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ABSTRACT

ROBERTO PICHARDO MENDOZA. T -Algebras and Efimov’s Problem.
(Under the direction of DR. ALAN DOW)

We study the topological properties of minimally generated algebras (as introduced by

Koppelberg) and, particularly, the subclass of T -algebras (a notion due to Koszmider) and

its connection with Efimov’s problem.

We show that the class of T -algebras is a proper subclass of the class of minimally

generated Boolean algebras. It is also shown that being the Stone space of a T -algebra is

not even finitely productive.

We prove that the existence of an Efimov T -algebra implies the existence of a coun-

terexample for the Stone-Scarborough problem. We also show that the Stone space of an

Efimov T -algebra does not map onto the product (ω1 + 1)× (ω + 1).

We establish the following consistency results. Under CH there exists an Efimov min-

imally generated Boolean algebra; there are Efimov T -algebra in the forcing extensions

obtained by adding ω2 Cohen or Hechler reals to any model of CH.
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CHAPTER 1: PRELIMINARIES

1.1 Introduction

In this dissertation we focus on the study of the topological properties of the class of

Boolean algebras which was introduced and investigated by Koppelberg in [12], the so called

minimally generated Boolean algebras. They were present implicitly in [2], [18], and [19]

but the notion and the first systematic study are due to Koppelberg. A corollary of her

results is that the Stone space of a minimally generated Boolean algebra contains no copy

of βω, the Stone-Čech compactification of the integers. This leads naturally to Efimov’s

problem.

In [8] Efimov raised the following question, does every infinite compact Hausdorff space

contain either a nontrivial converging sequence or else a copy of βω? It is known that a

negative answer is consistent. For example, in [10] Fedorčuk shows that under ♦, Jensen’s

combinatorial principle, there is a space which serves as a counterexample to Efimov’s

problem. Moreover, one can verify that the Boolean algebra of clopen subsets of Fedorčuk’s

space is minimally generated. Answering a question of Kunen we constructed from CH a

space that possesses the properties of Fedorčuk’s space listed above. This, in turn, implies

that a conjecture of Mercourakis regarding measures on compact spaces [16] is false in any

model of CH.

In [14] the concept of T -algebra is introduced and it is shown that every T -algebra is

minimally generated. We prove here that they are, in fact, different classes.

Our main results are about Efimov T -algebras, i.e. T -algebras with the property that

its Stone space is a counterexample to Efimov’s problem. Scarborough-Stone question is

We show that the existence of one of this Boolean algebras gives a counterexample to

Scarborough-Stone’s problem, i.e. a family of sequentially compact spaces whose product

is not countably compact. We consider this result interesting because it is the first time (to

the best of our knowledge) that a connection between these two longstanding problems is
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established.

We also show that adding ω2 Cohen reals to any model of CH produces an Efimov

T -algebra and that the same is true if we replace Cohen’s poset with Hechler’s.

The dissertation is divided as follows. The first chapter serves two purposes: to es-

tablish the notation we will use along the text and to introduce the results obtained by

Koppelberg and Koszmider. The second chapter contains all the results we obtained with-

out employing any assumptions beyond the usual set of axioms for Set Theory, ZFC. The

final chapter is devoted to the theorems involving CH and forcing extensions.

Any topological term not defined explicitly should be understood as in [9]. The cor-

responding remark applies to set theoretic notions and [15]. Our standard reference for

Boolean algebras is the second chapter of [3] (for a more comprehensive book see [17]).

1.2 Set Theory

Given a set X and a cardinal κ, [X]κ := {A ⊆ X : |A| = κ}, where |A| is the cardinality

of the set A. Similarly, [X]<κ := {A ⊆ X : |A| < κ} and [X]6κ := [X]<κ ∪ [X]κ.

Given a function f : X → Y we define f [A] := {f(x) : x ∈ A} and f−1[B] := {x ∈ X :

f(x) ∈ B} for all A ⊆ X and B ⊆ Y . We will use f−1[p] instead of f−1[{p}] for each p ∈ Y .

As usual, R and Q represent the set of real numbers and the collection of all ratio-

nal points, respectively. c will denote the cardinality of R and CH, Cantor’s Continuum

Hypothesis, is the statement c = ω1.

A tree is a pair (T,6), where 6 is a partial ordering on T so that {s ∈ T : s < t} is

well-ordered by < for each t ∈ T .

Definition 1.1. Given t ∈ T , we denote by t↓T or simply t↓ the set of all predecesors of t in

T , i.e. {s ∈ T : s < t}.

In addition, let ht(t, T ) (or ht(t) if the tree is clear from the context) stand for the

height of the node t ∈ T . If α is an ordinal, we will denote by Tα or T (α) the αth level of

T , i.e. Tα := {t ∈ T : ht(t) = α}. Also T (< α) or T<α denote
⋃
{Tξ : ξ < α}. Similarly for

T (6 α) and T6α.

A branch in T is a subset of T that is linearly ordered and maximal with respect to

this property.
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An important example of tree is the set 2<ε, the collection of all binary functions whose

domain is an ordinal < ε, ordered by s < t iff s ⊆ t. The following concepts will be used

continuously.

Definition 1.2. Let t ∈ 2<ε and α = dom t.

1. t_i := t ∪ {(α, i)} for any i < 2. So t_i : α+ 1→ 2, (t_i) � α = t, and (t_i)(α) = i.

2. If α = β + 1 then t∗ := (t � β)_(1− t(β)). Hence t∗ has domain β + 1, t � β = t∗ � β,

and t(β) 6= t∗(β).

1.3 Inverse Systems

An inverse system of topological spaces is a double sequence

S := 〈Xα, fαβ : α < β < ε〉

where ε is an ordinal; Xα is a topological space for each α < ε; if α < β < ε then fαβ is a

continuous map from Xβ into Xα, and fαβ ◦ fβγ = fαγ whenever α < β < γ. The mappings

fαβ are called bonding maps of S.

The inverse limit of S is the subspace X of the topological product
∏
α<εXα defined

by x ∈ X iff fαβ(πβ(x)) = πα(x) for all α < β < ε, where πα is the projection from the

product onto Xα. It is customary to denote by lim
←−

S the limit of the inverse system.

Definition 1.3. Let X be the limit of S = 〈Xα, fαβ : α < β < ε〉. For each α < β 6 ε we

will adopt the following notation.

1. fαε = πα � X, the projection onto Xα restricted to X.

2. fαα : Xα → Xα is the identity map.

3. S � β := 〈Xγ , fγδ : γ < δ < β〉.

Observe that S � β is itself an inverse system.

The following proposition summarizes the properties we will use later.

Proposition 1.1. Let X be the limit of the inverse system 〈Xα, fαβ : α < β < ε〉.
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1. If each Xα is compact Hausdorff, then X is compact Hausdorff.

2. If Y is a cofinal subset of ε and Bα is a base for Xα, for all α ∈ Y , then {f−1
αε [B] :

α ∈ Y and B ∈ Bα} is a base for X. In particular, X is zero-dimensional if each Xα

is zero-dimensional.

3. If A ⊆ X then A =
⋂
α<ε f

−1
αε [fαε[A]].

1.4 Boolean Algebras

Given a set E, an algebra of subsets of E is a collection B ⊆ P(E) so that

1. ∅, E ∈ B.

2. E \ a ∈ B for all a ∈ B.

3. If a, b ∈ B then a ∩ b ∈ B and a ∪ b ∈ B.

Algebras of sets are examples of Boolean algebras. Moreover, Stone’s Representation

Theorem guarantees that all Boolean algebras are, essentially, algebras of subsets for a

suitable set E. For this reason, we will adopt the following convention: The statement B

is a Boolean algebra means that B is an algebra of subsets of some set that will be denoted

by 1.

Definition 1.4. For each a, b ∈ B, −a denotes the complement of a with respect to 1,

a− b := a ∩ (−b) and x4y = (x− y) ∪ (y − x).

A subalgebra of B is a set A ⊆ B containing ∅ and 1 which is closed under complements,

unions and intersections. In other words: −a, a∪ b, a∩ b ∈ A for all a, b ∈ A. In particular,

A is itself a Boolean algebra. The symbol A 6 B abbreviates the phrase A is a subalgebra

of B and A < B is equivalent to A 6 B and A 6= B, i.e. A is a proper subalgebra of B.

The statement B is an extension of A means that A 6 B; and we will say that B is a

proper extension of A when A < B.

Given a set Y ⊆ B, the smallest subalgebra of B containing Y will be denoted by [Y ]

and will be called the Boolean algebra generated by Y . Note that [Y ] is the intersection of

all Boolean algebras containing Y and therefore [Y ] always exists.
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The following result provides us with an alternative way to calculate the Boolean

algebra generated by Y . The proof is straightforward and can be found in [3], Lemma 2.4.

Proposition 1.2. a ∈ [Y ] if and only if a =
⋃
i<n(

⋂
Fi −

⋃
Hi) for some integer n and

sequences of finite sets {Fi : i < n}, {Hi : i < n} ⊆ [Y ]<ω (where
⋂
∅ = 1, by definition).

Let ϕ(x) be a formula whose only free variable is x. We will use [x ∈ B : ϕ(x)] to

denote the Boolean algebra generated by {x ∈ B : ϕ(x)}.

The simplest way to extend a Boolean algebra is to add a single element.

Definition 1.5. If A 6 B and x ∈ B then A(x) := [A ∪ {x}].

As a corollary of Proposition 1.2 one gets A(x) = {(a ∩ x) ∪ (b− x) : a, b ∈ A}.

A filter in B is a nonempty set F ⊆ B \ {∅} so that

1. If a, b ∈ F the a ∩ b ∈ F .

2. a ∈ F , b ∈ B and a ⊆ b imply b ∈ F .

Let Y be a subset of B with the finite intersection property. The collection {b ∈ B :

∃F ∈ [Y ]<ω(
⋂
F ⊆ b)} is a filter that will be called the filter generated by Y in B. The

following result is Theorem 2.19 from [3].

Proposition 1.3. If u is a filter in B then the following are equivalent.

1. For each a ∈ B either a ∈ u or −a ∈ u.

2. If F is a filter and u ⊆ F then u = F .

3. If a ∈ B satisfies a ∩ b 6= ∅ for all b ∈ u then a ∈ u.

If u is a filter that satisfies any of the previous statements then u will be called an

ultrafilter in B.

Proposition 1.4. If Y generates B and u is a filter in B so that u ∩ {y,−y} 6= ∅ for all

y ∈ Y then u is an ultrafilter in B.
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Proof. We verify Proposition 1.3-(1) for u. Let F and H be finite subsets of Y so that

−(
⋂
F−

⋃
H) /∈ u. Since −(

⋂
F−

⋃
H) =

⋃
{−b : b ∈ F}∪

⋃
H we have that −b /∈ u for all

b ∈ F and H ∩ u = ∅. Our assumption about u implies that F ⊆ u and {−b : b ∈ H} ⊆ u.

Therefore
⋂
F −

⋃
H ∈ u.

Given n ∈ ω and {Fi : i < n}, {Hi : i < n} ⊆ [Y ]<ω let bi :=
⋂
Fi −

⋃
Hi. The

previous paragraph shows that u ∩ {bi,−bi} 6= ∅ for each i < n. If bk ∈ u for some k < n

then
⋃
i<n bi ∈ u. Otherwise {−bi : i < n} ⊆ u and therefore −

⋃
i<n bi =

⋂
i<n(−bi) ∈ u.

Q.E.D.

St(B) denotes the collection of all ultrafilters in B. For each a ∈ B we let a− := {u ∈

St(B) : a ∈ u}. The proof of the following proposition can be found in [3] (see Theorem

2.21).

Proposition 1.5. For all a, b ∈ B the following holds.

1. (a ∩ b)− = a− ∩ b−.

2. (a ∪ b)− = a− ∪ b−.

3. (−a)− = St(B) \ a−.

4. a ⊆ b is equivalent to a− ⊆ b−.

The Stone space of B is the topological space obtained by endowing St(B) with the

topology that has {a− : a ∈ B} as a base. The resulting space is compact Hausdorff

zero-dimensional, in fact, a− is clopen for each a ∈ B.

If A 6 B and u is an ultrafilter in B, then A ∩ u is an ultrafilter in A. Hence the

map f : St(B) → St(A) given by f(u) = A ∩ u is well-defined and, moreover, is onto and

continuous. f is called the Stone map.

Definition 1.6. For any topological space X, CO(X) is the collection of all clopen subsets

of X.

CO(X) is an algebra of subsets of X. The following result is known as Stone Duality

Theorem (see [3]).
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Proposition 1.6. If X is a compact Hausdorff zero-dimensional topological space then the

map h : X → St(CO(X)) given by h(x) := {a ∈ CO(X) : x ∈ a} is a homemomorphism.

Two Boolean algebras, A and B, are isomorphic if there is a bijection f : A → B so

that f(a ∩ b) = f(a) ∩ f(b), f(a ∪ b) = f(a) ∪ f(b) and f(−a) = −f(a) for all a, b ∈ A. A

standard argument shows that A and B are isomorphic iff St(A) is homeomorphic to St(B).

Lemma 1.7. If K is a clopen subset of St(B) then K = b− for some b ∈ B.

Proof. For each p ∈ K there exists ap ∈ p so that a−p ⊆ K. Then {a−p : p ∈ K} covers K

and therefore there is a finite F ⊆ K so that K =
⋃
{a−p : p ∈ F}. Set b =

⋃
{ap : p ∈ F}

and use (1) from Proposition 1.5 to obtain K = b−. Q.E.D.

Definition 1.7. An ideal is a nonempty set I ⊆ B \ {1} so that

1. a ∪ b ∈ I for all a, b ∈ I.

2. If a ∈ I and b ∈ B satisfy b ⊆ a then b ∈ I.

Observe that if I is an ideal then I∗ := {−a : a ∈ I} is a filter which will be called the

dual filter of I. And vice versa: If F is a filter, F ∗ := {−a : a ∈ F} is an ideal, the dual

ideal of F .

The ideal I is maximal in A if I∗ is an ultrafilter in A. In other words (Proposition

1.3), I is maximal iff for all a ∈ A we have that either a ∈ I or −a ∈ I. Hence u is an

ultrafilter iff u∗ is maximal.

A filter F is principal if there exists a ∈ B \ {∅} so that F = {b ∈ B : a ⊆ b}.

An ideal is principal if its dual filter is principal. Equivalently, the ideal I is principal iff

I = {b ∈ B : b ⊆ a} for some a ∈ B \ {1}.

Let Y be a subset of the Boolean algebra A so that no finite subset of Y covers 1, i.e.

for any finite set F ⊆ Y we have −
⋃
F 6= ∅. Then the collection {a ∈ A : ∃F ∈ [Y ]<ω(a ⊆⋃

F )} is an ideal in A which will be called the ideal generated by Y .

1.5 Minimally Generated Boolean Algebras

The concept that gives title to this section was introduced by Koppelberg in [12]. All

the results presented in this section were proved originally in [12] or are corollaries of those
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results. We include the proofs for the convenience of the reader.

Definition 1.8. A Boolean algebra B is a minimal extension of A if A 6 B and there is

no C so that A < C < B. In this case we will write A 6m B.

Note that A = B is not excluded from the definition. When A 6m B and A 6= B se

will use the symbol A <m B.

If A <m B and x ∈ B \ A then B = A(x). Hence any proper minimal extension of A

is of the form A(x) for some x.

A sequence 〈Bα : α < ε〉 is a chain of Boolean algebras if ε is an ordinal and Bα 6 Bβ

whenever α < β < ε. The chain will be called continuous if Bλ =
⋃
α<λBα for each limit

ordinal λ < ε.

B is minimally generated over A (in symbols, A 6mg B) if there is a continuous chain

〈Bα : α < ε〉 so that

1. B0 = A,

2. Bα 6m Bα+1 whenever α+ 1 < ε, and

3. B =
⋃
α<εBα.

In the case A = {∅, 1} we will say that B is minimally generated.

Informally speaking, a Boolean algebra is minimally generated if one can construct it

by small, indivisible steps.

A chain satisfying the conditions stated above witnesses the minimal generation of B

over A.

If 〈Bα : α < ε〉 witnesses the minimal generation of B and for each α < ε we select

aα ∈ Bα+1 \Bα then we have the following.

1. Bα = [aβ : β < α].

2. Bα <m Bα(aα).

3. B = [aα : α < ε].

If all of the above hold, then {aα : α < ε} witnesses the minimal generation of B.
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Definition 1.9. Assume A 6 B and x ∈ B \A. Then

1. IAx := {a ∈ A : a ⊆ x} and IA−x := {a ∈ A : a ⊆ −x}.

2. JAx is the ideal in A generated by IAx ∪ IA−x, i.e. a ∈ JAx iff there exist b, c ∈ A so that

a = b ∪ c, b ⊆ x, and c ⊆ −x..

We will write just Ix, I−x, and Jx when there is no risk of confusion about the Boolean

algebra.

Lemma 1.8. If A < A(x) and a ∈ A then the following are equivalent

1. a ∈ Jx.

2. a ∩ x ∈ A.

3. a− x ∈ A.

4. {y ∈ A(x) : y ⊆ a} ⊆ A.

Proof. The key observation is that a ∈ Jx if and only if there exist b, c ∈ A so that a = b∪c,

b ⊆ x, and c ⊆ −x. Q.E.D.

Note that a consequence of condition (4) is that Jx is also an ideal in A(x).

It is worth mentioning that A(x) is not necessarily a minimal extension of A. For

example, let A be the algebra of clopen subsets of the topological product X := (ω+ 1)×2,

where both factors have the order topology. We claim that x := {(ω, 0), (ω, 1)} and y :=

{(ω, 0)} satisfy A < A(y) < A(x). Since y 6∈ A and y = x− ((ω + 1)× {1}) ∈ A(x) we only

have to show that x /∈ A(y). Observe that if a, b ∈ A are so that (ω, 1) ∈ (a ∩ y) ∪ (b − y)

then (ω, 1) ∈ b − y and since b is open in X, we get that b must be infinite. In particular,

b− y cannot be a subset of x.

If u is an ultrafilter in A and A 6 B, then u is a subset of B with the finite intersection

property and therefore generates a filter F in B. A standard argument involving Zorn’s

Lemma gives the existence of an ultrafilter v in B containing F . In other words, u can be

extended to an ultrafilter in B.

It could be the case that v = F , i.e. that F is itself an ultrafilter. When this happens

we will say that u generates an ultrafilter in B.
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Proposition 1.9. If A < A(x) then the following are equivalent.

1. A <m A(x).

2. Jx is a maximal ideal of A.

3. There is only one ultrafilter in A that can be extended to more than one ultrafilter in

A(x).

Proof. In order to show that (1) implies (2) assume that A <m A(x) and let a ∈ A be

arbitrary. Since A 6 A(a∩ x) 6 A(x) we get A = A(a∩ x) or A(a∩ x) = A(x). In the first

case, a ∈ Jx because a∩x ∈ A so assume that A(x) = A(a∩x). There exist b, c ∈ A so that

x = (b ∩ a ∩ x) ∪ (c− (a ∩ x)) = (b ∩ a ∩ x) ∪ (c− a) ∪ (c− x).

Thus c − x = ∅ and x = (b ∩ a ∩ x) ∪ (c − a). Clearly, (−a) ∩ x = c − a ∈ A and hence

−a ∈ Jx.

Now assume that Jx is maximal. We claim that J∗x , the dual filter of Jx, is the only

ultrafilter in A that does not generate an ultrafilter in A(x). Let u be an ultrafilter in A so

that u 6= J∗x . Then there is a ∈ u \ J∗x ; therefore a ∈ Jx and so a ∩ x, a − x ∈ A. Let v be

an ultrafilter in A(x) satisfying u ⊆ v. If b ∈ v then b = (c ∩ x) ∪ (d− x) for some c, d ∈ A.

Thus

b ∩ a = (c ∩ (a ∩ x)) ∪ (d ∩ (a− x)) ∈ A.

Since u is an ultrafilter in A, we have A ∩ v = u; therefore b ∩ a ∈ u and b ∩ a ⊆ b. The

previous argument shows that v ⊆ {b ∈ A(x) : ∃c ∈ u(c ⊆ b)} which implies that they are,

in fact, equal and thus u extends to a unique ultrafilter in A(x).

To finish this part of the proof note that if a ∈ J∗x then −a ∈ Jx and therefore x−a ∈ A.

Since x /∈ A we must have a ∩ x /∈ A and, in particular, a ∩ x 6= ∅. Hence J∗x ∪ {x} can

be extended to an ultrafilter in A(x). A similar argument shows that J∗x ∪ {−x} shares the

same property and then J∗x can be extended to more than one ultrafilter.

Now assume (3) and let u be the only ultrafilter in A that extends to more than one

ultrafilter in A(x).
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Suppose that u ∪ {x} does not have the finite intersection property. Let a ∈ u be

so that a ∩ x = ∅. If v is an ultrafilter in A(x) extending u and b ∈ v is arbitrary then

b = (c ∩ x) ∪ (d − x) for some c, d ∈ A. Thus a ∩ b = d ∩ (a − x) = d ∩ a ∈ A. Moreover,

a ∩ b ∈ A ∩ v = u and therefore v ⊆ {b ∈ A(x) : ∃y ∈ u(y ⊆ b)} so v is the only filter

extending u. A contradiction. This implies that u0 := {b ∈ A(x) : ∃a ∈ u(a ∩ x ⊆ b)} is

a filter in A(x). Using Proposition 1.4 we get that u0 is, in fact, an ultrafilter. The same

arguments show that u1 := {b ∈ A(x) : ∃a ∈ u(a− x ⊆ b)} is an ultrafilter that extends u.

Since any ultrafilter in A(x) must contain either x or −x we have that u0 and u1 are the

only ultrafilters extending u.

We claim that if y ∈ A(x) then y ∈ A or x ∈ A(y). Before proving this property let

us see how we can use it to show that A <m A(x). Assume that A < B 6 A(x) for some

Boolean algebra B and let y ∈ B \A. Hence A(y) ⊆ B ⊆ A(x) and since our claim implies

that x ∈ A(y) we conclude that A(x) = A(y) so B = A(x).

The only thing left is to prove the claim. Let X = St(A(x)), Y = St(A(y)) and

Z = St(A). Also let f : X → Y , g : Y → Z and h : X → Z be the corresponding

Stone mappings. Our assumption about u implies that h �X \ {u0, u1} is one-to-one and

h(u0) = h(u1) = u. Since h = g ◦ f it must be the case that either f is an injection or g is

one-to-one. In the first case, f becomes a homeomorphism. The set K := {v ∈ X : x ∈ v}

is a basic clopen subset of X and therefore f [K] is clopen too. Lemma 1.7 implies that

f [K] = {w ∈ Y : b ∈ w} for some b ∈ A(y). We claim that b = x. Otherwise, b4x, the

symmetric difference of b and x, is not empty so there exists v ∈ X with b4x ∈ v. There

are two cases: b− x ∈ v or x− b ∈ v. If b− x ∈ v then b ∈ v and thus b ∈ v ∩A(y) = f(v)

so v ∈ K and hence x ∈ v, a contradiction to b−x ∈ v. Similar reasons show that x− b ∈ v

is impossible too (note that X \K = {v ∈ X : −x ∈ v}). When g is a homeomorphism, the

conclusion is y ∈ A. Q.E.D.

Corollary 1.10. A <m A(x) is equivalent to J∗x = {b ∈ A : b ∩ x /∈ A}.

Proof. Observe that J∗x = A \ Jx iff Jx is a maximal ideal. Lemma 1.8 finishes the proof.

Q.E.D.
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In order to obtain a topological translation of minimality we will introduce the following

concept.

Definition 1.10. Let X and Y be compact Hausdorff zero-dimensional topological spaces.

We say that X is a simple extension of Y if there is a map f : X → Y such that, for some

p ∈ Y , f−1[y] is a singleton for each y ∈ Y \ {p} and |f−1[p]| = 2.

The sentence f witnesses that X is a simple extension of Y means that f is as in the

definition.

Proposition 1.11. 1. If f witnesses that X is a simple extension of Y then the Boolean

algebra CO(X) is isomorphic to a minimal extension of CO(Y ).

2. If A <m A(x) then St(A(x)) is a simple extension of St(A) as witnessed by the Stone

map. Moreover, the dual filter of Jx is the only point whose fiber is not a singleton.

Proof. Let p ∈ Y be so that f−1[p] is not a singleton. Fix a clopen set c ⊆ X so that

|c ∩ f−1[p]| = 1 and define x := f [c] and x′ := f [X \ c]. Then X = c ⊕ (X \ c), where ⊕

denotes the sum of topological spaces (as defined in [9]). Since f � c and f � X \ c are both

injective, we have that c and X \ c are homeomorphic to x and x′, respectively. Thus X is

homeomorphic to Z := x⊕x′. Note that y ⊆ Z is clopen iff there are clopen sets a, b ⊆ Y so

that y∩x = a∩x and y−x = b−x. Hence CO(X) is, essentially, A(x) where A = CO(Y ).

It only remains to show that A <m A(x). Observe that p is not an interior point of x and

therefore for all b ∈ A we have that b∩x ∈ A iff p /∈ b. In other words, JAx := {b ∈ A : p /∈ b}

and hence JAx is a maximal ideal so we can invoke Proposition 1.9 to finish the proof of (1).

In order to prove part (2) assume A <m A(x). Let f : St(A(x))→ St(A) be the Stone

map. Observe that the relation f(u) = v is equivalent to v ⊆ u.

Proposition 1.9 shows that J∗x ∪ {x} and J∗−x ∪ {−x} extend to ultrafilters u0 and u1,

respectively, in A(x). Moreover, if u is any other ultrafilter that extends J∗x then x ∈ u

or −x ∈ u and therefore u ∈ {u0, u1}. In other words, f−1[J∗x ] = {u0, u1}. The proof of

Proposition 1.9 also shows that if v 6= J∗x then there is a unique v′ ∈ St(A(x)) so that v ⊆ v′,

i.e. f−1[v] = {v′}. Q.E.D.

Minimal generation is closely related to inverse systems in topology.
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Definition 1.11. Let S = 〈Xα, fαβ : α < β < ε〉 be an inverse system.

1. We say that S is based on simple extensions if fα,α+1 : Xα+1 → Xα witnesses that

Xα+1 is a simple extension of Xα.

2. S is continuous if for each limit ordinal λ < ε there is a homeomorphism h : Xλ →

lim
←−

S � λ so that fαλ = πα ◦h for all α < λ, where πα is the projection from
∏
β<αXβ

onto Xα.

3. S is a simplistic system if S is continuous, based on simple extensions and X0 is a

singleton.

4. A topological space will be called simplistic if it is the limit of a simplistic system.

One can picture simplistic spaces as spaces that were obtained as the result of an

iterative process: start with a singleton; to move from stage α to stage α+ 1 select a point

and double it; and when you reach a limit stage take the inverse limit.

We will show in the next chapter that all compact metrizable zero-dimensional spaces

and all compact Hausdorff scattered spaces are simplistic.

Recall the notation established in Definition 1.3.

Proposition 1.12. 1. If B is a minimally generated Boolean algebra then St(B) is sim-

plistic.

2. If X is simplistic then CO(X) is minimally generated.

Proof. Let 〈Bα : α < ε〉 be a chain witnessing the minimal generation of B. For each

α < ε let Xα := St(Bα) and let fαβ : Xβ → Xα be the Stone map for α < β < ε. In view

of Proposition 1.11 we only have to show that S := 〈Xα, fαβ : α < β < ε〉 is continuous to

claim that S is a simplistic system.

Let λ < ε be a limit ordinal and let Y := lim
←−

S � λ. Define h : Xλ → Y by

h(x) = 〈fαλ(x) : α < λ〉.

Clearly h is continuous and satisfies the requirement about compositions stated in Definition

1.11. To show that h is one-to-one let p, q ∈ Xλ be so that p 6= q. There exist a, b ∈ Bλ so
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that a ∈ p, b ∈ q and a ∩ b = ∅. Since λ is limit, a, b ∈ Bα for some α < λ and therefore

a ∈ fαλ(p) and b ∈ fαλ(q). Hence fαλ(p) 6= fαλ(q).

Now we will show that h is onto. Let x ∈ Y and let xα := fαlambda(x), i.e. xα is the

αth coordinate of x. Noteh that if p ∈
⋂
{f−1
αλ [xα] : α < λ} then h(p) = x so we only have

to show that {f−1
αλ [xα] : α < λ} has the finite intersection property because Y is compact.

Let F ∈ [Y ]<ω and define β := maxF . By definition, x ∈ Y implies that

fαβ(xβ) = fαβ(fβλ(x)) = fαλ(x) = xα

for all α ∈ F . Now fix y ∈ f−1
αλ [xβ] (recall that fβλ is onto) and observe that

fαλ(y) = fαβ(fβλ(y)) = fαβ(xβ) = xα

and therefore y ∈
⋂
{f−1
αλ [xα] : α ∈ F}.

Let Xε := St(B) and for each α < ε let fαε : Xε → Xα be the corresponding Stone

map. If Y is the limit of S, then we can define h as before but replacing λ with ε. In the

case where ε is limit, we already know that h is a homeomorphism. When ε = γ + 1, h

is one-to-one because fγε is the identity map and therefore h is a homeomorphism. Thus

St(B) is simplistic because is homeomorphic to Xε.

Let X be the limit of the simplistic system 〈Xα, fαβ : α < β < ε〉. For each α < ε define

Bα := {f−1
αε [a] : a ∈ CO(Xα)}. Note that Bα 6 CO(X). Since CO(Xα+1) is isomorphic to

a minimal extension of CO(Xα) (Proposition 1.11) we have that there is no proper algebra

lying between Bα and Bα+1, i.e. Bα <m Bα+1.

When λ < ε is a limit ordinal, {f−1
αλ [a] : α < λ and a ∈ CO(Xα)} is a base of clopen

sets of Xλ (Proposition 1.1) which implies Bλ =
⋃
α<λBα because f−1

αε [a] = f−1
λε [f−1

αλ [a]] for

all α < λ and all a ∈ CO(Xα). Hence {Bα : α < ε} witnesses the minimal generation of

CO(X). Q.E.D.

Lemma 1.13. Assume A 6m B 6 C. If C ′ 6 C then A ∩ C ′ 6m B ∩ C ′.

Proof. Let A′ := A ∩C ′ and B′ := B ∩C ′. If A′ = B′ then we are done so we can assume

that A′ < B′. It is enough to prove that if x, y ∈ B′ \A′ then y ∈ A′(x).
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Since x, y ∈ B \A we get y ∈ A(x). Therefore y = (a∩x)∪(b−x) for some a, b ∈ A. By

letting c = a− b, d = b− a and e = a∩ b we get y = (c∩x)∪ (d−x)∪ e and {c, d, e} ⊆ A is

pairwise disjoint. We have two cases: If c, d ∈ JAx then y ∈ A (Lemma 1.8) which together

with y ∈ C ′ gives y ∈ A′. Otherwise, JAx ∩ {−c,−d} 6= ∅ (recall that JAx is maximal).

Assume, for example, that −c ∈ JAx . The fact x4y ⊆ −c implies, according to Lemma

1.8, that x4y ∈ A. Also note that x4y ∈ C ′ because x, y ∈ C ′. So x4y ∈ A′ and thus

y = x4(x4y) ∈ A′(x). Q.E.D.

The behavior of the class of simplistic spaces under the traditional topological opera-

tions was analyzed by Koppelberg [12] in the context of Boolean algebras. She proved the

following.

Proposition 1.14. Let X be a simplistic space.

1. If f : X → Y is continuous and onto and Y is Hausdorff zero-dimensional then Y is

simplistic.

2. If Y is a closed subspace of X then Y is simplistic.

Proof. The hypothesis of (1) implies that B := {f−1[c] : c ∈ CO(Y )} is a subalgebra of

A := CO(X) which is isomorphic to CO(Y ) and therefore St(B) is homeomorphic to Y .

So it is enough to show that any subalgebra of a minimally generated algebra is minimally

generated.

Assume that {Aα : α < ε} witnesses the minimal generation of A. Define by transfinite

induction a function h as follows, h(0) = 0,

h(α+ 1) = min{β < ε : Aβ ∩B \Ah(α) 6= ∅},

and h(α) = sup{h(β) : β < α} for limit α. Let δ := dom(h) and set Bα := B ∩Ah(α) for all

α < δ. Hence 〈Bα : α < δ〉 is a continuous chain whose union is B.

If α + 1 < δ then h(α + 1) = β + 1 for some β < ε and therefore Aβ ∩ B ⊆ Ah(α)

and hence Bα = Aβ ∩ B. Since Aβ <m Aβ+1 and B 6 A, Lemma 1.13 implies that

B ∩Aβ <m B ∩Aβ+1, i.e. Bα <m Bα+1.
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To prove (2): Let 〈Xα, fαβ : α < β < ε〉 be a simplistic system whose limit is X. For

each α+ 1 < ε let xα ∈ Xα be the unique point such that [xα]α+1 is not a singleton.

Define a function h by transfinite induction as follows, h(0) = 0,

h(α+ 1) = min{β < ε : h(α) < β ∧ xβ ∈ Y �β}

and if α is limit, h(α) = sup{h(β) : β < α}. Let δ be the domain of h.

For each α < β < δ set Yα := Y �h(α) and gαβ := fh(α)h(β) �Yh(β). Hence Y is the limit

of the simplistic system 〈Yα, gαβ : α < β < δ〉. Q.E.D.

An atom in a Boolean algebra A is an element a ∈ A \ {∅} which is ⊆-minimal in

A \ {∅}. Equivalently, a is an atom iff for all b ∈ A either a ⊆ b or a ⊆ −b. Therefore, a is

an atom iff {b ∈ A : a ⊆ b} is an ultrafilter in A. Using this information and Proposition

1.5 one can prove that u ∈ St(A) is an isolated point iff u contains an atom.

Lemma 1.15. Let A <m A(x). If u is an ultrafilter on A(x) containing J∗x ∪ {x} then the

following are equivalent.

1. u is an isolated point of St(A(x)).

2. Ix is a principal ideal.

Proof. Assume that Ix is principal. There is b ∈ A so that a ∈ Ix iff a ⊆ b. In particular,

b ⊆ x. Since x 6∈ A we obtain b ⊂ x and hence x− b 6= ∅.

We claim that J∗x = {a ∈ A : x − b ⊆ a}. Indeed, if a ∈ J∗x then −a ∈ Jx and hence

x − a ∈ A. Since x − a ⊆ x we obtain x − a ∈ Ix and therefore x − a ⊆ b or equivalently

x − b ⊆ a. Now assume that a ∈ A satisfies x − b ⊆ a. As before, we get x − a ⊆ b. The

maximality of Jx gives that a ∈ Jx or −a ∈ Jx. If a ∈ Jx then a ∩ x ∈ A and therefore

a ∩ x ∈ Ix. Hence a ∩ x ⊆ b which implies x ⊆ b, a contradiction to b ⊂ x. Thus −a ∈ Jx,

i.e. a ∈ J∗x .

To finish the first part of the proof we will show that x − b is an atom in A(x). Let

z ∈ A(x) be so that z ⊆ x− b. Then z = a ∩ x for some a ∈ A. We have two cases: a ∈ J∗x

or −a ∈ J∗x . In the first case we get x− b ⊆ a and thus x− b ⊆ a ∩ x = z so z = x− b. On
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the other hand, if −a ∈ J∗x we obtain x − b ⊆ −a, which implies a ∩ x ⊆ b, i.e. z ⊆ b and

hence z = ∅.

Now let us assume that Ix is nonprincipal. We must prove that u does not contain an

atom. Let y ∈ u be arbitrary and define z = y ∩x. It is enough to show that z is not atom.

Since z ∈ A(x) and z ⊆ x there exists a ∈ A so that z = a ∩ x. Note that J∗x ∪ {a} has

the finite intersection property and therefore a ∈ J∗x , i.e. −a ∈ Jx. Then x − a ∈ A and,

moreover, x − a ∈ Ix. The nonprincipality of Ix guarantees the existence of b ∈ A so that

b ⊆ x and b 6⊆ x − a. Hence ∅ 6= a ∩ b ⊆ z. To show that z 6= a ∩ b recall that x 6∈ A,

x− a ∈ A and x = z ∪ (x− a), so z 6∈ A but a ∩ b ∈ A. Q.E.D.

We will investigate the relation between π-bases and simple extensions. Given a

Boolean algebra B, a set D ⊆ B \ {∅} is dense in B if for each a ∈ B \ {∅} there is

d ∈ D so that d ⊆ a. Note that D is dense in B iff {d− : d ∈ D} is a π-base for St(B).

Recall the notation established in Definition 1.4.

Lemma 1.16. Assume that A <m A(x) and let u0 and u1 be ultrafilters so that J∗x∪{xi} ⊆

ui for each i < 2. Let D be a dense subset of A.

1. If ui is an isolated point of St(A(x)), for some i < 2, then {d − y : d ∈ D} ∪ {y} is

dense in A(x), where y is an atom of A(x) so that y ∈ ui \A.

2. Otherwise, D is dense in A(x).

Proof. If, for example, u0 is an isolated point then A(x) has an atom y ∈ u0. Observe that

if y ∈ A then y ∈ A∩u0 = J∗x (this equality holds because J∗x is an ultrafilter) and therefore

y ∩ x 6= ∅ and y − x 6= ∅. Since y is an atom this gives y ⊆ x and y ⊆ −x, a contradiction.

Hence y ∈ A(x) \A and thus A(x) = A(y). Clearly {d− y : d ∈ D} ∪ {y} is dense in A(x).

Assume that u0 and u1 are not isolated points. We claim that A is dense in A(x). To

show this let z ∈ A(x) be arbitrary. There exist a, b ∈ A so that z = (a ∩ x) ∪ (b − x). If

a 6∈ J∗x then a ∈ Jx and therefore a ∩ x ∈ A and a ∩ x ⊆ z. So assume that a ∈ J∗x . Then

−a ∈ Jx or equivalently x− a ∈ A. Moreover, x− a ∈ Ix. Since Ix is nonprincipal there is

c ∈ A so that c ⊆ x and c 6⊆ x− a, i.e. c ∩ a 6= ∅. Therefore c ∩ a ⊆ a ∩ x ⊆ z. Q.E.D.
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We turn now our attention to tree π-bases in simplistic spaces. Recall that a tree π-base

for a topological space is a π-base which forms a tree when ordered by reverse inclusion.

It is worth mentioning that βω \ ω, the remainder of the Stone-Čech compactification

of the integers, has a tree π-base as proved in [1]. Compare this fact with Corollary 1.18

and Proposition 1.19.

Definition 1.12. Let B be a Boolean algebra. A set T ⊆ B \ {∅} will be called a tree in B

if the following conditions hold.

1. For each x, y ∈ T if x 6= y then x ∩ y ∈ {∅, x, y}.

2. ⊇ is a tree ordering for T (in the set-theoretic sense).

A tree algebra is a Boolean algebra generated by a tree.

Proposition 1.17. If B is a minimally generated Boolean algebra then there is a tree

algebra A 6mg B which is dense in B.

Proof. Fix X ⊆ B and a well-ordering ≺ on X so that 〈Bx : x ∈ X〉 witnesses the minimal

generation of B, where Bx := [y ∈ X : y ≺ x] for all x ∈ X.

Define S := {x ∈ X : Bx is dense in Bx(x)} and T := X \S. From the previous lemma

we know that, without loss of generality, we can assume that each x ∈ T is an atom in

Bx(x). This assumption implies immediately that T satisfies (1) from Definition 1.12.

To show that (T,⊇) is a tree in B observe that if x, y ∈ T satisfy x ⊃ y then y 6∈ Bx(x)

which implies x ≺ y.

Using induction on (X,≺) and the previous lemma one can show that [y ∈ X : y ≺ x]

is dense in Bx for all x ∈ X and therefore A := [T ] is dense in B. It remains to show that

A 6mg B. Observe that if X = T then A = B so we will assume S 6= ∅.

Let � be the binary relation on X given by x�y iff (x, y ∈ T ∧x ≺ y)∨ (x, y ∈ S∧x ≺

y) ∨ (x ∈ T ∧ y ∈ S). In other words, � is a well-ordering in X that puts T before S. If

we show that the sequence Cx := [y ∈ X : y � x], x ∈ X, witnesses the minimal generation

of B then the proof will be done. Indeed, if z is the �-least element of S then A = Cz and

the sequence 〈Cx : x ∈ S〉 witnesses A 6mg B.
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We only have to show that Cx 6m Cx(x) for each x ∈ X. In order to do this let y ∈ X

be so that y � x. We aim to prove that x ∩ y ∈ Cx or y − x ∈ Cx (propositions 1.8-(2) and

1.2). We will break the argument in cases.

When x ∈ T we have y ≺ x and since x is an atom in Bx(x) we obtain x ⊂ y or y ⊂ −x.

Moreover, Bx <m Bx(x) implies x∩y ∈ Bx or x−y ∈ Bx. Therefore x∩y = ∅ or x−y = ∅.

Assume x ∈ S. If y ≺ x we use the fact Bx <m Bx(x) to get x∩ y ∈ Bx or x− y ∈ Bx.

Now note that x ∈ S implies Bx 6 Cx. Finally, if x ≺ y then y ∈ T which implies that y is

an atom in By(y) and x ∈ By(y) so x ∩ y ∈ {∅, y} ⊆ Cx. Q.E.D.

Corollary 1.18. Any simplistic space has a tree π-base. In particular, every closed subset

of a simplistic space has a tree π-base.

Proof. We know that any minimally generated Boolean algebra contains a dense tree

algebra so it is enough to prove that every tree algebra has a dense tree.

Let B be a tree algebra and denote by T the collection of all trees in B that generate

B. We define a partial ordering 6 on T by T0 6 T1 iff T0 ⊆ T1 and no element of T1 \ T0

contains an element from T0. In order to show that T has a 6-maximal element let C be a

chain in T and define T :=
⋃

C. Note that if t ∈ T0 ∈ C and s ∈ T1 ∈ C satisfy t ⊂ s then

our definition of 6 implies that s ∈ T0. This remark implies that T ∈ T and, moreover,

that T is an upper bound for C.

Let T be a 6-maximal element of T. We claim that T is dense. Observe that if F ⊆ T

is finite and nonempty then
⋂
F ∈ T ∪ {∅}. Since T generates B one can use Proposition

1.2 and the previous remark to obtain that any element of B is of the form
⋃
i<n(ti−

⋃
Fi)

for some {Fi : i < n} ⊆ [T ]<ω and {ti : i < n} ⊆ T . Hence we only have to show that if

t ∈ T and F ∈ [T ]<ω then a := t−
⋃
F contains an element of T whenever a 6= ∅.

Assume otherwise. Property (1) from the definition of tree implies that, without loss

of generality, we can assume that
⋃
F ⊆ t and F is pairwise disjoint.

We claim that T ′ := T ∪ {a} ∈ T. The only non-trivial part is to show that W :=

{s ∈ T ′ : s ⊃ a} is well-ordered by ⊇. Observe that if s ∈ T satisfies a ⊂ s then

s ∩ t 6= ∅ . Therefore (part (1) of Definition 1.12) W = {s ∈ T : s ⊇ t} ∪ Y, where

Y := {s ∈ T : a ⊂ s ⊆ t} so we only have to show that (Y,⊇) is well-ordered.
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If s ∈ Y and r ∈ F satisfy r∩ s 6= ∅ then we get r ⊆ s or s ⊆ r. Since a ⊂ s the second

case is impossible. Thus r ⊆ s. This simple remark shows that if s ∈ Y then s = a ∪
⋃
F ′,

where F ′ := {q ∈ F : s∩q 6= ∅}. Hence Y is finite. Moreover, Y is a chain because s∩s′ 6= ∅

for all s, s′ ∈ Y .

To conclude the proof note that T 6= T0 and T 6 T0, a contradiction to the maximality

of T . Q.E.D.

It is proved in [12] that Fr(ω1), the free Boolean algebra on ω1 generators, is not

minimally generated. Since the topological product 2ω1 is homeomorphic to St(Fr(ω1)) we

have that no simplistic space maps onto 2ω1 (Proposition 1.14). There is a topological proof

of this fact in [4].

In particular, no simplistic space maps onto 2c or equivalently:

Proposition 1.19. No simplistic space contains a copy of βω, the Stone-Čech compactifi-

cation of the integers.

This remark leads naturally to Efimov’s problem [8].

Definition 1.13. Let X be an infinite compact Hausdorff space. X is an Efimov space if

X contains neither a copy of βω nor a copy of the ordinal ω+ 1 (i.e. no infinite converging

sequence).

One of the well-known examples of an Efimov space was constructed by Fedorčuk [10]

assuming ♦. His space is simplistic. We will present later an improvement in the sense that

we will obtain an Efimov simplistic space assuming only CH.

1.6 T -Algebras

All the notions and results provided in this section were introduced by Koszmider

in [14].

Definition 1.14. An acceptable tree T is a subset of 2<ε, for some ordinal ε, so that

1. If t ∈ T then dom t is a successor ordinal.

2. For all t ∈ 2<ε we have that t_0 ∈ T is equivalent to t_1 ∈ T .
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3. If t ∈ T and α < ε then t � α+ 1 ∈ T .

In order to simplify notation we will adopt the following terminology, x is minimal for

(A, u) means that A <m A(x) and u = J∗x . According to Corollary 1.10, x is minimal for

(A, u) iff u = {b ∈ A : b ∩ x /∈ A} is an ultrafilter in A.

Recall that the tree-ordering on 2<ε is given by s < t iff s ⊂ t.

From now on we will start using the notation introduced in Definition 1.2.

Definition 1.15. Let T be an acceptable tree and let A be a Boolean algebra. A is a

T -algebra if

1. There is a function a : T → A whose range, {at : t ∈ T}, generates A (it will be a

common practice to write at instead of a(t)).

2. For each t ∈ T , at is minimal for (At, ut), where At := [as : s < t] and ut is the filter

generated by {as : s < t} in At.

3. For any t ∈ T we have a(t∗) = −at. In other words, if s_0 ∈ T then as_0 = −as_1.

Naturally, a collection {at : t ∈ T} as described in the definition witnesses that A is a

T -algebra.

Remark. Let us observe that condition (2) above holds iff (i) {as : s < t} has the finite

intersection property and (ii) at − as ∈ At for all s < t. Clearly (2) implies (i) and for (ii)

recall that if at is minimal for (At, ut) then ut =
(
JAt
at

)∗, i.e. ut is the dual filter of the ideal

{c ∈ At : at ∩ c ∈ At}; thus c ∈ ut iff at − c = at ∩ (−c) ∈ At and, in particular, (ii) is

true. On the other hand, if we assume (i) and (ii) and we let At and ut be as defined in (2)

then ut is an ultrafilter in At (Proposition 1.4) and (ii) implies that ut ⊆
(
JAt
at

)∗ so they

are equal and thus at is minimal for (At, ut).

In general the function a : T → A does not preserve order, i.e. s < t does not imply

as ⊂ at. Condition (3) is symmetric since t_0 ∈ T if and only if t_1 ∈ T , thus if t_1 ∈ T

then a(t_1) = −a(t_0).

A remarkable property about T -algebras is that the branches of T determine the points

of their Stone space and vice versa.
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Proposition 1.20. If A is a T -algebra as witnessed by {at : t ∈ T}, then

St(A) = {ub : b is a branch in T},

where ub is the filter generated by {at : t ∈ b} in A.

Proof. Assume that b ⊆ T is a branch and let t ∈ T \ b be arbitrary. There exists s ∈ b so

that s∗ 6 t. Therefore ht(t) = ht(s) +α, for some ordinal α (note that ht refers here to the

height with respect to T ). We will use induction on α to show that Y := us∪{as} generates

an ultrafilter in At(at). In particular, ub ∩ {at,−at} 6= ∅ so we can use Proposition 1.4 to

conclude that ub is an ultrafilter in A.

When α = 0, t = s∗ and since as is minimal for (As, us) we have that Y generates an

ultrafilter in As(as) = At(at). Now assume that for all r ∈ T and β < α satisfying s∗ 6 r

and ht(r) = ht(s) +β we get that Y generates an ultrafilter in Ar(ar). Let t ∈ T be so that

s∗ 6 t and ht(t) = ht(s) + α.

If α = β+ 1 then there is r ∈ T so that s∗ 6 r < t and ht(r) = ht(s) +β. In particular,

At = Ar(ar). The minimality of at for (At, ut) implies that ut is the only ultrafilter in

At that can be extended to more than one ultrafilter in At(at) (Proposition 1.9). Our

inductive hypothesis guarantees that F , the filter generated by Y in At, is an ultrafilter.

Since as ∈ Y ⊆ F and −as = as∗ ∈ ut we get F 6= ut so F (and therefore Y ) generates an

ultrafilter in At(at). Finally, assume that α is a limit ordinal. Since at is minimal for (At, ut)

and as /∈ ut we get at ∩ as ∈ At and therefore there exist {Fi : i < n}, {Hi : i < n} ⊆ [t↓]<ω

(recall Definition 1.1) so that at∩as =
⋃
i<n(

⋂
Fi−

⋃
Hi). There is r ∈ t↓ so that Fi, Hi ⊆ r↓

for all i < n because α is limit. Then at∩as ∈ Ar and according to our inductive hypothesis

there is a finite set F ⊆ Y such that
⋂
F ⊆ at ∩ as or

⋂
F ⊆ −(at ∩ as). Thus

⋂
F ⊆ at or

as ∩
⋂
F ⊆ −at. Showing that Y generates an ultrafilter in At(at) (Proposition 1.4).

We claim that if u ∈ St(A) then there is a branch b ⊆ T so that ub ⊆ u. Since ub is an

ultrafilter, u = ub and this finishes the proof of the proposition.

The proof of the previous claim is by induction. First, T0 = {∅_0, ∅_1} and hence

there is b0 ∈ T0 so that a(b0) ∈ u. Now assume that for some ordinal α we have defined

{bβ : β < α} ⊆ T satisfying
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1. bβ ∈ Tβ and a(bβ) ∈ u for all β < α.

2. β < γ < α implies bβ < bγ .

Let f :=
⋃
{bβ : β < α}. If f_0 ∈ T then a(f_k) ∈ u for some k < 2 and we set bα := f_k.

Otherwise, {bβ : β < α} is already a branch in T . Q.E.D.

Corollary 1.21. Every T -algebra is minimally generated.

Proof. Assume that A and {at : t ∈ T} are as in the previous argument. Let ≺ be a

well-ordering on T so that s ≺ t whenever ht(s) < ht(t).

Define Y ⊆ T by t ∈ Y iff t = r_0 for some r ∈ 2<ε. For each x ∈ Y let Yx := {y ∈ Y :

y ≺ x} and Bx := [at : t ∈ Yx]. Then 〈Bx : x ∈ Y 〉 is a continuous chain whose union is A.

Let x ∈ Y be arbitrary. The set S := Yx ∪ {t∗ : t ∈ Yx} is an acceptable tree. In

fact, if α := ht(x, T ) then Sβ = Tβ for all β < α and Sα = (Tα ∩ Yx) ∪ {t∗ : t ∈ Tα ∩ Yx}.

Thus x↓S = x↓T and x↓ := x↓S is a branch in S. Clearly {at : t ∈ S} witnesses that Bx is an

S-algebra. Let u be the ultrafilter generated by {at : t ∈ x↓} in Bx. Since ax is minimal

for (Ax, ux) we have that u ∪ {x} and u ∪ {−x} have the finite intersection property and

therefore u can be extended to more than one ultrafilter in Bx(x). On the other hand, if

v is an ultrafilter in Bx and v 6= u then there is a branch b ⊆ S and t ∈ b so that v is

generated by {as : s ∈ b} and t∗ ∈ x↓. Hence ax ∩ at ∈ Ax 6 Bx because ax is minimal

for (Ax, ux) and at /∈ ux. Therefore ax ∩ at ∈ v or −(ax ∩ at) ∈ v which implies that there

exists c ∈ v so that c ⊆ x or c ⊆ −x (recall that at ∈ v), i.e. v generates an ultrafilter in

Bx(x). Proposition 1.9 implies that Bx <m Bx(x). Q.E.D.



CHAPTER 2: IN ZFC

As the title suggests all the results contained in this chapter are consequences of the

usual axioms of set theory, ZFC, in the sense that no forcing techniques and no extra axioms

are used.

The chapter is divided into two sections. The first one is dedicated to general properties

of minimally generated Boolean algebras and, specifically, of T -algebras. The second section

focuses on properties of those spaces which are Efimov and can be obtained as Stone spaces

of T -algebras.

2.1 General Results

As promised in the previous chapter we will show that some important classes of topo-

logical spaces are simplistic. Let us start with the Cantor space: 2ω.

For each t ∈ 2<ω let [t] := {f ∈ 2ω : t ⊆ f}. Then {[t] : t ∈ 2<ω} is a base of clopen

sets for the topological product 2ω and therefore it generates the Boolean algebra CO(2ω).

Lemma 2.1. Let T := 2<ω \ {∅}. Then CO(2ω) is a T -algebra.

Proof. Set A := CO(2ω). We will define a : T → A by letting a(t_0) := [t_0] and

a(t_1) := 2ω \ a(t_0), for all t ∈ 2<ω.

Since, for all t ∈ 2<ω, [t_1] = [t] \ a(t_0) one gets A = [as : s ∈ T ].

Let s, t ∈ T be so that s 6 t. We claim that a(t_0) ⊆ as. To prove this note that

s = r_i for some r ∈ 2<ω and i < 2. If i = 0 then, by definition, a(t_0) ⊆ a(r_0) = as.

When i = 1 we have that a(r_0)∩a(t_0) = ∅ and hence a(t_0) ⊆ −a(r_0) = a(r_1) = as.

An immediate corollary of the claim is that, for all t ∈ T , the collection {as : s < t} has

the finite intersection property and therefore the filter generated by it in At := [as : s < t]

is an ultrafilter (Proposition 1.4).

Another consequence of the claim is that (−as) ∩ a(t_0) = ∅ ∈ At_0 for all s 6 t.

Hence (propositions 1.8-(2) and 1.2) we obtain that a(t_0) is minimal for (At_0, ut_0).
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Which implies that a(t_1) is minimal for (At_1, ut_1) and therefore condition (2) from

Definition 1.15 holds. Q.E.D.

IfX is metric compact and zero-dimensional, thenX has countable weight and therefore

is homeomorphic to a closed subspace of 2ω. Hence propositions 1.21 and 1.14 imply that

X is simplistic. A more elaborated example is the following.

Example 2.1. If X is compact Hausdorff and scattered then CO(X) is a T -algebra for

some acceptable tree.

Proof. Since X is compact and scattered there is an ordinal δ so that X =
⋃
{Xα : α 6 δ}

where Xα is the set of isolated points of X \
⋃
{Xξ : ξ < α} and Xδ 6= ∅.

Let ≺ be a well-ordering for X so that if α < β then x ≺ y for all x ∈ Xα and y ∈ Xβ.

Let z be the ≺-maximum element of Xδ (observe that Xδ is finite because X is compact so

z is well defined). Note that z is actually the maximum element of X.

For all α 6 δ and for each x ∈ Xα \ {z} let Wx be a clopen subset of X satisfying

Wx \
⋃
{Xξ : ξ < α} = {x}. Note that Wz := X \

⋃
{Wx : x ∈ Xδ \ {z}} is a clopen set so

that Wz ∩Xδ = {z}.

Let ε be the order type of (X \ {z},≺). Then there is a bijection h : ε → X \ {z} so

that h(α) ≺ h(β) whenever α < β.

Let f : ε → 2 be the constant zero function, i.e. f(α) = 0 for all α < ε. Then

T := {(f � α)_i : α < ε and i < 2} is an acceptable tree and T ⊆ 2<ε. For all α < ε define

a((f � α)_0) := X \Wh(α) and a((f � α)_1) := Wh(α).

Given α < ε we have that {Wh(α) \
⋃
{Wh(ξ) : ξ ∈ H} : H ∈ [α]<ω} is a local base for X at

h(α) and therefore {at : t ∈ T} generates CO(X).

Fix α < ε and let t := (f � α)_0. We will show that (i) {as : s < t} has the finite

intersection property and (ii) ∀s < t(at − as ∈ At) (see the Remark following Definition

1.15). Let s < t be arbitrary. Then s = (f � β)_0 for some β < α. Therefore h(α) ∈ as and

hence (i) holds. Since at− as is compact open and at− as = Wh(β) \Wh(α), there is a finite

set F ⊆ β + 1 so that at − as =
⋃
{Wh(ξ) \

⋃
{Wh(η) : η ∈ Hξ} : ξ ∈ F}, where Hξ ∈ [ξ]<ω
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for each ξ ∈ F . This proves (ii). The argument for t∗ is similar so we omit it.

Q.E.D.

Recall that a subset A of a topological space is crowded if every point of A is an

accumulation point of A.

We will use the following result in the proof of Lemma 2.2. If S = 〈Yα, gαβ : α < β < ε〉

is an inverse system such that all bonding maps are onto and H := {α < ε : Yα is crowded}

is cofinal with ε, then Y := lim
←−

S is crowded. To prove this let y ∈ Y be arbitrary and

let U be an open subset of Y which contains y. Since H is cofinal, there is α ∈ H so that

y ∈ g−1
αε [W ] ⊆ U for some open set W ⊆ Yα (Proposition 1.1-(2)). Thus W \ {gαε(y)} 6= ∅

and hence U \ {y} 6= ∅.

Lemma 2.2. Let X be the limit of the simplistic system S = 〈Xα, fαβ : α < β < ε〉. If

A,B ⊆ X and α < ε are so that fαε(A) ∩ fαε(B) contains a crowded set Yα then there

exists a crowded set Yε contained in A ∩B so that fαε(Yε) = Yα.

Proof. For each α < γ let Yα := fαγ [Yγ ]. To prove the lemma it suffices to show that there

is a sequence 〈Yτ : γ 6 τ < ε〉 so that each Yτ is a crowded subset of fτε[A] ∩ fτε[B] and

fατ [Yτ ] = Yα for all γ 6 α < τ . Indeed, given a sequence as the one described above, we

can let Yε be the limit of the inverse system 〈Yα, fαβ � Yβ : α < β < ε〉 to obtain a crowded

subset of X (see the remark previous to Lemma 2.2) which satisfies fγε[Yε] = Yγ and

Yε ⊆
⋂

γ<α<ε

f−1
αε (fαε(A) ∩ fαε(B)) = A ∩B

(Proposition 1.1). We will use induction on τ . Assume that Yξ has been defined for all

ξ < τ .

If τ = α+ 1 then fατ witnesses that Xτ is a simple extension of Xα and therefore there

is a point p ∈ Xτ so that Yτ := f−1
ατ [Yα]\{p} is a crowded subset of Xτ . Since fβτ = fβα◦fατ

for all β 6 α, a straightforward argument shows that Yτ is as required. When τ is a limit

ordinal it is enough to let Yτ be the limit of the inverse system 〈Yα, fαβ � Yβ : α < β < τ〉.

Q.E.D.
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A situation we will face several times is the following: X is a compact Hausdorff zero-

dimensional topological space for which CO(X) is a T -algebra as witnessed by {at : t ∈ T}.

Given x ∈ X, a straightforward application of propositions 1.6 and 1.20 gives the existence

of a branch b in T so that

1. the ultrafilter {c ∈ CO(X) : x ∈ c} is generated by {at : t ∈ b}.

We claim that (1) is equivalent to the following statements.

2. {
⋂
{at : t ∈ F} : F ∈ [b]<ω} is a local base for X at x.

3.
⋂
{at : t ∈ b} = {x}.

Indeed, (2) is a consequence of (1) because X is zero-dimensional and (2) implies (3)

because X is Hausdorff. To finish the argument let us assume (3) and let x ∈ c ∈ CO(X).

Then
⋂
{at : t ∈ b} ⊆ c and since X is compact, there is a finite set F ⊆ b so that

{at : t ∈ F} ⊆ c. Therefore (1) holds.

We will use the equivalence of these properties frequently.

Lemma 2.3. Let X be a compact Hausdorff zero-dimensional topological space for which

CO(X) is a T -algebra as witnessed by {at : t ∈ T}.

1. If s, t ∈ T are comparable and W :=
⋂
{ar : r < s} − as then at ∩W ∈ {∅,W}. In

other words, at does not split W .

2. If {tn : n ∈ ω} is a chain in T and {xn, yn} ⊆
⋂
{ar : r < tn} − a(tn) for all n ∈ ω

then {xn : n ∈ ω} ∩ {yn : n ∈ ω} 6= ∅.

Proof. To prove (1) let us start by fixing a branch b ⊆ T so that s, t ∈ b. Then T ′ :=

b ∪ {t∗ : t ∈ b} is an acceptable tree and B := [ar : r ∈ T ′] is a T ′-algebra. Since s↓ ∪ {s∗}

(Definition 1.1) is a branch in T ′ we have that {ar : r < s} ∪ {−as} generates an ultrafilter

u in B. Now note that if at∩W 6= ∅ then {at,−as}∪{ar : r < s} has the finite intersection

property and therefore we can extend it to an ultrafilter in B. Clearly that ultrafilter must

be u and hence at ∈ u. This implies that {−at,−as} ∪ {ar : r < s} cannot be extended to

an ultrafilter; i.e. W − at = ∅.
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In order to prove the second part of the Lemma we can assume, without loss of gen-

erality, that tn < tn+1 for all n ∈ ω. Therefore, {xk : k > n} ⊆
⋂
{ar : r < tn} for each

n ∈ ω. Thus there exists z ∈ {xn : n ∈ ω} ∩
⋂
n<ω

⋂
{ar : r 6 tn}. The remarks preceed-

ing the Lemma show that there is a branch b ⊆ T so that
⋂
{at : t ∈ b} = {z}. Hence

{tn : n ∈ ω} ⊆ b. We will show that z ∈ {yn : n ∈ ω}. Let F be a finite subset of b. There

is an integer m so that xm ∈
⋂
{at : t ∈ F} so we can invoke part (1) to obtain that, for

each t ∈ F ,
⋂
{ar : r < tm} − a(tm) ⊆ at. In particular, ym ∈

⋂
{at : t ∈ F}. Q.E.D.

The following result shows that the converse of Corollary 1.21 is false.

Theorem 2.4. There is a minimimally generated Boolean algebra which is not a T -algebra

for any acceptable tree T .

Proof. Our strategy is to construct a simplistic system so that the clopen algebra of its

limit is as required in the statement.

Let us start by enumerating all rational numbers in the Cantor set: 2ω ∩ Q = {qn :

n ∈ ω}. Define, by induction, a sequence 〈Y m
0 , gm+1

m : m ∈ ω〉 of topological spaces and

continuous maps so that

1. Y 0
0 := 2ω,

2. Y m+1
0 = Y m

0 ⊕ {(q0,m+ 1)}, and

3. gm+1
m : Y m+1

0 → Y m
0 satisfies gm+1

m � Y m
0 is the identity map and gm+1

m (q0,m+1) = q0.

In other words, Y m+1
0 is obtained from Y m

0 by splitting q0 into two points and making one

of them isolated.

We define gm+k+1
m := gm+k+1

m+k ◦gm+k
m by induction on k to obtain 〈Y m

0 , gmn : n < m < ω〉,

an inverse system based on simple extensions. Let Y1 be its limit and let hm0 : Y1 → Y m
0

be the corresponding projection map. Observe that Y1 contains two kinds of points: If

〈xn : n ∈ ω〉 ∈ Y1 then either x0 = xn for all n ∈ ω or there exists k ∈ ω so that xi = q0 for

i 6 k and xi = (q0, k) when i > k. Moreover, the points belonging to the second kind form

a sequence converging to 〈q0, q0, . . . 〉. From here one can show that Y1 is homeomorphic to

the subspace (2ω × {ω}) ∪ ({q0} × ω) of the topological product 2ω × (ω + 1), i.e. Y1 is the

result of adding a converging sequence to q0 to the space Y0 := 2ω.
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Applying the process described above to Y1 and q1 one gets Y2 and, in general, an

inverse system 〈Ym, hmn : n < m < ω〉, where each Ym is homeomorphic to the subspace

(2ω × {ω}) ∪ ({qi : i 6 m} × ω) ⊆ 2ω × (ω + 1) and hm+1
m collapses the new converging

sequence to a point: hm+1
m (qm, i) = (qm, ω) for all i < ω. Let X0 be the limit of this inverse

system.

X0 is homeomorphic to the space obtained by endowing the set 2ω ∪ ((Q ∩ 2ω) × ω)

with the following topology: Each (q,m) is isolated and a local base for r ∈ 2ω is given by

all sets of the form

W ∪ ((W ∩Q)× ω) \ F ),

where W is an arbitrary clopen subset of 2ω which contains r and F is a finite set. Moreover,

when r /∈ Q one can take F = ∅.

Let {(rα,mα) : α < c} be an enumeration of all pairs (r,m) so that

(a) r : 2<ω → Q ∩ 2ω and m : 2<ω → ω.

(b) For all g : ω → 2 the sequence 〈r(g � n) : n ∈ ω〉 converges.

(c) If f, g ∈ ω2 satisfy f 6= g then

lim
n→∞

r(f � n) 6= lim
n→∞

r(g � n).

For each α < c we will obtain, by transfinite induction, a function gα ∈ ω2 so that xα :=

lim
n→∞

rα(gα � n) satisfies xα /∈ {xξ : xi < α} ∪Q and, at the same time, we will construct a

topology Tα for Xα := X0 ∪ {(xξ, 0) : ξ < α} in such a way that S := 〈Xα, fαβ : α < β < c}

is a continuous inverse system and

1. For all β < α, fβα is given by fβα(xξ, 0) = xξ whenever β 6 ξ < α and fβα � Xβ is

the identity map.

2. The sequence eα := {(rα(gα � n),mα(n)) : n ∈ ω} converges to xα in Tα.

3. Tα ∪ {eα ∪ {(xα, 0}, Xα \ eα} is a subbase for Tα+1.
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Observe that according to this prescription the inverse system is based on simple ex-

tensions. More precisely, for each α the point xα is doubled and eα becomes a converging

sequence to the twin of xα, namely (xα, 0).

We only have to explain how to get Tα+1 from Tα. Condition (c) above implies that

|{xξ : ξ < α}| < c = |{lim rα(g � n) : g ∈ ω2}|

and therefore we can find gα ∈ ω2 for which xα := lim rα(gα � n) works.

As one can verify, a local base at xα in Tα is given by all sets of the form

(W \
⋃
{eξ : ξ ∈ F}) ∪ ((W ∩ {xξ : ξ ∈ α \ F})× {0})

where W is a clopen set in X0 containing xα and F is an arbitrary finite subset of α. In

particular, property (2) holds and this completes the induction.

Let X be the limit of S. By gluing all the inverse systems involved in the construction

of X one can verify that X is simplistic and hence A := CO(X) is minimally generated.

X will be identified with X0∪{(xα, 0) : α < c} in such a way that the subspace topology

for 2ω ⊆ X is the Cantor set topology and {{(xα, 0)} ∪ eα \ F : F ∈ [eα]<ω} is a local base

of clopen sets at (xα, 0) for all α < c.

Seeking a contradiction let us assume that {at : t ∈ T} witnesses that A is a T -algebra

for some acceptable tree T . For each t ∈ 2<ω \ {∅} we will define inductively f(t) ∈ T ,

q(t) ∈ Q, `(t) ∈ ω, and W (t) ∈ CO(2ω) in such a way that the following is true for all t and

all i < 2.

(1t) If s < t then f(s) < f(t).

(2t) f(t∗) = f(t)∗.

(3t) W (t) has diameter < 1/2|t|.

(4t) q(t) ∈W (t) ⊆ a(f(t∗)).

(5t) W (t_i) ⊆W (t) ⊆ as for all s < f(t_i).
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(5t) a(f(t_i)) ∩W (t) 6= ∅.

(6t) (q(t), `(t)) ∈ a(f(t∗)).

Let t0 ∈ T be so that a(t0) ∩ 2ω 6= ∅ 6= 2ω − a(t0) but 2ω ⊆ as for all s < t0.

Define f(∅_0) = t0 and f(∅_1) = t∗0. Let i < 2 be arbitrary. Since a(f(∅_i)) is open,

there exist a rational number q(∅_i) ∈ a(f(∅_(1 − i))) and an integer `(∅_i) such that

(q(∅_i), `(∅_i)) ∈ a(f(∅_(1− i))). Let W (∅_i) be a clopen subset of the Cantor set with

diameter < 1/2 and satisfying q(∅_i) ∈W (∅_i) ⊆ a(f(∅_(1− i))). This is the base of the

induction.

Assume that for some n ∈ ω and for all t ∈ 26n we have defined f(t), q(t), `(t), andW (t)

as required. Fix t ∈ 26n and let t̃ ∈ T be so that f(t) < t̃, W (t) ∩ a(t̃) 6= ∅ 6= W (t)− a(t̃),

and W (t) ⊆ as for all s < t̃. Set f(t_0) = t̃ and f(t_1) = t̃∗. As before, for each i < 2 we

can find q(t_i), `(t_i), and W (t_i) satisfying all the requirements and this completes the

induction.

The rules t 7→ q(t) and t 7→ `(t) define maps q : 2<ω → 2ω ∩ Q and ` : 2<ω → ω.

Conditions (1t), (2t), and (4t) imply that there exists α < c so that (q, `) = (rα,mα). Let

tn := gα � n for all n ∈ ω. The sets H := {q(tn) : n ∈ ω} and eα have disjoint closures in

X. On the other hand, conditions (4t) and (6t) give

{q(tn), (q(tn), `(tn))} ⊆
⋂
{as : s < f(tn)} − a(f(tn))

and since {f(tn) : n ∈ ω} is a chain in T , Lemma 2.3 guarantees that H ∩ eα 6= ∅. A

contradiction. Q.E.D.

Lemma 2.5. Let X be a compact Hausdorff zero-dimensional space. If c ⊆ X and p ∈ c

satisfy

1. c is closed and

2. {p} = c ∩X \ c

then c is minimal for (CO(X), u), where u := {a ∈ CO(X) : p ∈ a}.



32

Proof. Let A := CO(X). Clearly u is an ultrafilter in A and condition (2) implies that

u ∪ {c} and u ∪ {−c} have the finite intersection property. Therefore u extends to more

than one ultrafilter in A(c).

To show that u is the only one with this property let v be an ultrafilter in A so that

u 6= v. Since X is compact Hausdorff, there is q ∈ X so that {q} =
⋂
v. The assumption

u 6= v implies that q 6= p and therefore q /∈ c or q /∈ X \ c. Thus there exists a ∈ v satisfying

a∩ c = ∅ or a− c = ∅. In other words, a ⊆ −c or a ⊆ c. This shows that the filter generated

by v in A(c) is an ultrafilter. Q.E.D.

The proof of the following result follows from Definition 1.15 and it provides a method

to create extensions of T -algebras.

Lemma 2.6. Let A be a T -algebra as witnessed by {at : t ∈ T} and let b be a branch in

T . If f :=
⋃
b then

1. T ′ := T ∪ {f_0, f_1} is an acceptable tree.

2. If x is minimal for (A, ub), then A(x) is a T ′-algebra as witnessed by {at : t ∈ T ′},

where a(f_0) := x and a(f_1) := −x.

In [13] Koppelberg showed that the topological product of simplistic spaces may not

be simplistic. Her example is the product of the Alexandroff double arrow on the Cantor

set and 2ω. In view of Theorem 2.4 one can ask if the situation is different for the class of

Stone spaces of T -algebras.

Recall that one can identify 2ω with the Cantor Middle Third Set using ternary expan-

sions. Hence we will consider 2ω as a subspace of the interval [0, 1].

The Alexandroff double arrow on 2ω is the subspace 2ω×{0, 1} of the square [0, 1]×[0, 1]

with the lexicographic order topology. Another way to obtain this space is by splitting each

point x of the Cantor set into two points x− and x+ and defining an order by declaring

x− < x+ and using the induced order of [0, 1] otherwise.

Example 2.2. LetX be the Alexandroff’s double arrow on 2ω. Then CO(X) is a T -algebra.

Proof. We know that CO(2ω) is a T ′-algebra where T ′ := 2<ω. Let {at : t ∈ T ′} be as

described in the proof of Lemma 2.1. For each t ∈ T ′ let ct := at × {0, 1}. The Boolean
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algebra generated by {ct : t ∈ T ′} is isomorphic to CO(2ω) and if, for each f ∈ 2ω,

we let c(f_0) := (2ω ∩ [0, f ] × {0}) ∪ (2ω ∩ [0, f) × {1}) and c(f_1) := (2ω ∩ (f, 1] ×

{0}) ∪ (2ω ∩ [f, 1] × {1}) then {ct : t ∈ 26ω} generates CO(X) and c(f_0) is minimal for

([c(f � n) : 0 < n < ω], uf ), where uf is the ultrafilter generated by {c(f � n) : 0 < n < ω}.

Therefore (Lemma 2.6) CO(X) is a 26ω-algebra as witnessed by {ct : t ∈ 26ω}. Q.E.D.

2.2 Efimov T -algebras

Definition 2.1. A Boolean algebra A will be called Efimov if St(A) is an Efimov space. In

particular, an Efimov T -algebra is a T -algebra for which its Stone space is Efimov.

IfA is an Efimov T -algebra then (Proposition 1.6) St(A) is homeomorphic to St(CO(X)),

where X := St(A), and therefore the Boolean algebras A and CO(X) are isomorphic. Thus

CO(X) is an Efimov T -algebra. In other words, the existence of an Efimov T -algebra is

equivalent to the existence of a zero-dimensional Efimov space X for which CO(X) is a

T -algebra.

We will denote by ω∗ the collection of all nonprincipal ultrafilters in ω.

Given a space X, a sequence {xn : n ∈ ω} ⊆ X and r ∈ ω∗ we will say that the point

x ∈ X is an r-limit of {xn : n ∈ ω} (in symbols, x = r-limxn) if {n ∈ ω : xn ∈ U} ∈ r for

any neighborhood U of x. X will be called r-compact if every sequence in X has an r-limit.

If X is compact and r ∈ ω∗ then for any sequence {xn : n ∈ ω} ⊆ X we have that⋂
{{xn : n ∈ a} : a ∈ r} 6= ∅ (finite intersection property) and therefore {xn : n ∈ ω} has an

r-limit.

A straightforward argument shows that r-limits are preserved by continuous functions,

i.e. if f : X → Y is continuous and {xn : n ∈ ω} is a sequence in X whose r-limit is x then

f(x) is the r-limit of {f(xn) : n ∈ ω}.

Recall that the Scarborough-Stone question is: Must every product of sequentially com-

pact spaces be countably compact?

We will use the following property in the proof of Theorem 2.7: If {Xr : r ∈ ω∗} is

a family of topological spaces so that Xr is not r-compact for each r then X :=
∏
{Xr :

r ∈ ω∗} is not countably compact. To show that this is the case fix, for each r, a sequence

{xrn : n ∈ ω} in Xr which has no r-limit and define xn := 〈xrn : r ∈ ω∗〉 for all n ∈ ω. We
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claim that S := {xn : n ∈ ω} has no cluster point. Indeed, if y ∈ X is a cluster point for S

then, by definition, for each neighborhood U of y the set U † := {n ∈ ω : xn ∈ U} is infinite

and therefore {U † : U is a neighborhood of y} generates a nonprincipal ultrafilter u ∈ ω∗

and since the projection map πu : X → Xu is continuous, it must be the case that πu(y) is

a u-limit of {xun : n ∈ ω}. A contradiction.

Theorem 2.7. If there is an Efimov T -algebra then the Scarborough-Stone question has a

negative answer.

Proof. Let X be a zero-dimensional Efimov space and assume that CO(X) is a T -algebra

as witnessed by {at : t ∈ T} (see the remark following Definition 2.1). We will construct a

family {Xr : r ∈ ω∗} of sequentially compact spaces so that Xr is not r-compact for each r.

As we mentioned after Definition 2.1 for any point x ∈ X there is a branch b in T so

that
⋂
{at : t ∈ b} = {x}. Note that if b is finite then x is an isolated point of X. Since X is

Efimov, X is infinite and compact so X possesses an accumulation point and hence T has

an infinite branch. This branch will hit, for each integer n, the nth level of the tree, T (n).

Let {tn : n ∈ ω} ⊆ T be an incressing sequence satisfying tn ∈ T (n), for all n ∈ ω.

For each integer n fix a branch bn ⊆ T satisfying {tk : k < n} ∪ {t∗n} ⊆ bn. Then⋂
{as : s ∈ bn} = {wn} for some wn ∈ X. Set W := {wk : k ∈ ω} and note that our

construction gives W ∩
⋂
{as : s < tn} − a(tn) = {wn}.

Let r ∈ ω∗ be arbitrary. The fact that X is compact implies the existence of xr ∈ X so

that xr = r-limwn. Thus there is a branch br satisfying
⋂
{as : s ∈ br} = {xr}. Moreover,

xr /∈W because W is discrete and infinite. Define Br := [at : t ∈ br] and let ur be the only

ultrafilter in Br such that {at : t ∈ br} ⊆ ur. Observe that the map fr : X → St(Br) given

by fr(x) := {c ∈ Br : x ∈ c} is continuous, onto and satisfies f−1
r [ur] = {xr}. Therefore the

subspace Xr := St(Br) \ {ur} is not r-compact because {fr(wn) : n ∈ ω} has no r-limit.

The only thing left is to show that Xr is sequentially compact. To do this we will prove

that Xr is scattered (i.e. Xr does not contain a crowded subspace) and countably compact.

Let {xn : n ∈ ω} be an infinite subset of Xr. For each n ∈ ω there is yn ∈ X so

that fr(yn) = xn. Since X is Efimov, {yn : n ∈ ω} possesses more than one accumulation

point. In particular, {yn : n ∈ ω} accumulates to some y ∈ X \ {xr} and thus fr(y) is an
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accumulation point of {xn : n ∈ ω} in Xr. Hence Xr is countably compact. It is worth

mentioning that this is the only part of the proof where being Efimov is used.

Note that T ′ := br ∪ {t∗ : t ∈ br} is an acceptable tree and that Br is a T ′-algebra as

witnessed by {at : t ∈ T ′}. If b is a branch in T ′ then b = br or b = t↓ ∪{t∗} for some t ∈ br.

Therefore, for each y ∈ Xr there exists ty ∈ br so that y is the ultrafilter generated by

{as : s < ty} ∪ {−a(ty)}. We are ready to show that Xr is scattered: let E be a nonempty

subset of Xr; since br is well-ordered, there exists z ∈ E so that tz = min{ty : y ∈ E}. By

definition, U := {p ∈ St(Br) : −a(tz) ∈ p} is a clopen subset of St(Br) and our choice of tz

guarantees that U ∩ E = {z} so E has an isolated point.

To finish the argument let us show that if Y is scattered and countably compact then Y

is sequentially compact. Let H ∈ [Y ]ω. Since Y is scattered there is an ordinal δ for which

Y =
⋃
{Yα : α < δ}, where Yα is the set of isolated points of Y \

⋃
{Yξ : ξ < α}. Let α < δ

be the least ordinal for which Yα∩H ′ 6= ∅, where H ′ is the set of accumulation points of H.

If z ∈ H ′ ∩ Yα then, by definition, there is an open set U so that U \
⋃
{Yξ : ξ < α} = {z}.

Clearly S := H ∩ U is infinite. We claim that S converges to z, i.e. any neighborhood of

z contains all but finitely many elements of S. Let V be a neighborhood of z. There is

an open set V0 so that z ∈ V0 ⊆ V0 ⊆ U ∩ V . Then U \ V0 is an open set contained in⋃
{Yξ : ξ < α} and therefore it does not contain an accumulation point of H so H ∩ U \ V0

is finite. Hence |S \ V | < ω as claimed. Q.E.D.

We mentioned in the previous chapter that no simplistic space maps onto the prod-

uct 2ω1 . As the following result guarantees, there is a simpler product which is not the

continuous image of any Stone space of an Efimov T -algebra.

A continuous map f : X → Y is irreducible if f is onto and whenever F is a proper

closed subset of X we get f [F ] 6= Y . Observe that if U is an open subset of X then

F := X\(U∩f−1[intf [X\U ]] is closed and f [F ] = Y which implies that f [U ]∩intf [X\U ] = ∅

and therefore

Y \ f [X \ U ] ⊆ f [U ] ⊆ Y \ f [X \ U ].

Hence, when f is closed and irreducible, f [U ] is a regular closed subset of Y . We will use

this property several times during the proof of Theorem 2.8.
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Assume that f : X → Y is continuous and onto and X is compact. We claim that

there exists a closed set K ⊆ X so that f [K] = Y and f � K is irreducible. This is a

consequence of Zorn’s Lemma. Let F be the collection of all closed sets F ⊆ X so that

f [F ] = Y . Then X ∈ F and if C is a ⊆-chain in F then {F ∩ f−1[y] : F ∈ C} has the finite

intersection property for all y ∈ Y . Indeed, if {Fk : k < n} ⊆ C then there is m < n so

that
⋂
{Fk : k < n} = Fm and hence Fm ∩ f−1[y] 6= ∅. Thus

⋂
C ∈ F and therefore F has a

⊆-minimal element K which is the closed set whose existence was claimed.

Theorem 2.8. If X is the Stone space of an Efimov T -algebra, then X does not map

continuously onto Y := (ω1 + 1)× (ω + 1).

Proof. Seeking a contradiction assume that f : X → Y is continuous and onto.

Let K be a compact subset of X for which f [K] = Y and f � K is irreducible. Since

f � K is closed and (ω1, ω) ∈ {ω1} × ω, there exists q ∈ K ∩ f−1[{ω} × ω]. Observe that

for any neighborhood U of q the set {n ∈ ω : (ω1, n) ∈ f [U ∩K]} is infinite.

Let {at : t ∈ T} be a family witnessing that CO(X) is a T -algebra (see the remark

following Definition 2.1) and fix a brach b ⊆ T so that
⋂
{as : s ∈ b} = {q}. We will use the

following notation: for each t ∈ T let ∆(t) :=
⋂
{as : s 6 t}.

We claim that there are two sequences {tni : i ∈ ω} and {ni : i < ω} so that tni+1 is

the least node in b for which there is an integer ni+1 > ni so that

(ω1, ni+1) ∈ f
[
a(t∗ni+1

) ∩
⋂
{a(tnj ) : j < i} ∩K

]

and ni+1 is the smallest integer having this property.

The construction uses finite induction. For each x ∈ K ∩ f−1[{ω} × ω] there exists a

branch bx in T so that
⋂
{as : s ∈ bx} = {x}; hence bx 6= b so there is sx ∈ b such that s∗x ∈ bx.

Let tn0 := min{tx : x ∈ K ∩ f−1[{ω}×ω]}. Clearly tn0 = tx for some x ∈ K ∩ f−1[{ω}×ω]

and thus f(x) = (ω1,m) for some integer m. This gives (ω1,m) ∈ f [a(t∗n0
) ∩K] so we can

let n0 be the least integer satisfying this property.

Now assume that {tnj : j 6 i} and {nj : j 6 i} have been constructed. Since U :=⋂
{a(tnj ) : j 6 i} is a neighborhood of q, we have that (ω1, `) ∈ f [U ∩ K] for infinitely

many ` ∈ ω. Using the method described in the previous paragraph one can guarantee the
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existence of tni+1 and ni+1 as required.

Define I := {ni : i < ω} and for each n ∈ I set cn := a(t∗n) ∩
⋂
{a(tk) : k < n}. Let

W := int

(⋃
n∈I

f [cn ∩K] ∩ (ω1 × {n})

)

and for each n ∈ I let Vn := K ∩ f−1[W ∩ (ω1×{n})]. Hence Vn is open in K and f [
⋃
{Vn :

n ∈ I}] = W so we will restrict our attention to the compact set K0 := K ∩
⋃
{Vn : n ∈ I}.

Observe that the minimality of each tn, n ∈ I, gives (ω1, n) ∈ f [K ∩∆(t∗n)].

We claim that K0∩∆(t∗n)∩f−1[(ω1, n)] 6= ∅ for all n ∈ I. To show this we only have to

prove that F = {K0 ∩ as ∩ f−1[(ω1, n)] : s 6 t∗n} has the finite intersection property. So let

F ⊆ (t∗n)↓ ∪{t∗n} be finite and define c := cn ∩
⋂
{as : s ∈ F}∩K. Since f � K is irreducible

and c is a clopen subset of K, the set f [c] is regular closed and contains (ω1, n) (because

K ∩∆(t∗n) ⊆ c). Hence (ω1, n) is in the closure of int(f [c] ∩ (ω1 × {n})) ⊆ W ∩ (ω1 × {n})

so we can use the fact that f is closed to get

∅ 6= c ∩ Vn ∩ f−1[(ω1, n)] ⊆
⋂
{as : s ∈ F} ∩K0 ∩ f−1[(ω1, n)],

and therefore F has the finite intersection property.

Fix, for each n ∈ I, a point xn ∈ K0 ∩∆(t∗n) so that f(xn) = (ω1, n). Then {xk : n <

k < ω} ⊆
⋂
{as : s < tn}.

There are only finitely many n ∈ I so that f [Vn ∩ K ∩ ∆(t∗n)] 6⊆ {(ω1, n)}. In effect,

assume that E ∈ [I]ω and {yn : n ∈ E} satisfy yn ∈ Vn ∩K ∩∆(t∗n) and f(yn) 6= (ω1, n) for

all n ∈ E. Since, for each n ∈ E, f [Vn] ⊆ f [Vn] ⊆ (ω1 + 1) × {n}, there exists α < ω1 for

which {f(yn) : n ∈ E} ⊆ (α+1)× (ω+1) and hence {f(yn) : n ∈ E}∩{f(xn) : n ∈ E} = ∅.

Clearly {xn : n ∈ E} and {yn : n ∈ E} must have disjoint closures but this contradicts

Lemma 2.3-(2).

We will construct two functions e : 2<ω → T and H : 2<ω → [I]ω so that for all i < 2

the following holds.

1. e(s) < e(t) whenever s < t.

2. e(t∗) = e(t)∗.
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3. H(t_i) = {n ∈ H(t) : xn ∈ a(e(t_i))}.

4. If e(t) < s < e(t_i) then {n ∈ H(t) : xn ∈ a(s∗)} is finite.

If b̃ := {s ∈ T : ∃n ∈ I(s < tn)} is a branch in T and {x} =
⋂
{as : s ∈ b̃} then any

neighborhood U of x contains a set of the form
⋂
{as : s ∈ F} where F is a finite subset of

b̃; thus there exists n ∈ I so that s < tn for any s ∈ F and therefore {xk : n < k < ω} ⊆ U .

In other words, if b̃ is a branch, X is not an Efimov space.

Start the induction by letting e(∅) be the least node s ∈ T so that
⋃
{tn : n ∈ I} ⊆ s

(the previous paragraph guarantees that there is a node in T that extends it) and {n ∈ I :

xn ∈ a(s)} is infinite (since {xn : n ∈ I} is infinite and {as, a(s∗)} is a partition of X such

a node must exist). And set H(∅) := {n ∈ I : xn ∈ a(e(∅))}.

Now assume that e(t) and H(t) have been defined for some t ∈ 2<ω. We claim that

e(t) has an extension s ∈ T that splits H(t), i.e. both sets {n ∈ H(t) : xn ∈ as} and

{n ∈ H(t) : xn ∈ a(s∗)} are infinte. Otherwise we can build by transfinite induction a

branch b̃ ⊆ T so that e(t) ∈ b̃ and for all r ∈ b̃ the set {n ∈ H(t) : xn ∈ a(r∗)} is finite

(when e(∅) 6 r < e(t), condition (4) takes care and if r < e(∅) then tn 6 r < tn+1 for some

n ∈ H and therefore {xk : n+1 < k < ω} ⊆ ar). Hence the infinite sequence {xn : n ∈ H(t)}

converges to p ∈
⋂
{ar : r ∈ b̃}; contradicting that X is an Efimov space. Since there is a

node that splits H(t) there is a minimal node e(t_0) which does the splitting. The rest is

to define e(t_1) := e(t_0)∗ and H(t_i) as described in (3) to complete the induction.

For each g ∈ 2ω define g :=
⋃
{e(g � n) : n ∈ ω} and ∆g :=

⋂
{as : s < g}. We will

show that {xn : n ∈ I} ∩∆g ∩K0 6= ∅ by proving that {{xn : n ∈ I} ∩ as ∩K0 : s < g} has

the finite intersection property. Let F be a finite set of predecessors of g in T . There exists

an integer m so that s < e(g � m) for each s ∈ F . Thus {xn : n ∈ H(g � m)} \ as is finite

for all s ∈ F and hence {xn : n ∈ H(g � m)} ∩K0 ∩
⋂
{as : s ∈ F} 6= ∅.

We will prove by contradiction that the set

{g ∈ 2ω : ∃α < ω1(f−1[(α+ 1)× (ω + 1)] ∩∆g ∩K0 6= ∅)}

is finite. So let us assume that it is infinite. In this case the set contains an infinite sequence
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S converging to some ρ ∈ 2ω. For each g ∈ S there exists yg ∈ ∆g ∩K0 and αg < ω1 such

that f(yg) ∈ (αg + 1)× (ω + 1). Since S is countable, {f(yg) : g ∈ S} ⊆ (α + 1)× (ω + 1)

for some α < ω1. Therefore {xn : n ∈ I} and {yg : g ∈ S} have disjoint closures. On the

other hand, if g ∈ S \ {ρ} then there is an integer m so that (ρ � m + 1)∗ = g � m + 1

(i.e. ρ � m = g � m and ρ(m) 6= g(m)). Let {gk : k ∈ ω} ⊆ S and {mk : k ∈ ω} ⊆ ω

be so that (ρ � mk + 1)∗ = gk � mk + 1 and mk 6= m` whenever k 6= ` (recall that S is

infinite and converges to ρ in 2ω). For each k ∈ ω define rk := e(ρ � mk + 1) and fix a point

zk ∈ {xn : n ∈ I} ∩K0 ∩∆gk
. Then

{zk, ygk
} ⊆ ∆gk

⊆ ∆(e(gk � mk + 1)) = ∆(r∗k) =
⋂
s<rk

as − a(rk).

So we can apply Lemma 2.3-(2) to obtain {zk : k ∈ ω}∩{ygk
: k ∈ ω} 6= ∅ and therefore the

closures of {xn : n ∈ I} and {yg : g ∈ S} are not disjoint. A contradiction.

For the rest of the proof we will fix g ∈ 2ω in the complement of the finite set discussed

in the previous paragraph. Then, for each α < ω1, we have that

⋂
n<ω

f−1[(α+ 1)× (ω + 1)] ∩∆(e(g � n)) ∩K0 = ∅,

and since ∆(e(g � n + 1)) ⊆ ∆(e(g � n)) there must be mα ∈ ω for which f−1[(α + 1) ×

(ω+ 1)]∩∆(e(g � mα))∩K0 = ∅. Fix n ∈ ω so that {α < ω1 : mα = n} is uncountable and

observe that f [K0 ∩∆(e(g � n))] ⊆ {ω1} × (ω + 1). Set r := g � n.

If {sk : k 6 `} ⊆ 2<ω satisfies r < sk < sk+1 for all k < ` then for each m ∈ H(s`) we

have (recall condition (3) above) xm ∈ Vm∩
⋂
{a(e(sk)) : k 6 `} = Vm ∩

⋂
{a(e(sk)) : k 6 `}

and hence we can use the fact that f � K is irreducible to get that (ω1,m) = f(xm) is in

the closure of intf [Vm ∩
⋂
{a(e(sk)) : k 6 `}]. In particular, f [Vm ∩

⋂
{a(e(sk)) : k 6

`}]∩ (ω1×{m}) is uncountable. The fact that (2<ω)<ω is countable implies the existence of

an ordinal γ < ω1 so that for any integer `, for any increasing sequence {sk : k 6 `} ⊆ 2<ω

with r < s0, and for each m ∈ H(s`) the set f [Vm ∩
⋂
{a(e(sk)) : k 6 `}] ∩ ((γ + 1)× {m})

is infinite.

Let B := [as : s < e(r)] and let h : X → St(B) be the corresponding Stone map:
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h(x) := {c ∈ B : x ∈ c}. Denote by u the ultrafilter generated by {as : s < e(r)} in

B. We claim that u /∈ h[K1], where K1 :=
⋃
{Vm : m ∈ H(r)} ∩ f−1[(γ + 1) × (ω + 1)].

Indeed, if z ∈ K1 satisfies h(z) = u then z ∈ ∆(e(r)) and our choice for n guarantees that

f(z) ∈ {ω1} × (ω + 1), contradicting that z ∈ K1.

For any x ∈ K1 the fact that u 6⊆ h(x) implies that there exists tx ∈ T so that tx < e(r)

and x ∈ −a(tx) = a(t∗x). A compactness argument shows that for any closed nonempty set

C ⊆ K1 the set C† := {tx : x ∈ C} has a maximum element. In particular, there is y1 ∈ K1

so that ty1 = maxK†1.

Let s0 be an immediate successor of r (i.e. s0 = r_i for some i < 2) so that y0 /∈

a(e(s0)). If K1 ∩ a(e(s0)) 6= ∅ let y1 ∈ K1 ∩ a(e(s0)) be so that ty1 = max(K1 ∩ a(e(s0)))†.

And repeat: let s1 be an immediate successor of s0 so that y1 /∈ a(e(s1)) and if K1∩a(e(s0))∩

a(e(s1)) 6= ∅ then let y2 be an element of this set so that ty2 = max(K1∩a(e(s0))∩a(e(s1)))†.

Since ty0 > ty1 > ty2 > . . . the process must stop after finitely many steps, in other words,

there is ` < ω such that K1 ∩
⋂
{a(e(sk)) : k 6 `} = ∅ and yk ∈ K1 ∩

⋂
{a(e(si)) : i <

`} − a(e(si)) for all k 6 `.

Recall that γ was selected to make f [Vm∩
⋂
{a(e(sk)) : k 6 `}]∩((γ+1)×{m}) infinite

for all m ∈ H(s`) which implies that K1 ∩
⋂
{a(e(sk)) : k 6 `} 6= ∅. This contradiction

finishes the proof. Q.E.D.



CHAPTER 3: CONSISTENCY RESULTS

3.1 Simplistic Efimov Spaces and CH

We mentioned in Chapter 1 that Fedorčuk’s constructed a simplistic Efimov space

assuming ♦. In this section we will show that ♦ can be replaced with CH.

Džamonja and Plebanek [7] show that any Efimov space constructed from the the

Cantor space in an inverse limit of length ω1 using simple extensions refutes a conjecture

of Mercourakis concerning measures on compact spaces. Fedorčuk’s example proves that

Mercourakis’ conjecture is false in any model of ♦. It is asked in [7] if CH suffices to refute

Mercourakis’ conjecture, and our construction answers this affirmatively.

Efimov spaces have been constructed from CH before (see, for example, [7] and [11])

but ours is the first example which is simplistic.

Theorem 3.1. Under CH, there exists an Efimov space that can be obtained as the limit

of a simplistic system of length ω1.

Proof. We will prove the theorem by recursively defining a simplistic system 〈fαβ, Xα : α <

β < ω1〉 whose limit is an Efimov space and so that |Xα| = ω1 for all α < ω1. This recursion

uses a special notation that will be introduced in the following two paragraphs.

First of all, sequence means, from now on, infinite sequence. Recall that a countable

set E converges to a point p in a topological space if any neighborhood U of p contains all

but finitely many elements of E, i.e. |E \U | < ω. Let us fix a partition {Pα : α < ω1} of ω1

so that Pα is an uncountable subset of ω1 \ α for all α < ω1. Given α < ω1, we will denote

by α′ the unique ordinal satisfying α ∈ Pα′ . Therefore, α′ ∈ Pα′′ .

Assume that we have constructed the simplistic system up to and including γ, i.e.

〈fαβ, Xα : α < β 6 γ〉 has been defined. Hence we have Xγ . We say that a converging

sequence D in Xγ is special if for every ξ < γ, fξγ [D] is a finite subset of Xξ. Using CH

and |Xγ | = ω1 we can fix an enumeration {Dξ : ξ ∈ Pγ} of all special sequences in Xγ .
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Note that once the recursion is complete we will have an ω1-sequence {Dξ : ξ < ω1} which

lists all special converging sequences in Xη for all η < ω1. Of course this list is constructed

during the recursion. Let β < γ. Since β ∈ Pβ′ , we get β′ 6 β and hence Xβ, Xβ′ , and fβ′β

have been constructed. Under these circumstances there are countable sets E ⊆ Xβ such

that E∩f−1
β′β[d] is a singleton for all d ∈ Dβ. Such a set E is called a selector for Dβ. Again

by CH we may enumerate all such selectors as {Eξ : ξ ∈ Pβ}. Doing this for each β < ω1

would result in an ω1-sequence {Eξ : ξ < ω1} listing all selectors for Dη for all η < ω1.

Again we mention that this list is constructed during the recursion. Now, given β < α < γ

and x ∈ Xα, define Dβ(x) := {d ∈ Dβ : fβ′α(x) 6= d}.

Assume that for some ε < ω1 we have defined a continuous inverse system of simple

extensions 〈fγβ, Xγ : γ < β < ε〉 so that the following holds for each β < ε.

1. X0 = 2ω, the Cantor set.

2. If β+ 1 < ε and i < 2, then there exist Aiβ, a closed subset of Xβ, and H i
β, an infinite

subset of Eβ, so that

(a) A0
β ∩A1

β = {xβ},

(b) Xβ = A0
β ∪A1

β,

(c) Xβ+1 = A0
β ⊕A1

β (the topological sum), and

(d) fβ,β+1 is the projection map.

(e) f−1
β′β[e] ⊆ Aiβ for all e ∈ H i

β.

3. If x ∈ U ∈ Tβ, where Tβ is the topology of Xβ, then for each finite set F ⊆ β there

exists W , a clopen subset of Xβ, such that x ∈ W ⊆ U and W takes care of (x, F ),

i.e.

f−1
γ′γ [d] ∩ fγβ[W ] ∩ fγβ[Xβ \W ] = ∅,

for all γ ∈ F and d ∈ Dγ(x).

Condition (3) is equivalent to saying that W ∩ f−1
γ′β[d] is a preimage of a clopen subset

of f−1
γ′γ [d].
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Observe that each Xα will be compact nonempty and, moreover, that the limit of this

inverse system will be a simplistic space and therefore (Proposition 1.19) it will not contain

a copy of βω. Hence our main concern is to get rid of all converging sequences.

If ε is a limit ordinal, then Xε is the limit of this inverse system. To verify (3) let

x ∈ U0 ∈ Tε be arbitrary. Fix a finite set F ⊆ ε. Since {f−1
ξε [V ] : ξ < ε, V ∈ Tξ} is a base

for Tε, there exists α < ε and U ∈ Tα so that F ⊆ α and x ∈ f−1
αε [U ] ⊆ U0. Apply the

inductive hypothesis to α, fαε(x), U , and F to get a clopen set W in Xα which takes care

of (fαε(x), F ) and satisfies fαε(x) ∈W ⊆ U . For each γ ∈ F we have Dγ(x) = Dγ(fαε(x)),

so f−1
αε [W ] is a clopen subset of Xε which takes care of (x, F ).

Now assume that ε = α+ 1. Observe that α′′ 6 α′ 6 α and therefore Eα and Dα′ have

been defined at this stage. Since X0 is compact metrizable and α < ω1, Xα is compact

metrizable too. In particular the family {f−1
α′α[e] : e ∈ Eα} must have an accumulation

point, i.e. there exists a point xα in Xα so that the set {e ∈ Eα : f−1
α′α[e]∩V 6= ∅} is infinite

for each neighborhood V of xα.

The next step is to find an infinite set Hα ⊆ Eα so that 〈f−1
α′α[e] : e ∈ Hα〉 converges

to xα, i.e. for each neighborhood U of xα all but finitely many e ∈ Hα satisfy f−1
α′α[e] ⊆ U .

Let’s start by fixing a local decreasing base {Bn : n ∈ ω} for xα.

We face two cases. When α′ < α apply (3) to construct a sequence 〈Wn : n ∈ ω〉 of

clopen subsets of Xα which satisfies

(i) xα ∈W0 ⊆ B0,

(ii) xα ∈Wn+1 ⊆Wn ∩Bn+1, and

(iii) Wn takes care of (xα, {β}),

for each n ∈ ω.

Define Enα := {e ∈ Eα : f−1
α′α[e] ∩Wn 6= ∅}. We claim that for all but possibly one

e ∈ Enα we get f−1
α′α[e] ⊆Wn. To prove this assertion let e ∈ Enα and d ∈ Dα′(xα) be so that

fα′′α′(e) = d. Now note that if f−1
α′α[e]\Wn 6= ∅, then e ∈ fα′α[Wn]∩fα′α[Xα\Wn]∩f−1

α′′α′ [d],

a clear contradiction to (iii). Find an infinite set Hα ⊆ Eα so that Hα \ Enα is finite for all

n ∈ ω and observe that this Hα works.
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For the case α = α′ we have Eα ⊆ Xα and f−1
α′α[e] = {e}, for each e ∈ Eα. Clearly any

subsequence of Eα which converges to xα will work as Hα.

Let α = {βk : k < ω} be an enumeration of α. Use (3) to construct {en : n ∈ ω} ⊆ Hα,

g : ω → ω, and {Un : n ∈ ω} so that for each n ∈ ω

(I) U0 = Xα,

(II) Un is clopen in Xα and takes care of (xα, {βk : k 6 n}),

(III) g is an increasing function,

(IV) xα ∈ Un+1 ⊆ Bg(n) ⊆ Un \ f−1
α′α[en], and

(V) f−1
α′α[en] ⊆ Un.

We are going to partition Xα \ {xα}. Let n be an arbitrary integer. Observe that the

set Vn := Un \Un+1 is clopen and takes care of (xα, {βk : k 6 n}). Now, given i < 2, define

bin := {xα} ∪
∞⋃
k=n

V2k+i.

The following holds for each i < 2.

(a) bin is closed for all n < ω.

(b) If U a neighborhood of xα, then bim ⊆ U , for some m < ω.

We claim that bin takes care of (xα, {βk : k 6 n}). Let k 6 n and d ∈ Dβk
(xα) be

arbitrary. If y ∈ fβkα[bin]∩ fβkα[Xα \ bin], then we have two possibilities: y ∈ fβkα[V2`+i], for

some ` > n, or y = fβkα(xα). In the first case we get y ∈ fβkα[V2`+i] ∩ fβkα[Xα \ V2`+i] and

k 6 n 6 ` 6 2`+ i, so fβ′kβk
(y) 6= d.

Now assume that y = fβkα(xα). Since d ∈ Dβk
(xα), we get d 6= fβ′kα(xα) = fβ′kβk

(fβkα(xα)) =

fβ′kβk
(y).

For each i < 2, set Aiα := bi0 and H i
α := {e2n+i : n ∈ ω}. Let Xα+1 := (A0

α × {0}) ∪

(A1
α × {1}) and declare open all the sets of the form (U0 × {0}) ∪ (U1 × {1}), where U i is

open in the subspace topology of Aiα ⊆ Xα. The map fα,α+1 : Xα+1 → Xα is defined by

fα,α+1(x, i) = x.
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To complete the induction we check that property (3) holds. Assume that (x, i) ∈

U ∈ Tα+1 are arbitrary and fix a finite set F ⊆ α + 1. If x 6= xα, find U0 ∈ Tα so that

(x, i) ∈ U0 × {i} ⊆ U and xα /∈ U0. Let W0 be a clopen subset of Xα which takes care of

(x, F \ {α}) and satisfies x ∈ W0 ⊆ U0. Set W := W0 × {i} and note that for all β ∈ F

we have fβ,α+1[W ] = fβα[W0] and fβ,α+1[Xα+1 \W ] = fβα[Xα \W0] (recall that fαα is the

identity map). Since Dβ((x, i)) = Dβ(x) we conclude that W takes care of ((x, i), F ).

Assume now that x = xα. Find n ∈ ω, so that bin×{i} ⊆ U and F \{α} ⊆ {βk : k 6 n}.

Define W := bin × {i}. For each β ∈ F and d ∈ Dβ((xα, i)) we have that fβα(xα) /∈ f−1
β′β[d]

and

fβ,α+1[W ] ∩ fβ,α+1[Xα+1 \W ] = {fβα(xα)} ∪
(
fβα[bin] ∩ fβα[Xα \ bin]

)
.

Therefore W takes care of ((xα, i), F ).

Let X be the limit of our inverse system and let πα : X → Xα be the bonding map for

each α < ω1. In order to check that X is an Efimov space, assume that S is a converging

sequence in X. Let γ < ω1 be the least ordinal so that πγ [S] is infinite. Since πγ [S] is a

convergent sequence in Xγ , there exists β ∈ Pγ so that πγ [S] = Dβ. Since fγβ ◦ πβ = πγ ,

we can find an infinite set S0 ⊆ S so that πβ is one-to-one on S0 and πβ[S0] is a selector

from Dβ, i.e. there exists α ∈ Pβ so that πβ[S0] = Eα. Property (2) provides two infinite

subsets of S0, namely S0
0 and S1

0 , so that πα[Si0] ⊆ Aiα for each i < 2. Therefore πα+1[S0
0 ]

and πα+1[S1
0 ] cannot converge to the same point. This contradiction ends the proof. Q.E.D.

3.2 Forcing Extensions

In this section we turn our attention to the existence of Efimov T -algebras in the models

obtained by adding Cohen and Hechler reals.

The following poset was introduced by Koszmider in [14].

Definition 3.1. Let A be a Boolean algebra and let u be an ultrafilter in A.

1. P(A, u) := {(p0, p1) : p0, p1 ∈ A \ u and p0 ∩ p1 = ∅}. We will adopt the following

convention: if p ∈ P(A, u) then p0 and p1 will represent the first and second coordinate

of p, respectively.

2. Given p, q ∈ P(A, u) we define p 6 q iff qi ⊆ pi for each i < 2.
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One can picture Koszmider’s poset as a way to force a subset of 1 (we are always

assuming that all Boolean algebras are algebras of subsets of a fixed set 1). Indeed, if G is

a generic filter, then one can let g :=
⋃
{p0 : p ∈ G}. We will refer to g as the generic set

added by P(A, u).

Observe that two conditions p and q are compatible iff (p0 ∪ q0) ∩ (p1 ∪ q1) = ∅. As a

corollary of this remark one gets that p0 ⊆ g ⊆ −p1 for all p ∈ G. Indeed, if x ∈ g then

x ∈ q0 for some q ∈ G and since p and q are compatible it must be the case that x /∈ p1.

Under certain circumstances g becomes minimal for (A, u).

Proposition 3.2. If u does not contain atoms and ġ is the name for the generic set added

by P(A, u), then ġ is forced to be minimal for (A, u).

Proof. Let P := P(A, u) and let G be a P -generic filter. According to Proposition 1.10 we

only have to prove that u = {a ∈ A : a ∩ g /∈ A}.

Let a ∈ A \ u be arbitrary. We claim that Da := {p ∈ P : a ⊆ p0 ∪ p1} is dense in P .

Indeed, if p ∈ P then q := (p0 ∪ (a− p1), p1) ∈ Da and q 6 p. In particular, if p ∈ G ∩Da

then a ∩ g = p0 ∈ A.

For each a ∈ u define Ea := {p ∈ P : ∀i < 2(a ∩ pi 6= ∅)}. To show that Ea is

dense let p ∈ P be arbitrary. Then a− (p0 ∪ p1) ∈ u and since u contains no atoms, there

exist c0 ∈ A so that ∅ 6= c0 ⊂ a − (p0 ∪ p1) and c1 := (a − (p0 ∪ p1)) − c0 6= ∅. Hence

q := (p0 ∪ c0, p1 ∪ c1) ∈ Ea and q 6 p.

Seeking a contradiction, assume that a ∩ g ∈ A for some a ∈ u. Then a ∩ g ∈ u

or −(a ∩ g) ∈ u. In the first case there exists p ∈ G so that p ∈ G ∩ Ea∩g and hence

(a ∩ g) ∩ p1 6= ∅ so g ∩ p1 6= ∅ which is impossible. when −(a ∩ g) ∈ u we get a− g ∈ u so

there is q ∈ G ∩Eg−a and therefore ∅ 6= q0 ∩ (a− g) ⊆ q0 ∩ (−g). A contradiction. Q.E.D.

One is tempted to write −g =
⋃
{p1 : p ∈ G} when u is nonprincipal but this may not

be the case. For example, if A is the Boolean algebra generated by {(ω+1)\F : F ∈ [ω]<ω}

and u = {a ∈ A : ω ∈ a} then u is nonprincipal (if a ∈ u then a = (ω + 1) \ F for some

finite F ⊆ ω and hence a is not atom in A). If p ∈ P(A, u) then ω /∈ p0 ∪ p1 and therefore

ω ∈ −g but ω /∈
⋃
{p1 : p ∈ G} for any P(A, u)-generic filter G.
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In the construction of an Efimov simplistic space under CH the main problem was to

select carefully the point to be doubled in order to destroy the convergence of the sequence

in turn. When we force with Koszmider’s poset the minimal generic set added destroys the

convergence of any ground model sequence in St(A) which converges to u.

Lemma 3.3. Let X be the Stone space of the Boolean algebra A. Assume that {xn :

n ∈ ω} ⊆ X is an infinite sequence converging to u ∈ X. For each n ∈ ω let ẏn be a

P(A, u)-name so that ‖−xn ⊆ ẏn ∈ St(A(ġ)), where ġ is a name for the generic set added

by P(A, u). Then

‖− |{n ∈ ω : ġ ∈ ẏn}| = |{n ∈ ω : −ġ ∈ ẏn}| = ω.

Proof. It suffices to show that Di
n := {p : ∃m > n(pi ∈ xm)} is dense in P := P(A, u) for

all n ∈ ω and i < 2. Indeed, observe that q ∈ D0
n implies that, for some m > n, we get

q ‖− “q0 ∈ xm ⊆ ẏm and q0 ⊆ ġ,” i.e. q ‖− ġ ∈ ẏm. Similarly, q ∈ Di
n gives q ‖−−ġ ∈ ẏ`, for

some ` > n.

Note that the assumption xn → u is equivalent to ∀a ∈ u∃k ∈ ω∀n > k(a ∈ xn).

Now let p ∈ P be arbitrary. Then −(p0 ∪ p1) ∈ u and therefore there is m > n such

that −(p0 ∪ p1) ∈ xm and xm 6= u. Let a ∈ u \ xm satisfying a ⊆ −(p0 ∪ p1). Hence

q := (p0 ∪ a, p1) ∈ D0
n and q 6 p. A similar argument shows that D1

n is dense. Q.E.D.

Theorem 3.4. In the model obtained by adding ω2 Cohen reals to a model of CH there is

an Efimov T -algebra, where T =
⋃
{2α+1 : α < ω1}

Proof. Let E := 2ω. Define by transfinite induction a finite support iteration 〈Pα, Q̇α :

α < ω2〉 and, for each α < ω2, two Pα-names, Ṫα and {ȧt : t ∈ Ṫα}, such that Pα forces the

following

1. Ṫα is an acceptable tree and {ȧt : t ∈ Ṫα} is a family of subsets of E which witnesses

that Ȧα := [ȧt : t ∈ Ṫα] is a Ṫα-algebra.

2. Q̇α is the finite support product
∏
{P((Ȧα)b, ub) : b is a countable branch of Ṫα},

where (Ȧα)b := [ȧt : t ∈ b], ub is the ultrafilter generated by {ȧt : t ∈ b} in (Ȧα)b and

ub does not contain atoms.
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3. When α is a limit ordinal, Ṫα =
⋃
{Ṫξ : ξ < α}.

4. If α = β + 1 then Ṫα = Ṫβ ∪ {(
⋃
b)_i : b is a countable branch of Ṫβ and i < 2},

ȧ(
⋃
b)_0 is the generic set added by P((Ȧβ)b, ub) and ȧ(

⋃
b)_1 = −ȧ(

⋃
b)_0 for each

countable branch b in Ṫβ.

Let T0 := 2<ω \{∅} and {at : t ∈ T0} be as described in the proof of Proposition 2.1. At

stage α, (3) explains what to do when α is limit. If α = β+1, we note that Pα = Pβ ∗Q̇β and

therefore Qβ introduces all the generic sets needed to fulfill (1) and (4) (recall propositions

2.6 and 3.2).

Working in the forcing extension given by Pα we have that if b is a countable branch

in Tα, then (Aα)b is a countable Boolean algebra and therefore P((Aα)b, ub) is a countable

non-atomic poset. Thus (see [15], Exercise (C4) from Chapter VII) P((Aα)b, ub) is forcing

isomorphic to Fn(ω, 2), i.e. both posets yield the same generic extension. Hence Qα can

be viewed as the finite support product of ω1 copies (recall that we are assuming CH in

the ground model) of Fn(ω, 2). In other words, Qα is forcing isomorphic to Fn(ω1, 2). This

argument shows that P , the limit of the iteration, produces the same forcing extension as

Fn(ω2, 2).

The argument contained in the next paragraph takes place in the generic extension

obtained by forcing with P .

From (3) and (4) we obtain that T :=
⋃
{Tξ : ξ < ω2} is equal to

⋃
{2α+1 : α < ω1}.

Hence T is an acceptable tree and, moreover, A := [at : t ∈ T ] is a T -algebra. We only

need to show that X, the Stone space of A, has no infinite converging sequences. Seeking a

contradiction assume that {xn : n ∈ ω} ⊆ X is infinite and converges to xω ∈ X. Then for

each n 6 ω there is a branch bn in T so that {xn} is the ultrafilter generated by {at : t ∈ bn}

in A. By passing to a subsequence we can assume that xω /∈ {xn : n ∈ ω} and therefore

for each integer n there is a node sn ∈ bω so that s∗n ∈ bn. Note that if m ∈ ω and

W := {y ∈ X : −a(sn) ∈ y} then W is a clopen subset of X for which xω ∈ X \W and

hence the set {n ∈ ω : xn ∈ W} is finite. Thus {n ∈ ω : sn = sm} is finite too. Once again

we can pass to a subsequence and assume that sn 6= sm whenever m < n < ω. There is a

permutation π : ω → ω so that m < n < ω implies sπ(m) < sπ(n) and since xπ(n) → xω,
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there is no loss of generality in assuming that {sn : n ∈ ω} is increasing.
⋃
bω is a binary

function whose domain is ω1 and therefore there exists sω ∈ bω so that sn < sω for all n ∈ ω.

Observe that this defines an increasing function s : ω + 1→ bω given by s(n) = sn. Recall

that xn → xω is equivalent to ∀t ∈ bω∃m ∈ ω∀n > m(at ∈ xn). Let t ∈ bω be so that t > sω.

Then the previous remark and Lemma 2.3 imply that for some m ∈ ω and for all n > m we

get
⋂
{ar : r < sn} − a(sn) ⊆ at (the set on the left is an element of the ultrafilter xn).

Q.E.D.

In the case of the Hechler poset the argument relies on the following property that we

isolated during our analysis of the problem.

Definition 3.2. Let X = {xα : α < ω1} be a topological space. We say that X has

the stationary set property (X has the SP, for short) if it possesses a familiy of countable

compact subsets {cα : α < ω1} so that

1. xα ∈ cα for all α < ω1, and

2. for any stationary set S ⊆ ω1 the set X \
⋃
{cα : α ∈ S} is compact.

Lemma 3.5. If X has the stationary set property then X is countably compact.

Proof. Let E be an infinite countable subset of X. If E ∩ cα is infinite for some α < ω1

then we use the fact that cα is compact to obtain an accumulation point for E.

Without loss of generality let us assume that E ∩ cα is finite for all α. An argument

involving the Pressing Down Lemma gives the existence of a stationary set S ⊆ ω1 and a

finite set F ⊆ E so that α ∈ S implies E ∩ cα = F . Hence K := X \
⋃
{cα : α ∈ S} is

compact and contains the infinite set E \ F so E has an accumulation point. Q.E.D.

Recall that Hechler forcing, P , is the set of all pairs (s, f) ∈ ω<ω×ωω ordered by (s, f) 6

(t, g) iff t ⊆ s, g(n) 6 f(n) for each n ∈ ω, and g(n) 6 s(n) for all n ∈ dom(s) \ dom(t).

Lemma 3.6. Hechler’s poset preserves the stationary set property.

Proof. Let us assume that X has the SP and let Ṡ be a P -name for a stationary subset of

ω1.
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For each α < ω1 fix, if possible, a condition (sα, fα) ∈ P so that (sα, fα) ‖−α ∈ Ṡ.

Let H := {α < ω1 : ∃p ∈ P (p ‖−α ∈ Ṡ)}. For each α ∈ H fix a condition (sα, fα) so that

(sα, fα) ‖−α ∈ Ṡ. Since P is ccc and Ṡ is forced to be stationary, H contains a stationary

set S1. Applying the Pressing Down Lemma we obtain a a stationary set S0 ⊆ S1 in the

ground model and a function s ∈ ω<ω so that s = sα for all α ∈ S0.

Hence X \
⋃
{cα : α ∈ S0} is compact. The fact that X is locally compact and locally

countable (hence zero-dimensional) implies that there is a compact clopen set K ⊆ X so

that X \
⋃
{cα : α ∈ S0} ⊆ K. From Lemma 3.5 we obtain that X \ K is countably

compact. Observe that the proof will be complete if we show that there is h ∈ ωω satisfying

(s, h) ‖−X \
⋃
{cα : α ∈ Ṡ} ⊆ K.

For each t ∈ ω<ω define St := {α ∈ S0 : ∀n ∈ dom(t)(fα(n) 6 t(n))}. Let us show

that if X \K ⊆
⋃
{cα : α ∈ St} then X \K ⊆

⋃
{cα : α ∈ St_m)} for some integer m. Let

n = dom t and for each k ∈ ω set Uk :=
⋃
cα : α ∈ St and fα(n) < k}. Then {Uk : k ∈ ω} is

an increasing sequence of open sets which covers X \K so X \K ⊆ Um for some m. Hence

m is as required.

Using the property given in the previous paragraph we can construct by induction a

function h : ω → ω so that X \K ⊆
⋃
{cα : α ∈ Sh�m} for all m ∈ ω (note that (S∅ = S0).

We claim that (s, h) ‖−X \
⋃
{cα : α ∈ Ṡ}. We will prove the statement by showing

that for any y ∈ X \K the set Dy := {(t, g) : ∃α < ω1(y ∈ cα and (t, g) ‖− y ∈ cα)} is dense

below (s, h). Let y ∈ X \ K and (t, g) 6 (s, h) be arbitrary. By definition of h there is

α ∈ Sh�m so that y ∈ cα, where m = dom t. Thus p := (t, fα + g) satisfies p ∈ Dy (because

p 6 (s, fα)) and p 6 (t, g). Q.E.D.

We will say that a poset P preserves SP if any space which has the stationary set

property still has the property after forcing with P.

Lemma 3.7. Let 〈P, Q̇α : α < ε〉 be a finite support iteration of ccc posets. If for any

α < ε we have that ‖− “Q̇α preserves SP” then Pε preserves SP.

Proof. Assume that X is a space which has the SP and let Ṡ be a Pε-name for a stationary

subset of ω1 forced by p ∈ Pε.
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Set H := {α < ω1 : ∃q 6 p(q ‖−α ∈ Ṡ)}. For each α ∈ H fix pα 6 p satisfying

pα ‖−α ∈ Ṡ. We face two cases.

Fist assume that some {αn : n ∈ ω} ⊆ ε has supremum ε. Then H =
⋃
n{β ∈

H : pβ ∈ Pαn)}. Since Pε is ccc, H contains a stationary set so there exist S1 ⊆ H and

λ ∈ {αn : n ∈ ω} so that S1 is stationary and α ∈ S1 implies pα ∈ Pλ.

Let Gλ := G ∩ Pλ, where G is a Pλ-generic filter. Then Gλ is Pλ-generic and we can

use the fact that Pλ is ccc to obtain a condition q 6 p such that q ‖− “{α ∈ S1 : pα ∈

Gλ} is stationary.”} Let Ṡ0 be a Pλ-name for this stationary set. Our inductive hypothesis

implies that Pλ preserves SP and hence q ‖−λ “X \
⋃
{cα : α ∈ Ṡ0} is compact,” which

together with q ‖−ε Ṡ0 ⊆ Ṡ gives q ‖−ε “X \
⋃
{cα : α ∈ Ṡ} is compact.”

Now assume that ε has cofinality ω1. Then the argument can be reduced to the proof

that Fn(ω1, 2) preserves SP. For the Cohen poset it is enough to show that if S ⊆ ω1 is a

stationary set from the ground model and G is the generic filter then Fn(ω1, 2) ‖− “X\
⋃
{cα :

α ∈ Ṡ0} is compact,” where Ṡ0 is a name for the {α ∈ S : (α, 0) ∈ G}. Let K be a compact

clopen set so that X \K ⊆
⋃
{cα : α ∈ S}. Denote by E the set of ξ ∈ S so that for some

yξ ∈ cξ \K and βξ > ξ we have yξ 6∈
⋃
{cα : α ∈ S \ (βξ + 1)}. Seeking a contradiction let

us assume that E is uncountable.

Let M be a countable elementary submodel of some H(θ) so that S, K, {(yξ, βξ) : ξ ∈

E} ∈ M (of course, X and {cα : α < ω1} are also elements of M). Define δ := M ∩ ω1.

Since {yξ : ξ ∈ E∩δ} is infinite, E∩δ has a cofinal set E0 such that {yξ : ξ ∈ E0} converges

to some z ∈ X (i.e. any neighborhood of z contains all but finitely many yξ’s, ξ ∈ E0).

Since K is open and {yξ : ξ ∈ E0} ⊆ X \ K, we get z ∈ X \ K. Also note that z ∈ cα

for some α ∈ S and therefore {ξ ∈ E0 : yξ 6∈ cα} is finite. If ξ ∈ E0 is so that yξ ∈ cα

then ξ ∈ M . By definition, yξ 6∈
⋃
{cγ : γ ∈ S \ (βξ + 1)} and, in particular, α 6 βξ; thus

α ∈M . Since we are assuming that E is uncountable, M thinks that E0 is uncountable and

therefore {ξ ∈ E : yξ ∈ cα} is, indeed, uncountable. But |cα| 6 ω and hence there exists

γ ∈ E so that |{ξ ∈ E : yξ = yγ}| = ω1. Note that this implies the existence of a ξ ∈ E

satisfying yξ = yγ and βγ < ξ. A contradiction to yγ ∈ cξ.

Now we know that |E| 6 ω and therefore exists γ < ω1 so that such that α ∈ S \ γ

implies cα \ K ⊆
⋃
{cξ : ξ ∈ S \ β} for any β < ω1. By enlarging K, if necessary, and
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removing all ordinals α 6 γ from S we may assume that X \
⋃
{cα : α ∈ S}. Thus for any

α ∈ S we have that Fn(ω1, 2) ‖− cα \K ⊆
⋃
{aβ : β ∈ Ṡ}. Q.E.D.

Now we have all the ingredients needed to show that in the model obtained by adding

ω2 Hechler reals there is an Efimov T -algebra.

Theorem 3.8. Let 〈Pα, Q̇α : α < ω2〉 be a finite support iteration where ‖−α “Q̇α is the

Hechler poset” for each α < ω2. Then there is an Efimov T -algebra in the forcing extension

given by Pε.

Proof. Let us start by noting that for each α < ω2 of cofinality ω1 we can replace the

condition given in the statement of the theorem by ‖−α Q̇α = Fn(ω1, 2) because the iteration

has finite support. This modification makes clear that the iteration adds a T -algebra A just

like we did in the proof of Theorem 3.4. We will show that A is Efimov. The rest of the

argument follows closely the one given for Theorem 3.4. Q.E.D.

3.3 A Final Note

As part of the research done for this dissertation we found the following result which,

in principle, does not relate to the field of T -algebras or Efimov’s problem but we consider

that it is relevant specially when contrasted with the results about separation by open sets

from [6].

For the next two results we will use the poset P = 2<ω ordered by s 6 t if s extends t.

Observe that this is the exact opposite of the partial tree ordering for 2<ω

Lemma 3.9. There is a family {U(t, i) : t ∈ P and i < 2} of subsets of ω so that

1. If s < t then U(t, i) ⊆ U(s, i) for all i < 2.

2. U(t, 0) ∩ U(t, 1) = ∅ for all t.

3. If F is a finite antichain in P and f : F → 2 then
⋂
{U(t, f(t)) : t ∈ F} is infinite.

4. n ∈ U(t, 0) ∪ U(t, 1) for all n ∈ ω and each t ∈ 2n.
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Proof. We will use induction on the levels of P to construct the family. For level 1 we

only have two nodes: 0 and 1. Partition ω into five infinite parts, a0, a1, b0, b1 and c. Now

define U(0, 0) = a0 ∪ a1, U(0, 1) = b0 ∪ b1, U(1, 0) = a0 ∪ b0 and U(1, 1) = a1 ∪ b1.

Assume that for n ∈ ω we have constructed {U(t, i) : t ∈ 26n and i < 2} in such a way

that conditions (1), (2) and (4) from the lemma hold and the following are also true.

(i) If f is a binary function whose domain is an antichain contained in 26n then
⋂
{U(t, f(t)) :

t ∈ dom f} is infinite.

(ii) ω \
⋃
{U(t, i) : t ∈ 26n and i < 2} is infinite.

Let {tk : k < 2n} be an enumeration of 2n. For each k < 2n let {fk` : ` < m} be an

enumeration of all binary functions whose domain is an antichain in 26n and no element

of its domain is compatible with tk. Using induction on ` < m we obtain four pairwise

disjoint infinite sets a0
k, a

1
k, b

0
k and b1k so that each one of them intersects

⋂
{U(t, fk` (t)) :

t ∈ dom(fk` )} in an infinite set for all ` < m.

To finish the construction fix a partition {cik : k < 2n and i < 2} ∪ {d} ⊆ [ω]ω of

ω \
⋃
{U(t, i) : t ∈ 26n ∧ i < 2} and define U(t_k i, 0) := U(tk, 0) ∪ aik ∪ c0k and U(t_k i, 1) :=

U(tk, 1) ∪ bik ∪ c1k (and if the integer n + 1 is not an element of U(t_k i, 0) ∪ U(t_k i, 1) then

add it to exactly one of them). Q.E.D.

Given two sets A and B we say that A ⊆∗ B if B \ A is finite. If S is an infinite set

and for each A ∈ A we have S ⊆∗ A then S is a pseudointersection of A.

For an infinite set S ⊆ ω and a function h : ω → [0, 1] we will say that h[S] converges

to p (in symbols, h[S]→ p) if the sequence 〈h(xn) : n ∈ ω〉 converges to p, where S = {xn :

n ∈ ω} and xn < xn+1 for each n < ω.

Recall that two sets A and B in a topological space X are completely separated if there

is a continuous real-valued map f so that f [A] ⊆ {0} and f [B] ⊆ {1}. In other words, if

there is a continuous function that separates them.

If τ is a topology for X and P is any forcing notion then it could be the case that, in

the generic extension obtained by forcing with P , τ is no longer a topology for X due to the

presence of new subsets of τ but τ will always be a base for some topology for X. Hence,
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whenever we refer to the topological space (X, τ) (or simply X) we will be referring to the

topology on X that has τ as a base.

It is proved in [6] that if two sets from the ground model are separated by open sets in

the generic extension obtained by adding any number of Cohen reals then they are separated

by open sets in the ground model.

Theorem 3.10. CH implies that there exist a first countable Tychonoff zero-dimensional

space X and two sets A0, A1 ⊆ X which are not completely separated but after adding a

Cohen real they are completely separated.

Proof. Let P and {U(t, i) : t ∈ P ∧ i < 2} be as in the previous lemma. Use CH to fix

{hα : ω 6 α < ω1}, an enumeration of all functions from ω into the interval [0, 1].

The strategy is to define a topology on ω1 in such a way that ω is open discrete and

each ω 6 α < ω1 will have a neighborhood base of the form {{α}∪Sα \n : n ∈ ω} for some

Sα ∈ [ω]ω.

We will obtain this topology by induction. To be accurate, at stage α we will get three

sets: Dα, a maximal antichain in P; xα, a function from Dα into 2; and Sα ∈ [ω]ω satisfying

the following.

(1α) Sα ⊆∗ U(t, xα(t)) for each t ∈ Dα.

(2α) β < α implies |Sβ ∩ Sα| < ω.

(3α) One of the following conditions holds.

(a) hα[Sξ] does not converge for some ξ 6 α.

(b) There exist k < 2 and ξ 6 α so that xξ ≡ k (i.e. xξ(t) = k for all t ∈ Dα) and

hα[Sξ] does not converge to k.

(4α) For each binary function x whose domain is a finite antichain in P the set
⋂
{U(t, x(t)) :

t ∈ domx} \
⋃
{Sξ : ξ ∈ a} is infinite for each a ∈ [α \ ω]<ω .

Before going over the details of the induction let us show that a sequence satisfying all

the given requirements provides us with the required space. Indeed, for each k < 2 define

Ak := {α < ω1 : xα ≡ k} and assume that h : X → [0, 1] is continuous. Let α < ω1 be
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so that h � ω = hα. h’s continuity implies that condition (3α-a) fails and therefore (3α-b)

must hold. Hence there exists ξ 6 α so that xξ ≡ k, for some k < 2, and hα[Sξ] does not

converge to k. Clearly ξ ∈ Ak and h(ξ) 6= k. Therefore A0 and A1 cannot be separated by

a continuous function.

On the other hand, if G is a P-generic filter, let g :=
⋃
G and define Uk :=

⋃
{U(g �

n, k) : n ∈ ω} for each k < 2. Observe that if α ∈ X \ ω then g � m ∈ Dα for some integer

m and therefore

Sα ⊆∗ U(g � m,xα(g � m)).

This property and the fact that α ∈ U0 if and only if Sα∩U0 is infinite imply that U0∩U1 =

∅ (recall item (2) from Lemma 3.9). The same property implies that if α ∈ Ak then

α ∈ U(g � m, k) ⊆ Uk; in other words, Ak ⊆ Uk. Therefore A0 and A1 are forced to be

completely separated.

The only thing left is to construct the sequence. To do this let us assume that we are

at stage α and we have defined {(Dβ, xβ, Sβ) : ω 6 β < α} so that conditions (1β)-(4β) are

satisfied for all β. For each binary function x for which domx is a maximal antichain let

F(x) := {U(t, x(t)) \ I : t ∈ domx ∧ I ∈ I},

where I := {
⋃
{Sξ : ξ ∈ a} : a ∈ [α \ ω]<ω}. Observe that F(x) is countable and hence it

has pseudointersections.

Seeking a contradiction, which comes at the end of the proof, we assume that for every

maximal antichain D, for all functions x : D → 2 and for every pseudointersection S of

F(x) the set hα[S] converges and if x ≡ k for some k < 2 then hα[S]→ k.

Note that if S and S′ are pseudointersections of F(x) then S ∪S′ is also a pseudointer-

section of F(x) and therefore hα[S ∪ S′] converges to some real number r. Thus hα[S]→ r

and hα[S′]→ r. Hence, if x is a binary function for which domx is a maximal antichain in

P then there is a real number ϕ(x) so that hα[S] → ϕ(x) for any pseudointersection S of

F(x).

We claim that if D is a maximal antichain and x ∈ 2D, the map x 7→ ϕ(x) is continuous,
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where 2D is equipped with the product topology. Since D is countable, we only have to prove

that if {xn : n ∈ ω} ⊆ 2D converges to x ∈ 2D then ϕ(xn)→ ϕ(x). If this were not the case

then we would be able to find ε > 0 so that infinitely many n’s satisfy |ϕ(xn)− ϕ(x)| > ε.

Without loss of generality let us assume that this happens for all n ∈ ω. Now let Hn be a

pseudointersection of F(xn). By removing finitely many elements from Hn we can assume

that |hα(k)− ϕ(x)| > ε for all k ∈ Hn.

Write D as an increasing union of finite sets, D =
⋃
n Fn, and enumerate I = {In : n ∈

ω}. Let S = {kn : n ∈ ω} be a sequence of integers satisfying kn ∈ Hn ∩
⋂
{U(t, xn(t)) :

t ∈ Fn} \ (kn−1 ∪ In). Observe that for each t ∈ D and n ∈ ω there exists m > n so that

t ∈ Fm and xi � Fm = x � Fm for all i > m. Hence {ki : i > m} ⊆ U(t, x(t)) \ In (recall that

Fm ⊆ Fi). This proves that S is a pseudointersection of F(x) and therefore hα[S]→ ϕ(x).

In particular, there is an n ∈ ω so that |hα(kn)−ϕ(x)| < ε, but kn ∈ Hn. This contradiction

shows that ϕ � 2D is continuous.

For any set Y ⊆ P define Y ↓ := {t ∈ P : ∃s ∈ Y (t < s)}.

Claim: Let E0 and E1 be maximal antichains. If y0 : E0 → 2 and y1 : E1 → 2 agree on

cones (i.e. y0(s) = y1(t) whenever s ∈ E0 and t ∈ E1 are comparable) then ϕ(y0) = ϕ(y1).

Proof of the Claim: To show that ϕ(y0) = ϕ(y1) we only have to prove that F(y0) and

F(y1) have a common pseudointersection.

Let us start by proving that E := (E0 \E↓1)∪ (E1 \E↓0) is a maximal antichain. Given

s, t ∈ E there are two cases: Both belong to the same Ei (so they are incompatible) or

(without loss of generality) s ∈ E0 \ E↓1 and t ∈ E1 \ E↓0 . In the second case we obtain

s 66 t and t 66 s and therefore s and t are incompatible. To prove maximality let t ∈ P be

arbitrary. Since Ei is maximal, there exists ti ∈ Ei which is incompatible with t for each

i < 2. If, for example, t0 ∈ E↓1 then t0 < s for some s ∈ E1 and thus s and t are compatible,

which gives s = t1. Clearly, t1 /∈ E↓0 so t1 ∈ E.

The function y := y0 � (E0 \ E↓1) ∪ y1 � (E1 \ E↓0) has domain E and agrees on cones

with y0 and y1.

Let S be a pseudointersection of F(y) and let i < 2 be arbitrary. In order to prove that

S is a pseudointersection of F(yi) let F be a finite subset of Ei. For each t ∈ F there exists
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t′ ∈ E so that t 6 t′. Therefore

S ⊆∗
⋂
{U(t′, y(t′)) : t ∈ F} \ I ⊆

⋂
{U(t, yi(t)) : t ∈ F} \ I,

for all I ∈ I. Which finishes the proof of the Claim.

Fix a sequence of positive real numbers {εn : n ∈ ω} so that
∑

n<ω εn < 1/3.

The fact that 2<ω embeds densely in ω<ω implies that everything we have done so far

can be coded for ω<ω via the embedding. To simplify the next arguments we will switch to

P = ω<ω and keep the notation we developed for 2<ω.

For each n ∈ ω the set Dn of all functions from n into ω is a maximal antichain in P

and therefore ϕ � 2Dn is continuous. Moreover, 2Dn is compact and therefore ϕ is uniformly

continuous so there exists a finite set Fn ⊆ Dn so that for all x, y ∈ 2Dn if x � Fn = y � Fn

then |ϕ(x) − ϕ(y)| < εn. By enlarging Fn we can assume that there is an integer mn so

that Fn is the set of all functions from n into mn and mn < mn+1.

The set D0 := {t_i : ∃n ∈ ω(t ∈ Dn) ∧ ∀k < n(t(k) < mk) ∧ mn 6 i < ω} is a

maximal antichain in P. Let F 0 be a finite subset of D0 so that x � F 0 = y � F 0 implies

|ϕ(x)− ϕ(y)| < 1/3 for all x, y : D0 → 2. Let ` < ω be large enough so that F 0 ⊆ ω<`.

For all 1 6 k 6 ` define xk : Dk → 2 by xk(t) = 1 iff x � i ∈ F 0 for some i 6 k. Also

let yk : Dk → 2 be given by yk(t) = xk(t � (k − 1)_0). If t ∈ Fk then t and t � (k − 1) have

the same predecessors and since Fk ∩ F 0 = ∅ we obtain xk � Fk = yk � Fk which implies

|ϕ(xk)− ϕ(yk)| < εk.

On the other hand, if s ∈ Dk−1 and t ∈ Dk satisfy t < s then yk(t) = xk−1(s_0) and

therefore xk−1 and yk agree on cones. Hence ϕ(yk) = ϕ(xk−1).

The two previous paragraphs show that |ϕ(x`) − ϕ(x1)| <
∑`

k=1 εk < 1/3. Note that

x1 ≡ 0 and thus ϕ(x1) = 0 which gives ϕ(x`) < 1/3.

For each t ∈ D0 fix a t′ ∈ D` which is compatible with t. The function z : D0 → 2

defined by z(t) = x`(t′) agrees on cones with x` and hence ϕ(z) = ϕ(x`). If y : D0 → 2

satisfies y ≡ 1 then z � F 0 = y � F 0 so |ϕ(z)− ϕ(y)| < 1/3 and since ϕ(y) = 1 we conclude

that ϕ(x`) = ϕ(z) > 1/3, a contradiction. This ends the proof of the theorem. Q.E.D.
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[8] B. Efimov, The imbedding of the Stone-Čech compactifications of discrete spaces into
bicompacta, Dokl. Akad. Nauk SSSR 189 (1969), 244-246, Translation: Soviet Math.
Dokl. 10 (1969) 1391-1394.

[9] R. Engelking, General topology, second ed., Sigma Series in Pure Mathematics, vol.
6, Heldermann Verlag, Berlin, 1989, Translated from the Polish by the author. MR
91c:54001
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