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ABSTRACT 

 

CURTIS D. KENDRICK.  The case for building on students’ proportional reasoning for 
slope-related tasks.  (Under the direction of DR. DAVID K. PUGALEE) 

 

The purpose of this research was to identify the proportional reasoning strategies that 

seventh-grade students use to solve slope-related problems relating to the origin and 

nonzero y-intercept.  In this qualitative study, students worked in pairs to complete 

problems and then participated in interviews in which they explained how they had 

arrived at their answers and why they had used specific approaches.   The aim was to 

contribute to the limited research that has yet been done on connecting proportionality 

and slope by assessing students’ thought processes based on their prior knowledge and 

collaboration when they encountered graphic and tabular questions relating to slope.  The 

approach here was informed by the work of Skemp (1976), who encouraged building on 

students’ prior knowledge in order to improve their ability to adapt to uncertain 

situations, reduce their need to memorize rules and heuristics, and enhance their intrinsic 

motivation to learn mathematics.  
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CHAPTER ONE: INTRODUCTION 

 

Dr. Martin Luther King Jr. (1947) declared that “The function of education is to 

teach one to think intensively and to think critically.  Intelligence plus character—that 

is the goal of true education.”  The first part of this quote seems, however, to be 

completely at odds with the current state of mathematics education in America.  Thus, 

the Third International Mathematics and Science Study (TIMSS; Silver, 1998) harshly 

criticized U.S. teachers for tending to “state” ideas rather than to “develop” them and to 

engage students in tasks involving low-level cognitive activity, such as memorization, 

rather than high-level thinking, such as reasoning and problem-solving.  The TIMMS 

study further indicted the U.S. mathematics curriculum as being repetitive and 

unfocused— “a mile wide and an inch deep”—in that more topics are included in the 

curricula at each grade level in U.S. schools compared with schools in most other 

countries (Silver, 1998, p. 14).   

The need to unearth and invoke a document that is 20 years old is reflected in 

the fact that research continues to describe the teaching of mathematics in the United 

States as broad and shallow in terms of both curricula (textbooks and standards) and 

actual instruction (Polikoff, 2012; Roller, 2016).  Thus the 2012 Program in 

International Student Assessment (PISA) ranked the United States twenty-seventh of 

the 34 industrialized countries in the Organization for Economic Cooperation and 

Development (OECD) in mathematics (PISA, 2012, p. 3) and identified weaknesses in 

the ability of U.S. students to perform cognitively demanding tasks and those involving 

mathematical literacy.  According to the report, students were unable to create effective 
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mathematical models of given situations in the form of terms or equations with 

variables for geometric or physical quantities.   

The distressing fact, then, is that the findings from the two reports, separated by 

14 years, are so similar.  Mathematics education in the U.S. continues to be viewed as 

failing to stress higher-level thinking and to make connections to real-world situations.  

It was accordingly unsurprising when the overall ranking of U.S. math students on the 

2015 PISA 2015 dropped to 30 of 35 OECD nations.   

Statement of the Problem 

 The consistent emphasis on procedural mathematics in today’s classrooms has 

deprived students of the opportunity to conceptualize mathematical ideas in terms of their 

own experiences and contexts.  Skemp (1976) advocated building on students’ prior 

knowledge as an effective means of improving their ability to adapt to uncertain 

situations, reducing their need to memorize rules and heuristics, enhancing their intrinsic 

motivation to learn mathematics, and stimulating their desire to become independent 

lifelong learners.  Also, cognitive science and brain research point to prior knowledge as 

the basis for new knowledge; thus, new experiences that build on earlier ones are much 

better retained (McGowen & Tall, 2010; De Lima & Tall, 2008; Tall, 2004).  Prior 

learning is leveraged when old ideas serve to make sense of new ones (McGowen, 2016). 

The PISA, though, as discussed, concluded that U.S. students are deficient when 

it comes to generating a mathematical model of a given real-world situation.  One 

possible explanation for this deficiency may relate to the specific failure of mathematics 

education to engage students’ prior proportional reasoning.  The ability to reason 

proportionally is of particular importance in that it marks the transition from numerical 
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reasoning to algebraic reasoning; in the words of one team of scholars, it “inherently 

involves some of the most important algebraic understandings having to do with 

equivalence, variables and transformations” (Lesh, Post, & Behr, 1988, p. 97).   

Research has identified the instructional focus of mathematics as the use of a rule 

to obtain a correct solution.  According to a number of studies, this focus on the mastery 

of skills, rather than on the use of prior knowledge to build conceptual understanding, has 

left students ill-equipped to use mathematics in their future careers (Carlson, 1998; 

McGowen & Tall, 2013; Stigler, Givvin & Thompson, 2010; Stump, 1999).  This study 

was designed to address this problem. 

Purpose of the Study 

Cai and Sun (2002) argued that proportional relationships play an influential role 

in students’ development of algebraic thinking and function sense.  Furthermore, research 

indicates that those with a solid foundation in proportional reasoning are prepared to 

understand the concept of slope and in particular are less susceptible to errors when 

calculating slopes on graphs with nonstandard measurements on the axes (Lobato & 

Thanheiser, 2002; Lobato, Ellis, & Munoz, 2003).  This kind of reasoning further enables 

students to understand the graph of a line as a collection of points representing an infinite 

number of equivalent ratios (NCTM, 2013). 

The purpose of this study is accordingly to identify proportional reasoning 

strategies that seventh-grade students use to solve slope-related problems and to 

investigate the manner in which they connect proportionality with slope.  I have followed 

a contextual approach that takes into account students’ experiences, the history of linear 

relationships, and research-based activities that have been successful in connecting 
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proportional reasoning to notions of linear rates of change.  Freudenthal (1977) theorized 

that, in order for school mathematics to be of value to students, they should learn by 

developing and applying mathematical concepts and tools in real-life situations that make 

sense to them (Van Den Heuvel-Panhuizen, 2003).   

Unfortunately, the concept of slope tends to be taught as an algorithm that finds 

the difference between two y-coordinate points in relation to the difference between two 

x-coordinate points with which it is associated as an ordered pair.  As a result, when 

students participate in activities involving slope, it is only seen as a mathematical concept 

associated with coordinate planes.  This approach to teaching slope lacks a key 

component, namely the development and application of mathematical concepts in the 

contextual format just referred to (Van Den Heuvel-Panhuizen, 2003).  

 My principal at the time of this study expressed frustration regarding the 

struggles of eighth-grade students at a previous school on the North Carolina End-of-

Year examination precisely because of the emphasis on problems relating contextually to 

slope.  This frustration had arisen because students were being taught traditional 

algorithms through non-contextual coordinate-plane problems with ordered pairs that 

were not meaningful, which naturally meant that they had difficulty applying an 

algorithm to contextual problems.  From this perspective, the absence of context impedes 

students’ success in fully comprehending slope, which involves understanding how one-

unit changes in relation to another.   

This type of learning is consistent with Freudenthal’s notion of proportional 

reasoning as the comparison of magnitudes of different quantities that share a meaningful 

connection or of two quantities that are conceptually related but not naturally considered 
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parts of a common whole.  Through this type of understanding, students can appreciate 

such relationships as those between crime and time, food yield and precipitation, pressure 

and temperature, velocity and time, and less commonly discussed relationships.  I 

therefore designed this qualitative study as a contribution to the literature on the use of 

students’ prior knowledge to make connections and build new mathematical concepts.  

A further consideration in the design of this study was that the introduction of 

formulas and symbols neglects the notion that formalization using symbolic 

representations should be the last stage of mathematical instruction (e.g., Freudenthal, 

1971).  Thus Gravemeijer (1997) argued for a bottom-up approach through which models 

are constructed using manipulatives and graphical representations as intermediate steps 

that support students’ progress from informal knowledge to the abstractions involved in 

the final stage.  

Research Questions 

Two research questions accordingly guided this study:   

1. What proportional reasoning strategies do participants use when solving slope-

related questions that pertain to nonzero y-intercepts? 

2. How do participants connect proportionality with slope? 

Significance of the Study 

Relatively little research has been conducted on students’ use of proportional 

reasoning strategies to solve slope-related problems.  The aim of this study was to offer 

insight for math educators regarding the role of proportional reasoning skills in a series of 

interviews with students to develop an understanding of slope.  Furthermore, the research 

that has been done has been quantitative in nature.  One study, that of Cheng (2010) 
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relied on a mixed-methods approach in which students completed ten-question proportion 

and steepness tests and scored them for accuracy and were then interviewed to assess the 

connection between proportionality and slope, but the analysis was decidedly more 

quantitative than qualitative, and the aim was to detect proportional reasoning in solving 

steepness problems asking such questions as which roof, stairs, or line was steeper, with 

the steepness of the line pertaining to direct variation.   

The reality is that slope relationships do not always commence from the origin 

and that units play an important part when describing data.  The steepness test did not 

depict units on the axis; therefore, this study’s goal was to use contextual slope problems 

in which students would determine the relationship between the different units and 

analyze the proportional reasoning skill that they used.  Part of the significance of the 

current study is that it did not focus solely on direct variation, as previous studies have 

done, but rather examined the techniques used when a nonzero y-intercept comes into 

play.  

A qualitative approach was considered the best means to offer detailed insight 

into how students’ existing proportional reasoning strategies can be used to solve slope-

related problems.  The students’ work and rationales were thus highlighted using a 

qualitative approach that focused on how they viewed graphic or tabular representations 

in which the dependent variable of slope changed in relation to change in the independent 

variable.  Conceptualizing this idea required proportional reasoning.  The concept of 

slope, as already noted, tends to be taught as an algorithm that finds the difference 

between two y-coordinate points in relation to the difference between two x-coordinate 

points associated with the ordered pairs and, as a result, when students participate in these 
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types of activities, slope is only seen as a mathematical concept associated with 

coordinate planes. This study accordingly explored how to extend the view of slope. 

Furthermore, this study explored how the teaching of proportional reasoning 

could emphasize the mathematical relationship between two items in problems that did 

not depend on the physical similarity between the items.  In this respect, the study has the 

potential to illustrate the benefits of teaching students to focus on quantitative 

relationships between the units of each object in the problem; for research has shown that 

the unit approach can lead most students to an intuitive understanding of proportional 

reasoning (Lawton, 1993).   

This study also stands to make a substantial contribution to science education.  In 

a study conducted by Woolnough (2000), some students were found to consider it 

improper to apply mathematical concepts to physics.  This notion was solidified as 

students were analyzing line graphs; thus, some were apprehensive about calculating the 

slope owing to their perception of it as a mathematical objective.  Planinic, Milin-Sipus, 

Kactic, Susac, and Ivanjek (2012) concluded that student knowledge is highly 

compartmentalized and that stronger links are need between science and mathematics 

through greater emphasis on the interpretation of graphs.  This disconnect may arise 

because students fail to build on instruction that lacks contextual relevance.   

Additionally, Stump (2001) found that students demonstrated a better 

understanding of slope as a measure of the rate of change—which graphically illustrates 

change in one unit relative to a corresponding change in another—rather than of 

steepness, thus providing context for the phenomenon relating the two units.  By using 
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contextual problems with graphs and tables, students were able to use prior knowledge 

and make learning mathematics more personal and applicable. 

It is, then, imperative that students focus on the applicable quantitative 

relationship involving units of slope, for through this approach they analyze change in 

one variable in comparison with another.  This study offers insights related to the ways in 

which students who have not been formally introduced to slope, draw on their 

proportional reasoning to make sense of non-zero y-intercept situations in a non-

algorithmic format owing to its focus on proportional relationships in a contextual 

manner.  Reiken (2009) pointed out that, since the slope formula does not provide any 

visual information regarding how y-values change relative to x-values, and since using 

the phrase “rise over run” does not provide any further information for understanding the 

rate of change, it is not clear whether students see slope as a measure of a rate of change 

or are simply recalling material learned from their beginning algebra class.   

Summary 

This first chapter has provided the rationale for this research study.  It is clear that 

there has been a decline in U.S. mathematics education in comparison with other 

countries.  In addition, students have difficulty understanding mathematical concepts 

relating to proportional reasoning.  This understanding is, however, crucial, as 

researchers have identified proportional reasoning as the cornerstone for understanding 

higher-level mathematics.  These perspectives underscore the importance of slope in 

relation to linear functions.  However, since slope is normally taught as an algorithm 

rather than a relationship between two units, the opportunity to connect it with 

proportionality is often lost.   
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Streefland (1991) argued that students show greater initiative when they are 

encouraged to construct and produce their own solutions, but traditional teaching focuses 

on content.  It is therefore important that math educators move away from traditional 

lesson planning in favor of what De Lange (1987) called “conceptual mathematization,” 

which helps students to choose the mathematical concept appropriate for a concrete 

situation.  In this way, students explore situations schematically and visually to discover 

patterns that lead to the development of mathematical models.   

Thus, through the process of reflecting and generalizing, students solidify their 

understanding of the concept.  This process is referred to as applied mathematization 

because students apply mathematical concepts to other aspects of their lives, which 

reinforces and strengthens them.  The aim of this study was to observe how students 

applied their previous proportional reasoning to slope-related problems.  The rationale for 

connecting proportional reasoning to slope has been explained in this introductory 

chapter; the idea of using contextual problems and students’ experiences as a springboard 

for this connection is based on Freudenthal’s notion of mathematics as a human activity. 

 Freudenthal’s ideas are discussed in greater detail in Chapter 2 as the theoretical 

framework that informs this study.  Also discussed is literature pertaining to how 

proportions and slope are connected, the benefit of this connection for understanding 

slope, and the theoretical basis for building on students’ prior knowledge.  Chapter 3 

discusses the research methodology with regard to the type of study, participants, 

research site, limitations, and the collection and analysis of the data.  Chapter 4 presents 

the findings and the themes that emerged from the collection of the data in relation to the 

research questions.  Finally, Chapter 5 discusses the analysis from Chapter 4, the 
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conclusions of the study, and the implications of the findings and offers 

recommendations for future research.    

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 



 

CHAPTER TWO: REVIEW OF THE LITERATURE 

 

The purpose of this study was to assess the viability of utilizing students’ prior 

knowledge of proportional reasoning in order to help them understand slope.  This 

chapter describes the relationship between slope and proportional reasoning.  In addition, 

the review of the literature explores use of the instructional design known as realistic 

mathematics education (RME) for teaching slope through proportional reasoning.  

Through a discussion of relevant mathematics education research, this review establishes 

the theoretical framework for the study, laying the foundation for the connection of 

proportionality to slope.  The early history of proportions is then approached from this 

perspective.  Next, research is explored that addresses aspects of the current math 

curriculum that support the merging of proportionality and slope.  Finally, the 

interdependence of slope and proportionality is examined in the context of other studies 

of specific tasks relating to these concepts.  

Theoretical Framework 

 Freudenthal (1977) had some dire predictions for the state of mathematics 

education in the twenty-first century: 

What will mathematics education look like in 2000?  The answer is simple.  There 

will be no more mathematics education in 2000, it will have disappeared.  There 

will be no more subject called mathematics, no math program, no math textbook 

to teach from. . . .  It is there to be lived and enjoyed, just as reading, writing, 

handicrafts, art, music, breathing in integrated education. (p. 294) 



 11 

This did not, of course, come to pass.  Math classes continue to be taught in the 

traditional manner, even as well as the spread of state-mandated testing has caused 

students anxiety about math and caused them to feel disconnected from it, leaving them 

with the age-old question, “When am I ever going to use this?”  Freudenthal’s conception 

of mathematics as a human activity thus appears to be no more than a dream.  

 It is essential to recognize that the theoretical rationale does not reflect the current 

status of mathematics education, in which students’ performance is quantified based on 

the percentage of questions that they answer accurately.  Freudenthal discussed how 

children acquire number sense in the course of their physical and mental activities, which 

makes it difficult for researchers to assess how this happens in detail.  The problem is that 

mathematics instruction is viewed as a basket of formulas and recipes that on closer 

examination may be full or empty.   

 Most people have been taught mathematics as a set of rules of processing, or 

algorithms (Freudenthal, 2013).  The problem with this notion is that, while this approach 

works for students who learn to master these rules, it is disastrous for those who fail to 

master them.  In part, mathematics is taught this way because that is the tradition.  This is 

the way in which mathematics teachers learned the subject themselves, though they have 

forgotten it was not the way in which really came to understand mathematics—if ever 

they did.  

Skemp used the terms “relational understanding” and “instrumental 

understanding” to describe types of pedagogies used in mathematics.  Relational 

understanding is defined by knowing what to do as well as why, while instrumental 

understanding involves “rules without reasons.”  Approached the latter way, students 
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learn mathematics by simply accepting that a rule obtains.  They do not question the law 

but apply it to problems that illustrate it.  Freudenthal (2013) considered the inculcation 

of instrumental understanding to be detrimental to students who are not algorithmically 

gifted. 

 It is the mental activity involved rather than the subject matter that characterizes 

mathematics.  This being the case, instruction should begin with common sense ideas.  

Rules learned in isolation are unlikely to develop a common sense of a higher order; put 

another way, a set of algorithms is useless unless one understands how and why they 

work.  When students are not taught to use an algorithm in a true-life situation in which 

common sense counts, they continue to depend on less efficient lower-order operations 

(Freudenthal, 2013).  The development of mathematical common sense originates in the 

acts of abridging and streamlining, as Skemp (1987) demonstrated in research comparing 

the performance of students who were given a definition as well associations that built 

upon prior knowledge with students whose instruction consisted of rote memorization.  

Such research has shown that schematic learning is twice as efficient as rote learning in 

promoting the retention of material knowledge.   

 This being the case, it is necessary to nurture the schema by means of which the 

individual student organizes past experiences and assimilates new data, for reconstruction 

is required before a new circumstance can be understood (Skemp, 1987).  The focus of 

instruction needs to shift to observations of everyday situations and to consider that both 

teaching and learning are best served by vigorous interaction between the guides and 

those being guided.  Mathematics education can no longer afford missed opportunities 
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because of the failure to make clear “why they did what they did” and “why they think 

what they think.” 

 Skemp (1987) accordingly discussed ways to enhance and develop the schema in 

terms of intuitive and reflective intelligence.  The intuitive level refers to individuals’ 

awareness through receptors (vision and hearing) of data from the external environment.  

From this perspective, the data automatically are automatically classified and related to 

other conceptual structures.  Skemp described reflective intelligence as the process 

through which intervening mental activities become the object of introspective 

awareness.  When an individual is able to reflect, to some degree, on his or her own 

schema and their use, important further steps can be taken.  Thus, for example, one can, 

through reflection, identify and correct errors in existing schema and to make beneficial 

changes.  Intuition, by contrast, can sometimes prove insufficient in the face of critical 

analysis and lead to inconsistency.  Reflection gives the learner the opportunity to 

formulate ideas explicitly and to justify them by deriving them logically from other ideas.  

In essence, Skemp was saying that argument and discussion are useful ways of reflecting. 

 The didactics of a subject area refer to the organization of relevant 

teaching/learning processes.  Learners should be allowed to find their own levels and to 

explore their own paths with as much or as little guidance as each particular case 

requires.  The implications in this respect are, first, that knowledge is better retained and 

more readily available when acquired through a student’s own efforts than when handed 

down by others.  Second, discovery can be enjoyable and learning by reinvention can be 

motivational.  Third, following Freudenthal (2013), mathematics should be experienced 

as a human activity.   
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 Traditionally, mathematics is taught as a ready-made subject.  Students are given 

definitions, rules, and algorithms according to which they are expected to proceed, but in 

fact only a small minority are able to learn mathematics this way.  Freudenthal (2013) 

described learning mathematics as a process of reinvention.  His concept of mathematics 

as a human activity is premised on the key notion that students should be given the 

opportunity to reinvent mathematics under the guidance of adults.   

 This notion was also supported by Skemp (1987), who stated that 

The teacher of mathematics has two important tasks: first, to make a conceptual 

analysis of the material; second, to plan carefully ways in which the necessary 

schemas can be developed, with particular attention to stages at which 

restructuring of the learner’s schema will be needed.  Then when in direct contact 

with learners, the teacher is responsible for general direction or guidance of the 

work, for explanation and for correction of errors.  The teacher also needs, to a 

varying extent, to create and maintain interest. (p.163) 

From this perspective, teachers need to build on students’ knowledge base and guide 

them to correct solutions rather than simply stating the answers to problems.  

Furthermore, it is imperative that teachers provide activities that are engaging and that 

promote a love of mathematics.   

 Skemp further discussed the intellectual discourse between teacher and student.  

The discourse has the teacher as the expert who is nourishing and expanding the students’ 

knowledge.  It is essential that dialogue between teacher and student be based on sound 

principles and in-depth analysis of the concepts being covered rather than taking the form 

of “rules without reasons.”  The conversation should also go beyond teacher-to-student to 
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include peer-to-peer interactions through which students can benefit from various 

perspectives in solving problems and thereby further enhance their schema.   

 There is no simple answer, since guiding reinvention means striking a delicate 

balance between the freedom of reinventing and the force of guiding, between allowing 

learners to please themselves and asking them to please their teachers.  Freudenthal 

(2013) realized that the learner’s free choice is already restricted by the “re” in 

“reinvention” but felt that guiding means maintaining just this balance between the force 

of teaching and the freedom of learning.   

 To be sure, algorithms allow individuals to act automatically for long stretches of 

time, avoiding the distracting interference associated with insightful thought; but 

algorithms are exacting, in that mastery is either complete or completely absent.  It is 

therefore time to move beyond the teaching of mathematics in accordance with a “learn 

first, understand afterward” approach.  Freudenthal described the development of 

mathematical concepts in terms of mathematization, a process through which students 

solve problems, look for problems, and organize subject matter in relation to 

mathematical activities.  Mathematization is a process that continues as long as reality 

continues to change, broaden, and deepen under a variety of influences—including that of 

mathematics, which in turn is absorbed by that changing reality. 

 Mathematization has two forms, horizontal and vertical.  In horizontal 

mathematization, the learning starts with contextual problems that ask students to 

describe situations and find solutions using their own language or symbols.  Vertical 

mathematization, by contrast, involves more or less sophisticated mathematical 

processing.  Horizontal mathematization, by leading from the world of life to the world of 
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symbols, offers learners flexibility when it comes to reaching solutions.  Vertical 

mathematization also begins with contextual problems, but in the long run learners are 

able to construct certain procedures that can be applied directly to similar problems.  In 

either form, mathematization bypasses the mathematical formulas that are commonly 

applied like recipes to a complex reality in ways that lack any intermediate model to 

justify their use. 

 Another essential cognitive factor that eliminates commonly used math recipes is 

the schema introduced above.  Skemp (1987) discussed a schema as “something which 

we can do to an idea or transformation” (p. 23) that is pertinent to students, asserting that 

“Our existing schemas are also indispensable tools for the acquisition of further 

knowledge.  Almost everything we learn depends on knowing something else already.” 

(p.25)    

Skemp concluded that it is necessary first to establish a well-structured foundation 

of basic mathematical ideas on which learners can build, to encourage learners always to 

be looking for these ideas in new situations, and to teach to them to reconstruct their 

schemas and to appreciate better approaches to solving problems.  This conception 

coincides with Freudenthal’s notion of retrospective learning, which refers to recalling 

old material whenever it is fitting to do so.  All of these considerations suggest that 

students should see similarities between proportionality and slope.  

 Algorithms created the fundamental antinomy within the didactics of mathematics 

of insight versus drill (Freudenthal, 2013), for which mathematization is the remedy.  

Rather than focusing on the rules, this approach offers a perspective on one’s intuitions 

and reflection on what appears to be obvious.  This approach, however, requires more 
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patience than most teachers are capable of.  Retention is fostered when students are able 

to create and use prior strategies to solve problems.  

 Retrospective learning serves a dual purpose: it roots the new matter in the old 

one, and it strengthens the old roots (Freudenthal, 2013).  Learning a new idea often 

involves nothing more than becoming more aware of a complex of previously little-

noticed bits of knowledge and abilities and of their interrelatedness.  This is the 

experience of retrospective learning.  Since this study was designed to determine how 

students use prior schematic proportional strategies to solve slope-related tasks, it is 

imperative that the theory behind it incorporate the students’ thinking rather than imposed 

rules. 

To support the notion of connecting students’ proportional reasoning to their 

understanding of slope, it is imperative to start with the instructional theory of RME for 

two reasons.  First, as Van Amerom (2002) discussed, the underlying educational theory 

remains underdeveloped; thus, the realization that new developmental research studies 

can produce a new impetus for theoretical ideas and their implementation in the 

classroom has not yet come about.  I find the notion of a theory that constantly evolves 

exciting because complacency can be detrimental to academic growth.   

The theoretical framework of RME is influenced by Freudenthal’s conception of 

mathematics as a human activity and the associated principle of learning mathematics as 

a reinvention process, and it also embraces his phenomenological analysis of the concept 

of number.  Gravemeijer (1994) has also discussed common ideas that arise during the 

developmental stage, including Van Hiele’s (1973) domain-specific instructional 

theories, Treffers’ (1978) analysis of the mathematical thinking processes, Ausbel’s 
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(1968) and Skemp’s (1987) cognitive psychological approaches, and activity theory as 

described by van Parreren and Carpay (1972), Gal’perin (1972), and Davydov (1972).  

RME is therefore more concerned with how students attain knowledge than in how a 

textbook purveys content.   

Constructivism lends itself to RME because it is a model of how learning takes 

place.  Yager (1991) called it a “most promising model” of learning (p.53), because the 

traditional teaching of rote memorization involves no interpretation and is rarely 

meaningful.  Therefore, most of what students memorize is gone (Cobern, 1992, p.108).  

However, the constructivist model of learning is built on three premises: (1) learning is 

always influenced by prior learning; (2) learning involves negotiation and interpretation; 

and (3) students need to be engaged in negotiation and interpretation of ideas (Cobern, 

1992).  This means that learning does not occur by transmission but interpretation.  Thus, 

interpretation is always influenced by prior knowledge as well as facilitated by discourse.  

This ideology supports the notion that students will us prior knowledge to solve slope-

related problems. 

Cobb et al (1991) described that a constructivist institutes a “problem centered 

approach in which the teacher and students engage in discourse that has mathematical 

meaning (p.25).  Therefore, constructivism might manifest itself through problem 

challenges, small-group work, and classroom discussions using curriculum materials. The 

implementation of meaningful curricula plays an intricate role.  The appropriate use of 

curricula allows students to reinvent and construct their own mathematical knowledge 

structures (Steffe & Kieren, 1994), which is beneficial in retaining knowledge.  

Additionally, Steffe and Kieren (1994) discussed how these created mathematical 
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knowledge structures serve as descriptors of constructs such as levels of units pertaining 

to ratios and constructive mechanisms such as unitizing, partitioning, proportionality 

operations, unit compositions and decomposition.  As a result, these descriptions can 

serve practicing teachers in two ways.  First, they can provide guides for listening and 

observing students and, second, they can provide potential sources both for content and 

organization of various mathematical curricula (Steffe & Kieren, 1994). 

Freudenthal’s (1973) concept of mathematics as a human activity is premised on 

the key idea that students should be given the opportunity to reinvent mathematics under 

the guidance of an adult.  Gravemeijer (1994) understood this view of mathematics 

education as being highly interactive, in that teachers build on students’ ideas, which “is 

only possible if the teacher reacts to what the student brings to the fore” (p. 13).  Thus, 

RME is concerned with building on the knowledge that students possess and not with the 

structured outline or the sequence of lessons in a textbook.  This emphasis is consistent 

with Skemp’s (1987) definition of schema as a means to symbolize cognitive 

development.  Skemp further justified his preference for a conceptual approach (schema) 

with an experiment in which one group of students was given a definition of a new 

concept as well as associations that built upon prior knowledge while another group was 

instructed through rote memorization; in this study, schematic learning proved to be 

twice as effective as rote learning in terms of retention of the material.    

  Second, RME is a vital theoretical framework because it both incorporates socio-

constructivist viewpoints and stresses the importance of problem-solving from an 

emergent perspective.  This theoretical point of view reveals the shortcomings of what 

Freire (1970) called “banking” in reference to the form of teaching that TIMSS 
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associated with mathematics education in the United States, which is utterly inconsistent 

with the notion that knowledge emerges through invention and reinvention.  Banking 

instead is predicated on the premise that students are containers or receptacles to be filled 

by the teacher; they memorize information and are only exposed to what the teacher 

deems important.  The downside of this approach is that, the more students work at 

storing the material deposited with them, the less they develop the critical consciousness 

that could lead them to reinvent and transform the world.   

The socio-constructivist approach is motivated by the desire to understand 

students’ mathematical learning as it occurs in the classroom or other social situations.  

Additionally, RME constitutes a highly compatible, domain-specific instructional theory 

that relies on real-world applications and modeling.  From the perspectives of both 

theories, mathematics is a creative human activity, and mathematical learning occurs as 

students develop effective ways to solve problems (Streefland 1991; Treffers 1987).   

In a Vygotskian sense, these approaches do not call for skill and drill instruction 

but rather serve as means of developing skills that students have not yet acquired; they 

also lead to an individual evaluation or test of learning.  The Vygotskian conception of 

proximal development emphasized the creation of social contexts in which children 

actively learn to use, try, and manipulate language in order to make sense or create 

meaning.  The lessons consist of a series of interrelated but diverse learning activities 

usually organized around a specific theme or topic.  Vygotsky (1990) asserted that “The 

role of the teacher is to foster the necessary guidance and mediations, so that children 

through their own efforts assume full control of diverse purposes and uses of oral and 

written language” (p. 9).   
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In order for students to have the opportunity to reinvent mathematics under the 

guidance of adults and to benefit from the insights of RME theory, they should first be 

exposed to a variety of real-world problems and situations (DeLange, 1996).  Applied 

problem-solving is the primary approach to teaching mathematics in the real-world 

context.  According to Hilton (1976), applied mathematics refers to a collection of 

activities directed toward the formulation of mathematical models, the analysis of the 

mathematical relations in these models, and the interpretation of the analytical results 

within the framework of their intended application.  

  The principles of instruction in RME described by Cobb (1994) and DeLange 

(1996) can be summarized as follows. 

• The starting points of instructional sequences should be experientially real 

to students so that they can immediately engage in personally meaningful 

mathematical activities. 

• In addition to taking into account students’ current mathematical ways of 

knowing, the starting points should also be justifiable in terms of the 

potential end points of the learning sequence. 

• Instructional sequences should involve activities in which students create 

elaborate symbolic models of their informal activities. 

• The foregoing three tenets can only be effective if they are part of 

interactive instruction, which involves explaining and justifying solutions, 

understanding other students’ solutions, agreeing and disagreeing, 

questioning alternatives, and reflecting. 
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• Consideration of real phenomena in which mathematical structures and 

concepts manifest themselves can lead to the intertwining of learning 

strands. 

 This study concentrated on the starting point because the concern was to identify 

a connection between proportional reasoning and slope.  The instructional starting point 

was the attempt to understand the consequences of earlier instruction rather than simply 

to document the typical age-appropriate level of reasoning (Den Akker, Gravemeijer, 

McKenney, & Nieveen, 2006).  Therefore, the Math Common Core Standards discussion 

will be later in the literature review to indicate how prior instruction supports the 

connection of proportionality and slope. 

Proportionality and Slope 

Historic Connections 
 
 Consideration of the annals of mathematical history in regard to proportions is 

important in terms of a principle of RME known as didactical phenomenology that, 

according to Freudenthal, is fundamental for applying the knowledge acquired through 

mathematics (Bell & Brookes, 1986).  Freudenthal (1983) urged mathematics educators 

to recognize that young learners can benefit from recapitulating a mathematical concept, 

structure, or idea in relation to the phenomenon with which it was first associated.  

Therefore, to assure that my subjects were placed in appropriate mathematical situations, 

I explored the history of proportions and looked for references to slope in an effort to 

select contextual problems that fell within the framework of RME.   

 As Rossmeissl and Webber (2006) have observed, the concept of proportions has 

existed since ancient times, having been discussed in Euclid’s Elements in the context of 
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commensurability; specifically, two segments are described as being commensurable if 

there is a segment that “measures” each of them, one that is contained within each 

segment a whole number of times.  Euxodus’s discovery of incommensurable quantities, 

however, led to a new theory of proportions independent of commensurability.  The 

inclusion of incommensurability allowed the concept of irrational numbers to be applied 

to proportions, thus expanding the coverage of mathematical topics to include  

• computational devices for approximating the roots of numbers,  

• operations and manipulations of expressions involving radicals,  

• the development of analytic geometry, with the attendant need to associate a 

number with every point on a line, and 

• algebraic symbolism, the theory of equations, and the development of calculus 

and its use with problems of limits and continuity (Rossmeissl & Webber, p. 

71).   

Thus, proportionality was historically associated with line segments.  In modern terms, 

Walter and Gerson (2007) and Schoenfeld, Smith, and Arcavi (1993) categorized this 

approach as a local means of comprehending slope.  A local level of understanding 

involves recognition and translation of slope for a specific segment of a line. 

 Descartes’s La Geometrie (1637) gave rise to analytic geometry, which brought 

together geometry and algebra.  Church (1851) defined analytical geometry as “that 

branch of Mathematics in which the magnitudes considered are represented by letters, 

and the properties and relations of these magnitudes made known by the application of 

the various rules of Algebra” (p. 2).  The system of Cartesian coordinates allowed for the 

use of letters in algebraic expressions.  Thus, equations with two kinds of quantities, x 
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and y, which are different for different points of the line, are called variables, and b, 

which remains the same, is called a constant. Thus, by using letters to represent 

magnitudes, this system eliminated the measuring of line segments because it was 

possible to use a scale with intervals to represent numbers instead of the actual 

measurements.  The notion of magnitude and its application to lines had already been 

discussed in the proportion section of Euclid’s Elements.  Nevertheless, slope in a 

classroom setting refers to the coordinate plane and is measured as the relational change 

in two units, thereby indicating that it is synonymous with proportionality.   

 This historical perspective sheds light on the modern definition of proportional 

reason by Karplus, Pulos, and Stage (1983) as a system of two variables between which 

there exists a linear functional relationship.  This perspective is also consistent with an 

understanding of slope on a global level in a functional context as the rate of change 

between two quantities (Walter & Gerson, 2007; Schoenfeld, Smith, & Arcavi 1993).  It 

is thus apparent that the similarities from a historical perspective reveal proportionality to 

be a step toward understanding slope as a relationship between changes in two variables, 

though the true nature of their coexistence is regulated by passage through the origin.  

The relationship is considered not to be proportional when a line intercepts the y-axis at a 

point other than zero.      

Current Curriculum  

Since the focus of this study was on how middle school students used 

proportional reasoning strategies to solve slope-related problems, it is naturally important 

to consider the current mathematics curriculum.  The Common Core State Standards for 

Mathematics (CCSSM) call for students in sixth grade to be able to describe the 
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relationship between two quantities, to understand the concept of unit rate, to use ratio 

and rate reasoning to solve real-world and mathematical problems about tables of 

equivalent ratios, and to plot pairs of values on a coordinate plane.  In algebra textbooks, 

these concepts would be presented in the sections on analyzing linear equations, but they 

are located under “Ratio and Proportional Relationships” in the CCSSM.   

Furthermore, the Common Core State Standards for Eighth Grade Mathematics 

listed as one critical area of instruction that students understand connections among 

proportional relationships, lines, and linear equations by using linear equations to 

represent, analyze, and solve a variety of problems.  Thus, eighth-grade students are 

expected to 

• recognize equations for proportions (y/x = m or y = mx) as special linear 

equations (y = mx + b), 

• understand that the constant proportionality (m) is the slope and that graphs 

are lines through the origin, and 

• understand that, because the slope (m) of a line is a constant rate of change, 

the output or y-coordinate changes by the amount m*A when the input or x-

coordinate changes by an amount A.   

 The National Assessment of Educational Progress (NAEP) which found that only 

20% of students were able to interpret slope based on a verbal description, only 33% 

were able to find collinear points in a table (NAEP, 2013), and only 41% were able to 

solve problems based on a linear graph.  These results demonstrate that the conceptual 

understanding of slope taught in middle school is insufficient.  Cheng (2010) concluded 

that one component of proportional reasoning essential to the transformation of algebra is 
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an understanding of slope in a range of contextual situations, examples including such 

linear relationships as those between distance and time, cost and the number of items 

bought, and hours worked and pay. 

Benson (2009) stressed that proportional reasoning is found in all strands of the 

middle school mathematics curriculum as students reason using multiplicative 

relationships in order to make quantitative, qualitative, or algebraic generalizations (p. 8).  

Thus, one study has reported that the proportional tasks encountered by students at school 

are usually formulated in a missing-value format, but that non-proportional tasks are not, 

so that students tend to develop a strong association between this format and 

proportionality as a mathematical model (Ainley & Pratt, 2005).    

Unsurprisingly, poor utilization of proportional reasoning in this respect prevents 

students from fully comprehending the aspect of change in one quantity in comparison 

with another.  Instead, this mathematical model approach embeds an equivalent ratio 

perspective that is less effective when it comes to understanding change in slope relative 

to another quantity.  It is therefore important to grasp that proportionality involves much 

more than establishing two ratios as equal and solving for the missing term; rather, 

proportionality involves recognizing related quantities and using numbers, tables, graphs, 

and equations to think about their relationship (NCTM, 2000). 

 Students would, then, benefit from discussing how one quantity is changing in 

relation to another as an exercise in describing the given data and formulating other 

quantities when the input changes.  This method would help to bridge the gap in terms of 

conceptualizing slope.  Moreover, studies suggest that such interventions as activity-

based instructional modes and explicit comparisons of correct and incorrect strategies can 
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be more effective than standard instruction.  According to Piaget and Inhelder (1958) 

adolescents’ proportional reasoning develops from a global compensatory strategy, often 

additive in nature, to an organized proportional strategy without generalization to all 

cases, and finally to the formulation of a law.  This last step could play a vital role in the 

connection of proportional reasoning strategies with slope provided that appropriately 

sequenced activities guide the way to the discovery.  

To be effective, these strategies need to integrate activities that go beyond mere 

paper-and-pencil computations.  Thus, Cloutier and Goldschmid (1978) found that 

discussing how to solve proportional problems led to significant improvement in 

comprehension.  Also, Freudenthal (1983) argued that 

formulating instructional objectives should be preceded by observing such 

learning processes as could reveal what is being, and thus what should be, 

learned; and that for observing learning processes as well as for educational 

development an indispensable precondition is a didactical phenomenology. (p. 

178) 

Thus, mathematics educators must seize upon opportunities for their students to 

experience mathematical concepts (such as proportionality and slope), structures, and 

ideas that have been invented to serve as tools to organize the phenomena of the physical, 

social, and mental world (Freudenthal, 1983).  This exploration could lead to 

improvements in the retention of mathematical concepts and in appreciation of their 

relatedness. 

Thus Stump (1999), for example, viewed proportional reasoning as equivalent to 

linear reasoning (slope) on the grounds that algebra textbooks frequently define the slope 
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of a line as the ratio of vertical rise to horizontal run moving from one point to another 

along the line.  However, frequent difficulties with slope and connecting various 

representations of it arise on the part of both students and teachers (Postelnicu, 2011).   

Nevertheless, most problems in textbooks are non-contextual, failing to connect 

mathematical phenomena to the real world.  Cheng (2010) accordingly concluded that 

middle school students’ study of proportional relationships through the lens of algebra 

can help them to learn slope.  According to the NCTM, algebraic thinking includes 

recognizing and analyzing patterns, studying and representing relationships, generalizing, 

and analyzing change.  In order to promote such thinking, it is important that the 

proportional relationships be rooted contextually so that students can use their prior 

knowledge to make connections.  

Stanton and Moore-Russo (2011) emphasized the need to address the proportional 

approach to slope in middle school given that the concept is a key means to describe the 

behavior of a function in secondary mathematics.  The constant slope of a linear function 

is the most basic rate of change that students encounter; thus, these scholars referred to it 

as a “powerful linking concept” to help understand functions and their graphs (p. 271).  

The conceptualization of slope as a rate thus often requires thinking of it as a functional 

property within the context of a real-world situation; in this respect, proportional 

reasoning is considered equivalent to linear reasoning.  The teaching of slope must, then, 

make use of a learning trajectory that accounts for the interdependence of proportional 

reasoning and slope.    

 It was from this perspective that Simon and Blume (1994) referred to slope a 

“ratio-as-measure”—because it involves the construction of a ratio as a given attribute.  
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Dealing with slope in this manner therefore requires students to reason proportionally.  

However, when working with the slope formula, students are expected to count squares 

on a coordinate grid system in order to find rise over run without ever realizing that they 

are describing a ratio (Lobato & Thanheiser, 2002).  Nagle and Moore-Russo (2014) 

argued for a focus in the sixth grade on proportional relationships so that students can 

simultaneously build their images of change involving two covarying quantities.  

 As mentioned earlier, in the seventh-grade CCSSM objectives, terms normally 

associated with the analysis linear functions are found under the topic of “Ratios and 

Proportional Relationships.”  The major terms that students are to understand relating to 

slope are unit rates, ratios, proportional relationships, and constant proportionality.  In 

seventh grade, students are expected to be able to determine whether two quantities are in 

a proportional relationship by testing for equivalent ratios in a table or graphing on a 

coordinate plane and observing whether the graph forms a straight line through the origin.  

  The last portion of the objective, which discusses the graph being a straight line 

through the origin, concerns what algebra textbooks term “direct variation.”  In the 

sequence of these textbooks, this concept is normally encountered right after students 

have been introduced to slope, though the CCSM refers to it as “constant 

proportionality.”  The rationale for this sequencing from the sixth to seventh grades is 

that students should be able to identify the slope in graphs, tables, and equations in order 

to compare two proportional relationships represented in different ways.  There is some 

irony in the fact that this objective is no longer found under “Ratios and Proportional 

Relationships” but instead has been transferred to the algebraic realm of “Expressions 
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and Equations.”  It thus appears that the curriculum itself makes a strong case for 

connecting proportionality with slope. 

Research Similarities  

 Numerous peer-reviewed research articles have demonstrated that proportionality 

and slope are analogous concepts.  The latter is a key part of algebra, an aspect of 

mathematics in which students underperform in the middle and secondary grades (Stump, 

2001).  Lobato and Thanheiser (2002) recognized that the relationship was not being 

explored empirically and that curricula were failing to make the connection explicitly.  

As already mentioned, the Mathematics Common Core Standards use a plethora of words 

to describe slope.  Moreover, the concept has been presented in connection with the 

proportional reasoning standards in the sixth and seventh grades and then used as an 

algebra standard in eighth, at which point the term “slope” is first used.  Under these 

circumstances, the connections between proportional reasoning and slope are naturally 

lost, despite the fact that both have ratios as their basis.   

 Additionally, algebra as it has traditionally been taught in schools tends to be a 

very rigid and abstract branch of mathematics with little direct connection to the real 

world.  It is often presented to students in terms of a pre-determined and fixed set of strict 

rules that leaves no room for their own input.  Traditional instruction begins with the 

syntax of algebra, presenting students with a symbolic language to which they do not 

relate (van Amerom, 2002).  

  On the other hand, because the proportional tasks that students encounter at 

school are formulated in a missing-value format (whereas non-proportional tasks usually 

are not), students as noted earlier tend to develop a strong association between this 
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problem format and proportionality as a mathematical model (De Bock, Van dooren, 

Janssens, & Verschaffel, 2002).  De Bock et al. (2002) produced empirical evidence for 

students’ disengagement, showing that they improperly applied direct proportional 

reasoning when problems were stated in a missing value format.  Changing problems to a 

comparison format in turn brought about substantial improvement.  It is therefore 

apparent that the comparative format is preferable in terms of both proportionality and 

slope, for this format increases students’ proportional understanding in the context of 

specific situations.  Nevertheless, U.S. schools still use traditional classroom settings in 

which students are simply told how to set up problems that correspond to various 

scenarios without giving them the opportunity to mathematize. 

 The use of contextual problems can likewise enhance the understanding of slope.  

In fact, students may have an intuitive understanding of slope based on their real-world 

experiences with covariation in such contexts as cooking (e.g., an egg for every cup of 

flour).  However, the example used by Hattikudur et al. (2012) involved discussing a rate 

in order to imply the use of a contextual slope problem, while in a traditional textbook 

this type of problem would be found in the chapter on proportions.  These researchers 

also stressed that students must be able to interpret and construct graphs of linear 

functions as a way of understanding slope and suggested that graphs presented that 

include only qualitative features (as opposed to numerical values) might help students to 

draw on their common sense and reality-checking strategies.  This qualitative aspect of 

slope can usefully be considered in terms of the three types of tasks described by Cramer, 

Post, and Currier (1993) for assessing proportional reasoning, namely  
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• missing value problems in which three pieces of information are provided and the 

task is to find a fourth, 

• numerical comparison problems in which two complete rates or ratios are 

provided and compared but no numerical answer is required, and 

• qualitative predictions and comparison problems that again do not ask for specific 

numerical values.   

 The final type of proportional assessment is practically identical to the concept of 

slope.  Furthermore, students’ ability to utilize their own strategies to solve problems by 

constructing graphs with correct slope may be attributable to their successful transfer of 

prior knowledge about slope in the context of tables over to graphs.  This is the crux of 

RME, in that students are creating rather than having an algorithm forced upon them.   

 Further discussion of graphs and tables is merited here.  Returning to the 

governing curricular standards, this type of mathematics is again found under the rubric 

of proportional reasoning standards in the sixth and seventh grades, though it is 

associated with algebra in this study.  This is another revealing example of how slope and 

proportionality are synonymous, though math educators have developed multiple terms 

for them. 

 If contextual problems were used that allowed students to formulate their own 

strategies through discourse rather than through the dictates of a textbook when seeking 

to solve problems, it would soon become clear that they become engaged in proportional 

and slope tasks from the point when they first learn fractions and describe line graphs.  

Students may also relate problems to their real-world experiences with covariation, for 

instance relating hills and mountains to the graphing of slope.  In light of recent research 
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on students’ understanding of covariation (Blanton & Kaput, 2004) as well as efforts to 

integrate algebraic ideas into elementary school mathematics curricula (Kaput, 1998; 

Olive, Izsak, & Blant, 2002), it is perhaps unsurprising that students tend to demonstrate 

a fairly good ability to graph slope even before the topic is addressed formally. 

 Covariation, however, is not always used to strengthen the understanding of slope.  

Thus Stump’s (1997) interviews with teachers confirmed that they had difficulty both in 

recognizing slope as a parameter or a constant rate of change in two covarying quantities 

and in interpreting graphs that required connections among various representations of 

slope.  Instead, secondary teachers again most often conceptualized slope as a geometric 

ratio, focusing on rise over run.  Students’ responses suggested that they relied on 

procedurally based conceptualizations of slope rather than on covariational reasoning.  

This is unfortunate, because use of these linear graphs and functional property 

conceptualizations implies that slope is a procedure and reveals little grasp of the 

significance of covarying quantities involved in physical and real-world applications.   

 It is precisely the covariational aspects of slope and its applications to physical 

phenomena that students should develop before entering calculus (Carlson et al., 2010).  

Instructors need to capitalize on students’ dominant conceptualizations and on real-world 

references as a foundation on which to build more advanced ideas when teaching slope.  

Once again, slope is revealed as synonymous with proportional reasoning.  Returning to 

the three assessments of proportional reasoning, the relevant one here involves numerical 

comparison problems, in which two complete rates or ratios are given and compared to 

explain covariation but no numerical answer is required. 
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 Furthermore, covariational reasoning, including the concepts of rate of change 

and growth rates of functions, has been identified as a key prerequisite for pre-calculus 

instruction (Carlson et al., 2010; Confrey & Smith, 1995).  Thus, returning to the 

argument of Lesh et al. (1998) that proportional reasoning is both the capstone of the 

middle school mathematics program and the cornerstone of all that is to follow, it is 

perhaps the case that the synonymy of the concepts is why the statement of slope plays 

such a critical role in the mathematics curriculum as  

• an important prerequisite concept for advanced mathematical thinking (Carlson, 

Oehrtman & Engelke, 2010; Confrey & Smith, 1995) and 

• a notion that is represented and conceptualized in many different contexts and 

settings (Stanton, & Moore-Russo, 2012; Stump 2001), requiring students and 

instructors to connect various conceptualizations to form a complete and unified 

concept image. 

Task Similarities 

 Here the aim is to highlight the similarities between proportional reasoning tasks 

and slope tasks in order to reinforce the importance of building on students' prior 

proportionality knowledge when they seek to solve slope-related tasks.  A good point of 

departure for this discussion is the notion of “ratio-as-measure” put forward by Simon 

and Blume (1994), according to which slope involves the construction of a ratio as a 

measure of a given attribute.  Lobato and Thanheiser (2002) described this type of 

thinking as a complex because it requires students to reason proportionally, whereas the 

slope formula allows them to count squares on a coordinate grid system and find rise over 

run without mentally formulating a ratio.  The latter researchers also observed that ratio-
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as-measure tasks involve aspects of modeling, such as focusing on one quantitative 

relationship or conceiving of an indirect measure when faced with direct measures, 

throughout their school career.   

Although the discussion has thus far focused on the similarities between slope and 

proportionality in terms covariation, it is important to keep in mind that proportionality is 

a multiplicative relationship that can be represented on the coordinate plane as linear 

functions that pass through the origin (Lobato & Ellis, 2010).  Therefore, once students 

have recognized the relationship, they can simply multiply the input value by the rate of 

change.  In the effort to make this connection, it is imperative that mathematics teachers 

assess students’ comprehension of uniform growth problems as well, since these 

problems illustrate an increase of y as a fixed multiple of x.  The fixed factor indicates 

dependence on the circumstances.  Uniform growth is described algebraically by a linear 

function as an additive phenomenon.  Thus, students must determine that growth is 

proportional to time elapsed.  This type of reasoning illustrates students’ readiness for 

algebra and makes clear the feature of graphs that gives them visualizing power equal to 

or greater than that of a table or a formula. 

Freudenthal (1983), as already mentioned several times, described a ratio as an 

equivalence relation in a set of ordered pairs of numbers or magnitude values as well as a 

ratio dependent on two sets of data.  This conception is consistent with the notion that 

ratios and slope are synonymous.  Ordered pairs are used to illustrate the position on a 

graph that contains two different units (one being the x and the other the y).  The plotting 

of these points on a graph determines whether there is a relationship between the two sets 
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of data: if the data progresses as a constant ratio, direct variation is observed.  This 

concept tends to be relegated in textbooks to the chapter on linear equations and slope. 

 Thus, for example, in Lobato and Thanheiser (2002) activity referred to as “same 

steepness,” students, when asked to create as many ramps as possible with the same 

steepness as a ramp with a height of 3 cm and a length of 12 cm, generated such solutions 

as 2 cm high and 8 cm long, 4 cm high and 16 cm long, and 1 cm high and 4 cm long.  

They thus constructed a multiplicative comparison, as they identified the length as being 

four times the height.  This is the same reasoning by which students find equivalent 

ratios, but the context used a real-world situation.   

 Similarly, in a “same speed” activity, students were asked to create a table of 

values that would make a frog in the Mathworlds environment move at the same speed as 

a clown moving 10 cm in 4 seconds.  Though the problem initially created some 

difficulties, techniques such as doubling and partitioning were developed and discussed 

as means of ascertaining solutions; thus, one pair of students discussed how 20 cm in 8 

seconds was the same because it is the same distance just walked twice.  However, the 

biggest breakthrough was the student who partitioned and iterated, explaining that 2.5 cm 

per 1 second was the same speed as 10 cm per 4 seconds.  The student recognized that the 

relationship was one-fourth of the 10 cm and one-fourth of the 4 seconds, and that, if the 

2.5 cm and 1 second were multiplied four times, this would re-create the original 10 cm 

in 4 seconds.  Once again, this reasoning demonstrates proportionality, as the students 

used doubling to create an equivalent ratio and a unit rate to explain equivalence.  In 

order for slope to be meaningful for them across a broad range of situations, students 
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need to develop an understanding of it as a ratio that measures some aspect of a situation 

(Lobato & Thanheiser, 2002, p. 174). 

 In these two slope examples, scalar strategies were prominent.  Nunes and Bryant 

(1996) argued that scalar solutions relate to children’s informal building up of such 

strategies as doubling and halving.  However, slope is a more functional relationship in 

that it serves to provide students with the explicit understanding that a fixed 

multiplicative relationship exists between the two measures.  These researchers 

concluded that the logic of a functional relationship between variables is the crux of 

modeling, which they defined as “the process of representing the world and operating on 

the representations to come to conclusions about the world” (Nunes, 2012, p. 2).  Ponte 

(1992) viewed linear functions as the simplest of these models and suggested that an 

understanding of this concept might support the use of more complex functions in science 

and mathematics. 

 Illustrative here is a proportional study by Pydah and Nunes (2012) on the use of 

schematic representations to improve students’ understanding of proportional reasoning.  

The objective was to help them move from a scalar to a functional appreciation of 

mathematical relationships.  The first problem that introduced a diagram asked, “Emily 

bought 4 balloons and paid £10 for them.  She went back and bought 12 more balloons 

for her class.  How much did she have to pay for 12 balloons?”  The schematic diagram 

showed how to utilize scalar thinking by multiplying the balloons by 3, which was at the 

top of the diagram, and then the money by 3, which was at the bottom of the diagram.  In 

this way, the students were introduced to tables, which tend to be incorporated into the 

algebra curriculum as they look for relationships that can help them to devise equations, 
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and taught proportional reasoning that involved setting up cross-multiplicative ratios.  

This type of problem is normally presented in the context of an algorithm that can solve 

any proportion problem but that does not offer opportunities to view relationships.   

 In the second session, the functional approach was introduced as a means of 

utilizing the linking table, the aim being to express visually the notion of a constant 

multiplicative relationship between two variables.  This approach bears comparison to the 

discussion of slope, as the aim was for students to see how the two units vary in relation 

to one another.  The specific problem asked, “In school, there is a hamster.  It eats 12 

scoops of food in 4 days.  How much food will the hamster need for 7 days?”  The 

researcher denoted the given pair (4 days and 12 scoops) on corresponding lines, but this 

time the students were first asked to find the amounts for 2 days and 1 day and then told 

to focus on the constant vertical relationship between the two lines.  Once the students 

observed the functional link of “times 3,” they were able to solve the problem.  It is ironic 

that a proportional study would introduce functional relations, as this topic is normally 

introduced in connection with algebra, but in any case, proportional reasoning is once 

more seen to be synonymous with slope.   

Summary 

 Slope and proportional reasoning, then, coincide in terms of meaning as well as 

the tasks with which they are associated, and are indeed found to be similar from the 

perspectives of history, appearance in curricula, and various research studies.  The 

ultimate objective, however, whether tasks are considered proportional or in terms of 

slope, is for students to transfer knowledge and to make connections with other subjects 

and in particular with their everyday experiences.  This goal can be achieved through 
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mathematical explorations in which students learn to construct and interpret scatter plots 

of bivariate data and to investigate linear patterns.  Perfect linearity is of course less 

frequent in reality than in the problems used in math class, but the ability to apply 

interpretations and make conjectures based on how units vary is essential.  The literature 

review made clear that this ability can be categorized in terms of either proportionality or 

slope.   

All of this raises the question of why these concepts continue to be treated as 

different algorithms into which numbers are inserted in order to generate solutions.  By 

way of a working definition, either slope or proportionality can be said to denote 

reasoning in the context of a system of two variables between which there exists a linear 

functional relationship, reasoning that leads to conclusions about a situation or 

phenomenon that can be expressed as a constant ratio (Karplus, Pulos, & Stage, 1983).  

The research discussed in this chapter supports students’ use of proportional reasoning 

strategies to carry out slope-related tasks.  Thus, Lobato and Thanheiser (2002) observed 

that, while some educators have held that the teaching of slope should not go beyond the 

slope formula, this approach is only useful in solving textbook problems and cannot be 

easily applied to real-world situations involving rates of change, which are usually 

messier and more complex (Lobato & Thanheiser, 2002).



 

CHAPTER THREE: METHODOLOGY 

 

 The purpose of this study was to describe how a group of seventh-grade students 

used prior proportionality strategies to solve slope-related problems.  It was hypothesized 

that mathematics educators can promote students’ understanding by approaching slope 

problems in a way that draws on their prior knowledge rather than from the traditional 

“change in y over the change in x” perspective.  An old Chinese proverb that reads “Tell 

me and I will forget; show me and I may remember; involve me and I will understand” 

well describes students’ experiences with proportional reasoning and slope-related 

problems.   

 This chapter details the research design, the procedures employed, and the 

interpretive framework for the data analysis, offers a subjectivity statement, and discusses 

possible limitations to the study, which, again, was designed to answer the following 

research questions: 

1. What proportional reasoning strategies do participants use when solving 

slope-related questions that pertain to nonzero y-intercepts? 

2. How do participants connect proportionality with slope? 

Research Methodology 

This qualitative research incorporated a case study approach, the rationale being 

that case studies shed light on relatively large-scale phenomena through extensive 

examination of specific instances, depicting events, processes, and perspectives as they 

unfold (Rossman & Rallis, 2012).  Additionally, case studies are considered useful 

because of the rich description that they provide and their heuristic value.  Four separate 
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case studies were included in this study, each involving two students.  This design 

enabled cross-case analyses and comparisons that identified the commonalities and 

differences listed in the discussion section.   

A qualitative methodology involving discourse analysis was also used to 

determine the effectiveness of drawing on students’ prior experiences with proportional 

reasoning and strategies as a means to advance their understanding of slope.  A 

qualitative study was also considered the best approach in this respect because the focus 

was on the meaning of the experiences, actions, and events for the participants and 

researchers and their subcultures (Henwood, 1996).  Flick (2002) has asserted that 

qualitative studies “Do more justice to the object of research than is possible in 

quantitative research” (p. 8), the idea being that such studies gather details on 

individuals’ thinking processes rather than quantifying participants based on their scores 

on a survey.  In the present context, qualitative approaches enable education researchers 

to explicate how students acquire false beliefs, thereby providing insight into their 

reasoning processes and the assumptions that contribute to their misconceptions 

(Kalinowski, Lai, Fidler, & Cunningham, 2010).  

In order to assess the viability of the chosen approach and to optimize the 

procedures, I carried out a pilot study involving two participants.  The rationale for the 

pilot study was two-fold.  First, as Simon (2011) observed, a pilot study is a strategy that 

allows researchers to address resolvable issues prior to commencement of the main study, 

such as checking that 

• the instructions are comprehensible, 

• the investigators and technicians are sufficiently skilled in the various procedures, 
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• the questions are properly worded, 

• the results are reliable and valid, and 

• the statistical and analytical processes are effective. 

In sum, pilot studies help to identify flaws in research designs.  They also serve as 

retrospective analysis in the context of RME.  Although this study did not follow the full 

research design approach, I nevertheless considered it imperative to conduct a pilot study 

to reflect on my findings and refine my questions and analysis for the larger study. 

 The implications of the pilot study were that a connection was indeed discernible 

between slope and proportional reasoning, as the two participants experienced great 

success in ascertaining the appropriate solution using math skills that had been acquired 

previously.  However, it was also evident that students were unlikely to have any idea 

why the cross-multiplication algorithm a/b = c/d is valid, as the participants in the pilot 

study themselves admitted.  Thus, in order to draw firm conclusions regarding any 

connection between proportionality and slope, I determined that the main study must 

follow the principles outlined by DeLange (1996), which can be summarized as follows: 

• the starting points of instructional sequences should be experientially real 

to students so that they can immediately engage in personally meaningful 

mathematical activities; 

• in addition to taking into account the students’ current mathematical ways 

of knowing, the starting points should also be justifiable in terms of the 

potential end points of the learning sequence; and 

• instructional sequences should involve activities in which students create 

elaborate symbolic models of their informal activities. 
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With the help of the pilot study, then, I identified proportional problems that were 

relatable for the students while also accounting for their current mathematical knowledge.  

I selected problems that built on their prior knowledge but with slope in mind as the 

endpoint.  These problems were selected from peer-reviewed mathematical studies—

specifically as well as the National Assessment of Educational Progress (NAEP) and the 

North Carolina Department of Instruction (NCDPI)—in order to ensure their reliability 

and validity.   

Following the lead of Lawton (1993), the problems used for the study allowed 

students to observe the relationships among units rather than being based on an 

algorithmic model, affording them the freedom and flexibility to utilize their prior 

knowledge to arrive at solutions.  According to the NCTM (2000), capability with 

proportionality involves much more than simply establishing two ratios as equal and 

solving for the missing term, including recognizing quantities that are related 

proportionally and using numbers, tables, graphs, and equations to think about the 

quantities and their relationship. 

 Following the pilot, the study was scaled up to include eight students (those from 

the pilot study did not participate in the main study).  In addition, the questions asking 

students about the meaning of proportional reasoning were omitted.  The goal of RME is 

for students to mathematize problems and not to concern them with terms or levels that 

determined by the teacher and textbook.  The final study included seventh graders from a 

suburban charter school enrolled in Math 7 as well Pre-Math, the thinking being that, if 

the bottom-up approach is in fact used, there should be no discrimination in terms of 

math classification.   
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 The participating students also worked in pairs, using discourse as a means to find 

solutions to the various problems.  This approach is in keeping with the social 

constructivism that provides part of the theoretical framework for this study.  Thus, RME 

is based on the notion that mathematical development is socially situated and that 

knowledge is constructed through interactions with others.  It was therefore essential that 

I be guided by and reflect on the importance of discourse in understanding mathematical 

concepts and connections.   

 Barnes (1976) discussed the ways in which 

Speech unites the cognitive and the social.  The actual (as opposed to the 

intended) curriculum consists in the meanings enacted or realized by a particular 

teacher in the class.  In order to learn, students must use what they already know 

so as to give meanings to what the teacher presents them.  Speech makes available 

a reflection the processes by which they relate new knowledge to old.  But this 

possibility depends on the social relationships, the communication system, which 

the teacher sets up. (cited in Cazeden, 2001, p. 2) 

This profound statement is crucial to mathematics reform, for too many educators 

continue to dictate the dialogue in the classroom, asking students merely to regurgitate 

the solutions or information presented.   

 Ideally, discourse in the mathematics classroom should involve whole-class 

discussions of mathematics that reveal students’ understanding of concepts by engaging 

them in mathematical reasoning and debate (Macguire & Neill, 2006).  It is imperative to 

pose premeditated questions that force them to make clear both how a problem was 
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solved and why a specific method was selected.  In this way, students learn to critique 

their own and others’ conjectures as well as to identify plausible mathematical solutions.   

 The theory behind classroom discourse evolved, as alluded to earlier, from 

constructivist views of learning according to which knowledge is created internally 

through students’ interactions with the environment in the context of various socio-

cultural perspectives on learning.  Following this approach, students work together to 

reach understandings that they could not have reached working alone (Macguire & Neill, 

2006).  Moreover, the Principles and Standards for School Mathematics advocated by the 

NCTM (2000) called for the replacement of traditional classrooms with communities of 

learners who communicate with each other and by groups of students voicing their 

opinions in whole class discussions.  For such a situation to come about, talking about 

mathematics in the classroom must be considered acceptable, indeed essential, so that 

verbal explanations and defenses of ideas become the defining features of quality 

mathematical pedagogy (Walshaw & Anthony, 2008).   

 Furthermore, researchers have found that both the cognitive and material 

decisions that teachers make in relation to classroom discourse significantly influence 

learning (Walshaw & Anthony, 2008).  To be more specific, classroom work is enriched 

when discussion involves the construction of mathematical knowledge through the 

respectful exchange of ideas as teachers build inclusive partnerships and ensure that the 

ideas put forward are, or become, commensurate with mathematical conventions and 

curricular goals.  Brophy (2001) argued that practice and conditions that engage students 

in thoughtful and sustained discourse can facilitate learning provided that the discourse is 

centered on solid mathematical notions and that teachers motivate students to develop 
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explanations, make predictions, debate alternative approaches to problems, and to clarify 

or justify their assertions. 

From this perspective, education is best viewed as the development of shared 

understanding.  Expressed in negative terms, mathematical skills are not best inculcated 

when teachers view their students as little pitchers waiting to be filled up with facts.  

Discourse is the antidote to this failed model, for when people communicate, their 

combined experiences may allow them to reach a higher level of understanding than 

would have been possible for individuals in isolation.   

Various research methods have been used to investigate classroom discourse.  

One well-known linguistic-based approach is discourse analysis; it is associated with 

Sinclair and Courthard (1975), who devised a scheme for analyzing and categorizing 

discussions of teaching and learning in secondary classrooms.  They demonstrated that 

the formal social order of a typical secondary classroom is embodied in a linguistic order, 

a pattern of talk that reflects how education is pursued in such a setting, that they 

categorized under the hierarchical headings of lesson, transaction, move, and act.  Stubbs 

and Robinson (1979) simplified the process to initiation by the teacher, which elicits a 

response from a pupil, followed by an evaluative comment or feedback from the teacher 

(thus generating the acronym IRF).   

Stubbs (1983) further argued that discourse sequencing made it possible to study 

empirically and in detail how teachers select the sorts of knowledge that they present to 

their students and how they group topics and order their presentation.  Nevertheless, 

because this approach was devised to reveal linguistic structures, as opposed to 

educational or cognitive processes, the emphasis remains on the form rather than the 
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content of discourse.  My own opinion is that the manner delivery is a key aspect of the 

effectiveness of discourse; if it is not fluid or articulate, meaning can be lost.  Thus, while 

the linguistic approach may not emphasize content knowledge, it nevertheless plays a 

vital role in how information is exchanged.  If, for example, students cannot express them 

themselves well verbally, they may lack access to discourse that provides crucial 

information. 

Research in the fields of psychology and sociology as well as education has been 

conducted on the effectiveness of this kind of classroom discourse.  Initially, researchers 

were concerned with the input and output characteristics of the education system, such as 

the relationship between pupils’ social class backgrounds and their eventual levels of 

achievement and occupational destinations.  Then, with advances in the field of 

ethnography, anthropologists developed a method to describe and understand groups and 

individuals that has proved useful in the study of classrooms and their local cultures.  

This research emphasizes the conflict between the interactional norms of other cultures 

within the classroom and those of students’ home communities, and it explains why some 

children behave in ways considered inappropriate by teachers who do not share their 

backgrounds.  In any case, the ethnographic approach requires researchers to make 

detailed observations of what is said and done and, more problematically, to suspend 

their own common-sense interpretations of what is going on when making an analysis.  

Another approach is educational psychology, though the predominant concern in 

this subfield has been with measurement making accurate assessments of individuals’ 

abilities, aptitudes, and attitudes.  Some scholars have suggested that educational 

psychologists’ preference for relatively “hard” quantitative methodologies reflects 
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insecurities regarding their professional status in relation to other psychologists and to 

teachers.  Additionally, the prescriptions for the design of ideal learning environments put 

forward by educational psychologists often include detailed analyses of learners’ 

performance limitations of learners without considering the performance characteristics 

of teachers.  

A favored theme in such research is the development of efficient ways to control 

disruptive or nonconforming behavior in school and, through positive reinforcement, to 

direct or shape the actions of children toward the furtherance of acceptable goals; less 

important are discourse processes and the development of knowledge.  Furthermore, such 

research holds to a kind of Vygotskian theory, acknowledging as it does that children 

undergo quite profound changes in their understanding by engaging in joint activity and 

conversation with other people in the process of their intellectual development.  

Vygotsky (2005) for his part was of the opinion that human learning presupposes a 

specific social nature and process through which children grow into the intellectual life of 

those around them. 

The NCTM (2000), as the governing body of mathematics in the United States, 

spoke with authority when it asserted that communication in the mathematics classroom 

is vital to students’ understanding of concepts and skills and their ability to benefit from 

their peers’ approaches to problem-solving.  The council defined classroom discourse as 

written and oral ways of representing, thinking, communicating, agreeing, and 

disagreeing used by teachers and students.  The NCTM further discussed ways in which 

teachers orchestrate and promote discourse and the interplay of intellectual, social, and 

physical characteristics that shape knowing and working in the classroom.   
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The NCTM implied that teachers should orchestrate discourse by listening 

carefully to students’ ideas, asking them to clarify and justify their ideas orally and in 

writing, selecting which of their ideas to pursue in depth during a discussion, and 

deciding when to provide information and when to let a student struggle with a difficulty 

(cf. Piccolo, Capraro, Capraro, Harbaugh, & Carter, 2008).  These techniques were 

further implemented in the Common Core math curriculum, which highlights under the 

topic of mathematical practices the construction of viable arguments and critiquing the 

reasoning of others, activities that of course necessarily involve discourse.   

As discussed in Chapter 1, mathematics teaching has traditionally involved 

teachers telling students facts that the latter then regurgitate verbatim.  This practice of 

conveying ritual knowledge needs to be replaced with a principled knowledge built on 

explanations of how procedures work and why certain conclusions are necessary or valid 

rather than on arbitrary statements intended to please the teacher.  Math educators 

accordingly need to concern themselves with identifying ways in which both ritual and 

principled knowledge are communicated in the situated discourse of lessons through joint 

understanding.  This kind of discourse is, again, consistent with a Vygotskian 

perspective.  In order to realize its benefits, educators must abandon pedagogy that 

concentrates on fulfilling our lesson plans and eliciting a predetermined set of responses 

from the pupils without engaging their thoughts.  Teachers must ensure that their 

pedagogic aims downplay progress through an organized lesson plan and make room for 

spontaneous understandings on the part of the pupils of the principles underlying their 

activities.  Otherwise, the opportunity for a genuine negotiation of understanding can be 

missed when pupils interpret things differently from the teacher. 
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Pirie and Schwarzenberger’s (1988) study of the contribution of mathematical 

discussions to students’ mathematical understanding provided valuable insight, 

particularly in terms of a relationship that may exist between the kind of language that 

students use (i.e., ordinary or mathematical) and the type of statements that they make 

(reflective or operational).  These researchers, following Skemp (1976) associated 

reflective statements with relational understanding and operational statements with 

instrumental understanding in a manner consistent with such current innovations in the 

classroom as a more fluid discourse environment that may or may not include the teacher.  

Current research makes clear that students need to take responsibility for their own 

learning by using their own words rather than those of their teachers. 

Cazden (2001) described four intellectual roles that students take on when 

collaborating with their peers: spontaneous helping, assigned teaching or tutoring, 

reciprocal critique, and collaborative problem-solving.  As an educator, I have found 

peer-tutoring beneficial because it helps to reveal students’ conceptual understanding of 

the material; moreover, the words of their peers are sometimes easier for students to 

comprehend than those of their teachers.  Also relevant in this context is the argument by 

Edwards and Mercer (1987) that a major function of education is cognitive socialization 

and the eventual handover of control over knowledge and learning from the teacher to the 

student, who achieves autonomy.  

 Slavin (1996) proposed from a socio-cultural perspective that the joint knowledge 

of the members of a group exceeds the individual knowledge of any one member and that 

a group operates as an interacting system.  An individual learns better with a peer because 

the peer can provide an audience, promote meta-cognition, and help maintain focus on a 
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task.  Also, Yackel et al. (2000) concluded that classroom discourse affords students 

opportunities to explain and justify their thinking to others and in the process to develop 

intellectual autonomy, including mathematical skill. 

Description of Participants and Setting 

The research for this study was conducted at a suburban charter school located 

in the Charlotte, North Carolina metropolitan region.  The demographics of the school 

at the time of the study were 85% white, 9% Black, 4% Asian, and 2% Hispanic.  The 

school did not have a free and reduced population because students were required to 

bring their own lunches; thus, the socio-economic status of the students was middle-

class or higher.   

There were two buildings on the school property, one serving as the middle 

school and the other as the high school, with each housing some 800 students.  I chose to 

focus on the middle school campus for my study and in particular the classroom where I 

teach, for that was where the participants were receiving their math instruction and were 

comfortable and familiar.  The eight seventh-grade students who took part included four 

boys from my all-male Pre-Math 1 class and four girls from my Math 7 class.  The 

students were purposefully selected based on their good communication skills, how well 

they demonstrated discourse during collaborative problem-solving in class, and their 

ability to meet the minimum standards for seventh-grade math without exceeding eight-

grade (Pre-Math 1) standards.  Purposive sampling or judgment sampling of this sort 

allows researchers to select samples based on their experience and knowledge of the 

group being sampled (Gay & Airasian, 2003).  For this study, it was imperative that the 
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students be able to communicate well that they could describe their thought processes 

while solving problems.   

 Each pair of students participated once a week on a Monday, Tuesday, 

Wednesday, or Thursday throughout the three-week duration of the study.  In the first 

week, the pairs solved traditional proportional problems pertaining to missing value and 

equivalent ratios.  In the following week, each pair followed the same schedule but 

solved constant proportionality problems, which are linear relationships that begin at the 

origin.  In the third week, students again followed the same schedule but solved 

traditional slope-related problems that had nonzero y-intercepts.   

Data Collection Methods and Procedures 

Prior to conducting the study, I made sure that my classroom created an 

atmosphere conducive to discourse so that students would become comfortable 

collaborating with each other.  This meant doing away with the classroom layout in 

which students sat in single-file rows facing me; instead, I grouped the students in quads, 

allowing them to select their own groups so as to ensure that they would be comfortable 

with the group work.  I made clear to the students from the first day of class that small-

group discussions were expected, explaining to them that this approach offered 

opportunities to gain new perspectives on solving problems from their peers as well as to 

debate solutions constructively.  At the same time, I established ground rules that 

promoted respect for the ideas, feelings, and thoughts of all. 

After obtaining the participants’ agreement to participate and informed consent 

from their parents (Appendix A), I interviewed them after school in their math 

classrooms using a three-phase, semi-structured protocol (Appendix B) that included four 
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to five math problems per interview session.  At the time of the study, the students had 

not received instruction on constant proportionality or slope, so they had not been 

exposed to the standard approaches to solving these types of problems.  The study 

proceeded through three phases, with each session taking place after school and lasting 

for between 30 and 45 minutes.  Again, the sessions took place in my and the students’ 

classroom, so they were in a familiar setting. The pairs of students worked together on 

problems by discussing their strategies and coming up with a consensus solution.  They 

were then asked about their approaches to solving the problems, including their reasons 

for selecting them. 

 A visual record of all phases of the study was kept digitally so as to capture any 

interactions that might otherwise have been missed.  The students received the problems 

on sheets paper on which they were allowed to write.  One pair each participated on 

Mondays, Tuesdays, Wednesdays, and Thursdays for the three weeks of the study.  The 

day’s separation between the individual sessions allowed me to view each pair in 

isolation from the others. 

After each interview session, I collected the data (that is, the participants’ work on 

the sheets of paper), which was kept in a locked cabinet, the students having been 

assigned numbers in order to maintain their anonymity during the collection and analysis 

of the data.  I pass-coded the device used for the recording so that only I would be able to 

access the data.  All documents were kept confidential and used only for the purposes of 

the study.  There was no risk involved in this study, no cause for emotional distress nor 

possibility of compromising the participants’ integrity.  In no way were any of the 

participants placed in any danger of physical or emotional harm.   
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 The first phase, as indicated earlier, looked at how students solve traditional 

proportional problems pertaining to missing-value or equivalent ratios.  This phase 

consisted of four problems that pair of students solved on their assigned day.  In this way, 

I was able to observe the extent of the participants’ grasp of traditional proportionality 

problems.  I accordingly selected three traditional proportion problems that could be 

solved using the ratio a/b = c/d and one equivalent ratio problem.  This selection of 

problems was intended to convey the notion that proportionality involves equivalent 

ratios as the students found the missing value.  I sent the problems to a committee 

member before the study was conducted in order to ensure that they were consistent with 

the criteria and my interview protocol.  After I had received feedback and edited the 

problems and the protocol, the data collection began.  The participants were allowed to sit 

wherever they wanted in the classroom.  An iPad located behind the pair of students was 

used to record the interview, beginning when I asked the warm-up questions.  Figure 1 

(Phase I problems) below presents the problems used in the first phase. 

1. Ellen, Jim, and Steve bought three helium-filled balloons and paid $2.00 for all 
three.  They decided to go back to the store and get enough balloons for 
everyone in their class.  How much did they have to pay for 24 balloons? 

 

 
2. Lisa and Rachel drove equally fast along a country road.  It took Lisa 6 minutes 

to drive 4 miles.  How long did it take Rachel to drive six miles? 
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3. Rule: One food bar can feed 3 aliens. 

                 
a.) How many aliens would be fed with 15 food bars? 
b.) How many aliens would be fed with 16 food bars? 
c.) How many food bars are needed for 63 aliens? 

 
4. Victor's van travels at a rate of 8 miles every 10 minutes. Sharon's sedan travels 

at a rate of 20 miles every 25 minutes.  
If both cars start at the same time, will Sharon's sedan reach point A, 8 miles 
away, before, at the same time, or after Victor's van? 
Explain your reasoning. 
________________________________________________________________
__ 
If both cars start at the same time, will Sharon's sedan reach point B (at a 
distance further down the road) before, at the same time, or after Victor's van?  
Explain your reasoning.  
________________________________________________________________
__ 
Did you use the calculator on this question? 

 
Figure 1. Problems Used in Phase I 
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After the students were asked the warm-up questions, they were provided with a 

calculator or allowed to access their own.  Each student in the pair then received the first 

problem on a separate sheet of paper with an abundant amount of workspace.  The 

students then read the problem and worked to achieve a consensus on the solution.  After 

such a consensus had been reached, the students were asked to explain their approaches 

to solving the problem, including their reasons for using the strategies that they did.  This 

process was repeated for all problems used in the first phase with each pair over the 

course of the first week of the main study. 

 In the second phase, five additional proportional problems were selected that 

coincided with the seventh-grade Common Core Standards.  Under these standards, 

students are expected to be able to determine whether two quantities are in a proportional 

relationship (by testing equivalent ratios in a table), to identify constant proportionality in 

tables, and to represent proportional relationship by equations.  I again sent the problems 

to a committee member to ensure that they fit the criteria and to edit my interview 

protocol.  After these edits, the second phase of data collection began.   

 Using the same schedule and procedures, the pairs of students solved five 

questions that introduced linearity from the origin.  Although this lesson is found under 

proportional reasoning in the Common Core Standards, it tends to be taught in the slope 

chapter of algebra textbooks under the topic of direct variation.  This allowed me to see 

how students described data in situations in which two units varied.  Figure 2 (Phase II 

problems) below presents the problems used in the second phase as well as describe the 

rationale for their inclusion. 
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Problem Rationale 
1. The table below gives the price for different 

numbers of books.  Do the numbers in the 
table represent a proportional relationship?   

Number of 
Books Price 

1 3 

3 9 

4 12 

7 18 
 
 

To identify proportional strategy 
used to determine tabular 
constant proportionality. 

2. The graph below represents the cost of gum 
packs as a unit rate of $2 dollars for every 
pack of gum. Represent the relationship 
between the cost of gum and the number of 
packs using a table and an equation. 

 
 
 

 
 
 
 

 
 

To identify proportional strategy 
used to create an equation and 
table illustrated by constant 
proportionality.  
 

3. Compare the scenarios to determine which 
represents a greater speed.  Explain your 
choice including a written description of 
each scenario.   

            Scenario 1:               Scenario 2: 
    
                                                  y = 55x  
                                                  x is time in hours 
                                                 y is distance in miles 
 
 
 
 
 
 

To identify proportional strategy 
used to compare proportional 
relationships in different formats. 
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4. The graph below represents the price of the 
bananas at one store. What is the cost per 
pound?  

  

To identify proportional strategy 
used to identify the unit rate from 
a graph.  

5. A student is making trail mix using the 
information in the table.  

A. Does the recipe represent a 
proportional relationship?   

 
Serving Size  1  2  3  4  
cups of nuts (x)  1  2  3  4  
cups of fruit (y)  1.5  3  4.5  6  

 
B. Where does the unit rate show up 

in the graph? 

 

To identify proportional strategy 
used to identify the unit rate from 
a table and then create it on a 
graph. 

Figure 2. Phase II Problems 

 For the third and final phase, I selected four-slope related problems that coincided 

with the eighth-grade Common Core Standards and had nonzero y-intercepts.  Once again 

I sent the problems to a committee member to ensure that they fit the criteria and to edit 

my interview protocol.  After these edits, the third phase of data collection began.   
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 Following the same schedule and procedures used in the previous two phases, the 

pairs of students solved four questions. In the eighth grade, students are expected to build 

on their understanding of proportional relationships and to interpret the unit rate as the 

slope of a graph as well as to compare two distinct proportional relationships represented 

in different ways.  In addition, the Common Core Standards expect students to be able to 

describe how a graph represents a relationship between two quantities as increasing or 

decreasing, whether it is in the format of y = mx or y = mx + b.  I used the recordings of 

these sessions to identify the strategies participants used in solving constant 

proportionality problems and traditional slope-related problems.  Figure 3 (Phase III 

problems) below presents the problems used in the third phase and the rationale for their 

inclusion. 

Problems Rationale 
1. The graph below describes Josh’s car trip from his 

grandmother’s home directly to his home. 

 
a) Based on this graph, what is the 

distance from Josh’s grandmother’s 
home to his home? 

b) Based on this graph, how long did 
it take Josh to make the trip? 

c) What was Josh’s average speed for 
the trip? Explain how you found 
your answer. 

To identify if and what 
proportional strategy is 
used to interpret the rate 
of change and initial value 
of a linear function in 
terms of the situation it 
models, and in terms of its 
graph or a table of values. 
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d) Explain why the graph ends at the 
x-axis. 

 
2. Membership for unlimited monthly car washes at 

a local car wash costs $20 plus a monthly fee, as 
shown on the graph below. 

 
 

a) How much does it cost per month to belong to the 
car wash club? 

b) Write an equation that describes the graph. 
Explain how you determined the equation that 
represents the graph. 

 

To identify if and what 
proportional strategy is 
used to create a non-
proportional linear 
relationship using the 
equation y = mx + b for a 
line intercepting the 
vertical axis at b on a 
graph.  
 

3. Two large storage tanks, T and W, contain water. 
T starts losing water at the same time additional 
water starts flowing into W.  The graph below 
shows the amount of water in each tank over a 
period of hours.  Assume that the rates of water 
loss and water gain continue as shown.  At what 
number of hours will the amount of water in T be 
equal to the amount of water in W?  

To identify if and what 
proportional strategy is 
used to solve simultaneous 
non-proportional linear 
relationships on a graph.  
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4. The production manager of a furniture 

manufacturing company plotted values on the 
graph below to show how the production cost per 
chair decreases as the number of chairs produce 
increases.  The rate of change of the graph below 
is –1/8.  Two students had an argument on what 
the rate of change of the graph meant. 

 

 

To identify if and what 
proportional strategy is 
used to describe 
qualitatively the functional 
relationship between two 
quantities by analyzing a 
graph where the function 
is increasing or 
decreasing, linearly. 
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• Charity said that the rate of change represents 
each chair produced decreases costs by $8. 

• Benjamin said that the rate of change represents 
for every 8 chairs produced, costs decrease by $1. 

Who do you agree with? Justify. 
Figure 3. Phase III Problems 

Data Analysis 

The students’ work samples were collected at the end of each session.  The data 

obtained was then reviewed by observing each student’s written work, watching, 

listening to, and taking notes on the recordings, and creating verbatim transcripts and 

paraphrasing the highlights of the session to ensure accuracy.  Afterward, key phrases 

and words that evolved into themes during the interviews were transcribed and 

paraphrased to illustrate types of strategies.  I further reread the students’ work and again 

watched the video recordings and determined that there was no need to contact any of the 

participants for clarification of their responses.  Following this step, I created charts with 

brief synopses of the ways in which the students’ described their problem-solving 

methods for each question represented in each phase and with a section that described 

their views of collaborative work.  Four charts made for each phase because each group 

represented its own case study.   

In the first phase of the study, I had observed how students solved traditional 

proportional missing-value problems and how they recognized proportionality as 

equivalent ratios.  Also, during this phase I was able to grow accustomed to my role an 

observer and learned not retreat into teaching mode during the interview process.  I also 

analyzed the work and interviews to observe whether students used strategies other than 

proportional algorithms on the problems.   
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In second phase, I had observed the proportional strategies used by the 

participants to solve constant proportionality problems in tabular, graphic, or equation 

form.  In the charts for this phase, a column was included that identified the proportional 

strategy was used to solve the problems.  Following Lamon (1993), I again paraphrased 

portions of the interviews to create brief synopses that illustrated the strategies used to 

solve the problems.  I further cross-checked the solutions with the solution strategies 

designated by the North Carolina Department of Instruction (NCDPI) and with the 

erroneous strategy identified by Tourniare and Pulos (1985), as can be seen in Figure 4 

below. 

Strategy Description 
Build-up Strategy Students use the ratio to build up to the 

unknown quantity. 
Unit-rate strategy Students identify the unit rate and then 

use it to solve the problem. 
Factor-of-change strategy Students use a “times as many” strategy. 
Fraction strategy Students use the concept of equivalent 

fractions to find the missing part. 
Ratio Tables Students set up a table to compare the 

quantities. 
Cross multiplication algorithm Students set up a proportion (equivalence 

of two ratios), find the cross products, and 
then solve by using division. 

Erroneous Strategy Students using an inappropriate strategy 
or misusing a correct strategy (ignore part 
of the data in the problem). 

Figure 4. Problem-solving Strategies in Phase 2 and Phase 3 

After I had coded the proportional strategies used to solve the problems in the 

second phase, I coded the proportional strategies used to solve the slope problems with 

nonzero y-intercepts in the third phase.  I created a chart for each pair with headings 

indicating summarization of their responses and the proportional strategy used to solve 

each nonzero y-intercept problem, and I highlighted how the strategy was used to solve 
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the problem.  In this way, I was able to document whether participants had followed 

similar thought processes and deduced commonalities when solving problems relating to 

constant proportionality and with nonzero y-intercepts.  This information helped to 

demonstrate the importance of students’ prior proportional knowledge when they tried to 

solve-slope related problems.  I also analyzed the data using the impressionist tale 

approach, through which I was able to describe both my own thought process and the 

participants’ actions.  The purpose of creating an impressionist tale is to convey in a very 

specific and high detailed way how it felt to engage in the research. 

 Finding a connection was vital to my research because, while educators and 

curricula use the terms “slope” and “proportionality,” students seek to solve problems 

using whatever is their “math rolodexes.”  My focus was accordingly more on the RME’s 

horizontal mathematization, through which students come up with mathematical tools 

that can help to organize and solve a problem in a real-life context (Treffers, 1987).  The 

math problems used in the study coincided with various examples of horizontal 

mathematization, in particular identifying or describing the specific mathematics in a 

general context, schematizing, formulating, and visualizing a problem in various ways, 

discovering relations and regularities, recognizing isomorphic aspects of different 

problems, transforming a real-world problem into a mathematical one (Treffers, 1987).  

This information could be beneficial in connecting proportionality and slope.  

Risks, Benefits, and Ethical Considerations 

 I am fully aware that any research into human activity, especially research 

involving subjects under the age of eighteen, has the potential to raise concerns.  I 

therefore familiarized myself with the guidelines and standards of the Institutional 
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Review Board (IRB) for conducting research and completed the necessary steps to obtain 

IRB approval for this study.  In addition, I explained the project in detail to the parents of 

the participants and drafted an informed consent letter as well as an assent letter for the 

students, all of whom were assured that their participation and answers would have no 

impact on their grades in math classes.  I moreover explained the project in detail to the 

administrative staff and obtained permission to carry out my research at the school.   

 I assured all parties involved that there were no known risks associated with the 

study and that participation was strictly voluntary.  I also informed the students and 

parents that they could withdraw from the project at any time with no penalties or 

harboring of ill will on my part.  I explained that all information about their participation, 

including their identities, would be kept completely confidential.  The following steps 

were taken to ensure this confidentiality and anonymity.  First, the recordings were 

collected by myself and contained no identifying information.  All of the recordings were 

housed in a locked cabinet.  The data will be kept indefinitely but will remain 

confidential and used for educational and research purposes only. 

 This study offered insights for math teachers into how students’ existing 

proportional reasoning skills can help them to develop an instructional sequence that 

leads to an understanding of slope.  The instructional sequence has the potential assist 

teachers and their students with activities and tools that develop an understanding of the 

concept of linear rate of change. 

Subjectivity Statement 

As my observations in the first two chapters have made clear, I am not a 

proponent of the traditional approach to teaching mathematics.  It is my considered 
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opinion that asking students to complete mathematical problems that bear no relation to 

the real world can generate disdain in them for the subject.  I rather advocate the use of 

authentic problem-solving in mathematics and admire educators who teach in progressive 

ways.  In my own experience as a math teacher, my students seem to have enjoyed my 

classes because of my passion, knowledge, and ability to show them why they are being 

taught the material.   

 Nonetheless, I am myself a product of a traditional mathematics education, so I 

know from experience that this approach can be effective for some students in attaining 

math proficiency.  My goal as a math teacher, however, is not simply to inculcate 

mathematical proficiency, but also to inspire and encourage students to pursue careers in 

STEM-related fields. 

Summary 

 The intent of this chapter was to provide the reader with information on 

the methodology used in the study by describing the research design, participants, 

procedures, data collection method, data analysis, rationale for questions selected in 

phase 2 and phase 3, inform the reader of proportional solution strategies recognized by 

NCDPI, ethical considerations, limitations of the study, and my subjectivity statement.  

The next chapter contains the findings of how students’ connected proportionality to 

slope and what proportional strategies students used in solving slope-related tasks from 

the origin as well as a nonzero y-intercept.   
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CHAPTER FOUR: FINDINGS 

 

 This chapter presents individual case studies of the four pairs of students that 

participated in the study, which are referred to as A, B, C, and D.  The data consisted of 

the participants’ work samples and responses to interview questions pertaining to 

traditional missing-value problems, constant proportionality problems, and nonzero y-

intercept problems.  The following research questions were accordingly formulated: 

1. How do students connect proportionality to slope? 

2. What proportional strategies do students use to solve slope-related problems with 

nonzero y-intercepts? 

This chapter presents the findings and describes the manner in which the data were 

collected in order to answer these research questions.  The study was divided into three 

phases for each case study.  The main purpose of the first phase was to allow me as the 

researcher and the participants to become acclimated to involvement in a research study.  

The second and third phases formed the core of the study, focusing on problems in y = mx 

(constant proportionality) and y = mx + b (nonzero y-intercepts).  According to the 

CCSSM, students should understand that the slope of a line is a constant rate of change or 

a proportion represented by y/x = m or y = mx, where m is the slope.  This study 

accordingly highlighted how the four pairs of participants answered questions that fit the 

criteria y = mx and the special linear equation y = mx + b and determined whether the 

pairs recognized this proportional relationship.  
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Case 1: Pair A 

 The two seventh-grade students in Pair A were Caucasians enrolled in my all-

boys Pre-Math 1 class.  This class was a prerequisite for advancement to Math 1, 

meaning that the next step in the students’ math career would be enrollment in a high 

school course.  Student A described himself as happy, curious, and energetic and 

identified as his favorite aspect of mathematics the formulas “because it allowed him to 

plug in any number and then gives the answer.”  Student B described himself as happy, 

athletic, and cooperative, saying that he “loved working with people,” and identified 

programming as his favorite feature of mathematics “because it made it faster and the 

process easier.”   

Banana Problem 

 This pair of students had been identified as being strong in mathematics, as 

reflected by their placement in an advanced math class.  Pre-Math 1 is taught as an 

eighth-grade class to advanced seventh-graders.  I was therefore greatly interested in how 

these students would respond to learning about slope, a concept to which they had not yet 

been introduced, particularly in terms of their use of their prior knowledge.  The CCSSM 

expects that eighth-grade students will understand that the form y = mx, where m is slope, 

is a line that goes through the origin.  One of the questions (Question 4) in Phase 2 of the 

study addressed this issue by asking the cost of the price of bananas based on Figure 5 

(Banana question) below: 
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Figure 5. Banana question. 

The following dialogue took place after the students had solved the problem and 

discussed the solution with one another: 

Teacher: “How did you guys come up with your answer?” 

Student B: “So, I just looked at it because it was right on the dot at 2.  So, 2 pounds 

equals 50 dollars.” 

Teacher: “Fifty dollars?” 

Student A: “Fifty cents.” 

Student B: “Fifty cents. So, I did 2 divided by 2 to get to one and you have to do the same 

thing for 50 cents.  So, it would be 25 cents.” 

Teacher: “Twenty-five cents per what?” 

Student B: “Per banana.” 

Student A: “Per pound.” 

Student B: Yeah, per pound. 

If we follow the dialogue from above it is evident that the Pair A used proportional 

strategies to solve the problem. The pair observed that the point on the line indicated that 
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two pounds bananas would cost 50 cents and divided by 2 in order to arrive at the correct 

solution of 25 cents per pound.  Thus, the students used the fraction strategy coupled with 

the unit rate strategy.  The fraction strategy was employed to simplify the fraction to an 

equivalence of 25 cents to 1 pound.  This also exemplified the unit rate because the 

quantity of 25 cents is expressed to one pound and unit rates are expressed a quantity of 

1.  The pair connected the problem to slope because they found a vertical change in 

comparison to a horizontal change.  This exemplified an understanding of covariation 

because the students compared how the quantity of cents changed in comparison to the 

quantity of bananas.  Confrey and Smith (1995) discussed how this was optimal in the 

development of functional thinking.  The function conveyed in the problem is y = mx 

because the graph goes through the origin.  The students exhibited this idea by stating the 

cost (y) is 25 cents (m) per pound (x). 

Car Wash Problem 

The question was now how the students would handle a problem that started from 

a nonzero y-intercept (y = mx + b).  The following week, the students were excited, 

though it was our last session, and I was wondering whether they would a similar or a 

different strategy when faced with a nonzero y-intercept.  I therefore used Question 2 

from the third phase because it exuded the y = mx + b format, asking about a car wash 

club that offered its members unlimited monthly car washes for $20 plus a monthly fee, 

as shown on Figure 6 (Car wash question) below: 
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Figure 6. Car wash question. 

The students were then asked to calculate the monthly cost for belonging to the car wash 

club, to write an equation that described the graph, and to explain how they arrived at the 

equation. 

 The following discussion then took place: 

Teacher: “How much does it cost per month to belong to the car wash club?” 

Student B: “Forty dollars.” 

Teacher: “How did you come up with 40 dollars?” 

Student B: “If you look at the graph first, like just to buy the monthly, to buy like the, the 

plan is like $20.  But then there is an additional fee per month and it goes from 20 to 60 

to 100, so you know it would be $40.” 

Teacher: “So, what let you know that it started off at a $20 fee?” 

Student B: “Because it’s like the zero month, so that the first step of the problem.” 
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Student A: “That’s when the graph begins.” 

Teacher: “So, write an equation that describes the graph.” 

Student A: “Um, so the equation is 40 dollars a month plus the initial fee of 20 bucks or 

20 dollars.  Um, for the equation, I did 20 plus in parentheses month times 40.  Then that 

would give you, um, how much it cost. 

Teacher: “All right, so explain how you determined the equation that represents the graph 

again.” 

Student A: “Well the initial fee is 20 bucks you have to add that onto the whole equation. 

So, um, then you just do 40 times the number of months because it’s 40 dollars a month.  

And then you add it 20 to it.” 

Teacher: “So, what is your variable representing?” 

Student A: “Months.” 

Despite the problem being a nonzero y-intercept, the pair still employed the unit strategy 

coupled with the build-up strategy.  Thus, the pair discussed how the price went up from 

20 to 60 to 100 dollars, identifying the consistent increment of 40 dollars, recognizing 

that the x-axis or month unit is increasing by 1.  The pair recognized that the twenty-

dollar was the starting fee and the rate of change from that starting fee was forty-dollars.  

The students then built from the initial 20 to 60 to 100 to see if the rate of change was 

consistent.  The students once again connected proportionality to slope by finding a 

vertical change in comparison to the horizontal change.  This illustrates a creation of the 

slope formula through guided reinvention of the contextual problems.  Furthermore, the 

students, though they had not encountered the slope-intercept form, correctly calculated 

the twenty-dollar starting fee and forty-dollar monthly amount.  Thus, they created an 
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equation of cost = 20 + (40 x m), which is in the form of y = mx + b. The students 

recognized the monthly cost (y) is equal to $40 (m) times the number of months (x) from 

an initial point of $20.  The proportional strategies used helped the pair describe a linear 

function in the same manner teachers utilize slope.  

Traveling Problem   

 Additionally, the CCSSM expects students to use slope to compare relationships 

represented in various ways (graphs, tables, and equations).  I therefore used Question 3 

of Phase II to assess the connections and strategies that the students used to solve this 

type of problem, which asked them to compare two traveling scenarios in order to 

determine which represented greater speed and to explain their choice using a written 

description of each scenario.   

            Scenario 1:                                  Scenario 2: 
 
                                                                 y = 55x  
                                                                 x = time in hours 
                                                                 y = distance in miles 
 
 

o  

   

Figure 7. Traveling question. 

The following discussion then took place: 

Teacher: “How fast is the car going in Scenario 1?” 

Student B: “Scenario 1; they are going 60 mph.” 

Teacher: “How fast are they going in Scenario 2?” 

Student B: “55 mph.” 

Teacher: “So, which one is going faster?” 
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Student B: “Scenario 1.” 

Teacher: “How did you guys determine the rate of Scenario 1?” 

Student A: “Well, we looked at the graph and figured, um, just look how long you would 

go in one hour.  Which one is the simplest number to use for that and then use that to get 

a greater number by multiplying?” 

Teacher: “Oh, you saw that one represented hours and 60 represented miles?” 

Student A and B: “Yes.” 

Teacher: “How would you write your equation for the graph?” 

Student B: “y = 60x.” 

Teacher: “y represents what?” 

Student A and B: “Distance in miles.” 

Teacher: “And x represents what?” 

Student B: “Time in hours.” 

I was struck by the fact that the students, having encountered another slope-related task, 

had not only used proportionality to arrive at a solution but also had used the unit rate 

strategy again.  I noted one student’s statement that “you just looked at the graph and see 

how long it would take in one hour,” despite the fact that the problem was in the format 

of y = mx and the term constant proportionality was also used illustrate the concept.  This 

conception still represented an algebraic notion associated with slope, and the students 

were still able to compare differing views of a linear function by means of the unit rate.  

The connection to slope again was that the pair utilized the concept covariation by 

recognizing that miles where changing per hour.  The pair has been consistent in 
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illustrating traditional slope ideology by the covariance describing how the y unit is 

changed in comparison to the x unit.   

Chair Problem 

 Pair A had, then, made the connection with and utilized the unit rate strategy as a 

means to address slope-related problems in the y = mx and y = mx + b formats.  I was 

accordingly interested in their reaction to a problem that used a term synonymous with 

slope, such as rate of change, in the nonzero y-intercept format.  I accordingly examined 

the students’ approach to solving the following problem (Phase 3, Question 4), which 

presented a scenario in which the production manager of a furniture-manufacturing 

company plotted values on a graph to illustrate how production cost per chair decreased 

as the number of chairs produced increased.  The rate of change on the Figure 8 (Chair 

question) was –1/8, and the participants were asked whether they agreed with either 

Charity, who said that the rate of change meant that each chair produced decreased costs 

by $8, or with Benjamin, who said that the rate of change meant a decrease of $1 for 

every 8 chairs produced, and to justify their answers.   
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Figure 8. Chair question. 

The following conversation then took place. 

Teacher: “So, who is right, Charity or Benjamin?” 

Student B: “We got Benjamin.” 

Teacher: “I heard your process.  You were going through some stuff, but it seems like 

you came up with an agreement.  So, why don’t you tell me about that.  Who do you 

agree with and justify?” 
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Student B: “So, I did Benjamin.  First, I did 45-40 because those were the first two dots I 

saw.  So, I got 5 and that was the dollars.  Then I looked at how many sets were between 

10 and 50, which is 40.  Um, I simplified it, and I got a dollar for every 8 chairs.” 

Teacher: “Now, if you look at the problem it says a -1/8.  Why do you think the graph has 

a -1/8?” 

Student A: “Um, well for every 8 chairs it is going down 1 dollar.” 

Teacher: “And how do you know it is going down?” 

Student A: “It’s a negative.  It says -1/8.” 

Teacher: “Is there any way you can look at the graph and tell that it is negative?” 

Student B: “The line is slanting down.” 

Teacher: “So, what does it mean if the line is slanting down?” 

Student A: “The cost is getting cheaper as the amount of chairs are going up.” 

The unit rate strategy coupled with the fraction strategy was used as the student honed in 

on the correct answer, that the cost of 8 chairs decreased by 1 dollar.  The student 

described the relationship the number of chairs per one dollar which implies unit rate.  

This differs from the -1/8 figure, which placed the dollar amount on top.  Yet, the 

students understood how the units are varying amongst one another.  This illustrated a 

connection to slope again as the pair recognized that the vertical change was dollars 

decreasing and the horizontal change was chairs increasing.   The pair also recognized 

that a line slanting down is negative.  This traditionally is taught by teachers showing 4 

graphs of slope relationships and explaining what the directions represent.  Yet, the 

students demonstrated comprehension.  Additionally, the pair used the fraction strategy, 

reducing 5 dollars over 40 chairs to 1/8.  In any case, the key point is the manner in 
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which the students found the difference between each respective unit and the other.  

Although they spoke of “dots,” they employed the algorithm that students are usually 

compelled to employ without context.  However, since these students mathematized this 

process, it became more personal to them and was added to their schemas for future use.  

The implication is that it is not necessary to ply students with algorithms, for they are 

capable of creating strategies from their prior mathematical experiences to solve 

problems.  Thus Pair 1 here used the graph and implemented a proportional strategy that 

was effective in solving a nonzero y-intercept problem.   

Conclusion 

 Lawton (1993) suggested that students could benefit from focus on quantitative 

relationships between the units of each object in mathematics problems, arguing that the 

unit approach appears to lead most students to an intuitive understanding of proportional 

reasoning.  This view seemed to be confirmed by the findings presented here, as the unit 

approach was the one most often used.  The unit approach has the additional advantage of 

helping students to see how one unit is changing in comparison to another.  This is the 

premise of how slope is presented in books and by teachers, as the change in y over the 

change in x.  Pair A unitized in all of the problems solved.  Yet, they connected 

proportionality to slope through recognition of the vertical change of the graph in 

comparison to a one-unit change on the horizontal axis (x-axis).  Furthermore, the 

connection of proportionality was exuded when the pair stated “for every 8 chairs it goes 

down one-dollar.”  Yet, they understood this was synonymous to -1/8 because they 

recognized how the units varied to one another.  Additionally, the proportional strategies 

that were used by the pair was build-up, unit rate, and fraction.  The pair used the build-
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up strategy to check if the rate of change was consistent.  This was followed by the 

fraction strategy as the reduced to the fraction to represent per one unit.  This signified 

the unit rate.  Furthermore, the pair consistently used a formula (slope) that had not been 

covered in class by finding the rate of change of the y-axis in comparison to the x-axis.   

Therefore, the use of contextual graph problems elicited the pair to use 

proportionality to make since of slope-related tasks. This is why NCTM (2000) urged that 

comfort with proportionality involves much more than setting two ratios as equal and 

solving for the missing term; there is a need to recognize quantities that are related 

proportionally and to use numbers, tables, graphs, and equations to think about these 

quantities and their inter-relationships. 

The participants in this case were very successful in arriving at the appropriate 

solution and using math skills that they had previously acquired.  The focus for this pair 

was on the use of the unit rate, which emphasized the expectations of the CCSSM by 

simplifying the slope a unit rate, whether in the y = mx format or y = mx + b.  My 

observation was that these students appeared to the context of the graph to establish how 

the unit on the y-axis varied in comparison to the x and thus to create equations in the 

slope-intercept-form and to demonstrate that the expression y/x = m is equivalent to y = 

mx; they also appropriately added the nonzero y-intercept to the rate of change.  DeLange 

(1996) argued that the teaching of concepts should begin with exposure to a variety of 

real-world problems and situations.  When applied problem-solving is the primary 

approach to teaching mathematics in the real context, students are able to make 

connections because they see math as a human activity (Freudenthal, 1983). 
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Case 2: Pair B 

Pair B consisted of two seventh-grade students enrolled in my all-boys Pre-Math 

1 class, the eighth-grade math class taught to advanced seventh-graders.  One was 

African-American (Student C) and the other Caucasian (Student D).  Again, this class 

was the prerequisite for Math 1 and the next step in their math careers would have been a 

high school course. Student C described himself as smart and a lover of mathematics, his 

favorite part of which was “how it is related to everything in the real world.”  Student D 

also described himself as smart and rationalized his thought process for participating in 

the study; his favorite aspect of mathematics was “learning new ways to do things, such 

as different formulas to do the same thing.” Also, again, these students had been 

identified as strong in mathematics given their placement in an advanced math class and 

had yet to be introduced to the concept of slope or problems related to it.  This pair went 

through the same steps as described in Case 1. 

Banana Problem 

The following discussion ensued regarding the banana question (Figure 5). 

Teacher: “Explain how you got your answer, 25 cents per pound.” 

Student D: “So, I made like a chart or a table I mean.  And I saw, um, 6 would be 150 

cents, 8 would be 200 cents, and 4 would be 100 and 2 is 50.  So, I found out it would be 

like dividing it by 2.” 

Teacher: “How did you get to 25 cents?” 

Student D: “Wait! I just thought of something; you could like take 150, divide it by 6, 

and get 25.” 

Teacher: “So, you took the price and divided it by pounds?” 
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Student D: “Yes!” 

Teacher: “Alright sir! You are up; explain your process.” 

Student C: “Okay, so I saw the 2:50 ratio, then 4:100 and then the 8:200.  So, then if 

you’re going up by 2’s, also going down by 2’s.  So, I divided 2 by 2 and 50 by 2.  So, 

that gives you a 1:25 ratio.  So, I checked it because if you take 25 divided by 1 you get 

25, and 50 divided by 2 is 25 and if you keep going it always will be equal. 

Teacher: “So, you also did cents divided by pounds?” 

Student C: “Yes!” 

Student D recognized that various strategies could be used to connect proportionality and 

slope.  The initial strategy used was involved deconstruction of the build-up strategy with 

the aid of a ratio table.  The student initially started building his ratio, decreasing it back 

to 50.  However, after using this initial strategy, the students realized that they could 

simply have used a unit rate, so they took 150 and divided it by 6 to get $0.25 per pound. 

Thus, the student used the fraction strategy as well to find the equivalence to one pound.  

This student did not, however, limit himself to one strategy to solve the problem.  Student 

C also used multiple strategies, including a build-up strategy, but recognized that the 

factor of change was “times 2.”   He deconstructed and realized that if the table was 

increasing by this factor, the inverse of dividing by two was applicable.  Yet, in the end, 

in order to illustrate the cost per pound, the realization that it must be per 1 illustrates 

knowledge of the unit rate.  These students thus also used proportional strategies to solve 

slope-related tasks.  Additionally, they connected proportionality and slope through 

covariation as well.  The students understood that cents varied to pounds and used both 

units to find and describe their solution.  
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Car Wash Problem 

 When Pair B was presented with the car wash question (Figure 6), the following 

discussion took place. 

Teacher: “How much does it cost per month to belong to the car wash club and why?” 

Student C: “Forty dollars, because it starts with a $20 fee and it’s adding 40 each time.  If 

you do 60 minus 20 it’s 40, 100 minus 60 is 40. 140 minus 100 is 40, so it’s 40.” 

Teacher: “What do you think? How did you come up with your answer?” 

Student D: “So, I saw like you had to pay $20 and then for the first month it is 60, so I 

subtracted them.” 

Teacher: “So, similar to what he did?” 

Student D: “Uh huh!” 

Teacher: “What equation did you guys come up with?” 

Student D: “40x + 20 = y.” 

Teacher: “What does y represent for y’all?” 

Student C: “Total amount paid.” 

Teacher: “What does x represent to you guys?” 

Student C and D (simultaneously): “The months of membership.” 

Teacher: “So, in prior math classes have you worked with equations like that or you just 

came up with it?” 

Student D: “I don’t know.” 

Student C: “I don’t where I actually learned this.” 

Teacher: “It’s just there, huh?” 

Student C and D (simultaneously): “Yeah!” 



 80 

To solve this nonzero y-intercept problem, the students used multiple proportional 

strategies and knew to place the graph in the equation form y = mx + b format.  They 

understood that $20 was the initial fee that was charged for the club, which is important 

because interpretation of the y-intercept in contextual problems is vital when it comes to 

creating equations.  Traditionally, when the slope-intercept form is taught, b is defined as 

the y-intercept or the starting point.  The students used prior experiences and context of 

the problem to make this distinction.  Students are also traditionally taught to find the 

change in y over the change in x, but Pair B demonstrated this approach without having 

been introduced to the algorithm, understanding that from the initial point went up $40 

and then the pattern continued.  The students thus concluded that the monthly change 

must be $40, thereby demonstrating understanding of the units and how they varied, since 

the change of $40 was per month.  In other words, they understood covariation, how one-

unit changes in comparison to another.   

Furthermore, the students were able to communicate that y represented the cost 

and x the number of months thus to formulate the equation 40x + 20 = y by using such 

proportional strategies as unit rate and build-up.  The build-up served to confirm that the 

cost was $40 a month: the unit rate was employed because the students understood that 

this change was happening monthly.  In creating their equation, however, they exhibited 

the factor-of-change because they understood that multiplying months by 40 and adding 

the initial fee described points on the graph.  The strategies employed to solve this 

problem demonstrated the capacity to use prior experiences to create linear equations or y 

= mx + b.  From the perspective of Skemp (1987), the students used their schemas to 

solve problems in ways that could prove beneficial in solving future problems.  Also, 
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relevant here is Freundenthal’s (1987) notion of mathematization and his argument that 

math is more meaningful when students create and use their own tools. 

Traveling Problem 

Next, the problem involving traveling scenarios (Figure 7) occasioned the 

following discussion.  

Teacher: “I heard you say Scenario 1 is faster, so explain how you know.” 

Student C: “So, I looked at the graph and it said the time is one hour and the distance is 

60.  So, if you look up to where it says 4 and 240, it follows the same ratio if it goes 4 

hours at the constant speed that would be the 60mph.  So, when you go to scenario 2, 55 

times the hour equals the distance, so it would be 55mph.” 

Student C: “Also, I like tried to envision it on a graph.  And it would have been at (1,55). 

Yeah, one on the x- axis and 55 on the y-axis.  So, I envisioned it going up and it like 

kept following that ratio.” 

Teacher: “Did you solve the problem differently?  Explain how you solved it.” 

Student D: “I didn’t see how it worked like the (1, 60).  So, I did like 5 and 30.  So I 

divided like 30.  I mean 300 divided by 5 and that’s 60.  So, it is 60mph.” 

Student D: “And then for Scenario 2, I did y divided by 55 equals x and then I wanted it 

to be one mile per hour to find out how many miles per hour it was, so I did y/55=1 and 

55/55=1.  So, it’s 55 miles per hour.  And 60 is greater than 55.” 

Both students used the unit rate strategy in various forms to compare slopes.  Each took 

the mileage for the graph and divided miles by hours to determine how fast the car was 

traveling per hour. Student C recognized that the ordered pairs illustrated the relationship 

of the x and y axis in the problem.  Therefore, the students used the other ordered pair (4, 
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240) to check whether the 60-to-1 ratio was constant, thereby truly illustrating the 

covariation concept that intertwines proportionality and slope.  Additionally, the student 

used the fraction strategy because the student simplified 240 over 4 to see if it was 

equivalent to 60-to-1.  The reducing of this fraction demonstrated the unit strategy as well 

to determine the speed per one hour.  The pair understood that one quantity was changing 

in comparison to the other, as well as how slope-intercept form is used to write linear 

functions.  Student D also utilized the unit rate and fraction strategy by taking a different 

mileage, such as 300, and dividing it by 5 and in Scenario 2, where it was written in y = 

mx format, perceiving that the distance was equivalent to y and dividing it by 55 to equal 

1.  Given that the initial equation it was y/55 = x, it was understood that x was time and 

that, to find the speed per hour, x must equal 1.  An understanding of covariation was 

evident because the change of distance in relationship to time was used to find the speed 

per hour.  The students used the unit rate and fraction strategy to solve this slope-related 

tasks.  However, the connection of proportionality to slope was once again understanding 

how the vertical unit (y) change in comparison to the horizonal axis (x).  The contextual 

problems have elicited the students naturally describing the linear data in the terms of 

slope (change of y/ change of x).     

Chair Problem 

 We turned next to the furniture manufacturing question (Figure 8), which 

occasioned the following discussion. 

Teacher:  “I see both of you agree that it is Benjamin [who is correct regarding the rate of 

change in the scenario].  Explain why you think it is Benjamin.  So, justify.” 
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Student C:  “So, I looked at it.  So (10, 45) and then 50 was 40, so the difference of those 

is 40 chairs.  The price is going down by 5 so 40 chairs divided by 5 is 8. This was also 

the same for 90. From 50 + 90 is 40 and 40 to 35 is 55.” 

Teacher:  “What did you say?  Justify.” 

Student D:  “I saw for 40 chairs it went down like 15.  So, I did 5 like over 40 and then 

like I was trying to simplify it to 1/8.  So, they like lose $1 for every 8 chairs.” 

Teacher:  “So, you took the 5 and put it over 40 and saw it matched the –1/8.  Well, why 

is it negative?  1/8 why isn’t it just 1/8?” 

Student C:  “It’s going down.” 

Teacher:  “How do you know it’s going down?” 

Student D: “Cost of dollars is going down.” 

Student C:  “Because the cost of chairs is depreciating and the number of chairs being 

produced is going up.” 

Teacher:  “Is yours similar because he said 5/40 and you said 40/5?” 

Student C:  “Yes, because 40 is chairs and 5 is the amount of dollars it went down.” 

For this particular nonzero y-intercept problem, multiple strategies were used, with the 

fraction strategy completing the problem.  As noted earlier, traditionally, the slope 

algorithm would have been taught to solve this problem, but this second pair of students 

derived this strategy from their prior mathematical experiences without every seeing the 

formula, identifying a decrease of $5 because the y-coordinate went from $45-40.  

Utilizing the same strategy, they found that the x-coordinates went from 10 to 50, which 

illustrated a change of 40 chairs.  Once again, comprehension of covariation was evident, 

since the students understood how two different units, dollars and chairs, varied in 
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relation to one another and employed the fraction strategy to arrive at the -1/8.  They 

recognized that it was negative because the dollar amount decreased.  Although Student 

D transposed the ratios, understanding of the units allowed Pair B to comprehend the 

solution -1/8, thus demonstrating the unit rate strategy.   

Conclusion 

 The students in Pair B connected proportionality to slope by consistently 

recognizing a vertical change in comparison to horizontal change.  Therefore, they 

created the slope formula through contextual slope-related problems.  The pair naturally 

found the rate of change of each unit to describe the data of the graph.  They used 

proportional strategies such as factor-of-change, fraction, and unit to solve the problems.  

The pair was able to create a linear function without using a long algorithmic approach.  

The students created a nonzero y-intercept problem by recognizing the initial amount as 

the starting point.  The pair then understood that the rate of change was consistent from 

that initial amount.  Therefore, the pair observed how the unit on the y-axis varied to the 

unit on the x-axis.   This sequence of events exemplified how they connected 

proportionality to slope.  It also allowed them to create a linear function that described 

the graph.  Although the students have not been exposed to the slope formula the 

contextual problems allowed for guided reinvention.   

Furthermore, they demonstrated this knowledge by using the multiplicative 

properties to make sure that the graphs and tables were proportional.  The importance of 

context in the conceptualization of slope, as described by Lobato and Sieberts (2002), 

was evident in that the students had no difficulty transferring knowledge between 

contexts.  Research tends to emphasize the difficulties that students experience in making 
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connections between the physical aspect of slope and its functional aspect as a rate of 

change.  These students, though, used their prior proportionality to describe the data on a 

graph, create tables, create equations.  

 The students, then, invented the slope algorithm naturally, without ever being 

exposed to the formula and recognized the y-intercept as the essential starting point for 

building linear equations and functions.  The ability to use their prior experiences goes a 

long way in their being able to transfer this knowledge to other, similar problems.  Thus 

Freudenthal (1983) and Skemp (1987) both concluded that mathematical learning is more 

beneficial to students when they create or use their own strategies.  Furthermore, the 

students demonstrated that multiple proportional strategies can be used to solve problems 

with nonzero y-intercepts as well as a connecting proportionality to slope is naturally 

finding the difference of the unit on the y-axis to the difference of the unit on the x-axis 

and understanding how they vary to describe the data. 

Case 3: Pair C 

The two students who comprised Pair C were seventh-grade girls enrolled in my Math 7 

class, one of whom was African American female (Student E) and the other Caucasian 

(Student F).  This class was the usual one for seventh-grade mathematics, the next step in 

their math career being Pre-Math I, the required eighth-grade class.  Student E described 

herself as average; her favorite thing about mathematics was formulas “because you just 

have to substitute into the formula.”  Student F described herself as average because she 

could multiply and divide; multiplication and division were also her favorite aspects of 

math “as well as shapes and stuff.”     
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 This pair of students who had been identified as on grade level in that they were 

not placed in advanced math classes.  They were aware that there were higher math 

classes from interactions with friends in those classes, and they expressed doubt when 

faced with certain types of problems.  These students had yet to be introduced to the 

concept of slope or problems related to it.  Thus, the aim was once more to assess how 

they solved problems in the y = mx (constant proportionality) and y = mx + b (nonzero y-

intercept) formats, in particular their use of proportional strategies. 

Banana Problem 

Pair C was asked the same set of questions that Pairs A and B were asked.  In 

response to the banana question (Figure 5), the following discussion ensued: 

Teacher: “So, what do you feel is the cost per pound and why?” 

Student E : “Twenty-five cents, because I did a proportion because it seems like it’s 

easier.” 

Teacher: “So, tell me the proportion you used.” 

Student E: “We did cents over pounds.  So, we did 150 over 6 equals 1 over x.  To find x, 

we did 150 times 1 divided by 6.  And then you could just do 150 divided by 6, which 

will give you 25 cents.” 

Teacher: “So, let me hear more about your proportion.  The proportion you used was 

what over what?” 

Student F: “One hundred fifty over 6.” 

Student E: “What I did was cents over pounds.” 

Teacher: “So, you did cents over pounds equals?” 



 87 

Student E: “Cents over pounds, so, well, it equals pounds over x, x over pounds because 

you are trying to find the other side.” 

Teacher: “So, what did you say the answer was again?” 

Student F: “Twenty-five cents.” 

The students attempted to use the cross-multiplication algorithm to solve the problem, 

setting up a proportion with equivalence of two ratios, which were equivalent to cents 

over pounds.  If you look up the pair’s setup the first ratio is cents-to-pounds, but their 

second ratio is cents-to-pounds ratio.  However, they did not use the usual cross-

multiplication technique but rather implemented the fraction strategy coupled with the 

unit rate strategy.  The pair simply took 150 and divided it by 6 which would have 

simplified the ratio to 25 to 1.  It is in this respect noteworthy that the students multiplied 

150 times 1 and divided it by 6 to determine the number that, when multiplied by 6, 

yields 150 (i.e., 25).  Thus, they used the fraction strategy, for of 150/6 simplified is 25/1.   

The use of the number one in their initial proportion demonstrates that the pair 

understood that the aim was to find the price per pound.  Although from the dialogue it 

appears that the pair did not setup equivalent ratios, their work sample illustrated 

differently.  Therefore, the pair used multiple proportional strategies to solve a slope-

related problem from the origin.  Despite their inappropriate cross-multiplication setup 

the students connected proportionality and slope by their recognition of a proportional 

relationship between the quantities (cents-to-pounds) and their relationship based on a 

linear graph.  However, as Stump (1997) recognized, an understanding of covariation on 

the part of students and educators can strengthen their understanding of slope, the 

students did not fully display this connection. 
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Car Wash Problem 

 The next question, about the car wash (Figure 6), occasioned the following 

discussion: 

Teacher: “You guys got it?  So, how much does it cost per month to belong the car wash 

club, and how did you come up with your answer?”  

Students E and F: “Uh, we got 40 dollars per month.” 

Teacher: “Alright, how did you come up with that answer?” 

Student E: “Because if you look at the graph, at first, we thought it was 20 because we 

was like looking at the problem.  But if you look at the graph, it starts at like 60, and then 

it goes up to 100 and like between that is 40 and then it goes up to 140, then it goes up to 

180 and it keeps that going on.  So, it just keeps going up by 40 dollars.” 

Teacher: “Did you have anything different or do you agree?” 

Student F:  “I agree, it’s just like 20 right here [points to the 20 on the y-axis], like we 

were thinking that [points to $20 in the problem], but we looked at this where it started 

off at 20 [points back to 20 on the y-axis], and then we just like noticed that it goes up 2, 

4, 6, and it is 40 and it kept going.” 

Teacher: “So, now your next task was to write an equation that describes that graph.  

Explain how you determined the equation that represents the graph.” 

Student E: “ Um, the equation we wrote is like N + 40 = monthly fee. So, we did that 

equation because, um, for N you can substitute anything in.  So, let’s say you like have 

100, like 100 plus 40 will equal up to 140.  Which is like one of your monthly fees.  It 

will be your three-month monthly fee, so that is our equation.” 

Teacher: “So, what does the N represent to you guys?” 
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Student E: “The total amount paid.” 

Teacher: “So, N represents the total amount?” 

Student E: “Oh, wait! No!” 

Teacher: “Because you said N + 40.” 

Student F: “The 20.” 

Student E: “Oh yeah, you are right.” 

Student F: “Because it says $20 plus a monthly fee.  The monthly fee is $40.” 

Teacher: “So, it looks like you changed your equation; what is your equation now?” 

Student E: “It is still the same, but the N equals 20 dollars because it starts at the 20.” 

Teacher: “So, what is your equation again?” 

Student F: “Twenty plus 40 equals the monthly fee.” 

Student E: “For that month.” 

Teacher: “For that month! So, what happens if it’s two months? How would I do it?” 

Student F: “If it is 2 months, it would be. . .” 

Student E: “You would go off the number you had last month.” 

Student F: “That would be 60 plus 40.” 

Teacher: “So, I just want to make sure.  So, now you changed it to 20 plus 40?” 

Student E: “Yeah!” 

In solving this nonzero y-intercept problem, the students seem to have relied on the build-

up strategy, using the graph and finding that the first month was 60 and then observing 

that the second month was 100 and the third 140 for a plus-$40 ratio.  They initially 

miscalculated the figure to be 20 because they had only read the problem, though the 

graph was crucial as it assisted the students in seeing the relationship between the month 
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and total dollar amount and in finding the change in y over the change in x.  Though the 

students had not encountered the slope formula, they were able to build up the constant 

change per month after the initial $20 fee.  Furthermore, the graph seems to have helped 

them to recognize the unit rate.  Clearly, they saw that the change of $40 was monthly.  

The conversation also revealed that they recognized the y-intercept as the starting point, 

but where not able to create a linear equation in the y = mx + b format.  Although they 

intended their variable N to represent $20, it actually became the prior month’s amount 

added to $40 to find each additional amount.  Therefore, the students actually created 

more of a recursive equation because the next month equals the now month plus 40.  The 

students used the build-up strategy to solve a nonzero y-intercept.  The students observed 

that the increase after the initial twenty-dollar fee would consistently be $40.  Thus, they 

connected proportionality to slope by finding that the y-axis unit changed $40 each 

month after the initial fee.  The pair naturally created the slope formula via guided 

reinvention through a contextual problem.  Although they did not create a linear equation 

in the nonzero y format of y = mx + b, they still were able to connect proportionality to 

slope by recognizing the price was changing forty-dollars per month.  

Traveling Problem 

Next, Pair B tackled the question regarding traveling scenarios (7): 

Teacher: “So, which one is faster then? Which has the greater speed?” 

Student F: “Scenario 1.” 

Teacher: “Why do you feel Scenario 1 is faster? Explain.” 

Student E: “Because in Scenario 2 we figured out that we are going to keep the same 

hours so it can be like fair.  So, x in scenario 2 is going to be like 55 times 5.   Which is 
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275.  Okay, we got that. But in Scenario 1, if you look and you see like, okay, you have 

to have the same number of hours.  So, you look at 5 and you go up and see where the 

point stops at.  And it stops at 300.  Three hundred is obviously like greater than 275.” 

Teacher: “Could you tell me how fast it is traveling in Scenario 1?” 

Student E: “So, I’d think it would be going probably like 60.” 

Teacher: “How did you guys come up with that?” 

Student F: “Because we did 300 divided by 5 and we get 60.  And 60 is right there” 

[points to ordered pair on the graph]. 

Student E: “I guess every dot is going up like 60.” 

Teacher: “So, what does 60 represent to you guys?” 

Students E and F: “The speed.” 

In this case, the students used the equation from Scenario 2 to guide their thinking.  The 

graph was again beneficial, as they observed that it showed 5 hours to be equivalent to 

300 miles.  Thus, they used the y = 55x and substituted 5 for x to arrive at 275 miles and 

realized that the mileage was not greater if they traveled for the same amount of time.  

Therefore, the initial proportional strategy used to solve the slope-related task is factor-

of-change. The pair knew the speed was 55 miles per hour, so they multiplied 55 by 5.  

They initially connected proportionality to slope by understanding that a point on the line 

represented 300 miles in 5 hours.  Therefore, they recognized that miles units were in 

direct comparison to the hours unit.   

However, I delved a little deeper to see whether they could attain the actual rate of 

speed for Scenario 1.  The students took 300 and divided it by 5 to obtain 60 miles per 

hour, but they also discovered the meaning of ordered pairs from the finding the unit rate, 
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understanding that the ordered pair (1, 60) actually represented the point on the graph.  

Therefore, at the end of the questioning the students implemented the fraction strategy as 

well as the unit strategy because they simplified the ratio to represent one hour.  

Furthermore, they were not aware of what the ordered pair represented until they 

unitized, but again as Skemp (1987) predicted they added it to their schema for another 

mathematizing moment (Freudenthal, 1983) as they were able to create meaning from a 

contextual problem.     

Chair Problem 

Moving on to the chair factory problem (Figure 8), we had the following 

discussion: 

Teacher: “Okay, are you ready?  So, who was correct [regarding the rate of change in the 

scenario] and why?” 

Student F: “We think it is Benjamin.” 

Teacher: “Why do you think it is Benjamin?” 

Student F: “Because it says negative 1/8 and like Charity’s doesn’t really make sense 

because it says 8 dollars and his makes sense because his says 8 chairs and then it 

decreases by 1 dollar.  So, we just thought that like his would make more sense than 

Charity.” 

Teacher: “So, you are just saying his sounds like it makes more sense.  You did not use 

any math or the graph to help make that assertion.” 

Student E: “Because like if you look at the graph it says, um, so 8 chairs produced causes 

a decrease of 1 dollar.  So, the first is 10 and it decreases by a dollar.  So, it would 

decrease and go like down to 45.” 
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Student F: “Wait, wait! Can we redo it?” 

Student E: “Yeah!” 

Teacher: “Well, can I ask a question?  Why do you think it says negative 1/8?” 

Student E: “Because the graph is going down and it is taking away from the cost.” 

Teacher: “So, you guys still agree it is Benjamin, but you are having a hard time 

articulating why it is Benjamin?” 

Students E and F: “Yeah!” 

Teacher: “Okay, just give me your final synopsis again on why it is Benjamin.” 

Student F: “We thought it was Benjamin because it says it decreases by negative 1/8.  

And like his says like 8 chairs produced caused by a decrease of 1 dollar.  So, I mean we 

just thought like  . . .” 

Student E: “It’s like the way he puts his words kind of like matches up with the graph if 

you think about it.” 

Teacher: “Okay! Expand on that.  How does it match up with the graph?” 

Student E: “Because it goes down like a 1 dollar.  Okay, so like if we produced 10 chairs 

and it goes down by 8 so it would closest to 10, right?  So, it would just equal back up to 

40, I mean not 40.  It would just like equal.  I can’t put it in words, it just equals back 

up.” 

Teacher: “Okay!” 

For this particular nonzero y-intercept problem, the students had difficulty conveying 

why they selected the answer.  Although the session ran slightly over 45 minutes, the 

students were still actively engaged.  The graph seems to have played a significant part in 

their thinking as they recognized that the starting amount was $45 and that it decreased to 
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$40 as stated in the problem.  The students even drew attention to the 10 chairs, but this 

time they did not apply the second point at 50 to see that it had changed 40; then they 

could have reduced the solution to 1/8.  They did demonstrate understanding the negative 

expression, -1/8, specifically that the decreasing graph signified the negative.  They also 

stated that Benjamin’s solution simply made more sense.  It thus appeared to me that, as 

they continued to look at the graph, they perceived that the units of dollars were 

decreasing while the number of chairs was increasing, given their assertion that Charity’s 

solution did not make since the graph did not display a decrease of $8.  Thus, the pair 

connected proportionality to slope by being able to differentiate that a loss of eight 

dollars was to great.  Therefore, they still demonstrated an understanding how the units 

on each axis varied in relationship to one another.  Although they did not use their 

invented slope formula this time.  This still understood that the vertical change was five 

dollars and that Chasity’s eight-dollar change did not make since.  They were unable to 

articulate a complete proportional strategy for this nonzero y-intercept problem.   

Furthermore, the students’ articulation of their answer was influenced by the fact 

that the unit rate was not in the denominator; they unitized the other graphs when the 

denominator was one.  They also used intuition in solidifying their mathematical 

assertions.  Skemp (1987) discussed the intuitive stage as being largely dependent on the 

way in which the material is presented to students.  In this case, the material was 

presented in graph format, and the students throughout the study exhibited knowledge of 

how one unit changed in comparison to the other.  Thus, they seem to have understood 

intuitively that Benjamin’s solution made more sense, but the fact that the unit rate was in 

the numerator complicated their articulation of why this was so.         
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Conclusion 

 The students demonstrated that they recognized a connection between 

proportionality and slope by using the graph to discuss how one unit was changing in 

relation to another.  The graphs allowed the students to see how the units varied and thus 

to explain how they solved the problems.  However, complications occurred when the 

unit rate was not located in the denominator.  The students appeared to use their intuition 

to discard solutions that did not seem reasonable.  Another theme that became apparent 

was the significance of the context of the problems in the students’ discussions of their 

solutions in terms of the change of y over the change of x.  This is an important concept 

in slope because it is conveyed in the slope formula that is presented to them.  

Nevertheless, the contextual problems allowed students to utilize this format.    

Furthermore, the students deployed a variety of proportional strategies to solve slope-

related tasks, including the unit rate or fraction strategy to simplify the solutions at the 

end of the problem, while they turned to the build-up strategy to initiate the problem-

solving process.  Thus, they built up the numbers on the y-axis to make sure that the 

change was consistent; and this move in turn demonstrated knowledge of the x-axis 

increasing by 1, as was exemplified in the carwash problem.  This approach can be 

described as “Piagetian,” for the well-known educator Jean Piaget (1958) discussed how 

adolescents’ proportional reasoning develops from global compensatory strategies that 

are often additive in the formulation of thoughts.  Thus, the students in the car wash 

question added up 40 each time, recognizing that the monthly change must be 40.     

 The students in Pair C also drew on their prior experiences, inventing the slope 

algorithm naturally without ever being exposed to the formula.  They similarly 



 96 

demonstrated knowledge that the y-intercept is the essential starting point for building 

linear equations and functions and recognized that multiple proportional strategies could 

be used to connect proportionality as well as to solve problems with nonzero y-intercepts. 

Case 4: Pair D 

Pair D consisted of two seventh-grade girls in my Math 7 class, one of whom was 

Caucasian (Student G) and the other African-American (Student H).  Again, this class 

was the standard for seventh-grade mathematics, with the next step in their math career 

being Pre-Math I, the required eighth-grade class.  Students G and H did not see 

themselves as very strong math students.  Both said that what they enjoyed most about 

math class was the opportunity to work in groups because it allowed them to bounce 

ideas off of one another and to check solutions.  These students were on grade level, as 

they were not placed in advanced math classes; Math 7 is the class taught to on-grade-

level or below-grade-level students.  Like the previous pair, they knew that they were not 

in higher math classes from interactions with friends in those class and expressed doubt 

when faced with certain types of problems, and they had yet to be introduced to the 

concept of slope or problems related to it.   

Banana Problem 

Pair D was presented with the same questions presented to the previous pairs.  

The banana question (Figure 5) prompted the following discussion:  

Teacher: “Why do you feel your answer is 25 cents per pound?” 

Student G: “In every other point, yeah, so the pound, 0 pounds, 0 cents, 2 pounds, 50 

cents, 4 pounds, 100 cents, 6 pounds, 150 cents.  So, if you fill in all those gaps, it’d 0, 1, 

2, 3, 4, 5, 6, 7, 8.  And then if we filled in the gaps for the price, it would be going up by 
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25 cents. It would be 0 cents to 25 cents, 25 cents to 50 cents, 50 cents to 75 cents, 75 

cents to 100 cents, and on and on.  So, 50 divided by 2 is 25.  We just went up by 25 each 

time.” 

Teacher: “Do you agree, Student H?” 

Student H: “Yes!” 

Teacher: “And what does filling in the gaps mean again?” 

Student G: “Every other point is blank.  So, if you filled those in you can see it is going 

up by 2.  So, you just have to fill in the line 1, 3, 5, 7.” [They did so on the x-axis.] 

Teacher: “And what did you say you did with the 50 cents?” 

Student G: “So, with the 50 cents we divided it in half, 50 divided by 2 is 25.  And so, we 

just did 25, 50, 75, 100, 125, 150, and 175.” [They did so on the y-axis].    

The students used the graph to identify all of the points highlighted on the graph.  Next, 

they filled in the gaps, which they referred to as the missing numbers.  Thus, they seem to 

have been constructing a type of ratio table with blanks to be filled in.  The students 

recognized that the x-axis was increasing by 2 units and the y-axis by 50 and that the 

numbers in between would be the next in the procession, ascending by 1 on the x-axis 

and 25 on the y-axis.  However, this technique was only used to confirm the solution; the 

students knew to take the 50 cents and divide it by 2, that is, to unitize the rate to 1 

pound.  This is the technique that the CCSSM suggested students use to understand slope, 

building on their prior work with unit rates to identify slope in graphs.  The students 

exemplified the strategy because their division by 2 signified a unit rate.  Furthermore, to 

reiterate that a unit rate was utilized they filled in the gaps by ascending by 1.  Thus, they 

used unit rate strategy and build-up strategy to solve slope-related tasks.  However, they 
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connected proportionality to slope by finding rate of change to describe the graph.   The 

students understood that y-axis was increasing by fifty-cents for every two pounds of 

bananas.  Instead of initially just dividing fifty cents by two pounds they filled in the 

values in between by ones.  This was built of the initial value of fifty cents because that 

divided by two pounds yields twenty-five cents.  Therefore, they understood that graph 

illustrated twenty-five cents increase for every pound.  

Car Wash Problem 

 Pair D next tackled the car wash problem (Figure 6), after which the following 

discussion took place:   

Teacher: “How much does it cost per month to belong to the car wash club?” 

Students G and H: “Sixty dollars.” 

Teacher: “Okay, and how did you come up with 60?” 

Student G: “Because on the line they have the months of memberships on the x-axis and 

on the y-axis it is the total amount of dollars.  And if you line it up with the 1, it would be 

60 dollars.” 

Teacher: “Okay, but what does that 60 represent on the graph?  What does that point on 

the graph represent to you?” 

Student G: “The cost per month.” 

Teacher: “Okay! Well, how much does it cost for 2 months?” 

Students G and H: “One hundred dollars.” 

Teacher: “Okay, I was just curious because you said it was 60 dollars per month.  Student 

H, what are you saying?” 



 99 

Student H: “Well, I thought it would be 40 because you go 20, 30, 40, 50, 60 and that’s a 

point and you could keep going up 40.  So, I thought that would be the cost per month.” 

Student G: “What do you mean?” 

Student H: “So, like if you keep going.  So, if you add 40 to 20 that would give you 60 

and that would be the cost for 1 month.  Then if you add 40 to 60 that would be the cost 

for the 2nd month, that would be100.” 

Student G: “Oh yeah!” 

Teacher: “So, are you guys changing your answer?” 

Student G and H: “Yes!” 

Teacher: “What made you change your answer?” 

Student H: “Because if you do 60 plus 60, you will not get 100 which is the cost of the 

second month.  So, if you did 60 plus 40, it will give you 100 which is the cost of the 

second month.  So, if you keep going you get the cost of the months.” 

Student G: “So, how the first point starts at 20, if you add 40 it would be 60.  If you keep 

going it will add up so we are saying that it is 40 dollars a month.” 

Teacher: “So, what equation did you guys come up with to describe the graph?” 

Student G: “x plus 40 equals the cost.  Where x represents the months.” 

Teacher: “So, x represents the months?” 

Students G and H: “Yeah!” 

Teacher: “How would that work if we go to the second month?” 

Student G: “So, if you do 1 month and then add 40 to it, that would be the cost for the 

month.  And if you did the second month that would be 80 because 40 plus 40, not 

including the local car wash.” 
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Teacher: “So, x represents not the number of months?” 

Students G and H: “No, the number of months!” 

Teacher: “So, if I have 40, I wouldn’t do for the second month 2 plus 40, since you said x 

represents the number of months.” 

Student G: “Oh yeah, that doesn’t make sense. So, x plus 40 equals the cost, so x is the 

previous month’s total cost plus 40 equals your coming month’s cost.” 

Teacher: “And how did you determine that equation?” 

Student G: “If you look at the graph, because if you look at the total for 0 months it 

would be 20.  If you add 40 to the previous month it would be 60.  If you go on, it will 

continue to equal.” 

To solve this nonzero y-intercept problem, the students used multiple proportional 

strategies.  The graph assisted students in implementing their proportional strategies.  

They used a build-up strategy again to help come up with their equation and to determine 

how much it cost per month to be part of the club.  The students recognized that the first 

point was 20 or in the eyes of the slope-intercept from the y-intercept and then realized 

that it increased by 40 that from the initial amount to the first month and that this was the 

constant change per month.  Once again, the students exhibited covariation, recognizing 

that the monthly increase was $40.   

The creation of their equation in y = mx + b format was thus x + 40 = cost, with x 

representing the previous month’s total cost.  The students determined that it could not be 

months, as they initially stated, because it would not yield the solution or point on the 

graph.  This is important because it means that they recognized that the meaning of the 

points on the graph are directly related to their equation.  However, they initially thought 
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was of a unit rate is whatever amount corresponds with an x-value of one.  Of course, this 

true if the line originates from the origin but not in a nonzero y-intercept.  Although their 

equation did not conform to the traditional slope-intercept format, it worked for them: 

they were able to mathematize an equation that illustrated the points.  In addition to a 

build-up approach, they also incorporated unit rate, understanding that the $40 was the 

monthly change.   

The students thus perceived that the initial fee for the club was $20, which is 

significant because interpretation of the y-intercept in contextual problems is vital in 

creating equations.  Traditionally, when the slope-intercept form is taught, b is identified 

as the y-intercept or starting point.  The context of the problem seems to have allowed 

Pair D to demonstrate the problem-solving attributes, finding the change in y over the 

change in x, like the other pairs, without ever being introduced to the algorithm.  The 

students understood that, from the initial point, there was an increase to 40 and that the 

pattern continued, so the monthly change must be 40.  Their understanding of the units 

and how they vary exemplified covariation, as one unit changed in relation to another.  

Thus, they used proportional strategies, such as the unit rate, because they recognized that 

the change was happening monthly.  In by creating their equation, they displayed more of 

a recursive approach, perceiving that the amount of each previous month must be added 

to $40.   

The pair used a build-up strategy coupled with unit rate to solve a nonzero y-

intercept slope-related problem.  The students recognized that a fee of twenty-dollars is 

charged first.  Then from that initial twenty they continued to build up to ensure the 

amount was consistent.  This when the students recognized that each month increased by 
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forty-dollars from the initial point.  However, this notion of forty-dollars was initially 

problematic because they applied slope from the origin thinking.  This meant they 

assumed you would multiply the forty by the number of months to find the amount for 

each month.  This led them to creating more of a recursive equation when they found out 

it did not yield the correct answer on the graph.  However, the students connected 

proportionality to slope by naturally creating a slope formula.  The pair found the 

constant change of unit on the y-axis and compared it to the one-unit change of the x.  

This further exemplified a connection of proportionality to slope because the students 

understood how the units varied amongst each other (covariation).    

Traveling Problem 

The traveling scenarios question (Figure 7) also occasioned a lively discussion:   

Student G: “Is the number 2 supposed to be on the 100 line [referring to Scenario 1]?” 

Teacher: “There are two different scenarios, Scenario 1 and Scenario 2.  And aren’t you 

supposed to find which represents the greater speed?  Is that what the question is 

asking?” 

Students G and H: “Yeah!” 

Teacher: “So, it says compare the scenarios to determine which represents the greater 

speed; Scenario 1 or Scenario 2.  Explain your choice including a written description of 

each scenario.” 

Student G: “So, there are two different scenarios.” 

Teacher: “Exactly!  Different scenarios, which one is faster?  Which one has the greater 

speed?” 
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Student H: “Scenario 1 would be a greater speed because it is 4,240 miles and Scenario 2 

is 2750 miles.” 

Teacher: “Where did you get 4,240 from?” 

Student G: “From the top [pointing to an ordered pair in Scenario 1].” 

Teacher: “Okay, so how did you determine Scenario 1 was faster?” 

Student G: “Because right here in parentheses, it says 4,240 [pointing to the ordered pair 

at the top of Scenario 1], which is the distance in miles.” 

Teacher: “So you are saying that the information in parentheses represents the total 

distance in miles?” 

Student H: “Yes!” 

Teacher: “Okay, how did you come up with your answer for Scenario 2?” 

Student H: “We did 55 times 50, which is 2750.” 

Teacher: “Why did you guys do 55 times 50?  Where are you getting 50 from in Scenario 

1?” 

Student G: “The dot, the first point.  Isn’t the dot on the line at 50?” 

Teacher: “Oh, I can’t tell you.  You have two have to determine what that dot means.  So, 

that number next to the dot means nothing to you [referring to the point at ordered pair (1, 

60)].  I’m just asking a question.  Do you want to move on?” 

Student H: “Yeah!” 

Teacher: “You don’t have to!  Did you come up with something else?  Did you change 

your answer?” 

Student G: “Well, I think, since y equals 55 hours. . . .” 

Teacher: “So, can I ask you why you are saying that y equals 55 hours?” 
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Student G: “Because of 55x, or is it 55 times the amount of hours.  We are trying to 

figure out that.  Because we are trying to figure out if it is distance equals 55 times the 

amount of hours or if it’s just 55 hours or distance equals 55 hours.” 

Student H: “I think it would be distance equals 55 hours.” . . .  

Student G: “I think Scenario 2 is greater.” 

Teacher: “So, you guys are switching your answer?” 

Student H: “Yes!” 

Teacher: “So, why are you switching your answer?  What made you now choose 

Scenario 2? 

Student G: “Because the first point is between 0 and 100, which would be 50.  So, then y 

equals 55x and x is time of hours, so it is 55 hours.  So, I think it is Scenario 2 is greater 

because the time is 55 hours and Scenario 1 is 50 hours. So, I think it is Scenario 2.” 

Teacher: “Do you agree with her answer change?” 

Student H: “Yes, I think Scenario 2 would be greater.” 

Teacher: “So, why are you saying Scenario 2 is greater now?  I just want to make sure 

because you changed your answer.” 

Student G: “Because if y equals 55x, and x is the time of hours, that would be 55 hours 

and then the first point is between 0 and 100.  So, you have the first point is 50. So, 55 is 

greater than 50, so it’s Scenario 2.” 

 The erroneous strategy that the students used appears to have been related to the 

context of the problem.  After the pair had already connected proportionality to slope 

through the context of graphs, they still struggled to identify the exact point on the graph.  

They asked if the 2 was on the 100 because they had already discussed the 1 being 
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located at 50.  Thus, while ordered pairs would have been introduced to the students 

through the CCSSM curriculum, their schematic understanding was missing.  

Traditionally, ordered pairs are taught as letters associated by points on a coordinate 

plane, which means without context.  However, the other graph problems that the 

students solved featured points that were clearly on the line, and the points were easily 

identifiable for the pair, while this time the ordered pairs were given to the students.  As a 

result, the students did not utilize previous connections of proportionality to slope-related 

problems such as stating how one-unit change in comparison to the other.   

They thus seem to have neglected their build-up strategy and application of the 

unit rate because they assumed that this had something to do with the solution; their 

initial reasoning for selecting Scenario 1 was that it represented 4,240 miles, and they 

ascertained 2,750 miles from Scenario 2.  The pair apparently used 50 to multiply by 55 

because they concluded that Scenario 1 was increasing by 50 and used the same number 

but changed their solution to Scenario 2 because 55 is greater than 50.  The students used 

the scale of the graph to conclude that 50 is between 0 and 100 and that the point must be 

lying on 50.  The misconception of the ordered paired numbers, as I see it, led them to 

neglect their traditional proportional strategies and observation of the meaning of the 

units.   

It may appear that the comparison of a graph with an equation caused them 

problems, but, when the students were faced with another problem, one involving 

calculating the price of gum using a table and an equation (Figure 9), they were able to 

create a table that matched the coordinates of the graph and create an analogous equation.  

Furthermore, the pair communicated that all three views represented the same data.  



 106 

Again, when the students mathematized and created their own equations and tables, the 

experience was more meaningful to them than it would have been if they had been 

provided with these materials.  

 

 

 
  

  

Figure 9. Gum question; the graph represents the cost of gum as a unit rate of $2 dollars 

per pack. 

Chair Problem 

Pair D also tackled the question about the chair-manufacturing company (Figure 

8), leading to the following discussion: 

Teacher: “Did you guys decide on who’s right?  Because I want to be respectful of your 

time.” 

Student G: “We think the ratio would be 5 to 40.  So, we think it would be Charity.” 

Teacher: “What made you say Charity?” 

Student H: “So, we did 40 divided by 5, which gave us 8.” 

Teacher: “What does 40 represent?” 

Students G and H: “Chairs.” 

Teacher: “And what does 5 represent?” 

Students G and H: “The cost.” 
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Student G: “No wait, we think Benjamin is correct.  Because when you do 5 divided by 

40 it gives you 0.125.  Then when you do 0.125 times 8 that gives you 1. Where 1 would 

be the cost and 8 the number of chairs.  So, we think Benjamin is correct.” 

Teacher: “And why did you do the ratio 5/40?” 

Student G: “Because the cost is going down by 5 dollars while the chairs are going up by 

40 chairs.” 

Teacher: “And why do you think it says negative 1/8 instead of positive if you are 

looking at the graph?” 

Student G and H: “Because it is going down.” 

These students used multiple strategies to approach this nonzero y-intercept problem, 

including the fraction strategy and factor-of-change.  They initially thought the solution 

was the one proposed by the character of Charity in the problem, but they soon 

recognized the units of the x-axis and y-axis and favored the solution proposed by the 

character of Benjamin.  Once again, the students employed the traditional strategy based 

on their prior mathematical experiences without every seeing the algorithmic formula.  

They determined a decrease of $5 because the y-coordinate went from 45 to 40 and, 

utilizing the same strategy, found that the x-coordinates went from 10 to 50, which meant 

a change of 40 chairs for a ratio of 5/40.  This is when they recognized their mistake: the 

five represented the number of dollars and the 40 represented chairs.  However, they 

simplified their fraction to a decimal of 0.125 multiplied it by 8 to see whether this 

yielded an answer of 1.   

The factor-of-change approach demonstrated that the students had some 

understanding of the functional approach.  Nunes and Bryant (1996) observed that slope 
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is intended to be seen as a functional relationship so that the students gain an explicit 

understanding of the fixed multiplicative relationship between the two measures.  

Students G and H displayed this kind of thinking when they multiplied 0.125 by 8.  

Furthermore, the graph played a crucial role in helping the students to see why the slope 

was negative once they perceived that a descending line means a negative slope.     

Conclusion 

The students in Pair D made a connection between the proportionality and slope-

related problems by naturally creating the slope formula.  The pair found the change of 

the unit of y-axis as it related to the change of the unit of the x-axis.  This is how slope is 

naturally taught for linear representations. Yet, the pair was able to create this formula 

through the context of the problems.  Additionally, the pair described the vertical change 

of the graph in comparison to the horizontal change of the graph.  This is also 

traditionally how slope is taught.  Therefore, the pair made traditional connections to 

slope base of the proportional strategies they used to solve the problems.  Thus, they were 

able to use the factor-of-change strategy to create their own linear equations and the 

multiplicative properties to ensure that graphs and tables were proportional.  The 

importance of context in the conceptualization of slope, as noted by Lobato and Sieberts 

(2002), was once more on display as the students easily transferred knowledge between 

contexts.  Research has shown that students tend to have difficulties in making 

connections between the physical aspect of slope and its functional aspect as a rate of 

change.  These students, though, used their prior understanding of proportionality to 

describe the data on a graph and to create tables and equations.  
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 Pair D used multiple proportional strategies to solve slope-related problems. Pair 

D used the build-up strategy to check that the change in the unit was consistent and 

recognized that the graph varied by one, so they used the unit rate more as the ending 

strategy to solve for the nonzero y-intercepts.  The students employed the slope algorithm 

naturally, without ever having been exposed to the formula.  They also demonstrated 

knowledge of the y-intercept being a starting point, which is essential in building linear 

equations and functions.  However, when an ordered pair was involved, Pair D did not 

use the strategies that had been successful in solving the other problems, though they 

connected proportionality to slope by employing proportional strategies to solve slope-

related tasks.  These students’ approaches to these problems once more reinforced the 

arguments of Freudenthal (1983) and Skemp (1987) regarding the benefit to students 

when they create and use their own strategies.  Furthermore, these students demonstrated 

the ability to use multiple proportional strategies to connect proportionality and to solve 

problems with nonzero y-intercepts. 

Summary 

 In this chapter, individual case study reports for four pairs of students (A, B, C, 

and D) were presented.  These reports included the discussions in the course of which 

each pair solved slope-related contextual graph problems in y = mx form (origin) and y = 

mx + b (nonzero y-intercept) forms.  The main theme that emerged from observation of 

Pair A was these students’ predominant use of the unit rate for graphs originating from 

the origin as well as for those with nonzero y-intercepts.  Pair A also employed a form of 

the build-up strategy to ensure that each unit was consistent, demonstrated knowledge of 

covariation (i.e., they were able to discuss how one unit varied in relation to another), and 
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recognized that the variable b represented the initial value when the graph did not show 

constant proportionality.  Pair B also made use of the unit rate in solving the graph 

problems and the fraction strategy for simplification, recognizing that the unit on the x-

axis increased by 1.  These students further demonstrated that the b in the y = mx + b 

equation represented the starting point and that the ratio started from that point and 

proceeded to the next.  The main theme that emerged from observation of Pair C was the 

predominant use of the build-up strategy in assessing how the units varied on the graph.  

When the change on the x-axis was other than 1, however, these students found it harder 

to explain their solution.  They were unfamiliar with ordered pairs until discussion of one 

of the problems led to recognition of this kind of representation.  Pair D also employed 

the build-up strategy in identifying how one unit changed in relation to another and had 

difficulty translating graphs when the point was not aligned perfectly with the numbers 

on the x and y axes.   

 In Chapter 5, these main themes are discussed along with others that emerged in 

the context of the math classes in which the students were enrolled at the time of the 

study.  This concluding chapter wraps up with an assessment of the implications of the 

findings presented here for mathematics education and of areas for future research, as 

well as a personal reflection.                
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  CHAPTER FIVE: CONCLUSION 

 

 The research discussed here focused on the manner in which students recognize 

the connection between proportionality and slope because educators, and their curricula, 

treat these mathematical concepts as distinct from one another.  The students who 

participated in this study, however, solved slope-related tasks in part by consulting their 

“math rolodexes” and employing proportional problem-solving strategies.  In the cross-

case analysis, I compared and contrasted the mathematical strategies the four pairs in the 

study used to formulate and solve the highlighted problems.  Four contextual graph 

problems served to answer the following research questions, which were presented in 

Chapter 1 and are reproduced again here for the sake of completeness and convenience: 

1. What proportional reasoning strategies do the participants in the study (i.e., the 

pairs of students) use when solving slope-related questions that pertain to nonzero 

y-intercepts? 

2. How do participants in the study connect proportionality with slope? 

 The characteristics of the problems identified or described the specific 

mathematical issues in a general context, an approach that allowed the students to 

schematize, formulate, and visualize them in various ways.  They had the freedom to 

recognize relationships, regularities, and the isomorphic aspects of the various problems 

as they translated real-world situations into mathematical ones and vice versa.  This 

freedom proved beneficial in connecting proportionality and slope.  

 Consultation of the literature relating to proportionality and linear functions 

facilitated and enriched the cross-analysis of the data.  The concept of slope has multiple 
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facets, including the rise/run ratio, rate of change, and change in y over change in x, and 

it plays a key role when students encounter the slope-intercept form as a means to plot 

linear functions and seek to describe the relationship between two magnitude values.  At 

the time of the study, the participants had not received instruction on constant 

proportionality or slope, so they were not influenced by the traditional approaches to 

solving these types of problems. 

 The cross-analysis drew on Freudenthal’s (1977) idea that in order for school 

mathematics to be of value to the students they should learn mathematics by developing 

and applying mathematical concepts and tools in contextual daily-life problems that make 

sense to them.  It also drew on the argument of Skemp (1987) that relational learning of 

mathematical concepts takes longer than does simply learning the rules and that 

instrumental schemas have limited adaptability because any rules that are learned amount 

to ways of manipulating symbols—so that students make connections between symbols 

rather than connecting symbols to concepts.  Application of prior learning to substantially 

new situations requires the formation of conceptual connections, which is to say of 

relational schemas (Skemp, 1987). 

Cross-Case Analysis 

 The aim of this study was to determine which proportional strategies seventh-

grade students used to solve slope-related problems with a nonzero y-intercept and how 

they connected proportionality to slope.  Although Chapter 4 discussed the findings as 

individual case studies, this section highlights the commonalities among the case studies 

and addresses how they contrast with similarly focused studies.  
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Connecting Proportionality to Slope 

A theme that evolved from each pair in the study was the natural creation of a 

slope formula from the contextual graph problems.  Traditionally, the students receive the 

algorithm !"	$	!%
&"	–	&%

 and then sequence of ordered pairs to solve the problem.  However, the 

pairs in the study created the same formula by taking the vertical change from the 

problems and then comparing it to the horizontal change.  Additionally, the description 

and verbiage of their ratios related to slope-related tasks consistently exuded the higher 

mathematical notation of Δ𝑦
Δ𝑥

 .  Yet, if one were to ask the students what that notation 

meant, there would be silence.  

 It is evident that the contextual problems in the study elicited a guided 

reinvention. RME’s guided reinvention describes mathematics as a human activity and 

associated the principle of learning mathematics as a reinvention process.  The students 

should have the opportunity to reinvent mathematics under the guidance of an adult 

(Freudenthal, 2013).  The problems were selected not only to build upon students’ prior 

mathematical experiences, but also to show a connection to slope.  The students’ ability 

to solve the problems relates to Freudenthal’s (2013) retrospective learning, which means 

recalling old learning matter whenever it is necessary.  Furthermore, the reasoning of the 

students illustrates the similarities between proportionality and slope. 

 Further, the students’ creation of their own slope formula supports Lobato and 

Thanheiser’s (2002) disagreement with some educators who believed that the teaching of 

slope should not go beyond the slope formula.  However, Lobato and Thanheiser (2002) 

disagreed with this rhetoric and believed this approach is only useful in solving textbook 

problems and cannot be easily applied to real-world situations involving rates of change.  
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This type of rhetoric is incited by studies such as Larson et al. (2004) because their study 

involved traditional slope problems found in the traditional beginning algebra curriculum.   

Thus, traditional slope problems only allow educators to identify if students are 

procedurally proficient or understand the algorithm.  Algorithms create the fundamental 

antinomy within didactics of mathematics: insight versus drill (Freudenthal, 2013), but 

mathematization is the remedy.  Rather than teaching rules, mathematization allows 

students to build on prior mathematical experiences.  Yet, as math educators we must use 

theory that objects to drill because it endangers retention of insight.  Retention is fostered 

when students are able to create and use prior strategies to solve problems (Skemp, 1987 

and Freudenthal, 1983).  The students in the study contradicted the notion of slope being 

regulated to just the slope formula.  The students exemplified this notion because they 

were able to apply their formula to real-world rate of change problems.  This is why as 

mathematics educators       

 Further, the students’ use of contextual problems to evoke a connection between 

proportionality and slope support Cheng’s (2010) study, which concluded that one 

component of proportional reasoning essential to the transformation of algebra is an 

understanding of slope in a range of contextual situations, examples including such linear 

relationships as those between distance and time, cost and the number of items bought, 

and hours worked and pay.  The problems in the study had units that the students could 

easily identify and associate how they changed amongst one another by the questioning.   

 The use of contextual graphs also allowed students to view the relationship 

between the varying units on the different axes and create equations more easily. This 

undergirds Eisenberg’s (1992) assertion that students failed to consider the graphical 
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approach a valid solution strategy because of the heavy reliance on algebraic methods. 

The norm is to translate equations to a graph. However, graphs play an intricate role in 

the study of linear functions.  Freudenthal (1983) argued that the decisive feature of the 

graph over a table and formula was its visualizing power.  The students demonstrated this 

attribute in the study.  The students connected proportionality to slope through 

recognition of a relationship between the units on each axis.   

 This relationship between the units on each axis further supported findings by 

Carlson et al. (2010) and Lobato et al. (2002), who discussed the importance of students’ 

ability to coordinate covarying quantities on their understanding of slope.  The findings 

of the present study support this notion.  The students in the study were unfamiliar with 

the term “slope.”  However, they displayed an understanding of covariation, which was 

another way students’ connected proportionality to slope.  The graph allowed the students 

to understand how one unit changed in comparison to the other.   

Lobato et al. (2002) warned of students who misinterpret slope as a difference 

rather than as a ratio.  The students in the study were not regulated to this pitfall.  The 

students demonstrated knowledge when they discussed graphs as twenty-five cents per 

pound.  Thus, the findings of this study support the notion that contextual graph problems 

assisted students in understanding that covariation is ratio and if mathematics educators 

in the future utilize them, it will allow students to generate their own lasting connections.  

Freudenthal (2013) warned that rules learned by imposition never had a real chance to 

develop common sense of a higher order because a set of algorithms is worthless if one 

does not understand how and why it works. 
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Dugdale (1993) noted that there are certain qualitative aspects of a graph that 

algebraic equations cannot illustrate.  The students in the present study were able to make 

observable notions that depicted why the slope was negative, supporting Dugdale’s 

claim.  The students saw that the graph was descending and associated that there was a 

negative relationship between the two quantities.  Additionally, they were able to solve 

slope-related tasks whether they derived from the origin or a nonzero y-intercept.  The 

graph easily allowed them to create sensible equations for the pairs.  The slope is the 

basis and anchor of linear functions and the format associated with linear functions is 

slope-intercept form.  The meaning of the linear function is denoted by one’s 

understanding of how the y-value varies in comparison to the x-value.  Additionally, the 

nonzero y-intercept states the initial value of the function as well as represent the value 

when x is zero.      

The findings of the present study contradict those of Zaslavsky, Sela, and Leron 

(2002), who found that students who view slope quantitatively (as a ratio) tend to resort 

to algebraic representations of slope for its calculation, thus perceiving slope as a 

formula.  The students in the present study were not aware of the term slope or a slope 

formula.  However, they were able to create and understand the meaning of the ratio 

described by the graph because, when students had the opportunity to create their own 

meaning, it resonated with them in this study.  Unlike previous studies that addressed 

students’ procedural understanding of slope, the students in the present study used 

schematic learning, which Skemp (1987) described as twice as efficient as rote learning 

in promoting the retention of material knowledge.  This schematic learning explains why 
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the students in the study were able to use the same proportional strategies consistently in 

solving the contextual problems.  

Proportional Strategies Used to Solve Nonzero Y-intercept Slope-related Tasks  

Another theme that evolved from all groups was the use of proportional strategies 

to solve nonzero y-intercept problems.  All pairs recognized a starting point, which would 

coincide with the y-intercept and then applied a build-up strategy to check if the change 

from the initial points was consistent.  The pairs then associated this change to the one 

unit it changed over the horizontal axis.  The unit rate, coupled with the fraction strategy, 

played a major role in their problem-solving with nonzero y-intercepts.  The students 

used the context of the graph and easily depicted how the different units varied with one 

another.  The students thinking and creating their own mathematical formulas contradicts 

the need to give them ready-made definitions, rules and algorithms.  RME would suggest 

that the students are mathematizing as well as reinventing.  De Lange (1996) felt in order 

for students to have the opportunity to reinvent mathematics they should first be exposed 

to a variety of real-world problems and situations.  This is because when we look at 

traditional slope problems it becomes problematic to students because they are trying to 

memorize a formula that has no meaning to them. 

 The practice of unitizing is supported by Lawton (1993), who concluded that 

students may benefit from a focus on quantitative relationships between the units of each 

object in a problem. Lawton also asserted that the unit approach could lead to an intuitive 

understanding of proportional reasoning in most students.  This unit approach is the 

premise behind slope when textbooks and teachers express change in y over change in x.  

This being the case, the introduction of students to proportional reasoning in this manner 
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could prepare them to make connections to slope in the future.  Further, according to the 

NCTM (2000) and as noted earlier, facility with proportionality involves much more than 

simply being able to set two ratios as equal and solve for the missing term; it also 

involves recognizing quantities that are related proportionally and using numbers, tables, 

graphs, and equations to think about them and their relationships. 

   Kaput and West (1994) and Tournaire and Paulo’s (1985) works described the 

build-up strategy as a dominant proportional strategy used during childhood and 

adolescence that enables students to solve ratio problems without recognizing the 

multiplicative relationship inherent in a proportion.  This may be applicable to traditional 

proportional problems, but I disagree with this rudimentary description when it is 

applicable to linear graphs.  The pairs in study used the build-up strategy as means to 

check the consistency of the vertical change in comparison to the horizontal change on 

the graph.  Once the students recognized the change was constant in both units, they did 

employ proportional strategies such as the unit rate or fraction strategy.   

The reduction (fraction strategy) of the covarying units demonstrated that the 

students understood the multiplicative nature of the proportion.  They were able to check 

create linear equations and compare values through this multiplication.  Therefore, it is 

imperative as mathematics educators that we do not diminish students’ problem-solving 

process.  The aim of horizontal mathematization is for the learner to start with contextual 

problems that evoke students to describe situations and find solutions using his or her 

own language and symbols.  This type of mathematization is the type of learning that 

assist students in retaining knowledge.  Further, Misailidou and Williams (2003) 

described additive structures as a stepping stone to multiplicative structures.  The 
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students in the present study displayed this idea as they used additive structures as a 

means to simplify or create a unit rate when necessitated.   

The findings of this study had similarities to those of Bishop (2000) and Lobato et 

al. (2003), who also found that students often notice constant differences or recursive 

numeric patterns in linear contexts, but do not tend to see the constant proportion.  One of 

the differences between the pairs in Pre-Math and Math 7 was the creation of a linear 

function.  The students in the Pre-Math class were able to create linear functions from 

nonzero y-intercepts.  They understood multiplicative nature as well as the representation 

of the nonzero y-intercept.  The students recognized that proportionality began at that 

particular starting point represented on the y-axis.  Therefore, if you made an equation 

you would have to multiply and then add the amount the proportionality started at.  

However, the students in Math 7 communicated a starting point, but their equation was 

recursive in nature.  This recursive nature was illustrated by the Math 7 pairs describing 

their equation as adding the prior month to the constant proportion they found from the 

initial point.  Nevertheless, the students were able to describe the meaning of this initial 

point.                  

Although the Math 7 students used a recursive type equation, it still yielded the 

same answer as the linear equation.  However, Carraher et al. (2008) alluded to the notion 

that the didactical history of early algebra lessons introduced letters to represent any 

number.  Despite the Math 7 students manifesting that their variable stood for the 

nonzero y-intercept of twenty it represented the prior months’ value.  This prior month 

representation is because in the recursive equation the constant proportionality occurs as 

an increment in the repeating condition (Carraher et al., 2008).  Carraher et al., (2008) 



 120 

also referred to the term as a recursive sequence, because students treat the y-value as a 

set-in which order matter.  The students identified recursion as “[continuing to add] the 

constant proportionality from the nonzero y-intercept” as the principle generates the 

successive vertical change values (Carraher et al. 2008, p.7).  If the horizontal change 

(independent variable) always increases by one, it can be treated as an indicator of 

position in the sequence or position in narrative’s time dimension (Carraher et al., 2008). 

Therefore, the iterative variant had the students start at the nonzero y-intercept 

initially and build their way up until they reached the desired y-value that corresponded to 

the x-value.  However, the students were able to simplify the process. For example, if 

they were looking for the cost of the third month, they took the second month’s value and 

added it to the constant proportionality found from the nonzero y-intercept. However, a 

pitfall with the recursion equation is that it becomes tedious when the variable becomes a 

large number.  Additionally, Martinez and Brizuela (2006) found that this approach 

typically occurs with tabular data because the x and y-values are listed as pure numbers 

with no definitive units of measure.  Carraher et al. (2008) suggested, “Children need to 

start from carefully crafted contexts and situations that may constitute physical analogues 

for mathematical structures” (p.19), and graphs support these mathematical structures.  

Although the Math 7 students did not create a linear equation, they were on the cusp by 

understanding that the initial value was twenty.  Therefore, in a classroom setting, further 

discussion could have served as a “teachable moment” in which the instructor could have 

help the students restructure their equation.   

A study also important to consider in the context of the present study is Davis’ 

(2007) work, in which s/he recognized that the concept of the y-intercept may seem as a 
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less complex concept compared to slope, but it still poses a challenge for students when 

they must translate between different representations.  Further, Davis (2007) recognized 

that the y-intercept holds the potential to promote the Cartesian connection because of its 

presence within the slope-intercept form of an equation.  The findings of the present 

study support Davis’ findings.    

Knuth (2002) found that students with mathematical backgrounds from first-year 

algebra to calculus did not apply the Cartesian connection to translate a graphical 

representation to an algebraic one.  Knuth’s research further indicated that students 

preferred to move in the opposite direction, from algebraic to graphical representations.  I 

hypothesize that the connection was not made because the graphs were not contextual.  

By the graphs not being contextual, the students are not able to interpret or make meaning 

of what is taking place.  Furthermore, curriculum is to blame for the students’ wants.  

Traditionally, math classes have students go from equation to graph.  Yet, how many 

equations are truly contextual?   

As a math practitioner with 23 years’ experience, algebra textbooks highlight the 

slope-intercept equation by denoting what each variable represents. The teacher then 

guides the students through the usage of the variables and they find this graphing process 

extremely easy.  My research supports Davis’ (2007) assertion that real world contexts 

hold potential for making students’ mathematical investigations more meaningful.  The 

use of real world contextual problems allows students to naturally discover meaningful 

learning.  Therefore, contextual problems allow students to use their prior experiences to 

make lasting connections. 
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Implications 

DeLange (1996), thus, may have been correct in his assertion, apropos of the 

theory of RME, that students benefit from opportunities to discover mathematical ideas 

and concepts for themselves under the guidance of their teachers and that this is best 

accomplished through exposure to a variety of real-world problems and situations.  When 

applied problem-solving in real-world contexts is the primary approach to teaching 

mathematics, students are able to make connections or, as Freudenthal would say, to see 

math as a human activity. 

When teaching slope, then, whether from the origin or a nonzero y-intercept, it is 

useful to keep in mind the following set of principles elaborated by DeLange (1996): 

• The starting points of instructional sequences should be experientially real 

to students so that they can engage in personally meaningful mathematical 

activities. 

• In addition to considering students’ existing mathematical knowledge, the 

starting points should also be justifiable in terms of the potential end 

points of the learning sequence. 

• Instructional sequences should involve activities in which students create 

elaborate symbolic models of their informal activities. 

This means that educators must come up with slope-related problems that are meaningful 

to the students in their everyday lives and that take into account their current 

mathematical knowledge.  From this starting point, they must create activities that build 

on their students’ prior knowledge while keeping the endpoint, slope, in mind, especially 

through the use of contextual graphs.  Thus, as discussed by Lawton (1993), students 
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must observe the relationships among units instead of being presented with an 

algorithmic model.  Moreover, the activities must afford students the freedom and 

flexibility to follow their own notions.  

       Under such a teaching regimen, a strong indicator of students’ success would be their 

tendency to use contextual approaches to math problems.  Thus, the participants in this 

study were able to use previously acquired proportional reasoning to solve slope 

problems.  Their ability to do so demonstrates that it is possible to create effective, 

meaningful and contextual problems for learning slope through proportional reasoning 

provided that math teachers promote their students’ mathematization through activities in 

which one-unit changes relative to another. 

In mathematics education, the verbal description of a problem situation or word 

problem delineate contextual mathematical problems.  However, many students 

encounter difficulties in completely descriptive word problems because they take a 

calculational approach (Thompson et al., 1994).  A difficulty commonly discussed with 

pure word problems is students do not take in consideration common sense 

considerations about the problem (Greer, 1997; Verschaffel, Corte, & Lasure, 1994). 

However, Hoogland et al. (2018) found that the use of real life images could counteract 

the difficulties in understanding pure word problems.  The idea is that depictive 

representations of problem situations stay closer to real problems that are represented, 

and the students make more sense of a pictorial situation.  This pictorial representation 

was exhibited in the research as the students were able to use contexts of the graphs to 

help make sense of their solutions. 
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 Furthermore, Carpenter and Shah (1998) found that within-context linear graphs 

enabled students to perceptually process pattern recognition of encoded graphic patterns, 

perceptually process operations on those patterns to retrieve or construct qualitative or 

quantitative meanings, and to process conceptually translations of the visual features into 

conceptual relations when one interprets titles, labels, and scales, as well as any other 

keys or symbols that are part of the display.  Additionally, Friel et al. (2001) found that 

graph instruction within a context of data analysis promoted a high level of 

comprehension because, to interpret graphs, one must seek relationships among specifiers 

(data values) in a graph or between a specifier and a labeled axis.  Therefore, the findings 

of the present study supported this notion, as the contextual graph problems allowed 

student to see the covariation of the units and interpret the meaning in a slope ratio 

without ever encountering slope terminology.  Since contextual graph problems depict a 

real-life situation, the students were able to use prior experiences to make sense of the 

problems.    

 Although the study focused on how the pairs solved the problems.  The students 

worked in pairs and communicated throughout the problem-solving process.  The socio-

constructivist approach is motivated by the desire to understand students’ mathematical 

learning as it occurs in the classroom or other social situations (Cobb et al. 1991).  

Brophy (2001) argued that practice and conditions that engage students in thoughtful and 

sustained discourse can facilitate learning, provided that (a) the discourse focuses on 

solid mathematical notions and (b) that teachers motivate students to develop 

explanations, make predictions, debate alternative approaches to problems, and to clarify 

or justify their assertions.  Consistent feedback through the series of interviews the 
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majority of the pairs revealed that discourse provided security to students unsure about an 

answer; each person was important because of their various strengths in different math 

topics.         

Limitations 

The major limitation of this study was the sample size, for there were only eight 

participants.  Small sample sizes are, however, valued in qualitative research because of 

the detailed information that they can yield.  Another limitation was the location in which 

the study was conducted, specifically a suburban school district serving families of 

middle and greater socio-economic status.  The issue here is that students from privileged 

backgrounds tend to receive exposure to educational opportunities outside the context of 

their schools.   

Therefore, results may not be generalizable to other seventh-grade students in 

other schools. Further, the fact that some of the students who participated in the study had 

high mathematical aptitudes may also have biased the findings.  As a result, all 

participants in the study had not encountered the same mathematics education 

opportunities.  Additionally, the four students from the higher math class were boys due 

to the teacher have a gender-specific boys’ class.  Therefore, females of the same caliber 

were not included into the study.   

Furthermore, the analysis focused on four graph problems, two from the origin 

and two from a nonzero y-intercept.  Thus, there may have been too few problems 

analyzed as well as administered in order to make concrete generalizations about 

proportional strategies used to make connections between proportionality and slope, as 
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well as what proportional strategies are used to solve nonzero y-intercept slope-related 

tasks.       

Areas for Future Research 

The study could expand to the use of a hypothetical learning trajectory (HLT) 

which is an essential component in the RME instructional design.  The HLT is a heuristic 

within the Realistic Mathematics Education (RME) design research cycle (Stephan et al., 

2003).  It coincides with the RME heuristic guided intervention.  Guided reinvention is 

based on the premise that the designer starts to develop a sequence of instructional 

activities or a route the class might take to develop mathematical understanding of an 

activity.  The route is constructed from the historical events surrounding the concept as 

well as prior research equated with students’ mathematical strategies utilized to develop 

the mathematical concept.  Thus, HLT is synonymous with guided reinvention because it 

is a taken as shared learning route for the classroom community.  Therefore, it would 

allow the study to expand from pairs to a classroom setting 

A HLT differs from traditional lesson planning because of the following: 

1. It is socially situated nature of the learning trajectory. 

2. It views planning as an iterative cycle rather than a single shot methodology. 

3. It focuses on students’ constructions rather than mathematical content. 

4. It offers the teacher a grounded theory that describes how a certain set of 

instructional activities might play out in a given social setting (Stephan et al., 

p.55).   

Therefore, when developing an HLT it is imperative to outline conjectures about 

the collective development of the mathematical community by focusing on the practices 
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that might emerge at the beginning of the sequence, then creating tools and activities that 

might support the emergence of other practices that would be based on increasingly 

sophisticated ways of acting and justifying mathematical practices (Stephan, 

Gravemeijer, and Bowers, 2003).  As a result, HLT requires intense research and 

planning because one must have an idea of how previous students have grasped concepts, 

struggled with concepts as well as have a historical idea of the evolution of the concept.  

From the research, one must then piece together the best possible itinerary of class 

activities to serve the classroom community.  Thus, HLT emphasizes the students’ 

cognitive development instead of the math content which is more consistent with reform 

recommendations that place high priority on students’ mathematical reasoning and 

justification (as cited in Stephan, Gravemeijer, and Bowers, 2003). The current study 

found that the use of contextual graphs might be a starting point, but it does not give an 

in-depth sequence of lessons to develop slope understanding.    

Another facet that makes HLT different from traditional lesson planning is the 

content is not the focal point.  Traditional lesson plans offer a methodology that is meant 

to be followed by all that utilize the lesson.  However, HLT is a route that considers the 

social and is meant to be deviated from because it understands that all classrooms are not 

the same.  Hence, the research embedded into the construction of the HLT takes in 

account students’ past reasoning in the math concept being developed.  Therefore, the 

student is the priority and not the content.     
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As a result, future research using an HLT could explore how students collectively 

collaborate and use prior mathematical experiences in their approach to nonzero y-

intercept tables in comparison to nonzero y-intercept graphs since both views of the 

function can solicit real world contextual problems.  This would allow mathematics 

educators to find a more viable route in nonzero y-intercept slope tasks.   Meira (1995) 

found that table representation helped facilitate student thinking about rate of change, yet 

the current study found graphs useful.   

Meira (1995) found as long as the x-values in the table increase or decrease one 

integer value at a time, the change observed in subsequent y-values will be a constant 

value, regardless of the value of the y-intercept.  This study’s findings indicated that 

structuring the values in the table as described elicited deeper, more mathematical 

conversations between students and allowed for a depth of numeric analysis not possible 

with other representations of function. However, the contextual table approach differs 

from the nonzero y-intercept problems used in my study because the students were able 

to view the y-intercept and visually see how the graph changed.  Yet, since both studies 

focused on integers it would be imperative that the HLT also sought to describe how 

students collectively worked together and use their prior mathematical knowledge in 

association with decimals? 

Also, the current study used students from a higher socio-economic background.  

A replicated study that focused on how students from a lower socio-economic status 

solved the problems would be beneficial.  It also might offer a different HLT if the full 

RME research cycle was implemented.  Additionally, to extend the results of this study 

the analysis of proportional strategies used to solve slope-tasks need to include tables and 
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traditional word problems.  The inclusion of tables and traditional word problems could 

alter results.  Teuscher and Reys (2010) felt it was imperative that the concepts of slope 

and proportionality be discussed simultaneously to understand their relationship to one 

another.  The connection of mathematical relationships and the use of students’ prior 

experiences is the aim of RME’s HLT.  Therefore, the study should further examine 

which learning sequences would best assist students in understanding the relationship 

between proportionality and slope.   

Personal Reflection on the Research Process 

 The qualitative research process was arduous and laborious for me, particularly 

because of the time constraints involved based on program duration. Therefore, I felt 

somewhat overwhelmed when I saw the timeline and all of the due dates and realized that 

my initial design research study would probably not be complete within the anticipated 

time frame.  Nevertheless, I gained an appreciation for the way in which qualitative 

studies allow a researcher to become engulfed and experienced in and enriched by the 

topic under study.  I think that math educators sometimes take for granted students’ 

proficiency in mathematical skills and continue to assign problems only to feel frustration 

when the students lack the requisite knowledge.  The research process has shown me that 

I need to have conversations with my students on their understanding of mathematical 

topics.  Such conversations can help me both to identify their misconceptions and to 

create learning trajectories that will allow mathematization to occur.       

 As the research process progressed, I found the data analysis to be the most 

intriguing aspect, in part because the researcher must let the data drive the interpretation 

of findings.  I must confess, though, that the analysis can be overwhelming, for it reveals 
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unexpected findings.  I learned the importance of research questions as a guide for 

working through the data in order to identify relevant and interesting results.  At the same 

time, I have come to see how research questions can be altered in response to unforeseen 

findings that may enrich the research.   

 In the end, the most vexing part of the qualitative research process was 

transcribing the discussions with the pairs of students about the various problems.  While 

I enjoyed the opportunity to get to know my students on a more personal level, I found 

making the transcriptions to be a tedious experience because I am a very slow typist.  

Nevertheless, listening to these discussions again gave me ideas about ways to improve 

my research methods in the future. 
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APPENDIX A: PARENT CONSENT FORM 

 

  

Department of Middle and Secondary Education 

9201 University City Boulevard, Charlotte, NC  28223-0001 

  

 Parental Informed Consent for  

The Case for Building on Students Proportional Reasoning for Slope-Related Tasks 

  

Project Title and Purpose 
 

The Common Core State Standards for 8th grade mathematics listed as one of the critical 
areas of instruction that students understand connections between proportional 
relationships, lines, and linear equations by students using linear equations and system of 
linear equations to represent, analyze, and solve a variety of problems.  Therefore, parents, 
I am asking you to grant your child permission to participate in a mini-research project on 
The Case for Building on Students’ Proportional Reasoning for Slope-Related Tasks.  The 
purpose of this study is to gain insight from how students solve problems related to 
proportionality and how they employ these strategies to solve slope related tasks.  From an 
analysis of their work, and responses through the use of videotape and work samples, I 
hope to find a connection from students’ prior proportional reasoning as a means that will 
help students develop an understanding of slope.  The insights gained from this project 
could lead to ideas to help teachers and students develop an understanding of this pinnacle 
objective of the Common Core Standards for 8th grade mathematics.  Please feel free to 
contact me if you have any further questions via phone (704-948-8600 ext.1711) or email 
(ckendrick@lncharter.org).    

 
Investigator(s) 

 
This study is conducted by Curtis D. Kendrick a current PhD candidate at UNC Charlotte 
as well as the students’ teacher.  The responsible faculty member is Dr. David Pugalee 
(chair) Director of STEM Education.     
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Eligibility 
 

Students may participate in this study if they 7th graders currently enrolled in Math 7 or 
Pre-Math I (8th grade math). These students are eligible because they will have already 
been exposed to constant proportionality and proportions, but not familiarized with slope 
or slope intercept-form which is the next progression according to Common Core Math 
Standards.  However, middle grade students in 5th, 6th or 8th grade math classes as well 
as 7th graders in Math I will not participate in this study.  The 5th and 6th graders have 
not encountered the all of the necessary concepts and the 8th and 7th grade Math I 
students have already been exposed. 
 
Overall Description of Participation 

 
The study will take place in the teacher-researcher classroom after school from 
approximately 3:00 p.m. to 4:00 p.m. Participants in this study agree to be interviewed as 
they solve problems pertaining to proportional reasoning and slope.  The participants will 
explain their thought process in solving the problem as well as offer justification for their 
solution. The goal of the interviews is to evaluate students’ reasoning when solving 
contextual proportional problems. All interviews will be videotaped and the work 
samples will be collected.  The problem-solving will not count towards their grades, but 
offer insight on a learning trajectory (sequence of activities) that helps develop an 
understanding of slope.  
 
 The participants are expected to answer questions honestly and try their best in actively 
engaging during the interview/problem-solving session. Parents of the participants agree 
to allow the interviews and instructional activities to be recorded and transcribed.  The 
recordings will be collected by the investigator (myself).  All video-recordings collected 
will be passcode-locked as well as their real names will not be used to ensure privacy of 
students. Furthermore, I will be the only person who has access to the videos and it will 
not be shown to anyone.  In addition, work samples will be housed in a locked cabinet 
during the study and they will not have any identifiable information (real name or student 
ID).  The data will be kept indefinitely, but will remain confidential and used for 
educational research purpose only.  There are eight participants in the study. 

 
Length of Participation 

 
The duration of the participation for this study is three (no more than 45 minutes) after 
school class sessions.  There will be one session per week, so the total time is 3 weeks.  
There will be no follow up sessions unless I need to clarify during the analysis.  If so, 
your child will be contacted and we schedule a convenient meeting for after school. 
 
Risks and Benefits of Participation 

 
There are no known risks involved in this study.  The direct benefits of your child’s 
participation in the study are miniscule. However, your child’s shared insights from the 
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problems and discourse with their peers could possibly assist future teachers and their 
students with activities and tools that develop an understanding for linear rate of change. 
 
Volunteer Statement 
 
Your child is a volunteer.  The decision to participate in this study is completely up to 
you.  If you decide to let your child be in the study, you may have your child stop at any 
time.  Your child will not be treated any differently if you decide not to let them 
participate in the study or if you stopped once they have started. 

 
Confidentiality Statement 

 
Any information about your participation, including your identity, is completely 
confidential.  The following steps will be taken to ensure this confidentiality:  The 
recordings will be collected by the investigator (myself) and will not contain any 
identifying information or any link back to the teacher for their participation in this study.  
All recordings collected will be housed in a locked cabinet during the study.  The data 
will be kept indefinitely, but will remain confidential and used for educational research 
purpose only. 
 
Statement of Fair Treatment and Respect 

 
UNC Charlotte wants to make sure that you are treated in a fair and respectful manner.  
Contact the university’s Research Compliance Office (704-687-3309) if you have 
questions about how you are treated as a study participant.  If you have any questions 
about the actual project or study, please contact Dr. David Pugalee (704-687-8887), 
dkpugale@uncc.edu)” 

 
Participant Consent 
 
I have read the information in this consent form.  I have had the chance to ask questions 
about this study, and those questions have been answered to my satisfaction.   I am the 
parent or guardian, and I agree to let my child participate in this research project.  I 
understand that I will receive a copy of this form after it has been signed by me and the 
principal investigator of this research study. 
______________________________________     _______________________ 
Participant Name (PRINT)      DATE 
 
___________________________________________________ 
Parent/Guardian Signature 
 
______________________________________      _______________________ 
Investigator Signature       DATE 
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APPENDIX B: MINOR ASSENT 

 

Assent for Minors 

(For subjects under the age of 18 unless emancipated*) 

 

 

  

Department of Middle Grade and Secondary Education 

9201 University City Boulevard, Charlotte, NC  28223-0001 

 

Assent for the Case for Building on Students Proportional Reasoning for Slope-
Related Tasks 

 
 
 
My name is Mr. Curtis D. Kendrick and besides being your math teacher, I am currently 
a doctoral candidate at The University of North Carolina at Charlotte.  I am doing a study 
to determine how students use their prior proportional reasoning to solve slope-related 
problems. I would greatly appreciate if you participated in this study.   
 
 
I would like you to take part in my study because you and your partner in math class 
collaborate extremely well when solving math problems.   If you choose to participate, 
the study requires you to be interviewed as you solve a total of 9 -12 math problems over 
a three-day session. Each session should last no longer than 45 minutes. The problems 
will not count towards your grade, but they require you to explain your reasoning on 
solving the problem.  In addition, the after-school sessions will be videotaped and your 
work samples will be collected for analysis.  The interviews will take place after school 
in my classroom.  The responses you give could offer insight on connecting 
proportionality to developing an understanding of an algebraic math concept known as 
slope.  
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Your parents said it was ok for you to be in this study and have signed a form like this 
one. You do not have to say “yes” if you do not want to be in the study. If you say “no” 
or if you say “yes” and change your mind later, you can stop at any time and no one will 
be mad at you.  
 
 
You may ask questions at any time and you are not required to be in the study.  When I 
am done with the study I will write a report.  I will not use your name in the report. 
 
 
If you want to be in this study, please sign your name. 
 
 
 
___________________________________          _________________ 
Signature of Participant                                           Date 
 
 
 
___________________________________          __________________ 
Signature of Investigator                                          Date   
 
 
Emancipated Minor (as defined by NC General Statute 7B-101.14) is a person who has 
not yet reached their 18th birthday and meets at least one of the following criteria: 1) has 
legally terminated custodial rights of his/her parents and has been declared ‘emancipated’ 
by a court; 2) is married, or 3) is serving in the armed forces of the United States.  
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APPENDIX C: PHASE I INTERVIEW PROTOCOL AND PROBLEMS 
 
 

Phase I: Interview Protocol 

Warming up questions 

• List three adjectives that best describe you.  Why did you choose them? 

• How would you describe yourself as a math student and why? 

• What is your favorite thing about mathematics and why? 

Interview Questions 

• I am going to ask you to solve a few and we are going to discuss your solutions 

and why you solved the problem that way.  Is that okay?  

• Explain how you solved the problem.  How do you know that your solution is 

reasonable? (Ask after each question.) 
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Phase 1: Questions 

1. Ellen, Jim, and Steve bought three helium-filled balloons and paid $2.00 for all 

three.  They decided to go back to the store and get enough balloons for everyone 

in their class.  How much did they have to pay for 24 balloons? 
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2. Lisa and Rachel drove equally fast along a country road.  It took Lisa 6 minutes to 

drive 4 miles.  How long did it take Rachel to drive six miles? 
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3. Rule: One food bar can feed 3 aliens. 

                 

a.) How many aliens would be fed with 15 food bars? 

b.) How many aliens would be fed with 16 food bars? 

c.) How many food bars are needed for 63 aliens? 
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4. Victor's van travels at a rate of 8 miles every 10 minutes. Sharon's sedan travels at 
a rate of 20 miles every 25 minutes.  
If both cars start at the same time, will Sharon's sedan reach point A, 8 miles 
away, before, at the same time, or after Victor's van? 

Explain your reasoning. 

__________________________________________________________________ 

__________________________________________________________________ 

__________________________________________________________________ 
If both cars start at the same time, will Sharon's sedan reach point B (at a distance 
further down the road) before, at the same time, or after Victor's van?  

Explain your reasoning.  

 _________________________________________________________________ 

__________________________________________________________________ 

__________________________________________________________________ 

__________________________________________________________________ 
Did you use the calculator on this question? 
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APPENDIX D: PHASE II INTERVIEW PROTOCOL AND PROBLEMS 

Phase II: Interview Protocol  
 
Warming up questions 
 

• How was school today? 
• Tell me something interesting that happened in school today. 
• Is your favorite thing in math still ______? Or has it changed? 
 
Questions: 
 
• Explain how you solved the problem 
• How did you and your partner discuss the solutions today 
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Phase II Problems: Slope from the origin (y = mx) 
 

1. The table below gives the price for different numbers of books.  Do the numbers 

in the table represent a proportional relationship?   

Number of 

Books 
Price 

1 3 

3 9 

4 12 

7 18 
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2. The graph below represents the cost of gum packs as a unit rate of $2 dollars for 

every pack of gum. Represent the relationship between the cost of gum and the 

number of packs using a table and an equation. 
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3. Compare the scenarios to determine which represents a greater speed.  Explain 

your choice including a written description of each scenario.   

 

            Scenario 1:                                  Scenario 2: 
    
                                                                 y = 55x  
                                                                 x is time in hours 
                                                                 y is distance in miles 
 
 

o  
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4. The graph below represents the price of the bananas at one store. What is the cost 
per pound?  
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5. A student is making trail mix using the information in the table.  

 

a.) Does the recipe represent a proportional relationship?   

Serving Size  1  2  3  4  
cups of nuts (x)  1  2  3  4  
cups of fruit (y)  1.5  3  4.5  6  

 
 
 

b.)  Where does the unit rate show up in the graph? 
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APPENDIX E: PHASE III INTERVIEW PROTOCOL AND PROBLEMS 

Phase III: Interview Protocol 
 
Warming up questions 
 

• How was school today? 
• Tell me something interesting that happened in school today. 
• Is your favorite thing in math still ______? Or has it changed? 
 
Questions: 
 
• Explain how you solved the problem 
• How did you and your partner discuss the solutions today 
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Phase III Problems: Nonzero y-intercept slope problems (y = mx + b)  
 

1. The linear graph below describes Josh’s car trip from his grandmother’s home 

directly to his home. 

 

a) Based on this graph, what is the distance from Josh’s grandmother’s home to his 

home? 

b) Based on this graph, how long did it take Josh to make the trip? 

c) What was Josh’s average speed for the trip? Explain how you found your answer. 

d) Explain why the graph ends at the x-axis. 
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2. Membership to unlimited monthly car washes at local car wash costs $20 plus a 

monthly fee, as shown on the graph below. 

 
 

c) Determine the rate of change of a line joining the points on the graph. 

d) Explain what the rate of change represents. 

e) Write an equation that describes the graph. Explain how you determined the 

equation that represents the graph. 
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3. Two large storage tanks, T and W, contain water. T starts losing water at the same 

time additional water starts flowing into W. The graph below shows the amount 

of water in each tank over a period of hours. Assume that the rates of water loss 

and water gain continue as shown. At what number of hours will the amount of 

water in T be equal to the amount of water in W?  
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4. The production manager of a furniture manufacturing company plotted values on 

the graph below to show how the production cost per chair decreases as the 

number of chairs produce increases.  The rate of change of the line segment 

joining these points is – 1/8.  Two students had an argument on what the rate of 

change of the graph meant. 

 

• Student A said that the rate of change represents each chair produced decreases 

costs by $8. 

• Student B said that the rate of change represents for every 8 chairs produced, 

costs decrease by $1. 
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Which student is correct? Justify. 

 


