders under various loading conditions. 

High strength, quenched and tempered (Q&T) steels with 689 N/mm2 yield 

strength had been available since the 1960s, originally sold under the trademark T-1 

Steel, as developed by U.S. Steel (Wasserman and Pate 2000). Historically, research and 

development efforts were begun in the 1990s as initiated by the FHWA, American iron 

and Steel Institute (AISI), and the United States Navy to improve the performance of 

high strength steel (Felkel et al. 2007). 

High Performance Steel is comparable to the traditional bridge steels of the 

American Society for Testing and Materials (ASTM) A709 designation, but with several 

significant enhancements (ASTM 2000). First, all HPS members are weathering steel 

grades, but with slightly enhanced weathering characteristics, i.e. a minimum 

atmospheric corrosion resistance of 6.5 as measured in accordance with ASTM G101 

(“Standard Guide for Estimating the Atmospheric Corrosion Resistance of Low-Alloy 
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Steels” 1997), as opposed to 6.0 for traditional weathering steels. The significance of this 

heightened feature of durability cannot be overstated as its implications are toward 

reducing life cycle costs. Another benefit of using HPS members is that they exhibit 

greater weldability in the higher-strength grades and greater toughness for all potential 

grades. These advances were achieved through lower levels of carbon, and certain other 

elements, in conjunction with advanced steel-making practices (Mertz 2001).   

 

 

Figure 5-1 Arial photo of the Hybride HPS Bridge on Langtree Rd (SR1102)  
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Figure 5-2 Digital photo of the Hybride HPS Bridge on Langtree Rd (SR1102) over I-77 
 

 

Figure 5-3 Trucks used for bridge load testing 
 

To load test the bridge, two heavy trucks were used and were placed at designed 

locations on the bridge (Figure 5-3). The weight of Truck A was 25, 237 kg and the 

weight of Truck B was 24, 865kg. The length of each truck is around 8.0m and the width 

is around 2.9 m. The distance between the center of the front axle and the center of the 
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rear axle is 6.2 m and the distance between the outer edges of the each pair of rear axles 

is 2.5 m. Three loading cases have been carried out as displayed in Figure 5-4. Without 

changing the position and settings of the scanner, the bridge has been scanned before and 

after applying the truck loads. 

The static load tests of the bridge were performed shortly after bridge 

construction. Since I-77 is a heavy traffic route, traffic control for strain gage placement 

is not allowed. The physical constraints inspired the use of 3D LiDAR scanner for static 

load deflection measurement. The load test was conducted prior to the completion of the 

second span, hence, only the first span were tested and the results are reported in this 

section. The FORTRAN source code for displacement measurement is given in 

APPENDIX G.   

 

 

Figure 5-4 Arrangement of girders and the locations of trucks and the scanner 
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5.3 Automatic displacement measurement using LiDAR data  

The LiDAR scanner is placed under a bridge structure, since there was less noise 

induced by traffic to the underside of a structure. The scanner in this study was placed 

under one side of the bridge off the road between girder six and girder seven (Figure 5-2). 

The dimensions of the bridge components can be calculated using the point coordinates. 

The point coordinates can be obtained easily from the plan view of the scan. Figure 5-3 is 

the example of the displacement measurements based on point coordinates. In this 

example, the two trucks were parked on the other side of the bridge other than that shown 

in Figure 5-3. The geometrical information can help create numerical models for the 

bridge or can help validate the geometry of the constructed structure.  

Typically, one would assure that the deformation at a particular location on the 

bridge can be determined easily by comparing the coordinate values of the same point on 

the structure surface before and after loading. Assuming the scanner position has not been 

moved and that the status of bridge structure remains the same, the scanner can record the 

information of the same point on the structure in each direction. However, after applying 

load to a bridge, the superstructure of the bridge will have deformations. Therefore, in the 

same scan direction, the before and after loading scans will no longer record the same 

point on the bridge surface. Furthermore, the two scans will also include slight angle 

difference for each corresponding scan points. Hence, it is not correct to just compare the 

coordinate values of the scan points from different scan results to get the structural 

surface deflection.  
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Figure 5-5 Locations of deformation measurement points in the LiDAR scan of the 
bridge over I-77 and calculated deformation 

 

Without an efficient way to trace every measured point, one way to measure 

deformation is to match physical points manually. Points with specific features can be 

selected to compare their coordinate values. For example, the point connects a bracing 
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and a girder can be easily identified in the scan file. Figure 5-5 shows the deflection 

curve of the third bridge girder based on comparing the selected point coordinates. Using 

the manual deformation calculation, it is difficult to find the peak deflection point until 

the measurements of several locations have been completed. The selection process is time 

consuming and difficult. Hence an automatic deformation measurement method is 

developed and introduced below.  

Before a bridge scan, the scanner should be calibrated. The elevation of each scan 

point represents the relative height of the point to the scanner. The coordinate values of 

each point are then stored along with a column number and a row number assigned 

representing its horizontal and vertical cycles.  Since each vertical scan is completed 

between a very small horizontal rotation (360˚ /9000 in this dissertation), two points 

share the same X, Y coordinates are assumed to be in the same vertical scan cycle and 

therefore share the same vertical cycle number.  

In the proposed deformation measurement method of this dissertation, a pseudo 

reference plane is first created (Figure 5-4). It is a horizontal plane and all the points on 

the plane share the same Z value. It is assumed that the plane is placed under the bridge 

superstructure and the points on that plane can be scanned and will not block the 

scanner’s line of sight to the bridge structure. The X and Y coordinates for each scan 

point on the plane can then be calculated based on the point’s scan direction (column and 

row number) and its Z coordinate. Both the before and after load data for the selected part 

are searched to find the match points that share the same horizontal position with the 

points on the pseudo reference plane. Displacement measurement of the bridge surface is 

achieved by measuring the height difference between the match points. 
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Figure 5-6 The creation of the reference plane 

 

To find the matching for each pseudo point, only points with the same row 

number to the pseudo point, for both before and after load test datasets, need to be 

searched. Considering the initial scan angle difference and the errors brought about by 

noise, the scan points in the row before and after the pseudo points are searched. In 

Figure 5-6, both P(CN, RN) and (X, Y, Z) are used to represent points on the reference 

plane. The former uses column and row numbers and the latter uses the physical 

coordinates (Figure 5-7). The column number of the scan points in each row is arranged 

such that the points with the smallest column number have the lowest elevation and the 

points with the largest column number have the highest elevation. The points in the 

before and after loading scan datasets are searched starting with the maximum column 

number in each row. Therefore, in the same vertical line, only the point with the lowest 

height is selected for deformation measurement.  
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Figure 5-7 Flow chart of finding the match points for the pseudo points on the reference 
plane 

 

To ensure each reference point has only one match point, the accuracy of the 

matching process can be chosen as half the distance between any reference point and the 

incremental point, ∆ℎ  (Figure 5-8). Therefore, theoretically only one match point is 

assigned to each point on the reference plane. The match criterion can be expressed as 

𝐷𝐷𝐷𝐷𝐷𝐷 ≤ 0.5 × ∆ℎ                                                       (5-1)  
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where 

𝐷𝐷𝐷𝐷𝐷𝐷 = �(𝑋𝑋(𝐏𝐏(𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅)) − 𝑋𝑋(𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅)))2 + (𝑌𝑌(𝐏𝐏(𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅)) − 𝑌𝑌(𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅)))2     

𝐷𝐷𝐷𝐷 = �𝑋𝑋(𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅))2 + 𝑌𝑌(𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅))2 + 𝑍𝑍(𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅))2 

𝑟𝑟 = �𝑋𝑋(𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅))2 + 𝑌𝑌(𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅))2 

 

𝐏𝐏(𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅) is the pseudo point on the reference plane with column number CN 

and row number 𝑅𝑅𝑅𝑅. 𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅) is the searched point on the bridge surface with 

column number 𝐶𝐶𝐶𝐶𝐶𝐶  and row number 𝑅𝑅𝑅𝑅𝑅𝑅 . 𝑅𝑅𝑅𝑅𝑅𝑅  is chosen from 𝑅𝑅𝑅𝑅 + 1 , 𝑅𝑅𝑅𝑅 , or 

𝑅𝑅𝑅𝑅 − 1 .  𝑋𝑋 , 𝑌𝑌  and 𝑍𝑍  are the coordinate values for each point. 𝐷𝐷𝐷𝐷𝐷𝐷  is the horizontal 

distance between point 𝐏𝐏(𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅) and point 𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅). Dd is the distance between 

the scanner and point 𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅), and r is the horizontal distance between them. 𝑎𝑎𝑎𝑎 

and 𝑎𝑎𝑎𝑎 are the average radians between two adjacent points in the same row and in the 

same column, respectively. 𝑎𝑎𝑎𝑎  and 𝑎𝑎𝑎𝑎 can be calculated by dividing the average total 

measured angle by the average total measured points for each vertical or horizontal cycle, 

respectively.     

 

Table 5-1 Point match accuracy according to distance (all units in meter) 

𝐃𝐃𝐃𝐃 6 10 15 20 30 40 50 60 
∆R 0.0022 0.0057 0.0092 0.0126 0.0193 0.0259 0.0325 0.0390 
∆C 0.0045 0.0126 0.0283 0.0503 0.1132 0.2012 0.3143 0.4526 
∆h 0.0050 0.0138 0.0298 0.0519 0.1149 0.2028 0.3160 0.4543 

0.5∆h 0.0025 0.0069 0.0149 0.0259 0.0574 0.1014 0.1580 0.2271 
0.2∆h 0.0010 0.0028 0.0060 0.0104 0.0230 0.0406 0.0632 0.0909 
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Since  

∆𝐶𝐶 = 𝑍𝑍�𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅)� × (tan(𝜗𝜗 + ∆𝜗𝜗) − tan(𝜗𝜗))                     
= 𝑍𝑍�𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅)� × sin(∆𝜗𝜗) /(cos⁡(𝜗𝜗)cos⁡(𝜗𝜗 + ∆𝜗𝜗))

 

∆𝑅𝑅 ≈ ∆𝛼𝛼 × 𝑟𝑟                                                      (5-2) 

when ∆𝜗𝜗 ≪ 𝜗𝜗, sin⁡(∆𝜗𝜗) ≈ ∆𝜗𝜗and cos⁡(∆𝜗𝜗 + 𝜗𝜗) ≈ cos⁡(𝜗𝜗). Then 

∆𝐶𝐶 ≈ ∆𝜗𝜗 × 𝐷𝐷𝐷𝐷2/𝑍𝑍(𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅)) 

Here 𝑎𝑎𝑎𝑎 = ∆𝜗𝜗 and 𝑎𝑎𝑎𝑎 = ∆𝛼𝛼. Therefore 

∆ℎ ≈ �(𝑎𝑎𝑎𝑎 × 𝐷𝐷𝐷𝐷2/𝑍𝑍(𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅)))2 + (𝑟𝑟 × 𝑎𝑎𝑎𝑎)2 

 

 

Figure 5-8 Measuring ∆ℎ 
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Based on Eq. (5-1), Table 5-1 gives the matching accuracy for different distance 

between the point and the scanner. The height of the measured bridge is assumed to be 

5.0 m, i.e. 𝑍𝑍�𝐌𝐌(𝐶𝐶𝐶𝐶𝐶𝐶, 𝑅𝑅𝑅𝑅𝑅𝑅)� = 5.0.  𝑎𝑎𝑎𝑎 = 6.2860e − 4 and 𝑎𝑎𝑎𝑎 = 6.5270e − 4 are used 

in this calculation. From Table 5-1, it can be seen that when the distance is increased to 

further than 40 m, the match accuracy will be larger than 0.1 m, the LiDAR measured 

displacement is then considered as reliable. For the sample bridge used in this section, the 

maximum distance that need to be measured is around 30 m. To obtain more accurate 

result, the match accuracy has also been increased to 0.2∆ℎ for comparison. With an 

accuracy higher than 0.1∆ℎ, only a few match points can be obtained.  

5.4 Displacement measurement result 

The measured displacements of the seven girders for the three truck locations are 

given in Figure 5-9-Figure 5-12 for all three load cases, respectively. Most of the results 

used an accuracy of 0.2∆ℎ, except for Figure 5-10, where accuracy of 0.5∆ℎ for position 

2 is used. The displacement plots are color coded for ease of display. It is shown that near 

the locations of trucks, bridge girders all have relatively large displacements. Table 5-2 

gives the largest displacements that can be measured among the nine girders and their 

corresponding locations. For load case 3, girder 9 receives the largest displacement value 

near the location of the trucks. At the edge of the structures, the measured point value 

often deviates greatly from the mean value of the surrounding area and the point 

measurement error becomes larger with the increase in distance to the scanner. Therefore, 

at these locations, the displacement measurements are not accurate.  
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Table 5-2 Maximum displacement for each loading case and corresponding location 

Load Case 1 2 3 
Girder No. 1 7 9 
Max Displacement  (m) 0.017 0.016 0.020 
Max Strain (m/m) 5.7e-4 (h=2.226 m) 5.0e-4 (h=3.357 m) 6.2e-4 (h=2.258 m) 
Range (m) 25.0-38.6 22.1-27.1 19.8-27.9 
Distance range to 
Scanner (m) 

16.7-17.8 8.0-11.8 14.5-20.2 

Note: Range is the maximum displacement location along the girder and the zero length is located 
at the cross section between the corresponding girder and the abutment.   

 

The maximum displacements and distribution factors of each girder for each 

loading case are given in Table 5-3. To reduce the error brought by the surface roughness 

and mismatching, girder surface point cloud are divided into many 5×5 point grids and 

the displacement for each grid is taken as the mean of the center point displacement. The 

distribution factor for each girder is calculated using the maximum displacement of the 

girder in each loading case divided by the maximum displacement among all the girders 

for the three loading cases.  

 

Table 5-3 Maximum displacement (D-in millimeter) and distribution factor (F) of each 
girder for each loading case 

 

Case No. 
1 2 3 

D F D F D F 
Girder 1 17 0.85 3 0.15 3 0.15 
Girder 2 17 0.85 5 0.25 3 0.15 
Girder 3 14 0.70 5 0.25 3 0.15 
Girder 4/5 10 0.50 8 0.40 6 0.30 
Girder 6 7 0.35 12 0.60 7 0.35 
Girder 7 6 0.30 16 0.80 13 0.65 
Girder 8 3 0.15 13 0.65 18 0.90 
Girder 9 2 0.1 10 0.50 20 1 
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Figure 5-9 Displacement of girders for position 1 (m) 
 

 

Figure 5-10 Displacement of girders for position 2 (0.5∆ℎ) (m) 
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Figure 5-11 Displacement of girders for position 2 (0.2∆ℎ) (m) 
 

 

Figure 5-12 Displacement of girders for position 3 (m) 
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5.5 Strain measurement 

According to the moment-curvature relation (Au 1963) for structure elastic 

deformation, the structural strain can be derived from the deformation curvature of the 

structure. Based on the derivation,  

𝑑𝑑2𝑣𝑣
𝑑𝑑2𝑥𝑥

= 𝑀𝑀
𝐸𝐸𝐸𝐸

                                                             (5-3) 

where v  is the vertical displacement of the elastic curve. 𝑀𝑀  is the applied moment. 

𝐸𝐸𝐸𝐸 represents the bending stiffness of the member. For pure bending, strain is defined as 

simply 

𝜖𝜖 = −𝑀𝑀𝑀𝑀
𝐸𝐸𝐸𝐸

                                                            (5-4) 

where y is the distance from the neutral axis of the cross section to the outer edge. Based 

on finite difference, strain can be calculated as:   

𝜖𝜖 = − 𝑑𝑑2𝑣𝑣
𝑑𝑑2𝑥𝑥

𝑦𝑦 ≈ 𝑣𝑣(𝑥𝑥+ℎ)−2𝑣𝑣(𝑥𝑥)+𝑣𝑣(𝑥𝑥−ℎ)
ℎ2 𝑦𝑦                                    (5-5) 

in which h is a small value. Using Eq. (5-5), the strain of the structural component at any 

location can be calculated from the vertical displacements at that location and nearby 

locations.   

For the loading cases in this section, the maximum strain of the girders is around 

0.001 m/m. The distance from the neutral axis of the cross section to the outer edge y is 

estimated to be 0.8 m. The accuracy for the displacement measurement is 0.001 m. Based 

on Eq. (5-5), to get reasonable strain value, ℎ should be larger than 1.0 m, which is not 

correct for local strain measurement. To rectify this problem, higher resolution LiDAR is 
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needed. The techniques for higher resolution LiDAR range finder are already available. 

Bosch et al. (2001) proposed a method with the accuracy less than 100 µm and INRS 

(2009) proposed a low cost instrument with the same accuracy in the range of tens of 

meters. In this case, the minimum ℎ  value will reduce to around 0.3 m. Table 5-2 

provides the calculated strain by selecting sample points from the LiDAR data based on 

Eq. (5-6) with all the ℎ larger than 1.0 m. It is clear that with the increase in the LiDAR 

range measurement accuracy, the scan data can be used for measuring the strain for the 

entire recorded surface.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

CHAPTER 6: SYSTEM VALIDATION AND LIBE-BASED BRIDGE RATING 
 
 
6.1 LiDAR scanner range measurement accuracy check 

In this dissertation, the basic assumption made is that the LiDAR scanner can 

provide the resolution for range measurement as it is currently designed. The design 

distance error of the scanner used in this dissertation is ±3 mm at a distance of 25 m. To 

validate the range measurement accuracy and repeatability, two tests have been 

conducted: a 61 cm ruler has been scanned at a distance about 18 m (Figure 6-1) and 

Bridge # 590084 was scanned from four different locations (Figure 6-2). 

  

 

Figure 6-1 LiDAR scan for a 61 cm ruler at a distance around 18 m 
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Figure 6-2 Laser position and target points on Bridge # 590084 

 

The maximum scale value of the ruler is 0.610 m. However, the edge-to edge 

length of the ruler is between 0.610 m and 0.612 m with a +-0.001 m tolerance in 

measurement deviation. For the LiDAR scan, five sets of points on the two ends of the 

ruler have been selected from the LiDAR scan of the ruler to measure the length. Each 

pair of points was selected to have almost the same height (with the same Z value). The 

X, Y coordinate values of the selected points are given in Table 6-1. All the five length 

measurement results are between 0.610 m and 0.611 m. The standard deviation is only 

1.12E-4 m. This test proves that at the distance around 18 m, the scanner can provide 

range measurement with the accuracy in millimeters.   
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Table 6-1 Length measurement for the ruler using the coordinate values of its 
boundary points 

 
Pair Number X (m) Y (m) Ruler Length (m) 

1 7.304 -16.861 0.611 
6.737 -17.089 

2 7.302 -16.857 0.611 
6.733 -17.080 

3 7.297 -16.845 0.610 
6.726 -17.061 

4 7.297 -16.845 0.611 
6.725 -17.059 

5 7.300 -16.851 0.611 
6.730 -17.071 

Mean 0.611 
Standard Deviation 1.12E-4 
 

The purpose for the test on Bridge # 590084 is to demonstrate the effects of 

shooting angles and target distances to range measurements. Hence four scans were made 

from different physical distances and scan angles to the same scan object. A scan angle 

 is defined as the angle between the scan direction and the normal of the flat scan object 

surface. The range measurement validation is done through comparing the differences of 

the measured distance between the five selected reference points and the diameter of a 

nearby manhole (Figure 6-3). 

The LiDAR measurement resolution is determined by the sensor design, laser 

beam width and can be influenced by the distance between the scanner and the object, the 

scan angle and the reflectivity of the object surface. The scanner has a scan range 

limitation of 76 meters. The further the scan distance, the less reflect energy can be 

measured. The distance between two continuous scan points on the bridge surface is also 

increased with the increase of scan distance. Therefore the measurement resolution for 
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particular point is decreased with the increase of scan distance. The scan angle also 

influences the distance between two continuous points on the object surface. Object 

surface reflectivity is one of the main factors that determine whether the range of the 

object can be measured, for example, due to the low reflectivity, water surface can hardly 

be measured.  

 

 

Figure 6-3 Target points and object of Bridge # 590084 (LiDAR image of scan 2) 

 

The validation test details are shown in Table 6-2. As shown, the minimum range 

measurement difference between two scans can be less than 2 mm with the scan distance 

between 10 m~20 m, for example, the range between point 3 and point 4 in scan 2 and 

scan 3, and the distance between point 4 and point 5 in scan 1 and scan 2 (highlighted in 

Table 6-2). These points all have the relatively small scan angle. The maximum standard 
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deviation among the four scans was obtained in measuring the distance between point 1 

and point 3. Scan 1 gives the smallest value and differs most from the other three scans. 

Point 1 and point 3 all have much larger scan angles (𝜃𝜃 >45˚) in scan 1 than in other 

scans. When scanning with a large scan angle, the distance between two continuous scan 

points is large. This increases the error for selecting the same point on the object surface 

in a scan image. The same situations are shown in point 4 in scan 1, point 4 and 5 in scan 

4. The low deviation values validated the scanner range measurement accuracy and scan 

repeatability.  

 

Table 6-2 Range measurement comparison of Bridge # 590084 from four different scans 

Point No. Scan 1  
(m) 

Scan 2 
(m) 

Scan 3 
(m) 

Scan 4 
(m) 

Standard 
deviation 

(m) 
1-3 Distance between points 6.362 6.427 6.443 6.439 0.0326 

Distance to scanner (1) 21.678 23.389 9.222 26.483  
3-4 Distance between points 1.226 1.252 1.251 1.235 0.0109 

Distance to scanner (3) 16.010 19.170 11.683 31.663  
4-5 Distance between points 3.673 3.671 3.686 3.658 0.00993 

Distance to scanner (4) 14.980 18.502 12.487 32.697  
2 Diameter of well 0.681 0.675 0.666   

Distance to scanner (2) 9.375 5.144 14.599   
 

6.2 LiBE system accuracy check 

In Chapter 5, the point matching accuracy analysis has been performed for bridge 

displacement measurement. Since clearance measurement also includes a point match 

process, the conclusions in Chapter 5 can be used for clearance measurement accuracy 

check. In this section, only the accuracy check for damage detection and quantification in 
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LiBE are discussed. Section 6.1 has validated the range measurement accuracy of the 

scanner. Hence, for LiBE system validation, the scan data are used manually to check the 

accuracy of the LiBE results only.   

6.2.1 LiBE system area measurement accuracy check 

The pier surface of Bridge # 590255 (Figure 6-4) is selected for LiBE system area 

measurement accuracy check. The shape of the selected test part in Figure 6-4 is 

approximately a quadrilateral, therefore, the total area can be measured based on the 

coordinate values of the four boundary points of that area. The coordinate values of the 

four boundary points (Table 6-3) of the test part were selected manually from the raw 

scan data. LiBE measures total test surface area and damage area through adding up the 

grid areas. The area of each grid is calculated separately based on the coordinate values 

of the four boundary points of the specified grid. Table 6-4 lists the total surface area 

measured manually, and that obtained from LiBE system using 98×11 gird and 195×21 

grid, respectively. The areas measured by LiBE are close to the rough manual 

measurement. Although the total grids number increase almost four times from 98×11 

gird (10×10 point interval) to 195×21 (5×5 point interval) gird, the area difference is only 

0.02%. Comparing to the sheer size bridges, this accuracy should be enough as 

component size or damage area measurement.    

 

Table 6-3 Test area boundary points information for Bridge # 590255 

Boundary Points 1 2 3 4 
Scan Column No. 1307 1307 2279 2279 
Scan Row no. 4644 4748 4644 4748 
X (m) -9.277 -9.497 -9.230 -9.452 
Y (m) -0.997 -0.373 -1.005 -0.384 
Z (m) 8.673 8.839 1.307 1.315 
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Table 6-4 LiBE surface area measurement check 

Test No. Test Method Total Area (m2) 
1 Four point area (m2) 4.9188 
2 LiBE grids 98×11 (m2) 4.9688 
3 LiBE grids 195×21 (m2) 4.9676 
Difference between test 1 and 2  1.02% 
Difference between test 2 and 3 0.02% 

 

 

Figure 6-4 Positions of the four boundary points on the selected bridge pier surface  

 

6.2.2 Error analysis and LiBE system improvement for damage detection  

The damage detection in LiBE system uses surface roughness and gradient 

information to select damage points on bridge structure surface. Surface roughness is 
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measured based on the distance of the points on the surface to a reference plane. Civil 

structures often do not have surface smoothness requirement. Even without damage, a flat 

bridge surface will have point height difference up to millimeters. Therefore the selected 

point interval for measuring surface gradient influences the mean gradients value of the 

surface points.  

 

Table 6-5 Surface information of the test bridges 

 Distance-
Mean  
(m) 

Distance-
Deviation 

(m) 

Curvatur
e-Mean  
(m-1) 

Curvature
- Deviation 

(m-1) 

Gradient-
Mean 
(m/m) 

Gradient- 
Deviation 

(m/m) 
590147 0.019667 0.022209 9.514335 8.387589 0.426676 11.12911 
590255 0.005568 0.008436 11.65266 9.305966 0.308042 11.21692 
590179 0.003140 0.002671 11.76624 11.20001 0.221394 11.22567 
640024 0.039651 0.035272 159.3901 1444.447 1.235052 10.90800 
590702 0.003666 0.002964 15.12206 13.95906 0.206646 11.21868 
590704 0.008388 0.006698 34.78929 173.2685 0.404308 11.21902 

 

To standardize the thresholds for damage detection, a new module is added to the 

system for calculating the interval of points for gradient calculation to make sure all the 

scans use the same point distance for gradient calculations. Table 6-5 compares the mean 

value and standard deviation of distance, gradient and curvature of the points on the test 

surfaces for different bridges. The bridge surface curvature can be calculated based on 

Eq. (6-1) 

                               𝐶𝐶(𝔶𝔶, 𝔷𝔷) = �𝜕𝜕
2𝑧𝑧
𝜕𝜕2𝔶𝔶
� + �𝜕𝜕

2𝑧𝑧
𝜕𝜕2𝔷𝔷
�                                                         (6-1) 

where 𝐶𝐶(𝔶𝔶, 𝔷𝔷) is the curvature of point (𝔶𝔶, 𝔷𝔷). 𝔶𝔶 and 𝔷𝔷 are along the coordinates in the 

latitude and longitude directions, respectively.  
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Surface curvature (second order derivative) is more sensitive to roughness than 

surface gradient (first order derivative). The mean values of the curvature for bridges in 

Table 6-5 also coincide with the order of the damage ratio (data for the study bridges are 

presented in APPEDIX E except for bridge # 590255). Hence the LiBE system is 

modified to detect damage based on surface roughness and curvature information instead 

of gradient information. Since the damage ratio is used to determine the thresholds for 

damage detection, the mean value of the surface curvature can be used to automatically 

select the thresholds for damage area determination , thus, we moved away from 

manually setting the adjusting parameters ( 1β  and 2β in Section 4.2). In the ideal case, a 

flat surface should have the mean values of distance and curvature equal to 0. When a 

bridge has relatively small mean distance and curvature values, the bridge surface will be 

recognized as having initial damages. Similarly, when a bridge has a relatively large 

mean distance value, but has a relatively small mean curvature value, the bridge surface 

most likely has small, but deep damage areas, such as in the case of Bridge # 590704.  

Table 6-6 compares the detected damages for Bridge # 590704 using different 

threshold values for both distance and curvature. Test No. 1 will be assumed as baseline 

and uses 0.01 m as the distance threshold, and 15.0 as the curvature threshold to 

determine whether a point belong to damage or normal construction error. The 15.0 for 

curvature threshold is calculated from the condition that the vertical distance differential 

among points for curvature calculations is equal to 0.01 m.  It can be seen from the table 

that the distance threshold has relatively less influence on the damage detection than 

curvature threshold, and the thresholds influence more on damage area than damage 

volume. For the changing of distance threshold, the maximum difference of the detected 
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damage area among all the quantifications is around 10% and the maximum difference of 

the detected damage volume is around 3%. The change of curvature threshold results in 

higher damage measurement differences.  

 

Table 6-6 Damage detection and quantification for Bridge # 590147 using different 
thresholds 

 
Test 
No. 

Distance 
Threshold 

(m) 

Curvature 
Threshold 

(m-1) 

Defect 
No. 

Damage 
Area  
(m2) 

Area 
Dif 
(%) 

Damage 
Volume 

(m3) 

Volume 
Dif (%) 

1 0.01 15.0 1 1.6669E-1  1.2580E-2  
2 1.2959E-1  4.9419E-3  
3 9.7552E-2  3.8851E-3  

2 0.01 16.5 1 1.5863E-1 -4.83 1.2519E-2 -0.49 
2 1.2959E-1 0.00 4.9419E-3 0.00 
3 8.7692E-2 -10.11 3.6720E-3 -5.49 

3 0.01 18.0 1 1.5514E-1 -6.93 1.2488E-2 -0.73 
2 1.2492E-1 -3.61 4.8881E-3 -1.09 
3 8.2190E-2 -15.75 3.6256E-3 -6.68 

4 0.01 13.5 1 1.7585E-1 5.49 1.2618E-2 0.30 
2 1.4500E-1 11.88 5.1065E-3 3.33 
3 1.0553E-1 8.18 3.9407E-3 1.43 

5 0.01 12.0 1 1.9786E-1 18.70 1.2770E-2 1.51 
2 1.7064E-1 31.68 5.3707E-3 8.68 
3 1.4144E-1 44.99 4.6944E-3 20.83 

Deviation Curvature-2.42 m-1 0.0214 m2 0.000294 m3 
6 0.011 15.0 1 1.6669E-1 0.00 1.2580E-2 0.00 

2 1.1670E-1 -9.95 4.8227E-3 -2.41 
3 9.4773E-2 -2.85 3.8556E-3 -0.76 

7 0.012 15.0 1 1.5993E-1 -4.06 1.2496E-2 -0.67 
2 1.1670E-1 -9.95 4.8227E-3 -2.41 
3 9.4773E-2 -2.85 3.8556E-3 -0.76 

8 0.009 15.0 1 1.7147E-1 2.87 1.2625E-2 0.36 
2 1.2959E-1 0.00 4.9419E-3 0.00 
3 9.7552E-2 0.00 3.8851E-3 0.00 

9 0.008 15.0 1 1.7515E-1 5.08 1.2660E-2 0.64 
2 1.3111E-1 1.17 4.9553E-3 0.27 
3 9.7552E-2 0.00 3.8851E-3 0.00 

Deviation Distance-0.00158 m 0.00639 m2 6.180E-5 m3 
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By comparing with actual bridge image, the detection result from test No. 5 is 

most close to the actual condition. Comparing to other detection results, test No. 5 

contains more damage areas on the boundary of the damages with low depth. These low 

depth damage areas have little influence to the bridge condition, but will account for 

more total damaged area. The thresholds can be set higher to exclude the boundary area 

and result in more reasonable results. 

6.2.3 Influence of scan angle for damage detection and quantification 

To study the influence of the scan angle for damage detection and quantification, 

and further validate the damage quantification function of LiBE, an experiment has been 

carried out. A shipping box with a 0.076 m × 0.089 m rectangular hole is used to simulate 

a flat surface that has damage (Figure 6-5). A small paper box with the dimension of 

0.076 m × 0.089 m × 0.057 m has been attached to the hole inside the shipping box to 

control the depth of the damage.   

 

 

Figure 6-5 Experiment design 
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The surface of the shipping box has been scanned twice with the hole opposite to 

the scanner at the distance around 4 m and 2.5 m respectively. Two additional scans have 

also been recorded with the damage surface placed oblique to the scan direction (Figure 

6-6). The box surface data has been analyzed by LiBE and the quantification results are 

given in Table 6-7. Different grid sizes have been used to detect the simulated damage.   

 

 

Figure 6-6 Four LiDAR scans for the shipping box  
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Due to the corrugated design of the shipping box, instead of being ideally flat, the 

box surface has fluctuation up to several millimeters. Since bridge component surface is 

not ideally flat, these test results are still validated. In the case of 0.003 m surface flatness 

deviation, the damage volume on the shipping box could change around 2.03E-5 m3, 

which results in 5.2% volume quantification deviation. Most quantification results in 

Table 6-7 are smaller than this deviation except oblique 1. This proves the efficiency of 

the damage detection function of LiBE. Table 6-7 also indicates that the change of gird 

size and scan distance did influence the quantification result of the damage, but still in the 

allowable range.   

 

Table 6-7 Quantification of the damage based on different scans 

Test Grid 
Size 

Damage 
Area (m2) 

Area 
Deviation 

Damage 
Volume (m3) 

Volume 
Deviation 

Design Value  6.77E-3  3.87E-4  
2.5 m – oblique 1 3 6.60E-3 -2.5% 2.80E-4 -27.6% 
2.5 m – oblique 2 3 6.97E-3 3.0% 3.92E-4 1.3% 

2.5 m 3 7.01E-3 3.5% 4.07E-4 5.2% 
2.5 m 5 7.14E-3 5.5% 4.12E-4 6.5% 
4 m 3 7.02E-3 3.7% 3.73E-4 -3.6% 
4 m 5 6.91E-3 2.1% 3.57E-4 -7.8% 
 

Since the scanner can only get the information of the object in its line of sight. 

Accurate quantification of a damage in LiBE should be based on the overall measurement 

of the damage surface points. If the damage surface points and the scanner form a 

convexity set in Euclidean space, all the damage surface range information can be 

recorded with certain resolution. For a convex set, each point on a straight line that 

connects any pair of points within the set should belong to the set. Therefore, if the 
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scanner and the damage surface form a convexity space, no point will block the view of 

the scanner to any point on the damage surface. Ignoring the shape of the damage 

surface, to obtain as much information about the damage as possible, the scanner should 

be placed right opposite to the damage.        

The high deviation of volume quantification from test oblique 1 in Table 6-7 

shows the influence of partial scan of the damage. However, small deviation can be found 

for damage area quantification. This can be explained through Figure 6-7. The oblique 

scan of the damage makes only part of the damage surface be measured. Therefore the 

volume quantification just counts volume of the red part of the damage in test oblique 1. 

Since the scanner averages the ranges measured by the laser pulses within the beam width 

at each scan point, at the edge of an object, if the range of points on the two sides of the 

edge differs a lot, the range of the edge will be recorded in between the ranges of the 

points on the two sides. Due to the influence of the scan angle, the points at right side of 

front left edge in the scanner’s view are on the back surface of the damage. The front left 

edge of the damage is virtually measured as shown Figure 6-7. Although the left surface 

of the damage cannot be scanned, the scan points on the front left edge of damage can 

still be classified as damaged points by the program. Therefore, the scan angle will not 

influence the quantification of the damage area, which can be seen from the results of test 

oblique 1 in Table 6-7.  
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Figure 6-7 Influence of scan angle 

 

6.3 Bridge clearance rating in LiBE 

Bridge inspection record defines the bridge component rating as: 0-2 to be 

critical, 3-4 to be poor, 5-6 to be fair and 7-9 to be good. Hence, for bridge clearance 

evaluation using LiBE, a 0-9 scale rating is also adopted. Specifically, rating 8-9 

represent effective bridge system with nearly new condition; 6-7 represent no structure 

service required; 4-5 are for questionable structures; 2-3 represent potential structural 

problem and immediate services are required, and 0-1 indicate no traffic allowed. Most of 

the clearance issues will not cause the failure of the entire bridge structure, and the 

clearance measurement itself cannot provide in-depth damage evaluation for determining 

maintenance requirements for the bridge structure. Therefore the minimum rating based 

on clearance condition is set to 4.  

Based on NCDOT bridge policy (NCDOT 2000), the design limits of bridge 

vertical clearance and minimum requirements for a bridge to remain in service are 

summarized in Table 6-8. The clearances should also include 0.15 m of clearance for 
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future resurfacing and another 0.15 m for “the flexibility necessary in the coordination of 

roadway grades with final superstructure depths” (NCDOT 2000). The clearance 

evaluation using LiBE will only consider safety and not economy, which means the 

higher the clearance, the higher the bridge rating.  

 

Table 6-8 Bridge vertical clearance requirements for North Carolina 

 Over 
local/collector 
roads/streets 

Over interstates/ 
freeways /arterials 

Over railroad 

Design limit 4.57 m~4.72 m 5.03 m~5.18 m 7.01 m~7.16 m 
Extra-
consideration 

4.87 m~5.02 m 5.33 m~5.48 m 7.31 m~7.46 m 

Minimum 
clearance to 
remain in service 

4.27 m 4.88 m 6.70 m* 

   
 

In LiBE system, if a bridge has a minimum vertical clearance larger than the 

design limit plus the extra consideration for resurfacing and construction difference, the 

bridge is thought to be in good clearance condition and can get a rating of 9. If the 

clearance is in the range of the design limit plus the extra considerations, the bridge can 

get a rating of 8. If the clearance value drops into the range of design limit, it still can get 

a rating of 7. A rating 6 is given to the bridge that have a minimum clearance value larger 

than the minimum requirement to be in service and lower than the requirements for rating 

7. Based on the study of bridge vertical clearance in section 4.2, it can be seen that a local 

bridge with clearance lower than 4.10 m or an interstate (freeways /arterials) bridge with 

a clearance lower than 4.50 m will encounter much more collision damages than a bridge 
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with higher clearance. Hence, the thresholds of 4.10 mm for local bridges and 4.50 m for 

interstate bridges are selected to determine if a bridge should be rated 4 or 5, and the 

structure is thought to be questionable in these cases. Table 6-9 provides the detailed 

rating criteria. The selected for scan bridges (around 20) have been evaluated based on 

these criteria. Final ratings for the applicable bridges are given in Appendix C.   

 

Table 6-9 Bridge minimum vertical clearance rating criteria  

Rating Local Road Interstate/Freeway Railroad 
9 >5.02 m  >5.48 m >7.46 m 
8 4.87 m~5.02 m  5.33 m~5.48 m 7.31 m~7.46 m 
7 4.57 m~4.87 m 5.03 m~5.33 m 7.01 m~7.32 m 
6 4.27 m~4.57 m 4.88 m~5.03 m 6.70 m~7.01 m 
5 4.10 m~4.27 m 4.50 m~4.88 m <6.70 m 
4 <4.10 m <4.50 m -- 

 

 
6.4 Bridge damage rating based on LiBE Damage Detection 

Reinforced concrete bridge components are vulnerable to water and chloride 

attacks. These attacks will result in the corrosion of the inner reinforcements. The 

corrosion, if not detected, can gradually reduce the strength of the girder, and the 

reinforcement volumetric expansions due to oxide formation will result in concrete 

delamination (Liu and Frangopol 2004). The depth of the reinforcements to the concrete 

surface is called “concrete cover”. The concrete cover is one of the main factors that 

determine the corrosion potential of the reinforcements under the same environmental 

condition (Roberts 2004).  
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Bridge component ratings based on damage level, which is assessed by LiBE, 

adopts a 0-100 scale. The size of the damage on a concrete, reinforced concrete or pre-

stressed concrete bridge components can reflect the corrosion situation, the intensity of 

impact load, or the overload level at particular location. The variables LiBE selected to 

evaluate damage include the total area the damage covers, the total mass loss, the 

maximum depth within the damage, and the average depth within the damage. These 

information can be obtained automatically from LiBE system.           

For bridge rating based on damage quantification, the bridge member with the 

worst condition is selected for primary evaluation, and the rating of that member is used 

as the rating of the whole bridge for simplification.  Pillai and Menon (2003) provided the 

recommended concrete cover based on the “severity of environmental exposure 

conditions” (as shown in Table 6-10). For bridge rating based on surface damage, both 

the damage ratio, 𝛾𝛾, and average depth, 𝐴𝐴𝐴𝐴, are considered as the main parameters. The 

damage ratio is equal to the total area of damages divided by the total area of the 

measured bridge surface. Assume the worst condition, when the bridge receives a rating 

of 0, the damage ratio should be equal to 1.0 and the average damage depth exceeds the 

maximum concrete cover requirement ( 𝐴𝐴𝐴𝐴 ≥ 0.075 𝑚𝑚 ) at extreme environment 

condition. The damage ratio should count more than the average depth of the damage in 

the final rating of a bridge. The mass loss on the bottom surface of a bridge member 

increases the risk of the corrosion of the rebars that carry the largest tension stress, which 

may result in member failure. Therefore, in the bridge rating equations (Eq. (6-2) and Eq. 

(6-3)), the damage ratio receives a weight of 0.7 and average depth receives a weight of 

0.3. The maximum depth of the damage is also considered in the bridge final rating.     
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𝑅𝑅 = 100 × [1.0 − 0.7 × √𝛾𝛾 − 0.3 × � 𝐴𝐴𝐴𝐴
0.075

�
𝐴𝐴𝐴𝐴
𝑀𝑀 ]                                   (6-2) 

𝑅𝑅 = 100 × [1.0 − 0.7 × √𝛾𝛾 − 0.3 × � 𝐴𝐴𝐴𝐴
0.075

�
� 𝑀𝑀
𝐴𝐴𝐴𝐴 ]        IF   A > 0.075      (6-3) 

where 𝑅𝑅 is the final rating. 𝛾𝛾 represents the damage ratio. 𝐴𝐴𝐴𝐴 is the average depth of the 

damages on the test bridge member and 𝑀𝑀 is the maximum depth of the damage. All the 

selected 21 bridges in Charlotte-Mecklenburg area and the Bridge # 640024 in 

Wilmington NC has been evaluated based on the detectable damage by the LiBE system. 

The final ratings of the test bridges are given in APPENDIX D.    

  

Table 6-10 Nominal cover requirement based on exposure condition (Pillai and Menon 
2003) 

 
Exposure condition Nominal cover 

(mm) 
Remarks 

Mild 20 Can be reduced by 5mm for main 
rebars less than 12mm dia  

Moderate 30  
Severe 45 Can be reduced by 5mm if concrete 

grade is M35 or higher Very Severe 50 
Extreme 75  

 

 

 

 

 

 



 
 

 

CHAPTER 7: CONCLUSIONS  
 
 

The research conducted in this dissertation verified that remote sensing imageries, 

especially the LiDAR scanning technique, can provide useful bridge health related 

information that can be used for transportation infrastructure management. The 3-D 

LiDAR scanner collects surface topology data along its line-of-sight with high accuracy. 

Due to the ease of operation and large amount of spatial information produced, the 3-D 

LiDAR scanner has many potential applications in SHM. This dissertation introduced 

three such applications, which have been developed and integrated into the LiBE 

automated evaluation software system: 1) automatic bridge defect detection and 

quantification, 2) clearance measurement, and 3) load testing. Results from a small 

sample of bridges tested to date in North Carolina and California demonstrate the 

efficiency of LiDAR application for bridge health monitoring.         

The following summarized the conclusions of this study: 

• The 3D surface data cloud generated from LiDAR scan can be used to quantify 

visible damage volumes. Proper defect detection and quantification of bridge 

structure surface defects can help identify potential stability problems. The proposed 

damage detection approach, LiBE, can detect relatively large defect on flat surfaces. 
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• Distance-, gradient- and curvature-based damage quantification methods have been 

adopted for defective area detection. The gradient-based and curvature-based methods 

are good at identifying the edge of a defect, but they are weak in keeping the integrity 

of the defect; the distance-based method in contract is good at keeping the integrity of 

the defect, but weak in identifying the edge of a defect. The test result also indicated 

that surface curvature is more sensitive to damage.  

• Using detailed remote sensing data, specific bridge damage mechanisms can be 

isolated allowing forensic investigation to be performed. Example using bridge # 

590147 indicated that even subtle sitting (height) differentials can result in high stress 

concentration and induce early distress in the pile caps of a bridge substructure.  

LiDAR can provide realistic quantification of mass loss in case of concrete members.  

This information will help bridge inspector to better quantify bridge damages.  

• The proposed methodologies and examples demonstrate that 3D laser scanner can be 

useful tools for determining bridge clearances and LiBE can be an effective technique 

to quantify bridge damages (Section 4.3).  

• A method for bridge displacement measurement during load testing based on LiDAR 

scan data has been introduced. A high performance high strength steel bridge near 

Charlotte, NC has been studied using this method.  The scan data have been used to 

measure the displacement of the entire bridge surface during three load scenario. The 

measured displacements are used to validate the construction of the highway bridge, 

which shows that the bridge experienced tolerable displacements under the specified 

loads.  
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• By combining the bridge component dimension measurement function, the LiDAR 

scan data and LiBE analysis result can be used for FE model creation and updating. A 

strain measurement method using the scan data is proposed at the end of this section, 

which shows the potential of using LiDAR techniques for structural surface strain 

measurement over large area. However, the strain measurement should require higher 

resolution LiDAR systems.  

• The LiDAR scan records of bridges can provide bridge managers direct information 

on current conditions of the bridge. The LiDAR-based bridge measurements and 

evaluations are repeatable. With the utilization of LiDAR technology and an 

automated data processing system, bridge inspection accuracies can be improved 

significantly. More accurate bridge inspections and damage evaluations can lead to 

better maintenance decisions.  

• The accuracy of the LiDAR scanner used in this dissertation has been validated and it 

proves that the scanner can provide bridge surface data with the accuracy as it is 

designed. The accuracy of the damage detection and quantification from LiBE system 

has also been validated. The analysis demonstrated the validity of the proposed 

methods.   

• Gird size and scan distance did influence the quantification result of damage, but still 

in the allowable range.   

• To get accurate measurement of the damage volume, the scanner should be placed 

opposite to the damage and the scan angle won’t influence the quantification of 

damage area.  
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• Compared to onsite visual bridge inspection and close range photographing, remote 

sensing-based bridge inspection is more sensitive to noise brought by traffic, 

shadows, moisture, and lighting conditions. Bridge monitoring also requires that 

remote sensing imagery reach a certain degree of resolution in order to detect possible 

problems. Since different bridges have different properties, not all of the problems 

associate with a bridge can be identified from the top view. However, with visual 

access of a bridge superstructure within the range of 70 meters, the LiDAR tested and 

included in this project to date has demonstrated the ability of data collection and 

damage analysis for bridges.  In summary, as an emerging inspection assistant tool, 

remote sensing data should be further explored with a collaborative effort by RITA, 

FHWA and AASHTO in order to consider standards that may promulgated for 

general bridge monitoring related application.   

Based on the study of this dissertation, the benefits of using terrestrial LiDAR for 

bridge monitoring include the following points: 

• LiDAR data can be used for 3D quantification for the damage on bridge surface, 

which is hard to be accomplished based on traditional 2D digital images. 

• LiDAR data can provide the clearance value of the entire bridge surface and the 

minimum vertical clearance location can be easily identified using the developed 

LiBE system. 

• LiBE can calculate the displacement of the entire bridge surface based on LiDAR 

data and strain can also be calculated.  

• LiDAR data can be used in forensic engineering for damage reasoning.  

 



 
 

 

CHAPTER 8: RECOMMENDATIONS FOR FUTURE STUDIES 
 
 

Terrestrial 3D LiDAR technology provides surface 3D information with high 

speed and high accuracy, while most of the current sensors perform measurements only 

in 2D. Therefore it can be used for structural dimension measurement as well as feature 

quantification. The past works using 2D imageries can all be extended to 3D through 

LiDAR technology, which will result in more accurate assessment of structures.   

The derived methodologies in this dissertation for the application of LiDAR data 

can also be used in satellite or airborne LiDAR-based infrastructure surface defect 

detection. Finding the links between surface damage and internal structure problems and 

implementing the results to the automatic damage detection program are the works need 

to be improved.  With proper LiDAR-based software development, bridge inspectors 

could obtain the bridge structural problems just with a single scan. This will become a 

valuable contribution for bridge inspection, since it will be a fast, simple and accurate 

inspection tool. Other types of infrastructure like buildings and highways can also use 

laser scanner for health monitoring. The surface damages of buildings and highway 

pavements could be quantified. The structure displacement of buildings can also be 

measured. 
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APPENDIX A: BRIDGE REPAIR PLAN OF MECKLENBURG COUNTY IN NCDOT 
2007-2013 STIP (NCDOT 2007) 

 
 

Location  
Year 
Built 

Right 
of way Construction  Total  

 

Mallard Creek No.147 1938 $300 $3,400 $3,700 Mecklenburg: 
Average cost per 
bridge-$1,173.5 

(Thousand 
Dollar) 

Mcintyre creek No.134 1958 $5 $330 $336 
Gar Creek No. 100 1960 $40 $500 $540 
Reedy Creek No. 177 1970 $100 $750 $850 
Irvins Creek No. 36 1953 $230 $1,010 $1,240 
Creasy creek No. 38 1945 $25 $350 $375 
Broad Creek No.51 1925 $210 $600 $810 Beaufort: 

Average cost per 
bridge-$1,299.7 

(Thousand 
Dollar) 

Pungo Creek No. 43 1925 $90 $900 $990 
Broad Creek No. 104 1953 $31 $1,600 $1,631 
Runyon Creek No. 103 1947 $225 $4,900 $5,175 
Pungo Creek No. 21 1939 $80 $1,000 $1,080 
Jack Creek No.59 1949 $50 $560 $613 
Aggie Run No.5 1974 $150 $1,650 $1,801 
Durham Creek No.42 1966 $50 $526 $593 
Blounts Creek No.81 1972 $50 $526 $593 
Horse Branch Creek 
No. 67 

1965 
$225 $900 $1,133 

Chocowinity Creek No. 
68 

1966 
$272 $950 $1,230 

Chocowinity Creek No. 
69 

1964 
$50 $985 $1,040 

Tranters Creek  No.8 1935 $180 $3,150 $3,337 
Latham Creek No.84 1962  $1,100 $1,100 
Tranters Creek No. 90 1970  $1,640 $1,640 
Big Swamp No.6 1971 $70 $1,185 $1,360 
Big Swamp No.272 1959  $600 $600 
Canal No.140 1962 $90 $1,150 $1,240 
Bath Creek  No.135 1967 $50 $650 $711 
Creek No. 39 1969 $25 $825 $850 
Horsepen Swamp No. 
40 

1966 
$35 $410 $450 

Durham Creek No.14 1966 $50 $560 $618 
US 64-221 No.117 1956 $2,200 $4,400 $6,600 Rutherford 

County: Average 
cost per bridge -

$1,828.5 
(Thousand 

Dollar) 

Broad River No.7 1925 $1,000 $2,000 $3,000 
Broad River No.87 1926 $300 $3,400 $3,700 
Broad River No.270 1917 $35 $2,139 $2,174 
Creek No.526 1970 $50 $1,050 $1,100 
Fork of Cathy’s Creek 
No. 37 

1952 
$150 $2,100 $2,252 

Creek No.217 1952 $90 $750 $840 
Holland’s Creek No.35 1952 $50 $560 $610 
Cathey’s Creek No.41 1963 $60 $850 $911 
Clinchfield Railroad 1950 $50 $650 $700 
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No. 69 
Puzzle Creek No.76 1967 $180 $1,800 $1,981 
Webb Creek No. 351 1950 $5 $525 530 
First Broad River 
No.202 

1952 
$30 $1,150 $1,180 

Creek No.32 1952 $90 $1,150 $1,240 
Floyds Creek No. 144 1950 $50 $560 $610 
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APPENDIX B: STATISTIC OF BRIDGE FAILURE IN THE U.S. AFTER 1967 
(CORROSION DOCTORS; UNIVERSITY OF CAMBRIDGE; FHWA 2002; SCHEER 

2000)  
 
 

Bridge Name  Location Built 
Year 

Collapse 
year 

Reason Type 

U.S. Highway 35 
Silver Bridge 

West Virginia and 
Kanauga, Ohio. 
Across Ohio river. 

1928 1967 Fatigue 
cracking (FCM) 

Steel 

Chesapeake Bay 
Bridge 

Annapolis  1970 Ship Impact  

Kaslaski River 
Bridge  

Illinois  1970 Design error   

Motorway bridge Junction 
Antelope Valley 

 1971 Earthquake  

Sidney-Lanier 
Bridge  

Brunswick, 
Georgia 

 1972 Ship Impact  

Chesapeake Bay 
Bridge 

Annapolis  1972 Ship Impact  

Motorway bridge  near Pasadena, 
California  

1972 1972 Design error  

Lake 
Pontchartrain 
bridge 

Lake Pont  1974 Ship Impact  

Lafayette Street 
bridge 

St-Paul, 
Minnesota 

1905 1975 Brittle failure 
of new steel 

 

Fulton Yates 
Bridge 

Henderson, 
Kentucky 

 1976 Overloading 
during 
refurbishment 

 

Pass Manchac 
Bridge 

Louisiana  1976 Ship Impact  

Bridge over 
Passiac River 

Union Avenue  1977 Ship Impact  

Benjamin Harrison 
Memorial Bridge 

Hopewell, 
Virginia 

 1977 Ship Impact  

Southern Pacific 
Railroad Bridge 

Louisiana  1978 Ship Impact  

Interstate 17 
Bridge 

Black Canyon, 
Arizona 

 1978 Flood  

Southern Rail 
Bridge  

Indiana 1910  1979 Overload  

Interstate 10 
Bridge 

Phoenix, Arizona  1979 Flood  

bridge near 
Rockford 

Rockford  1979 Design error Concrete 

Bridge over the Washington  1979 Wind and  

http://www.bridgeforum.com/dir/collapse/bridge/1972USA2.html�
http://www.bridgeforum.com/dir/collapse/bridge/1972USA2.html�
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Hood canal storm 
Alabama Rail 
Bridge 

Alabama  1979 Train Impact  

Truss bridge in 
Trenton 

Wisconsin 
(Milwaukee 
River) 

 1980 Truck Impact  

Sunshine Skyway 
Bridge 

St.Petersburg, 
Florida 

 1980  
Ship Impact 

 

Syracuse bridge New York  1982 Design Error  
Saginaw bridge Saginaw  1982 Design Error  
bridge in East 
Chicago 

Indianapolis  1982 Design Error  

Connecticut 
Turnpike Bridge 

Greenwich 
(Mianus River) 

1958  1983 Fatigue 
cracking (FCM) 

Steel 

Walnut street 
viaduct over 
Interstate 20 

Denver, Colorado  1985 Design Error  

Schoharie Bridge New York  1987 Flood and 
Storm 

 

Bridge in El Paso Texas  1987 Design Error  
Motorway bridge 
near Seattle 

  1988 Design Error  

Truss bridge in 
Shepherdsville 

Kentucky  1989 Truck Impact  

San Francisco 
Oakland Bay 
Bridge 

California  1989 Earthquake  

Cypress Freeway Oakland, 
California 

 1989 Earthquake  

Bridge in 
Baltimore 

  1989 Design Error  

bridge in Los 
Angeles 

Los Angeles  1989 Design Error Box girder 

Herbert C. Bonner 
Bridge 

North Carolina  1990 Ship Impact  

Motorway bridge junction 
Antelope Valley 

 1992 Earthquake  

Truss bridge near 
Mobile 

Alabama  1993 Ship Impact  

Truss bridge in 
Concord 

New Hampshire  1993 Construction 
Error 

 

Interstate 5 
Bridge  

Los Angeles, 
California 

 1994 Earthquake  

Twin bridges, 
Interstate 5 

(Arroyo Pasajero 
River), Coalinga, 
California 

 1995 Scour of 
Foundation 

 

composite bridge Clifton  1995 Construction  
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(Tennessee 
River) 

Error 

Walnut Street 
Bridge 

Harrisburg, 
Pennsylvania 
(Susquehanna 
River) 

 1996 Scour and Ice 
damage 

 

Bridge over 
Hatchie River 

Covington, 
Tennessee 

 1999 Scouring and 
undermining of 
the 
foundations 

 

Concord 
pedestrian bridge 

Concord, NC 1995 2000 Deterioration Concrete  

Queen Isabella 
Causeway 

Texas  2001 Ship Impact  

Tewksbury 
Township pony 
truss bridge 

Hunterdon 
County, New 
Jersey 

 2001 Truck Impact   

Turkey Creek 
Bridge 

Sharon Springs, 
Kansas 

 2002 Fire  

Marcy bridge   2002 Design Error  
Interstate 40 
Bridge 

Oklahoma 
(Webber Falls) 

 2002 Ship Impact  

Highway 14 
overpass, 60 miles 
south of Dallas 

Texas (over 
Interstate 45) 

 2002 Truck Impact  

Imola Avenue 
Bridge 

Napa, California  2003 Construction 
Error 

 

Kinzua Viaduct North-central 
Pennsylvania 

1900 2003 Tornado steel 
bridge 

West Grove 
Bridge 

Silver Lake, 
Kansas 

 2004 Train Impact  

Shannon Hills 
Drive Bridge 

Arkansas  2004 Overload  

Rural bridge near 
Shelby 

North Carolina 
(Beaver Dam 
creek) 

 2004 Washed out  

McCormick 
County bridge 

east of Mount 
Carmel (Little 
river), South 
Carolina 

 2004 Debris  

Lee Roy Selmon 
Expressway 

Tampa Bay, 
Florida 

 2004 Flood  

Interstate 95 
Bridge 

Bridgeport, 
Connecticut 

 2004 Impact  

Interstate 70 
Bridge 

Denver, Colorado  2004 Design Error  

Interstate 20 Pecos, Texas (Salt  2004 Flood  
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Bridge Draw River) 
Interstate 10 
Bridge 

Escambia Bay, 
Florida 

 2004 Hurricane  

Bridge northwest 
of Norcatur 

(Sappa Creek), 
Kansas 

 2004 Overload  

Bridge near 
Pawnee City 

Nebraska  2004 Design Error  

Wooden bridge in 
Pico Rivera 

California  2005 Fire  

Laurel Mall 
Pedestrian Bridge 

between the 
parking and 
shopping areas 

 2005 Deterioration  

Interstate 70 Lake 
View Drive Bridge 

Washington 
County 
(Pennsylvania) 

 2005 Deterioration  

I35-W bridge Minneapolis  2007 Deterioration  
K&I bridge  Indiana  2008 Aged and 

debris 
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APPENDIX C: LiBE CLEARANCE MEASUREMENTS FOR THE 20 SELECTED 
BRIDGES AND CORRESPONDING RATINGS 

 
 

Bridge 
Number 

 

Sufficiency 
Rating 

Type Bridge over Clearance 
Inventory 

(m) 

LiBE 
Measured 

(m)  

Clearance 
Rating 

590084 82.1 PPC Cored 
Slab 

Green way & 
Water 

--- --- --- 

590140 77.5 RC Girder Green way & 
Water 

--- --- --- 

590147 47.5 RC Girder Green way & 
Water 

--- --- --- 

590179 72.3 Concrete Railroad 6.325 6.333 5 
590239 78.2 Steel Railroad 6.782 6.993 6 
590296 94.7 Prestressed 

Concrete 
Railroad    

590511 80.4 RC Deck Highway 4.750 4.980* 6 
590512 80.4 RC Deck Highway 5.588 4.980* 6 
590038 30.4 RC Deck Water --- --- --- 
590049 48.4 RC Deck Water --- --- --- 
590059 11.8 Steel Plank Water --- --- --- 
590108 100 RC Deck Railroad 7.010 7.090 7 
590161 63.7 Steel Water --- --- --- 
590165 48.2 Steel Water --- --- --- 
590355 70.3 RC Deck Highway 5.004 4.870 5 
590177 29.1 Steel Water --- --- --- 
590255 77.7 Steel Railroad 7.290 10.993* 10 
590376 84.83 Steel Water --- --- --- 
590379 29.3 Prestressed 

Concrete 
Water --- --- --- 

590700  Steel Highway 4.064 4.110 4 
590702  Steel Local Road 4.242 4.250 5 
590704  Concrete Local Road 3.759 3.760 4 

* Only part of these bridges have been scanned for evaluation 
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APPENDIX D: LiBE DEFECT DETECTION AND QUANTIFICATION FOR THE 
SELECTED BRIDGES AND CORRESPONDING RATINGS 

 
 

Bridge 
Number 

 

Sufficiency 
Rating 

Defect 
No. 

Area 
(m2) 

Volume 
(m3) 

Damage 
Ratio    

(γ) 
 

Maximum 
Depth 
(M) 
(m) 

Average 
Depth 

(A) 
(m) 

LiDAR 
Defect  
Rating 

(R) 
590179 72.3 1 8.53E-

2 
5.37E-4 0.0792 0.031 1.01E-

02 
62.2 

590255 77.7 1 2.87E-
1 

7.09E-3 0.0578 0.162 2.98E-
02 

57.8 

590140 77.5     N/A   
590147 47.5 1 1.76E-

1 
1.26E-2 0.0727 0.259 9.00E-

02 
55.9 

2 1.45E-
1 

5.11E-3 

3 1.06E-
1 

3.94E-3 

590084 82.1     N/A   
590239 78.2     N/A   
590059 11.8     N/A   
590161 63.7     N/A   
590165 48.2     N/A   
590177 29.1     N/A   
590296 94.7     N/A   
590376 84.83     N/A   
590379 29.3     N/A   
590511 80.4     N/A   
590512 80.4     N/A   
590038 30.4     N/A   
590049 48.4     N/A   
590108 100     N/A   
590355 70.3     N/A   
590700      N/A   
590702  1 2.06E-

2 
3.39E-4 0.0056 0.042 1.64E-

02 
78.2 

590704  1 4.42E-
1 

1.40E-2 0.0799 0.080 3.54E-
02 

56.1 

640024 30.1 1 5.07E-
1 

2.85E-2 0.2169 0.332 5.61E-
02 

38.8 
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APPENDIX E: DEFECT DETECTION AND QUANTIFICATION PROGRAM 
 
 
Program main  
 
Write (*,*) 'Please enter the bridge number' 
read (*,*) Bridgenumber 
write (*,*) 'Please enter the section name you create of the 
analysis part' 
Read (*,*) Sectionname  
write(9,*) 'Bridge number=', Bridgenumber 
write(9,*) 'Section name=', Sectionname 
read (1,*) Start_C, Start_R 
 
N_interC=1 
NR_grid=1 
Accuracy=0.005 
bet1=1.0 
bet2=1.0 
maxid=0.0 
I=1 
K=1 
NR=0 
read(1,*)Column, Row, X(i,1),Y(i,1),Z(i,1) 
End_R=Start_R 
if(Row.ne.Start_R)then    
    k=k+1 
endif 
do 
   j=2 
   StartR(i)=Row     
   if(Start_R.gt.StartR(i))Start_R=StartR(i)   
   do 
      read(1,*)Column, Row, X(i,j),Y(i,j),Z(i,j)       
   if(Column.gt.(i+Start_C-1))then  
      X(i+1,1)=X(i,j) 
     Y(i+1,1)=Y(i,j) 
     Z(i+1,1)=Z(i,j)    
     X(i,j)=0.0 
     Y(i,j)=0.0 
     Z(i,j)=0.0 
     EndR(i)=j-1      
    if(j.Gt.NR)NR=j   
   k=k+1  
   exit 
   else     
   endif         
   do 
       if(Row.gt.(StartR(i)+j-1))then    
    write(*,*)Column, Row, 
StartR(i)+j-1,j,k  
          k=k+1  
       j=j+1 
       X(i,j)=X(i,j-1) 
       Y(i,j)=Y(i,j-1) 
       Z(i,j)=Z(i,j-1)    
    X(i,j-1)=0.0 
       Y(i,j-1)=0.0 
       Z(i,j-1)=0.0 
    else 
    exit 
          endif 
      enddo      
   j=j+1       
   end do       
   if(Column.gt.10000)then 
       X(i+1,1)=0.0 
    Y(i+1,1)=0.0 

    Z(i+1,1)=0.0 
       If(StartR(i)+j-2.gt.End_R)End_R=StartR(i)+j-2 
    EndR(i)=j-1 
    exit 
   else          
       i=i+1 
    End_C=Column      
   If(StartR(i-1)+j-2.gt.End_R)End_R=StartR(i-1)+j-2  
     
   endif 
end do 
N_Grid=End_C/N_interC+1  
NC=i   
write(*,*)'auto plane creation: y or n' 
read(*,*)autoplane 
if(autoplane.eq.'y')then 
   call 
Initialplane(Start_C,End_C,EndR,End_R,X,Y,Z,a,b,c,T,Accu
racy)  
else 
   call Initialplane1(a,b,c,T)  
endif 
write(6,*)'plane',a,b,c 
M=0 
Do i=1, End_C-Start_C+1 
    Do j=1, Endr(i)        
  If(X(i,j).lt.900)then 
If((abs(X(i,j))+abs(Y(i,j))+abs(Z(i,j))).gt.0.0001)then 
   call Distance(a,b,c,x(i,j),y(i,j),z(i,j),D(i,j)) 
       
ran(i,j)=sqrt(X(i,j)**2+Y(i,j)**2+Z(i,j)**2)  
     
       
evend=evend+abs(D(i,j)) 
       M=M+1  
   endif 
  endif   
 end do 
end do 
evend=evend/M 
write(9,*)'evend',evend  
scandis=1.0/sqrt(a**2+b**2+c**2)   
Do i=1, End_C-Start_C+1 
    Do j=1, EndR(i) 
     If(X(i,j).lt.900)then       
      call Pointrotate(X(i,j),Y(i,j),Z(i,j),T) 
  else  
  endif 
 end do 
end do     
write(6,*)T    
ZC=0.0 
ZR=0.0 
write(*,*)'please enter the interval for calculating the 
gredient' 
read(*,*)int1 
write(6,*)'interval=',int1  
M=0 
Even=0.0 
D_max=0.0 
vard=0.0 
Do ii=1, floor((End_C-Start_C+1)/3.0) 
 i=ii*3    
    Do jj=1, floor(Endr(i)/3.0)     
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  j=Jj*3        
if(ran(i,j).gt.0.0001.and.(abs(X(i,j))+abs(Y(i,j))+abs(Z(i,j))).lt
.900)then      
int=IDNINT(int1*10.0*scandis/(ran(i,j)**2)) 
      if(int.lt.1)int=1 
     If(i.gt.int.and.i.lt.End_C-Start_C-
int+2.and.(j+StartR(i)-StartR(i+int)).gt.0.and.(j+StartR(i)-
StartR(i-int)).gt.0)then          
      If((abs(X(i-int,j+StartR(i)-StartR(i-
int)))+abs(Y(i-int,j+StartR(i)-StartR(i-int)))+abs(Z(i-
int,j+StartR(i)-StartR(i-
int)))).lt.200.and.(abs(X(i+int,j+StartR(i)-
StartR(i+int)))+abs(Y(i+int,j+StartR(i)-
StartR(i+int)))+abs(Z(i+int,j+StartR(i)-
StartR(i+int)))).lt.200)then       
If((abs(X(i+int,j+StartR(i)-
StartR(i+int)))+abs(Y(i+int,j+StartR(i)-
StartR(i+int)))).gt.0.0001.and.(abs(X(i-int,j+StartR(i)-
StartR(i-int)))+abs(Y(i-int,j+StartR(i)-StartR(i-
int)))).gt.0.0001)then  
                    if(sqrt((X(i+int,j+StartR(i)-StartR(i+int))-X(i-
int,j+StartR(i)-StartR(i-int)))**2+(Y(i+int,j+StartR(i)-
StartR(i+int))-Y(i-int,j+StartR(i)-StartR(i-
int)))**2).lt.0.001)then 
        
ZC=4.0*(Z(i+int,j+StartR(i)-StartR(i+int))-2.0*Z(i,j)+Z(i-
int,j+StartR(i)-StartR(i-int)))/(0.001**2) 
                    elseif((abs(X(i,j))+abs(Y(i,j))).gt.0.001)then 
              
ZC=4.0*(Z(i+int,j+StartR(i)-StartR(i+int))-2.0*Z(i,j)+Z(i-
int,j+StartR(i)-StartR(i-int)))/((X(i+int,j+StartR(i)-
StartR(i+int))-X(i-int,j+StartR(i)-StartR(i-
int)))**2+(Y(i+int,j+StartR(i)-StartR(i+int))-Y(i-
int,j+StartR(i)-StartR(i-int)))**2) 
                    endif    
 endif    
 endif 
 endif 
 If(j.gt.int.and.j.lt.endr(i)-int+1)then 
      If((abs(X(i,j-int))+abs(Y(i,j-
int))+abs(Z(i,j-
int))).lt.200.and.(abs(X(i,j+int))+abs(Y(i,j+int))+abs(Z(i,j+int
))).lt.200)then       
IF((abs(X(i,j+int))+abs(Y(i,j+int))+abs(Z(i,j+int))).gt.0.0001.
and.(abs(X(i,j-int))+abs(Y(i,j-int))+abs(Z(i,j-
int))).gt.0.0001)then  
                    if(sqrt((X(i,j+int)-X(i,j-int))**2+(Y(i,j+int)-
Y(i,j-int))**2).lt.0.001)then  
 ZR=4.0*(Z(i,j+int)-2.0*Z(i,j)+Z(i,j-
int))/(0.001**2)   
                    elseif((abs(X(i,j))+abs(Y(i,j))).gt.0.001)then
              
               ZR=4.0*(Z(i,j+int)-
2.0*Z(i,j)+Z(i,j-int))/((X(i,j+int)-X(i,j-int))**2+(Y(i,j+int)-
Y(i,j-int))**2)  
                    endif     
    endif 
   endif 
     endif 
If((abs(X(i,j))+abs(Y(i,j))+abs(Z(i,j))).gt.0.0001)then 
     Dis=abs(ZC)+abs(ZR)   
      Even=Even+(Dis)  
       
if((Dis).gt.D_max)D_max=(Dis)   
    vard=vard+(abs(D(i,j))-evend)**2 
       M=M+1  
  endif   
   endif   
 end do 
end do 

even=even/M 
vard=sqrt(vard/M) 
 write(9,*)'vardis=',vard 
 write(9,*)'evengrad=',even 
if(evend.lt.0.01.and.even.lt.15.0)then 
  evend=evend+vard 
  even=15.0-0.25*(15.0-even) 
elseif(evend.gt.0.01.and.even.lt.15.0)then 
  evend=0.01 
  even=15.0-0.25*(15.0-even) 
elseif(evend.lt.0.01.and.even.gt.15.0.and.even.lt.30.0)then 
  evend=evend+vard/2.0 
  even=1.75*even 
elseif(evend.gt.0.01.and.even.gt.15.0.and.even.lt.30.0)then 
  evend=0.01 
  even=1.75*even 
elseif(evend.gt.0.01.and.even.gt.30.0)then 
  evend=evend-vard/2.0 
  even=even*(1.0+even/30.0) 
elseif(evend.lt.0.01.and.even.gt.30.0)then 
  evend=evend+vard/2.0 
  even=even*(1.0+even/30.0) 
endif  
NGeven=0.0 
Geven=0.0 
pGeven=0.0 
p=0.0 
var=0.0 
M=0.0  
Do i=1, End_C-Start_C+1 
    Do j=1, Endr(i)   
if(ran(i,j).gt.0.0001.and.(abs(X(i,j))+abs(Y(i,j))+abs(Z(i,j))).lt
.900)then 
 int=IDNINT(int1*10.0*scandis/(ran(i,j)**2)) 
  if(int.lt.1)int=1 
  If(i.gt.int.and.i.lt.End_C-Start_C-int+2.and.(j+StartR(i)-
StartR(i+int)).gt.0.and.(j+StartR(i)-StartR(i-int)).gt.0)then       
 If((abs(X(i-int,j+StartR(i)-StartR(i-int)))+abs(Y(i-
int,j+StartR(i)-StartR(i-int)))+abs(Z(i-int,j+StartR(i)-
StartR(i-int)))).lt.200.and.(abs(X(i+int,j+StartR(i)-
StartR(i+int)))+abs(Y(i+int,j+StartR(i)-
StartR(i+int)))+abs(Z(i+int,j+StartR(i)-
StartR(i+int)))).lt.200)then       
IF((abs(X(i+int,j+StartR(i)-
StartR(i+int)))+abs(Y(i+int,j+StartR(i)-
StartR(i+int)))).gt.0.0001.and.(abs(X(i-int,j+StartR(i)-
StartR(i-int)))+abs(Y(i-int,j+StartR(i)-StartR(i-
int)))).gt.0.0001)then  
                    if(sqrt((X(i+int,j+StartR(i)-StartR(i+int))-X(i-
int,j+StartR(i)-StartR(i-int)))**2+(Y(i+int,j+StartR(i)-
StartR(i+int))-Y(i-int,j+StartR(i)-StartR(i-
int)))**2).lt.0.001)then 
ZC=4.0*(Z(i+int,j+StartR(i)-StartR(i+int))-2.0*Z(i,j)+Z(i-
int,j+StartR(i)-StartR(i-int)))/(0.001**2) 
                    elseif((abs(X(i,j))+abs(Y(i,j))).gt.0.001)then 
 ZC=4.0*(Z(i+int,j+StartR(i)-StartR(i+int))-2.0*Z(i,j)+Z(i-
int,j+StartR(i)-StartR(i-int)))/((X(i+int,j+StartR(i)-
StartR(i+int))-X(i-int,j+StartR(i)-StartR(i-
int)))**2+(Y(i+int,j+StartR(i)-StartR(i+int))-Y(i-
int,j+StartR(i)-StartR(i-int)))**2) 
                    endif    
  endif   
 endif 
  endif 
If(j.gt.int.and.j.lt.endr(i)-int+1)then 
 If((abs(X(i,j-int))+abs(Y(i,j-int))+abs(Z(i,j-
int))).lt.200.and.(abs(X(i,j+int))+abs(Y(i,j+int))+abs(Z(i,j+int
))).lt.200)then        
IF((abs(X(i,j+int))+abs(Y(i,j+int))+abs(Z(i,j+int))).gt.0.0001.



163 

 

and.(abs(X(i,j-int))+abs(Y(i,j-int))+abs(Z(i,j-
int))).gt.0.0001)then  
                    if(sqrt((X(i,j+int)-X(i,j-int))**2+(Y(i,j+int)-
Y(i,j-int))**2).lt.0.001)then 
ZR=4.0*(Z(i,j+int)-2.0*Z(i,j)+Z(i,j-int))/(0.001**2) 
                    elseif((abs(X(i,j))+abs(Y(i,j))).gt.0.001)then     
ZR=4.0*(Z(i,j+int)-2.0*Z(i,j)+Z(i,j-int))/((X(i,j+int)-X(i,j-
int))**2+(Y(i,j+int)-Y(i,j-int))**2)  
                    endif    
 endif 
   endif 
     endif 
 If((abs(X(i,j))+abs(Y(i,j))+abs(Z(i,j))).lt.900)thenI
f((abs(X(i,j))+abs(Y(i,j))+abs(Z(i,j))).gt.0.0001)then 
   Dis=abs(ZC)+abs(ZR)  
 if(maxid.lt.abs(D(i,j)))then  
       maxid=abs(D(i,j)) 
    endif   
if(-
D(i,j).gt.evend*bet2)NGeven((i/N_interC+1),((j+StartR(i)-
Start_R)/(N_interC)+1))=NGeven((i/N_interC+1),((j+StartR(
i)-Start_R)/(N_interC)+1))+1  
 Geven((i/N_interC+1),((j+StartR(i)-
Start_R)/(N_interC)+1))=Geven((i/N_interC+1),((j+StartR(i)
-Start_R)/(N_interC)+1))+abs(D(i,j)) 
 pGeven((i/N_interC+1),((j+StartR(i)-
Start_R)/(N_interC)+1))=pGeven((i/N_interC+1),((j+StartR(i
)-Start_R)/(N_interC)+1))+1  
if(((j+StartR(i)-
Start_R)/(N_interC)+1).gt.NR_grid)NR_grid=((j+StartR(i)-
Start_R)/(N_interC)+1)   
 if(Dis.gt.even*bet1)then      
Neven((i/N_interC+1),((j+StartR(i)-
Start_R)/(N_interC)+1))=Neven((i/N_interC+1),((j+StartR(i)
-Start_R)/(N_interC)+1))+1 
    endif 
    if(((j+StartR(i)-
Start_R)/(N_interC)+1).gt.NR_grid)NR_grid=((j+StartR(i)-
Start_R)/(N_interC)+1)     
   
 write(2,82)Start_C+i-1,StartR(i)+j-
1,X(i,j),Y(i,j),Z(i,j),(Dis),D(i,j) ! 
    var=var+((Dis)-
even)**2 
    M=M+1   
   endif 
  endif  
   endif 
 end do 
end do    
var=sqrt(var/M) 
write(9,*)'vargrad=',var 
M=1 
defectv=0.0 
tarea=0.0 
tdarea=0.0   
do i=1,N_grid 
    do j=1,NR_grid 
     if(pGeven(i,j).gt.(N_interC**2/8))then  
  p(i,j)=Neven(i,j)/pGeven(i,j) 
  Geven(i,j)=Geven(i,j)/pGeven(i,j)
  pGeven(i,j)=NGeven(i,j)/pGeven(i,j) 
  else 
      pGeven(i,j)=0.0 
   p(i,j)=0.0 
   pGeven(i,j)=0.0 
  endif 
 end do 
end do    
    do i=1,N_grid 

        do j=1,NR_grid      
if(pGeven(i,j).gt.0.5.and.p(i,j).gt.0.5)then 
     if(C_Grid(i,j).lt.1)then       
    C_Grid(i,j)=M   
      call 
omnidirection(i,j,M,C_Grid,pGeven,p)   
    M=M+1  
    endif 
      endif 
  end do 
    end do   
    do i=1,N_grid 
        do j=1,NR_grid   
   do  
        Empty_check=0 
    if(C_Grid(i,j).gt.0)then 
           N1=(i-1)*N_interC+1
       N2=i*N_interC+1 
     do
    M1=(j-1)*N_interC+Start_R-StartR(N1)+1   
M4=(j-1)*N_interC+Start_R-StartR(N1)+N_interC+1  
      if(M4.le.1)then 
      N1=N1+1 
     if(N1.gt.N2)then 
     Empty_check=1 
      exit 
      endif 
       else 
         if(M1.le.0)M1=1 
          exit 
       endif  
    end do    
   if(Empty_check.eq.1)exit   
     do
    M2=(j-1)*N_interC+Start_R-StartR(N2)+1   
M3=(j-1)*N_interC+Start_R-StartR(N2)+N_interC+1 
      if(M3.le.1)then 
        N2=N2-1  
     if(N1.gt.N2)then 
        Empty_check=1 
         exit 
      endif 
       else 
         if(M2.le.0)M2=1 
          exit 
       endif 
    end do  
   if(Empty_check.eq.1)exit
        do 
               
If((abs(X(N1,M1))+abs(Y(N1,M1))+abs(Z(N1,M1))).gt.0.00
01.and.X(N1,M1).lt.900)then   
               exit  
     else  
      if(M1+StartR(N1).lt.M4+StartR(N1))then
          M1=M1+1 
    else        
write(*,*)'row of 1st point greater than 4th point' 
     if(N1.lt.N2)then 
           N1=N1+1
       else
          Empty_check=1 
                   exit
      endif 
      do   ! 
M1=(j-1)*N_interC+Start_R-StartR(N1)+1                    
M4=(j-1)*N_interC+Start_R-StartR(N1)+N_interC+1  
                     if(M4.le.1)then
                     N1=N1+1  
                     if(N1.gt.N2)then
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     Empty_check=1 
                         exit 
      endif  
                     else 
                        if(M1.le.0)M1=1 
                         exit 
                     endif  
                 end do ! 
     if(N1.gt.N2)then 
    Empty_check=1
                exit
      endif   
     endif 
      endif 
  end do     
    if(Empty_check.eq.1)exit      
      do           
If((abs(X(N2,M2))+abs(Y(N2,M2))+abs(Z(N2,M2))).gt.0.00
01.and.X(N2,M2).lt.900)then   
               exit 
    else        
if(M2+StartR(N2).lt.M3+StartR(N2))then  
          M2=M2+1
      else      
write(*,*)'row of 2nd point greater than 3rd point' 
     if(N2.gt.N1)then 
         N2=N2-1
       else
    Empty_check=1 
      exit
      endif 
      do   !                   
M2=(j-1)*N_interC+Start_R-StartR(N2)+1                    
M3=(j-1)*N_interC+Start_R-StartR(N2)+N_interC+1 
                     if(M3.le.1)then
                     N2=N2-1  
                     if(N1.gt.N2)then
        Empty_check=1 
                         exit
      endif 
                     else 
                        if(M2.le.0)M2=1 
                        exit  
                   endif    
                end do !  
    if(N1.gt.N2)then  
    Empty_check=1
                exit
      endif 
     endif 
      endif 
     
    end do    
    if(Empty_check.eq.1)exit    
      do            
If((abs(X(N2,M3))+abs(Y(N2,M3))+abs(Z(N2,M3))).gt.0.00
01.and.X(N2,M3).lt.900)then   
               exit  
     else       
if(M3+StartR(N2).gt.M2+StartR(N2))then  
          M3=M3-1
      else
     Empty_check=1 
       exit
     endif 
      endif 
       end do 
       if(Empty_check.eq.1)exit
        do          
If((abs(X(N1,M4))+abs(Y(N1,M4))+abs(Z(N1,M4))).gt.0.00

01.and.X(N1,M4).lt.900)then   
               exit  
     else  
      if(M4+StartR(N1).gt.M1+StartR(N1))then
          M4=M4-1
      else
     Empty_check=1 
       exit
     endif 
      endif 
       end do 
       if(Empty_check.eq.1)exit   
Area=abs(X(N1,M1)*Y(N2,M2)-
X(N2,M2)*Y(N1,M1)+X(N2,M2)*Y(N2,M3)-
X(N2,M3)*Y(N2,M2)+X(N2,M3)*Y(N1,M4)-
X(N1,M4)*Y(N2,M3)+X(N1,M4)*Y(N1,M1)-
X(N1,M1)*Y(N1,M4))/2.0       
defectv(C_Grid(i,j))=defectv(C_Grid(i,j))+(Area*Geven(i,j))   
defecta(C_Grid(i,j))=defecta(C_Grid(i,j))+(Area)       
      tarea=tarea+Area  
   tdarea=tdarea+(Area)                                        
       else
         N1=(i-1)*N_interC+1 
         
N2=i*N_interC+1    
  N11=N1   
   N22=N2  
    do 
    M1=(j-1)*N_interC+Start_R-StartR(N1)+1   
M4=(j-1)*N_interC+Start_R-StartR(N1)+N_interC+1  
      if(M4.le.1)then 
      N1=N1+1   
if(N1.gt.N2)then    
   Empty_check=1   
    exit   
    endif   
     else   
        if(M1.le.0)M1=1  
         exit  
      endif   
   end do     
   if(Empty_check.eq.1)exit
     do
    M2=(j-1)*N_interC+Start_R-StartR(N2)+1   
M3=(j-1)*N_interC+Start_R-StartR(N2)+N_interC+1 
      if(M3.le.1)then 
          N2=N2-1
     if(N1.gt.N2)then 
        Empty_check=1 
        exit 
      endif 
     else   
       if(M2.le.0)M2=1   
        exit   
     endif   
  end do     
 if(Empty_check.eq.1)exit     
 do               
If((abs(X(N1,M1))+abs(Y(N1,M1))+abs(Z(N1,M1))).gt.0.00
01.and.X(N1,M1).lt.900)then   
               exit  
    else        
if(M1+StartR(N1).lt.M4+StartR(N1))then  
       M1=M1+1   
  else      
if(N1.lt.N2)then           
N1=N1+1 
   else           
Empty_check=1                   



165 

 

exit        
endif 
  do   !                       
M1=(j-1)*N_interC+Start_R-StartR(N1)+1                    
M4=(j-1)*N_interC+Start_R-StartR(N1)+N_interC+1  
                     if(M4.le.1)then
                     N1=N1+1  
                     if(N1.gt.N2)then
     Empty_check=1 
                         exit 
      endif  
                     else 
                        if(M1.le.0)M1=1 
                         exit 
                     endif  
                  end do 
     if(N1.gt.N2)then 
   Empty_check=1 
                exit
      endif 
    endif  
     endif  
      end do  
     if(Empty_check.eq.1)exit  
    do              
If((abs(X(N2,M2))+abs(Y(N2,M2))+abs(Z(N2,M2))).gt.0.00
01.and.X(N2,M2).lt.900)then   
               exit  
    else        
if(M2+StartR(N2).lt.M3+StartR(N2))then  
         M2=M2+1 
     else 
    if(N2.gt.N1)then  
         N2=N2-1
       else
        Empty_check=1 
      exit
      endif 
      do   !                   
M2=(j-1)*N_interC+Start_R-StartR(N2)+1                    
M3=(j-1)*N_interC+Start_R-StartR(N2)+N_interC+1 
                     if(M3.le.1)then
                     N2=N2-1 
                     if(N1.gt.N2)then
        Empty_check=1 
                        exit 
      endif 
                     else 
                        if(M2.le.0)M2=1 
                         exit 
                    endif   
                end do ! 
   if(N1.gt.N2)then  
  Empty_check=1  
               exit 
     endif  
    endif  
     endif  
      end do  
      if(Empty_check.eq.1)exit    
do               
If((abs(X(N2,M3))+abs(Y(N2,M3))+abs(Z(N2,M3))).gt.0.00
01.and.X(N2,M3).lt.900)then   
              exit   
    else   
      if(M3+StartR(N2).gt.M2+StartR(N2))then
          M3=M3-1
      else
     Empty_check=1 
       exit

     endif 
     endif  
      end do  
      if(Empty_check.eq.1)exit   
do               
If((abs(X(N1,M4))+abs(Y(N1,M4))+abs(Z(N1,M4))).gt.0.00
01.and.X(N1,M4).lt.900)then   
               exit  
     else       
if(M4+StartR(N1).gt.M1+StartR(N1))then  
          M4=M4-1
      else      
write(*,*)'row of 4th point less than 1st point' 
     Empty_check=1 
        exit
     endif 
      endif 
       end do 
      if(Empty_check.eq.1)exit 
Area=abs(X(N1,M1)*Y(N2,M2)-
X(N2,M2)*Y(N1,M1)+X(N2,M2)*Y(N2,M3)-
X(N2,M3)*Y(N2,M2)+X(N2,M3)*Y(N1,M4)-
X(N1,M4)*Y(N2,M3)+X(N1,M4)*Y(N1,M1)-
X(N1,M1)*Y(N1,M4))/2.0   
 tarea=tarea+Area       
endif    exit 
   end do    
    end do 
    end do 
If(M.eq.1)then  
   write(*,*)'no defect detected' 
   write(9,*)'no defect detected' 
else  
write(9,*)'Total Detected Defect Number:', M-1 
write(9,*)'-----Defect Number-----Volume of the defect------
Area of the defect------'      
Do K=1,M-1 
   write(*,*)K,defectv(K),defecta(K) 
   write(9,*)K,defectv(K),defecta(K)    
   do i=1,N_grid 
        do j=1,NR_grid       
          If(C_Grid(i,j).eq.K)then 
      do ii=(i-
1)*N_interC+1,i*N_interC   
   if((j)*N_interC+Start_R-StartR(ii).gt.0)then 
  MM=(j-1)*N_interC+Start_R-StartR(ii)+1 
 if((j-1)*N_interC+Start_R-StartR(ii)+1.le.0)MM=1 
   do jj=MM,(j)*N_interC+Start_R-StartR(ii)  
If(X(ii,jj).lt.900)then                   
 If((abs(X(ii,jj))+abs(Y(ii,jj))+abs(Z(ii,jj))).gt.0.00
01)then       
                              
write(8,81)k,i,j,X(ii,jj),Y(ii,jj),Z(ii,jj),D(ii,jj)!k,Start_C+ii-
1,StartR(ii)+jj-1,X(ii,jj),Y(ii,jj),Z(ii,jj)     
                   endif 
                   endif  
      end do  
     endif    
      enddo  
   endif 
 end do 
end do 
end do 
endif  
 
write(9,*) 'Maxidepth=', Maxid 
write(9,*) 'Rating=', tdarea/tarea 
write(9,*) 'total area=', tarea  
write(*,*)tarea  
80       format(i6,i6,D19.6,D19.6,D19.6) 
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81       format(i6,i6,i6,D19.6,D19.6,D19.6,D19.6) 
82       format(i6,i6,D19.6,D19.6,D19.6,D19.6,D19.6)       
end 
 
Subroutine 
Initialplane(Start_C,End_C,EndR,End_R,X,Y,Z,a,b,c,T,Accu
racy) 
Implicit none 
Integer :: NC,NR,MC1,MC2,MR1,MR2     
Integer :: Start_C, End_C,End_R,MC,EndR(2000)   
Real*8 :: X(2000,3000),Y(2000,3000),Z(2000,3000) 
Real*8 :: Err,Ave1(3),Ave2(3),Ave3(3),D,Accuracy   
real*8 :: CL, CX, CY, CZ, DL, DM, DN, EL, EM, EN 
Real*8 :: a,b,c  
Real*8, dimension(3,3) :: T      
  
 
MC1=2 
MR1=2 
MC2=End_C-Start_C   
MC=(Start_C+End_C)/2-Start_C+1 
Do  
   MR2=EndR(MC2)-1 
     do 
   call 
Localpointcheck(MC1+1,MR1+1,X,Y,Z,Err,Ave1)  
    
         if(X(MC1,MR1).lt.100)then 
          exit  
         else 
          MR1=MR1+3 
         endif 
     enddo       
     do  
         call Localpointcheck(MC2-1,MR2-1,X,Y,Z,Err,Ave2)
  
         if(Ave2(1).lt.100)then 
       exit  
      else 
       MR2=MR2-3 
      endif 
     enddo  
  NC=MC 
     do         
         NR=4      
      do 
          
If((abs(X(NC,NR))+abs(Y(NC,NR))+abs(Z(NC,NR))).lt.0.00
01)then 
           NC=NC+1      
       else 
           exit 
       endif 
      end do    
    
      call 
Localpointcheck(NC+1,NR,X,Y,Z,Err,Ave3) 
      if(Ave3(1).lt.100)then 
       exit  
      else 
       NR=NR+3 
      endif 
      enddo     
      call 
Threepointplane(Ave1(1),Ave1(2),Ave1(3),Ave2(1),Ave2(2)
,Ave2(3),Ave3(1),Ave3(2),Ave3(3),a,b,c)         
   NC=MC     
   do 
      NR=EndR(NC)/2  

      
If(X(NC,NR).eq.0.0.and.Y(NC,NR).eq.0.0.and.Z(NC,NR).eq
.0.0)then 
       NC=NC-1     
  
   else 
       exit 
   endif 
   end do    
   call 
Distance(a,b,c,x(NC,NR),y(NC,NR),z(NC,NR),D)    
    
   If(D.gt.Accuracy*10)then 
      MR1=MR1+1 
   MC1=MC1+1 
   MC2=MC2-1 
   MC=MC+1    
   write(*,*)D 
   pause 
   else 
      exit 
   endif 
end do    
call ch(a,b,c,CL,CX,CY,CZ,DL,DM,DN,EL,EM,EN)    
call 
Coordinatematrix(CX,CY,CZ,DL,DM,DN,EL,EM,EN,T)
  
End Subroutine 
     
Subroutine Initialplane1(a,b,c,T)  
Implicit none 
Real*8 :: Ave1(3),Ave2(3),Ave3(3)    
real*8 :: CL, CX, CY, CZ, DL, DM, DN, EL, EM, EN 
Real*8 :: a,b,c  
Real*8, dimension(3,3) :: T   
    write(*,*)"Begin reading 3 reference points" 
    write(*,*)'first point x value' 
    read(*,*)AVe1(1) 
    write(*,*)'first point y value' 
    read(*,*)AVe1(2) 
    write(*,*)'first point z value' 
    read(*,*)AVe1(3) 
    write(*,*)'second point x value' 
    read(*,*)AVe2(1) 
    write(*,*)'second point y value' 
    read(*,*)AVe2(2) 
    write(*,*)'second point z value' 
    read(*,*)AVe2(3) 
    write(*,*)'third point x value' 
    read(*,*)AVe3(1) 
    write(*,*)'third point y value' 
    read(*,*)AVe3(2) 
    write(*,*)'third point z value' 
    read(*,*)AVe3(3) 
    write(6,*)'reference points' 
    
write(6,*)Ave1(1),Ave1(2),Ave1(3),Ave2(1),Ave2(2),Ave2(
3),Ave3(1),Ave3(2),Ave3(3)      
      call 
Threepointplane(Ave1(1),Ave1(2),Ave1(3),Ave2(1),Ave2(2)
,Ave2(3),Ave3(1),Ave3(2),Ave3(3),a,b,c)  
call ch(a,b,c,CL,CX,CY,CZ,DL,DM,DN,EL,EM,EN)   
call 
Coordinatematrix(CX,CY,CZ,DL,DM,DN,EL,EM,EN,T)
      
End Subroutine     
 
Subroutine tangent(C1,X,Y,Z,X1,Y1,Z1) 
implicit none      
   Real*8, intent(in) :: X,Y,Z,X1,Y1,Z1 
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   Real*8 :: C1(3), NL 
     NL=Sqrt((X1-X)**2+(Y1-Y)**2+(Z1-
Z)**2) 
  C1(1)=(X1-X)/NL 
  C1(2)=(Y1-Y)/NL 
  C1(3)=(Z1-Z)/NL  
End subroutine 
 
Subroutine Localpointcheck(M,N,X,Y,Z,Err,Ave) 
Integer :: M,N,I 
Real*8 :: X(2000,3000),Y(2000,3000),Z(2000,3000),Err, 
Ave(3),A(8) 
A(1)=sqrt((X(M,N+1)-X(M,N))**2+(Y(M,N+1)-
Y(M,N))**2+(Z(M,N+1)-Z(M,N))**2) 
A(2)=sqrt((X(M,N-1)-X(M,N))**2+(Y(M,N-1)-
Y(M,N))**2+(Z(M,N-1)-Z(M,N))**2) 
A(3)=sqrt((X(M+1,N+1)-X(M,N))**2+(Y(M+1,N+1)-
Y(M,N))**2+(Z(M+1,N+1)-Z(M,N))**2) 
A(4)=sqrt((X(M-1,N+1)-X(M,N))**2+(Y(M-1,N+1)-
Y(M,N))**2+(Z(M-1,N+1)-Z(M,N))**2) 
A(5)=sqrt((X(M+1,N)-X(M,N))**2+(Y(M+1,N)-
Y(M,N))**2+(Z(M+1,N)-Z(M,N))**2) 
A(6)=sqrt((X(M-1,N)-X(M,N))**2+(Y(M-1,N)-
Y(M,N))**2+(Z(M-1,N)-Z(M,N))**2) 
A(7)=sqrt((X(M+1,N-1)-X(M,N))**2+(Y(M+1,N-1)-
Y(M,N))**2+(Z(M+1,N-1)-Z(M,N))**2) 
A(8)=sqrt((X(M-1,N-1)-X(M,N))**2+(Y(M-1,N-1)-
Y(M,N))**2+(Z(M-1,N-1)-Z(M,N))**2)   
Err=0.0    
Do I=1,8 
 Err=Err+A(I) 
End do   
Err=Err/8.0   
Ave(1)=(X(M+1,N+1)+X(M+1,N)+X(M+1,N-
1)+X(M,N+1)+X(M,N)+X(M,N-1)+X(M-1,N+1)+X(M-
1,N)+X(M-1,N-1))/9.0  
Ave(2)=(Y(M+1,N+1)+Y(M+1,N)+Y(M+1,N-
1)+Y(M,N+1)+Y(M,N)+Y(M,N-1)+Y(M-1,N+1)+Y(M-
1,N)+Y(M-1,N-1))/9.0 
Ave(3)=(Z(M+1,N+1)+Z(M+1,N)+Z(M+1,N-
1)+Z(M,N+1)+Z(M,N)+Z(M,N-1)+Z(M-1,N+1)+Z(M-
1,N)+Z(M-1,N-1))/9.0     
End Subroutine 
 
Subroutine 
Threepointplane(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,a,b,c) 
Real*8 :: X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,a,b,c,D 
D=X1*Y2*Z3+X3*Y1*Z2+X2*Y3*Z1-X3*Y2*Z1-
X1*Y3*Z2-X2*Y1*Z3    
a=(-1.0)/D*(Y2*Z3+Y1*Z2+Y3*Z1-Y2*Z1-Y1*Z3-Y3*Z2) 
b=(-1.0)/D*(X1*Z3+X3*Z2+X2*Z1-X3*Z1-X1*Z2-X2*Z3) 
c=(-1.0)/D*(X1*Y2+X3*Y1+X2*Y3-X3*Y2-X2*Y1-
X1*Y3)   
End Subroutine 
 
Subroutine Distance(a,b,c,x,y,z,D) 
Real*8 :: a,b,c,x,y,z,D    
D=(a*x+b*y+c*z+1)/sqrt(a**2+b**2+c**2)    
End Subroutine 
 
subroutine ch(a,b,c,CL,CX,CY,CZ,DL,DM,DN,EL,EM,EN) 
implicit none 
 real*8, intent(in) :: a,b,c 
 real*8, intent(out) :: CL, CX, CY, CZ, DL, DM, 
DN, EL, EM, EN    
 real*8 :: H,H1    
 CX=a 
 CY=b 
 CZ=c   
 CL=sqrt(CX**2+CY**2+CZ**2)   

 CX=CX/CL 
 CY=CY/CL 
 CZ=CZ/CL    
 DL=-a/(a**2+b**2) 
 DM=-b/(a**2+b**2) 
 DN=1/c    
 H=sqrt(DL**2+DM**2+DN**2) 
 DL=DL/H 
 DM=DM/H 
 DN=DN/H   
 EL=1/a 
 EM=-1/b 
 EN=0.0  
 H1=sqrt(EL**2+EM**2+EN**2) 
 EL=EL/H1 
 EM=EM/H1 
 EN=EN/H1    
end subroutine ch    
 
Subroutine 
Coordinatematrix(CX,CY,CZ,DL,DM,DN,EL,EM,EN,TT) 
implicit none 
real*8, intent(in) :: CX, CY,CZ,DL,DM,DN,EL,EM,EN 
real*8, dimension(3,3) :: T 
real*8, dimension(3,3) :: TT   
 T=0.0 
 TT=0.0 
 T(1,1)=CX  
 T(2,1)=CY 
 T(3,1)=CZ  
 T(1,2)=DL 
 T(2,2)=DM 
 T(3,2)=DN 
 T(1,3)=EL 
 T(2,3)=EM 
 T(3,3)=EN    
 TT=Transpose(T)    
   
End subroutine 
 
Subroutine Pointrotate(aa,bb,cc,T)     
implicit none 
Real*8, dimension(3) :: A(3),B(3) 
Real*8, dimension(3,3) :: T 
Real*8 :: aa,bb,cc  
A(1)=aa 
A(2)=bb 
A(3)=cc 
call matmul(3,3,1,T,A,B) 
aa=B(2) 
bb=B(3) 
cc=B(1)    
End Subroutine 
 
subroutine matmul(L,M,N,A,B,C) 
implicit none 
integer L,M,N,I,J,K 
 REAL*8 A(L,M),B(M,N),C(L,N) 
 do I=1,N 
  do J=1,L 
   C(J,I)=0D0 
   do K=1,M 
   
 C(J,I)=C(J,I)+A(J,K)*B(K,I) 
   end do 
  end do 
 end do 
end subroutine matmul 
 
Subroutine omnidirection(i,j,M,C_Grid,pGeven,p) 
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implicit none 
  Integer, intent(in) :: I,J,M 
  Integer :: C, R,CC,RR,Level,CCL(10000),RRL(10000),L 
  Integer :: C_Grid(500,500) 
  Real*8 :: pGeven(500,500),p(500,500)       
 level=1     
 CCL(Level)=I 
 RRL(Level)=J 
 C=I 
 R=J 
  do 
      if(Level.gt.1)then 
      Level=Level-1 
      C=CCL(Level) 
      R=RRL(Level)       
  endif   
  L=0 
    do 
    if(L.eq.1)exit 
   do 
    L=0 
     if(C.gt.1)then 
        if(R.gt.1)then 
      CC=C-1 
      RR=R-1  
    if(C_Grid(CC,RR).lt.1)then     
if(pGeven(CC,RR).gt.0.5.or.p(CC,RR).gt.0.5)then 
     C_Grid(CC,RR)=M        
      C=CC 
      R=RR     
      Level=Level+1 
      CCL(Level)=C 
      RRL(Level)=R
         exit 
         endif 
         endif 
        endif   
     CC=C-1 
     RR=R 
  if(C_Grid(CC,RR).lt.1)then     
if(pGeven(CC,RR).gt.0.5.or.p(CC,RR).gt.0.5)then 
        C_Grid(CC,RR)=M    
         C=CC 
         R=RR 
     Level=Level+1
     CCL(Level)=C
    RRL(Level)=R   
         exit 
        endif 
      endif  
     CC=C-1 
     RR=R+1 
   if(C_Grid(CC,RR).lt.1)then    
if(pGeven(CC,RR).gt.0.5.or.p(CC,RR).gt.0.5)then 
        C_Grid(CC,RR)=M  
         C=CC 
         R=RR 
     Level=Level+1
     CCL(Level)=C
     RRL(Level)=R 
         exit 
        endif 
      endif 
        endif 
     if(R.gt.1)then 
        CC=C 
        RR=R-1 
       if(C_Grid(CC,RR).lt.1)then       
if(pGeven(CC,RR).gt.0.5.or.p(CC,RR).gt.0.5)then 
            C_Grid(CC,RR)=M    

            C=CC 
         R=RR 
     Level=Level+1
     CCL(Level)=C
     RRL(Level)=R  
         exit 
        endif 
      endif 
      endif 
     CC=C 
     RR=R+1 
   if(C_Grid(CC,RR).lt.1)then        
if(pGeven(CC,RR).gt.0.5.or.p(CC,RR).gt.0.5)then 
            C_Grid(CC,RR)=M   
         C=CC 
         R=RR 
    Level=Level+1 
     CCL(Level)=C
     RRL(Level)=R 
         exit 
        endif 
       endif 
   if(R.gt.1)then 
        CC=C+1 
        RR=R-1 
       if(C_Grid(CC,RR).lt.1)then        
if(pGeven(CC,RR).gt.0.5.or.p(CC,RR).gt.0.5)then 
            C_Grid(CC,RR)=M  
         C=CC 
         R=RR 
     Level=Level+1
     CCL(Level)=C
     RRL(Level)=R   
         exit 
        endif 
       endif 
       endif 
       CC=C+1 
       RR=R   
if(C_Grid(CC,RR).lt.1)then          
if(pGeven(CC,RR).gt.0.5.or.p(CC,RR).gt.0.5)then 
            C_Grid(CC,RR)=M   
         C=CC 
         R=RR 
    Level=Level+1 
    CCL(Level)=C 
     RRL(Level)=R  
         exit 
        endif 
       endif 
    CC=C+1 
    RR=R+1 
    
if(C_Grid(CC,RR).lt.1)then           
if(pGeven(CC,RR).gt.0.5.or.p(CC,RR).gt.0.5)then 
            C_Grid(CC,RR)=M    
         C=CC 
         R=RR 
     Level=Level+1
     CCL(Level)=C
     RRL(Level)=R 
         exit 
        endif 
       endif  
   L=1 
   exit 
     end do 
    if(level.gt.10000)then 
       write(*,*)'level',level 
    pause 
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    endif           
  end do   
  if(C.eq.I.and.R.eq.J.and.level.eq.1)then 
     exit 
  endif 
  end do 
 
end subroutine omnidirection  
subroutine matre1(M,A,B) 
implicit none 
integer M,I,J,K 
 REAL*8 A(M,M),B(M,M),L 
    do I=1,M 
  do J=1,M 
   B(I,J)=0D0 
   if (I.EQ.J) B(I,J)=1D0 
  end do 
 end do 
    do I=2,M 
  IF(ABS(A(I-1,I-1)).LT.1D-10) THEN 
  WRITE(*,*)'warning: the value of the 
digonal term is too small' 
  WRITE(*,*)'*** I-1=',I-1,'    A(I-1,I-
1)=',A(I-1,I-1) 
  ENDIF 
  do J=I,M 
   L=A(J,I-1)/A(I-1,I-1) 
   A(J,I-1)=0D0 
   do K=I,M 
    A(J,K)=A(J,K)-
A(I-1,K)*L 
   end do 
   do K=1,M 
    B(J,K)=B(J,K)-
B(I-1,K)*L 
   end do 
  end do 
 end do 
 do I=M,1,-1 
  do J=1,M 
   do K=I+1,M 
    B(I,J)=B(I,J)-
A(I,K)*B(K,J) 
   end do 
  B(I,J)=B(I,J)/A(I,I) 
  end do 
 end do 
end subroutine matre1 
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APPENDIX F: CLEARANCE MEASUREMENT PROGRAM 
 
 
Program main   
 
Write (*,*) 'Please enter the bridge number' 
read (*,*) Bridgenumber 
write (*,*) 'Please enter the section name you creat of the 
analysis part' 
Read (*,*) Sectionname 
write (*,*) 'Please enter adjust start row number' 
Read (*,*)Ad   
write(6,*) 'Bridge number=', Bridgenumber 
write(6,*) 'Section name=', Sectionname 
write(6,*) 'Start adjust row number=', Ad 
read (1,*) Start_C, Start_R 
 
I=1 
K=1 
NR=0  
read(1,*)Column, Row, DX(Column,Row-
Ad),DY(Column,Row-Ad),DZ(Column,Row-Ad) 
Start_R=Start_R-Ad 
End_R=Start_R 
 
do 
   j=2 
   StartR(Column)=Row-Ad     
   if(Start_R.gt.StartR(Column))Start_R=StartR(Column)   
   if(Column.lt.Start_C)then 
   i=i+Start_C-Column 
      Start_C=Column 
   endif  
   do 
      read(1,*)Column, Row, DX(Column,Row-
Ad),DY(Column,Row-Ad),DZ(Column,Row-Ad) 
   if((Row-Ad).lt.0.or.(Row-Ad).gt.6000)then 
      write(*,*)'exceed',Row-Ad, Column, Row 
      pause 
   endif         
  if(Column.gt.(i+Start_C-1))then          
     EndR(i+Start_C-1)=j+StartR(i+Start_C-1)-2  
   
      if(j.Gt.NR)NR=j   
      exit 
   else     
   endif            
   do 
       if((Row-Ad).gt.(StartR(Column)+j-1))then    
       j=j+Row-Ad-(StartR(Column)+j-1) 
        
    else 
    exit 
          endif 
      enddo        
   j=j+1  
   end do        
     
   if(Column.gt.4400)then 
       If(StartR(i+Start_C-1)+j-
2.gt.End_R)End_R=StartR(i+Start_C-1)+j-2 
    EndR(i+Start_C-1)=StartR(i+Start_C-1)+j-1 
    exit 
   else          
       i=i+1 
    End_C=Column          

    If(StartR(i+Start_C-1)+j-
2.gt.End_R)End_R=StartR(i+Start_C-1)+j-2    
     
   endif 
end do   
I=1  
NR=0 
gd=0.0 
NG=0 
read(2,*) GStart_C, GStart_R 
GStart_R=GStart_R-Ad 
read(2,*)Column, Row, GX(Column,Row-
Ad),GY(Column,Row-Ad),GZ(Column,Row-Ad) 
GEnd_R=GStart_R 
 
do 
   j=2 
   GStartR(Column)=Row-Ad     
   
if(GStart_R.gt.GStartR(Column))GStart_R=GStartR(Column
)   
   if(Column.lt.GStart_C)then 
   i=i+GStart_C-Column 
      GStart_C=Column 
   endif 
    
   do 
      read(2,*)Column, Row, GX(Column,Row-
Ad),GY(Column,Row-Ad),GZ(Column,Row-Ad) 
   gd=gd+abs(GZ(Column,Row-Ad)) 
   NG=NG+1   
   if(Column.gt.(i+GStart_C-1))then          
          
   GEndR(i+GStart_C-1)=j+GStartR(i+GStart_C-1)-2    
      if(j.Gt.NR)NR=j    
     
      exit 
   else     
   endif            
   do 
       if((Row-Ad).gt.(GStartR(Column)+j-1))then    
      j=j+Row-Ad-(GStartR(Column)+j-1)        
    else 
    exit 
          endif 
      enddo       
   j=j+1  
   end do          
   if(Column.gt.4400)then 
       If(GStartR(i+GStart_C-1)+j-
2.gt.GEnd_R)GEnd_R=GStartR(i+Start_C-1)+j-2 
  GEndR(i+Start_C-1)=GStartR(i+GStart_C-1)+j-1 
    exit 
   else          
       i=i+1 
    GEnd_C=Column       
    If(GStartR(i+GStart_C-1)+j-
2.gt.GEnd_R)GEnd_R=GStartR(i+GStart_C-1)+j-2       
   endif 
end do  
gd=gd/NG    
Do i=1,GEnd_C-GStart_C+1   
 Do j=GStartR(GStart_C+i-1),GEndr(GStart_C+i-1)          
        
  Empty_check=0 
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  M=1 
  do           
   if((abs(GX(GStart_C+i-1,j))+abs(GY(GStart_C+i-
1,j))+abs(GZ(GStart_C+i-1,j))).gt.0.0001)then  
    if(abs(abs(GZ(GStart_C+i-1,j))-gd).lt.0.5)then 
  
   do ii=End_C-Start_C+1,1,-1 
   a=(GX(GStart_C+i-1,j)-DX(Start_C+ii-
1,j))**2+(GY(GStart_C+i-1,j)-DY(Start_C+ii-1,j))**2 
  a=sqrt(a) 
  b=sqrt(DX(Start_C+ii-
1,j)**2+DY(Start_C+ii-1,j)**2+DZ(Start_C+ii-1,j)**2) 
 
 Accuracy=2.0*3.1416*320.0*b/(360.0*4304.0)
       
  if(a.lt.Accuracy)then 
    M=ii 
    Empty_check=1  
    exit 
    endif 
   end do 
  else 
   gdl=0.0 
   NGl=0.0 
   if((abs(GX(GStart_C+i-
4,j))+abs(GY(GStart_C+i-4,j))+abs(GZ(GStart_C+i-
4,j))).gt.0.0001)then 
     gdl=gdl+abs(GZ(GStart_C+i-4,j)) 
  NGl=NGl+1 
   endif 
   if((abs(GX(GStart_C+i-4,j-
3))+abs(GY(GStart_C+i-4,j-3))+abs(GZ(GStart_C+i-4,j-
3))).gt.0.0001)then 
  gdl=gdl+abs(GZ(GStart_C+i-4,j-4)) 
  NGl=NGl+1 
 endif 
 if((abs(GX(GStart_C+i-
4,j+3))+abs(GY(GStart_C+i-4,j+3))+abs(GZ(GStart_C+i-
4,j+3))).gt.0.0001)then 
  gdl=gdl+abs(GZ(GStart_C+i-4,j+3)) 
  NGl=NGl+1 
 endif 
 if((abs(GX(GStart_C+i-1,j-
3))+abs(GY(GStart_C+i-1,j-3))+abs(GZ(GStart_C+i-1,j-
3))).gt.0.0001)then 
  gdl=gdl+abs(GZ(GStart_C+i-1,j-3)) 
     NGl=NGl+1 
 endif 
 if((abs(GX(GStart_C+i-
1,j+3))+abs(GY(GStart_C+i-1,j+3))+abs(GZ(GStart_C+i-
1,j+3))).gt.0.0001)then 
  gdl=gdl+abs(GZ(GStart_C+i-1,j+3)) 
  NGl=NGl+1 
 endif 
 if((abs(GX(GStart_C+i+2,j))+abs(GY(GStart_C+i
+2,j))+abs(GZ(GStart_C+i+2,j))).gt.0.0001)then 
  gdl=gdl+abs(GZ(GStart_C+i+2,j)) 
  NGl=NGl+1 
 endif 
 if((abs(GX(GStart_C+i+2,j-
3))+abs(GY(GStart_C+i+2,j-3))+abs(GZ(GStart_C+i+2,j-
3))).gt.0.0001)then 
  gdl=gdl+abs(GZ(GStart_C+i+2,j-3)) 
  NGl=NGl+1 
 endif 
 if((abs(GX(GStart_C+i+2,j+3))+abs(GY(GStart_
C+i+2,j+3))+abs(GZ(GStart_C+i+2,j+3))).gt.0.0001)then 
  gdl=gdl+abs(GZ(GStart_C+i+2,j+3)) 
  NGl=NGl+1 
 endif 

 if(NGl.gt.0)then 
if(abs(abs(GZ(GStart_C+i-1,j))-gdl/NGl).lt.0.5)then 
   do ii=End_C-Start_C+1,1,-1 
    a=(GX(GStart_C+i-1,j)-DX(Start_C+ii-
1,j))**2+(GY(GStart_C+i-1,j)-DY(Start_C+ii-1,j))**2 
    a=sqrt(a) 
    b=sqrt(DX(Start_C+ii-1,j)**2+DY(Start_C+ii-
1,j)**2+DZ(Start_C+ii-1,j)**2) 
    
Accuracy=10.0*3.1416*320.0*b/(360.0*4304.0) 
   if(a.lt.Accuracy)then 
    M=ii 
    Empty_check=1  
   exit 
  endif 
 end do 
    endif 
 else 
  do ii=End_C-Start_C+1,1,-1 
    a=(GX(GStart_C+i-1,j)-DX(Start_C+ii-
1,j))**2+(GY(GStart_C+i-1,j)-DY(Start_C+ii-1,j))**2 
    a=sqrt(a) 
    b=sqrt(DX(Start_C+ii-1,j)**2+DY(Start_C+ii-
1,j)**2+DZ(Start_C+ii-1,j)**2) 
    
Accuracy=10.0*3.1416*320.0*b/(360.0*4304.0) 
    if(a.lt.Accuracy)then 
   M=ii 
      Empty_check=1  
   exit 
      endif 
   end do   
 endif 
  endif                            
 endif   
  exit                        
end do 
   if(Empty_check.eq.1)then 
 if((abs(GX(GStart_C+i-
1,j))+abs(GY(GStart_C+i-1,j))+abs(GZ(GStart_C+i-
1,j))).gt.0.0001)then 
   Dis=DZ(Start_C+M-1,j)-GZ(GStart_C+i-1,j) 
   CL(GStart_C+i-1,j)=Dis        
      write(3,81)GStart_C+i-1,j,Start_C+M-1,GX(GStart_C+i-
1,j),GY(GStart_C+i-1,j),GZ(GStart_C+i-1,j),Dis 
     endif 
   endif       
  end do   
end do  
80       format(D19.6,D19.6,D19.6) 
81       format(i6,i6,i6,D19.6,D19.6,D19.6,D19.6) 
82       format(i6,i6,D19.6,D19.6,D19.6,D19.6,D19.6)   
end 
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APPENDIX G: DISPLACEMENT MEASUREMENT PROGRAM 
 
 
   Program main     
 
Write (*,*) 'Please enter the bridge number' 
read (*,*) Bridgenumber 
write (*,*) 'Please enter the section name you creat of the 
analysis part' 
Read (*,*) Sectionname 
write (*,*) 'Please enter adjust start row number' 
Read (*,*)Ad  
 
do i=1,4 
    read(7,*)SC(i),SR(i),SX(i),SY(i),SZ(i) 
end do  
FX=0.0 
FY=0.0 
FZ=0.0 
FZ1=0.0 
write(6,*) 'Bridge number=', Bridgenumber 
write(6,*) 'Section name=', Sectionname 
write(6,*) 'Start adjust row number=', Ad 
read (1,*) Start_C, Start_R     
I=1 
K=1 
NR=0    
read(1,*)Column, Row, DX(Column,Row-
Ad),DY(Column,Row-Ad),DZ(Column,Row-Ad) 
Start_R=Start_R-Ad 
End_R=Start_R  
  
do 
   j=2 
   StartR(Column)=Row-Ad     
   if(Start_R.gt.StartR(Column))Start_R=StartR(Column)   
   if(Column.lt.Start_C)then 
   i=i+Start_C-Column 
      Start_C=Column 
   endif    
   do 
    read(1,*)Column, Row, X,Y,Z 
 if(Row-ad.le.4500)then 
 if(Row-ad.gt.0)then 
   DX(Column,Row-Ad)=X 
   DY(Column,Row-Ad)=Y 
   DZ(Column,Row-Ad)=Z      
   if(Column.gt.(i+Start_C-1))then  
    EndR(i+Start_C-1)=j+StartR(i+Start_C-1)-2 
    if(j.Gt.NR)NR=j 
   exit 
   else     
   endif        
   do 
     if((Row-Ad).gt.(StartR(Column)+j-1))then
  
     j=j+Row-Ad-(StartR(Column)+j-1) 
        
  else 
   exit 
        endif 
      enddo      
   j=j+1  
    endif 
 endif 
   end do        
     
   if(Column.gt.4400)then 

    If(StartR(i+Start_C-1)+j-
2.gt.End_R)End_R=StartR(i+Start_C-1)+j-2 
  EndR(i+Start_C-1)=StartR(i+Start_C-1)+j-1 
 exit 
   else          
   i=i+1 
   End_C=Column          
   If(StartR(i+Start_C-1)+j-
2.gt.End_R)End_R=StartR(i+Start_C-1)+j-2    
     
  endif 
end do 
 
I=1  
NR=0 
gd=0.0 
NG=0 
read(2,*) GStart_C, GStart_R 
GStart_R=GStart_R-Ad 
read(2,*)Column,Row,GX(Column,Row-
Ad),GY(Column,Row-Ad),GZ(Column,Row-Ad) 
GEnd_R=GStart_R 
do 
 j=2 
 GStartR(Column)=Row-Ad     
 
if(GStart_R.gt.GStartR(Column))GStart_R=GStartR(Column
)   
 if(Column.lt.GStart_C)then 
  i=i+GStart_C-Column 
  GStart_C=Column 
 endif    
 do 
  read(2,*)Column, Row, X,Y,Z 
  if(Row-ad.le.4500)then 
  if(Row-ad.gt.0)then 
  gX(Column,Row-Ad)=X 
  gY(Column,Row-Ad)=Y 
  gZ(Column,Row-Ad)=Z 
  gd=gd+abs(GZ(Column,Row-Ad)) 
  NG=NG+1   
  if(Column.gt.(i+GStart_C-1))then                   
    GEndR(i+GStart_C-1)=j+GStartR(i+GStart_C-1)-2    
    if(j.Gt.NR)NR=j         
    exit 
  else     
  endif         
  do 
   if((Row-Ad).gt.(GStartR(Column)+j-1))then     
  Gx(Column,Row-Ad)=0.0 
  Gy(Column,Row-Ad)=0.0 
  Gz(Column,Row-Ad)=0.0    
     j=j+Row-Ad-(GStartR(Column)+j-1)         
  else 
  exit 
  endif 
 enddo     
 j=j+1  
endif 
endif  
end do         
     
if(Column.gt.4400)then 
 If(GStartR(i+GStart_C-1)+j-
2.gt.GEnd_R)GEnd_R=GStartR(i+Start_C-1)+j-2 
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 GEndR(i+Start_C-1)=GStartR(i+GStart_C-1)+j-1 
 exit 
else          
 i=i+1 
 GEnd_C=Column       
 If(GStartR(i+GStart_C-1)+j-
2.gt.GEnd_R)GEnd_R=GStartR(i+GStart_C-1)+j-2    
     
endif 
end do  
a=(SX(1)-SX(2))**2+(SY(1)-SY(2))**2 
SX(5)=(SY(2)-SY(1))*(SX(1)*SY(2)-SY(1)*SX(2))/a 
SY(5)=-(SX(2)-SX(1))*(SX(1)*SY(2)-SY(1)*SX(2))/a    
a=DATAN(sqrt(SX(5)**2+SY(5)**2)/SZ(1)) 
ac=0.0006286           
SC(5)=a/ac 
a=DACOS(sqrt(SX(5)**2+SY(5)**2)/(SX(1)**2+SY(1)**2)
) 
ar=2.0*3.14159/9627.0 
SR(5)=SR(1)+(a/ar)  
FStart_C=SC(5) 
FEnd_C=max(SC(3),SC(4)) 
SX(6)=SX(1) 
SY(6)=SY(1) 
SZ(6)=SZ(1) 
SC(6)=SC(1) 
SR(6)=SR(1)   
if(((SX(6)*SY(6)).gt.0.0.and.(SX(6)/abs(SX(6))).gt.0.0).or.((
SX(6)*SY(6)).lt.0.0.and.(SY(6)/abs(SY(6))).gt.0.0))then 
   s1=DACOS(SX(6)/sqrt(SX(6)**2+SY(6)**2)) 
else 
  s1=2.0*3.14159-DACOS(SX(6)/sqrt(SX(6)**2+SY(6)**2)) 
endif    
gd=gd/NG 
 if(ad.ge.sr(1)-1)write(*,*)'error' 
Do i=1,FEnd_C-FStart_C+1        
 if(SC(1).lt.SC(2))then 
   if(FStart_C+i-1.lt.SC(1))then  
 FStartR(FStart_C+i-1)=SR(1)-(SR(1)-
SR(5))*(SC(1)-FStart_C-i+1)/(SC(1)-SC(5))-ad 
 FEndr(FStart_C+i-1)=SR(5)+(SR(2)-
SR(5))*(FStart_C+i-1-SC(5))/(SC(2)-SC(5))-ad 
   else    
    FStartR(FStart_C+i-1)=SR(1)+(SR(3)-SR(1))*(SC(1)-
FStart_C-i+1)/(SC(1)-SC(3))-ad 
 if(FStart_C-i+1.ge.sc(4))then 
   FEndr(FStart_C+i-1)=SR(4)-ad 
 else          
   FEndr(FStart_C+i-1)=max(SR(4),SR(2))-ad 
 endif        
  endif 
else     
        
  if(FStart_C+i-1.lt.SC(2))then  
 FStartR(FStart_C+i-1)=SR(1)+(SR(2)-
SR(1))*(SC(1)-FStart_C-i+1)/(SC(1)-SC(2))-ad 
 FEndr(FStart_C+i-1)=SR(4)+(SR(2)-
SR(4))*(SC(4)-FStart_C-i+1)/(SC(4)-SC(2))-ad 
  else 
    FStartR(FStart_C+i-1)=SR(1)+(SR(3)-SR(1))*(SC(1)-
FStart_C-i+1)/(SC(1)-SC(3))-ad 
 if(FStart_C-i+1.ge.sc(4))then 
  FEndr(FStart_C+i-1)=SR(4)+(SR(2)-
SR(4))*(SC(4)-FStart_C-i+1)/(SC(4)-SC(2))-ad 
 else 
  FEndr(FStart_C+i-1)=max(SR(4),sr(2))-ad 
 endif           
  endif 
endif   
if(i+FStart_C-1.ge.max(start_C,GStart_C))then 

 if(FEndr(FStart_C+i-1).ge.FStartr(FStart_C+i-
1).and.(FStartr(FStart_C+i-1).le.max(SR(3)-ad,SR(4)-
ad)))then  
 CD=0 
 cdg=0 
 cnd=0 
 cndg=0 
 ND1=0 
 N1=1 
  Do j=FStartR(FStart_C+i-1),FEndr(FStart_C+i-1) 
       
   a=SZ(6)*Dtan(ac*(FStart_C+i-1))   
   X=Dcos(s1-(j-SR(6)+Ad)*ar) 
   Y=Dsin(s1-(j-SR(6)+Ad)*ar) 
 FX(FStart_C+i-1,j)=a*X 
 FY(FStart_C+i-1,j)=a*Y 
    Empty_check=0 
    MD=1 
  c=sqrt(FX(FStart_C+i-1,j)**2+FY(FStart_C+i-1,j)**2) 
 do                 
  do ii=End_C-Start_C+1,1,-1 
   b=sqrt(DX(Start_C+ii-
1,j+ND1)**2+DY(Start_C+ii-1,j+ND1)**2+DZ(Start_C+ii-
1,j+ND1)**2) 
    if(b.gt.0.0)then 
  a=(FX(FStart_C+i-1,j)-DX(Start_C+ii-
1,j+ND1))**2+(FY(FStart_C+i-1,j)-DY(Start_C+ii-
1,j+ND1))**2 
  a=sqrt(a)                          
 
 Accuracy=0.5*sqrt((3.1416*320.0*b**2/(360.0*4
300.0*DZ(Start_C+ii-1,j+ND1)))**2+(c*ar)**2) 
  if(a.lt.Accuracy)then 
     MD=ii 
     ND=j+ND1  
     
     
     Empty_check=1  
     exit 
  endif     
  a=sqrt(DX(Start_C+ii-
1,j+ND1)**2+DY(Start_C+ii-1,j+ND1)**2) 
 
 if((c.gt.a+10.0*Accuracy).and.(a.gt.0.0))then 
    exit 
  endif 
 endif 
end do         
 if(empty_check.eq.0)then 
  do ii=End_C-Start_C+1,1,-1  
    b=sqrt(DX(Start_C+ii-
1,j+1+ND1)**2+DY(Start_C+ii-
1,j+1+ND1)**2+DZ(Start_C+ii-1,j+1+ND1)**2) 
    if(b.gt.0.0)then 
  a=(FX(FStart_C+i-1,j)-DX(Start_C+ii-
1,j+1+ND1))**2+(FY(FStart_C+i-1,j)-DY(Start_C+ii-
1,j+1+ND1))**2 
  a=sqrt(a)   
                      
 
 Accuracy=0.5*sqrt((3.1416*320.0*b**2/(360.0*4
304.0*DZ(Start_C+ii-1,j+1+ND1)))**2+(c*ar)**2) 
  if(a.lt.Accuracy)then 
   MD=ii 
   ND=j+1+ND1  
     
     
   Empty_check=1  
   exit 
  endif 
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  a=sqrt(DX(Start_C+ii-
1,j+1+ND1)**2+DY(Start_C+ii-1,j+1+ND1)**2) 
 
 if(c.gt.a+10.0*Accuracy.and.(a.gt.0.0))then 
   exit 
  endif 
   endif 
   end do 
endif      
 if(empty_check.eq.0)then 
 do ii=End_C-Start_C+1,1,-1 
 b=sqrt(DX(Start_C+ii-1,j-
1+ND1)**2+DY(Start_C+ii-1,j-1+ND1)**2+DZ(Start_C+ii-
1,j-1+ND1)**2) 
  if(b.gt.0.0)then 
    a=(FX(FStart_C+i-1,j)-DX(Start_C+ii-1,j-
1+ND1))**2+(FY(FStart_C+i-1,j)-DY(Start_C+ii-1,j-
1+ND1))**2 
 a=sqrt(a)                          
 Accuracy=0.5*sqrt((3.1416*320.0*b**2/(360.0*4
304.0*DZ(Start_C+ii-1,j-1+ND1)))**2+(c*ar)**2) 
 if(a.lt.Accuracy)then 
   MD=ii  
   ND=j-1+ND1   
        
   Empty_check=1  
   exit 
    endif 
 a=sqrt(DX(Start_C+ii-1,j-
1+ND1)**2+DY(Start_C+ii-1,j-1+ND1)**2) 
 if(c.gt.a+10.0*Accuracy.and.(a.gt.0.0))then 
   exit 
 endif 
  endif            
 end do 
endif    
 if(cd.eq.0.and.empty_check.eq.0)then 
  do ii=End_C-Start_C+1,1,-1   
 b=sqrt(DX(Start_C+ii-
1,j+2+ND1)**2+DY(Start_C+ii-
1,j+2+ND1)**2+DZ(Start_C+ii-1,j+2+ND1)**2) 
    if(b.gt.0.0)then 
  a=(FX(FStart_C+i-1,j)-DX(Start_C+ii-
1,j+2+ND1))**2+(FY(FStart_C+i-1,j)-DY(Start_C+ii-
1,j+2+ND1))**2 
  a=sqrt(a)                           
  
Accuracy=0.5*sqrt((3.1416*320.0*b**2/(360.0*4304.0*DZ(
Start_C+ii-1,j+2+ND1)))**2+(c*ar)**2) 
  if(a.lt.Accuracy)then 
   MD=ii  
   ND=j+2+ND1   
        
   Empty_check=1  
   CD=1 
   cnd=j 
   exit 
  endif 
   a=sqrt(DX(Start_C+ii-
1,j+2+ND1)**2+DY(Start_C+ii-1,j+2+ND1)**2) 
   if(c.gt.a+10.0*Accuracy)then 
  exit 
   endif  
  endif           
 end do  
    if(empty_check.eq.0)then 
  do ii=End_C-Start_C+1,1,-1   
   b=sqrt(DX(Start_C+ii-1,j-
2+ND1)**2+DY(Start_C+ii-1,j-2+ND1)**2+DZ(Start_C+ii-
1,j-2+ND1)**2) 

   if(b.gt.0.0)then 
    a=(FX(FStart_C+i-1,j)-DX(Start_C+ii-1,j-
2+ND1))**2+(FY(FStart_C+i-1,j)-DY(Start_C+ii-1,j-
2+ND1))**2 
    a=sqrt(a)         
    
Accuracy=0.5*sqrt((3.1416*320.0*b**2/(360.0*4304.0*DZ(
Start_C+ii-1,j-2+ND1)))**2+(c*ar)**2) 
  if(a.lt.Accuracy)then 
    MD=ii  
    ND=j-2+ND1  
         
    Empty_check=1  
    CD=1 
    cnd=j 
    exit 
  endif 
  a=sqrt(DX(Start_C+ii-1,j-
2+ND1)**2+DY(Start_C+ii-1,j-2+ND1)**2) 
  if(c.gt.(a+10.0*Accuracy))then 
     exit 
  endif  
 endif           
 end do  
    endif 
 endif   
 exit                        
end do       
     
 if(cd.gt.0.and.abs(cnd-j).gt.5)then 
    CD=0    
 endif 
 if(Empty_check.eq.1)then 
  if((abs(dX(Start_C+MD-
1,ND))+abs(dY(Start_C+MD-1,ND))+abs(dZ(Start_C+MD-
1,ND))).gt.0.0001)then 
  FZ(FStart_C+i-1,j)=DZ(Start_C+MD-1,ND)
     
    if(cd.gt.0)then 
     cnd=cnd+1     
    endif    
  endif 
   Empty_check=0 
      M=1       
   do ii=GEnd_C-GStart_C+1,1,-1 
     b=sqrt(GX(GStart_C+ii-
1,j+N1)**2+GY(GStart_C+ii-1,j+N1)**2+GZ(GStart_C+ii-
1,j+N1)**2) 
     if(b.gt.0.0)then       
 a=(FX(FStart_C+i-1,j)-GX(GStart_C+ii-
1,j+N1))**2+(FY(FStart_C+i-1,j)-GY(GStart_C+ii-
1,j+N1))**2 
  a=sqrt(a)            
 Accuracy=0.5*sqrt((ac*(b**2)/GZ(GStart_C+ii-
1,j+N1))**2+(c*ar)**2) 
  if(a.lt.Accuracy)then 
   M=ii 
   N=j+N1 
   Empty_check=1  
   exit 
  endif   
  a=sqrt(GX(GStart_C+ii-
1,j+N1)**2+GY(GStart_C+ii-1,j+N1)**2) 
  if(c.gt.a+10.0*Accuracy)then 
     exit 
  endif 
  endif             
 end do      
  if(empty_check.eq.0)then 
   do ii=GEnd_C-GStart_C+1,1,-1 
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    b=sqrt(GX(GStart_C+ii-
1,j+1+N1)**2+GY(GStart_C+ii-
1,j+1+N1)**2+GZ(GStart_C+ii-1,j+1+N1)**2) 
    if(b.gt.0.0)then 
  a=(FX(FStart_C+i-1,j)-
GX(GStart_C+ii-1,j+1+N1))**2+(FY(FStart_C+i-1,j)-
GY(GStart_C+ii-1,j+1+N1))**2 
  a=sqrt(a)   
                       
 
 Accuracy=0.5*sqrt((ac*(b**2)/GZ(GStart_C+ii-
1,j+1+N1))**2+(c*ar)**2) 
  if(a.lt.Accuracy)then 
   M=ii 
   N=j+1+N1 
   Empty_check=1  
   exit 
  endif   
  a=sqrt(GX(GStart_C+ii-
1,j+1+N1)**2+GY(GStart_C+ii-1,j+1+N1)**2) 
  if(c.gt.a+10.0*Accuracy)then 
    exit 
  endif   
  endif           
  end do 
 endif     
 if(empty_check.eq.0)then 
  do ii=GEnd_C-GStart_C+1,1,-1 
 b=sqrt(GX(GStart_C+ii-1,j-
1+N1)**2+GY(GStart_C+ii-1,j-1+N1)**2+GZ(GStart_C+ii-
1,j-1+N1)**2) 
 if(b.gt.0.0)then 
  a=(FX(FStart_C+i-1,j)-GX(GStart_C+ii-1,j-
1+N1))**2+(FY(FStart_C+i-1,j)-GY(GStart_C+ii-1,j-
1+N1))**2 
  a=sqrt(a)                         
  Accuracy=0.5*sqrt((ac*b**2/GZ(GStart_C+ii-
1,j-1+N1))**2+(c*ar)**2) 
  if(a.lt.Accuracy)then 
   M=ii 
   N=j-1+N1 
   Empty_check=1  
   exit 
 endif 
   a=sqrt(GX(GStart_C+ii-1,j-
1+N1)**2+GY(GStart_C+ii-1,j-1+N1)**2) 
   if(c.gt.a+10.0*Accuracy)then 
  exit 
   endif    
 endif            
    end do 
  endif   
  if(cdg.eq.0.and.empty_check.eq.0)then 
 do ii=GEnd_C-GStart_C+1,1,-1   
  b=sqrt(GX(GStart_C+ii-
1,j+2+N1)**2+GY(GStart_C+ii-
1,j+2+N1)**2+GZ(GStart_C+ii-1,j+2+N1)**2)  
  if(b.gt.0.0)then 
   a=(FX(FStart_C+i-1,j)-GX(GStart_C+ii-
1,j+2+N1))**2+(FY(FStart_C+i-1,j)-GY(GStart_C+ii-
1,j+2+N1))**2 
   a=sqrt(a)                         
   Accuracy=0.5*sqrt((ac*b**2/GZ(GStart_C+ii-
1,j+2+N1))**2+(c*ar)**2) 
   if(a.lt.Accuracy)then 
      M=ii 
    N=j+2+N1 
    Empty_check=1 
    cdg=1  
    cndg=j 

    exit 
   endif 
   a=sqrt(GX(GStart_C+ii-
1,j+2+N1)**2+GY(GStart_C+ii-1,j+2+N1)**2) 
   if(c.gt.a+10.0*Accuracy)then 
  exit 
   endif    
 endif          
   end do  
   if(empty_check.eq.0)then 
 do ii=GEnd_C-GStart_C+1,1,-1   
  b=sqrt(GX(GStart_C+ii-1,j-
2+N1)**2+GY(GStart_C+ii-1,j-2+N1)**2+GZ(GStart_C+ii-
1,j-2+N1)**2) 
  if(b.gt.0.0)then 
  a=(FX(FStart_C+i-1,j)-GX(GStart_C+ii-1,j-
2+N1))**2+(FY(FStart_C+i-1,j)-GY(GStart_C+ii-1,j-
2+N1))**2 
  a=sqrt(a)                         
  Accuracy=0.5*sqrt((ac*b**2/GZ(GStart_C+ii-
1,j-2+N1))**2+(c*ar)**2) 
  if(a.lt.Accuracy)then 
   M=ii 
   N=j-2+N1 
   Empty_check=1 
      cdg=1  
   cndg=j 
   exit 
 endif 
 a=sqrt(GX(GStart_C+ii-1,j-
2+N1)**2+GY(GStart_C+ii-1,j-2+N1)**2) 
 if(c.gt.a+10.0*Accuracy)then 
     exit 
 endif    
   endif          
  end do 
 endif     
    
 endif 
 if(cdg.gt.0.and.abs(cndg-j).gt.5)then 
  CDg=0 
 endif       
  
 if(Empty_check.eq.1)then 
  if(((abs(GX(GStart_C+M-1,N))+abs(GY(GStart_C+M-
1,N))+abs(GZ(GStart_C+M-
1,N))).gt.0.0001).and.((abs(FX(FStart_C+i-
1,j))+abs(FY(FStart_C+i-1,j))+abs(FZ(FStart_C+i-
1,j))).gt.0.0001))then 
 Dis=FZ(FStart_C+i-1,j)-GZ(GStart_C+M-1,N) 
 CL(FStart_C+i-1,j)=Dis  
 FZ1(FStart_C+i-1,j)=GZ(GStart_C+M-1,N)   
 if(cdg.gt.0)then 
   cndg=cndg+1       
 endif 
 write(4,83)FStart_C+i-1,j+Ad,FX(FStart_C+i-
1,j),FY(FStart_C+i-1,j),FZ(FStart_C+i-1,j),CL(FStart_C+i-
1,j)   
  endif 
  endif 
 endif   
end do     
endif 
endif         
end do  
interval=2 
Do i=1,FEnd_C-FStart_C+1 
 if(i+FStart_C-1.ge.max(start_C,GStart_C))then 
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 if(FEndr(FStart_C+i-1).ge.FStartr(FStart_C+i-
1).and.(FStartr(FStart_C+i-1).le.max(SR(3)-ad,SR(4)-
ad)))then  
  Do j=FStartR(FStart_C+i-1),FEndr(FStart_C+i-1) 
   if((abs(Fz(FStart_C+i-1,j)).gt.0).and.(abs(Fz1(FStart_C+i-
1,j)).gt.0.0).and.abs(CL(FStart_C+i-1,j)).lt.0.5)then 
   if(abs(CL(FStart_C+i+interval-
1,j)).lt.0.5.and.abs(CL(FStart_C+i-interval-
1,j)).lt.0.5.and.abs(CL(FStart_C+i-
1,j+interval)).lt.0.5.and.abs(CL(FStart_C+i-1,j-
interval)).lt.0.5)then 
   if((abs(FZ(FStart_C+i+interval-
1,j)).gt.0.0).and.(abs(FZ(FStart_C+i-interval-
1,j)).gt.0.0).and.(abs(FZ1(FStart_C+i+interval-
1,j)).gt.0.0).and.(abs(FZ1(FStart_C+i-interval-
1,j)).gt.0.0))then 
    strainc(FStart_C+i-1,j)=4*(CL(FStart_C+i+interval-1,j)-
2*CL(FStart_C+i-1,j)+CL(FStart_C+i-interval-
1,j))/((FX(FStart_C+i+interval-1,j)-FX(FStart_C+i-interval-
1,j))**2+(FY(FStart_C+i+interval-1,j)-FY(FStart_C+i-
interval-1,j))**2) 
   endif 
   if((abs(FZ(FStart_C+i-
1,j+interval)).gt.0.0).and.(abs(FZ(FStart_C+i-1,j-
interval)).gt.0.0).and.(abs(FZ1(FStart_C+i-
1,j+interval)).gt.0.0).and.(abs(FZ1(FStart_C+i-1,j-
interval)).gt.0.0))then 
    strainr(FStart_C+i-1,j)=4*(CL(FStart_C+i-1,j+interval)-
2*CL(FStart_C+i-1,j)+CL(FStart_C+i-1,j-
interval))/((FX(FStart_C+i-1,j+interval)-FX(FStart_C+i-1,J-
interval))**2+(FY(FStart_C+i-1,j+interval)-FY(FStart_C+i-
1,j-interval))**2) 
   endif 
   write(3,81)FStart_C+i-1,j+Ad,FX(FStart_C+i-
1,j),FY(FStart_C+i-1,j),FZ(FStart_C+i-1,j),CL(FStart_C+i-
1,j),strainc(FStart_C+i-1,j),strainr(FStart_C+i-
1,j),sqrt(strainc(FStart_C+i-1,j)**2+strainr(FStart_C+i-
1,j)**2)   
  endif      
  endif 
  end do 
 endif 
 endif 
end do     
81       
format(i6,i6,D19.6,D19.6,D19.6,D19.6,D19.6,D19.6,D19.6) 
83       format(i6,i6,D19.6,D19.6,D19.6,D19.6)      
end 
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