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ABSTRACT 
 
 

THI HONG DIEP DAO. A Comprehensive geospatial knowledge discovery framework 
for spatial association rule mining. (Under direction of DR. JEAN-CLAUDE THILL) 

 
 

Continuous advances in modern data collection techniques help spatial scientists gain 

access to massive and high-resolution spatial and spatio-temporal data. Thus there is an 

urgent need to develop effective and efficient methods seeking to find unknown and 

useful information embedded in big-data datasets of unprecedentedly large size (e.g., 

millions of observations), high dimensionality (e.g., hundreds of variables), and 

complexity (e.g., heterogeneous data sources, space–time dynamics, multivariate 

connections, explicit and implicit spatial relations and interactions). Responding to this 

line of development, this research focuses on the utilization of the association rule (AR) 

mining technique for a geospatial knowledge discovery process. 

Prior attempts have sidestepped the complexity of the spatial dependence structure 

embedded in the studied phenomenon. Thus, adopting association rule mining in spatial 

analysis is rather problematic. Interestingly, a very similar predicament afflicts spatial 

regression analysis with a spatial weight matrix that would be assigned a priori, without 

validation on the specific domain of application. Besides, a dependable geospatial 

knowledge discovery process necessitates algorithms supporting automatic and robust but 

accurate procedures for the evaluation of mined results. Surprisingly, this has received 

little attention in the context of spatial association rule mining.  

To remedy the existing deficiencies mentioned above, the foremost goal for this 

research is to construct a comprehensive geospatial knowledge discovery framework 

using spatial association rule mining for the detection of spatial patterns embedded in 
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geospatial databases and to demonstrate its application within the domain of crime 

analysis. It is the first attempt at delivering a complete geo-spatial knowledge discovery 

framework using spatial association rule mining. 
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CHAPTER 1: INTRODUCTION 
 

 
Geographic information science has been experiencing an unprecedented increase in 

data accessibility and computational capability (Miller 2007; Mennis and Guo 2009; 

Miller and Han 2009). More than ever before, continuous advances in modern data 

collection techniques help spatial scientists gain access to massive and high-resolution 

spatial and spatio-temporal data. High spatial, temporal, and spectral resolution remote 

sensing systems offer substantial volumes of geo-referenced digital imagery and video. 

Location-aware technologies based on freely available Global Positioning System (GPS) 

and Galileo satellites or cellular and Wi-Fi signals that have emerged into applications of 

wireless cell-phones, in-vehicle navigation systems and wireless internet clients allow 

researchers to collect non-stop unprecedented amounts of data for both outdoor and 

indoor environments at the level of individual movement. Moreover, information 

infrastructure initiatives such as the U. S. National Spatial Data Infrastructure are easing 

data sharing and interoperability (Miller 2007). Geographic information scientists are not 

unaware of this trend.  The 2012 GIScience conference organized in Columbus, OH had a 

dedicated theme on “Big data” along with a series of workshop presentations and panel 

discussions on the definition of big (geospatial) data itself, as well as the research 

opportunities and challenges it brings. The term ‘big data’ is actually not new. Laney 

(2001) initially associated it with three V’s characteristics: Volume (i.e. high in volume, 

in the range of petabyte sizes), Variety (i.e. heterogeneous in data types), and Velocity 
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(i.e. high velocity, near real time or real time, data acquisition). The definition of big data 

sometimes is extended with the addition of new Vs, such as V for Virtual referring to 

online data assets, V for veracity, and V for value, and V for visualization. As the data 

volume, variety, and velocity increase, its veracity and value also increase. Particularly 

for geographic information scientists, the big data era promises major new opportunities 

to gain a better understanding of important and complex geographic phenomena, such as 

human-environment interaction, socioeconomic dynamics, or the interaction between 

physical and virtual worlds. The challenges, however, involve more than just managing 

data in high volume and of heterogeneous nature. In order to achieve innovation and 

productivity, “new forms of processing to enable enhanced decision making, insight 

discovery and process optimization” are called for (Laney 2012).  

Traditional spatial statistics methods were designed in a data-poor era with limited 

computing power (Miller and Han 2009). They are thus most efficient to handle small, 

scientifically sampled and homogenous datasets. When dealing with a significant 

increase in data volume and diversity in the nature of digital geographic data, they reveal 

some limitations. Firstly, most methods adhere to a limited perspective, such as 

univariate spatial autocorrelation, or a specific and simple type of relation models, such 

as linear regression. They are also confirmatory techniques and require a priori 

hypotheses. Secondly, many of them cannot process a very large data volume. 

Computing requirements and their confirmatory nature indeed prevent these approaches 

from discovering unexpected or surprising information (Miller and Han 2001). Thirdly, 

newly emerging data types, ranging from trajectories of moving objects, to geographic 

information embedded in webpages and surveillance videos, along with new applications 
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demand more efficient and effective approaches to discover interesting patterns and 

information (Mennis and Guo 2009).  

As a result, there is an urgent need to develop effective and efficient methods seeking 

to find unknown and useful information embedded in the big-data datasets of 

unprecedentedly large size (e.g., millions of observations), high dimensionality (e.g., 

hundreds of variables), and complexity (e.g., heterogeneous data sources, space–time 

dynamics, multivariate connections, explicit and implicit spatial relations and 

interactions) (Mennis and Guo 2009). This has broadly motivated the enlargement of the 

traditional data mining and knowledge discovery approaches for spatial applications, and 

consequently leads to the emergence of the so-called spatial data mining and geographic 

knowledge discovery (GKD) field. 

Responding to this line of development, this research focuses on the utilization of the 

association rule (AR) mining technique for a geospatial knowledge discovery process. 

The association rule mining approach (Agrawal et al. 1993; Agrawal and Srikant 1994) 

has been extensively applied in market basket transaction analysis with traditional 

relational databases aiming to find associations among customer checked-out items, for 

marketing purposes. It is regarded as one of the most popular mining techniques used for 

knowledge discovery because it is very efficient in finding frequent and meaningful 

relations, positive associations and stochastic plus asymmetric patterns in large relational 

data warehouse. Association rules are therefore promising for spatial data analysis in 

order to discover unknown spatial patterns, especially for large spatial databases.  

Unique characteristics of spatial data, such as spatial attributes, spatial relations, 

spatial correlations, and spatial hierarchy, however, prevent a direct deployment of an 
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association rule mining approach in geospatial analysis problems. Association rule 

mining has been adapted to spatial analysis, and often named spatial association rule 

(SAR), by simply including spatial predicates (Koperski and Han 1995). With linguistic 

expressions, spatial predicates allow flexibility in representing explicit spatial relations of 

objects in terms of distance, direction, and topology but also implicit spatial 

dependencies, i.e. spatial autocorrelation, or more generally the spatial dependence 

structure embedded in the studied phenomenon. However, the dynamics and complexity 

of the spatial component captured by spatial predicates are often overlooked. Moreover, 

there exists no comprehensive procedure for generating predicates to capture the spatial 

dependencies. Short of this, adopting association rule mining in spatial analysis is rather 

problematic. Interestingly, a very similar predicament afflicts spatial regression analysis 

with a spatial weight matrix that would be assigned a priori, without validation on the 

specific domain of application.  

Besides, similar to any other domain-specific data mining framework, a dependable 

geospatial knowledge discovery process necessitates algorithms supporting automatic and 

robust but accurate procedures for the evaluation of mined results. Surprisingly, this has 

received little attention in the context of spatial association rule mining. This challenge is 

particularly relevant because the association rule mining approach is well-known for 

producing a large number of rules, which makes assessment difficult and point to the 

importance of visual analytics. The existing literature identifies remaining challenges in 

establishing subjective criteria based on geospatial domain knowledge for evaluating the 

interestingness of spatial association rules. In addition, possibilities for integrating 
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multidimensional and interactive geovisualization tools with these criteria for visual 

analytic purposes have not yet been examined. 

1.1. Statement of Research  

To remedy the existing deficiencies mentioned above, the foremost goal of this 

research is to construct a comprehensive geospatial knowledge discovery framework 

using spatial association rule mining for the detection of spatial patterns embedded in 

geospatial databases and to demonstrate its application within the domain of crime 

analysis. 

A spatial database utilizing an entity-based (sometimes also referred to as object-

based or feature-based) data model is taken into consideration for the mining task. 

Basically, it represents real-world features, such as countries, counties, census block 

groups, cities, land parcels, houses, schools, crime incidents, police stations, etc., using 

the vector-based spatial representation comprised of points, lines, and polygons. A set of 

attributes (or variables) is associated with each of these features. Attributes can be 

categorized into aspatial (also referred to as semantic) and spatial attributes. Semantic 

attributes are related to non-spatial information of the features such as name, age, price, 

etc. while spatial attributes are related to spatial characteristics of the feature itself (e.g. 

size and shape) or the spatial relationships (e.g. being close-to or far-away) to other 

features. Homogeneous collections of features having the same spatial representation and 

a common set of attributes are grouped into feature classes. The proposed mining and 

discovery framework aims at the detection of associations between the reference or main 

feature class and some task-relevant or associative feature classes. The reference feature 

class is the main subject of the rule description and often resides on the right-hand side of 
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the rules (consequents), while task-relevant ones are both aspatially and spatially relevant 

for the task at hand and often reside on the left-hand side of the rules (antecedents). For 

instance, one may be interested in finding associations among expensive houses and other 

geospatial objects such as mountains, beaches, road network, etc. In this case, the 

reference feature class or object class is a point feature class representing the locations of 

expensive houses while the task-relevant ones are polygon and polyline feature classes 

representing mountains, beaches, and roads in the study area. Following a single 

relational database mining approach, information is collapsed into a single table whose 

rows are equivalent to units of mining (tuples) and columns are to semantic and spatial 

attributes. The mining task, in this case, focuses on finding associations between the 

reference or main attribute and task-relevant or associative attributes. For example, for 

the previously described mining task, a single table containing records for all houses in 

the study area with attributes being the price of the house, distances to mountains, to 

beaches, to closest main roads are created. The house price in this case is the reference 

attribute while others are task-relevant attributes. An example of the expected association 

rules in this case can be “If a house is very close to the beach then it is expensive”.  

Fundamentally, a comprehensive framework for spatial association rule mining and 

discovery can be decomposed into the following tasks:  

a) Identify associative features  

b) Select and transform semantic attribute information; derive non-spatial 

predicates  

c) Identify and quantify spatial components involved; derive spatial predicates  

d) Mine spatial association rules  
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e) Visualize and evaluate intermediate mined results for interestingness using 

geospatial knowledge base; update geospatial knowledge base. 

As discussed above, the most significant remaining challenges lie with tasks (c) and (e) 

while others are rather straightforward or well documented already.  

Being prefixed by the term “spatial”, this framework should be centered on its 

capability to handle the spatial component of the problem at hand, namely heterogeneity 

and dependence of the phenomenon under study across space, as well as spatial 

interactions among features. Moreover, from a knowledge discovery perspective, it is 

essential to perform an evaluation. Proficiently addressing these challenges ensure the 

successful construction of a complete geospatial knowledge discovery framework which 

can be applied toward spatial problems. 

In order to develop the above framework, three major tasks are identified for this 

research: 

The first is to identify and quantify spatial components of the problem at hand.  The 

spatial components referred in this study include not only spatial relationships (i.e. 

distance-based, topological-based, directional-based, etc.) among studying features but 

also to spatial dependency as the most important characteristic of spatial processes. 

Spatial dependency, if it exists, forms a spatial pattern of High or Low value 

concentrations, which is referred to as spatial dependency structure in this study. This is 

sometimes also referred to as High/Low clusters, or hot/cold spots. In many cases, SAR 

mining aims to identify strong associations between High/Low value of one variable and 

High/Low value of other variables. While most of the existing SAR mining approach 

apply predetermined concepts of the spatial dependency structures (i.e. subjective or 



 8 

 

predetermined concepts of High or Low), this study proposes that the identification of 

these structures should be driven by the data and this should be performed as an 

important step within the SAR mining and discovery process. How to quantify and 

represent spatial dependencies, in fact, remains to be an on-going issue in spatial analysis 

as because semantics and vagueness are often involved. Particularly, popular but modest 

means to account for spatial dependence such as global indicators based on simple 

statistics (e.g. average of differences to the mean) or regular neighborhood structures are 

undesirable. In this study, the spatial dependency structure for each involved variable are 

mined to identify their locations, boundaries, sizes, shapes, and concentration magnitude 

measures. As a result, definitions for the necessary spatial hierarchical concepts or for 

what is so-called High or Low can be derived objectively, which is fundamental in 

forming effective spatial assocation predicates in support of the mining step.  After 

successfully identifying the spatial dependency structure for each variable, another spatial 

component that should be considered in SAR mining is the proximity effects of these 

spatial dependence strutures on the phenomenon under study. One could relate this to the 

concept of spatial spillover impact of, in this case, the hot/cold spots. Put into the context 

of SAR mining, considering the spatial spillover impact of hot/cold spots allows looking 

into indirect spatial functional associations. 

The second is to develop a spatial predication mechanism for spatial association rule 

mining. A procedure that transforms quantitative to linguistic measurements for spatial 

components is required. Optimal choices should allow fuzzy-set mapping and prioritize 

automatic procedures. 
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 The third is to construct visual analytic functionality coupled with a geospatial 

knowledge-based scheme for the subjective evaluation of results of spatial association 

rule mining. As a large number of rules are typically generated under text format, it 

would be fastidious to evaluate them without visual analytics. Capability to quickly 

identify and depict strong and useful associations is the objective of the visualization-

evaluation system. The process of detecting potential new and interesting rules should be 

regulated based on libraries of known associations constructed on domain-specific 

theories and ontologies.  

Once the framework is developed, validation is the subsequent essential task. The 

proposed framework will be implemented and tested using the case of crime analysis in 

the city of Charlotte, North Carolina. The proposed approaches seek to identify spatial 

variations and dependencies of crime across the city, and later to discover interesting 

associative factors that contribute to its spatial dynamics.  

1.2. Significance of the Study 

Spatial association rule mining can be effective for extracting unknown patterns 

within large spatial databases only under the condition that spatial components are well 

addressed. This study proposes a comprehensive framework and a library of algorithms 

of spatial analysis and visual analytics to resolve this fundamental challenge and offer 

practical evaluation tools. The framework is the first attempt in delivering a complete 

geo-spatial knowledge discovery framework using spatial association rule mining. 

1.3. Dissertation Structure 

The dissertation is structured as follows. Section 2 provides a literature review on 

association rule mining and discovery for geospatial databases, focusing on existing 
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algorithms as well as visual analytic techniques and their adaptation to geospatial data. 

Section 3 facilitates understanding on literature of crime theories and analysis from 

spatial perspectives. Next, in Section 4, the specific research questions are stated and 

discussed. Section 5 discusses the spatial association rule mining and discovery 

framework. Section 6 presents the practice of SpatialARMED in criminology to mine 

associations to high crime in Charlotte, NC. Chapter 7 concludes this research, 

summarizes its contributions, and discusses its limitations and directions for future work. 

 



  

 

CHAPTER 2: FUNDAMENTALS OF SAR MINING AND DISCOVERY 
 
   
This chapter reviews the fundamentals of spatial data mining and the geographic 

knowledge discovery process along with more recent developments, as well as remaining 

challenges of association rule-based approaches in both aspatial and spatial contexts. 

2.1 Characteristics and Process of Geographic Knowledge Discovery 

In the literature, knowledge discovery in databases (KDD) refers to an iterative 

process  involving multiple steps, including data selection, data pre-processing, analysis 

with computational algorithms (i.e. mining), interpretation and evaluation of the results, 

formulation and update of pre-existing knowledge bases, adjustment to data and analysis 

methods, evaluation of result again, and so on (Fayyad et al. 1996). Data mining, on the 

other hand, is only one step of the knowledge discovery process and is narrowly defined 

as the application of computational, statistical or visual methods. As the data mining step 

involves the deployment of techniques to distil data into information implied by the data, 

the knowledge discovery process entails the higher level process of purifying the mined 

information into knowledge and beliefs about the world described by the data. At 

variance with data mining, knowledge discovery requires human intelligence to guide the 

process and to evaluate the results based on pre-existing knowledge (Miller and Han 

2001). Being exploratory and inductive in nature, data mining and knowledge discovery  

seek to find patterns that are valid (i.e. a generalized pattern, not a data anomaly), novel 

(i.e. unexpected), useful (i.e. relevant), and understandable (i.e. interpretable and 
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installable into knowledge) (Fayyad et al. 1996). Generally, the requirement for novelty 

distinguishes data mining from traditional statistics, which are more oriented towards 

hypothesis confirmation than generation (Miller 2007). 

The universal goal of spatial data mining and geographic knowledge discovery 

(GKD) is to advance data mining and knowledge discovery methods to analyze large and 

complex spatial data. The “spatial” term used in this research refers to geospatial data in 

which data objects are georeferenced; the space concept is embedded in locations on or 

near the Earth’s surface.  

The nature of the geographic space, the complexity of spatial object relationships, the 

heterogeneous and sometimes ill-structured nature of geographic data, and the 

individuality of geographic knowledge bring uniqueness into spatial data mining and 

geographic knowledge discovery, and at the same time, render standard KDD techniques 

inefficient (Shekhar et al. 2003b). All these points are now discussed in more detail.  

First, spatial objects, by definition, are embedded in a continuous space that serves as 

a measurement framework for all other spatial attributes. This means that they are 

characterized by a geometric representation and referenced position; the former implicitly 

defines a number of spatial attributes, while the later defines spatial relations of different 

nature, such as distance, directional, and topological relationships, not explicitly encoded 

in a spatial database. Modeling these implicit spatial properties in order to associate them 

with a clear semantic and a set of efficient procedures for their computation is the first 

challenge of spatial data mining. This particularly becomes true when there are various 

human geographic processes that exhibit non-Euclidean spatial properties such as social 

networking relations, migration behaviours, disease propagation, and cognitive 
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accessibility, to name a few. Exploring alternative geo-spaces for representing geographic 

data in these cases is necessary to substantially enhance the GKD process (Miller and 

Wentz 2003).  

Secondly, geographic data often exhibit spatial dependence according to the first law 

of geography and spatial heterogeneity. This violates the fundamental assumption of 

classical association rule mining that every items and transactions are independent. 

Spatial dependence is the tendency of observations that are more proximal in the 

geographic space to exhibit greater degrees of similarity (i.e. positively auto-correlated) 

or dissimilarity (negatively auto-correlated). Proximity can be defined in very general 

terms, involving measures of distance, direction, and/or topology. Spatial heterogeneity is 

regarded as a non-stationary process with respect to location, i.e. localization.  Although 

spatial dependence and heterogeneity are sometimes caused by misspecification (e.g. 

missing variables), they reflect the inherent nature of geographical processes and should 

not be overlooked (Miller and Wentz 2003; Shekhar et al. 2003b).  

Thirdly, while multidimensional data objects in typical KDD can be reduced to points 

without information loss, this is often not the case with GKD. This is because spatial 

characteristics of objects such as size and shape can have significant influence on the 

process under study. Moreover, in geographic data, aggregated spatial units, such as 

census districts, are often used for administrative or confidentiality reasons. This causes a 

problem in spatial analysis known as the modifiable areal unit problem (MAUP) 

(Fotheringham and Wong 1991) and should be carefully considered within the GKD 

process to determine if a discovered pattern is robust or simply an artifact of the spatial 

measurement units (Miller 2007).  
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Fourthly, spatio-temporal processes introduce additional complexity to the GKD 

process. For instance, at variance with space, time is directional, has unique scaling and 

granularity properties, and can be cyclical and even branching with parallel local time 

streams (Roddick and Lees 2001). Digital geographic data also include more 

heterogeneous data types, even ill-structured data. In addition to the traditional data 

models such as vector and raster, geo-referenced data in the form of dynamic flows and 

space-time trajectories, or georeferenced multimedia in the form of audio, imagery, video 

and text are increasingly widespread due to the popularity of real-time environmental 

monitoring systems such as intelligent transportation systems and location-based services 

(Miller 2007). Information about places and times contained within these data can be 

very useful to better understand geospatial reality.  

Finally, geographic knowledge base can play an important role in guiding and 

managing the GKD process. If geographic concept hierarchies are used, spatial objects 

are organized in hierarchies of classes. This means that by descending or ascending 

through a hierarchy, it is possible to view the same spatial object at different levels of 

abstraction (or granularity). This leads to the issue of the confidence with which patterns 

are more likely to be discovered at low granularity levels, whereas large support is more 

likely to exist at higher granularity levels. Appropriate data mining techniques thus need 

to be able to explore the search space at different granularity levels. These distinctive 

characteristics of spatial data must be carefully considered and well addressed for a 

successful deployment of data mining and knowledge discovery in spatial data warehouse 

(Koperski et al. 1996; Miller and Han 2001; Shekhar et al. 2002; Shekhar et al. 2003b; 

Malerba et al. 2009).  
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Spatial data mining and geographic knowledge discovery are not a push button task 

(Mennis and Guo 2009). Although it is data-driven, it is also a human-centered, iterative 

and inductive learning framework in which the user controls for the selection and 

integration of data, cleaning and transformation of the data, choice of analysis methods, 

and finally results interpretation. Solutions to the questions of what variables should be 

selected, what measurement framework should be used, what spatial relations or 

contextual information should be considered, and whether the chosen data adequately 

represent the complexity and nature of the problem, should be carefully deliberated. 

Geographic domain experts or spatial scientists thus can significantly contribute to 

enhance the process. Figure 1 provides a complete picture of the geographic knowledge 

discovery process, in which the roles of spatial scientists are clearly articulated.  In this 

figure, the components featuring a role for geographic experts are identified in three areas 

and highlighted in red. Their first role is to build a spatial data warehouse given a priori 

constructed knowledge base. The second role of geographic domain experts is to assist 

spatial data mining as a central component of the geographic knowledge discovery 

process; and the third is to improve evaluation schemes using existing domain theories 

and knowledge. 
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Figure 1: Geo-spatial knowledge discovery process using spatial association rule mining 
and roles of geographic domain experts 
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The first component of a GKD process includes spatial data warehouses (SDWs) that 

contain both spatial (i.e. geo-referenced) and aspatial (i.e. semantic) data. The U.S. 

Census database is an example of a spatial data warehouse (Shekhar and Chawla 2003). 

Spatial data warehousing mainly focus on the development of extended and spatial 

multidimensional data models to support spatial data aggregation and user navigation. 

Spatial data aggregation is an operation providing a synthetic view of a geographical 

phenomenon, whereas navigation is a functionality allowing the users to interactively 

inspect and analyze data through a set of spatially aware operators (Spatial OLAP) 

(Bertino and Damiani 2005). It is important to note that, while traditional OLAP methods 

generate summary across tabs in tables with clear standards for aggregation and cross-

tabulation, spatial OLAP requires summaries in cartographic forms. In addition, 

standards for aggregation operators on geometric types have not emerged (Shekhar and 

Chawla 2003),  making spatial data warehousing more difficult.  Active involvement of 

domain experts is therefore needed to mature the development of this field. In most cases, 

background knowledge in the form of concept hierarchies is vital to assist these 

operators. For example, Shekhar et al. (2001) proposed the use of a map cube as a spatial 

analog of the data cube, aimed at generating an album of maps corresponding to all 

possible aspatial and spatial summaries of the data based on a specified spatial 

aggregation hierarchy. This is done by including standard summaries and cross-

tabulations as well as spatial summaries at different levels of aggregation with pointers to 

the corresponding spatial objects along with geographic visualization. 

Another central component of the GKD process is spatial data mining, which focuses 

on the development of theory, methodology, and practice for the extraction of useful 
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information and knowledge from massive and complex spatial databases. Conventional 

data mining approaches such as clustering, classification, association mining, and outlier 

analysis need advancements to handle the unique characteristics represented by the 

spatial components of spatial data. Deeply rooted in both traditional spatial analysis and 

various data mining approaches, spatial data mining has become an active research 

domain (Mennis and Guo 2009). Various types of spatial data mining techniques such as 

spatial classification and predication, spatial clustering, spatial outlier detection, and 

spatial association rule mining, have been developed.  

First, spatial classification and prediction (e.g. (Koperski et al. 1998; Ester et al. 

2001) basically map spatial objects into meaningful categories while considering the 

distance, direction or connectivity relationships and/or the morphology of these objects. 

Second, spatial clustering exploits spatial relationships among data objects in determining 

inherent groupings of the input data (Miller 2007). Han et al. (2001) suggested that many 

traditional methods, such as partitioning methods (i.e. k-means and the expectation-

maximization (EM) method), hierarchical methods (i.e. top-down by splitting or bottom-

up through aggregation), density-based methods, grid-based methods, model-based 

methods and constraints-based methods, can be adapted to spatial data. Third, aspatial 

outlier is defined as a spatially referenced object whose non-spatial attributes appear to be 

inconsistent with other objects within some spatial neighbourhood (Shekhar et al. 2003a). 

Computational strategies for detecting the outliers based on a single semantic attribute or 

spatial property such as size and shape has been proposed. Ng (2001) added distance-

based measures to detect unusual paths traced by individual movement through a 

monitored environment in two-dimensional space. These measures are useful as they 
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allow the identification of unusual trajectories based on entry/exit points, speed and 

geometry and thus help in detecting unwanted behaviors such as theft.  

This research particularly focuses on the use of spatial association rule mining 

techniques and assumes the availability of a given spatial data warehouse for mining. The 

geographic knowledge discovery process using spatial association rule mining is referred 

herein as spatial association rule (SAR) discovery. Association rule mining is regarded as 

one of the most popular mining techniques because it is efficient at finding frequent and 

meaningful relations, positive associations, and stochastic plus asymmetric patterns in 

large relational data warehouses. The concepts and recent advances in association rule 

(AR) mining are reviewed in the next session. A discussion of the challenges and 

achievement of spatial association rule (SAR) mining follows. 

2.2 AR Mining: Concepts, Algorithms, and Recent Advances 

Association rule mining has received significant attention since its introduction in 

1993 by Agrawal et al. (1993) and is still regarded as one of the most popular approaches 

for pattern discovery in databases. It aims to identify association rules derived from sets 

of items that satisfy the predefined minimum support and confidence from a given 

database. The problem is formally stated as follows. Let � = ���, ��, … , �	
 be a set of 

items and � be a set of transactions, where each transaction � contains a set of items such 

that � ∈ �. Associated with each transaction is a unique identifier; we say that a 

transaction � contains �, a set of some items in � if	� ∈ �. An association rule is an 

implication of the form � → �, where � ∈ �, � ∈ �, and � ∩ � ≠ 0. � is called precedent 

and � is often called antecedent. The rule � → � holds in the transaction set � with 

confidence c if c% of transactions in � that contain � also contain �. The rule � → � has 
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support s in the transaction set � if s% of transactions in � contain	� ∪ �. It is important 

that support is not confused with confidence. While confidence is a measure of the rule's 

strength, support corresponds to statistical significance. Originally, association rule 

mining was designed for market-basket data analysis where it aims to find rules like “A 

customer who buys products X1 and X2, also buys product Y with probability c%”.  

Transaction-based association rule mining can be applied to non-transaction datasets 

such as object relational databases with a slight modification of the definition in which 

objects are regarded as transactions and their attributes, expressed in the form of 

predicates, are items. In this context, an association rule is defined as a dependence rule 

in the form of � → � which can be explained as, “if a pattern � appears in the dataset, 

then the pattern � tends to hold in the same dataset”, where � and � are a set of one or 

more attributes.  

The problem of association rule mining is usually decomposed into two sub-

problems. The first is to find those itemsets whose occurrences exceed a predefined 

threshold in the database; those itemsets are called frequent or large itemsets. The second 

is to generate association rules from those large itemsets with the constraints of minimal 

confidence. Since the second sub-problem is quite straightforward, research has mostly 

focused on the first sub-problem, i.e. finding frequent itemsets. The solution to this 

problem involves two steps: candidate generation and check for frequent items. The 

Apriori-based algorithm is the most popular algorithm (Agrawal et al. 1993) because of 

its efficiency during the candidate generation process with pruning techniques to avoid 

measuring certain itemsets, while guaranteeing completeness (Kotsiantis and 

Kanellopoulos 2006). Basically, the candidate generation is performed with multiple 
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passes over the dataset. In a pass, the algorithm counts candidate itemsets by using only 

the itemsets found frequently in the previous pass – without considering the transactions 

in the database. The basic intuition is that any subset of a frequent itemset must also be 

frequent. The pseudo Apriori-like algorithm is summarized in Figure 2. 

 

 
Figure 2: The pseudo Apriori-like algorithm 

The complexity and computational expense of the candidate generation process, as 

well as the requirement for multiple scans of the database, are bottlenecks of Apriori-

based algorithms. Literature shows significant efforts to increase the efficiency of this 

algorithm either (a) by reducing the number of passes over the database, (b) by sampling 

the database, (c) through parallelization, or (d) by adding extra constraints on the 

structure of patterns. 

Approaches aimed at reducing the number of passes over the database frequently 

utilize tree structures, such as Frequent Pattern (FP)-Tree (Han and Pei 2000) or 

TreeProjection (Agarwal et al. 2000) to store frequent items. FP-tree is an extended 

prefixed tree structure used to store information about frequent patterns of the database, 

consisting of frequent length-1 items stored as nodes. The tree nodes are arranged so that 

Fk= {frequent itemsets}; k = 1; 

While card(Fk)≥1 do begin 

Ck+1 = new candidates generated from Fk; 

For each transaction t in the database do 

        Increment the count of all candidates in Ck+1 that are contained in t; 

    Fk+1 = candidates in Ck+1 with at least minimum support 

     k = k+1 

End 

Answer =  {Fk:k≥1} 
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nodes with more frequent occurrences will have better chances of sharing nodes than 

ones with less frequent occurrences. As FP-tree contains only frequent items and other 

irrelevant information are pruned, it is a compressed representation of the original 

database. The frequent itemsets are generated from this tree after only two passes over 

the database and without any candidate generation process. This approach, however, is 

not efficient for an interactive system with varying support and confidence thresholds or 

incremental databases. In these cases, the tree has to be reconstructed, i.e. the whole 

mining process need to be repeated. Conversely, TreeProjection uses a lexicographical 

tree to represent frequent mined patterns. This helps to reduce the support counting space, 

facilitates the management and counting of candidates, as well as provides the flexibility 

of picking an efficient strategy during the tree generation and transaction projection 

phrases. Other than tree representation, some authors suggest the use of logical operations 

(Wang and Tjortjis 2004) or binary based matrix (Yuan and Huang 2005) to store 

frequent set information with the need for scanning the database only once.  

Database sampling can also be used to reduce the size of the dataset and increase the 

efficiency of mining algorithms. Ideally, the frequent itemsets extracted from a randomly 

drawn sample of transactions from the database represent a good approximation to the 

actual frequent itemsets extracted from entire database. For example, the algorithm 

proposed by Toivonen (1996) randomly picks a sample of the dataset and builds a 

candidate set of frequent itemsets containing all the frequent itemsets with a probability 

that depends on the sample size. However, the sample does not guarantee that all itemsets 

in the candidate set are frequent; neither to include the frequent itemsets found as if the 

whole dataset was processed. Nevertheless, the set of candidates allows the algorithm to 
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efficiently identify the set of frequent itemsets with at most two passes on the entire 

dataset. As the accuracy of sample-based association rule mining depends very much on 

sample size, some researchers have advocated progressive sampling as a better solution. 

Fundamentally, progressive sampling involves the analysis of increasingly larger samples 

until the observed improvement of a certain measure of the accuracy of the sample with 

respect to the mining task falls below a specified threshold. For example, Parthasarathy 

(2002) advanced this method based on a novel measure of self-similarity of associations 

across progressive samples, and a refinement technique based on equivalence classes to 

identify a proper sample size. Another example includes the work by Chuang et al. 

(2005),  which aims to identify an appropriate sample size for mining association rules 

based on Sampling Error Estimation (SEE).  

Parallel computing is another important trend to deal with the huge volume of data 

and associated processing. This requires a partition of the database among the processors. 

From the perspectives of hardware which supports parallelism, parallel computing 

systems could be classified, but not mutually excluded, into (1) multicore computing, (2) 

symmetric multiprocessing, and (3) distributed computing (Roosta 2000; Asanovic et al. 

2006; Barney 2013). The first type, multicore computing, refers to a single computer 

having multiple computing units (i.e. cores) built on the the same chip. The second type, 

symmetric multiprocessing, refers to a computing system comtaining multiple processors 

that share resources and use bus for communication. In this type of systems, memory 

space and attached disks are shared by processors. Processors communicate through 

shared variables in memory and are capable of accessing any memory location. 

Synchronization is required to coordinate processes. The programming architecture on 
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these machines is challenging due to requirements to ensure efficiency and avoid failure. 

Particularly, memory latency is an significant bottle neck for this type of system and thus 

requiring data locality optimization (i.e., having as much as possible of the data local to 

the processor cache) and elimination of false sharing (i.e., the problem where coherence 

is maintained even when memory locations are not shared). The third type, a distributed 

computing facility or a distributed memory multiprocessor, refers to computer system 

composing distributed memory multiprocessors connected via a network. In such system, 

each processor has private memory and local disked to handle the distributed portions of 

a same task, and communicates with other processors only via passing message. 

Scalability is one of the biggest advantages. The most current types of distributed 

computing include cluster computing, massive parallel processing (MPP) and grid 

computing differentiated by types of connectivity. A cluster composed of many 

computers connected using a network created by commodity hardware. A massive 

parallel processor is similar to a cluster, but have specialized connecting network rather 

than hardware based connectivity. In constrast with clusters and MPPS, grid computing 

as well uses networked computers but communicate over the Internet. The most current 

and fastest parallel computing systems today employ hybrid distributed-shared memory, 

i.e. both shared and distributed memory, architecture. While this type of system requires 

programming complexity, it has been indicated to be the one to prevail in the future of 

high end computing due to the combined capability to handle computational expensive 

processing as well as scalability (Barney 2013). Regarding parallel computing for 

association rule mining in particular, early research has been focused on distributed 

memory systems (Agrawal and Shafer 1996; Cheung et al. 1996; Han et al. 1997a; Zaki 
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et al. 1997). Examples of algorithms developed for this type include FDM - Fast 

Distributed Mining (Cheung et al. 1996),  which were later advanced into  FPM - Fast 

Parallel Mining (Cheung and Xiao 1998) with a more optimal communication scheme. In 

these cases, the database scan is performed independently on the local partition and 

support counts of the local frequent candidate sets must be exchanged among all the sites 

to find global frequent sets. Techniques such as Principal Components Analysis could be 

used to improve the data distribution prior to parallel mining as suggested with the Data 

Allocation Algorithm (Manning and Keane 2001). Recent trend in parallel computing for 

association rule mining has moved toward symmetric multiprocessing systems (SMPs), 

often called shared-everything systems due to the capability of delivering high 

performance at economical cost. More detailed discussions and proposed solutions for 

this matter can be found in (Parthasarathy et al. 2001).  

Adding constraints on the structure of patterns mined is another way to speed up the 

mining process. This is done in three ways: (1) dataset filtering by restricting the source 

dataset to objects that can possibly contain patterns satisfying the constraints 

(Wojciechowski and Zakrzewicz 2002); (2) pattern filtering via an integration of pattern 

constraints into the actual mining process in order to generate only patterns satisfying the 

constraints (Do et al. 2003); or (3) post-processing by filtering out patterns that do not 

satisfy user-specified pattern constraints after the actual discovery process.  

As association rule mining has found its way into many application domains, various 

various advances in algorithms are found, involving the concepts of quantitative 

association rule (Srikant and Agrawal 1996), multi-level (taxonomies)  association rule – 

also known as generalized association rule (Srikant and Agrawal 1995), fuzzy association 
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rule (Ladner et al. 2003), sequential temporal patterns (Agrawal and Srikant 1995; Verma 

et al. 2005), and spatial association rule. As the objective of this research is to advance 

association rule mining particularly for geospatial analysis, the following sections are 

dedicated to review the definitions and recent developments in spatial association rule 

mining. 

2.3 SAR Mining: Challenges and Achievements 

2.3.1 Definition of SAR 

The adaptation in definition of spatial association rules from mainstream association 

rules is simply by the inclusion of at least one predicate that is spatially defined 

(Koperski and Han 1995). Spatial predicates in spatial association rule mining are used to 

express spatial information, i.e. spatial components found in the dataset, while non-

spatial predicates are for semantic information. An example of non-spatial predicates is 

is-city(�) which is used to express the true or false property of semantic information,                                                                     

i.e. whether the object � is a city or not. An example of spatial predicate is close-to(�, �), 

which would be used to express the fact that objects � and �  are close to each other. A 

spatial association rule is then defined as a rule indicating an association relationship 

among a set of spatial and possibly non-spatial predicates (Koperski and Han 1995). A 

strong rule indicates a pattern which has relatively frequent occurrences in the database 

and thus suggests a strong implication relationship between (or among) predicates of the 

rule. Formally, a spatial association rule mining problem can be stated as following: Let 

� be a spatial database that contains spatial objects � for studying and let � be a set of all 

possible predicates, both non-spatial and spatial, that could be derived from �. Each 

object � has a unique identifier and an object � possesses �, a set of some predicates in 
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�, if � ∈ � and � represent semantic or spatial properties of �. A spatial association rule 

is an implication of the form � → �, where � ∈ �, � ∈ �, � ∩ � ≠ ∅, and	∃(� ∈

�	��	� ∈ �)|�, �	!�"	#$!%�!&	$�"'�(!%"). The rule � → � holds in � with confidence c 

if c% of objects in � that contain � also contain �. The rule � → � has support s in � if 

s% of objects in � contain � ∪ �. For example, a rule like “is-large-city(�) and 

within(�,California) � close-to-water(�)” is a spatial association rule. This rule states 

that if � is a large city and � is within the state of California in the US then � is close to 

the sea. 

Generally, the problem of spatial association rules can be decomposed into three 

steps: (a) derive non-spatial/spatial predicates, (b) find all frequent sets of predicates, and 

(c) generate strong association rules. Although the deployment of association rule mining 

for spatial datasets is theoretically straightforward, the unique characteristics of spatial 

data discussed earlier engender challenges for spatial association rule mining. As spatial 

components are presented using predicates, spatial predication, i.e. the process of 

identifying, formulating, and capturing spatial components using spatial predicates, is 

crucial for spatial association rule mining.  

2.3.2 Existing SAR Mining and Discovery Algorithms and Frameworks 

Research in spatial data mining has received some attention in recent years, 

evidenced by the development of a handful of algorithms and frameworks which are to 

some extent successful in dealing with spatial data.  

One approach to SAR mining follows a framework designed to work with singular 

relational database (i.e. table) while facilitating procedures for spatial predication. 

Examples of this framework include GeoMiner, which is an extension of a relational data 
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mining system called DBMiner  (Koperski and Han 1995; Han et al. 1997b), and Weka-

GDPM (Bogorny et al. 2006a; Bogorny 2006b; Bogorny 2006c; Bogorny et al. 2008a; 

Bogorny et al. 2008b; Bogorny et al. 2010), an extension of a data mining software 

named Weka (Bouckaert et al. 2011). Under this type of framework, spatial predicates 

generated on the basis of spatial attributes and spatial relationships of the participating 

features are stored in the mining table columns in addition to the ones of semantic 

attributes. The Apriori-based algorithm is often utilized for frequent itemset discovery. 

A second type of SAR mining framework argues against the use of singular relational 

database for the reason that mining rules at the level of a single concept is not very 

effective for spatial data due to the problem of granularity. For example, Malerba (2008) 

states that concept hierarchies in spatial data are a valuable kind of domain knowledge to 

be exploited during pattern discovery. This is because it is more likely to discover 

interesting rules at low concept levels than at higher ones, while large support is more 

likely to exist at a high concept level rather than at low ones. It is then suggested that 

multi-relational algorithms, which operate on data scattered through multiple tables 

(relations) of a multiple relational database, are more promising for spatial data mining 

problems. The supporting argument for this is that a multi-relational setting can deal with 

the heterogeneity of spatial objects, can distinguish their different role (reference or task-

relevant), can naturally represent a large variety of spatial relationships among objects, 

and can also accommodate different forms of spatial autocorrelation (Malerba 2008).  

The literature reports on a couple of systems which perform spatial association mining 

according to this second approach. The first one is the SPIN! platform (May and Savinov 

2003), which assumes an object-relational data representation and offers facilities for 
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multi-relational sub-group discovery and multi-relational association rule discovery. 

Subgroup discovery (Klosgen and May 2002) takes advantage of a tight integration of the 

data mining algorithm with the database environment. Spatial relationships and attributes 

are then dynamically derived by exploiting spatial DBMS extension facilities (e.g., 

packages, cartridges, or extenders) and used to guide the subgroup discovery. This means 

that, since the number of spatial relationships between data layers can be very large and 

many of them might be unnecessarily extracted, the subgroup discovery approach 

dynamically performs spatial joins only for the part of the hypothesis space that is really 

explored during the search by a data mining algorithm. The second one is SPADA 

(Spatial Pattern Discovery Algorithm) (Lisi and Malerba 2002). SPADA was initially 

designed according to the theoretical framework of inductive databases, which can be 

perceived as a deductive database (e.g. spatial database – SDB) with an integrated 

inductive component (e.g. data mining engine - DM Engine) as shown in Figure 3. The 

inductive component, DM Engine, is an ILP (inductive logic programming) module that 

supports the processing of spatial association mining queries. The integration of the ILP 

module requires data and patterns to be represented in a logical language and this, 

beneficially, allows the specification of rich domain knowledge such as spatial 

hierarchies, spatial constraints, and rules for spatial qualitative reasoning (Ceri et al. 

1991). The DM Engine aims to discover patterns according to an increasing order of 

description granularity, i.e. from coarser-grained to finer-grained. Frequent patterns are 

generated by the level-wise method (Mannila and Toivonen 1997), which is based on a 

breadth-first approach searching the lattice spanned by a generality between patterns. The 

DM Engine returns as many *.pat and *.rul files at the number of description granularity 
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levels; each rule reports frequent patterns and strong rules either in text format or in XML 

format.  

 

 
Figure 3: Software architecture of SPADA (Lisi and Malerba 2002) 

Within the SPADA system, a feature extraction module is implemented to pre-

compute spatial relationships, which are then converted into Prolog facts used by the ILP-

based DM Engine system. Spatial index structures, such as R-trees (Guttman 1984), are 

used to speed up the processing of spatial joins. SPADA makes uses of Oracle Spatial 

databases, which support the vector format and the 9-intersection model for the 

computation of topological relations. The SPADA algorithm is then used in the 

development of ARES (Association Rules Extractor from Spatial data) (Appice et al. 

2005) for the specific purpose of mining association rules and INGENS 2.0 (Malerba et 

al. 2010) to mine both association and classification rules.  ARES, which requires access 

to Spatial Oracle, is freely available to the research community. 

In addition, the literature also contains a number of contributions that handle other 

spatial data properties such as heterogeneity and fuzziness. To cope with spatial 

heterogeneity of the event being analyzed using SAR mining, Li (2008) used a moving 

window integrated with the Apriori-based algorithm. The approach however remains 

limited for discovering association between two variables only. Fundamentally, a window 

is used to move over the region of interest during the mining process. Associated with 
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each window location is an association rule of the two variables with a certain degree of 

support and confidence. These estimated supports and confidences are then used to 

generate the so-called three-dimensional association intensity for the whole study region, 

which allows a visual extraction of sub-regions having uniform support and confidence 

pattern. The use of different window sizes and shapes are suggested by the author for 

sensitivity tests.  

 

Figure 4: An example of fuzzy concept hierarchy (adapted from Kacar and Cicekli 2002) 

The literature recognizes that fuzziness may be an issue in spatial association rules 

because linguistic expressions are used in both aspatial and spatial predicates. For 

semantic information, examples involve the classification of cases into categories such as 

young and old (for age), big and small (e.g. for city size), or high and low (e.g. number of 

crime incidents), expensive and cheap (e.g. for housing property), to name a few (e.g. 

Buczak and Gifford 2010). For spatial cases, according to (Kacar and Cicekli 2002), 

fuzziness exists in spatial concept hierarchy and spatial relation hierarchy in the sense 

that an item could partially belong to more than one parenting items. For instance, in the 

concept hierarchy depicted in Figure 4, ‘counties’ can be regarded as ‘big living area’ or 

‘small living area’ with membership function value of 0.6 and 0.4, respectively. 

Similarly, in the case of the spatial relation hierarchy shown in Figure 5, the ‘overlap’ 

States Counties Cities 
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relationship belongs to ‘intersect’ and ‘inside’ relationship with equal membership 

function values of 0.5. 

 

 

Figure 5: An example of fuzzy spatial relationship hierarchy (adapted from Kacar and 
Cicekli 2002) 

Also dealing with fuzziness in spatial predicates, Laube et al. (2008) exclusively 

focuses on spatial proximity relations between spatial entities and investigates the 

approaches to define suitable distance measures between various types of spatial objects 

(i.e. point, linear, areal) to compute these distance measures efficiently, and to map these 

distance measures to scores in the range [0, 1] for use in fuzzy spatial association rules. 

The authors in addition presented a conceptual framework to calculate the quality 

measures of spatial fuzzy association rules in term of support and confidence. By this 

method, a product t-norm is used over the fuzzy membership function values of the 

associating predicates. This can be demonstrated by considering a simple fuzzy spatial 

association rule in which both the antecedent (i.e. left hand side of the rule) and the 

consequent (i.e. the right hand side of the rule) consist of a single predicate, such as “If a 

house is close to the sea, then it is expensive”. Scores s*+,(H) and s./+0(H)  in the range 

[0, 1] are used to capture to what extent a house H is close to the sea and to what extent a 

house is expensive, respectively. The support and confidence of this rule, referred as 

spatial support and spatial confidenc by the authors is formulated as: 
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#$!%�!&	#1$$��% = 2 s*+,(H) × s./+0(H)
4

 

#$!%�!&	(�56�'"5(" = ∑ s*+,(H) × s./+0(H)4
∑ s*+,(H)4

 

where the sum is over all houses H. A similar formulation can also be found in (Ladner et 

al. 2003). In cases where the antecedent and/or the consequent of a SAR comprise several 

predicates with an AND relationship, the product t-norm is again used to estimate the 

overall score of the antecedent and/or the consequent. For example, considering a rule “If 

a house is close to the sea AND close to a big city, then it costs at least $800,000.” If the 

score for “close to the sea” is 1 and that for “close to a big city” is 0.5 then the overall 

score for the antecendent is 1 x 0.5 = 0.5. The support and confidence of the rule is then 

estimated using the overall scores for antecedent and the consequent as the previous case 

of having single predicate on each side of the rule. If the antecedent and/or the 

consequent of a SAR consist of several predicates with an OR relationship among them, a 

t-conorm which is similar to a t-norm except that it has 0 as identity element is suggested 

to calculate the overall score of the of the antecedent and/or the consequent. An example 

of such is the Einstein sum defined as 
0890:
�9080:

 for two scores #� and #�. For example, 

considering a rule “If a house is close to a highway or close to an airport, then it has good 

sound insulation.” and the score for being close to highway is #�, and that for being close 

to airport is #�. In cases where a house is already very close to a highway (#� = 1), then 

its proximity to an airport is irrelevant for the support of the rule. The overall score for 

the antecedent is 
�90:

�9�∗0:
, which equals to 1 regardless of the #� value. But if the house is 

somewhat close to a highway and somewhat close to an airport (both with score 0.5), 
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then the overall score for the ancedent is 
=.?9=.?

�9=.?∗=.? = 0.8. The support and confidence of 

the rule is then estimated using the overall scores for the antecedent and for the 

consequent in a way similar to having single predicate on each side of the rule. 

A shortfall of the SAR mining and discovery frameworks discussed above is that they 

neglect complex and dynamic spatial dependence structures of the phenomena under 

study during the process of spatial predication. In addition, these platforms have 

disregarded the importance of mined result evaluation, which is a crucial procedure of 

knowledge discovery. A discussion on these two remaining challenges is presented in the 

following sections.    

2.3.3  Spatial Predication – The First Remaining Challenge 

Regarding the first challenge, it is argued here that spatial effects under the form of 

spatial dependence, which have remained a central concern of quantitative geographers, 

regional scientists, as well as spatial econometricians for the last forty years or so, should 

also be addressed in the process of spatial association rule mining, particularly during the 

formation of spatial predicates.  

It seems logical to begin the argument by recapitulating the necessity to handle spatial 

dependence (or spatial autocorrelation, interchangeably) in traditional spatial statistical 

analysis and modeling, before recasting the direct relevance of this issue to the case of 

spatial association rules. By definition, spatial dependence, or spatial autocorrelation, 

originally explicated in (Cliff and Ord 1970) is often taken to mean the lack of 

independence among observations. Hubert et al. (1981, p. 224) provided a formal 

definition of spatial dependence as: ‘‘Given a set S containing n geographical units, 

spatial autocorrelation refers to the relationship between some variable observed in each 
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of the n localities and a measure of geographical proximity defined for all n(n-1) pairs 

chosen from n.’’ Accordingly, values for the same attribute measured at locations that are 

near to one another tend to be similar, and tend to be more similar than values separated 

by larger distances (Haining 2003). The awareness of the problems caused by spatial 

dependence and their effects on the validity of statistical methods is dated as far back as 

Student (1914). The development of spatial statistics, however, remained naïve until the 

derivation of the first formal indices to detect the presence of spatial dependence by (e.g. 

Moran 1948; Geary 1954; Dacey 1968). Regional scientists and geographers only gained 

real exposure to spatial statistics in the late 1960s and 1970s (Cliff and Ord 1969; Cliff 

and Ord 1973; Ord 1975; Sen 1976; Haining 1978); nonetheless they came to an 

immediate realization of their significance. Evidence of this is a substantial quantity of 

research focused on constructing several techniques to test for spatial dependence, as well 

as on understanding characteristics of this particular matter. In term of testing, various 

spatial autocorrelation statistics and extensions to multivariate analysis have been 

constructed (e.g. (Royaltcy et al. 1975; Sen and Soot 1977; Hubert et al. 1981; Hubert 

1985; Wartenberg 1985). Moran’s I , Geary’s C (Cliff and Ord 1973), Getis-Ord’s G 

(Getis and Ord 1992), Ripley’s K (Ripley 1977) are now common global statistical 

indicators. Indicators for local scale analysis include Getis-Ord’s GB and GB∗ (Ord and 

Getis 1995), Anselin’s ID and cD (local indicators of spatial association (LISA) (Anselin 

1995), and Ord-Getis’ O (taking into account global autocorrelation) (Ord and Getis 

2001).  

Effects of spatial dependence on the estimation, identification, and model 

specification of spatial process models have also been extensively studied (e.g. Cliff and 



 36 

 

Ord 1969; Cliff and Ord 1973; Haining 1977, 1979; Anselin 1986a, 1986b; Haining 

1986; Anselin 1988; Anselin and Griffith 1988; Anselin 1990; Getis 2008). Under the 

impacts of spatial dependence, the popular regression analysis technique for cross-

sectional data experiences situations in which the dependent variable at one location may 

be functionally related to its own value at some other locations. If left untreated, spatial 

dependence will cause bias and spatial errors in regression residuals which invalidate the 

interpretation of standard hypothesis tests and estimates (Cliff and Ord 1973; Anselin 

1988). From a modeling perspective, spatial dependence is considered as the existence of 

a functional relationship between what happens at one point in space and what happens 

elsewhere. Thus, failure to treat spatial effects when necessary will misspecify the models  

(Anselin 1988).  At a more general level,  Getis (2008) emphasized the significance of 

the spatial autocorrelation concept as it “provides tests on model misspecification; 

determines the strength of the spatial effects on any variable in the model; allows for tests 

on assumptions of spatial stationarity and spatial heterogeneity; finds the possible 

dependent relationship that a realization of a variable may have on other realizations; 

identifies the role that distance decay or spatial interaction might have on any spatial 

autoregressive model; helps to recognize the influence that the geometry of spatial units 

under study might have on the realizations of a variable; allows us to identify the strength 

of associations among realizations of a variable between spatial units; gives us the means 

to test hypotheses about spatial relationships; gives us the opportunity to weigh the 

importance of temporal effects; provides a focus on a spatial unit to better understand the 

effect that it might have on other units and vice versa (‘‘local spatial autocorrelation’’); 
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helps in the study of outliers”. Thus, “no other concept in empirical spatial research is as 

central to model building as is spatial autocorrelation” (Getis 2008). 

This so-called “fundamental element of all spatial models” Getis (2008) is directly 

relevant, with no exception, to the problem of mining spatial association rules. Explicitly, 

spatial autoregressive models use a coefficient-based component to express the spatial 

dependence (i.e. FG� in spatial lag model: � = FG� + I� + 1, or λWε in spatial error 

model: � = I� + λWε + u). For spatial association rules, let us consider a given rule: if 

“block-group A is next to block-groups of high crime” then “block-group A has high 

crime”. In this case, the spatial spillover effects of crime is captured at the block group 

level, after providing specifications in defining predicates “next-to” and “high crime”. 

Indeed, spatial association rules are one form of spatial modeling using rule-based 

linguistic expressions to convey associative implication regarding aspatial and spatial 

characteristics of analyzed features (or variables) as well as spatial effects and spatial 

interactions among them. As in regression analysis, spatial autocorrelation violates the 

assumption of independent transactions in mining association rules. Failing to account for 

this will result in the omission of important functional implications due to spatial effects.  

The existing SAR literature has up to now failed to address this matter. Spatial 

association rules are distinguished from non-spatial ones by the inclusion of spatial 

predicates. By using linguistic expressions, spatial predicates allow flexible expressions 

related to explicit spatial relations of objects in terms of distance (e.g. close-to), direction 

(e.g. north-of), and topology (e.g. adjacent-to) but also to implicit spatial dependencies, 

i.e. spatial autocorrelation, or more generally the spatial dependence structure imbedded 

in the phenomena under study. However, the dynamics and complexity of spatial 
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components captured within these spatial predicates are typically overlooked. To the best 

of our knowledge, there is yet no mechanism that generates predicates to capture spatial 

dependencies. 

The complete disregard for modeling spatial dependence structures and integrating 

complex spatial components in SAR mining could be ascribed to the limitation in 

geographical domain knowledge possessed by computer science mining experts who 

have been so far the frontrunners in the field of SAR mining. Spatial predicates are 

commonly limited to spatial relations rather than spatial dependencies (Malerba et al. 

2002; Appice et al. 2003; Malerba et al. 2003; Bogorny 2006a). Due to the large number 

of spatial relations in large databases, much research has focused on developing 

algorithms to efficiently extract them. For example, Koperski and Han (1995), Koperski 

and Han (1996), and Koperski (1999), in GeoMiner, proposed a top-down progressive 

refinement method towards spatial query results with which coarse spatial 

approximations are calculated first, and then, more precise spatial relationships are later 

computed. Other examples include the Spatial Pattern Discovery Algorithm (SPADA) 

(Lisi and Malerba 2002) and SPIN! (May and Savinov 2003). SPADA pre-computes 

distance, direction and topological relations and materializes (i.e., stores) them into some 

database relations (called neighborhood indices), which are then used by data mining 

algorithms to efficiently retrieve all neighbors (with respect to some spatial relation) of a 

given spatial object. SPIN!, on the other hand, partitions the database into subgroups to 

reduce the number of spatial relations to be computed.  

Some research has attempted to incorporate geographical knowledge in the process of 

spatial association rule mining, although in a fairly simple fashion. For instance, 
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(Bogorny et al. 2005; Bogorny et al. 2006a; Bogorny et al. 2006b; Bogorny et al. 2008a; 

Bogorny et al. 2008b; Bogorny et al. 2010) refer to the concept of “well-known 

geographic dependence” defined to be the obvious geographical relations in the form of 

A�B with 100% support, such as is_an(island) � within(water), is_a(bridge) � 

cross(water), or is_a(gasStation)�intersects(street). It is advised that these well-known 

dependencies can be identified using geographical domain knowledge base in order to set 

up constraints to prune the input space of spatial predication. This not only helps to 

reduce the input dimension, to speed up the computation process of spatial joins to 

produce a more efficient set of spatial predicates, but also to avoid the generation of a 

large number of patterns and rules without novel, useful and interesting knowledge. It 

should be noted that this so-called “well-known geographic dependence” concept merely 

involves spatial relations among objects and is different from the concepts of spatial 

dependence and spatial autocorrelation that we discussed earlier. 

There have been a few attempts at using association rule mining particularly toward 

geospatial problems; however the treatment of spatial dependence has remained 

completely neglected.  For example, Mennis and Liu (2005) were interested in using 

association rule mining to explore the relationships among a set of variables that 

characterize socioeconomic and land cover change in the Denver, Colorado region from 

1970 – 1990. The associative variables were the change in percent of minority, change in 

percent of population living below the poverty line, and density of developed land. No 

spatial components have been considered in this study. Jung and Sun (2006) used spatial 

association rule mining to discover factors associated to location choices of convenience 

stores in Taipei City. Apart from various aspatial demographic-related attributes 
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including population, sex, age, education level, and job types, spatial attributes such as 

distances to train stations, to gas stations, to police stations, to post offices, to restaurants, 

to hospitals, to banks, and to roads were also considered. The mined rules are then used 

in a decision support system for locating new convenience stores in the city. Lee and 

Phillips (2008) proposed a framework to detect multivariate associations used in ArcGIS  

based on a given areal base map. With this approach, the feature datasets are aggregated 

onto the areal base map and categorized into several groupings. Association rules are then 

mined out of the attribute table linked with the areal base map. The framework is applied 

to discover associations to crime cases for Brisbane, Australia. In order to generate 

spatial predicates, the study includes distances to various geospatial features namely 

parks, lakes, highways, rivers, schools, hospitals, airports, highways, transit stations, 

police stations, and post offices. These studies are confined by limitations in handling 

components of spatial processes involved in the phenomena under study such as spatial 

dependence structures and spillover effects of events, as well as spatial interactions 

among participating features. Lee and Estivill-Castro (2011) necessitated the use of 

spatial clustering (Lee and Estivill-Castro 2006) before mining for association rules in a 

so-called horizontal-view association mining approach. This technique works on the 

principle of overlaying GIS-based clustered layers in order to identify overlapping areas 

and, thus, generate frequent association rules. The study however emphasizes the use of 

spatial clustering for data classification for rule mining rather than concerns related to 

spatial dynamic effects.  

The comprehensive spatial association rule mining framework envisioned for this 

study endorses methodologies to (1) robustly identify complex structures of spatial 
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dependence, and (2) incorporate it to the process of spatial predication, so as to 

subsequently allow the discovery of associations governed by spatial dependence, if any.  

The problem of identifying the correct specification of the spatial dependence structure 

itself has remained until recently a challenge drawing substantial attention and debate 

among spatial analysts and spatial econometricians. In addition, the construction of the 

spatial predicates that fully and accurately integrate the spatial dependence effects with 

well-defined semantics remains an unresolved research question in SAR mining. 

Furthermore, careful examination of the effects of ignoring spatial dependence as well as 

of structural misspecifications in spatial association rule mining and discovery are 

beneficial to further developments in SAR mining applications.  

2.3.4 Evaluation and Visualization – The Second Remaining Challenge 

Another crucial component of the knowledge discovery process is the evaluation of 

the mined results. In association rule mining, this is especially critical when a large 

number of patterns are generated, particularly when dealing with a large dataset, or 

having small support and confidence thresholds. As the size and dimensionality of the 

database increase, the generation of millions of patterns is not uncommon, many of which 

may be uninteresting. Challenges remain not only in developing evaluation approaches 

that are highly automated, but also in establishing a well-accepted set of criteria for 

evaluating the quality of association patterns. These problems are often intensified when 

dealing with spatial databases. First, large and complex spatial datasets often involve 

many predicates to represent semantic attributes and spatial components, so that a 

substantial number of frequent itemsets and rules is produced. Second, the complex 

nature of spatial data involving dynamic representation forms and implicitly embedded 
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spatial patterns challenges automated and objective-based evaluation schemes. Thus, 

successful evaluation schemes for spatial association rule mining should facilitate more 

human-centered interactivity with subjective evaluation criteria constructed based on 

domain knowledge. Furthermore, given the increasing availability of “big” data sets, this 

can be fruitfully accomplished with a visual analytics approach. 

Visual analytics in general is “the science of analytical reasoning facilitated by 

interactive visual interfaces” (Thomas and Cook 2005). Keim et al. (2008) defined visual 

analytics as an integral approach combining visualization, human factors and data 

analysis with the goal of gaining insight into a large information space; it combines 

automatic analysis methods with human background knowledge and intuition. 

Concerning visualization, the techniques found in this field often involve computer 

graphics, visualization metaphors and methods, information and scientific data 

visualization, visual perception, cognitive psychology, diagrammatic reasoning, 3D 

virtual reality systems, multimedia and design computing, and virtual environment 

(Simoff et al. 2008c). To deal with a vast amount of data from heterogeneous sources, 

visual analytics often combine the strengths of machines with those of humans. Methods 

from data mining and knowledge discovery in database, statistics and mathematics are 

often found to be the driving force for automation while human knowledge and analytical 

thinking are used to perceive, relate, and conclude. For the purpose of data mining, visual 

analytics may be referred to as visual data mining (Simoff et al. 2008b). By combining 

the respective strengths of humans and machines, decision makers can focus their full 

cognitive and perceptual capabilities on the analytical process, while applying advanced 

computational capabilities to augment the discovery process (Keim et al. 2008).  
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Geovisualization can be considered to be quite similar to visual analytics but with an 

emphasis on the geospatial domain. MacEachren and Kraak (2001) related 

geovisualization to the development of theories and methods which facilitate knowledge 

construction through visual exploration and analysis of geospatial data and the 

implementation of visual tools for subsequent knowledge retrieval, synthesis, 

communication, and use. Geovisualization is distinguishable from cartography, which is 

perceived as traditional visualization techniques in the spatial domain focusing on the 

design and use of maps for information communication and public consumption. On the 

other hand, geovisualization often emphasizes the development of highly interactive 

maps and associated tools for data exploration, hypothesis generation and knowledge 

construction (MacEachren 1994; MacEachren and Kraak 1997) and has very close 

relations with exploratory data analysis (EDA) and exploratory spatial data analysis 

(ESDA) (Tukey 1977; Bailey and Gatrell 1995; Anselin 1999). Development in 

geovisualization has, however, generally remained confined to data poor environments 

for linking statistical graphics and maps; it relies on human experts to interact with data, 

visually identify patterns, and formulate hypotheses or model. A few exceptions focus on 

addressing multiple perspectives and many variables simultaneously by coupling 

visualization with dimension reduction techniques such as multidimensional scaling 

(Young 1987), principle components analysis (PCA) (Abdi and Williams 2010), self-

organizing maps (SOM) (Agarwal and Skupin 2008; Yan and Thill 2009), or other 

projection pursuit methods (Cook et al. 1995). Several approaches to multivariate 

mapping have also been developed, including specially designed symbols (Chernoff and 

Rizvi 1975; Zhang and Pazner 2004), multiple linked views (Monmonier 1989; Dykes 
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1998; MacEachren et al. 1999), and clustering-based approaches (Guo et al. 2003; Guo et 

al. 2005).  

Nevertheless, data rich environments place further requirements on geovisualization 

so as to handle extraordinary large spatial datasets, and have thus evolved along with the 

trend of visual analytics. An amalgamation of automatic computation methods such as 

spatial data mining and geospatial analytics with effective designs and interactive 

strategies to facilitate the discovery process is indeed desirable (Mennis and Guo 2009). 

With some existing attempts (Andrienko and Andrienko 1999; Ward 2004; Guo et al. 

2005), future research in geovisualization is heading towards what is referred herein as 

geo-visual analytics especially designed for geo-spatial domain. 

Visual analytics for spatial association rule mining and geographic knowledge 

discovery in particular, possess certain features and modules from both geovisualization 

and visual data mining. Developing such system for SAR mining and discovery is a focus 

of this study and will be discussed in more detail in Chapter 5. 

2.3.4.1 AR Visualization 

Various studies exist on visualizing association rules and Bruzzese and Davino 

(2008) provides an good overview of the relevant techniques. The most common and 

traditional technique is table-based (Han and Kamber 2001). Each row of the table 

represents an association rule while the columns represent the items, the antecedents and 

consequents, the support, and the confidence of association rules. Figure 6 depicts a table 

representing association rules.  

The second form of visualization is matrix-based (2D or 3D) (Wong et al. 1999; 

Hofmann and Wilhelm 2001). A two-dimensional association matrix positions the 
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antecedent and consequent items on separate axes of a square matrix. Customized icons 

are then used on the matrix tiles to connect the antecedent and the consequent of the 

corresponding association rules. Figure 7(a) shows an example of such visualization for 

rule B�C. The height and color of columns are used to represent the properties of the 

association rules such as support and confidence. The 2D matrix-based visualization 

technique however breaks down when it is used to present many-to-one relationships. For 

example, in Figure 7(b), it is very difficult to distinguish if there is only one association 

rule (A+B�C) or two (A�C and B�C).  The solution of grouping all the antecedent 

items of an association rule as one unit and plotting it against its consequent as shown in  

 
Figure 6: Table-based visualization of association rules 

 
Figure 7: 2D-matrix based visualization of association rules 

(a) (c) (b) 
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Figure 7(c) only works effectively with small antecedent sets. Another issue with the 

matrix-based approach is the occlusion problem, especially when multiple icons are used 

to depict different metadata values on the matrix tiles. A three-dimensional matrix shows 

rule-to-item rather than item-to-item relationships. Figure 8 depicts an example of such 

relationships. By this approach, the rows represent the items and the columns represent 

the item associations. Color is used to distinguish the antecedent and the consequent of 

the rules. Confidence and support levels of rules are shown by the corresponding bar 

charts in different scales at the far end of the matrix. Although a 3D matrix representation 

overcomes the problem of many-to-one relationships, the occlusion problem still remains 

for large sets of rules.  

 

 

Figure 8: Three-dimension matrix visualization of association rules 

The third form of association rule visualization is network-based, in which the nodes 

represent the items and edges represent the associations. One example of such type is 

using direct graph (Han and Kamber 2001), as shown in Figure 9. Different colors and 
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width of the arrows are used to represent properties of the rules such as the confidence 

and the support. When many rules with many items are represented, the direct graph is 

not easy to understand because of the superimposition of the edges with the nodes. 

Hetzler et al. (1998) proposed animating the edges and selectively showing associations 

of certain items with 3D rainbow arcs. However, this technique requires significant effort 

to turn on and off the item nodes. In addition, showing multiple metadata values such as 

confidence and support corresponding to the rules is not easy. Another example is shown 

in Figure 10 which uses a so-called association rule network (Statistica 2012).  In this 

figure, a subset of 15 rules is displayed. The thickness of each line indicates the 

confidence of the rule while the size of the circles in the center indicates the support of 

each rule. 

 
Figure 9: Direct graph visualization of association rules  

A fourth form of association rule visualization is the TwoKey plot (Unwin et al. 

2001), which represents the rules according to their confidence and support values. With 

this approach, rules are presented in a 2D space as shown in Figure 11, where the x-axis 

and the y-axis range from the minimum to the maximum values of the support and 

confidence, respectively. Colors are used to highlight the order of the rules.  Selection 

and interactive features as well as linkage with other displays can then be used to explore 
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rules. The analysis of items associated with the displayed rules, however, requires 

recourse to the rule table. 

 

 
Figure 10: Association Rule Network 

 
Figure 11: The TwoKey Plot 
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Another technique for visualizing association rule uses Mosaic plots, or Double-

Decker, to provide visualization for single rule and its related rules (Hofmann et al. 

2000a; Hofmann et al. 2000b; Hofmann and Wilhelm 2001). With a mosaic plot, all the 

attributes involved in a rule are visualized by drawing a bar chart for the consequence 

item and using linking highlighting for the antecedent items. An example is shown in 

Figure 12. The main drawback of the Double Decker plot is that it is limited to represent 

a single rule at a time. 

 

 
Figure 12: Double-Decker Plot 

 
Figure 13: Parallel coordinate plot for association rule visualization 
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Parallel coordinate plots are another powerful approach used to visualize association 

rules. The approach was first proposed by (Yang 2008) with the arrangement of items by 

groups on a number of parallel axes equal to the maximum order of the rules. An 

example of this type of visualization is shown in Figure 13. A rule is represented as a 

polyline joining the items in the antecedent followed by an arrow connecting another 

polyline for the items in the consequence. The items arrangement on each axis should 

ensure that polylines of itemsets of different groups never intersect with each other. The 

approach has been further improved and used by several authors (Bruzzese et al. 2003; 

Bruzzese and Davino 2008; Yang 2008). 

Finally, visualizing association rules using factorial method is very promising, especially 

when interacting with a significant number of rules because it allows to synthesize the 

information stored in the rules and to visualize the association structure on 2-dimensional 

graphs. This approach stores synthesized rules in a data matrix where the number of rows 

is equal to the number of rules and the number of column corresponds to the total number 

of different items in both the antecedent part (Pif) and in the consequent part (Pthen) of 

the rules. Also two added columns are used to store confidence and support values. The 

Multiple Correspondence Analysis (MCA) (Greenacre 1993) is then utilized to analyze 

this data matrix. Fundamentally, MCA allows a dimensionality reduction on the original 

variables by identifying the linear combinations of them, the so-called factors. Rules and 

items are then presented on the reduced dimension subspaces, i.e. the factorial planes. 

Different views on the set of rules can be obtained by exploiting the results of the MCA 

process, including item visualization, rules visualization, and conjoint visualization. 

Items visualization represents the antecedent and the consequent items using the factor 
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plane where the item points have a dimension proportional to the supports and the 

confidence. The supports are represented by oriented segments linking the origin of the 

axes to their projection on the plane, i.e. the plane coordinates. Figure 14 shows an 

example of item visualization. First, it is easy to identify regions characterized by strong 

rules. In addition, the closeness between antecedent items and consequent items 

highlights the presence of a set of rules with a common dependence structure. 

Visualization for rules can also be performed on the factorial plane, and an example of 

that is shown in Figure 15. The rules are represented by points with a dimension 

proportional to their confidence. The proximity among rules indicates evidence of a 

common structure of antecedent items associated to different consequences. Further 

examination of the set of selected rules can be carried by using a tabular format. The 

conjoint visualization of the items and rules is also feasible using factorial planes, as 

shown in Figure 16. In the conjoint representation, aside from a scale factor, each rule is 

surrounded by the antecedent items it holds and vice versa each item is surrounded by the 

rules sharing it. By linking two or more active items, it is possible to highlight all the 

rules that contain at least one of the selected items in the antecedent. 
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Figure 14: Items visualization 

 
Figure 15: Rules Visualization 
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Figure 16: Conjoint Visualization 

Although a significant number of visualization techniques have been developed for 

AR visualization as described above, the majority is not suited to cases with a large 

number of rules. Moreover, the innovation of these approaches for applications on spatial 

association rules (SAR) is very much open for discussion. These matters will be 

discussed within the proposed framework of this research. 

2.3.4.2 SAR Evaluation 

Once association patterns are mined, their evaluation is indispensable in order to 

achieve the ultimate goal of the association discovery process, which is to find novel, 

interesting, and useful association patterns applicable in the geospatial domain. To 

achieve effective evaluation, human-centered interactivity with visual representations is 

advised (e.g. Simoff et al. 2008a). Human interactivity often relies on the perceptual, 

understanding, and reasoning capability of the analyst, which however, largely varies 
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from person to person. It is, thus, important to establish a set of well-accepted evaluating 

criteria, or interestingness measure, toward the mined results. Before going into a detailed 

discussion on rule evaluation based on interesting measures, it is important to mention 

redundant rules and their elimination. 

Redundant rules are rules that are similar to each other and that unnecessarily enlarge 

the rule set, thus making rule management difficult and cumbersome. Researchers have 

suggested some solutions for this problem. For example, Cristofor and Simovici (2002) 

proposed inference rules or inference systems to prune redundant rules and thus present 

smaller, and usually more understandable sets of association rules to the user.  Ashrafi et 

al. (2004); Ashrafi et al. (2005) presented several methods to eliminate redundant rules. 

Some of them identify the rules that have similar meaning and then eliminate them. 

Jaroszewicz and Simovici (2002) presented another solution to the problem using the 

Maximum Entropy approach with closed form solutions for the most frequent cases. 

Regarding interesting measures, the literature suggests two types of measures for 

association rules, namely objective and subjective (Tan et al. 2006). Objective measures 

are based on data-driven approach and established using statistical arguments derived 

from the data. With this type of criteria, the item counts are used; and patterns involving a 

set of mutually independent items or covering very few transactions are considered 

uninteresting and eliminated. Because it is domain-independent and requires minimal 

input from the users, other than to specify a threshold for filtering low-quality patterns, 

objective measures are easy to derive. Examples of objective interestingness measures 

include the most popular support and confidence framework. Modifications based on 

these measures have also been developed. For example, Brin et al. (1997a) identified 
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correlations and consider both the absence and presence of items as a basis for generating 

the rules. Chi-squared test for correlation is used to measure the significant of rules. 

(Omiecinski 2003) proposed measures called all-confidence, and bond which are 

indicators of the degree to which items in an association are related to each other. With 

all confidence, an association is interesting if all rules that can be produced from that 

association have a confidence greater than or equal to a minimum all-confidence value. In 

addition, bond is similar to support but with respect to a subset of the data derived from 

user-define conditions rather than the entire data set.  

Most objective measures suffer from the rare item problem. A rare set of items is 

interesting but infrequent. Searching for these rules requires a low support. However, 

using a low support will generate a large number of non-interesting rules. On the other 

hand, using a high support reduces the number of rules mined but will eliminate rare 

rules.  Liu et al. (1999) suggested a solution to this problem by allowing users to specify 

different minimum supports for the various items in their mining algorithm. 

Subjective criteria, on the other hand, are established through subjective arguments 

constructed from domain knowledge including well-accepted theories or conceptual 

hierarchies. According to subjective criteria, a pattern is considered subjectively 

uninteresting unless it reveals unexpected information about the data or provides useful 

knowledge that can lead to profitable actions (Tan et al. 2006). Generally, incorporating 

subjective knowledge into pattern evaluation is a non-trivial task because it requires a 

considerable amount of prior information from the domain experts. Existing efforts 

suggests some approaches to achieve this. For example (Baralis and Psaila 1997) 

suggested the use of template language  to specify a predefined format for different rule 
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extraction conditions. This means that the association rule templates provide a simplified 

interface (linkable to visualization) for defining rule extraction criteria. Subjective 

interesting measures for example based on domain information and knowledge in form of 

hierarchies are suggested in (Tan et al. 2006). These measures are then used to filter 

patterns that are obvious and non-actionable. 

Evaluation of spatial association rules (SAR) is very similar to that of aspatial 

association rules (AR) using objective evaluation approaches such as a support-

confidence framework. However, like any data mining tasks which involve specific 

domains of knowledge, SAR evaluation will benefit from subjective evaluation using 

spatial domain knowledge  in order to extract meaningful and interesting patterns. There 

is also a need to develop frameworks specialized in procedures to couple evaluation 

approaches with efficient visualization techniques for analytical purposes. Practical 

solutions to these concerns is one of the focuses of this research and will be discussed in 

more detail later.  



  

 

CHAPTER 3: FUNDAMENTALS OF SPATIAL CRIME ANALYSIS 
2  

 
One objective of this study is to implement and test the proposed SpatialARMED 

framework particularly for use in criminology as a mean of validation. Pertinently, this 

chapter establishes arguments supporting the development of such framework in relation 

to the current state of research methodologies in spatial crime analysis and modeling. In 

addition, the contemporary state of knowledge in spatial crime analysis is reviewed for 

the purpose of establishing the foundation for SAR result evaluation later on. 

3.1 Techniques for Spatial Crime Analysis 

Criminal activities in the form of thefts, robberies, assaults, homicides, etc. occur 

every day almost anywhere in our world and put a strain on the communities, towns and 

cities in which we live. There are significant monetary costs associated with policing 

crime and prosecuting offenders. There are also non-monetary social costs associated 

with crime, which is reflected in changing perceptions of quality of life, mental health 

and physical security in our daily activities (Murray et al. 2001). Crime analysis thus has 

attracted the attention of regulators, policy makers, urban planners, and researchers as a 

vital issue to promote healthy development of any city in the world.  

The spatial components in crime activities have been well recognized among 

criminologists and spatial analysts. This is reflected in the core dimensions of crime, 

which has been defined as any action against the law (Brantingham and Brantingham 

(1981)). Crime has four dimensions: (1) a legal dimension (i.e. a law must be broken); (2) 



 58 

 

a victim dimension (i.e. someone or something has to be target); (3) an offender 

dimension (i.e. someone has to do the crime; and (4) a spatial dimension (i.e. the crime 

has to happen somewhere). Among these, the spatial dimension of crime is regarded as 

playing a crucial role in understanding crime and how crime can be tackled (Chainey and 

Ratcliffe 2005). When crime occurs, it happens at a certain location. The offender also 

must come from a place and this place could be the same or closely connected to the 

location where the crime was committed (Brantingham and Brantingham 1981; Rossmo 

1995). In addition, it is well-known that criminal acts do not occur at random places or 

random times; instead they tend to occur in certain “zones” of the cities (Burgess 1925; 

Shaw and McKay 1942). Questions naturally arise as to why it is easier for that person to 

become a criminal and why that victim at that particular location becomes a target. 

Looking for the answers to these questions has led researchers on many different 

pathways of explanations, including factors ranging from internal (i.e. biological and 

psychological in nature) to external aspects (due to e.g. poor social controls, breakdown 

of morality in society, feminism-related power struggles, and  root causes such as poverty 

and inequality).  

From a spatial modeling perspective, various approaches have been established over 

the years to explore the relationships between crime and environmental or socio-

economic characteristics (Chainey and Ratcliffe 2005). These include exploratory spatial 

data analysis (i.e. hotspot analysis, spatial dependence estimation) and confirmatory 

spatial statistical modeling (i.e. spatial regression, geographically weighted regression). 

Applications of geographical information systems and science for crime mapping and 

analysis are also well known. As in many other fields, spatial processes such as spatial 
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dependence and spatial heterogeneity are fundamental to crime pattern analysis 

(Townsley 2009). Spatial dependence refers to the phenomena in which the crime level in 

an area is influenced by or at least related to the surrounding area. This often reflects 

common underlying causes of crime which drive the crime rate or sometimes simply the 

spillover of crime itself in the neighboring areas. Spatial heterogeneity, on the other hand, 

refers to the variation of crime concentration across the study area. Spatial dependence 

and heterogeneity are the main reasons to study crime patterns, in order to discover why 

some places are victimized more than others, what the associative factors to high or low 

crime rate are, and whether or up to what degree these factors are spatially dependent or 

auto-correlated. 

In order to identify the concentration of crime, hot spot analysis is often considered. 

A crime hot spot is defined as a small area with an identifiable boundary containing a 

concentration of criminal incidents relative to the distribution of crime across the whole 

region of interest (Anselin et al. 2000). Hot spots permit the rapid identification of the 

geographic location of crime concentration but they by themselves contribute little to 

understanding why crime is concentrated in certain locations. However, a visually 

appealing map can significantly help to identify areas that persistently suffer from crime, 

and enable a more focused approach to understand areas that require crime reduction 

resources. This indeed can offer direction for initiating the next analytical stages that 

explain the problem and how it can be tackled. Hotspot mapping of crime is thus often 

regarded as the first step toward exploring crime patterns in more detail (Chainey and 

Ratcliffe 2005). There exist various methods as well as significant efforts in identifying 

crime hot spots. Point pattern analysis techniques such as quadrat analysis, nearest 
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neighbour index analysis, and distance-based K-function or areal pattern analysis 

techniques such as Moran’s I, Geary’s C and G statistics can be used to test against the 

existence of spatial dependences and clusters (Jefferis 1999). Continuous surface 

smoothing techniques, such as kernel density estimation, which use interpolation 

techniques and include an inverse distance weighting and kriging can be used to visualize 

the distribution of crime and identify hotspots for the whole studying area (Ratcliffe and 

McCullagh 1999; Williamson et al. 1999; Chainey et al. 2002; Eck et al. 2005). One can 

also use more advanced techniques such as Local Indicators of Spatial Association 

(LISA) statistics (Anselin 1995; Ord and Getis 1995) and the Geographical Analysis 

Machine  (GAM) (Openshaw et al. 1987) to obtain more robustness. 

In addition to mapping the concentration of crime, analysts have tried to identify the 

drivers that potentially contribute to crime. This in many ways helps to determine 

possible leverage points so that by influencing an underlying driver it may be possible to 

reduce crime. Features of the physical world (e.g. crime attractors and generators) and 

socio-economic world (e.g. unemployment, age, heterogeneity, housing tenure, and 

education) as suggested by the spatial crime theories have been hypothesized to have 

influence on the incidence of crime. Inferential analysis approaches typically carried out 

by means of multivariate regression modeling have thus been widespread to test against 

these hypotheses (LeBeau 1987; Sampson and Groves 1989; Land et al. 1990; LeBeau 

1992; Kposowa and Breault 1993; Copes 1999; Rengert and Wasilchick 2000; Potchak et 

al. 2002). Recently, the role of space for crime analysis has been recognized as central in 

a number of respects. This in turn has prompted a search for spatial mechanisms such as 

proximity and diffusion to explain these phenomena (Tolnay et al. 1996; Morenoff and 
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Sampson 1997; Sampson et al. 1999; Townsley 2009; Zhang et al. 2012). Specialized 

methods of regression analysis, spatial regression models (e.g. spatial lag model and 

spatial error model) (Anselin 1988; Anselin 2003) and geographically weighted 

regression (GWR) model (Brunsdon et al. 1996; Fotheringham et al. 2002; LeSage 2004), 

have also been utilized for crime analysis to deal with the presence of spatial effects and 

avoid potentially biased results and faulty inference (Bernasco and Elffers 2010). For 

instance, Andresen (2006) used a spatial error model to control for residual 

autocorrelation when analyzing calls for services made to Vancouver police. Deane et al. 

(2008) also applied this model to a study of city-level robbery rates in 1,056 cities in the 

United States with 25,000 or more residents. This study, in addition, utilizes various 

alternative spatial dependence structures based on distance between the cities, as well as 

state inclusion (i.e., all pairs of cities within a state have a value of 1, and all other pairs 

have a value of 0 in the corresponding W matrix). Some examples of using spatial lag 

model are (Baller et al. 2001) for county-level homicide analysis, and (Morenoff et al. 

2001; Kubrin 2003) for neighborhood-level homicide analysis. Cahill and Mulligan 

(2007) applied GWR modelling to analyze violent crime in Portland, Oregon at the block 

group level, while Malczewski and Poetz (2005) used this modelling approach for 

studying the spatial variation of the relation between socioeconomic neighborhood 

characteristics and the burglary risk in London, Ontario. 

Recently, developments in computing and spatial data collection techniques have 

encouraged crime analysts to turn to more advanced analysis techniques such as agent-

based modeling (ABM) to allow for more micro level analysis and simulation, and thus 

build potentially explanatory models of crime. By allowing researchers to create virtual 
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worlds and inhabit them with simulated populations of heterogeneous, autonomous 

actors, ABM provides a platform to examine the aggregate level impacts of differing 

individual level behaviors and thus to explore how the decisions people make on a day-

to-day basis translate into observable phenomena (Epstein and Axtell 1996). In 

comparison to statistical models, ABM has the advantage to consider factors at various 

levels, including ones which are more localized (i.e. at the level of the individual, street, 

and neighborhood) and allows feedback loops (Malleson et al. 2009). Fundamentally, 

ABMs consist of two key components: a population of agents and a simulated 

environment in which they are situated (Birks et al. 2012). Each member of the 

population is represented by an autonomous decision making entity with individual 

characteristics, preferences, and behaviors, the so-called agents. Agent behaviors are 

defined by a seris of simple condition-action rules which are often inspired by existing 

theories. ABM is often used to explore the patterns from spatial and temporal interactions 

of multiple heterogeneous agents. Operationally, ABM simulates the progression of time 

with discrete increments, referred to as cycles. During each cycle, agents perceive, 

reason, and act based on circumstances and individual characteristics. By manipulating 

the initial conditions of the ABM and analyzing data collected about the agents and their 

actions, researchers gain insights into the likely dynamics of certain societal 

configurations. Examples of employing ABM in criminology involve street robbery 

analysis (Groff 2007, 2008),  exploration of the ramifications of offender mobility 

patterns (Brantingham and Tita 2008), characterizing patterns of white-collar crime (Kim 

and Xiao 2008),  projecting the likely impact of crime-prevention interventions and 

policing deployment strategies (Dray et al. 2008; Bosse et al. 2010). Applications of 
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ABM to crime analysis is still an evolving subfield. Research efforts along this line of 

research remain aimed at theory confirmation (Birks et al. 2012). 

3.2 SAR Mining and Discovery: An Alternative 

The limitations of the above techniques lie in their restricted capability to process 

high volume and nonhomogeneous datasets. In addition, the specific and simple types of 

relation models that can be accommodated, such as linear regression, and their 

confirmatory nature is not very robust to handle the complex nature of criminal activities 

and to allow discovery of unexpected or surprising information. Spatial data mining and 

discovery naturally come to be a potential solution in these cases. Looking from the data 

miners’ perspective, the complex nature of crime provides great opportunities to test the 

validity of existing mining algorithms. Association mining and discovery in particular has 

been recognized as promising toward this tendency (Phillips and Lee 2006; Phillips 2007; 

Phillips and Lee 2009; Phillips 2009, 2011). It allows the discovery of correlations 

between crimes and aspatial or spatial dynamics which is a core components of 

intelligence-led policing, and so permits a deeper insight into the complex nature of 

criminal behavior, while offering the various advantages of a data mining approach over 

traditional spatial statistical approaches as previously discussed.   

It is not difficult to find existing attempts at making use of data mining approaches 

for crime analysis, for example (Chen et al. 2004; Keyvanpour and Ebrahimi 2011; 

Oatley and Ewart 2011) to name a few. One could also find studies directly related to the 

application of association rule mining and discovery for crime analysis such as (Lee and 

Phillips 2008; Sathyaraj and Chandran 2010; Lee and Estivill-Castro 2011). Some of 

these studies take advantages of the off-the-shelf ArcGIS software package to perform 
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overlay among classified layers of associated features in order to identify the most 

frequent sets of attributes contributing to crime as shown in Figure 17 and Figure 18. The 

recent paper by Wang et al. (2013) proposed a spatial data mining framework to detect 

crime hotspots through their related variables. Basically, so-called Geospatial 

Discriminative Patterms which essentially are frequent itemsets of crime related variables 

are identified for areas having relatively high crime intensity. These patterns are then 

examined for their similarities. The trajectories on map of similar patterns are then used 

to assist in hot spot detection through iterative hypothesis tests. The focus, however, was 

not on improving mining efficiency of frequent patterns from a spatial perspective.  

 

 
Figure 17: The framework of areal categorized geospatial knowledge discovery (adapted 

from Lee and Phillips 2008) 
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Figure 18: Multivariate association mining technique with (a) ArcGIS feature layers, (b) 

attribute overlaid for a processing cube, and (c) layer overlaid  (adapted from Estivill-
Castro 2001; (Estivill-Castro and Lee 2001)  

Given the current state of application of association rule mining techniques to crime 

analysis, it should also be recognized that effective and robust modeling techniques for 

spatial components of crime and its associates need to be incorporated. In addition, these 

existing studies lack the capability to validate their findings. This is mainly because 

evaluation procedures are often ignored. These limitations once again motivate further 

efforts proposed in this research for enlarging spatial association rule mining and 

discovery in general and in criminology in particular. 

3.3 State of Knowledge in Crime Associations 

The current state of knowledge in crime associations is reviewed in this section to 

establish a foundation for the performance evaluation of the SpatialARMED framework. 

The review focuses on existing spatial theories and empirical studies indicating factors 

related to spatial patterns of crime. 

3.3.1 Neighborhood Characteristics and Crime 

It has been suggested that crime is not equally distributed across the city but localized 

in certain neighborhoods characterized by economic deprivation, physical deterioration, 

and social disorders (Burgess 1925; Shaw and McKay 1942). Particularly, communities 

identified with low economic status, ethnic heterogeneity, residential instability, family 
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disruption, low level of housing with high population density, low education, 

unemployment, inequality, and urbanization often experience high level of crime rate. 

Various cross-sectional empirical studies in fact confirm the existence of these 

relationships (Richard 1986; Wilson 1987; Sampson and Groves 1989; Patterson 1991; 

Krivo and Peterson 1996; Morenoff and Sampson 1997; Regoeczi 2003; Lochner and 

Moretti 2004; Hipp 2007; Walsh and Taylor 2007b; Boggess and Hipp 2010). 

One explanation for the link between these neighborhood structural and 

socioeconomic characteristics and crime lies in the notion of social disorganization. 

According to Sampson and Groves (1989), social disorganization indicates the inability 

of a community structure to realize the common values of its residents and maintain 

effective social controls. A socially disorganized environment is one in which norms and 

values that support criminal and delinquent behaviour develop due to the lack of effective 

efficacy or social controls, i.e. the “social cohesion among neighbours combined with 

their willingness to intervene on behalf of the common good” (Sampson et al. 1997). In 

the long term, this will support criminal subculture values that remained in the 

neighborhoods and are passed along to new residents in the process of cultural 

transmission. According to Sampson, social disorganization is the key to understanding 

the level of community crime and other social ills (Sampson et al. 1997). From a social 

disorganization perspective, patterns of delinquency are related to the ecological 

processes that gave rise to the socioeconomic structure of urban areas and led to 

concentrated, inner-city poverty and a subsequent breakdown of social orders. The 

literature consistently shows that community ties with the highest levels of crime and 

social problems also have the highest rates of poverty (McGhey 1986; Kornhauser 1987; 
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Brooks-Gunn et al. 1997; Sampson and Raudenbush 2001; Lee et al. 2003 ; Sampson and 

Raudenbush 2004). Furthermore, some studies suggest that income disparities are linked 

with high level of crime due to the feelings of relative deprivation, especially when 

wealthy neighborhoods are located in close proximity to poor ones and poorer individuals 

may experience feelings of anger and injustice which may ultimately lead to criminal 

behavior (Morenoff et al. 2001; Hipp 2007). However, the central thesis of social 

disorganization is that a high rate of delinquency reflects the inability of a community to 

engage in self-regulation (i.e., social disorganization) and not its economic structure per 

se. Areas characterized by economic deprivation and physical deterioration tend to have 

high rates of population turnover, thus residential instability (since they were abandoned 

by the residents as soon as it was economically feasible) and population heterogeneity 

(since the rapid changes in composition made it difficult for populations in these areas to 

make a concerted resistance against the influx of new groups). These factors are highly 

associated with the destruction of social controls, including as formal as community 

participations (e.g. attending church together, or local community development program) 

or as informally as neighborhood watching for each other, and thus are important in 

relation to crime and delinquency.  

Another important explanation is based on the concept of neighborhood effects or 

peer effects. It suggests that every individual comes with a particular background 

developed under the strong influence from his or her particular living environment, the 

so-called neighborhood. From various different angles, the neighborhood is closely 

identified to an individual as the spatial environment through which the world is 

perceived during childhood (and thus builds life models, shapes up thinking, and acts 
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according to the commons); later in life, the neighbourhood also frames daily activities 

while the individual interacts with peers for the ordinary purposes of making a living, 

entertaining, and socializing.  The neighborhood effects on criminal activities are often 

found to be particularly strong in communities categorized by a low level of education, 

poor school attendance, low school quality, high rate of unemployment, and high 

percentage of single parents (Sampson 1985; Lochner 2004; Lochner and Moretti 2004). 

Studies in addition show that stronger effects exist in neighborhoods with a high 

proportion of African-Americans as they traditionally tend to be economically 

disadvantaged neighborhoods which are also associated with a constellation of other 

measures of concentrated disadvantages (such as a lower percentage of college graduates, 

more single parent households, high unemployment, and high rates of poverty) (Adelman 

et al. 2001; Hipp 2007; Boggess and Hipp 2010). 

3.3.2 Routine Activity and Crime 

Apart from neighborhood characteristics, the literature also indicates a relationship 

between daily routine activities of the victims in relation to crimes. Broad changes in 

contemporary society and the way these changes have impacted on how we live everyday 

lives may also be highly related to criminal patterns. For example, Brantingham and 

Brantingham (1984) examined changing patterns of employment and the new criminal 

opportunities that are created when there are fewer people staying at home during the 

day. Similarly, Copes (1999) indicated a close link between daily routine activities and 

motor vehicle thefts. 

Explanation for this trend often follows the argument based on routine activity theory 

which states that the majority of criminals tent to act in a predetermined manner. These 
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tendencies to react in a similar way to the same opportunities across space are termed 

aggregated criminal spatial behavior (Brantingham and Brantingham 1984). The idea is 

that the behavior of victims may significantly explain the occurrence of crime. According 

to routine activity theory, crime occurs when there is an intersection in time and space of 

a motivated offender, an attractive target, and a lack of capable guardianship (Cohen and 

Felson 1979). It should be noted that there is no clear discussion of a target necessarily 

being a person (i.e. it can be buildings, cars, mailbox, people, or a wide variety of objects 

and things). There is also no clear definition of guardians. This could mean a person (e.g. 

police officer, security guard, shopkeeper, or even pedestrian) or CCTV surveillance 

systems. The routine activity approach is important as time is also considered as 

significant. People’s daily routine activities affect the likelihood they will be an attractive 

target who encounters an offender in a situation where no effective guardianship is 

present. Changes in routine activities in society (e.g., more and more women are 

working) can affect crime rates.  

Studies under the umbrella of routine activity theory focus mainly on the nature of 

targets, of guardians, of offenders, and spatial temporal relationships among them. It is 

concluded that “Crime opportunity is the least when targets are directly supervised by 

guardians; offenders, by handlers; and places, by managers” (Felson 1995, p.55). A 

handler is defined as a person who can influence the behavior of the offender. Such 

person may therefore be a parent or a teacher for example. A guardian can have some 

influence over the likelihood of crime. Guardians can be formal, such as police officer, or 

informal, such as the presence of a friend or pedestrians. The place manager is someone 

who is able to control a place, such as landlords, street stall owners, store owners, and 
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ticket clerks. The relationships among these factors can help the analysis of the causes of 

crime and the mechanisms that can influence those causes. Ultimately, it will contribute 

to crime prevention. 

This theory also indicates that available targets can exhibit different attractiveness to 

criminals based on the scale of “hot products”. Cohen and Felson (1979) posited that a 

product is criminally attractive if it is concealable, removable, available, valuable, 

enjoyable or disposable. Besides, from the spatial respective, attractive products are not 

evenly distributed throughout the urban space. While performing everyday routine 

activity, offenders will search for attractive targets with least guardians and make a 

decision to commit a crime by weighting up some of the pros and cons. He or she will 

ask the question of what the rewards are, against the chance of being caught. Saying so 

suggests that committing a crime is a fairly rational, trying to achieve some sort of desire 

or goal (Cornish and Clarke 1986; Clarke and Felson 1993). 

3.3.3 Environment and Crime 

In the literature, the link between environment and crime is well documented. For 

example, Rengert and Wasilchick (2000) examined the associations to residential 

burglary behavior and concluded that spatial exploration is very rare in criminal spatial 

behavior. Most criminals commit crimes in areas with which they are already familiar. 

(Matthews et al. 2010) suggested that built environment variables were significant 

predictors of property crime such as residential burglary, non-residential burglary, theft, 

auto theft, and arson, especially the presence of a highway on auto theft and burglary. 

Crime pattern theory (Brantingham and Brantingham 2008) is often found to provide 

various explanatory mechanisms behind this relationship. By exploring the space 
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dimension in which crime occurs, particularly the interactions of criminals and their 

physical and social environments, crime pattern theory helps to examine the “relationship 

of the offence to the offender’s habitual use of space” (Bottoms and Wiles 2002, p.638). 

The first important concept associated with crime pattern theory is cognitive map and 

awareness space in relation with crime opportunities. Being influenced by the daily 

activities and routines of their lives, even if offenders are searching for criminal 

opportunity, they will tend to steer toward areas that are known to them (Brantingham 

and Brantingham 1984). While offenders perform their daily activities, their repetitive 

journeys create a “cognitive map” (Brantingham and Brantingham 1984, p.358) of places, 

routes, and associations. These cognitive maps often contain a list of areas well known to 

them including both physical infrastructure, such as buildings, travel routes and stops, 

and social infrastructure, such as a network of connected buddies frequently met at a 

specific bar. The urban environment that offenders live in becomes a mosaic of places 

where they have no knowledge intermixed with familiar places. These islands of 

knowledge and the routes linking them become the “awareness space” (Rengert and 

Wasilchick 2000, p.61). Crime opportunities are distributed unevenly over space and 

intersect with an offender’s awareness space; that is where crime happens. There are 

several reasons why offenders might commit offences in familiar areas. It is helpful for 

them to know the layout of an area to move around and for a quick get away, if needed. 

And it has been suggested that offenders often value feeling “comfortable” in an area and 

not feeling as if they stand out (Rengert 1989; Wright and Decker 1994; Rengert and 

Wasilchick 2000).  
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The second crime pattern theory concept is the least effort principle. If there are 

similar targets in different familiar areas, offenders will often choose the one that requires 

the least effort to travel to and commit crimes. This is particularly true for instrumental 

crime, i.e. the crime committed to achieve a goal, and rather less applicable for 

expressive crime, i.e. more spontaneous, emotional and impulsive crimes done in anger 

such as violence, rape, assault. By saying so, the distances between offenders and crime 

sites are usually short. For example, it was found that the average journey from an 

offender’s home to a burglary target was about five kilometers (about three miles) for 

residential and non-residential burglary (Rossmo 1995; Wiles and Costello 2000). It was 

also found that many offenders were unemployed and indeed had never worked. They 

have no resources to venture into unfamiliar areas and their cognitive map was quite 

small as it did not include a workplace or many recreational opportunities (Wiles and 

Costello 2000). 

The third concept in crime pattern theory is crime generators and attractors. An urban 

landscape can be perceived as composed of three elements, nodes, pathways, and edges 

(Lynch 1960). A node is known as an activity place, i.e. a place that an individual is 

regularly drawn to, such as home, work, or school. As the offender has to travel from one 

node to another, they use the routes between nodes, which are defined as pathways. 

Edges exist between different parts of the city. They could not only be physical, such as 

the boundaries of commercial developments, or the border between a park and a housing 

complex, but also be perceptual such as borders between areas of different income or 

racial mix. For offenders, nodes are important as they sometimes tent to be the site of 

many offences. Pathways provide an opportunity to pass by and scout for new criminal 
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opportunities. Edges can be barriers to criminal acts in some cases but may also be 

opportunities in others. For example, if the edge is formed between two income or racial 

groups, criminals are often unwilling to cross as they would value the comfort of not 

standing out. However, the case is opposite if there is an expectation that outsiders are 

usual on the periphery of areas (i.e. the edge) and therefore there is less suspicion against 

strangers. In terms of crime opportunities, the spatial arrangement of the nodes, 

pathways, and edges is tied to concepts defined as crime generators and attractors. A 

crime generator is a particular area or node, where a large number of people is drawn for 

reasons that are not related to any particular criminal activity that they might commit, but 

presents conditions conducive to criminal acts such as time and place (Brantingham and 

Brantingham 1995; Bernasco and Block 2011). Examples of crime generators are 

shopping malls or parade grounds. Differently, crime attractors are places that create 

criminal opportunities and attract motivated offenders to the neighborhood or suburb. The 

lure of a known criminal opportunity draws offenders to the area, enticing them with the 

knowledge that the area has a reputation for a particular type(s) or illicit opportunity. 

Examples of these include red light districts, bar districts, and street drug markets.  

Crime pattern theory suggests that the level and the type of criminal activity can be 

generally predicted through an analysis of a city’s geographic environment, such as land 

uses patterns, street networks, and transportation systems. Also, according to this theory, 

the best way to lower crime is through situational crime prevention in which the focus is 

not on changing offenders but on reducing the opportunity to commit a crime in a given 

place. 
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3.3.4 Thefts of, and from, Motor Vehicles as a Particular Case 

Motor vehicle theft (MVT) is widely recognized as a major crime problem in the 

United States. In 2003, approximately 8.6 billion dollars was lost due to MVT, more than 

double the 3.3 billion dollars of estimated losses from burglary (Walsh and Taylor 

2007b). The public pays both direct and indirect costs. Most of the direct costs are passed 

on to vehicle owners through high insurance premiums. Indirect costs, although more 

difficult to estimate, are also significant. They include loss of earnings if the victim 

misses a day of work, the rental of  atemporary vehicle until the car is replaced, the 

investment in protective devices such as fuel cutoff switches, steering wheel locks, and 

alarms to protect the replaced vehicle, the investigation of MVT by law enforcement, the 

prosecution and adjudication of offenders. That is even without talking about the social 

cost through diminished quality of life experienced by the victim.  

In response for the significant impacts of MVT on society, a significant effort has 

been made in studying MVT, ranging from exploring offender decision-making processes 

(Copes 2003; Brantingham 2013), understanding and preventing MVT (Maxfield and 

Clarke 2004), analysing neighborhood structure variables relating to MVT (Copes 1999; 

Potchak et al. 2002; Rice and Smith 2002; Walsh and Taylor 2007b; Walsh and Taylor 

2007a; Roberts and Block 2013), to analyzing locations of thefts and recoveries (Lu and 

Thill 2003; Suresh and Tewksbury 2013). For this particular study, only the portion of the 

literature reporting neighborhood socio-economical structural covariates to high MVT is 

a focus for review.  

The neighborhood structural covariates refer to the fundamental demographic fabric 

of neighborhoods or communities: social economic status (SES), stability, and racial 
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heterogeneity. A strong connection of these variates in favor of social disorganization and 

rational choice theories has been acknowledged for general crime analysis. However, it is 

interesting that the hypotheses of these theories are rather controversial when MVTs are 

concerned (Rice and Smith 2002). On one hand, past studies on MVT indicated that areas 

of lower social economic status (SES) and/or high rate of unemployment tended to have 

more MVTs (Copes 1999; Miethe and McCorkle 2001). In addition, it is also suggested 

that increased MVT are associated with residential instability, meaning high population 

mobility, and more single-parent families (Miethe and McCorkle 2001). From a racial 

heterogeneity perspective, several studies have found vehicle theft rates to be greater in 

areas characterized by increased racial and ethnic diversity (Sampson and Groves 1989; 

Clarke and Harris 1992; Bursik and Grasmick 1993; Warner and Pierce 1993). Research 

by Davison (1995), however, found that MVT was less likely in heterogeneous 

communities but more likely in predominantly African–American communities. 

McCaghy et al. (1977) moreover suggested that African-Americans disproportionately 

commit the offense and a majority of auto thefts are committed by individuals with 

incomes below the median. The rationality behind these suggestions follow the social 

disorganization theory which argues that low social-economic status communities and 

unstable neighborhoods with racial diversity tend to experience informal social break 

down and have fewer resources to fight against invading criminal elements (Shaw and 

McKay 1942; Bursik and Grasmick 1993).  In contrast, other researches expressed that 

MVT concentrates among the socially advantaged and thus seems to negate the 

hypothesis of social disorganization theory. For example, Sanders (1976) states that 

automobile theft is generally committed by white middle-class youths in groups of two or 
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more, largely for the excitement. Some others also indicated MVT rates are link 

positively to their percentage of young male population (Rice and Smith, 2002) and that 

most MVT occurs for recreational and short-term use rather than for profits. Thus, areas 

with weaker economies will have lower rates of auto theft (McCaghy et al. 1977; Clarke 

and Harris 1992).  

There also exist studies aiming to understand the spatial autocorrelation of MVT and 

suggested that factors beyond a community's boundaries may influence that community's 

crime rate as potential offenders may have search spaces or routine travel patterns 

spanning several neighborhoods (e.g. Rice and Smith 2002). Walsh and Taylor (2007a, b) 

have used spatial regression analysis to control for MVT spatial autocorrelation. 

In contrast to MVT which has been extensively studied, theft from motor vehicle 

(TFM) is way far more common but has been taken less seriously in the criminal research 

community. Apart from a couple of police guide books on thefts of and from motor 

vehicles (Keister 2007; Clarke 2010), Clarke and Goldstein (2003) particularly analyses 

TFM for parking lots in the center city of Charlotte, NC but rather focus on the impacts 

of guardian factors such as fencing, lighting and attendants rather than spatial pattern on 

TFM. To the knowledge of the author, semantics and spatial associations to TFM remain 

to be studied in the literature. 



  

 

CHAPTER 4: RESEARCH QUESTIONS 
3  

 
4.1 A General Framework for SAR Discovery 

Chapter 2 of this dissertation not only underscored the potential for association rule 

discovery to contribute methodologically in a meaningful way in geospatial analysis but 

also discussed several unresolved issues with this approach, especially in dealing with 

distinctive characteristics of spatial data and integrating domain knowledge in the 

discovery process.  Existing efforts seem to have overlooked the spatial aspects 

embedded within the geospatial problems at hand. A major contribution of this research 

is therefore to address these issues and to propose a comprehensive framework for spatial 

association rule mining and discovery, dubbed hereafter the SpatialARMED framework.  

The development of this framework contributes substantially to the theoretical body 

of the literature in both spatial data mining and entity-based spatial analysis by 

facilitating analysis and mining procedures to identify spatial and aspatial associative 

factors for the phenomenon under study. The framework is seen to be potentially 

applicable to a variety of domains of application, ranging from social, economic, and 

public health to seismological and environmental studies, including social analysis, 

criminology, traffic accident analysis, education performance, health risk analysis, retail 

marketing, facility management, and ecology. Problems that particularly benefit from this 

framework can be specified as  follows: 



78 
 

• Problems of spatially discrete point data analysis: This concerns a set of point 

events which for instance represent locations of crime incidents in a 

neighborhood, of instances of a certain disease, or of traffic crashes in an area. In 

this case, each event occurs at a particular location falling within an area 

characterized by one or more variables. Examples of areas include blocks, block 

groups, counties, districts, and census sub-divisions associated with various socio-

economic variables. Functionality is sought to analyze the pattern of the event 

locations (i.e. clusters of high or low values, their sizes and shapes), identify sets 

of associative variables to these clusters, and identify spatial interactions between 

these clusters and sets of collocated geo-features represented by lines or areas. 

• Problems of area or network segment data analysis: This concerns events that 

have been aggregated to a set of areal units (e.g. blocks, block groups, counties, 

districts, census sub-divisions, etc.) or of network (e.g. streets, rivers, or sewers, 

etc.) segments. In this case, there are one or more variables whose values are 

measured over this set of units. The objectives are to detect sets of categorical 

variables which are often associated with each other, model the spatial 

arrangement of these values (i.e. identify clusters of high or low values, their size 

and shape), and detect spatial associative interactions between analysis units and 

sets of collocated geo-features represented by points, lines, or areas, as well as 

correlative relationships between analysis units and identified clusters of 

variables. 

It should be noted that the framework proposed herein is applicable to both spatial 

point processes and areal data. One could carry out point-to-area or area-to-point 
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transformations using Thiessen polygons or centroids respectively. Similarly, point-to-

network mapping can be used to transform point data to network-based data. The basic 

aim is to understand associations, both spatial and aspatial, of the spatial arrangement of 

points or areal values, and maybe use this information in making predictions or 

formulating preventive policies. At the difference from traditional spatial statistical 

approaches such as spatial regression analysis, this framework utilizes an association rule 

mining approach and provides innovative visual analytics with knowledge-based 

evaluation towards the extracted patterns. 

The overarching research goal is to determine how to develop the SpatialARMED 

framework. The central task in this process is to advance an algorithm for spatial 

association rule mining and discovery which considers essential characteristics of spatial 

data, including spatial relations and spatial dependencies while emphasizing visual 

analytics for evaluation. This includes the capabilities (1) to identify spatial dependence 

structures, including spatial relations and dependencies, that exist in the data, (2) to 

efficiently represent these spatial components using predicates, (3) to mine spatial 

association rules, and (4) to evaluate the interestingness of these rules. The specific 

research questions numbered equivalently to these tasks are: 

1.1. What spatial components should be considered in SAR mining and how should 

they be defined? 

1.2. How to robustly identify the existence and quantify the structure of spatial 

dependencies (i.e. clusters of dynamic sizes and shapes) for the geospatial 

phenomena being studied?  
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1.3. How to model spatial relations among geo-features of database as well as 

relations between features and identified clusters? 

2.1. How to identify a set of linguistic expressions to represent the extracted spatial 

relations and spatial dependencies?  

2.2. How applicable is a fuzzy-set mapping mechanism to map the quantitatively 

measured values of spatial relations and dependencies to the linguistic expressions 

defined above, for the purpose of generating spatial predicates with a certain 

degree of automation?  If so, what are the most suitable membership functions? 

3.1. Is the Apriori-based algorithm implemented in the existing software packages 

applicable to the SAR mining process? If not, what would be an alternative 

solution? 

4.1. How to utilize effective AR visualization approaches, particularly for a 

significant number of spatial association rules? 

4.2. How can a geospatial knowledge base be used to assist the SAR discovery 

process in term of evaluating the mined results? How to establish knowledge-

based criteria used in SAR assessment for interestingness? 

4.3. How can these established criteria be integrated into a visual analytic system?  

4.2 Framework Validation 

Another fundamental goal is to validate the proposed framework. In this study, 

the literature reviewed in Chapter 3 points to encouraging prospective frameworks for 

spatial association rule mining for use in crime analysis, as an alternative to traditional 

methodologies such as spatial statistical analysis. Thus, the robustness of the proposed 

SpatialARMED framework particularly for criminology is put to the test so as to endorse 
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existing spatial crime theories and to discover new crime patterns applicable to the case 

of Charlotte, North Carolina. The specific research questions are: 

1.1. Is there any statistical evidence for the existence of high or low crime 

neighbourhoods in Charlotte, NC? If yes, how to identify the location, size and 

shape of these neighborhoods? 

1.2. Can aspatial and spatial associative factors of crime be identified using the 

SpatialARMED framework? Are these factors consistent with current state of 

knowledge in spatial crime analysis?  

 
 
 



 

 

CHAPTER 5: SPATIALARMED FRAMEWORK DEVELOPMENT
 

5.1 The SpatialARMED Framework 

The proposed SpatialARMED framework illustrated in Figure 19 can be briefly 

described as a composition of five general levels: spatial data and knowledge sources, 

spatial data analysis, predication, association rule mining, and visual evaluation of mined 

result. 

Regarding the first, the process of SAR mining and discovery starts at the geographic 

databases and the geospatial knowledge base depicted as the bottom level of the 

framework in Figure 19. The knowledge base comprises geo-ontologies, concept 

hierarchies, and to some extent, well accepted spatial associations and collocations 

reinforced by well-known theories.  

The second level performs spatial analysis and seeks to identify spatial components, 

particularly in term of spatial dependence and heterogeneity structures, prior to executing 

spatial joins which enable the extraction of spatial relations and regional linkages 

entailing these identified structures. As discussed earlier, although the SAR mining 

literature fully recognizes the issues related to unique characteristics of spatial data, 

approaches to model and incorporate spatial dependence structures into the SAR mining 

framework remain rather limited. While the tradition of spatial statistical analysis and 

modeling is to use spatial weight W matrices to capture the spatial dependence structure 
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Figure 19: SpatialARMED - a comprehensive framework for SAR mining and discovery 

Data and 

Knowledge 

Source 
  

Non-Spatial 

Data 

Spatial Data 

Warehouse 

  Spatial 

Databases 
    

Geospatial Knowledge Base 

Ontologies 

Concept Hierarchies 

Known Associations 

Known Co-locations 

  

  

Spatial Join 

Spatial 

Data 

Analysis  
Modeling Spatial Dependencies 

Predication 
  

  
Transformation  

Fuzzy-set Mapping 

  Apriori-based Algorithm AR 

Mining 

Other AR Mining 

Algorithms 

    Visual Analytic with 

Subjective Evaluation  

Visualization 

and 

Evaluation 

Redundant 

Rule 

Elimination 

Aspatial 
Data  

 

  

 

Modeling Hot & Cold Spillover Effects 



84 

 

of dependence, SAR mining proceeds differently by not deploying such mathematical 

expressions but linguistic ones (i.e. spatial predicates). In order to ensure the inclusion of 

spatial dependence effects, there must be a formal realization on how spatial components 

are first identified, and then represented within these spatial predicates. 

A very similar challenge was encountered by spatial analysts and econometricians 

over the last three decades, which resulted in what has been referred to as a struggle 

“with the problem of a proper dependence representation in the W matrix.” (Getis and 

Aldstadt 2004, p.91). As an essential part of spatial modeling, spatial weight matrices are 

supposed to be the formal expression (Anselin, 1988), or the theoretical conceptualization 

(Getis and Aldstadt 2004), of the spatial dependence structures. Apart from very general 

suggestive rules of thumb are provided for the specification of weight matrices in (Stetzer 

1982; Florax and Rey 1995; Griffith 1996), a wide range of visions exist on how to create 

this theoretical conceptualization. These include making use of spatially contiguous 

neighbors, inverse distances raised to some power, lengths of shared borders divided by 

the perimeter, all centroids within distance d, n nearest neighbors, among others. A 

majority of spatial analysts and econometricians urge special attention to identifying the 

optimal weight matrices, or risk model mispecification (Stakhovych and Bijmolt 2009; 

Kostov 2010; Wang et al. 2012). Others have argued that there is “little theoretical basis 

for this commonly held belief, if estimates and inferences are based on the true partial 

derivatives for a well-specified spatial regression model” (LeSage and Pace 2010); some 

even feel it might be best to not use weight matrices at all (Folmer and Oud 2008). For 

those who are still searching for the correct weight matrix specification, (Getis 2009; 

Harris et al. 2011) provide excellent reviews. 
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Back to SAR mining, a similar problem of proper dependence representation is 

confronted in the spatial predicates. In these cases, the spatial dependence structure ought 

to be embedded into linguistic-based expressions designed for spatial attributes and 

spatial relations. For example, considering the rule: if “block-group A is next to block-

groups of high crime” then “block-group A has high crime”, the problem of a proper 

dependence representation is found in the way the predicates “high crime” and “next-to” 

are defined.  

First, how high (or low) should the specifications of “high” (or “low”) are? While in 

some cases such as human height or ages, common sense could be used to define the 

break points of these classes, is it more difficult for other socio-economic measures such 

as income, education, racial heterogeneity, etc… For the later, one might rely on 

subjective survey-based definitions of high or low, and others argue for the use of more 

objective based quantization approaches. It is argued here that the definition of high or 

low should be objectively data-driven derived and tested for significance under the form 

of clusters, i.e. clusters of high or low values. Thus objects located within clusters of high 

values will have values classified as “high”, ones being within clusters of low values will 

have values classified as “low”, and anything lying outside are for medium values.   

Second, should the specification of “next-to” be based on the notion of contiguity 

with a preconceived structure, or distance-related measures, or shared-boundary related 

measures, or some other specification of greater complexity? Given the nature of spatial 

predicates and SARs, it perhaps is appropriate to specify the spatial dependence structure 

as linkages (intra- and inter-) between neighborhood regions (i.e. clusters). The capability 

to accurately identify the location, size and shape of clusters and to model the spatial 
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spillover effects of the clusters allows the generation of spatial predicates encompassing 

characteristics of and spatial relations to cluster-based neighborhoods, thus enabling the 

discovery of possible functional implications due to spatial spillover effects. In addition, 

as SAR mining and discovery is often applied to big data, robust, defensible, and data-

driven approaches are preferred. 

Getis and Aldstadt (2004) suggested an approach of spatial autocorrelation grid-

searches using local statistics. By this approach, the spatial autocorrelation structure 

embedded in the data can be extracted, and subsequently, used for creating spatial weight 

matrices or for identifying clusters. In 2006, this approach is explicitly demonstrated 

under the form of an algorithm named AMOEBA (A Multi-directional Optimum 

Ecotope-Based Algorithm). Rogerson and Kedron (2012) applied this approach to 

examine the optimal weights for focused tests of clustering and referred to it as desirable. 

Being not only methodologically sound and robust in identifying irregular spatial clusters 

(i.e. whatever forms empirically exist in the data), an AMOEBA-based approach is also 

flexible for use with various data types (i.e. point, polylines, and polygons). Although this 

approach is potentially computationally expensive, high performance computing can be 

deployed to gain better performance.  

The next level of the framework deals with the formation of predicates (i.e. 

predication), for both aspatial and spatial components. This involves transformations of 

the quantitatively measured (e.g. numeric) values of these components to qualitative 

linguistic expressions (e.g. categories of low and high, near and far, or big and small, 

etc.). In some cases, geo-ontologies and semantics play an important role during this 
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process, especially in defining membership functions. The SpatialARMED framework 

applies principles of fuzzy-set mapping to accomplish this task. 

The third level of the framework, data mining, focuses on finding frequent sets and 

generating rules using the set of aspatial and spatial predicates generated in previous 

level. The literature suggests various different association rule mining algorithms as 

reviewed in Sections 2.2 and 2.3 of Chapter 2. The SpatialARMED framework utilizes 

the  existing Apriori-based approach implemented in the LUCS KDD-ARM  software 

package (Brin et al. 1997b; Coenen 2004) along with support and confidence cut off 

strategy for finding frequent item sets and association rules.  

The final level of this framework comprises interactive visual analytics to support the 

evaluation of mined rules. Although significant efforts have been devoted to association 

rule visualization as reviewed in Section 2.3.4 of Chapter 2, most of them are not capable 

of handling a large rule set and to provide a user friendly environment for interaction. 

Thus, they stop short of providing a true visual analytic environment. Some advanced 

visualization approaches such as factorial methods (Benzecri 1973; Greenacre 1993) that 

support sub-group visualization are more effective. Such visual analytic systems, 

however, require the availability of proficient evaluation criteria for rule interestingness 

in order to facilitate sub-group division and ensure discovery efficiency. The evaluation 

criteria basically provide standards to assess the interestingness of a rule; this is often 

based on statistical measures for the dataset in use (i.e. objective types) or based on 

existing knowledge (subjective types) as elaborated in Section 2.3.4 of Chapter 2.  

While the field of visual analytics or visual data mining has been fast emerging over 

the past few years, literature shows very limited discussion related to the formalization of 



88 

 

the subjective criteria for the evaluation of spatial association rules. This research aims at 

enhancing an existing AR visualization approach by proposing a set of subjective criteria 

for SAR evaluation based on geospatial domain knowledge.  

To illustrate the algorithms and specifications associated with each level of the 

SpatialARMED framework, a common example is used hereafter. This concerns a 

geospatial dataset containing a set of participating feature classes A, B, and C, part of the 

so-called dataset ABC. One wishes to discover aspatial and spatial associations to C 

derivable from this dataset. Therefore, C is regarded as the reference feature, while A and 

B are task-relevant. In order to implement the SpatialARMED framework, units of 

mining (UoM) are required to be identified (or constructed). In a relational database, 

these UoMs are equivalent to the so-called “tuples”. In a single relational database (i.e. 

table), the UoMs (or tuples) are basically represented by the rows of the table with unique 

identifications. In a spatial database, the UoMs take the form of either points (e.g. 

houses), line segments (e.g. street segments), or polygons (e.g. census tracts). Association 

rules are then mined by regarding these UoMs as transactions and the mapped attributes 

(aspatial and spatial) as items.  

Figure 20 illustrates dataset ABC. In this case, A is a set of all houses within the 

study area. B is the set of all shopping centers with related information such as their sizes 

and popularity ranks. C is a set of census blocks with demographic information such as 

income and employment.  A single relational spatial database can be constructed for this 

case as shown in Table 1 in order to facilitate association mining. The UoMs in this case 

can be blocks. Using the SpatialARMED framework, the objective is to find aspatial and 
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spatial association rules involving not only the aspatial attributes of the participating 

features but also the spatial components that exist within or between them. 

 

 
Figure 20: Spatial data set ABC for the SpatialARMED framework demonstration 

Table 1: A single relational table derived from dataset ABC 
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The ultimate goal of SAR mining with SpatialARMED is to discover spatial 
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effects among participating factors. In order to assure accurate results, identifying spatial 

dependence structure involving concentrations of high values (i.e. hot spots) and of low 

values (i.e. cold spots) as well as modeling the spatial spillover effect of these spots for 

each and every factor become a critical task for SpatialARMED. From the perspective of 

predication, the capability to accurately identify the location, size and shape of these 

spots (i.e. clusters) allows the generation of spatial predicates expressing “within” or 

“contain” relations. Modeling the spatial spillover effect of the clusters, in addition, 

allows predicates of “near-by”, “next-to”, “under-strong-impact”, “under-low-impact”, 

etc. relations. SpatialARMED differs from existing approaches in SAR mining due to its 

capability to mine whatever spatial dependence structure exists in the data, rather than 

utilizing predetermined concepts. Moreover, for the first time in the SAR mining 

literature, spatial spillover impacts are modelled and integrated into the predication 

process. The following subsections provide detail discussion on algorithms and 

implementation aspects of these particular tasks. 

5.2.1 AMOEBA for Spatial Dependence Structure Quantification 

AMOEBA (A Multi-directional Optimum Ecotope-Based Algorithm) is originally 

proposed in (Getis and Aldstadt 2004; Aldstadt and Getis 2006) to model spatial 

autocorrelation using local statistic tests. Although designed for areal analysis, AMOEBA 

deployment on spatial point processes is feasible by point aggregation to meaningful 

areal or network-segment units.  

Functionally, starting from one or more ‘‘seed’’ spatial units, AMOEBA searches and 

tests for local spatial dependence in all directions until revealing the totality of the spatial 

dependence that is subsumed in the data. Local standardized Gi* statistics are used to test 
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for spatial dependence. A positive Gi* indicates that there is clustering of high values 

around analysis unit i; a negative number indicates low values. The Gi* values are 

estimated cumulatively around each “seed” observation as distance increases from it. 

When these values fail to rise absolutely with distance, the cluster diameter is reached. 

This implies that any continuity in spatial association or dependence over distance ends at 

that diameter distance. This distance is often called critical distance, d. For a given 

location	i, the statistic Gi* is defined as: 

OP∗ = ∑ GPQ�QRQS� − �U ∑ GPQRQS�

VWX∑ GPQ� − Y∑ GPQRPS� Z�RQS� X − 1
 

where N is the number of spatial units, XB is the value of the phenomenon of interest at 

location j,	 X̂ is the mean of all the values, WDB is an indicator function that is one if unit j 
is in the same designated region as unit i and zero otherwise and 

S = `∑ ab:cbd8e −�X̂��. 

The null hypothesis for a test based on this statistic is that there is no spatial dependence 

between the value found at a site and its neighbors within the designated region. 

 The AMOEBA approach based on OP∗ can be described as follows: At the outset of 

the AMOEBA procedure, the OP∗ value for the spatial unit � itself is computed. This value 

is denoted OP∗�0� and the cluster consists of just the �fg unit. A OP∗�0� value greater than 

zero indicates that the value at location � is larger than the mean of all units and, 

correspondingly, a value less than zero indicates that the value at location � is smaller 

than the mean. The next step is to compute the OP∗�1� value for each region that contains � 
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and all combinations of its contiguous neighbors (see Figure 21a). The combination that 

maximizes the absolute statistic OP∗�1� becomes a new high or low value cluster. At each 

succeeding step, contiguous units that are not included in the cluster are eliminated from 

further consideration. Likewise, units included in the cluster remain in the cluster. 

Subsequent steps evaluate all combinations of contiguous neighbors and new members of 

the cluster are identified. This process continues for h number of links, with h =
2, 3, 4, … ,l!� (see Figure 21b). The final cluster (h	mn) is identified when the addition 

of any set of contiguous units fails to increase the absolute value of the OP∗ statistic. 

Figure 21c shows a complete AMOEBA cluster in a raster setting. The maximum number 

of links in this case is five (h	mn = 5). After ecotopes for each and every cell within the 

study area are identified, the AMOEBA algorithm is continued by keeping the non-

overlapping ecotopes with the highest OP∗	values. Final ecotopes (or clusters) are reported 

as the result of performing Monte Carlo-type permutation test to calculate the statistical 

significance of each ecotope.  

The complication of AMOEBA-based spatial dependence structure identification 

depends very much on the data size, i.e. the number of cells over which ecotopes should 

be identified, and the configuration of the spatial dependence structure involved, i.e. the 

number of neighbors whose combinations should be tested for significant G*. A parallel 

computational implementation of the AMOEBA algorithm is possible for large databases 

in order to increase the computational efficiency (Widener et al. 2012). 
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Figure 21: AMOEBA procedure (adapted from Aldstadt and Getis 2006) 

Fundamentally, the parallelization of the AMOEBA process involves two phases as 

shown in Figure 22. The first deals with data decomposition and distribution to parallel 

high performance computing (HPC) cores while the second recompiles the parallel HPC 

outputs, performs ecotope overlapping, carries out significant tests, and generates final 

(a) 
Stage one in AMOEBA determination: 
the bold arrows represent those links to 
units that are to be included in the 
cluster. The light arrow indicates a link 
to a contiguous neighbor that will not 
be included in the cluster. 

(b) 

Stage two in AMOEBA determination: 

the bold numbers represent those cells 

that are to be included in the cluster at 

stage 2. 

(c) 

Completed AMOEBA pattern: the dark 

boundary outlines the final shape of the 

cluster. 
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spatial dependence structure, i.e. clusters of high and low value concentrations with 

associated G* values and cell members. 

 

 
Figure 22: AMOEBA parallel computing workflow 

 
Figure 23: AMOEBA parallel processing phase 1 with regional decomposition  
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In phase 1, a regional decomposition scheme (Widener et al. 2012) as described in 

Figure 23 can be chosen to decompose the input data. With this approach, each 

computing processor is aware of the number of seeds (or cells) it is responsible for. The 

parallel data decomposition algorithm passes a starting location and end location to each 

processor, that delineate the region of the dataset it must calculate. The AMOEBA 

algorithm is set up to run at each processor to identify ecotopes for every seed within the 

sub-region it is responsible for, and output the results into text files. These text files are 

input into data recompilation algorithm in Phase 2 which performs ecotope overlapping 

and significance testing. 

Performing spatial clustering on various aspatial attributes allows the identification of 

neighborhoods characterized by specific factors such as income (i.e. rich or poor), race 

(i.e. black, white, or Hispanic), house tenure (i.e. own or rent) or crime (i.e. high crime or 

low crime), to name a few. Referring to the example of using dataset ABC, spatial 

analysis using AMOEBA identifies clusters of houses with high or low values as well as 

clusters of BLG-based population with high or low incomes as shown in Figure 24. 

Accurate information on the cluster sizes is also obtained as a result of the AMOEBA 

procedure.  
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Figure 24: An example to demonstrate the AMOEBA-based clustering result for the 

dataset ABC  

5.2.2 Spatial Dependence Structure Spillover Effect Model 

The subsequent step in the SpatialARMED framework is to model the spatial 

spillover effect of the identified clusters. While the purpose of performing spatial 

clustering is to identify the exact location and dimension of the clusters, the objective 

here is to quantify the spatial diffusion impact of these clusters. Integrating these impacts 

in SAR mining entails the capture of functional associations due to indirect spatial impact 

according to the Waldo Tobler’s first law of geography, “everything is related to 

everything else, but near things are more related than distant things.” For instance, with 

the ABC dataset, one will certainly be interested in rules related to house units located 

within the high income neighborhood but also, in the ones related to houses located next-

to or under the influence of high income neighborhoods. So the “next-to” or the influence 

impact should be properly modelled for accurate implication.  

 

 

  

  

Feature class A (e.g. houses)  

Cluster of high value 

Cluster of low value 

Feature class B (e.g. 

shopping center) 

Feature class C (e.g. census block) 

Cluster of high income population 

Cluster of low income population 
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Figure 25: Distance weighted spillover effect models 

The challenge of this task involves the identification of a model which accurately 

represents the spillover impact of the clusters over space, which substantially depends on 

the size, shape, and internal structure of the clusters as well as the nature of the spillover 

phenomenon itself. Distance decay functions implying spatial diffusion at different rates, 

as shown in Figure 25, should be taken into consideration during model construction. The 

way we model the rate of change in the spatial spillover effect regarding to a particular 

source of diffusion has a significant impact on the values of the spatial predicates, for 

instance, “next-to” or “under-influence-of” this source. A sensitivity analysis is 

recommended then in order to examine the impacts on mined associations of alternative 

specifications of the spillover effects such as different distance-based diffusion rates. 

As the result of the AMOEBA-based spatial clustering process, each of the clusters is 

associated with a list of members, the standardized cluster G* value indicating the level 

of concentration, or high or low values. Consider an example dataset with variable V for 

which the AMOEBA spatial clustering algorithm identifies a set of positive G* clusters, 
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 op = �qr�, … , qrR
. Each of these clusters qr contains m members, qr = ���, … , �	
. 
As the simplest case, the spatial spillover effect of concentrations of high values on 

variable v at location j, #�lp�s�, can be modelled as a function expressing the diffusion 

of cluster G* values over space, i.e. cluster G* divided by distance to the cluster centroid 

raised to power α as shown in Equation (1) and Figure 26.  

simu(j) = ∑ vw∗xwyzD∈.{,                (1) 

 

 
Figure 26: Modeling the spatial spillover impact using cluster G* values 

A similar formulation can be used to model the impact of negative G* clusters, 

oR � �|r�, … , |r}
. Each of these clusters |r contains k members, qr � ���, … , �~
. The 

spatial spillover effect of concentrations of low values for variable v at location j, 

#�lR�s�, 
simR�j� � ∑ vw∗xwyzD∈.�,  .           (2) 

The drawback of this model is that it overlooks the spatial dimension and internal 

structure of each cluster. Although the cluster G* value indicates how strong the 

  j 

simu�j� � O4�8∗
'P�Q� H	O4�:∗

'P�Q�  

 

i1 

i2 
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concentration of high or low values is, considering the cluster as the whole, it does not 

inform about the homogeneity of high or low values contributed by cluster members (i.e. 

information regarding high or low value distribution within the cluster itself). In addition, 

using cluster centroids for spatial diffusion modeling leaves out impact differences due to 

cluster sizes and shapes.  

 

 
Figure 27: Modeling the spatial spillover impact using individual Gi* values  

An alternative is to consider every member (i.e. cells) of each cluster and use their 

individual G* values instead of the cluster G* values to model the spatial spillover 

impacts as demonstrated in Figure 27. By this way, cluster size, shape, and internal 

variation of the individual G* values within a cluster will be taken into account. Spatial 

spillover effects of a variable v at location j, simu�j� and sime�j�, can then be modelled 

as:  

simu�j� � ∑ ∑ vw∗xwyzD∈��,D�B4�∈�{       (3) 

Sime�j� � ∑ ∑ vw∗xwyzD∈��,D�B��∈��      (4) 

  j 

simu�j� � 2 OP∗'PQ�
�

P∈4�8
H	 2 OP∗'PQ�

�

P∈4�:
 

 

i2 
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where op is the set of all clusters of high values in the study area, oR is the set of clusters 

of low value in the study area, qr is a cluster of high value, |r is a cluster of low value, 

and i is a cluster member. 

Apart from modeling the spatial spillover of hot and cold spots, it is proposed here for 

the SpatialARMED framework to consider the spatial spillover impact of point facilities, 

referred here as points of interest (POI) which could potentially have associations to the 

phenomenon under study. For example, consider the dataset ABC when there is a need to 

model the spillover impact of shopping mall i to a particular location j, to generate 

predicates related to the potential population of shoppers. Particular characteristics of the 

malls could be considered in the model. These could potentially be the size, number of 

shops it contains, or its popularity index, to name a few. This is useful, for example from 

the perspective of crime generators or crime attractors. Generally, a gravity-type model 

can be applied to model the spillover impact of POI as follows: 

Simp���j� � ∑ �wxwyzD∈u��      (5) 

where POI is a set of POIs, �P is the attribute of interest, and d is distance. 

Due to the complexity of spatial diffusion for different phenomena, examination 

using different types of models is highly recommended. 

5.3 The Process of Predication 

Predication is the process of generating predicates expressing aspatial or spatial 

attributes of both reference and relevant variables for SAR mining. In the SpatialARMED 

framework, this process is facilitated by the miner’s decision on choosing the unit of 

tuples, along with spatial join operations to extract spatial relations among mining objects 
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based on the spatial dependence structures and their spillover effects identified from the 

previous step, and a numeric-to-nominal mapping mechanism for predicate values. 

5.3.1 Unit of Tuples and Effect of MAUP in SAR Mining 

The very first task in the predication process is to identify the unit of tuples, i.e. the 

unit of each record in the relational table to mine. For example with the dataset ABC, the 

unit of tuples could be houses, with house price as decision attribute. So predicates for 

each house will be generated and recorded as a row in the final table to mine. 

Alternatively, the unit of tuples could be areal block groups and each row of the final 

table to mine contains attributes for one block group. In such a case, one could generate a 

variable expressing the number of expensive houses, e.g. with price more than 

$2,000,000, located within each block group.  

Data manipulation is important during this process and SAR miners need to be aware 

of the modifiable areal unit problem (MAUP) (Openshaw 1983). This problem will take 

its effects in SAR mining when miners use data of different spatial resolutions and chose 

the one with highest resolution as unit of tuples. In this case, data with lower spatial 

resolution is mapped onto the one of higher resolution with a one-to-many relationship. 

This causes the frequent item set count and confidence estimation, and therefore rules, to 

be biased in SAR mining. In order to avoid this issue, it is recommended to use data with 

the lowest spatial resolution as unit of tuples when mining spatial association rules. 

5.3.2 Spatial Join Operation 

The purpose of the spatial join process is to extract all the spatial relations between 

features associated with reference attributes and those with task-relevant attributes, 

including spatial dependence structures identified from AMOEBA-based clustering. 
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Theoretically, several spatial relationships between objects exist, including topology-

based, distance-based, and direction-based. The topological relationships are invariant 

under homeomorphisms, such as rotation, translation and scaling. Their semantics is 

precisely defined by means of the nine-intersection model proposed by (Egenhofer and 

Franzosa 1991). The distance between two points is typically computed based on 

Euclidean measures, while the distance between two geometries (e.g., two areas) is 

defined by some aggregate functions (e.g., the minimum distance between two points of 

the areas). Distance relationships can be non-metric, especially when they are defined on 

the basis of a cost function which is not symmetric (e.g., the drive time). Directional 

relations can be expressed by the angle formed by two points with respect to the origin of 

the reference system or by an extension of Allen’s interval algebra, which is based on 

projection lines (Mukerjee and Joe 1990). ArcGIS software and openGIS source codes 

offer a variety of implemented functions and operations which can be used to perform 

spatial joins in the process of SAR mining and discovery. Details in terms of techniques 

and algorithms for these functions and algorithms can be found in (Jacox and Samet 

2007). For large geospatial databases, some advanced algorithms can be utilized to 

enhance the spatial join process in SAR mining, as reviewed in Section 2.3.3. 

SpatialARMED, in particular, focuses on the extraction of spatial relations in the 

context of the AMOEBA-based spatial dependence structures of hot and cold spots as 

well as with the spillover impacts of these spots. As indicated earlier, this allows the 

generation of predicates expressing spatial relations, such as “within”, “next-to”, “under-

effect-of”, among the mining objects and associated features. 
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Table 2: An example of spatial join within the SpatialARMED framework  
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Concerning the example of dataset ABC, the spatial join process results in the 

formation of spatial relationships among features A, B, and C. with respect to the 

identified “neighborhoods”, i.e. clusters, of expensive houses, of high income, of low 

employment, of high crime or the spillover effects of popular shopping malls and ethnic 

heterogeneity, as described in Table 2. 

5.3.3 Numeric-to-Nominal Mapping Mechanism  

As discussed earlier in Section 2.3.2, the AR literature recognizes that fuzziness may 

be an issue with association rules because linguistic expressions are used in both aspatial 

and spatial predicates. This is the result of a process in which transformation from 

quantitative numeric ranges into qualitative linguistic-based categories are required. For 

instance, with the example using dataset ABC, in order to mine association rules out of 

Table 2, one needs to categorize the values of attributes into “EXPENSIVE”, “HIGH”, 

AND “STRONG INFLUENCE”.  

Predicates

UoA 
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In the SpatialARMED framework, fuzzy-set mapping is used to perform such 

transformation. This results in the use of so-called fuzzy spatial association rules. A 

review of the extant literature along this line of research was provided in Section 2.3.2. 

By definition, a fuzzy set is a set without a crisp, clearly defined boundary. Fuzzy sets are 

used to describe vague concepts while admitting the possibility of partial memberships to 

several concepts. The degree an object belongs to a fuzzy set is denoted by a membership 

value, or degree of membership, between 0 and 1. A membership function (MF) 

associated with a given fuzzy set maps an input value to its appropriate membership 

value (Klir et al. 1997). The membership function fundamentally is a curve whose shape 

is specified to suit the mapping logic while allowing simplicity, convenience, speed, and 

efficiency. For applications which involve the determination of complex membership 

functions, adaptive training algorithms can be optimized. For this study in particular, if 

one considers the standardized distribution of a certain attribute, a fuzzy mapping 

mechanism using trapezoidal membership function for a three-category classification 

defined on the range of variation of this attribute as shown in Figure 28 can be used. This 

approach is widely used and easy to implement; also, this type of function is very 

efficient in mapping numeric data range into High-Low catergories based on fuzzy 

thresholds which is often the case for socio-demographic data and distance-based 

diffusion effects. 
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Figure 28: Normal distribution  

5.4 Visual Analytics with Subjective Evaluation 

SpatialARMED aims at proposing a visual analytic system to evaluate the 

interestingness of mined rules. The capability to support subjective evaluation and 

interactive visualization is an advantage of the framework. As proposed in Figure 29, 

there are two visual process pipelines for the SpatialARMED framework: one belongs to 
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the original spatial dataset and the other is for mined rules. During the first, 

geovisualization with mapping techniques assists the steps of spatial data exploratory 

analysis. This is particularly important in the processes of spatial autocorrelation analysis 

and spatial join. After spatial association rules are mined, the overwhelming quantity of 

them needs visual representation for assessment. The second visual pipeline thus is 

designed to handle this matter. Every step in these two visual processes involves 

interaction with the analyst for the purpose of selecting the most efficient visual 

representation, the most suitable evaluation criteria, and the most optimal subgroup 

selection, as well as for harvesting insights which could beneficially support the 

discovery of new and interesting rules. The system is developed as a stand-alone platform 

while providing rooms to either adopt or advance existing effective visualization 

techniques reviewed in Section 2.4.1. The 3D matrix AR visualization approach proposed 

in (Wong et al. 1999; Hofmann and Wilhelm 2001) is adopted here. This approach is not 

the most effective choice for SAR visualization in term of user interaction with dynamic 

rule selections, especially when dealing with a large number of rules. However, in this 

study, it works well under the SpatialARMED framework due to the proposed rule-

subgroup evaluation scheme (which will be discussed in the following paragraphs). In 

addition, the visual attractiveness and simplicity of the 3D matrix visualization method 

create efficiency for the rule evaluation process. The availablility of the open-source code 

also brings valuable advantages for inexperienced programmers who want the flexibility 

for potential customization.  

While visual components and visual process pipelines shown in Figure 29 help create 

the machine-human interactive interface for analysis, the assessment mechanism of 
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SpatialARMED rule evaluation remains at the so-called domain knowledge integrated 

rule evaluation process proposed in Figure 30. Being designed to work with big data, the 

crucial components of this evaluation process are the library of known and unknown 

associations and interactive mechanism for subgrouping rules for visual analysis.  

The library of known and unknown associations comprehensively represents the 

domain knowledge base which will be used later to subgroup and evaluate the mined 

rules. Known association are defined to be ones which are either well documented in the 

related literature or well acknowledged by a domain expert as having an association to 

the phenomenon under study. On the other hand, unknown association are the ones that 

are either not recognized or for which there exists a controversy as having an association 

to the phenomenon under study. Constructing the library of known and unknown 

associations is a challenging task that depends on the level of complexity in terms of 

integrated domain knowledge and the capability for expansion. For example, one could 

consider constructing a library of known and unknown associations which permits 

complex inter-association relationships (e.g. combination of different asscociations at 

different level of contributions) and/or allowing integration of knowledge from various 

sources or various domain experts. For this study, the simplest format is considered, 

which uses a relational table expressing knowledge of known (K) or unknown (U)  
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Figure 29: Pipeline and Components of Visual Analytic Process in SpatialARMED  
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Figure 30: SpatialARMED domain knowledge integrated rule evaluation process using 

interactive branching approach 
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associations between phenomena to proposed associates. So the columns are for 

phenomena under study (e.g. crime) and the rows are for its associates.   

Once the library of known and unknown associations has been established, it will be 

used in the rules evaluation process as the existing domain knowledge. Regarding a 

particular library, one could certainly question what is stated as known or unknown. 

However, with SpatialARMED, it is straightforward to modify or extend the libaray as 

needed and rerun the rules evaluation process for corresponding set of rules. 

Using the established library of known and unknown associations, mined rules are 

classified into two categorized: confirmative rules and discovery rules, as shown in 

Figure 30. Confirmative rules are the rules whose all predicates are all known. The 

discovery rules are rules containing at least one unknown predicate. It is important to 

note that a discovering rule is not necessarily a new (i.e. interesting and useful) rule. 

Rather, it is a subject for further examination, i.e. still in its discovering process, because 

it contains an unknown predicate. Visual analytics on the set of confirmative rules mainly 

serve to evaluate the mining algorithm in confirming the known knowledge reported in 

the library of known and unknown associations, so-called confirmative in nature. 

Conversely, visual analytics on the set of discovery rules aim to discover interesting and 

potentially new rules, so-called discovering in nature.  

The subsequent step in the mining process is to focus on the set of discovery rules for 

detecting potentially new and interesting ones. In typical cases, the number of discovery 

rules is substantial and, with big data, it becomes impossible to manually evaluate each 

and every discovering rule. In addition, most visualization methods face challenges to 

view all of these rules at once. The SpatialARMED framework proposes an approach, 
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called interactive branching evaluation approach, which subgroups the discoverying rules 

to support the discovery of new rules, as shown in Figure 30. One way to achieve this 

subgrouping procedure is: firstly to substract all unknown predicates involved in the set 

discovery rules; secondly, based on the domain knowledge embedded in the library of 

known and unknown associations, select promising unknown predicates in relation to the 

phenomenon under study which could potentially lead to the discovery of new interesting 

rules ; thirdly to select subset of discoverying rules containing the promising predicate; 

and fourthly to evaluate these smaller subgroups of rules. This process is repeated until 

there is no further promising predicates identified. For example, assume one is mining 

SARs to high crime. Low income is a well-documented association to high crime while 

there exists some controversy over the association of high income to high crime. Thus, 

low income is defined as a known association and high income as an unknown (i.e. put 

into the discovery process) to high crime. Due to this defined library of known and 

unknown associations to high crime, all rules containing high income spatial predicates 

will be put into the pool of discovery rules. During the interactive branching evaluation 

process, the analyst can use high income as a particular promising predicate to select a 

subgroup of discovery rules for futher evaluation. The iterative branching evaluation 

process could even be repeated within subgroup of rules to assess groups of rules 

pertaining two or more promising predicates. 

In comparison with traditional AR evaluation approaches which often apply top-down 

evaluation mechanisms and focus only on the few strongest rules, the interactive 

branching approach overcomes limitations due to the large number of rules while 
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allowing the integration of domain knowledge to increase the chance of discovering rare 

interesting rules.  

 



 

CHAPTER 6: SPATIALARMED FOR CRIMINOLOGY 
 

The performance of the SpatialARMED framework will be demonstrated for an 

application in criminology, aiming to mine spatial associations to crime in the City of 

Charlotte, NC. The mined results, i.e. rules, are compared to the current state of 

knowledge in spatial analysis of crime reviewed in Chapter 3 from both confirmative and 

novel perspectives. 

6.1 Case Study – Dangerous Streets of High Criminal Activities 

An experimental dataset of crime incidents obtained from the Charlotte-

Mecklenburg Police Department (CMPD), including the UNC-Charlotte division, for 

2010 is used for the mining task. The data set includes 67,595 point features representing 

the location of crime incidents of all types with XY coordinates and street addresses as 

shown in Figure 31. Non-criminal incidents reported to the police, such as missing 

person, suicide, overdose, sudden natural death, animal control issues, gas leak, vehicle 

recovery, fire and traffic events, are eliminated from the analysis. Details regarding 

criminal incident types and their shares within the dataset are shown in Table 3. To serve 

the purpose of the SpatialARMED framework demonstration and validation, this Chapter 

guides readers through the major steps to follow in order to mine spatial association rules 

with respect to crime, particularly crime of all types (CAT), motor vehicle thefts (MVT), 
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and thefts from motor vehicles (TFM). Motor vehicle related crime is chosen for mining 

in this particular case due to its high police reporting rate. In addition, visually 

distinguishable spatial patterns of these three different incident sets as shown in Figure 32 

and Figure 33 provide a good context to examine the performance of SpatialARMED in 

term of discovering confirmative and new rules. Among 68,234 crime incidents of all 

types, 2,734 incidents are motor vehicle thefts and 8,152 are thefts from motor vehicles, 

under CMPD classification using National Incident Based Reporting System as reported 

in Table 4.  
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Figure 31: (a) Study area and (b) Charlotte street network and crime incidents  
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Table 3: Criminal Incident Count in Catergories by CMPD National Incident Based 
Reporting System  

NIBRS catergories Count % 

ABC Violations / Liquor Law Violations 231 0.34 

Animal control / Cruelty to Animals 10 0.01 

Arson / Arson: Burning Church, Uninhabited House 25 0.04 

Arson / Arson: Burning One's Own Dwelling 3 0.00 

Arson / Arson: Burning Personal Property 91 0.13 

Arson / Arson: Burning Public Building 4 0.01 

Arson / Arson: Burning Schoolhouse 10 0.01 

Arson / Arson: First & Second Degree 48 0.07 

Arson / Arson: Mobile Home 1 0.00 

Arson / Arson: Setting Fire to Woods, Grass, Field, Etc. 28 0.04 

Assault / Assault: ADW Inflicting Serious Injury 207 0.30 

Assault / Assault: ADW with Intent to Kill 45 0.07 

Assault / Assault: ADW with Intent to Kill Inflicting Serious Injury 61 0.09 

Assault / Assault: Aggravated Assault 318 0.47 

Assault / Assault: by Pointing a Gun 306 0.45 

Assault / Assault: Discharging Weapon into Occupied Property 105 0.15 

Assault / Assault: Inflicting Serious Injury 48 0.07 

Assault / Assault: on Child under 12 62 0.09 

Assault / Assault: on Female 3050 4.47 

Assault / Assault: on Government Officer or Employee 265 0.39 

Assault / Assault: or ADW on Emergency Personnel 14 0.02 

Assault / Assault: Simple 4119 6.04 

Assault / Assault: Simple or Aggravated on Handicapped Person 27 0.04 

Assault / Assault: with Deadly Weapon 704 1.03 

Burglary / B/E: Felony Breaking or Entering 7751 11.36 

Burglary / B/E: Misdemeanor Breaking or Entering 903 1.32 

Burglary / Being Found Armed with Intent to Commit Burglary 1 0.00 

Burglary / Burglary: First Degree 113 0.17 

Burglary / Burglary: Second Degree 95 0.14 

Burglary / Possession of Burglary Tools 9 0.01 

Child Abuse / Child Abuse Inflicting Serious Injury 7 0.01 

Child Abuse / Child Abuse: Misdemeanor 67 0.10 

Child Sexual Assault / Child Abuse: Sexual Act 6 0.01 

Child Sexual Assault / Rape: Forcible (against juvenile) 26 0.04 
Child Sexual Assault / Sex Offense: First or Second Degree Forcible 
(child) 

33 
 

0.05 
 

Child Sexual Assault / Sex Offense: Incest (involving child) 4 0.01 

Child Sexual Assault / Sex Offense: Indecent Liberties with Child 93 0.14 

Child Sexual Assault / Sex Offense: Sexual Activity by Custodian 1 0.00 
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Child Sexual Assault / Sex Offense: Sexual Activity by Substitute 
Parent 

1 
 

0.00 
 

Child Sexual Assault / Sex Offense: Statutory Rape 35 0.05 

Child Sexual Assault / Sex Offense: Statutory Sex Offense 9 0.01 

Child Sexual Assault / Sexual Battery (Child) 47 0.07 

Communicating Threats / Bomb Threat 22 0.03 

Communicating Threats / Communicating Threats (against person) 2796 4.10 

Communicating Threats / Communicating Threats (against property) 168 0.25 
Damage to Property / Damage or B/E Coin or Currency-Operated 
Machine 

26 
 

0.04 
 

Damage to Property / Injury to Real or Personal Property (including 
Graffiti) 

6463 
 

9.47 
 

Embezzlement / Embezzlement/Larceny by Employee 281 0.41 

Forgery / Forgery:  Counterfeiting 483 0.71 

Forgery / Forgery:  Uttering Forged Checks/Documents/Notes 381 0.56 

Fraud / Fraud:  Financial Identity Fraud 828 1.21 

Fraud / Fraud: Defrauding Innkeeper/Defrauding Taxi Driver 83 0.12 

Fraud / Fraud: False Pretenses 892 1.31 
Fraud / Fraud: Financial Transaction Card Withholding, Forgery or 
Fraud 

1539 
 

2.26 
 

Gambling / Gambling 1 0.00 

Homicide / Manslaughter: Voluntary or Involuntary 1 0.00 

Homicide / Murder: First or Second Degree 32 0.05 

Kidnapping / Kidnapping: False Imprisonment 22 0.03 

Kidnapping / Kidnapping: Felonious Restraint 22 0.03 

Kidnapping / Kidnapping: First or Second Degree 86 0.13 

Larceny / B/E Vehicle (larceny from) 7743 11.35 

Larceny / Damage or B/E Coin or Currency-Operated Machine 44 0.06 

Larceny / Financial Transaction Card Theft 285 0.42 

Larceny / Larceny: Felonious 2484 3.64 

Larceny / Larceny: Misdemeanor 9340 13.69 

Larceny / Shoplifting: by Concealment 696 1.02 

Larceny / Shoplifting: by Price Switching 6 0.01 

Miscellaneous criminal / Bribery 2 0.00 

Miscellaneous criminal / Crime against Nature (Consensual) 31 0.05 

Miscellaneous criminal / Extortion/Blackmail 10 0.01 

Miscellaneous Criminal / Failure to Return Rented Property 12 0.02 
Miscellaneous criminal / Family Offense: Non-violent 
(Abandon/Negligence/Etc) 

102 
 

0.15 
 

Miscellaneous criminal / Harassing Phone Calls 1331 1.95 

Miscellaneous criminal / Other Unlisted Criminal Offense 1743 2.55 
Miscellaneous criminal / Possession of Stolen Goods: Misdemeanor 
or Felony 263 0.39 



118 
 

Miscellaneous criminal / Stalking 64 0.09 

Miscellaneous criminal / Violation of Restraining Order 180 0.26 

Miscellaneous criminal / Weapon Law Violation 796 1.17 

Miscellaneous criminal / Worthless Check: Felony 39 0.06 

Miscellaneous non-criminal / Obscene Phone Call 2 0.00 

Narcotics / Drug Equipment Violation 1861 2.73 

Narcotics / Drug/Narcotic Violation 2362 3.46 

Narcotics / Drug/Prescription Fraud 53 0.08 

Public disorder / Affray (fighting) 237 0.35 

Public disorder / Curfew 49 0.07 

Public disorder / Disorderly Conduct 134 0.20 

Rape/Sex Offense / Rape: Forcible (against adult) 73 0.11 

Robbery / Robbery: Armed 688 1.01 

Robbery / Robbery: Common Law 175 0.26 

Sex Offense/Assault / Indecent Exposure 48 0.07 

Sex Offense/Assault / Peeping Tom 20 0.03 
Sex Offense/Assault / Sex Offense: First or Second Degree Forcible 
(Adult) 

27 
 

0.04 
 

Sex Offense/Assault / Sexual Battery (Adult) 43 0.06 

Traffic / Death by Vehicle: Felony/Misdemeanor (Traffic Fatality) 4 0.01 

Traffic / Driving Under the Influence 103 0.15 

Traffic / Hit and Run (Personal Injury) 228 0.33 

Trespass / Trespass: Domestic Criminal 13 0.02 

Trespass / Trespass: First or Second Degree 540 0.79 

Trespass / Trespass: Forcible 3 0.00 

Vehicle Theft / B/E Vehicle (vehicle theft) 231 0.34 

Vehicle Theft / Failure to Return Rented Vehicle 129 0.19 

Vehicle Theft / Larceny of Vehicle 2302 3.39 

Vehicle Theft / Unauthorized Use of Motor Vehicle 437 0.64 

Vice / Pornography/Obscene Materials 4 0.01 

Vice / Prostitution 169 0.25 

Vice / Prostitution: Assisting, Promoting, Etc. 9 0.01 

 

Table 4: Total incident count by crime of all types and motor vehicle related types by 
National Incident Based Reporting System (using the Highest Class) 

Criminal incident type Count % 

All types 68,234 100 

Motor vehicle theft 2,734 4 

Theft from motor vehicle 8,152 12 
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Figure 32: Incident count on occurrence locations of (a) crime of all types (CAT), (b) 

vehicle theft (MVT), and (c) theft from vehicle (TFM)  

 

(a) 

(b) (c) 
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Figure 33: Incident count on associated street blocks of (a) crime of all types (CAT), (b) 

motor vehicle theft (MVT), and (c) theft from mtor vehicle (TFM) 

 

(a) 

(b) (c) 
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Regarding datasets for task-relevant variables, i.e. potential associations to crime of 

all types or motor vehicle related types, the following sources of data generate the 

associates (more detail is shown in Table 5 and Figure 34): American Community Survey 

(ACS) five-year estimates for 2005-2010 at the block group level, census 2010 data at the 

census block level, and ancillary data such as business data (i.e. locations of retail  stores, 

restaurants, service offices, etc.), Wal-mart super center locations, alcohol drinking 

places, hotels and motels, shopping malls, and park-n-ride facilities. A list of reference 

variables and task related variables (i.e. potential associates) are identified. These are 

reported in Table 6. Among these variables, the heterogeneity index is estimated as 

Y1 − ∑��� Z, where �� is the percentage of population in decimal value for a particular 

racial group. 

As crime incidents are recorded to street addresses, it is reasonable to consider the 

distribution of crime being constrained to the street network. Street blocks, i.e. the street 

segments on which one could travel without crossing any other streets, are thus used as 

spatial dependence structure analysis units for crime variables. 
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Figure 34: Representative facilities as potential crime generators and attractors in the City 

of Charlotte 

Table 5: Data sets 

 Attributes Source Year Type 

1 Crime incident CMPD 2010 Point 

2 Population Census 2010 Areal BLK 

3 Race Census 2010 Areal BLK 

4 Sex and age Census 2010 Areal BLK 

5 House tenure Census  2010 Areal BLK 

6 Family types  Census  2010 Areal BLK 

7 Income ACS  2005-2010 Areal BLG 

8 Education ACS  2005-2010 Areal BLG 

9 Employment ACS  2005-2010 Areal BLG 

10 Multiple unit housing ACS  2005-2010 Areal BLG 

11 Population by move in year, by home tenure ACS 2005-2010 Areal BLG 

12 Retail business locations MECK 2008 Point 

13 Park-and-ride facilities CATS 2009 Point 

14 Shopping malls MECK 2010 Point 

15 WAL-MART super centers MECK 2010 Point 

16 Hotel and motels MECK 2010 Point 

17 Alcoholic drinking places MECK 2010 Point 
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Table 6: Identified variables for spatial dependence structure quantification 

Attributes Resolution Dataset 

Incident count: Crime of all types  Street block Crime 

Incident count: Motor vehicle thefts Street block Crime 

Incident count: Thefts from motor vehicle Street block Crime 

Business count  Street block Business 

Per capital income Block group Income 

% of population with high school degree or higher Block group Education 

% of population employed  Block group Employment 

% of housing units in multiple (>3) unit structures Block group MU housing 

% of population who rented and moved in <5 years 

(also referred to as “unstable rent” in this study) 

Block group Rent pop. by 
move-in year  

Heterogeneity index Census block Race 

% of African American population Census block Race 

% of males 17-28 population Census block Sex and age 

% of owner-occupied homes Census block House tenure 

% of single-parent families  Census block Family type 

 

6.2 SpatialARMED Implementation Aspects 

The SpatialARMED framework encompasses several loose-coupled algorithms and 

procedures which must be operated in a chronological sequence. Although this 

configuration could potentially encounter some limitations for applications that prioritize 

automation and timely responses, it offers implementation options to handle complexity 

and allows human interactions during the process of mining. Figure 35 summaries and 

illustrates the implementation workflow of the SpatialARMED framework for the case 

study analysis. The associated hardware, software, and procedures for each analysis level 
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are outlined. Generally, ESRI ArcGIS 10.0 was used for data preparation, data 

manipulation, mapping, and early exploratory data analysis.  

In the second level of SpatialARMED methodology, which deals with spatial 

analysis, a significant portion of tasks consists in cluster detection for crime and its 

associatives. The parallel AMOEBA algorithm presented in Section 5.2.1 was used due 

to the complexity of the spatial dependency structures embedded in the data. The UNC-

Charlotte pararellel high performance computing (HPC) clusters were used to facilitate 

this process. Generally, the UNC-Charlotte HPC center operates in a Redhat Linux based 

high performance computing environment that includes HPC clusters and systems of 

various capabilities serving a variety of campus research communities. This research 

utilized the VIPER and GEM clusters in particular due to their availability for access. 

The VIPER cluster encompasses 88 computing nodes with 840 computing cores and 39 

TBs usable RAID storage (96 TBs raw), serving as a general use cluster in any faculty 

sponsored research project. The GEM cluster, on the other hand, is a small cluster 

dedicated to Geospatial Modelling in the UNC-Charlotte Center for Applied Geographic 

Information Science (CAGIS) which involves only 2 computing nodes with 64 cores and 

64 GBs RAM. Using the P-AMOEBA approach for this study, the AMOEBA algorithm 

implemented in the open source Python-based software package called clusterPy by RiSE 

(Research in Spatial Economic) group (Duque et al. 2011) was customized for use with 

parallele processing.  Data was decomposed into 100 portions following the regional 

decomposition scheme presented in Figure 23 and distributed to 100 computing cores of 

VIPER and GEM clusters for ecotope identification for each cell. The recompilation of 

parallel output and detection of clusters are then done as a separated second phase, 
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following the workflow presented in Figure 22. This process is repeated for every 

variables involved in the study. While units of analysis for the data of census or ACS 

sources are areal unit equivalent to census blocks or block groups, those for crime 

incidents and retail stores are the corresponding street blocks. As the final result, spatial 

dependence structures represented by clusters of high or low values for each and every 

variable are identified. 

The next step in the SpatialARMED spatial analysis component requires modeling 

the spatial spillover effect of the hot and cold clusters as elaborated in Section 5.2.2 

(Equations 3, 4, and 5). Python-based and VBA-based programing modules in ESRI 

ArcGIS 10.0 were developed by the author to implement this task. The most expense in 

term of computing resource during this task remains the estimation of the from-to cost 

matrix in term of distance for every analysis units of BLK, BLG, or street blocks to 

hot/cold cluster elements in the study area. Given the big data scheme, this requirement 

could imply a challenge for run time improvement. For this particular case study, the 

distances are preestimated, saved into text files and recalled as necessary when running 

the spatial spillover modeling algorithm. 

In the next levels of SpatialARMED, including predication, rule mining, rule 

evaluation and visualization, implementation are based on Python-based stand-alone 

programming developed by the author (e.g. to serve crisp and fuzzy predicate mapping or 

rule classification) or on Java-based customization of existing open source software 

packages including ARM mining package from the Liverpool University – Computer 

Science Group (LUCS) (Brin et al. 1997b; Coenen 2004) and ARV (Association Rule 

Viewer) software by the Computer Science Laboratory of Lille (d'Informatique 
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Fondamentale de Lille) in France (Open source downloadable at 

http://www.lifl.fr/~jourdan/download/arv.html). For the case of LUCS ARM software, 

customization was necessary to deal with modifications in input/output format and rare 

rule issues. For ARViewer, customization of the software served the purpose of 

accommodating extra procedures to convert the rule input from text format to XML 

format. 
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Figure 35: Spatial implementation work flow for case study 
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The following subsections illustrate and discuss the application of the SpatialARMED 

framework with results at each of its levels while mining spatial associations to crime of 

all types combined and also motor vehicle related crimes, separately. 

6.3 SpatialARMED Level 2: Spatial Data Analysis 

6.3.1 Identifying Spatial Dependence Structures 

As discussed in Chapter 5, the first important task within the SpatialARMED 

framework is to identify the spatial dependence structure of crime and its associated 

variables using the AMOEBA algorithm. AMOEBA spatial clustering is performed to 

identify the so-called dangerous streets due to CAT, MVT, and TFM, which are 

highlighted in red and shown in Figure 36, Figure 37, and Figure 38, respectively. A very 

distinguishable spatial pattern of CAT concentration is observed in central Charlotte, 

along the major road corridors, and around the University of North Carolina at Charlotte 

(UNC-Charlotte) campus area. South Charlotte, on the other hand, is shown to have low 

CAT. Motor vehicle thefts possess a spatial pattern similar to CAT. It is, however, 

interesting to see the spatial pattern of TFM, which appear to be spread through the entire 

study area, with no zone of high concentration.  

AMOEBA spatial clustering is also performed for every associate variable listed in 

Table 6 with its highest possible spatial resolution; results are depicted in Figure 39 to 

Figure 49. This process aims to identify clusters, i.e. hot and cold spots, for each variable. 

The spatial clustering information generated by the AMOEBA algorithm for each 

variable includes the number of clusters and their related details such as G* values and 

cell members. Clusters of positive G* values represent hot spots and those of negative 

values represent cold spots. A common color scheme is used across these figures: red 
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color is used to represent clusters of G high value (i.e. hot spots) while a blue is for 

clusters of low G value (i.e. cold spots). The AMOEBA algorithm is proven to be robust 

in terms of detecting spatial clusters due to its capability to conduct multi-directional 

searches for irregular clusters at the highest possible resolution. One of the major 

advantages of uisng AMOEBA is that the identified clusters are detected from the data as 

the result of the search for ecopotes and of the Monte Carlo based significance test for the 

final non-overlapping clusters of highest G values. With this algorithm, the definition of 

“high” or “low” clusters are mined and quantitatively defined. During the process of 

generating spatial predicates for SAR mining, these clusters will be used to establish 

meaningful spatial relations such as within high/low concentration, near-by high/low 

concentration, or under the influence of high/ow concentration, etc. From mining 

perspectives, this spatial cluster mining process helps to eradicate limitations due to 

predetermined concepts of spatial patterns and spatial processes.  
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Figure 36: AMOEBA-based hot spots for crime of all types (CAT)  
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Figure 37: AMOEBA-based hot spots for motor vehicle thefts (MVT) 
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Figure 38: AMOEBA-based hot spots for thefts from motor vehicle (TFM) 
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Figure 39: AMOEBA-based clusters for per capital income using ACS2010 BLG data 

with Rook neighborhood definition 
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Figure 40: AMOEBA-based clusters for percentage of population with high school 

degree or above using ACS2010 BLG data with Rook neighborhood definition 
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Figure 41: AMOEBA-based clusters for percentage of multiple (> 2) unit homes using 

ACS2010 BLG data with Rook neighborhood definition 
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Figure 42: AMOEBA-based cluster for percent of population who rent and move in less 

than 5 years using ACS2010 BLG data with Rook neighborhood definition 
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Figure 43: AMOEBA-based clusters for percentage of employed population using 

ACS2010 BLG data with Rook neighborhood definition 
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Figure 44: AMOEBA-based clusters for ethnic heterogeneity index using Census 2010 

BLK data with Rook neighborhood definition 
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Figure 45: AMOEBA-based clusters for percentage of African-American population 

using Census 2010 BLK data with Rook neighborhood definition 
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Figure 46: AMOEBA-based cluster for percentage of owner occupied houses using 

Census 2010 BLK data with Rook neighborhood definition 
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Figure 47: AMOEBA-based clusters for percentage of males aged 18-24 using Census 

2010 BLK data with Rook neighborhood definition 
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Figure 48: AMOEBA-based clusters for percentage of single-parent families using 

Census 2010 BLK data with Rook neighborhood definition 
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Figure 49: AMOEBA-based hotspots for business activities using 2008 business data 

In this particular case study, it is observed that only hot spots (no cold spots) are 

detected by AMOEBA for some variables, including CAT, MVT, TFM, ethnic 

heterogeneity index, percentage of African-American population, percentage of owner 

occupied houses, percentage of males aged 18-24, percentage of single-parent families, 

and business activity. To better evaluate this situation, a comparison between AMOEBA 

and GeoDa on cluster detection using the same dataset of African-American population 
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was carried out as a test and the results are reported in Figure 50.  The GeoDa cluster 

algorithm was set up using Rook neighborhood definition and 99 permulations. 

AMOEBA was also set up with 99 permutations test on the final set of non-overlap 

clusters with highest absolute G values. Details regarding spatial clustering algorithms for 

AMOEBA and GeoDa are summarized in Table 7. For the same data set of percentage of 

American-African population, AMOEBA detects only hot spots. GeoDa also detect only 

hot spots using the normal p value to test for significant. However, with a pseudo p value 

which serves to calibrate for the change in significance using different permutation 

values, both hot and cold spots are detected. While AMOEBA also uses pseudo p value, 

there exists a difference between AMOEBA pseudo p and GeoDa pseudo p (refer to 

Table 7 for details). The nature of AMOEBA which allows only hot spot detection in 

some cases, however, needs further careful examination to avoid any overstatement. The 

question that remains for future work is why AMOEBA is not detecting cold spots very 

readily for some variables in this case study and if it is due to an algorithmic knot, could 

AMOEBA be modified or enhanced to work with both hot and cold spots in all cases. In 

many practical problems of spatial analysis and modeling, spatial patterns of cold spots 

play an important role and could contribute interesting perspectives in studying 

associations governing spatial processes. For instance, in this particular study, spatial 

associations to low crime in constrast to those associated to high crime might offer 

potential insights into crime spatial patterns and thus criminal behaviors. The issue of 

AMOEBA performance will be a top priority in the future research agenda. 
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Figure 50: Percentage of AA population: (a) data statistics; (b) AMOEBA clustering 
result; (c, d) GeoDa Gi* clustering results using normal p value and pseudo p value 

respectively 

 

(a) 

(b) 

(c) (d) 
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Table 7: Summary of clustering algorithms for AMOEBA and GeoDa 

AMOEBA GeoDa  
Measures of spatial autocorrelation based on 

multi-directional search for neighbors 

contributing to the G* value: 

1) For each cell i, identify its ecotope: 

a) Compute Gi* 

b) Identify neighbors of i, estimate Gi* 

for every combinations of cell i and 

neighbors, include the neighbor(s) if 

abs(Gi*) increase. Stop search when 

inclusion of neighbor doesn’t increase 

Gi*. 

2) After ecotopes for each and every cell 

within the study area is identified, 

AMOEBA algorithm is continued by 

keeping the non-overlapping ecotopes 

with the highest OP∗ values. The exact 

probability that each ecotope has arisen 

by chance is then evaluated using a 

Monte Carlo-type permutation test. A 

large number of random permutations of 

the data set are generated. For each of 

these permutations, the Gi* statistic is 

calculated for the ecotope. The p value is 

then calculated as the rank of the 

observed data set divided by the number 

of Monte Carlo realizations plus one. 

Only those ecotopes with p values below 

some predesignated level of significance 

are considered as true clusters. 

Measures of spatial autocorrelation based on 

predetermined neighborhood definition 

contributing to the G* value: 

1) Compute Gi for all i. 

2) For each i, perform Monte Carlo N 

permutation test. Meaning compute N 

permuted Gi by drawing random samples of 

neighbors without including i 

3) Keep track of every time a permuted Gi is 

greater than the observed Gi and call this 

#larger 

4) If N/2 > #larger: 

p-value = (1 + #larger)/(1 + N) 

        Otherwise 

p-value = (1 + N - #larger)/(1 + N) 

 

Only those with p-value below some 

predesignated level of significance are 

considered as clusters. 
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6.3.2 Modeling Spillover Effects of Spatial Dependence Structures 

Previous discussions on the SpatialARMED framework in Chapter 5, particularly 

Section 5.2.2, have stressed the necessity to model spatial spillover effects of spatial 

dependence structures, represented by hot and cold spots, as well as of crime generators 

and attractors in order to generate predicates expressing the indirect spatial relations of 

crime to its potential associated factors. For the hot and cold spot spatial spillover effects, 

the model in Equations (3) and (4), which is estimated as the sum of inverse distance 

weighted individual G* for all cluster members, is applied for this case study. For crime 

generator and attractor spillover effects, the model in Equation (5) is used. For this 

particular case study, attributes of these crime generators and attractors such as size and 

popularity, are not included. Their spillover effects are purely a function of inverse 

distances. For all cases, the spillover effects are estimated as functions of the inversed 

street network distance raised to a power of 1 (i.e. α = 1 in Equations 3, 4, and 5) and at 

the level of street blocks. 

The spillover impacts of dangerous streets due to crime of all types, motor vehicle 

thefts, and thefts from motor vehicle are shown in Figure 51 to Figure 53 , respectively. 

On the left-hand side of these figures are AMOEBA-based clusters of high crime activity 

of all types, of MVT, and of TFM, respectively. Examination of individual G* values for 

members of the clusters, which are highlighted with yellow markers in these figures, 

helps to visualize the internal structure of each cluster. On the right-hand side of these 

figures are maps of standardized spatial spillover effects. These indeed portray areas 

under strong spatial spillover effects of criminal activities, or in other words, the core of 

criminal spatial dependence structures. 
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In a similar mapping schema, Figure 54 to Figure 64 present the results of spatial 

spillover effects for all associate variables listed in Table 6. Those of crime generators 

and attractors are presented in Figure 65 to Figure 69. 

By looking at these spatial spillover maps, the argument could be made on the 

legitimacy of the spatial spillover effects being modelled one way or the other. Please 

refer to Section 5.2.2. for discussions on different modeling approaches, which very 

much depend on the nature of the spillover phenomenon itself, and the need for a 

sensitivity test. In this analysis, a particular model using Equations 3, 4, and 5 with α = 1 

for all variables is used, to serve as a demonstration for SpatialARMED implementation. 

In more practical cases of SpatialARMED, it is suggested to rely on sensivity testing for 

the most optimal model of spatial spillover effect applicable to each variable under study.  

 

 
Figure 51: AMOEBA-based detected streets of high crime (left) and spatial spillover 

effect (right) 
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Figure 52: AMOEBA-based detected streets of high motor vehicle thefts (left) and spatial 

spillover effect (right) 

 
Figure 53: AMOEBA-based detected streets of high thefts from motor vehicle (left) and 

spatial spillover effect (right) 



150 
 

 
Figure 54: AMOEBA-based detected streets of high commercial activity (left) and spatial 

spillover effect (right) 

 



151 
 

 
Figure 55: Per Capital Income: AMOEBA-based detected clusters of high values (upper 
left) with its spatial spillover effect (upper right) and AMOEBA-based detected clusters 

of low values (bottom left) with its spatial spillover effect (bottom right) 
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Figure 56: Percentage of population with high school degree or above: AMOEBA-based 
detected clusters of high values (upper left) with its spatial spillover effect (upper right) 

and AMOEBA-based detected clusters of low values (bottom left) with its spatial 
spillover effect (bottom right) 
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Figure 57: Percentage of housing structures of 3 or more units: AMOEBA-based detected 

clusters of high values (upper left) with its spatial spillover effect (upper right) and 
AMOEBA-based detected clusters of low values (bottom left) with its spatial spillover 

effect (bottom right)  
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Figure 58: Percentage of population who rent and move in less than 5 year: AMOEBA-
based detected clusters of high values (upper left) with its spatial spillover effect (upper 
right) and AMOEBA-based detected clusters of low values (bottom left) with its spatial 

spillover effect (bottom right) 
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Figure 59: Percentage of population employed: AMOEBA-based detected clusters of 

high values (upper left) with its spatial spillover effect (upper right) and AMOEBA-based 
detected clusters of low values (bottom left) with its spatial spillover effect (bottom right)  
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Figure 60: Heterogeneity Index: AMOEBA-based detected clusters of high values (left) 

and spatial spillover effect (right)  

 
Figure 61: Percentage of African-American population: AMOEBA-based detected 

clusters of high values (left) and spatial spillover effect (right) 
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Figure 62: Percentage of owner occupied homes: AMOEBA-based detected clusters of 

high values (left) and spatial spillover effect (right)  

 
Figure 63: Percentage of population who are males aged 18-24: AMOEBA-based 

detected clusters of high values (left) and spatial spillover effect (right)  
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Figure 64: AMOEBA-based detected cluster of high percentage of single-parent families 

(left) and spatial spillover effect (right) 

 
Figure 65: Location of hotels and models (left) and spatial spillover effect (right)  
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Figure 66: Location of Wal-Mart super centers (left) and spatial spillover effect (right)  

  
Figure 67: Location of shopping malls (left) and spatial spillover effect (right) 
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Figure 68: Location of park-and-ride facilities (left) and spatial spillover effects (right) 

 
Figure 69: Location of Alcohol Drinking Places (left) and spatial spillover effects (right)  
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6.4 SpatialARMED Level 3: Predication 

Up to this point, the spatial dependence structures of crime and associate variables 

have been quantified. In addition, the spatial spillover effects of hot and cold spots with 

respect to these variables have been modelled. The next step in the SpatialARMED 

process involves generating predicates and the final table to mine. 

6.4.1 Define Unit of Tuples and Generate Predicates with Numeric Values 

In order to carry out spatial join operations on the identified spatial dependence 

structures and spillover effects, unit of tuples should be properly defined as discussed in 

Section 5.3.1. The issue of MAUP is particularly relevant to this case study because data 

are collected at various resolutions, including block group, block, and street block. Tuples 

in this case should be the lowest resolution unit, which is the block group, in order to 

avoid the biased estimation of support and confidence of frequent item sets and rules.  

Once the unit of tuples is decided (i.e. block groups), associate attributes of any 

higher spatial resolution units (i.e. streets and blocks) need to be mapped onto them in 

order to generate predicates for mining. In order to achieve this, various additional 

predicates for block groups are generated to indicate percentage of the area or percentage 

of its total street length overlapping with the identified spatial dependence structure (SS) 

and spillover effects (SIM) for variables of blocks and street blocks. Table 8 provides 

details regarding this attribute manipulation process. As a result, spatial predicates and 

their numeric values for block groups are generated regarding characteristics of crime of 

all types (CAT), motor vehicle thefts (MVT), and thefts from motor vehicle (TFM), 

business activity, and other socio-economic and demographic variables. To make it easier 

to understand, the predicates are organized into three different types as shown in Table 9. 
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Type 1 predicates are those associated with block group variables (i.e. the one of lowest 

spatial resolution within this study case) and present block-group attributes, namely 

income, education, employment, MU housing, and rental population who move in less 

than 5 years. They take the G* values of the corresponding block groups as the result of 

AMOEBA clustering detection on these variables. Type 2 predicates are for variables 

transferred from street blocks and census blocks (i.e. the ones with higher spatial 

resolution than block groups). Type 2 predicate values for each block group as the mining 

unit will be the percentage of the block group’s area or street length overlapping with the 

variable’s spatial dependence structures. Type 3 predicates indicate spatial spillover 

effects (SIM). In the subsequent steps of predication, all these predicates represemting 

semantic and spatial attributes for the mining unit (i.e. block groups in this case) will be 

mapped to linguistic expressions and present nominal measures on the scale from high to 

low. 

Table 8: Process of generating predicates with block group as unit of tuples for the 
dangerous street mining task (SS stands for Spatial Dependence Structure)     

Unit of 

Tuple 

Spatial operation: overlap 

with: 

Predicate (name, numeric value) 

Block 

group  

SS (CAT) (CAT, % of total BLG street length has G*CAT 

> 0) 

 Spillover of high CAT (High CAT impact, Average SIMP-CAT for all 
BLG streets) 

 SS (MVT) (MVT, % of total BLG street length has G* 

MVT > 0) 

 Spillover of high MVT (High MVT impact, Average SIMP-MVT for all 
streets within BLG) 

 SS (TFM) (TFM, % of total BLG street length has G* TFM 

> 0) 

 Spillover of high TFM (High TFM impact, Average SIMP- TFM for all 
streets within BLG) 
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 SS (Business location) (Business activity, % of total BLG street length 
has AMOEBA G* Business > 0) 

 Spillover of high 
concentration of business 

(High business impact, Average SIMP-Business 

for all streets within BLG) 

 SS (Per-Capital Income) (Income, AMOEBA G* Income) 

 Spillover of high income (High Income impact, Average SIMP-Income for 
all streets within BLG) 

 Spillover of low income (Low income impact, Average SIMN-Income for 
all streets within BLG) 

 SS (% of population has high 
school degree or higher) 

(Education, G* Education) 

 Spillover effect of high 
education 

(High education impact, Average SIMP-Education 
for all streets within BLG) 

 Spillover effect of low 
education 

(Low education impact, Average SIMN-Education 
for all streets within BLG) 

 SS (% of population 
employed) 

(Employment, AMOEBA G* Employment) 

 Spillover effect of high 
employment 

(High employment impact, Average SIMP-

Employment for all BLG streets) 

 Spillover effect of low 
employment 

(Low employment impact, Average SIMN-

Employment for all BLG streets) 

 SS (% of housing unit has 
multiple (>3) unit structure) 

(MUHousing, AMOEBA G*MUHousing) 

 Spillover effect of high MU 
housing 

(High MUHousing impact, Average SIMP-

MUHousing for all BLG streets) 

 Spillover effect of low MU 
housing 

(Low MUHousing impact, Average SIMN-

MUHousing for all BLG streets) 

 SS (% of population who 
rent and move in <5 years) 

(Unstable Rent, AMOEBA G*Unstable Rent)  

 Spillover of high unstable 
rent 

(High unstable rent impact, Average SIMP-

Unstable Rent for all BLG streets) 

 Spillover of low unstable 
rent 

(Low, unstable rent impact, Average SIMN-

Unstable Rent for all streets within BLG) 

 SS (Population density) (Population density, % of BLG area has 
AMOEBA G*PopDen. > 0) 

 Spill over effect of high 
density 

(High population density impact, Average 
SIMP-PopDen for all streets within BLG) 
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 SS (% of African American 
population) 

(African American, % of BLG area has 
AMOEBA G*AA > 0) 

 Spillover of high 
concentration of AA 

(High AA impact, Average SIMP-AA for all 
streets within BLG) 

 Spillover of low 
concentration of AA 

(Low AA impact, Average SIMN-AA for all 
streets within BLG) 

 SS (% of male 17-28 
population) 

(Male 17-24, % of BLG area has AMOEBA 
G*Male1724 > 0) 

 Spillover of high 
concentration of male 17-24 

(High male 17-24, Average SIMP-Male1724 for all 
streets within BLG) 

 Spillover of low 
concentration of male 17-24 

(Low male 17-24, Average SIMN-Male1724 for all 
streets within BLG) 

 SS (% of home owned) (Home owned, % of BLG area has AMOEBA 
G*HOWN > 0) 

 Spillover impact of high 
home owned  

(High home owned, Average SIMP-HOWN for all 
streets within BLG) 

 Spillover impact of low 
home owned 

(Low home owned, Average SIMN-HOWN for all 
streets within BLG) 

 SS (% of single parent 
family) 

(SParent family, % of BLG area has G*SF > 0) 

 Spillover impact of high 
concentration of single 
parent family 

(High SParent family, Average SIMP-SF for all 
streets within BLG) 

 Spillover impact of low 
concentration of single 
parent family 

(Low SParent family, Average SIMN-SF for all 
streets within BLG) 

 SS (Heterogeneity index) (Heterogeneity, % of BLG area has AMOEBA 
G*HeteInx > 0) 

 Spillover of high 
heterogeneity 

(High heterogeneity, Average SIMP-HeteInx for 
all streets within BLG) 

 Spillover of low 
heterogeneity 

(Low heterogeneity, Average SIMN-HeteInx for 
all streets within BLG) 

 Spillover of Wal-mart (Wal-mart impact, Average SIMPOI-Walmart for 
all streets within BLG) 

 Spillover of Mall (Mall impact, Average SIMPOI-Mall for all 
streets within BLG) 

 Spillover of alcoholic 
drinking places 

(Drinking place impact, Average SIMPOI-DnkPlacl 
for all streets within BLG) 
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 Spillover of hotels and 
motels 

Hotel & Motel impact, Average SIMPOI-HMtel 
for all streets within BLG) 

 Spillover of ParkNride 
facilities 

ParkNRide impact, Average SIMPOI-ParkNRide for 
all streets within BLG) 

 

Table 9: Summary of predicate types for dangerous street SAR mining 

Type Predicate numeric value X For predicates associated with: 

1 X = AMOEBA G* Income, Education, Employment, 
MU Housing, and Unstable Rent 

2 X = % of BLG area has AMOEBA G* > 0 
 
 

or 

African American, Heterogeneity, 
Single-parent family, HomeOwn, 
and male 17-24 

 

   

 X = % of street length has AMOEBA G* 
> 0 

Crime of all types, MVT, TFM, 
and Business activity 

3 Based on average value of  SIMP, SIMN, 
or SIMPOI 

Spatial spillover impact result of 
the variables 

 

6.4.2 Numeric-to-Nominal Mapping with Crisp Boundary 

In order to facilitate the item set count and association rule mining, there is a need to 

map the numeric values to nominal categories, ranging from High to Low. This can be 

accomplished by classification using crisp boundaries or fuzzy boundaries with mapping 

mechanisms proposed in Section 5.3.3.  

Table 10 describes the classification scheme applied in this case study. Figure 70 to 

Figure 72 depict standardized values histogram and crisp boundary mapping mechanism 

for Type 1, Type 2, and Type 3 predicates, respectively. 
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Table 10: Summary of numeric-to-nominal mapping mechanism using crisp boundary for 
all predicates 

Type Predicate numeric value X Mapping Mechanism 

1 X = AMOEBA G* Number of classes = 3 

BreakPoint = {0} 

 

H: X > 0 

M:X = 0 

L: X < 0 

 

2 X= % of BLG area       

has AMOEBA G* > 0  

 

or 

 

X = % of street length  

has AMOEBA G* > 0 

Number of classes = 3 

BreakPoint = {BP1, BP2} 

 

H:     X > BP2 

MH: BP1 < X < BP2 

L:     X = 0 

3  Number of classes = 3 

BreakPoint ={BP1, BP2) 

 

H:   X > BP2 

M:  BP1 < X < BP2 

L:   X < BP1 

 

  

X=	SIMuUUUUUUU, SIMR,UUUUUUUU or  SIMu��	UUUUUUUUUU 
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Type 1 predicate – BLG variables: X = AMOEBA G* 

 

Income 

 

 

Education 

 

 

Employment 

 

 

MU Housing 

 

 

Population 
who rent and 
move in < 5 
years 

 
 

Figure 70: Standardized predicate values histogram and crisp boundary mapping 
mechanism for Type 1 predicates (Block group variables)  

  

HM L 

  

H M L

HM L 

H M L

HM L 

BP = {0} 

BP = {0} 

BP = {0} 

BP = {0} 

BP = {0} 
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Type 2 predicate – BLK based variables;  

X = % of BLG area has AMOEBA G* > 0 

Type 2 predicate – street block based variables:  

X = % of street length has AMOEBA G*>0 

African American 

  

Business 

 

Heterogeneity Index 

 

All Crime (CAT) 

 

Single parent family 

 

Motor Vehicle Theft (MVT)  

 

Home Owned 

 

Theft from Motor Vehicle (TFM) 

 

Male 17-24 

 

  

Figure 71: Standardized predicate value histogram and crisp boundary mapping 
mechanism for Type 2 predicates (Block and Street variables)  

H MH L H L 

H L MH H L MH 

H L MH H L MH 

HL MH H L MH 

H L MH 

BP = {-0.8, 0.5} 

 

BP = {-1.2, 0.5} 

 

BP = {-0.8, 0.5} 

 

BP = {-1.3, 0.5} 

 

BP = {-0.7, 0.5} 

 

BP = {-0.7, 0.5} 

 

BP = {-0.4, 0.2} 

 

BP = {-0.8, 0.5} 

 

BP = {-1.0, 0.5} 

 

MH 
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Figure 72: Crisp boundary mapping mechanism for Type 3 predicates (SIM based values) 

using standardized values 

After the predicate values are mapped, the process of generating the final relational 

table for SAR mining is straightforward. For demonstration purposes, a portion of the 

final table to mine dangerous street SARs with crisp mapping is shown in Figure 73. The 

last column of the final table to mine is often dedicated to the decision variable which in 

this case is either crime of all type, motor vehicle thefts, or thefts from motor vehicle.  

 

BLG  
ID Income HeteInx Busi 

simP 
Income 

simN 
Income 

simP 
Hete 

simP 
Busi 

simPOI 
DnkPlc 

simP 
CAT CAT 

1 L MH H M H L M M L H 

2 M MH L M H L M L L MH 

3 M L MH M H L M M L L 

4 H L L M L H H M H L 

5 L MH MH L H L L L L MH 

6 H L MH L H L L L L MH 

7 M L H L H L L L L MH 

8 L H H M M M M M M H 

… … … … … … … … … … … 

Figure 73: Format of final relational table to mine using crisp mapping 

 
 
 
 
 

H ML 

BP = {-0.75, 0.75} 
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6.4.3 Numeric-to-Nominal Mapping with Fuzzy Boundary 

As discussed earlier in Chapter 5, classification using crisp boundary mapping does 

not have the flexibility to accommodate fuzziness in the linguistic expressions of aspatial 

and spatial attributes, and thus, fuzzy SAR holds the promise of better discovery 

performance. In order to provide further examination of this matter, classification with 

fuzzy boundary mapping will be applied for the case study of mining dangerous streets 

SAR herein.  

A fuzzy mapping mechanism similar to the one presented in Section 5.3.3 is applied 

for Type 2 and Type 3 predicates as shown in Figure 74 and Figure 75, respectively. 

Details on membership functions used are reported in Table 11. 
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Figure 74: Standardized value histogram and fuzzy boundary mapping mechanism for 

Type 2 predicates 

  

H MH L 
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BP = {xmin, BP1, BP2, BP3} 
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Table 11: Non-uniform membership functions applied to fuzzy mapping of Type 2 
predicates  

Predicate BreakPoint{}  slope intercept 

African {-0.80827, -0.5, 0.5, 1} MF1 -3.24394 -1.62197 

American  MF2 3.24394 2.62197 

  MF3 -2.00000 2.00000 

  MF4 2.00000 -1.00000 

 

Heterogeneity 
Index  {-1.17184, -0.5, 1, 0} MF1 -1.48845 -0.74422 

   MF2 1.48845 1.74422 

   MF3 -2.00000 2.00000 

   MF4 2.00000 -1.00000 

 

Male 17-24 {-0.80173, -0.2, 1, 0} MF1 -1.66188 -0.33238 

   MF2 1.66188 1.33238 

   MF3 -1.25000 1.25000 

   MF4 1.25000 -0.25000 

 

Home Own {-1.34659, -0.5, 1, 0} MF1 -1.18121 -0.59061 

   MF2 1.18121 1.59061 

   MF3 -2.00000 2.00000 

   MF4 2.00000 -1.00000 

 

Single-parent {-0.83633, -0.5, 1, 0} MF1 -2.97326 -1.48663 

family  MF2 2.97326 2.48663 

  MF3 -2.00000 2.00000 

  MF4 2.00000 -1.00000 

 

CAT {-0.6549, -0.5, 1, 0} MF1 -6.45582 -3.22791 

    MF2 6.45582 4.22791 

    MF3 -2.00000 2.00000 

    MF4 2.00000 -1.00000 
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Busi {-0.65228, -0.5, 1, 0} MF1 -6.56689 -3.28345 

    MF2 6.56689 4.28345 

    MF3 -2.00000 2.00000 

    MF4 2.00000 -1.00000 

     

MVT {-0.41826, -0.2, 1, 0} MF1 -4.58169 -0.91634 

    MF2 4.58169 1.91634 

    MF3 -1.25000 1.25000 

    MF4 1.25000 -0.25000 

     

TFM {-0.98886, -0.5, 1, 0} MF1 -2.04560 -1.02280 

    MF2 2.04560 2.02280 

    MF3 -2.00000 2.00000 

    MF4 2.00000 -1.00000 
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Figure 75: Fuzzy boundary mapping mechanism for Type 3 predicates using standardized 

values 

6.4.4 Ready-to-mine input files  

For increasing computing efficiency, all predicates in the final relational table are ID 

coded with details reported in Table 12. The final relational table is then transformed 

using the ID codes as shown in Figure 76 and Figure 77, respectively, for crisp and fuzzy 

SAR mining. In both cases, each record contain only the predicates with membership 

H ML 

Membership 

0 

1 

|��� = � 1, 		� � T1.5T� T 0.5, 		 T 1.5 � � � T0.5 

���� � � � H 1.5, 		 T 1.5 � � � T0.51, 		 T 0.5 � � � 0.5T� H 1.5, 						0.5 � � � 1.5  

q��� � �� T 0.5, 		0.5 � � � 1.51, 		� � 1.5 	

BP = {-1.5, -0.5, 0.5, 1.5.75} 
 

  

  

 

x 
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function value different than 0 (membership function value for predicates using crisp 

mapping will only take values of 1 or 0). Using the predicate name and ID schema, the 

record shown in Figure 76, for instance, will be interpreted as: 

{Income=L  MUHouse=H HEdu=L UnstableRent=M … SimPIncome=L 
SimNIncome=M ... CAT=H}. 

 
The same record but using fuzzy mapping reported in Figure 77 in addition includes non-

zero membership values ranging from [0..1] with each of involving predicates. It is then 

interpreted as: 

{<Income=L, 1>  <MUHouse=H, 1> <HEdu=L, 1> <UnstableRent=M, 1> … 
<SimPIncome=M,0.41> <SimPIncome=L,0.59> <SimNIncome=M, 0.8> 
<SimNIncome=L, 0.2>   ... CAT=H, 0.42> <CAT=M, 0.58>}. 

 

 
Figure 76: A record in the final ready-to-mine relational table with crisp mapping 

 
Figure 77: A record in the final ready-to-mine relational table with fuzzy mapping 

3 4 8 10 14 16 19 22 26 29 33 35 38 42 43 48 50 54 57 60 62 65 69 71 74 78 80 84 87 89 

92 95 98 102 104 106 

<3,1.00> <4,1.00> <8,1.00> <10,1.00> <14,1.00> <16,1.00> <19,1.00> <22,1.00> 

<26,1.00> <29,1.00> <32,0.41> <33,0.59> <35,0.8> <36,0.2> <38,0.83> <39,0.17> 

<42,1.00> <43,1.00> <47,0.19> <48,0.81> <50,0.99> <51,0.01> <54,1.00> 

<56,0.23> <57,0.77> <59,0.46> <60,0.54> <62,1.00> <65,0.85> <66,0.15> 

<68,0.02> <69,0.98> <71,1.00> <74,0.69> <75,0.31> <77,0.5> <78,0.5> <80,0.67> 

<81,0.33> <83,0.1> <84,0.9> <86,0.4> <87,0.6> <89,0.68> <90,0.32> <92,0.79> 

<93,0.21> <95,0.93> <96,0.07> <98,1.00> <101,0.35> <102,0.65> <104,0.55> 

<105,0.45> <106,0.42> <107,0.58>. 
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Table 12: Predicate name - ID schema table for crisp SAR in the ready-to-mine format 

1 Income=H 41 SimN3MUHouse=M 81 SimMall=L 

2 Income=M 42 SimN3MUHouse=L 82 SimParkNRi=H 

3 Income=L 43 SimPHEdu=H 83 SimParkNRi=M 

4 MUHouse=H 44 SimPHEdu=M 84 SimParkNRi=L 

5 MUHouse=M 45 SimPHEdu=L 85 SimHSchool=H 

6 MUHouse=L 46 SimNHEdu=H 86 SimHSchool=M 

7 HEdu=H 47 SimNHEdu=M 87 SimHSchool=L 

8 HEdu=M 48 SimNHEdu=L 88 SimCollege=H 

9 HEdu=L 49 SimPRMI5L=H 89 SimSimCollege=M 

10 UnstableRent=H 50 SimPRMI5L=M 90 SimCollege=L 

11 UnstableRent=M 51 SimPRMI5L=L 91 SimDnkPlac=H 

12 UnstableRent=L 52 SimNRMI5L=H 92 SimDnkPlac=M 

13 Employment=H 53 SimNRMI5L=M 93 SimDnkPlac=L 

14 Employment=M 54 SimNRMI5L=L 94 SimWalmart=H 

15 Employment=L 55 SimPWork=H 95 SimWalmart=M 

16 AfricanA=H 56 SimPWork=M 96 SimWalmart=L 

17 AfricanA=MH 57 SimPWork=L 97 Business=H 

18 AfircanA=L 58 SimNWork=H 98 Business=MH 

19 HeterogeneityInx=H 59 SimNWork=M 99 Business=L 

20 HeterogeneityInx=MH 60 SimNWork=L 100 SimCAT=H 

21 HeterogeneityInx=L 61 SimHete=H 101 SimCAT=M 

22 Male17-24=H 62 SimHete=M 102 SimCAT=L 

23 Male17-24=MH 63 SimHete=L 103 SimBusi=H 

24 Male17-24=L 64 SimAA=H 104 SimBusi=M 

25 HomeOwn=H 65 SimAA=M 105 SimBusi=L 

26 HomeOwn=MH 66 SimAA=L 106 CAT=H 

27 HomeOwn=L 67 SimHOwn=H 107 CAT=MH 

28 SingleParentF=H 68 SimHOwn=M 108 CAT=L 

29 SingleParentF=MH 69 SimHOwn=L   

30 SingleParentF=L 70 SimM1724=H   

31 SimPIncome=H 71 SimM1724=M   

32 SimPIncome=M 72 SimM1724=L   

33 SimPIncome=L 73 SimSF=H   

34 SimNIncome=H 74 SimSF=M   

35 SimNIncome=M 75 SimSF=L   

36 SimNIncome=L 76 SimHMtel=H   

37 SimP3MUHouse=H 77 SimHMtel=M   

38 SimP3MUHouse=M 78 SimSimHMtel=L   

39 SimP3MUHouse=L 79 SimMall=H   

40 SimN3MUHouse=H 80 SimMall=M   
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6.5 SpatialARMED Level 4: Mining Rules 

LUCS-KDD-ARM software package developed by the KDD group at the Department 

of Computer Science, University of Liverpool is used in this study. Apriori based 

algorithms for both crisp and fuzzy SAR mining are implemented with fully open-source 

code which is ideal for any further development or customization. Software downloads 

and documentation can be found in Coenen (2004).  

The process of mining SAR with LUCS-KDD-ARM’s Apriori-based algorithm is 

summarized in Figure 78. This process involves inputting user-defined parameters and 

data; generating frequent item sets and storing their supports in a tree structure; and 

generating strong rules with confidence larger than the confidence threshold. 

User input on the maximum number of frequent sets (MAXFS) along with support and 

confidence thresholds (δS, δC) needs to be application and dataset oriented in order to 

discover interesting rules. For instance, mining SARs for dangerous streets due to crime 

in this case study is likely to face the challenge of rare rules, which are interesting rules 

with very low support and high confidence. When crime incidents are mapped to their 

corresponding street blocks, only a very small portion (less than 5% in this case study) of 

the street blocks contains crime records. So one can only mine strong association rules 

with the consequent indicating high crime or has crime, if any exist, at support threshold 

of 5% or less. For a large dataset, the problem surfaces as the algorithm finds too many 

non-interesting frequent patterns generated at the required low support threshold. 

Effective pruning strategies are required in order to reveal interesting rare rules. For this 

particular case study, frequent item sets are generated at a low support threshold (5%). 

This is to accommodate for the low percentage of streets which have crime. In addition, 
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the algorithm is modified to only generate frequent rules with respect to high CAT, high 

MVT, and high TFM by modifying the mining algorithm to only output frequent sets and 

rules which contain a predicate of high CAT, high MVT, or high TFM. Purposely, this is 

done to reduce the overwhelming number of output rules while still efficiently serve the 

purpose of demonstrating and validing SpatialARMED in practice for criminology. It, by 

no mean, suggests that associations to streets of no or low crime is not interesting. Small 

modification in the mining algorithm could be made to output these low crime 

associations. Table 13 entails statistics on frequent sets and rules generated when mining 

associations to dangerous streets in this study. Due to the large number of rules that have 

been generated, representative rules are shown in Appendix A to Appendix F for CAT, 

MVT, and TFM, using crisp and fuzzy mapping.  

 

Table 13: Statistics on generated frequent item sets and rules for dangerous streets SAR 
mining 

 δs 
% 

δc

% 
Number of generated 

frequent item sets 
Number of generated rules 

with high crime as 
consequent 

CAT 5 40 74,476 50,701 

MVT 5 40 24,961 10,890 

TFM 5 40 75,216 41,333 

CAT 5 40 1,508,974 80,075 

MVT 5 40 2,124,162 2,503 

TFM 5 40 1,501,553 129,908 
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Figure 78: Process of mining SAR with LUCS KDD ARM  
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6.6 Discovered Associations and SpatialARMED Valuation 

The domain knowledge integrated rule evaluation process proposed and discussed in 

Section 5.4 is applied in this case study to evaluate the above mined results. The very first 

task of this evaluation process involves the development of a library of known and 

unknown associations to crime of all types (CAT), motor vehicle thefts (MVT), and 

thefts from motor vehicles (TFM). Domain experts in criminology can be asked for 

inputting their knowledge during the construction phase of the library, as discussed in 

Section 5.4. For this study, the library of known and unknown association to crime is 

constructed using spatial crime domain knowledge of the author reviewed in Chapter 3. 

While it is admittedly not the ultimate knowledge, it can serve as a starting point and can 

be expanded to integrate participations from more domain experts, as discussed in 

Section 5.4. The library is constructed and shown in Table 14 in its simplest format as a 

relational table. Known associations here refer to the ones which are well documented by 

the related body of literature or well acknowledged among domain experts who are 

evaluating the mining results. Unknown associations are not well documented or related 

to an uncertainty or controversy in regard as known or unknown within the body of 

literature. In Table 14, the known associations to crime such as low income, multiple 

housing structure, low education, unstable rent, high concentration of African-Americans, 

and high concentration of males aged 17-24, ethnic heterogeneity, and high concentration 

of businesses are marked with “K” as they are well documented in the literature 

(reviewed in Section 3.3) as an association to crime. Any other association involved in 

the mining task is listed as “U” (i.e. unknown). This does not mean that SpatialARMED 

claim any mined rules, which involve one or more of these so-called unknown 
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associations, are new or interesting. This K-U definition only serves in representing the 

integrated existing domain knowledge in the process of rule evaluation, in the effort to 

sprun the already known (thus non-interesting) associations. One would perhaps want to 

be more conservative in defining what is known in order to avoid over-prunning. As 

discussed in Section 5.4, all rules which involved at least one unknown predicate will be 

classified as discoverying rules (i.e. rules entering the next loop of evaluation process), 

which is the focus of futher evaluation based on subgrouping and visual analytics. On the 

other hand, rules whose predicates are all known will be used as a confirmative measure 

toward the existing domain knowledge. These rules are therefore referred to as 

confirmative rules.  

 

Table 14: Library of known associations to crime 

Association 

(Predicate name) To CAT To MVT 
To 
TFM 

Income_H  U  U  U 

Income_M  U  U  U 

Income_L  K  K  K 

MUHouse_H  K  K  K 

MUHouse_M  U  U  U 

MUHouse_L  U  U  U 

HEdu_H  U   U   U  

HEdu_M  U  U  U 

HEdu_L  K  K  K 

UnstableRent_H  K  K  K 

UnstableRent_M  U   U   U  

UnstableRent_L  U  U  U 

Employment_H  U  U  U 

Employment_M  U  U  U 

Employment_L  K  K  K 

AfricanA_H  K  K  K 
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AfricanA_MH  K  K  K 

AfricanA_L  U  U  U 

HeterogeneityInx_H  K  K  K 

HeterogeneityInx_MH  K  K  K 

HeterogeneityInx_L  U  U  U 

Male17-24_H  K  K  K 

Male17-24_MH  K  K  K 

Male17-24_L  U   U   U  

HomeOwn_H  U  U  U 

HomeOwn_MH  U  U  U 

HomeOwn_L  K  K  K 

SingleParentF_H  K  K  K 

SingleParentF_MH  K  K  K 

SingleParentF_L  U  U  U 

SimPIncome_H  U  U  U 

SimPIncome_M  U  U  U 

SimPIncome_L  U  U  U 

SimNIncome_H  U  U  U 

SimNIncome_M  U  U  U 

SimNIncome_L  U  U  U 

SimP3MUHouse_H  U  U  U 

SimP3MUHouse_M  U  U  U 

SimP3MUHouse_L  U  U  U 

SimN3MUHouse_H  U  U  U 

SimN3MUHouse_M  U  U  U 

SimN3MUHouse_L  U  U  U 

SimPHEdu_H  U  U  U 

SimPHEdu_M  U  U  U 

SimPHEdu_L  U  U  U 

SimNHEdu_H  U  U  U 

SimNHEdu_M  U  U  U 

SimNHEdu_L  U  U  U 

SimPRMI5L_H  U  U  U 

SimPRMI5L_M  U  U  U 

SimPRMI5L_L  U  U  U 
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SimNRMI5L_H  U  U  U 

SimNRMI5L_M  U  U  U 

SimNRMI5L_L  U  U  U 

SimPWork_H  U  U  U 

SimPWork_M  U  U  U 

SimPWork_L  U  U  U 

SimNWork_H  U  U  U 

SimNWork_M  U  U  U 

SimNWork_L  U  U  U 

SimHete_H  U  U  U 

SimHete_M  U  U  U 

SimHete_L  U  U  U 

SimAA_H  U  U  U 

SimAA_M  U  U  U 

SimAA_L  U  U  U 

SimHOwn_H  U  U  U 

SimHOwn_M  U  U  U 

SimHOwn_L  U  U  U 

SimM1724_H  U  U  U 

SimM1724_M  U  U  U 

SimM1724_L  U  U  U 

SimSF_H  U  U  U 

SimSF_M  U  U  U 

SimSF_L  U  U  U 

SimHMtel_H  U  U  U 

SimHMtel_M  U  U  U 

SimSimHMtel_L  U  U  U 

SimMall_H  U  U  U 

SimMall_M  U  U  U 

SimMall_L  U  U  U 

SimParkNRi_H  U  U  U 

SimParkNRi_M  U  U  U 

SimParkNRi_L  U  U  U 

SimHSchool_H  U  U  U 

SimHSchool_M  U  U  U 
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Following the interactive branching evaluation approach discussed in Section 5.4 

with the established library of known and unknown associations, mined rules are 

classified into two categorized: confirmative rules and discovery rules. These sets of rules 

are then evaluated using the domain expert integrated evaluation process proposed in 

Section 5.4. Interesting findings on the mined SARs for this case study will be discussed 

for both confirmative rules and discovery rules, one at a time in the following two 

SimHSchool_L  U  U  U 

SimCollege_H  U  U  U 

SimSimCollege_M  U  U  U 

SimCollege_L  U  U  U 

SimDnkPlac_H  U  U  U 

SimDnkPlac_M  U  U  U 

SimDnkPlac_L  U  U  U 

SimWalmart_H  U  U  U 

SimWalmart_M  U  U  U 

SimWalmart_L  U  U  U 

Business_H  K  K  K 

Business_MH  U  U  U 

Business_L  U  U  U 

SimBusi_H  U  U  U 

SimBusi_M  U  U  U 

SimBusi_L  U  U  U 

SimCAT_H  U  U  U 

SimCAT_M  U  U  U 

SimCAT_L  U  U  U 

SimMVT_H  U  U  U 

SimMVT_M  U  U  U 

SimMVT_L  U  U  U 

SimTFM_H  U  U  U 

SimTFM_M  U  U  U 

SimTFM_L  U  U  U 
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subsections 6.6.1 and 6.6.2. However, it should be emphasized that the purpose of 

practicing the SpatialARMED framework in criminology for this research is not to report 

an exhaustive list of interesting rules for crime, but rather to demonstrate the process of 

SpatialARMED in practice and to evaluate (or validate to some extent) its performance. 

Guidelines for the performance valuation of SpatialARMED should be in line with its 

foremost objective proposed in this research, which is to integrate spatial dependence 

structures embedded in the phenomena under study during the mining process. In order to 

be recognized for its potentials, SpatialARMED needs to be proven effective, with the 

case study, in capturing spatial components of crime and the associates, and consequently 

in discovery rules which not only confirm existing crime patterns but also give further 

insights leading  towards the discovery of potentially new knowledge. 

6.6.1 SpatialARMED in Discovering Confirmative Rules  

By integrating a data-driven approach (AMOEBA) to capture the spatial dependent 

structures embedded in the data instead of relying on pre-conceived relationship, the 

SpatialARMED framework successfully confirms various known frequent associations to 

crime, either of all types, of motor vehicle thefts, or thefts from motor vehicles for the 

Charlotte metropolitan area. Besides, it is also successful in evidencing a better 

performance for SAR mining with fuzzy mapping, instead of with crisp mapping. These 

accomplishments will be verified through the following discussion on the mined result. 

Regarding crime of all types, Table 15 and Table 16, respectively, present the rules of 

confirmative nature found for high and medium high crime of all types using crisp and 

fuzzy mapping. Visualizations of these rules are reported in Figure 79. The first twenty-

four strongest ones with highest confidence for crisp SAR are shown in Figure 79a and 
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all mined fuzzy rules are in Figure 79b. SpatialARMED SAR mining using crisp 

mapping confirms the association of African-American concentration, single-parent 

family concentration, young male concentration, low income, unstable rent, multiple-unit 

(MU) housing structure, and ethnic heterogeneity to high crime. SpatialARMED SAR 

mining on the same dataset but using fuzzy mapping (Figure 79b) advises a better 

performance by picking up unemployment and high business activity in addition, as 

associations to medium-high crime. Fuzzy SAR mining also seems to perform better in 

this case by extracting rules for different levels of crime concentration (i.e. both high and 

medium high) in comparison to the case of crisp SAR which does not detect any frequent 

patterns associating with medium-high crime. These indicated associations to crime such 

as unemployment, low income, unstable rent, multiple unit housing structure, single-

parent family concentration, African-American population concentration, high young 

male population, and ethnic heterogeneity, are consistent with those related to the social 

disorganization theory and neighborhood effects discussed in Chapter 3. Associations of 

high business activity and high young male population to crime are very much in line 

with routine theory and crime pattern theory which relate crime to everyday activities, the 

physical environment, and the locations of crime generators and attractors. While areas 

with high business activities often serve as destinations of people’s daily activities, they 

are also often perceived as hubs in term of the criminal cognitive map due to their 

locations, travel accessibility and containment of crime generators and attractors.  
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Figure 79: Visualization of confirmative SAR for CAT with (a) crisp and (b) fuzzy 

boundary mapping  

  

 

(b) 

(a) 
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Table 15: List of confirmative rules for CAT using crisp boundary mapping  

ID Ancetedent AntecedentSupport ==> Consequent ConsequentSupport Confidence (decimal %) 

1.  SingleParentF=H HomeOwn=L Male17-24=H HeterogeneityInx=H 31 ==> CAT=H 25    conf:(0.81) 

2.  SingleParentF=H HeterogeneityInx=H MUHouse=H Income=L 30 ==> CAT=H 24    conf:(0.8) 

3.  SingleParentF=H UnstableRent=H MUHouse=H Income=L 33 ==> CAT=H 26    conf:(0.79) 

4.  SingleParentF=H HeterogeneityInx=H MUHouse=H 33 ==> CAT=H 26    conf:(0.79) 

5.  SingleParentF=H Male17-24=H MUHouse=H 32 ==> CAT=H 25    conf:(0.78) 

6.  HeterogeneityInx=H UnstableRent=H MUHouse=H Income=L 35 ==> CAT=H 27    conf:(0.77) 

7.  SingleParentF=H UnstableRent=H MUHouse=H 35 ==> CAT=H 27    conf:(0.77) 

8.  SingleParentF=H MUHouse=H 41 ==> CAT=H 31    conf:(0.76) 

9.  SingleParentF=H MUHouse=H Income=L 38 ==> CAT=H 29    conf:(0.76) 

10.  SingleParentF=H HeterogeneityInx=H UnstableRent=H Income=L 33 ==> CAT=H 25    conf:(0.76) 

11.  SingleParentF=H HomeOwn=L MUHouse=H 33 ==> CAT=H 25    conf:(0.76) 

12.  AfricanA=H MUHouse=H Income=L 32 ==> CAT=H 24    conf:(0.75) 

13.  HomeOwn=L Male17-24=H HeterogeneityInx=H Income=L 36 ==> CAT=H 27    conf:(0.75) 

14.  AfricanA=H MUHouse=H 35 ==> CAT=H 26    conf:(0.74) 

15.  Male17-24=H HeterogeneityInx=H UnstableRent=H Income=L 35 ==> CAT=H 26    conf:(0.74) 

16.  SingleParentF=H HomeOwn=L HeterogeneityInx=H Income=L 38 ==> CAT=H 28    conf:(0.74) 

17.  SingleParentF=H HomeOwn=L HeterogeneityInx=H 41 ==> CAT=H 30    conf:(0.73) 

18.  SingleParentF=H HeterogeneityInx=H UnstableRent=H 36 ==> CAT=H 26    conf:(0.72) 

19.  Male17-24=H HeterogeneityInx=H MUHouse=H Income=L 35 ==> CAT=H 25    conf:(0.71) 

20.  HomeOwn=L HeterogeneityInx=H AfricanA=H 35 ==> CAT=H 25    conf:(0.71) 

21.  HeterogeneityInx=H UnstableRent=H Income=L 44 ==> CAT=H 31    conf:(0.7) 

22.  HomeOwn=L HeterogeneityInx=H UnstableRent=H Income=L 37 ==> CAT=H 26    conf:(0.7) 

23.  SingleParentF=H HomeOwn=L Male17-24=H Income=L 46 ==> CAT=H 32    conf:(0.7) 

24.  Male17-24=H UnstableRent=H MUHouse=H Income=L 39 ==> CAT=H 27    conf:(0.69) 

25.  SingleParentF=H HomeOwn=L Male17-24=H 49 ==> CAT=H 34    conf:(0.69) 

26.  SingleParentF=H HomeOwn=L Male17-24=H AfricanA=H 38 ==> CAT=H 26    conf:(0.68) 

27.  HeterogeneityInx=H MUHouse=H Income=L 43 ==> CAT=H 29    conf:(0.67) 

28.  HomeOwn=L Male17-24=H HeterogeneityInx=H 43 ==> CAT=H 29    conf:(0.67) 

29.  SingleParentF=H HomeOwn=L Male17-24=H UnstableRent=H 38 ==> CAT=H 25    conf:(0.66) 

30.  UnstableRent=H MUHouse=H Income=L 57 ==> CAT=H 37    conf:(0.65) 

31.  HeterogeneityInx=H UnstableRent=H MUHouse=H 46 ==> CAT=H 30    conf:(0.65) 

32.  HomeOwn=L HeterogeneityInx=H Income=L 52 ==> CAT=H 34    conf:(0.65) 

33.  HomeOwn=L Male17-24=H MUHouse=H Income=L 37 ==> CAT=H 24    conf:(0.65) 

34.  HomeOwn=L Male17-24=H AfricanA=H 43 ==> CAT=H 28    conf:(0.65) 

35.  HomeOwn=L Male17-24=H HeterogeneityInx=H UnstableRent=H 37 ==> CAT=H 24    conf:(0.65) 

36.  SingleParentF=H HomeOwn=L 72 ==> CAT=H 47    conf:(0.65) 

37.  SingleParentF=H HomeOwn=L Income=L 68 ==> CAT=H 44    conf:(0.65) 

38.  SingleParentF=H HomeOwn=L AfricanA=H UnstableRent=H 37 ==> CAT=H 24    conf:(0.65) 
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39.  HomeOwn=L HeterogeneityInx=H UnstableRent=H MUHouse=H 39 ==> CAT=H 25    conf:(0.64) 

40.  HomeOwn=L Male17-24=H AfricanA=H Income=L 42 ==> CAT=H 27    conf:(0.64) 

41.  SingleParentF=H HomeOwn=L UnstableRent=H Income=L 47 ==> CAT=H 30    conf:(0.64) 

42.  SingleParentF=H HomeOwn=L AfricanA=H 56 ==> CAT=H 36    conf:(0.64) 

43.  SingleParentF=H HomeOwn=L AfricanA=H Income=L 55 ==> CAT=H 35    conf:(0.64) 

44.  Male17-24=H MUHouse=H Income=L 46 ==> CAT=H 29    conf:(0.63) 

45.  Male17-24=H HeterogeneityInx=H UnstableRent=H MUHouse=H 38 ==> CAT=H 24    conf:(0.63) 

46.  HomeOwn=L UnstableRent=H MUHouse=H Income=L 48 ==> CAT=H 30    conf:(0.63) 

47.  HomeOwn=L HeterogeneityInx=H UnstableRent=H 46 ==> CAT=H 29    conf:(0.63) 

48.  SingleParentF=H HomeOwn=L UnstableRent=H 49 ==> CAT=H 31    conf:(0.63) 

49.  HomeOwn=L Male17-24=H Income=L 63 ==> CAT=H 39    conf:(0.62) 

50.  HeterogeneityInx=H UnstableRent=H 56 ==> CAT=H 34    conf:(0.61) 

51.  Male17-24=H HeterogeneityInx=H MUHouse=H 44 ==> CAT=H 27    conf:(0.61) 

52.  Male17-24=H HeterogeneityInx=H UnstableRent=H 44 ==> CAT=H 27    conf:(0.61) 

53.  HomeOwn=L HeterogeneityInx=H MUHouse=H 44 ==> CAT=H 27    conf:(0.61) 

54.  SingleParentF=H Male17-24=H UnstableRent=H Income=L 44 ==> CAT=H 27    conf:(0.61) 

55.  HomeOwn=L AfricanA=H 68 ==> CAT=H 41    conf:(0.6) 

56.  HomeOwn=L AfricanA=H UnstableRent=H 45 ==> CAT=H 27    conf:(0.6) 

57.  SingleParentF=H UnstableRent=H Income=L 62 ==> CAT=H 37    conf:(0.6) 

58.  SingleParentF=H Male17-24=H UnstableRent=H 47 ==> CAT=H 28    conf:(0.6) 
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Table 16: Confirmative rules for CAT using fuzzy boundary mapping 

No. Ancetedent AntecedentSupport ==> Consequent ConsequentSupport Confidence (%) 

1.  SingleParentF_H UnstableRent_H MUHouse_H 31.89 ==> CAT_H 23.88    conf:(74.88) 

2.  SingleParentF_H MUHouse_H Income_L 34.55 ==> CAT_H 24.91    conf:(72.08) 

3.  SingleParentF_H MUHouse_H 37.55 ==> CAT_H 26.91    conf:(71.65) 

4.  HomeOwn_L HeterogeneityInx_H Income_L 34.55 ==> CAT_H 24.1    conf:(69.74) 

5.  HeterogeneityInx_H UnstableRent_H Income_L 38.51 ==> CAT_H 25.73    conf:(66.82) 

6.  HomeOwn_L HeterogeneityInx_H 41.27 ==> CAT_H 27.34    conf:(66.25) 

7.  SingleParentF_H HomeOwn_L UnstableRent_H 37.07 ==> CAT_H 24.44    conf:(65.93) 

8.  HeterogeneityInx_MH HEdu_L 47.92 ==> CAT_MH 31.15    conf:(65.0) 

9.  Business_H Income_L 50.57 ==> CAT_MH 32.8    conf:(64.85) 

10.  Business_H HeterogeneityInx_MH 44.87 ==> CAT_MH 29.02    conf:(64.67) 

11.  SingleParentF_H HomeOwn_L 50.78 ==> CAT_H 32.19    conf:(63.38) 

12.  HomeOwn_L UnstableRent_H MUHouse_H Income_L 39.48 ==> CAT_H 25.01    
conf:(63.33) 

13.  SingleParentF_H HomeOwn_L Income_L 47.77 ==> CAT_H 30.17    conf:(63.16) 

14.  HomeOwn_L MUHouse_H Income_L 42.51 ==> CAT_H 26.8    conf:(63.03) 

15.  HeterogeneityInx_H UnstableRent_H MUHouse_H 39.36 ==> CAT_H 24.74    
conf:(62.86) 

16.  Male17-24_H HeterogeneityInx_MH 42.27 ==> CAT_MH 26.38    conf:(62.41) 

17.  Male17-24_MH HEdu_L 41.3 ==> CAT_MH 25.74    conf:(62.32) 

18.  Employment_L Income_L 60.0 ==> CAT_MH 37.1    conf:(61.83) 

19.  HeterogeneityInx_MH Income_L 90.26 ==> CAT_MH 55.24    conf:(61.2) 

20.  Business_H 86.14 ==> CAT_MH 52.54    conf:(60.99) 

21.  Male17-24_H MUHouse_H Income_L 40.03 ==> CAT_H 24.37    conf:(60.86) 

22.  HomeOwn_L Male17-24_H Income_L 44.46 ==> CAT_H 26.93    conf:(60.56) 

23.  HeterogeneityInx_H UnstableRent_H 47.43 ==> CAT_H 28.63    conf:(60.37) 

24.  SingleParentF_H HomeOwn_L AfricanA_H 39.53 ==> CAT_H 23.76    conf:(60.11) 

 

Regarding motor vehicle thefts (MVT), Table 17 and Table 18, respectively, present 

the rules of confirmative nature found for high and medium-high MVT using crisp and 

fuzzy mapping. Visualizations of the strongest rules with highest confidence for both 

cases are presented in Figure 80. SAR mining using both crisp and fuzzy boundary 

mapping confirm associations of unstable rent, multiple-unit housing structure, low 
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income, young male concentration, single parent family concentration, and heterogeneity 

to high motor vehicle thefts.  

 

 
Figure 80: Visualization of confirmative SAR for MVT with (a) crisp and (b) fuzzy 

boundary mapping 

  

(a) 

(b) 
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Table 17: Listed of confirmative rules for MVT using crisp boundary mapping 

No. Ancetedent AntecedentSupport ==> Consequent ConsequentSupport Confidence (decimal 
%) 

1.   SingleParentF=H HeterogeneityInx=H MUHouse=H 33 ==> MVT=H 24    conf:(0.73) 
2.   HeterogeneityInx=H UnstableRent=H MUHouse=H Income=L 35 ==> MVT=H 25    
conf:(0.71) 
3.   Male17-24=H HeterogeneityInx=H UnstableRent=H Income=L 35 ==> MVT=H 25    
conf:(0.71) 
4.   HomeOwn=L Male17-24=H HeterogeneityInx=H MUHouse=H 35 ==> MVT=H 25    
conf:(0.71) 
5.   Male17-24=H HeterogeneityInx=H MUHouse=H Income=L 35 ==> MVT=H 24    
conf:(0.69) 
6.   HomeOwn=L HeterogeneityInx=H UnstableRent=H MUHouse=H 39 ==> MVT=H 27    
conf:(0.69) 
7.   HomeOwn=L Male17-24=H HeterogeneityInx=H Income=L 36 ==> MVT=H 25    
conf:(0.69) 

8.   HeterogeneityInx=H UnstableRent=H MUHouse=H 46 ==> MVT=H 31    conf:(0.67) 

9.   HeterogeneityInx=H UnstableRent=H Income=L 44 ==> MVT=H 29    conf:(0.66) 

10.   Male17-24=H HeterogeneityInx=H MUHouse=H 44 ==> MVT=H 29    conf:(0.66) 

11.   Male17-24=H HeterogeneityInx=H UnstableRent=H 44 ==> MVT=H 29    conf:(0.66) 
12.   Male17-24=H HeterogeneityInx=H UnstableRent=H MUHouse=H 38 ==> MVT=H 25    
conf:(0.66) 

13.   HomeOwn=L HeterogeneityInx=H MUHouse=H 44 ==> MVT=H 29    conf:(0.66) 

14.   HeterogeneityInx=H MUHouse=H Income=L 43 ==> MVT=H 28    conf:(0.65) 

15.   HomeOwn=L HeterogeneityInx=H UnstableRent=H 46 ==> MVT=H 30    conf:(0.65) 
16.   HomeOwn=L HeterogeneityInx=H UnstableRent=H Income=L 37 ==> MVT=H 24    
conf:(0.65) 

17.   HeterogeneityInx=H MUHouse=H 56 ==> MVT=H 35    conf:(0.63) 

18.   HeterogeneityInx=H UnstableRent=H 56 ==> MVT=H 35    conf:(0.63) 

19.   SingleParentF=H MUHouse=H 41 ==> MVT=H 26    conf:(0.63) 

20.   SingleParentF=H MUHouse=H Income=L 38 ==> MVT=H 24    conf:(0.63) 

21.   SingleParentF=H HomeOwn=L HeterogeneityInx=H 41 ==> MVT=H 26    conf:(0.63) 
22.   SingleParentF=H HomeOwn=L HeterogeneityInx=H Income=L 38 ==> MVT=H 24    
conf:(0.63) 
23.   Male17-24=H UnstableRent=H MUHouse=H Income=L 39 ==> MVT=H 24    
conf:(0.62) 

24.   HomeOwn=L Male17-24=H MUHouse=H 47 ==> MVT=H 29    conf:(0.62) 

25.   Male17-24=H MUHouse=H Income=L 46 ==> MVT=H 28    conf:(0.61) 
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Table 18: Listed of confirmative rules for MVT using fuzzy boundary mapping 

No. Ancetedent AntecedentSupport ==> Consequent ConsequentSupport Confidence (%) 

1.   HeterogeneityInx_H UnstableRent_H MUHouse_H 39.36 ==> MVT_H 24.74    
conf:(62.84) 

2.   HeterogeneityInx_H UnstableRent_H Income_L 38.51 ==> MVT_H 24.96    conf:(64.81) 

3.   UnstableRent_H MUHouse_H Income_L 57.0 ==> MVT_H 27.24    conf:(47.78) 

4.   HeterogeneityInx_H MUHouse_H 48.4 ==> MVT_H 26.95    conf:(55.68) 

5.   Male17-24_H UnstableRent_H 58.71 ==> MVT_H 27.87    conf:(47.46) 

6.   Male17-24_H MUHouse_H 50.75 ==> MVT_H 26.11    conf:(51.45) 

7.   MUHouse_H Income_L 70.0 ==> MVT_H 30.41    conf:(43.44) 

8.   Male17-24_H UnstableRent_H Income_L 49.48 ==> MVT_H 25.45    conf:(51.42) 

9.   HeterogeneityInx_H UnstableRent_H 47.43 ==> MVT_H 28.63    conf:(60.35) 

10.   HomeOwn_L MUHouse_H 67.87 ==> MVT_H 27.39    conf:(40.34) 

11.   SingleParentF_H UnstableRent_H 57.49 ==> MVT_H 24.91    conf:(43.32) 

12.   Male17-24_H HeterogeneityInx_H Income_L 60.09 ==> MVT_H 27.74    conf:(46.16) 

13.   Male17-24_H HeterogeneityInx_H 67.68 ==> MVT_H 29.88    conf:(44.14) 

14.   SingleParentF_H UnstableRent_H Income_L 55.44 ==> MVT_H 23.91    conf:(43.12) 

15.   HomeOwn_L UnstableRent_H MUHouse_H 62.26 ==> MVT_H 26.15    conf:(42.0) 

 

Regarding thefts from motor vehicles (TFM), Table 19 and Table 20, respectively, 

present the rules of confirmative nature found for high and medium-high TFM using 

crisp and fuzzy mapping. All mined crisp rules are visualized in Figure 81a and the 

twenty-four strongest ones with highest confidence for fuzzy SAR are in Figure 81b. 

SpatialARMED SAR mining using crisp boundary mapping once again confirms 

associations of unstable rent, multiple-unit housing concentration, young male 

concentration, low home ownership, single-parent family concentration, and 

heterogeneity to thefts from motor vehicles. SpatialARMED fuzzy SAR mining in 

addition confirms associations of African-American concentration, low income, high 

business, and low employment to theft from motor vehicles.  
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Table 19: Listed of all confirmative rules for thefts from motor vehicle using crisp 
boundary mapping 

No. Ancetedent AntecedentSupport ==> Consequent ConsequentSupport 

Confidence (%) 

1.   HomeOwn=L Male17-24=H HeterogeneityInx=H MUHouse=H 35 ==> TFM=H 24    
conf:(69) 

2.   HomeOwn=L HeterogeneityInx=H UnstableRent=H MUHouse=H 39 ==> TFM=H 26    
conf:(67) 

3.   HomeOwn=L HeterogeneityInx=H MUHouse=H 44 ==> TFM=H 28    conf:(64) 

4.   HomeOwn=L Male17-24=H MUHouse=H 47 ==> TFM=H 30    conf:(64) 

5.   HomeOwn=L Male17-24=H UnstableRent=H MUHouse=H 43 ==> TFM=H 27    
conf:(63) 

6.   HomeOwn=L Male17-24=H HeterogeneityInx=H 43 ==> TFM=H 27    conf:(63) 

7.   SingleParentF=H MUHouse=H 41 ==> TFM=H 26    conf:(63) 

8.   HeterogeneityInx=H UnstableRent=H MUHouse=H 46 ==> TFM=H 28    conf:(61) 

 

Table 20: Listed of all confirmative rules for thefts from motor vehicle using fuzzy 
boundary mapping 

No. Ancetedent AntecedentSupport ==> Consequent ConsequentSupport Confidence 

(%) 

1.  SingleParentF_H AfricanA_H Employment_L Income_L 33.59 ==> TFM_MH 24.52    
conf:(72.99) 

2.  AfricanA_H Employment_L Income_L 40.64 ==> TFM_MH 29.52    conf:(72.64) 

3.  SingleParentF_H Employment_L Income_L 37.63 ==> TFM_MH 27.13    conf:(72.1) 

4.  SingleParentF_MH HeterogeneityInx_H 36.91 ==> TFM_MH 26.37    conf:(71.44) 

5.  AfricanA_H Employment_L 41.86 ==> TFM_MH 29.83    conf:(71.26) 

6.  SingleParentF_H AfricanA_H Employment_L 34.5 ==> TFM_MH 24.52    conf:(71.06) 

7.  HomeOwn_L Employment_L Income_L 35.31 ==> TFM_MH 24.89    conf:(70.49) 

8.  Employment_L Income_L 60.0 ==> TFM_MH 42.0    conf:(70.0) 

9.  SingleParentF_H Employment_L 38.76 ==> TFM_MH 27.13    conf:(70.0) 

10.  Male17-24_MH AfricanA_H Income_L 38.11 ==> TFM_MH 26.03    conf:(68.3) 

11.  HomeOwn_L Employment_L 36.65 ==> TFM_MH 24.89    conf:(67.91) 

12.  Male17-24_MH AfricanA_H 41.87 ==> TFM_MH 28.38    conf:(67.79) 

13.  Employment_L 72.0 ==> TFM_MH 48.45    conf:(67.29) 

14.  SingleParentF_MH Income_L 84.13 ==> TFM_MH 56.02    conf:(66.58) 

15.  SingleParentF_MH 114.89 ==> TFM_MH 75.92    conf:(66.08) 

16.  SingleParentF_H MUHouse_H 37.55 ==> TFM_H 24.0    conf:(63.91) 

17.  AfricanA_H Income_L 117.53 ==> TFM_MH 73.74    conf:(62.74) 
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18.  HeterogeneityInx_MH Income_L 90.26 ==> TFM_MH 56.53    conf:(62.63) 

19.  Male17-24_MH Income_L 81.38 ==> TFM_MH 50.91    conf:(62.56) 

20.  Male17-24_MH 120.72 ==> TFM_MH 75.26    conf:(62.34) 

21.  Male17-24_MH HeterogeneityInx_MH 60.14 ==> TFM_MH 37.46    conf:(62.28) 

22.  SingleParentF_MH Male17-24_MH 49.03 ==> TFM_MH 30.45    conf:(62.1) 

23.  Business_H Income_L 50.57 ==> TFM_MH 31.25    conf:(61.79) 

24.  Income_L 242.0 ==> TFM_MH 147.89    conf:(61.11) 

25.  Male17-24_MH HeterogeneityInx_MH Income_L 42.82 ==> TFM_MH 26.17    
conf:(61.11) 

26.  Business_H HeterogeneityInx_MH 44.87 ==> TFM_MH 27.4    conf:(61.07) 

27.  SingleParentF_MH HeterogeneityInx_MH 60.14 ==> TFM_MH 36.61    conf:(60.88) 

28.  SingleParentF_MH HeterogeneityInx_MH Income_L 44.03 ==> TFM_MH 26.65    
conf:(60.52) 

29.  AfricanA_H 132.93 ==> TFM_MH 80.06    conf:(60.22) 
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Figure 81: Visualization of all confirmative SAR for TFM with (a) crisp and (b) fuzzy 

boundary mapping 

 For summary and comparison purposes, Table 21 lists all of the known associations 

to crime that SpatialARMED picked up. It is clear that many of the associations, 13 out 

(a) 

(b) 
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of 15, are confirmed herein by SpatialARMED for CAT, MVT, or TFM. The two 

associations which are not picked up by SpatialARMED for this particular data set are 

“AfricanA_MH” and “SingleParentF_MH”. This simply means that, with this dataset, 

block groups having only a portion of their area having high concentration of African 

American or of single parent family are not found to be associated with high CAT, MVT, 

or TFM. Interestingly, out of all mined rules, SpatialARMED does not suggest a strong 

association of high business, of unemployment, or of African-American concentration to 

motor vehicle thefts.  

Table 21: Confirmed associations to crime by SpatialARMED 

Crime of all types Motor vehicle theft Theft from motor vehicle 

SingleParentF_H SingleParentF_H SingleParentF_H 

SingleParentF_MH 

UnstableRent_H UnstableRent_H  

MUHouse_H MUHouse_H MUHouse_H 

Income_L Income_L Income_L 

HomeOwn_L HomeOwn_L HomeOwn_L 

HeterogeneityInx_H 

HeterogeneityInx_MH 

HeterogeneityInx_H 

 

HeterogeneityInx_H 

HeterogeneityInx_MH 

Male17-24_H 

Male17-24_MH 

Male17-24_H 

 

Male17-24_H 

 

Business_H  Business_H 

Employment_L  Employment_L 

AfricanA_H  AfricanA_H 

HEdu_L   

 

6.6.2 SpatialARMED in Discovering Potentially New Rules 

In addition to confirming existing knowledge, the capability to discovery potentially 

new ones is crucial to the success of a new data mining framework such as 

SpatialARMED. In order to evaluate this capability, the rule evaluation processes in 
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support for new knowledge discovery with both top-down and interactive branching 

approaches proposed in Section 5.4. are applied on the set of SpatialARMED mined rules 

for crime. With the top-down approach, the process starts from the strongest rules; on the 

other hand, with the interactive branching approach, it does from the set of discovery 

rules, i.e. rules containing at least one unknown predicate. By the first approach, rules 

with highest confidence and satisfying the support threshold are examined for interesting 

associations. This approach in practice could face limitation if the number of strong rules 

is very large and the interesting associations are relatively rare, which means that they 

cannot be revealed among the first few strong rules. By the second approach, an 

automatic extraction of the non-repeated predicates involved in the discovery rules, 

referred here as discovering predicates, is performed. The analyst can then use domain 

knowledge to surf through these predicates and make selections, iteratively, to subgroup 

the rules in order to facilitate the exploration for discovering new knowledge.  

Certainly, some could question the legitimacy of any so-called “potentially new” 

association indicated by SpatialARMED mining as discussed below. Please do keep in 

mind that discovery is an iterative process of applying and improving mining algorithms 

along with the knowledge base integration. In a geographical knowledge discovery 

process, SpatialARMED mining is thus only one step, whose returned results are tied to 

one stage of the mining logic (i.e. the algorithm’s brain), in this case, defined by the 

specifications on the involved semantics and spatial components as well as the library of 

known and unknown associations. In the next stage(s), these specifications, particularly 

the library of known and unknown associations, could be iteratively adapted in support 

for the discovery. Having this as a general context, evaluation on SpatialARMED mining 
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results presented in this section serve (1) to demonstrate the strength of SpatialARMED 

mining algorithm by integrating spatial components and, (2) to build up a framework 

with which mining analysts and domain experts can integratedly work together toward an 

effective geographical knowledge discovery process. 

Meticulously, the novelty of SpatialARMED is at detection and integration of spatial 

components during the SAR mining process by performing AMOEBA spatial clustering 

and spatial spillover impact modeling for the detected clusters. This novelty allows 

SpatialARMED to outperform the traditional spatial analysis techniques such as 

regression as well as existing AR and SAR mining approaches in discovering 

associations as the result of both direct and indirect spatial functional relations. 

Particularly for crime analysis, the direct spatial functional relations herein refer to what 

have been known from literature as neighborhhod effects. SpatialARMED achieves 

sucess from this perspective by capturing the spatial dependency structure (i.e. hot and 

cold spots) of variables under examination and mine associatrions of crime with respect 

to these clusters per se. As the result, various well acknowledged neighborhood effects in 

relation to CAT, MVT, and TFM have been extracted as discussed in previous 

subsection.  

Examination and evaluation on the set of discovery rules as discussed below not only 

futher evidence this success but also suggest SpatialARMED’s potential capability in 

mining indirect spatial functional relations as well as interactions among associating 

factors, which could be both spatially and nonspatially, to crime. The indirect spatial 

functional relations are those picked up as the result of capturing the spillover effects of 

the identified spatial dependence structures (i.e. clusters) on the surroundings. So this is 
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related to what have been known in the spatial analysis or spatial econometric as 

proximity or spillover effects. An example of such association is “if a block group has 

high average income and it is under strong influence of multiple unit rental communities, 

then it likely experiences high thefts from motor vehicle”. The concept of under strong 

influence is defined by the spillover effect models as previously discussed, which could 

mean "close-to" in the simplest cases, or could involve more complex spatial interaction 

components. The interactions among associating factors refer to cases where two of more 

associations are picked up by SpatialARMED in combinations as frequent and strong 

pattern to crime. Given that these associating factors in a more general context could 

either present semantic or direct/indirect spatial relations to the phenomenon under study, 

their combinations indeed represent possible interactive, i.e. compounding or mitigating, 

effects on the phenomenon. It would be fair to partially credit AR mining inherently for 

this potential. The nature of AR mining indeed aims to extract all possible combinations 

of mining predicates so that the criteria of being frequent and strong are satisfied. As the 

result, suggested rules at varying level of complexity, i.e. number of involving predicates, 

are returned. Among these, the complex rules, i.e. long rules with many predicates, are 

particularly valuable as they represent the compounding or mitigating (i.e. iteractive) 

effects created by the involving factors which could be semantically and/or spatially 

related to the phenomenon under study. Although complex rules often possess lower 

support in comparison with more simple rules, they may be hold at a high confidence 

level and remain to be especially interesting. The branching evaluation approach 

proposed for SpatialARMED in particular allows rules to be iteractively classified and 



201 
 

analysed in an effective manner so that complex and strong rules are revealed to provide 

valuable insights. 

The following subsections discuss the results of evaluating SpatialARMED discovery 

rules fro crime, following both top-down and interactive branching evaluation 

approaches.  

6.6.2.1 Examination based on Top-down Approach 

Following a top-down evaluation approach, rules are sorted based on their support 

and confidence values. Rule evaluation are then based on the ones which are most 

frequent (i.e. having highest support) and strongest (i.e. having highest confidence). 

Generally, the results continue to confirm various known associations to high crime and 

to motor vehicle related crime. In addition, complex associations due to neighbourhood 

effects and/or proximity effects are also successfully extracted.  

For high and medium-high CAT, the strongest mined rules are listed in Table 22 and 

visualized in Figure 82. SpatialARMED suggests that, at 80% confidence, if an area is a 

rental or multiple-unit housing community and has high percentage of single-parent 

family then it is associated with highest crime. Interestingly, some sorts of combined 

spillover effects at medium level of business activity, of unemployment and alcoholic 

drinking (Rule 1 and Rule 5), or of high schools and low education (Rule 2), or of 

employment and young male, in addition to high multiple-unit housing and high single 

parent family, are found associated to high crime. In contrast, residential areas with 

medium-high homeownership are also found at very high level of confidence (near 80% 

confidence) to have an association with medium-high crime. However, crime in these 

medium-high homeownerhip areas is often associated with high business activity (Rule 7 
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and Rule 8). If high business is not present, then either low income with spillover effects 

at medium level of rental multiple-unit housing communities (Rule 9) or medium 

employment with spillover effects at medium level of unstable rent and alcoholic 

drinking places (Rule 10) are associated to crime in these residential areas. Rule 10 in 

Figure 82b also indicates if a residential area of medium high homeownership but has 

high African-American population with spillover impact at medium level of 

unemployment then it also experiences medium high crime. 

 

Table 22: SpatialARMED strongest rules for CAT  

For high CAT 

1. SimBusi_M SimNWork_M SingleParentF_H HomeOwn_L 29.87 ==> CAT_H 23.78    
conf:(79.62) 

2. SimHSchool_M SimNHEdu_M SingleParentF_H MUHouse_H 31.15 ==> CAT_H 24.47    
conf:(78.55) 

3. SimCollege_M SimNWork_M SingleParentF_H HomeOwn_L 30.3 ==> CAT_H 23.8    
conf:(78.54) 

4. SimM1724_M SimPWork_M SingleParentF_H HomeOwn_L 30.47 ==> CAT_H 23.83    
conf:(78.19) 

5. SimDnkPlac_M SimNWork_M SingleParentF_H HomeOwn_L 31.01 ==> CAT_H 24.15    
conf:(77.9) 

6. SimBusi_M SimHSchool_M SingleParentF_H MUHouse_H 32.29 ==> CAT_H 25.08    
conf:(77.66) 

 

For medium-high CAT 

7. Business_H SimMall_M HomeOwn_MH 32.42 ==> CAT_MH 25.99    conf:(80.16) 

8. Business_H SimWalmart_M SimMall_M HomeOwn_MH 30.61 ==> CAT_MH 24.29    
conf:(79.36) 

9. SimPUnstableRent_M HomeOwn_MH MUHouse_M Income_L 30.25 ==> CAT_MH 23.96        
conf:(79.2) 

10. SimDnkPlac_M HomeOwn_MH Employment_M UnstableRent_M 32.06 ==> CAT_MH 
25.29    conf:(78.87) 
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Figure 82: The strongest rules for (a) high and (b) medium high CAT 

 

 

(a) 

(b) 
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For MVT, the ten strongest rules mined by SpatialARMED are shown in Table 23 

and the thirty strongest ones are visualized in Figure 83. A distinguishable association 

pattern is obtained for high MVT in this case, although at rather low degree of confidence 

(60-67%). The strongest rules indicate associations of unstable rent, low income, and 

heterogeneity to high MVT. On top of these factors, spillover effect, at a medium level, 

of multiple unit housing (Rule 1), or of Wal-Mart Super Center (R2), or of alcoholic 

drinking places (Rule 4) are also found in relation to high MVT at approximately 60% 

confidence. For areas which are heterogeneous and unstable rental but do not have low 

income, spillover effects of multiple-unit housing and business (Rule 7), or of shopping 

malls and young male (Rule 8), or of shopping malls and alcoholic drink places (Rule 10) 

are listed to be associated with high MVT. 

 

Table 23: SpatialARMED strongest rules for MVT 

For high MVT 

1. SimP3MUHouse_M HeterogeneityInx_H UnstableRent_H Income_L 35.68 ==> MVT_H 
23.95    conf:(67.12) 

2. SimWalmart_M HeterogeneityInx_H UnstableRent_H Income_L 37.07 ==> MVT_H 24.53    
conf:(66.17) 

3. HeterogeneityInx_H UnstableRent_H Income_L 38.51 ==> MVT_H 24.96    conf:(64.81) 

4. SimDnkPlac_M HeterogeneityInx_H UnstableRent_H Income_L 38.04 ==> MVT_H 24.66    
conf:(64.81) 

5. SimMall_M SimP3MUHouse_M HeterogeneityInx_H UnstableRent_H 38.77 ==> MVT_H 
24.96    conf:(64.36) 

6. SimWalmart_M SimMall_M HeterogeneityInx_H UnstableRent_H 40.04 ==> MVT_H 
25.37    conf:(63.36) 

7. SimBusi_M SimP3MUHouse_M HeterogeneityInx_H UnstableRent_H 39.74 ==> MVT_H 
25.09    conf:(63.13) 

8. SimMall_M SimM1724_M HeterogeneityInx_H UnstableRent_H 38.02 ==> MVT_H 23.95    
conf:(62.99) 

9. SimPUnstableRent_M SimP3MUHouse_M HeterogeneityInx_H UnstableRent_H 40.05 ==> 
MVT_H 25.23    conf:(62.98) 

10. SimDnkPlac_M SimMall_M HeterogeneityInx_H UnstableRent_H 40.57 ==> MVT_H 25.55    
conf:(62.98) 
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Figure 83: The strongest rules for high MVT 

For TFM, the most frequent and strongest rules are listed in Table 24 and visualized 

in Figure 84.  Although SpatialARMED suggested an identical list of known factors in 

comparison with that of CAT (see Table 21), examination on the strongest rules suggests 

different iteractive patterns associating these factors to CAT and TFM. First of all, high 

TFM is also often associated with multiple-unit housing communities but at a much 

lower confidence level of 60-64%, rather than at 80% for CAT. For these multiple-unit 

housing communities, high concentration of African-Americans and spillover effect at 

medium level of ethnic heterogeneity are dominating associations to high TFM (Rule 1 to 

Rule 4). Spillover effects at medium level of hotels, motels or of business in addition are 

also found in these rules. The low confidence level at 60%, however, suggests that these 
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associations are not very strong. Second of all, medium-high TFM are often strongly (80-

85%) found at neighborhoods of mix single family and multiple-unit housing due to the 

appearance of predicate “MUHouse_M” (Rule 5 to Rule 14). Particularly, the strongest 

rule in Table 24 indicates that if these areas of mix housing type are dominated by 

African-Americans, especially low income ones, and under spillover effect of 

heterogeneity at medium level then they experience medium-high TFM. High percentage 

of single-parent family also appears to associate with medium-high TFM, like for CAT. 

However, it is paired together with medium-high single family homeownership for FTM 

(Rule 11 and Rule 15), rather than with multiple-unit rental communities as previously 

shown in the case of CAT. Spillover impacts at medium level of crime attractors and 

generators such as alcoholic dinking places or Wal-Mart Super Center are also found 

together with high percentage of single-parent family and medium-high single family 

homeownership in relation to high TFM. Spillover effects at the medium level of 

heterogeneity appear very often in association to medium high TFM in general. Also, at 

80% confidence, Rule 16 in Table 24 indicates spillover effect of nearby medium TFM, 

of nearby heterogeneity onto areas of some mix housing types and medium-high TFM. 
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Table 24: SpatialARMED strongest rules for TFM 

For high TFM 

1. SingleParentF_H MUHouse_H 37.55 ==> TFM_H 24.0    conf:(63.91) 

2. SimHMtel_M SimP3MUHouse_M HomeOwn_L MUHouse_H 39.27 ==> TFM_H 
25.01    conf:(63.67) 

3. SimHMtel_M HomeOwn_L UnstableRent_H MUHouse_H 40.09 ==> TFM_H 25.19    
conf:(62.82) 

4. SimBusi_M SimHMtel_M HomeOwn_L MUHouse_H 39.76 ==> TFM_H 24.75    
conf:(62.23) 

 

For medium high TFM 

5. SimHete_M AfricanA_H MUHouse_M Income_L 29.2 ==> TFM_MH 24.91    
conf:(85.3) 

6. SimMall_M SimHete_M AfricanA_H MUHouse_M 28.93 ==> TFM_MH 24.54    
conf:(84.8) 

7. SimHete_M AfricanA_H MUHouse_M 30.41 ==> TFM_MH 25.67    conf:(84.43) 

8. SimWalmart_M SimHete_M AfricanA_H MUHouse_M 29.37 ==> TFM_MH 24.65    
conf:(83.95) 

9. SimWalmart_M SimHete_M SingleParentF_MH   29.06 ==> TFM_MH 24.04    
conf:(82.71) 

10. SimHete_M SingleParentF_MH UnstableRent_M 30.55 ==> TFM_MH 25.12    
conf:(82.22) 

11. SimWalmart_M SingleParentF_MH HomeOwn_MH HEdu_M 31.79 ==> TFM_MH 
25.86    conf:(81.34) 

12. SimTFM_M SimHete_M HomeOwn_MH MUHouse_M 30.06 ==> TFM_MH 24.2    
conf:(80.51)  

13. SingleParentF_MH HomeOwn_MH HEdu_M 33.75 ==> TFM_MH 27.13    
conf:(80.39) 

14. SimCollege_M SimHete_M HomeOwn_MH MUHouse_M 30.76 ==> TFM_MH 
24.7    conf:(80.3) 

15. SimDnkPlac_M SingleParentF_MH HomeOwn_MH HEdu_M 29.94 ==> TFM_MH 
23.99    conf:(80.12) 
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Figure 84: The strongest rules for high (a) and medium high (b) TFM  

 

  

  

(a) 

(b) 
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6.6.2.2 Examination based on Interactive Branching Approach 

Examination and evaluation of the mined rules using the interactive branching 

approach for this case study further indicate a success of SpatialARMED in detecting 

interesting and potentially new associations to crime from the all perspectives of 

neighborhood effects, proximity effects, and interactive effects. Supporting evidence of 

this statement will be established through discussions in the next few paragraphs, 

subjected to strong (not exhaustive) findings. 

The first step of rule evaluation following the iterative branching approach is to 

automatically extract the discovery predicates. Those associated to high and medium-

high CAT, MVT, and TFM for this case study are reported in Table 25. These predicates, 

either one by one or in combinations, are detected with support larger than 5% for all 

types, confidence larger than 40% for MVT and 60% for CAT and TFM.  

This set of discovering predicates demonstrates that the SpatialARMED framework 

has detected associations between high crime, particularly CAT and TFM, and the strong 

spillover impacts of known associations to crime such as multiple unit housing 

concentration, unemployment, young male concentration, business concentration, single 

parent family concentration, to name a few. The strong spillover impacts of crime itself 

are also detected in relation to high and medium-high CAT and TFM. For MVT, 

particularly, the set of discovering predicates shows that SpatialARMED only picked up 

medium-level spillover effects of MVT itself or of its associates on MVT. It should also 

be noted that the mined rules reported in this study are for particular thresholds of support 

(5%, equivalent to 23 group blocks out 474 ones) and confidence (40%). Considering that 

5% support threshold is already low, one could argue for the use of an even lower one to 



210 
 

obtain a larger set of rules for MVT while hoping for more interesting findings, others 

dismiss the value of rules at such rare nature. 

 

Table 25: List of discovering association predicates to crime with fuzzy mapping 

Crime of all types MVT TFM  

SimCAT_H 

SimCAT_M 

SimDnkPlac_H 

SimHMtel_H 

SimCollege_H 

SimAA_H 

SimPUnstableRent_
H 

SimP3MUHouse_H 

SimN3MUHouse_H 

SimPIncome_H 

SimNIncome_H 

SimNHEdu_H 

SimPWork_H 

SimNWork_H 

SimM1724_H 

SimSF_H 

SimBusi_H 

SimHete_H 

Business_MH 

Business_L 

Employment_H 

HomeOwn_MH 

SingleParentF_L 

AfricanA_L 

AfricanA_M 

SimParkNRi_M 

 

 

 

HEdu_M 

SimHete_M 

SimNIncome_M 

SimMall_M 

SimBusi_M 

SimNWork_M 

SimWalmart_M 

SimPUnstableRent_
M 

MUHouse_M 

SimDnkPlac_M 

Employment_M 

UnstableRent_M 

SimHSchool_M 

SimNHEdu_M 

SimCollege_M 

SimM1724_M 

SimPWork_M 

SimPHEdu_M 

SimNUnstableRent_
M 

SimHMtel_M 

SimN3MUHouse_M 

SimAA_M 

SimP3MUHouse_M 

SimPIncome_M 

SimSF_M 

SimHOwn_M 

MUHouse_L 

 

SimMVT_M 

HEdu_M 

SimP3MUHouse_M 

SimPIncome_M 

SimPUnstableRent_
M 

SimAA_M 

SimNHEdu_M 

SimPHEdu_M 

SimPWork_M 

SimM1724_M 

SimSF_M 

SimHMtel_M 

SimMall_M 

SimHSchool_M 

SimNWork_M 

SimCollege_M 

SimHOwn_M 

SimNUnstableRent_
M 

SimDnkPlac_M 

SimWalmart_M 

SimBusi_M 

SimNIncome_M 

SimHete_M 

SimTFM_H 

SimTFM_M 

SimDnkPlac_H 

SimHMtel_H 

SimCollege_H 

SimParkNRi_H 

SimHSchool_H 

SimAA_H 

SimPUnstableRent_
H 

SimP3MUHouse_H 

SimN3MUHouse_H 

SimPIncome_H 

SimNIncome_H 

SimHOwn_H 

SimNHEdu_H 

SimPWork_H 

SimNWork_H 

SimM1724_H 

SimSF_H 

SimBusi_H 

Business_MH 

Business_L 

Employment_H 

HomeOwn_MH 

HomeOwn_H 

MUHouse_L 

Income_H 

HeterogeneityInx_L 

UnstableRent_L 

SimNUnstableRent_
H 

Male17-24_L 

AfricanA_L 

SimMall_L 

SimN3MUHouse_M 

SimAA_M 

SimNIncome_M 

SimSF_M 

SimP3MUHouse_M 

SimBusi_M 

SimHete_M 

MUHouse_M 

SimMall_M 

SimWalmart_M 

UnstableRent_M 

HEdu_M 

SimCollege_M 

SimDnkPlac_M 

SimM1724_M 

SimNWork_M 

SimNUnstableRent_
M 

SimPUnstableRent_
M 

SimPHEdu_M 
SingleParentF_L 

Employment_M 

SimHOwn_L 

SimNUnstableRent_
L 

SimParkNRi_L 

SimN3MUHouse_L 

SimBusi_L 

SimNHEdu_L 

SimPWork_L 

Income_M 

SimHete_L 

SimP3MUHouse_L 

SimNIncome_L 

SimPIncome_L 

SimPUnstableRent_L 

SimSF_L 

SimM1724_L 

SimHSchool_L 

SimPIncome_M 

SimNHEdu_M 

SimPWork_M 

SimHMtel_M 

SimHSchool_M 

SimParkNRi_M 

SimHOwn_M 

AfricanA_M 
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Among these discovering predicates, high home ownership (HomeOwn_H) and high 

income (Income_H) are reported in relation to high TFM. These associations are 

acknowledged in relation to TFM but with controversy as they are different from ones 

suggested by the social disorganization theory. In addition, it seems also interesting to see 

other associating factors, if exist, occurring with these in relation to high crime. They are 

thus chosen in this study for subgrouping rules. 

Regarding high home ownership, medium-high home ownership has been detected 

previously among the strongest rules detected by SpatialARMED as an association, 

together with business concentration or with spillover effects of nearby neighborhoods 

which possess high rental multi-unit housing, low income, unstable rent and alcoholic 

drinking places, unemployed African-Americans, to high CAT. Here, it suggests that 

high home ownership, i.e. neighborhood dominated by owned properties, also associates 

with medium-high TFM. The ten strongest rules involving this relation are listed in Table 

26 and the visualization of the first thirty ones is in Figure 85. At 69% confidence, 

SpatialARMED suggests that TFM activities in these high home ownership areas are 

strongly associated with highly employed, but low income or very heterogeneous 

population (Rule 2 and Rule 3). If low income and heterogeneity do not present but high 

employment, spillover effects at medium level of unemployment (Rule 4), or of high 

income and young male population (Rule 5), or of single parents and low education (Rule 

7), or of nearby TFM (Rule 9, 10) are found associated to TFM in the areas of high home 

ownership. 
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Table 26: For areas with high homeownership: SpatialARMED strongest discovered 
associations  

For medium-high TFM 

1. HomeOwn_H Employment_H HEdu_M MUHouse_L 42.16 ==> TFM_MH 29.37    conf:(69.66) 

2. HomeOwn_H HeterogeneityInx_H Employment_H 34.76 ==> TFM_MH 24.04    conf:(69.16) 

3. HomeOwn_H MUHouse_L Income_L 36.32 ==> TFM_MH 24.67    conf:(67.91) 

4. SimNWork_M HomeOwn_H Employment_H HEdu_M 36.55 ==> TFM_MH 24.7    conf:(67.57) 

5. SimM1724_M SimPIncome_M HomeOwn_H Employment_H 35.62 ==> TFM_MH 23.99    
conf:(67.35) 

6. SimNIncome_M HomeOwn_H Employment_H MUHouse_L 38.51 ==> TFM_MH 25.87    
conf:(67.17) 

7. SimSF_M SimNHEdu_M HomeOwn_H Employment_H 36.31 ==> TFM_MH 24.31    conf:(66.94) 

8. SimWalmart_M HomeOwn_H Employment_H HEdu_M 45.25 ==> TFM_MH 30.27    conf:(66.9) 

9. SimTFM_M SimNHEdu_M HomeOwn_H Employment_H 36.46 ==> TFM_MH 24.38    conf:(66.86) 

10. SimTFM_M SimNIncome_M HomeOwn_H Employment_H 37.59 ==> TFM_MH 25.05    
conf:(66.65) 

           

 
Figure 85: Potentially new fuzzy rules for TFM in association with high homeownership 

Regarding high income, examination of the discovering predicate set reveals that 

areas of high income (presented by predicate “Income_H”) do not frequently experience 
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CAT, but medium-high TFM at support level of 5% and confidence level of 64%. 

Interestingly, the SpatialARMED mined rules suggest that neighborhoods located under 

strong spillover impact of high income (i.e. close to high income neighborhoods) also 

experience medium-high level of crime, but for both CAT and TFM and with very 

different association patterns.  

Concerning high income and medium-high TFM, the ten strongest mined rules of this 

kind are examined and shown in Table 27. Their visualization is in Figure 86. By these 

rules, it is suggested that TFM in high income neighborhoods, at nearly 70% confidence, 

is related to either spillover effects of high schools, of low education, of Wal-Mart Super 

Center, or combinations among them. By extracting all the discovering predicates for 

rules of medium-high TFM and high income (shown in Table 28), it seems to be the case 

that the associations to TFM in rich neighborhoods are related to the spillover effects at 

medium level of nearby neighborhood effects and/or of nearby TFM. 
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Table 27: For areas has high income: strongest discovered SpatialARMED associations  

For medium high TFM 

1. SimHSchool_M SingleParentF_L HEdu_L Income_H 33.73 ==> TFM_MH 23.73    conf:(70.35) 

2. SimHSchool_M HEdu_L Income_H 34.5 ==> TFM_MH 24.05    conf:(69.71) 

3. SimWalmart_M SimHSchool_M HEdu_L Income_H 34.23 ==> TFM_MH 23.78    conf:(69.48) 

4. SimHSchool_M AfricanA_L HEdu_L Income_H 34.23 ==> TFM_MH 23.78    conf:(69.47) 

5. SingleParentF_L HEdu_L Income_H 39.21 ==> TFM_MH 27.06    conf:(69.01) 

6. SingleParentF_L AfricanA_L HEdu_L Income_H 38.86 ==> TFM_MH 26.71    conf:(68.73) 

7. SimWalmart_M SingleParentF_L HEdu_L Income_H 38.8 ==> TFM_MH 26.66    conf:(68.7) 

8. HEdu_L Income_H 40.0 ==> TFM_MH 27.4    conf:(68.49) 

9. AfricanA_L HEdu_L Income_H 39.65 ==> TFM_MH 27.05    conf:(68.22) 

10. SimWalmart_M HEdu_L Income_H 39.59 ==> TFM_MH 27.0    conf:(68.18) 

           

 
Figure 86: Fuzzy rules for TFM for areas has high income and medium spillover impact 

of TFM 
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Table 28: For areas that have high income:  SpatialARMED associations  

To Medium-high TFM: 

SingleParentF_L 

HEdu_L 

AfricanA_L 

Income_H 

Male17-24_L 

HeterogeneityInx_L 

 
 

 

 

SimTFM_M 

SimAA_M 

SimSF_M 

SimHete_M 

SimPWork_M 

SimN3MUHouse_M 

SimNHEdu_M 

SimBusi_M 

SimNWork_M 

SimP3MUHouse_M 

SimPHEdu_M 

SimHSchool_M 

SimWalmart_M 

SimHMtel_M 

SimMall_M 

SimDnkPlac_M 

SimCollege_M 

SimParkNRi_M 

 

Concerning CAT and TFM in neighborhoods near high income neighborhoods, lists 

of strongest rules are presented in Table 29 and Table 30, respectively, while their 

visualizations are in Figure 87 and Figure 88, respectively. Table 31 shows all the 

discovery predicates for rules of this kind. For CAT, it is suggested at a relatively high 

confidence level of near 70% that neighborhoods near high income, but also near 

unstable rent, multiple-unit housing , high young male population, and/or crime itself do 

experience medium-high CAT (Table 29 and Figure 87). At a rather lower confidence 

level of 65%, spillover effects of business concentration, of high employment, as well as 

of unemployment, are found associated to CAT in these neighborhoods. Associations to 

TFM in these neighborhoods however are found to be either the strong spillover effect of 
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nearly high schools (rules 3 and 4) or of nearby ethnic heterogeneity (rules 12 and 13), or 

of nearby business concentration (rules 14 and 15) (Table 30 and Figure 88). The 

strongest rules also suggest an association of nearby Wal-mart Super Centers at the 

medium level to TFM in neighborhoods near high income. 
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Table 29: For areas under strong influence of high income: SpatialARMED discovered 
associations  

For medium high crime of all type 

1. SimCAT_H SimWalmart_M SimPUnstableRent_H SimPIncome_H 34.83 ==> CAT_MH 24.06    
conf:(69.06) 

2. SimCAT_H SimPUnstableRent_H SimPIncome_H 35.05 ==> CAT_MH 24.15    conf:(68.9) 

3. SimCAT_H SimParkNRi_M SimPUnstableRent_H SimPIncome_H 34.88 ==> CAT_MH 23.98    
conf:(68.75) 

4. SimWalmart_M SimM1724_H SimPUnstableRent_H SimPIncome_H 34.5 ==> CAT_MH 23.71    
conf:(68.72) 

5. SimM1724_H SimPUnstableRent_H SimPIncome_H 34.61 ==> CAT_MH 23.74    conf:(68.58) 

6. SimWalmart_M SimPUnstableRent_H SimP3MUHouse_H SimPIncome_H 36.74 ==> CAT_MH 
24.88    conf:(67.72) 

7. SimPUnstableRent_H SimP3MUHouse_H SimPIncome_H 37.05 ==> CAT_MH 25.02    conf:(67.53) 

8. SimMall_M SimPUnstableRent_H SimP3MUHouse_H SimPIncome_H 36.24 ==> CAT_MH 24.47    
conf:(67.52) 

9. SimWalmart_M SimM1724_H SimP3MUHouse_H SimPIncome_H 35.26 ==> CAT_MH 23.81    
conf:(67.5) 

10. SimParkNRi_M SimPUnstableRent_H SimP3MUHouse_H SimPIncome_H 36.86 ==> CAT_MH 
24.84    conf:(67.39) 

           

 
Figure 87: The strongest fuzzy rules for crime of all type for areas under strong spillover 

effect of high income 
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Table 30: For areas under strong influence of high income: SpatialARMED discovered 
associations  

For medium high TFM 

1. SimWalmart_M SimPIncome_H HEdu_L 41.79 ==> TFM_MH 25.95    conf:(62.11) 

2. SimPIncome_H HEdu_L 42.25 ==> TFM_MH 25.98    conf:(61.5) 

3. SimHSchool_M SimPIncome_H HeterogeneityInx_L 39.38 ==> TFM_MH 24.05    conf:(61.06) 

4. SimWalmart_M SimHSchool_M SimPIncome_H HeterogeneityInx_L 39.38 ==> TFM_MH 24.05    
conf:(61.06) 

5. SimPIncome_H HeterogeneityInx_L 55.8 ==> TFM_MH 33.99    conf:(60.91) 

6. SimWalmart_M SimPIncome_H HeterogeneityInx_L 55.8 ==> TFM_MH 33.99    conf:(60.91) 

7. SimHOwn_H SimPIncome_H HeterogeneityInx_L 45.58 ==> TFM_MH 27.64    conf:(60.65) 

8. SimWalmart_M SimHOwn_H SimPIncome_H HeterogeneityInx_L 45.58 ==> TFM_MH 27.64    
conf:(60.65) 

9. SimPHEdu_M SimPIncome_H HeterogeneityInx_L 43.95 ==> TFM_MH 26.62    conf:(60.56) 

10. SimWalmart_M SimPHEdu_M SimPIncome_H HeterogeneityInx_L 43.95 ==> TFM_MH 26.62    
conf:(60.56) 

11. SimWalmart_M SimPIncome_H Male17-24_L 44.51 ==> TFM_MH 26.79    conf:(60.19) 

12. SimHete_M SimPIncome_H HeterogeneityInx_L 45.8 ==> TFM_MH 27.54    conf:(60.13) 

13. SimWalmart_M SimHete_M SimPIncome_H HeterogeneityInx_L 45.8 ==> TFM_MH 27.54    conf:(60.13) 

14. SimBusi_H SimPIncome_H HeterogeneityInx_L 41.21 ==> TFM_MH 24.77    conf:(60.11) 

15. SimBusi_H SimWalmart_M SimPIncome_H HeterogeneityInx_L 41.21 ==> TFM_MH 24.77    
conf:(60.11) 

16. SimPIncome_H Male17-24_L 44.62 ==> TFM_MH 26.8    conf:(60.07) 

          

 
Figure 88: Fuzzy rules for TFM for areas under strong spillover impact high income 

 

  



219 
 

Table 31: For areas under strong influence of high income: SpatialARMED discovered 
associations  

To Medium-high cime: To Medium-high TFM: 

SimCAT_H 

SimPUnstableRent_H 

SimM1724_H 

SimP3MUHouse_H 

SimPWork_H 

SimBusi_H 

SimNWork_H 

SimNHEdu_H 

SimWalmart_M 

SimParkNRi_M 

SimMall_M 

HEdu_L 

HeterogeneityInx_L 

Male17-24_L 

SimHOwn_H 

SimBusi_H 

SimHete_M 

SimWalmart_M 

SimHSchool_M 

SimPHEdu_M 

 

 

 
 
 
 

  



 

 

CHAPTER 7: CONCLUSIONS  
 
 

This research has focused on the enlargement of association rule mining 

approaches for geographical knowledge discovery. Past studies in SAR mining have 

sidestepped the spatial aspects embedded within the geospatial problems at hand and 

overlooked the importance of interactive domain knowledge integration for rule 

evaluation. The overarching goal of this research thus has been to address these issues 

and to propose a comprehensive framework for spatial association rule mining and 

discovery. It has centered on the critical issues of how spatial concepts should be 

apprehended and how complex dependence structures, including spatial interactions, 

should be incorporated in both processes of mining and discovery while emphasizing 

visual analytics and domain knowledge integration for rule evaluation. A comprehensive 

framework, dubbed herein as SpatialARMED (Spatial Association Rule Mining and 

Discovery) has been proposed, which differs from earlier approaches of spatial 

association rule mining by capturing the spatial dependencies embedded in the data 

instead of relying on pre-conceived relationships. In addition, spatial interactions among 

associating factors to the phenomena under study are also modelled and taken into 

consideration. Composed of A Multi-directional Optimum Ecotope-Based Algorithm 

(AMOEBA) to detect spatial clusters, an operational spatial interactive model, a 

dependable mechanism for fuzzy mapping based predication, a popular association rule 

mining algorithm, and an effective domain knowledge integrated rule evaluation 
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procedure, the SpatialARMED framework presents an encouraging solution to extracting 

useful association patterns which enrich our understanding of spatial processes.  

Another fundamental goal of this research is to validate the proposed framework and 

this has been achieved by applying SpatialARMED in criminology. The practice has not 

only demonstrated that SpatialARMED is practically implementable but it has also 

highlighted a number of critical contributions: First, particularly to criminology, frequent 

spatial association patterns to crime detected by SpatialARMED can be used to confirm 

the current knowledge of associations to crime as well as to further provide noteworthy 

insights in spatial processes of crime, including neighborhood effects, proximity effects 

and spatial/nonspatial interactions among participating associations to crime. Second, 

SpatialARMED is promising to outperform traditional spatial statistics on the capability 

to detect associations to the phenomenon under study. Traditional spatial statistics 

approaches work best with small scientifically sampled datasets under the limitations of 

confirmative hypotheses and assumptions of independent observations. They in addition 

adhere to limited perspectives, such as univariate spatial autocorrelation, or a specific and 

simple type of relation models, such as linear regression. SpatialARMED for SAR 

mining, on the other hand, is designed to handle multivariate spatial autocorrelation with 

complex, unpredictable non-linear relationships. Third, SpatialARMED offers the 

promise to surpass existing SAR mining algorithms by utilizing robust, defensible, and 

data-driven algorithms and procedures for quantifying spatial dependence structures, 

modelling the spillover impacts of these structures (i.e. spatial interactions among the 

participating variables), and integrating them into the process of mining. In comparison 

with existing SAR mining algorithms, SpatialARMED is robust in: (1) its definition of 
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HIGH or LOW defined on the basis of multi-directional searches for spatial clusters and 

tests for significance instead of pre-determined concept hierarchies; and (2) in its 

definition of NEAR-BY or NEXT-TO using domain knowledge based interaction models 

for spatial spillover impact.   

From an application perspective, SpatialARMED presents a relevant data mining 

approach to extract spatial modalities governing the underlying processes observed in 

social sciences, regional studies, transportation, public health, business, marketing, 

human-environment interactions, and ecology, to name a few. In addition, 

SpatialARMED is designed to be scalable and to take advantage of high-performance 

computing for big-data analytics, which is in line with the future development of 

GIScience. By offering a mining solution which is (1) genuinely spatial-integrated, (2) 

resourceful for geographical big-data analysis, (3) an integrative platform for efficient 

powerful computing algorithms and domain expertise, this work contributes to the 

theoretical body of the literature in both entity-based spatial analysis and spatial data 

mining. 

This research is not without limitations. First, the SpatialARMED framework 

encompasses several loosely-coupled algorithms and procedures which must be operated 

in a chronological sequence. While this offers implementation options to handle 

complexity and allows human interactions during the process of mining, it, indeed, is a 

limitation for applications that prioritize automation and timely responses. Second, the 

utilization of AMOEBA spatial clustering in this study detects a potential limitation tied 

to its difficulty to identify cold spots in cases where the data is highly skewed as 

discussed in Section 6.3.1. Further examination on this issue is given top priority in the 
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future research agenda. Finally, SpatialARMED at its current stage is limited to spatial 

analysis and need to be extended to spatial-temporal analysis. The research questions will 

then be expanded from mining spatial associations at one instance of time to mining 

spatial associations to changes over time or to analyze the changes in the spatial 

associations over time. This will be a fruitful research direction for the near future of 

SpatialARMED. 
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APPENDIX A: REPRESENTATIVE MINED SARS FOR DANGEROUS STREETS 

DUE TO CRIME OF ALL TYPES USING CRISP MAPPING, SUPPORT 

THRESHOLD OF 5%, CONFIDENCE THRESHOLD OF 40%  
 
 

 Rules C% S% 

1  HeterogeneityInx=H UnstableRent=H HEdu=M Income=L ==> CAT=H 5 81 

2 
 SingleParentF=H HomeOwn=L Male17-24=H HeterogeneityInx=H ==> 
CAT=H 5 81 

3  SingleParentF=H HeterogeneityInx=H MUHouse=H Income=L ==> CAT=H 5 80 

4  SingleParentF=H UnstableRent=H MUHouse=H Income=L ==> CAT=H 5 79 

5  SingleParentF=H HeterogeneityInx=H MUHouse=H ==> CAT=H 5 79 

6  SingleParentF=H Male17-24=H MUHouse=H ==> CAT=H 5 78 

7  HeterogeneityInx=H UnstableRent=H MUHouse=H Income=L ==> CAT=H 6 77 

8  SingleParentF=H UnstableRent=H MUHouse=H ==> CAT=H 6 77 

9  SingleParentF=H MUHouse=H ==> CAT=H 7 76 

10  SingleParentF=H MUHouse=H Income=L ==> CAT=H 6 76 

11 
 SingleParentF=H HeterogeneityInx=H UnstableRent=H Income=L ==> 
CAT=H 5 76 

12  SingleParentF=H HomeOwn=L MUHouse=H ==> CAT=H 5 76 

13  AfricanA=H MUHouse=H Income=L ==> CAT=H 5 75 

14  HomeOwn=L Male17-24=H HeterogeneityInx=H Income=L ==> CAT=H 6 75 

15  HomeOwn=MH UnstableRent=M MUHouse=M ==> CAT=MH 6 75 

16  UnstableRent=H HEdu=M MUHouse=H Income=L ==> CAT=H 5 74 

17  AfricanA=H MUHouse=H ==> CAT=H 5 74 

18  Male17-24=H HeterogeneityInx=H UnstableRent=H Income=L ==> CAT=H 5 74 

19  SingleParentF=H HomeOwn=L HeterogeneityInx=H Income=L ==> CAT=H 6 74 

20  HomeOwn=L Male17-24=H HEdu=M Income=L ==> CAT=H 6 73 

21  SingleParentF=H HomeOwn=L HeterogeneityInx=H ==> CAT=H 6 73 

22  SingleParentF=H HomeOwn=L Male17-24=H HEdu=M ==> CAT=H 5 73 

23  SingleParentF=H HeterogeneityInx=H UnstableRent=H ==> CAT=H 5 72 

24  SingleParentF=H HomeOwn=L HEdu=M Income=L ==> CAT=H 7 72 

25  SingleParentF=H HomeOwn=L AfricanA=H HEdu=M ==> CAT=H 6 72 

26  HeterogeneityInx=H UnstableRent=H HEdu=M ==> CAT=H 6 71 

27  Male17-24=H HeterogeneityInx=H MUHouse=H Income=L ==> CAT=H 5 71 

28  HomeOwn=L HeterogeneityInx=H HEdu=M Income=L ==> CAT=H 5 71 

29  HomeOwn=L HeterogeneityInx=H AfricanA=H ==> CAT=H 5 71 

30  SingleParentF=H HomeOwn=L HEdu=M ==> CAT=H 7 71 

31  HeterogeneityInx=H UnstableRent=H Income=L ==> CAT=H 7 70 

32  HomeOwn=L HeterogeneityInx=H UnstableRent=H Income=L ==> CAT=H 5 70 

33  SingleParentF=H HomeOwn=L UnstableRent=H HEdu=M ==> CAT=H 5 70 

34  SingleParentF=H HomeOwn=L Male17-24=H Income=L ==> CAT=H 7 70 
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APPENDIX A: (continued) 

35  Male17-24=H UnstableRent=H MUHouse=H Income=L ==> CAT=H 6 69 

36  SingleParentF=H HomeOwn=L Male17-24=H ==> CAT=H 7 69 

37  SingleParentF=H HomeOwn=L Male17-24=H AfricanA=H ==> CAT=H 5 68 

38  HomeOwn=MH HeterogeneityInx=MH ==> CAT=MH 5 68 

39  HomeOwn=MH Male17-24=H ==> CAT=MH 6 68 

40  HeterogeneityInx=H MUHouse=H Income=L ==> CAT=H 6 67 

41  HomeOwn=L Male17-24=H HeterogeneityInx=H ==> CAT=H 6 67 

42  HomeOwn=MH UnstableRent=M ==> CAT=MH 8 67 

43  Male17-24=H UnstableRent=H HEdu=M Income=L ==> CAT=H 6 66 

44  HomeOwn=L Male17-24=H UnstableRent=H HEdu=M ==> CAT=H 5 66 

45  SingleParentF=H HomeOwn=L Male17-24=H UnstableRent=H ==> CAT=H 5 66 

46  Male17-24=H UnstableRent=M ==> CAT=MH 7 66 

47  UnstableRent=H MUHouse=H Income=L ==> CAT=H 8 65 

48  HeterogeneityInx=H UnstableRent=H MUHouse=H ==> CAT=H 6 65 

49  HomeOwn=L AfricanA=H HEdu=M ==> CAT=H 6 65 

50  HomeOwn=L AfricanA=H HEdu=M Income=L ==> CAT=H 6 65 

51  HomeOwn=L HeterogeneityInx=H Income=L ==> CAT=H 7 65 

52  HomeOwn=L Male17-24=H MUHouse=H Income=L ==> CAT=H 5 65 

53  HomeOwn=L Male17-24=H HEdu=M ==> CAT=H 6 65 

54  HomeOwn=L Male17-24=H AfricanA=H ==> CAT=H 6 65 

55 
 HomeOwn=L Male17-24=H HeterogeneityInx=H UnstableRent=H ==> 
CAT=H 5 65 

56  SingleParentF=H HomeOwn=L ==> CAT=H 10 65 

57  SingleParentF=H HomeOwn=L Income=L ==> CAT=H 9 65 

58  SingleParentF=H HomeOwn=L AfricanA=H UnstableRent=H ==> CAT=H 5 65 

59  HomeOwn=MH MUHouse=M ==> CAT=MH 7 65 

60 
 HomeOwn=L HeterogeneityInx=H UnstableRent=H MUHouse=H ==> 
CAT=H 5 64 

61  HomeOwn=L Male17-24=H AfricanA=H Income=L ==> CAT=H 6 64 

62  SingleParentF=H HomeOwn=L UnstableRent=H Income=L ==> CAT=H 6 64 

63  SingleParentF=H HomeOwn=L AfricanA=H ==> CAT=H 8 64 

64  SingleParentF=H HomeOwn=L AfricanA=H Income=L ==> CAT=H 7 64 

65  UnstableRent=M MUHouse=M Income=L ==> CAT=MH 5 64 

66  AfricanA=H UnstableRent=M ==> CAT=MH 6 64 

67  HEdu=M MUHouse=H Income=L ==> CAT=H 6 63 

68  UnstableRent=H HEdu=M MUHouse=H ==> CAT=H 6 63 

69  Male17-24=H MUHouse=H Income=L ==> CAT=H 6 63 

70 
 Male17-24=H HeterogeneityInx=H UnstableRent=H MUHouse=H ==> 
CAT=H 5 63 

71  HomeOwn=L UnstableRent=H MUHouse=H Income=L ==> CAT=H 6 63 

72  HomeOwn=L UnstableRent=H HEdu=M Income=L ==> CAT=H 6 63 

73  HomeOwn=L HeterogeneityInx=H UnstableRent=H ==> CAT=H 6 63 
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APPENDIX A: (continued) 

74  SingleParentF=H UnstableRent=H HEdu=M ==> CAT=H 6 63 

75  SingleParentF=H UnstableRent=H HEdu=M Income=L ==> CAT=H 6 63 

76  SingleParentF=H AfricanA=H UnstableRent=H HEdu=M ==> CAT=H 5 63 

77  SingleParentF=H HomeOwn=L UnstableRent=H ==> CAT=H 7 63 

78  AfricanA=H UnstableRent=M Income=L ==> CAT=MH 5 63 

79  HomeOwn=MH HEdu=L ==> CAT=MH 6 63 

80  HomeOwn=MH AfircanA=L UnstableRent=M ==> CAT=MH 5 63 

81  HomeOwn=L HeterogeneityInx=H HEdu=M ==> CAT=H 5 62 

82  HomeOwn=L Male17-24=H Income=L ==> CAT=H 8 62 

83  Employment=M UnstableRent=M ==> CAT=MH 8 62 

84  HomeOwn=MH Employment=M ==> CAT=MH 7 62 

85  HeterogeneityInx=H UnstableRent=H ==> CAT=H 7 61 

86  Male17-24=H HeterogeneityInx=H MUHouse=H ==> CAT=H 6 61 

87  Male17-24=H HeterogeneityInx=H UnstableRent=H ==> CAT=H 6 61 

88  HomeOwn=L HeterogeneityInx=H MUHouse=H ==> CAT=H 6 61 

89  SingleParentF=H Male17-24=H UnstableRent=H Income=L ==> CAT=H 6 61 

90  HeterogeneityInx=H UnstableRent=M Income=L ==> CAT=MH 6 61 

91  AfricanA=H UnstableRent=H HEdu=M Income=L ==> CAT=H 6 60 

92  Male17-24=H UnstableRent=H HEdu=M ==> CAT=H 6 60 

93  HomeOwn=L UnstableRent=H HEdu=M MUHouse=H ==> CAT=H 5 60 

94  HomeOwn=L AfricanA=H ==> CAT=H 9 60 

95  HomeOwn=L AfricanA=H UnstableRent=H ==> CAT=H 6 60 

96  SingleParentF=H UnstableRent=H Income=L ==> CAT=H 8 60 

97  SingleParentF=H Male17-24=H UnstableRent=H ==> CAT=H 6 60 

98  Male17-24=H MUHouse=M ==> CAT=MH 6 60 

99  Male17-24=H MUHouse=M Income=L ==> CAT=MH 5 60 

100  Male17-24=H UnstableRent=M Income=L ==> CAT=MH 5 60 

101  SingleParentF=H HomeOwn=MH Income=L ==> CAT=MH 5 60 

102  SingleParentF=L HomeOwn=MH AfircanA=L ==> CAT=MH 6 60 

103  MUHouse=H Income=L ==> CAT=H 9 59 

104  UnstableRent=H HEdu=M Income=L ==> CAT=H 8 59 

105  AfricanA=H UnstableRent=H HEdu=M ==> CAT=H 6 59 

106  HeterogeneityInx=H MUHouse=H ==> CAT=H 7 59 

107  Male17-24=H AfricanA=H UnstableRent=H Income=L ==> CAT=H 5 59 

108  HomeOwn=L MUHouse=H Income=L ==> CAT=H 7 59 

109  HomeOwn=L HEdu=M Income=L ==> CAT=H 9 59 

110  HomeOwn=L AfricanA=H Income=L ==> CAT=H 8 59 

111  HomeOwn=L AfricanA=H UnstableRent=H Income=L ==> CAT=H 5 59 

112  HomeOwn=L HeterogeneityInx=H ==> CAT=H 8 59 

113  HomeOwn=L Male17-24=H UnstableRent=H Income=L ==> CAT=H 6 59 

114  SingleParentF=H AfricanA=H UnstableRent=H Income=L ==> CAT=H 6 59 
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APPENDIX A: (continued) 

115  HeterogeneityInx=H UnstableRent=M ==> CAT=MH 8 59 

116  HeterogeneityInx=MH MUHouse=M ==> CAT=MH 5 59 

117  SingleParentF=H HomeOwn=MH ==> CAT=MH 5 59 

118  SingleParentF=L HomeOwn=MH ==> CAT=MH 6 59 

119  Male17-24=H UnstableRent=H Income=L ==> CAT=H 7 58 

120  SingleParentF=H UnstableRent=H ==> CAT=H 8 58 

121  SingleParentF=H AfricanA=H UnstableRent=H ==> CAT=H 6 58 

122  AfricanA=H MUHouse=M Income=L ==> CAT=MH 6 58 

123  HomeOwn=MH Income=L ==> CAT=MH 8 58 

124  HomeOwn=MH AfircanA=L ==> CAT=MH 7 58 

125  SingleParentF=H MUHouse=M Income=L ==> CAT=MH 5 58 

126  HomeOwn=L Employment=M Income=L ==> CAT=H 5 57 

127  MUHouse=M Income=L ==> CAT=MH 9 57 

128  AfricanA=H MUHouse=M ==> CAT=MH 6 57 

129  HeterogeneityInx=MH Employment=M ==> CAT=MH 5 57 

130  HomeOwn=MH ==> CAT=MH 13 57 

131  SingleParentF=H UnstableRent=M ==> CAT=MH 5 57 

132  AfricanA=H UnstableRent=H Income=L ==> CAT=H 7 56 

133  Male17-24=H UnstableRent=H MUHouse=H ==> CAT=H 6 56 

134  Male17-24=H AfricanA=H UnstableRent=H ==> CAT=H 5 56 

135  HomeOwn=L UnstableRent=H HEdu=M ==> CAT=H 7 56 

136  HomeOwn=L Male17-24=H UnstableRent=H MUHouse=H ==> CAT=H 5 56 

137  HeterogeneityInx=H MUHouse=M ==> CAT=MH 5 56 

138  SingleParentF=H MUHouse=M ==> CAT=MH 6 56 

139  SingleParentF=H UnstableRent=M Income=L ==> CAT=MH 5 56 

140  SingleParentF=H AfricanA=H MUHouse=L Income=L ==> CAT=MH 5 56 

141  AfricanA=H UnstableRent=H ==> CAT=H 7 55 

142  HomeOwn=L HEdu=M MUHouse=H ==> CAT=H 5 55 

143  HomeOwn=L UnstableRent=H Income=L ==> CAT=H 9 55 

144  HomeOwn=L Male17-24=H MUHouse=H ==> CAT=H 5 55 

145  UnstableRent=M MUHouse=M ==> CAT=MH 10 55 

146  Employment=M MUHouse=H ==> CAT=H 5 54 

147  HomeOwn=L Male17-24=H ==> CAT=H 9 54 

148  UnstableRent=M Income=M ==> CAT=MH 5 54 

149  UnstableRent=M Income=L ==> CAT=MH 9 54 

150  SingleParentF=H MUHouse=L Income=L ==> CAT=MH 7 54 

151  SingleParentF=H AfricanA=H MUHouse=L ==> CAT=MH 5 54 

152  UnstableRent=H Income=L ==> CAT=H 11 53 

153  UnstableRent=H HEdu=M ==> CAT=H 8 53 

154  HomeOwn=L Income=L ==> CAT=H 13 53 

155  HomeOwn=L Male17-24=H UnstableRent=H ==> CAT=H 6 53 
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APPENDIX A: (continued) 

156  UnstableRent=M ==> CAT=MH 17 53 

157  UnstableRent=M HEdu=L ==> CAT=MH 6 53 

158  HomeOwn=MH HEdu=M ==> CAT=MH 7 53 

159  SingleParentF=H MUHouse=L ==> CAT=MH 7 53 

160  HEdu=M MUHouse=H ==> CAT=H 7 52 

161  HomeOwn=L UnstableRent=H MUHouse=H ==> CAT=H 8 52 

162  HeterogeneityInx=MH Income=L ==> CAT=MH 7 52 

163  HomeOwn=MH Employment=H ==> CAT=MH 5 52 

164  SingleParentF=H AfricanA=H Employment=M ==> CAT=MH 5 52 

165  SingleParentF=H AfricanA=H Employment=M Income=L ==> CAT=MH 5 52 

166  UnstableRent=H MUHouse=H ==> CAT=H 10 51 

167  Employment=M UnstableRent=H ==> CAT=H 5 51 

168  Male17-24=H MUHouse=H ==> CAT=H 7 51 

169  SingleParentF=H Male17-24=H HeterogeneityInx=H Income=L ==> CAT=H 6 51 

170  HEdu=L MUHouse=M ==> CAT=MH 5 51 

171  AfricanA=MH ==> CAT=MH 7 51 

172  HomeOwn=H HeterogeneityInx=H Income=L ==> CAT=MH 5 51 

173  UnstableRent=M HEdu=M ==> CAT=MH 9 50 

174  UnstableRent=M HEdu=M Income=L ==> CAT=MH 5 50 

175  SingleParentF=H HeterogeneityInx=H AfricanA=H Income=L ==> CAT=MH 6 50 

176  Male17-24=H UnstableRent=H ==> CAT=H 7 49 

177  HomeOwn=L MUHouse=H ==> CAT=H 9 49 

178  HomeOwn=L UnstableRent=H ==> CAT=H 11 49 

179  Employment=H UnstableRent=M ==> CAT=MH 7 49 

180  AfricanA=H MUHouse=L Income=L ==> CAT=MH 5 49 

181  HeterogeneityInx=MH ==> CAT=MH 11 49 

182  HomeOwn=MH Male17-24=L ==> CAT=MH 6 49 

183  SingleParentF=L AfircanA=L UnstableRent=M ==> CAT=MH 7 49 

184  SingleParentF=H Male17-24=H HeterogeneityInx=H ==> CAT=H 6 48 

185  HEdu=M MUHouse=M Income=L ==> CAT=MH 5 48 

186  HEdu=L Income=L ==> CAT=MH 7 48 

187  Employment=M MUHouse=M ==> CAT=MH 6 48 

188  Employment=L Income=L ==> CAT=MH 6 48 

189  AfircanA=L UnstableRent=M ==> CAT=MH 9 48 

190  Male17-24=H Employment=H ==> CAT=MH 7 48 

191  SingleParentF=H AfricanA=H Income=L ==> CAT=MH 11 48 

192  SingleParentF=H HeterogeneityInx=H AfricanA=H ==> CAT=MH 7 48 

193  SingleParentF=L UnstableRent=M ==> CAT=MH 7 48 

194  HomeOwn=L HEdu=M ==> CAT=H 9 47 

195  MUHouse=M ==> CAT=MH 15 47 

196  Employment=H MUHouse=M ==> CAT=MH 6 47 
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APPENDIX A: (continued) 

197  Employment=M Income=L ==> CAT=MH 10 47 

198  AfricanA=H Employment=M ==> CAT=MH 6 47 

199  AfricanA=H Employment=M Income=L ==> CAT=MH 6 47 

200  AfircanA=L UnstableRent=M MUHouse=M ==> CAT=MH 6 47 

201  HeterogeneityInx=H MUHouse=L Income=L ==> CAT=MH 5 47 

202  HeterogeneityInx=H HEdu=M MUHouse=L ==> CAT=MH 5 47 

203  HeterogeneityInx=H AfricanA=H Income=L ==> CAT=MH 7 47 

204  HeterogeneityInx=MH AfircanA=L ==> CAT=MH 6 47 

205  HomeOwn=L HEdu=L ==> CAT=MH 6 47 

206  SingleParentF=H Male17-24=H Income=L ==> CAT=H 8 46 

207  SingleParentF=H Male17-24=H AfricanA=H Income=L ==> CAT=H 6 46 

208  MUHouse=L Income=L ==> CAT=MH 9 46 

209  HEdu=M MUHouse=L Income=L ==> CAT=MH 5 46 

210  AfricanA=H Income=L ==> CAT=MH 13 46 

211  AfircanA=L Employment=H UnstableRent=M ==> CAT=MH 5 46 

212  HomeOwn=H UnstableRent=M ==> CAT=MH 5 46 

213  SingleParentF=H Income=L ==> CAT=MH 14 46 

214  SingleParentF=H Employment=M ==> CAT=MH 7 46 

215  SingleParentF=H Employment=M Income=L ==> CAT=MH 7 46 

216  SingleParentF=H AfricanA=H ==> CAT=MH 11 46 

217  SingleParentF=H HeterogeneityInx=H Income=L ==> CAT=MH 8 46 

218  SingleParentF=MH ==> CAT=MH 8 46 

219  SingleParentF=L MUHouse=H ==> CAT=MH 5 46 

220  SingleParentF=L UnstableRent=M MUHouse=M ==> CAT=MH 5 46 

221  UnstableRent=H ==> CAT=H 12 45 

222  Male17-24=H HeterogeneityInx=H HEdu=M ==> CAT=H 5 45 

223  SingleParentF=H Male17-24=H ==> CAT=H 9 45 

224  SingleParentF=H Male17-24=H HEdu=M Income=L ==> CAT=H 5 45 

225  SingleParentF=H Male17-24=H AfricanA=H ==> CAT=H 7 45 

226  Income=L ==> CAT=MH 23 45 

227  Employment=H MUHouse=H ==> CAT=MH 6 45 

228  AfricanA=H MUHouse=L ==> CAT=MH 6 45 

229  HeterogeneityInx=L UnstableRent=M ==> CAT=MH 5 45 

230  Male17-24=H ==> CAT=MH 15 45 

231  Male17-24=H AfricanA=H ==> CAT=MH 8 45 

232  Male17-24=H AfricanA=H Income=L ==> CAT=MH 7 45 

233  HomeOwn=H Income=L ==> CAT=MH 6 45 

234  HomeOwn=H HeterogeneityInx=H HEdu=M ==> CAT=MH 5 45 

235  SingleParentF=H Male17-24=H AfricanA=H Income=L ==> CAT=MH 6 45 

236  HomeOwn=L Employment=M ==> CAT=H 6 44 

237  SingleParentF=H AfricanA=H HEdu=M Income=L ==> CAT=H 7 44 
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238  SingleParentF=H Male17-24=H HEdu=M ==> CAT=H 5 44 

239  Employment=M HEdu=L ==> CAT=MH 6 44 

240  AfricanA=H ==> CAT=MH 14 44 

241  AfircanA=L MUHouse=H ==> CAT=MH 6 44 

242  HeterogeneityInx=H Income=L ==> CAT=MH 12 44 

243  HeterogeneityInx=H Employment=M Income=L ==> CAT=MH 6 44 

244  HeterogeneityInx=MH HEdu=M ==> CAT=MH 6 44 

245  Male17-24=H Income=L ==> CAT=MH 12 44 

246  Male17-24=H AfricanA=H HEdu=M ==> CAT=MH 5 44 

247  Male17-24=L Income=L ==> CAT=MH 8 44 

248  HomeOwn=H HeterogeneityInx=H ==> CAT=MH 8 44 

249  SingleParentF=H ==> CAT=MH 14 44 

250  SingleParentF=H HeterogeneityInx=H ==> CAT=MH 8 44 

251  SingleParentF=H Male17-24=H Income=L ==> CAT=MH 8 44 

252  MUHouse=H ==> CAT=H 11 43 

253  Male17-24=H HeterogeneityInx=H Income=L ==> CAT=H 7 43 

254  HeterogeneityInx=H MUHouse=L ==> CAT=MH 7 43 

255  HeterogeneityInx=H AfricanA=H ==> CAT=MH 8 43 

256  Male17-24=H HEdu=M Income=L ==> CAT=MH 7 43 

257  Male17-24=L UnstableRent=M ==> CAT=MH 8 43 

258  SingleParentF=H Male17-24=H AfricanA=H ==> CAT=MH 6 43 

259  Employment=L Income=L ==> CAT=H 5 42 

260  Male17-24=H Employment=M ==> CAT=H 5 42 

261  Male17-24=H Employment=M Income=L ==> CAT=H 5 42 

262  Male17-24=H AfricanA=H Income=L ==> CAT=H 7 42 

263  Male17-24=H AfricanA=H HEdu=M ==> CAT=H 5 42 

264  HomeOwn=L ==> CAT=H 15 42 

265  SingleParentF=H HEdu=M Income=L ==> CAT=H 8 42 

266  SingleParentF=H AfricanA=H HEdu=M ==> CAT=H 7 42 

267  HEdu=M MUHouse=M ==> CAT=MH 8 42 

268  UnstableRent=L Income=L ==> CAT=MH 6 42 

269  UnstableRent=L MUHouse=L Income=L ==> CAT=MH 5 42 

270  Employment=M HEdu=M Income=L ==> CAT=MH 6 42 

271  Employment=L ==> CAT=MH 6 42 

272  Male17-24=H Employment=M Income=L ==> CAT=MH 5 42 

273  HomeOwn=H HeterogeneityInx=H MUHouse=L ==> CAT=MH 6 42 

274  HomeOwn=L Employment=H ==> CAT=MH 6 42 

275  HomeOwn=L HeterogeneityInx=L ==> CAT=MH 6 42 

276  SingleParentF=H HEdu=M Income=L ==> CAT=MH 8 42 

277  SingleParentF=H Male17-24=H ==> CAT=MH 8 42 

278  SingleParentF=H Male17-24=H HEdu=M ==> CAT=MH 5 42 
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279  SingleParentF=MH Income=L ==> CAT=MH 5 42 

280  SingleParentF=L HomeOwn=L ==> CAT=MH 6 42 

281  Male17-24=H AfricanA=H ==> CAT=H 7 41 

282  SingleParentF=H HEdu=M ==> CAT=H 8 41 

283  SingleParentF=H HeterogeneityInx=H Income=L ==> CAT=H 7 41 

284  HEdu=M Income=L ==> CAT=MH 13 41 

285  AfricanA=H HEdu=M Income=L ==> CAT=MH 8 41 

286  HeterogeneityInx=H Employment=M ==> CAT=MH 7 41 

287  Male17-24=H Employment=M ==> CAT=MH 5 41 

288  HomeOwn=L Male17-24=L ==> CAT=MH 7 41 

289  SingleParentF=H HEdu=M ==> CAT=MH 8 41 

290  SingleParentF=H AfricanA=H HEdu=M ==> CAT=MH 7 41 

291  SingleParentF=H AfricanA=H HEdu=M Income=L ==> CAT=MH 7 41 

292  AfricanA=H HEdu=M Income=L ==> CAT=H 8 40 

293  Male17-24=H HEdu=M Income=L ==> CAT=H 7 40 

294  SingleParentF=H ==> CAT=H 12 40 

295  SingleParentF=H Income=L ==> CAT=H 12 40 

296  SingleParentF=H AfricanA=H Income=L ==> CAT=H 9 40 

297  SingleParentF=H HeterogeneityInx=H ==> CAT=H 8 40 

298  SingleParentF=H HeterogeneityInx=H HEdu=M ==> CAT=H 5 40 

299  SingleParentF=H HeterogeneityInx=H AfricanA=H Income=L ==> CAT=H 5 40 

300  HEdu=L ==> CAT=MH 14 40 

301  UnstableRent=H ==> CAT=MH 11 40 

302  Employment=H HEdu=L ==> CAT=MH 7 40 

303  AfricanA=H HEdu=M ==> CAT=MH 9 40 

304  HeterogeneityInx=H ==> CAT=MH 15 40 

305  Male17-24=H HEdu=M ==> CAT=MH 8 40 

306  Male17-24=H HeterogeneityInx=H Income=L ==> CAT=MH 7 40 

307  SingleParentF=H HeterogeneityInx=H HEdu=M ==> CAT=MH 5 40 
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APPENDIX B: REPRESENTATIVE MINED SARS FOR DANGEROUS STREET 

DUE TO MOTOR VEHICLE THEFT USING CRISP MAPPING, SUPPORT 

THRESHOLD OF 5%, CONFIDENCE THRESHOLD OF 40% 

 

 

 Rules S% C% 

1  SingleParentF=H HeterogeneityInx=H MUHouse=H ==> MVT=H 5 73 

2  HeterogeneityInx=H UnstableRent=H MUHouse=H Income=L ==> MVT=H 5 71 

3  Male17-24=H HeterogeneityInx=H UnstableRent=H Income=L ==> MVT=H 5 71 

4  HomeOwn=L Male17-24=H HeterogeneityInx=H MUHouse=H ==> MVT=H 5 71 

5  HomeOwn=L Male17-24=H HeterogeneityInx=H ==> MVT=H 6 70 

6 
 HomeOwn=L Male17-24=H HeterogeneityInx=H UnstableRent=H ==> 
MVT=H 5 70 

7  Male17-24=H HeterogeneityInx=H MUHouse=H Income=L ==> MVT=H 5 69 

8 
 HomeOwn=L HeterogeneityInx=H UnstableRent=H MUHouse=H ==> 
MVT=H 6 69 

9  HomeOwn=L Male17-24=H HeterogeneityInx=H Income=L ==> MVT=H 5 69 

10  HeterogeneityInx=H UnstableRent=H HEdu=M ==> MVT=H 5 68 

11  HeterogeneityInx=H UnstableRent=H MUHouse=H ==> MVT=H 7 67 

12  Male17-24=H HEdu=M MUHouse=H ==> MVT=H 5 67 

13  HeterogeneityInx=H UnstableRent=H Income=L ==> MVT=H 6 66 

14  Male17-24=H HeterogeneityInx=H MUHouse=H ==> MVT=H 6 66 

15  Male17-24=H HeterogeneityInx=H UnstableRent=H ==> MVT=H 6 66 

16 
 Male17-24=H HeterogeneityInx=H UnstableRent=H MUHouse=H ==> 
MVT=H 5 66 

17  HomeOwn=L HeterogeneityInx=H MUHouse=H ==> MVT=H 6 66 

18  HeterogeneityInx=H MUHouse=H Income=L ==> MVT=H 6 65 

19  HomeOwn=L HeterogeneityInx=H UnstableRent=H ==> MVT=H 6 65 

20  HomeOwn=L HeterogeneityInx=H UnstableRent=H Income=L ==> MVT=H 5 65 

21  HeterogeneityInx=H MUHouse=H ==> MVT=H 7 63 

22  HeterogeneityInx=H UnstableRent=H ==> MVT=H 7 63 

23  SingleParentF=H MUHouse=H ==> MVT=H 5 63 

24  SingleParentF=H MUHouse=H Income=L ==> MVT=H 5 63 

25  SingleParentF=H HomeOwn=L HeterogeneityInx=H ==> MVT=H 5 63 

26  SingleParentF=H HomeOwn=L HeterogeneityInx=H Income=L ==> MVT=H 5 63 

27  Male17-24=H UnstableRent=H MUHouse=H Income=L ==> MVT=H 5 62 

28  Male17-24=H HeterogeneityInx=H Employment=M Income=L ==> MVT=H 5 62 

29  HomeOwn=L Male17-24=H MUHouse=H ==> MVT=H 6 62 

30  Male17-24=H MUHouse=H Income=L ==> MVT=H 6 61 

31  Male17-24=H HeterogeneityInx=H Employment=M ==> MVT=H 5 60 

32  HomeOwn=L UnstableRent=H HEdu=M MUHouse=H ==> MVT=H 5 60 

33  HomeOwn=L HeterogeneityInx=H Income=L ==> MVT=H 7 60 

34  HomeOwn=L HeterogeneityInx=H HEdu=M ==> MVT=H 5 60 
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35  HomeOwn=L Male17-24=H UnstableRent=H MUHouse=H ==> MVT=H 5 60 

36  Male17-24=H UnstableRent=H HEdu=M Income=L ==> MVT=H 5 59 

37  HomeOwn=L HeterogeneityInx=H ==> MVT=H 8 59 

38  HEdu=M MUHouse=H Income=L ==> MVT=H 5 58 

39  UnstableRent=H HEdu=M MUHouse=H ==> MVT=H 6 58 

40  Male17-24=H UnstableRent=H HEdu=M ==> MVT=H 6 57 

41  HomeOwn=L Male17-24=H HEdu=M ==> MVT=H 5 57 

42  SingleParentF=H Male17-24=H HeterogeneityInx=H Income=L ==> MVT=H 6 57 

43  UnstableRent=H MUHouse=H Income=L ==> MVT=H 7 56 

44  Male17-24=H MUHouse=H ==> MVT=H 7 56 

45  Male17-24=H UnstableRent=H MUHouse=H ==> MVT=H 6 56 

46  HomeOwn=L UnstableRent=H MUHouse=H Income=L ==> MVT=H 6 56 

47  HomeOwn=L HEdu=M MUHouse=H ==> MVT=H 5 55 

48  SingleParentF=H Male17-24=H HeterogeneityInx=H ==> MVT=H 7 55 

49  SingleParentF=H HomeOwn=L HEdu=M ==> MVT=H 6 55 

50  SingleParentF=H HomeOwn=L HEdu=M Income=L ==> MVT=H 5 55 

51  MUHouse=H Income=L ==> MVT=H 8 54 

52  HomeOwn=L MUHouse=H Income=L ==> MVT=H 6 54 

53  HomeOwn=L Male17-24=H ==> MVT=H 8 53 

54  HomeOwn=L Male17-24=H UnstableRent=H ==> MVT=H 6 53 

55  HomeOwn=L Male17-24=H UnstableRent=H Income=L ==> MVT=H 5 53 

56  SingleParentF=H HomeOwn=L ==> MVT=H 8 53 

57  SingleParentF=H HomeOwn=L Male17-24=H ==> MVT=H 5 53 

58  HEdu=M MUHouse=H ==> MVT=H 7 52 

59  HomeOwn=L Male17-24=H Income=L ==> MVT=H 7 52 

60  SingleParentF=H HomeOwn=L Male17-24=H Income=L ==> MVT=H 5 52 

61  Male17-24=H UnstableRent=H Income=L ==> MVT=H 6 51 

62  HomeOwn=L UnstableRent=H MUHouse=H ==> MVT=H 8 51 

63  SingleParentF=H HomeOwn=L Income=L ==> MVT=H 7 51 

64  SingleParentF=H HomeOwn=L UnstableRent=H ==> MVT=H 5 51 

65  SingleParentF=H HomeOwn=L UnstableRent=H Income=L ==> MVT=H 5 51 

66  HomeOwn=L UnstableRent=H HEdu=M Income=L ==> MVT=H 5 50 

67  SingleParentF=H HomeOwn=L AfricanA=H ==> MVT=H 6 50 

68  Male17-24=H Employment=M Income=L ==> MVT=H 6 49 

69  Male17-24=H HeterogeneityInx=H ==> MVT=H 9 49 

70  Male17-24=H HeterogeneityInx=H Income=L ==> MVT=H 8 49 

71  Male17-24=H HeterogeneityInx=H HEdu=M ==> MVT=H 6 49 

72  HomeOwn=L MUHouse=H ==> MVT=H 9 49 

73  HomeOwn=L UnstableRent=H HEdu=M ==> MVT=H 6 49 

74  SingleParentF=H HomeOwn=L AfricanA=H Income=L ==> MVT=H 6 49 

75  UnstableRent=H HEdu=M Income=L ==> MVT=H 6 48 
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76  Male17-24=H UnstableRent=H ==> MVT=H 7 48 

77  HomeOwn=L HEdu=M Income=L ==> MVT=H 7 48 

78  UnstableRent=H MUHouse=H ==> MVT=H 9 47 

79  UnstableRent=H HEdu=M ==> MVT=H 7 47 

80  Male17-24=H Employment=M ==> MVT=H 6 47 

81  HomeOwn=L UnstableRent=H Income=L ==> MVT=H 7 47 

82  HomeOwn=L AfricanA=H ==> MVT=H 7 47 

83  Employment=H UnstableRent=H ==> MVT=H 5 46 

84  UnstableRent=H Income=L ==> MVT=H 9 45 

85  Male17-24=H HeterogeneityInx=H AfricanA=H ==> MVT=H 5 45 

86  HomeOwn=L UnstableRent=H ==> MVT=H 10 45 

87  HomeOwn=L AfricanA=H Income=L ==> MVT=H 6 45 

88  SingleParentF=H UnstableRent=H ==> MVT=H 6 45 

89  SingleParentF=H UnstableRent=H Income=L ==> MVT=H 6 45 

90  SingleParentF=H HeterogeneityInx=H Income=L ==> MVT=H 8 45 

91  SingleParentF=H HeterogeneityInx=H HEdu=M ==> MVT=H 6 45 

92  SingleParentF=H HeterogeneityInx=H HEdu=M Income=L ==> MVT=H 5 45 

93  HomeOwn=L Income=L ==> MVT=H 11 44 

94  SingleParentF=H HeterogeneityInx=H ==> MVT=H 8 44 

95  MUHouse=H ==> MVT=H 11 43 

96  HeterogeneityInx=H Employment=M Income=L ==> MVT=H 6 43 

97  SingleParentF=H HeterogeneityInx=H AfricanA=H ==> MVT=H 6 43 

98  SingleParentF=H HeterogeneityInx=H AfricanA=H Income=L ==> MVT=H 5 43 

99  Employment=H MUHouse=H ==> MVT=H 6 42 

100  HomeOwn=L Employment=H ==> MVT=H 6 42 

101  SingleParentF=H Male17-24=H ==> MVT=H 8 42 

102  SingleParentF=H Male17-24=H Income=L ==> MVT=H 8 42 

103  SingleParentF=H Male17-24=H HEdu=M ==> MVT=H 5 42 

104  HomeOwn=L HEdu=M ==> MVT=H 8 41 

105  UnstableRent=H ==> MVT=H 11 40 

106  HeterogeneityInx=H AfricanA=H Income=L ==> MVT=H 6 40 

107  Male17-24=H Income=L ==> MVT=H 11 40 

108  Male17-24=H HEdu=M Income=L ==> MVT=H 7 40 
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APPENDIX C: REPRESENTATIVE MINED SARS FOR DANGEROUS STREET 

DUE TO THEFTS FROM MOTOR VEHICLE USING CRISP MAPPING, SUPPORT 

THRESHOLD OF 5%, CONFIDENCE THRESHOLD OF 40%  

 

 

 Rules S% C% 

1  HomeOwn=L Male17-24=H HeterogeneityInx=H MUHouse=H ==> TFM=H 5 69 

2  Male17-24=H HEdu=M MUHouse=H ==> TFM=H 5 67 

3  HomeOwn=L UnstableRent=H HEdu=M MUHouse=H ==> TFM=H 6 67 

4 
 HomeOwn=L HeterogeneityInx=H UnstableRent=H MUHouse=H ==> 
TFM=H 5 67 

5  HomeOwn=L HeterogeneityInx=H MUHouse=H ==> TFM=H 6 64 

6  HomeOwn=L Male17-24=H MUHouse=H ==> TFM=H 6 64 

7  UnstableRent=H HEdu=M MUHouse=H ==> TFM=H 6 63 

8  HomeOwn=L Employment=H UnstableRent=H MUHouse=H ==> TFM=H 5 63 

9  HomeOwn=L Male17-24=H UnstableRent=H MUHouse=H ==> TFM=H 6 63 

10  HomeOwn=L Male17-24=H UnstableRent=H HEdu=M ==> TFM=H 5 63 

11  HomeOwn=L Male17-24=H HeterogeneityInx=H ==> TFM=H 6 63 

12  SingleParentF=H MUHouse=H ==> TFM=H 5 63 

13  HeterogeneityInx=H UnstableRent=H MUHouse=H ==> TFM=H 6 61 

14  HomeOwn=L HEdu=M MUHouse=H ==> TFM=H 6 60 

15  HomeOwn=L Employment=L Income=L ==> TFM=MH 6 60 

16  Male17-24=H HeterogeneityInx=H MUHouse=H ==> TFM=H 5 59 

17  HomeOwn=L UnstableRent=H MUHouse=H ==> TFM=H 9 59 

18  HomeOwn=L HeterogeneityInx=H UnstableRent=H ==> TFM=H 6 59 

19  AfricanA=H MUHouse=M ==> TFM=MH 6 59 

20  AfricanA=H Employment=L Income=L ==> TFM=MH 6 59 

21  AfricanA=H MUHouse=M Income=L ==> TFM=MH 6 58 

22  AfricanA=H Employment=L ==> TFM=MH 6 58 

23  HeterogeneityInx=H MUHouse=H ==> TFM=H 7 57 

24  Male17-24=H MUHouse=H Income=L ==> TFM=H 5 57 

25  Male17-24=H UnstableRent=H HEdu=M ==> TFM=H 6 57 

26  HomeOwn=L Employment=H MUHouse=H ==> TFM=H 5 57 

27  HomeOwn=L Employment=H UnstableRent=H ==> TFM=H 5 57 

28  HomeOwn=L Male17-24=H HEdu=M ==> TFM=H 5 57 

29  SingleParentF=H HomeOwn=L Male17-24=H ==> TFM=H 6 57 

30  Employment=L Income=L ==> TFM=MH 7 57 

31  Male17-24=H MUHouse=M Income=L ==> TFM=MH 5 57 

32  Male17-24=L HEdu=M Income=L ==> TFM=MH 6 57 

33  HomeOwn=L MUHouse=M ==> TFM=MH 6 57 

34  HomeOwn=L Employment=L ==> TFM=MH 6 57 

35  HEdu=M MUHouse=H ==> TFM=H 7 56 
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36  Employment=H UnstableRent=H MUHouse=H ==> TFM=H 6 56 

37  HeterogeneityInx=H MUHouse=H Income=L ==> TFM=H 5 56 

38  HeterogeneityInx=L Income=L ==> TFM=MH 6 56 

39  Male17-24=L MUHouse=L Income=L ==> TFM=MH 5 56 

40  SingleParentF=L Income=L ==> TFM=MH 5 56 

41  Male17-24=H HeterogeneityInx=H UnstableRent=H ==> TFM=H 5 55 

42  HomeOwn=L MUHouse=H ==> TFM=H 10 55 

43  SingleParentF=H Male17-24=H UnstableRent=H ==> TFM=H 5 55 

44  SingleParentF=H Male17-24=H UnstableRent=H Income=L ==> TFM=H 5 55 

45  MUHouse=M Income=L ==> TFM=MH 9 55 

46  HomeOwn=MH Income=L ==> TFM=MH 7 55 

47  HomeOwn=MH UnstableRent=M ==> TFM=MH 7 55 

48  HeterogeneityInx=H UnstableRent=H ==> TFM=H 6 54 

49  Male17-24=H MUHouse=H ==> TFM=H 7 54 

50  Male17-24=H UnstableRent=H MUHouse=H ==> TFM=H 6 54 

51  HomeOwn=L UnstableRent=H MUHouse=H Income=L ==> TFM=H 5 54 

52  SingleParentF=H HomeOwn=L Male17-24=H Income=L ==> TFM=H 5 54 

53  UnstableRent=L MUHouse=L Income=L ==> TFM=MH 7 54 

54  Employment=L ==> TFM=MH 8 54 

55  Male17-24=L Income=L ==> TFM=MH 9 54 

56  SingleParentF=MH Income=L ==> TFM=MH 7 54 

57  UnstableRent=H MUHouse=H ==> TFM=H 10 53 

58  UnstableRent=H MUHouse=H Income=L ==> TFM=H 6 53 

59  HomeOwn=L Male17-24=H UnstableRent=H ==> TFM=H 6 53 

60  UnstableRent=L Income=L ==> TFM=MH 7 53 

61  Male17-24=L HeterogeneityInx=MH ==> TFM=MH 5 53 

62  SingleParentF=H MUHouse=M Income=L ==> TFM=MH 5 53 

63  SingleParentF=MH ==> TFM=MH 9 53 

64  HomeOwn=L HeterogeneityInx=H ==> TFM=H 7 52 

65  HEdu=M MUHouse=M Income=L ==> TFM=MH 5 52 

66  Male17-24=H MUHouse=M ==> TFM=MH 5 52 

67  HomeOwn=MH MUHouse=M ==> TFM=MH 6 52 

68  HomeOwn=MH HEdu=M ==> TFM=MH 7 52 

69  HomeOwn=MH Employment=H ==> TFM=MH 5 52 

70  HomeOwn=MH AfircanA=L ==> TFM=MH 7 52 

71  SingleParentF=L HomeOwn=MH ==> TFM=MH 5 52 

72  HomeOwn=L UnstableRent=H HEdu=M ==> TFM=H 7 51 

73  HomeOwn=L Male17-24=H ==> TFM=H 8 51 

74  HomeOwn=L Male17-24=H UnstableRent=H Income=L ==> TFM=H 5 51 

75  HEdu=M MUHouse=L Income=L ==> TFM=MH 6 51 

76  UnstableRent=M HEdu=L ==> TFM=MH 6 51 
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77  Employment=H Income=L ==> TFM=MH 8 51 

78  HomeOwn=MH ==> TFM=MH 12 51 

79  Employment=H UnstableRent=H ==> TFM=H 6 50 

80  HomeOwn=L MUHouse=H Income=L ==> TFM=H 6 50 

81  SingleParentF=H UnstableRent=H HEdu=M ==> TFM=H 5 50 

82  UnstableRent=M Income=L ==> TFM=MH 9 50 

83  UnstableRent=M MUHouse=M ==> TFM=MH 9 50 

84  UnstableRent=M HEdu=M Income=L ==> TFM=MH 5 50 

85  Employment=H MUHouse=M ==> TFM=MH 7 50 

86  AfircanA=L Employment=H MUHouse=M ==> TFM=MH 5 50 

87  AfircanA=L Employment=H UnstableRent=M ==> TFM=MH 5 50 

88  HeterogeneityInx=H Employment=H Income=L ==> TFM=MH 5 50 

89  HeterogeneityInx=MH HEdu=M ==> TFM=MH 7 50 

90  Male17-24=H UnstableRent=M ==> TFM=MH 5 50 

91  HomeOwn=MH Employment=M ==> TFM=MH 5 50 

92  SingleParentF=H MUHouse=M ==> TFM=MH 5 50 

93  MUHouse=H Income=L ==> TFM=H 7 49 

94  SingleParentF=H Male17-24=H HeterogeneityInx=H Income=L ==> TFM=H 5 49 

95  SingleParentF=H HomeOwn=L UnstableRent=H ==> TFM=H 5 49 

96  MUHouse=L Income=L ==> TFM=MH 10 49 

97  Employment=H UnstableRent=M ==> TFM=MH 7 49 

98  HeterogeneityInx=MH Income=L ==> TFM=MH 6 49 

99  HeterogeneityInx=L UnstableRent=M ==> TFM=MH 6 49 

100  HomeOwn=MH Male17-24=L ==> TFM=MH 6 49 

101  UnstableRent=H HEdu=M ==> TFM=H 8 48 

102  Employment=H MUHouse=H ==> TFM=H 7 48 

103  HomeOwn=L UnstableRent=H ==> TFM=H 10 48 

104  HomeOwn=L Employment=H ==> TFM=H 7 48 

105  HomeOwn=L HeterogeneityInx=H Income=L ==> TFM=H 5 48 

106  HomeOwn=L Male17-24=H Income=L ==> TFM=H 6 48 

107  SingleParentF=H Male17-24=H HeterogeneityInx=H ==> TFM=H 6 48 

108  UnstableRent=M ==> TFM=MH 15 48 

109  Employment=H HEdu=M Income=L ==> TFM=MH 5 48 

110  Employment=H HEdu=M MUHouse=L ==> TFM=MH 5 48 

111  AfricanA=MH ==> TFM=MH 7 48 

112  Male17-24=L AfircanA=L UnstableRent=M ==> TFM=MH 6 48 

113  SingleParentF=L Male17-24=L HeterogeneityInx=L HEdu=L ==> TFM=MH 6 48 

114  Male17-24=H UnstableRent=H Income=L ==> TFM=H 6 47 

115  MUHouse=M ==> TFM=MH 15 47 

116  AfricanA=H HEdu=M ==> TFM=MH 10 47 

117  AfricanA=H HEdu=M Income=L ==> TFM=MH 9 47 
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APPENDIX C: (continued) 

118  Male17-24=L UnstableRent=M ==> TFM=MH 8 47 

119  Male17-24=L HeterogeneityInx=L HEdu=L ==> TFM=MH 7 47 

120  Male17-24=L HeterogeneityInx=L AfircanA=L HEdu=L ==> TFM=MH 6 47 

121  SingleParentF=L Employment=H HEdu=L ==> TFM=MH 6 47 

122  SingleParentF=L HeterogeneityInx=L HEdu=L ==> TFM=MH 7 47 

123  MUHouse=H ==> TFM=H 12 46 

124  Male17-24=H UnstableRent=H ==> TFM=H 7 46 

125  SingleParentF=H UnstableRent=H ==> TFM=H 6 46 

126  SingleParentF=H Male17-24=H HEdu=M ==> TFM=H 5 46 

127  SingleParentF=H HomeOwn=L ==> TFM=H 7 46 

128  Income=L ==> TFM=MH 23 46 

129  HEdu=M Income=L ==> TFM=MH 15 46 

130  AfricanA=H Income=L ==> TFM=MH 13 46 

131  HeterogeneityInx=L MUHouse=M ==> TFM=MH 7 46 

132  HeterogeneityInx=L HEdu=L ==> TFM=MH 8 46 

133  HeterogeneityInx=L AfircanA=L HEdu=L ==> TFM=MH 7 46 

134  Male17-24=L Employment=H HEdu=L ==> TFM=MH 5 46 

135  HomeOwn=L Male17-24=L ==> TFM=MH 8 46 

136  SingleParentF=L AfircanA=L Employment=H HEdu=M ==> TFM=MH 6 46 

137  SingleParentF=L HeterogeneityInx=L AfircanA=L HEdu=L ==> TFM=MH 7 46 

138  SingleParentF=L Male17-24=L UnstableRent=M ==> TFM=MH 5 46 

139  Male17-24=H HeterogeneityInx=H HEdu=M ==> TFM=H 5 45 

140  SingleParentF=H UnstableRent=H Income=L ==> TFM=H 6 45 

141  SingleParentF=H Male17-24=H HEdu=M Income=L ==> TFM=H 5 45 

142  Employment=H HEdu=L ==> TFM=MH 7 45 

143  Employment=H UnstableRent=L HEdu=M ==> TFM=MH 5 45 

144  AfricanA=H ==> TFM=MH 14 45 

145  AfricanA=H MUHouse=L Income=L ==> TFM=MH 5 45 

146  AfircanA=L UnstableRent=M MUHouse=M ==> TFM=MH 5 45 

147  AfircanA=L Employment=H HEdu=M ==> TFM=MH 7 45 

148  HeterogeneityInx=H MUHouse=L Income=L ==> TFM=MH 5 45 

149  HeterogeneityInx=H UnstableRent=L MUHouse=L ==> TFM=MH 5 45 

150  HeterogeneityInx=MH ==> TFM=MH 10 45 

151  Male17-24=L UnstableRent=M MUHouse=M ==> TFM=MH 5 45 

152  Male17-24=L AfircanA=L Employment=H ==> TFM=MH 9 45 

153  HomeOwn=L AfricanA=H Income=L ==> TFM=MH 6 45 

154  SingleParentF=L UnstableRent=M ==> TFM=MH 7 45 

155  SingleParentF=L AfircanA=L UnstableRent=M ==> TFM=MH 6 45 

156 
 SingleParentF=L Male17-24=L Employment=H UnstableRent=L ==> 
TFM=MH 5 45 

157  HEdu=M MUHouse=M ==> TFM=MH 8 44 
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APPENDIX C: (continued) 

158  HEdu=L Income=L ==> TFM=MH 7 44 

159  UnstableRent=M HEdu=M ==> TFM=MH 8 44 

160  AfircanA=L Income=L ==> TFM=MH 6 44 

161  AfircanA=L UnstableRent=M ==> TFM=MH 8 44 

162  HeterogeneityInx=H UnstableRent=L ==> TFM=MH 6 44 

163  HeterogeneityInx=MH AfircanA=L ==> TFM=MH 5 44 

164  Male17-24=L MUHouse=M ==> TFM=MH 8 44 

165  Male17-24=L Employment=H ==> TFM=MH 12 44 

166  HomeOwn=H Income=L ==> TFM=MH 6 44 

167  HomeOwn=L AfricanA=H ==> TFM=MH 6 44 

168  SingleParentF=H AfricanA=H HEdu=M ==> TFM=MH 7 44 

169  SingleParentF=H AfricanA=H HEdu=M Income=L ==> TFM=MH 7 44 

170  SingleParentF=H HomeOwn=L AfricanA=H Income=L ==> TFM=MH 5 44 

171  SingleParentF=L HEdu=L ==> TFM=MH 9 44 

172  SingleParentF=L Employment=H UnstableRent=L ==> TFM=MH 6 44 

173 
 SingleParentF=L Employment=H UnstableRent=L MUHouse=L ==> 
TFM=MH 5 44 

174  SingleParentF=L Male17-24=L HEdu=L ==> TFM=MH 8 44 

175  SingleParentF=L Male17-24=L Employment=H ==> TFM=MH 9 44 

176  SingleParentF=L Male17-24=L AfircanA=L Employment=H ==> TFM=MH 8 44 

177 
 SingleParentF=L Male17-24=L HeterogeneityInx=L Employment=H ==> 
TFM=MH 6 44 

178 
 SingleParentF=L HomeOwn=H Employment=H UnstableRent=L ==> 
TFM=MH 5 44 

179  UnstableRent=H ==> TFM=H 12 43 

180  SingleParentF=H HomeOwn=L Income=L ==> TFM=H 6 43 

181  Employment=H UnstableRent=L ==> TFM=MH 8 43 

182  AfircanA=L Employment=H ==> TFM=MH 13 43 

183  AfircanA=L Employment=H HEdu=L ==> TFM=MH 5 43 

184  HeterogeneityInx=H Employment=H ==> TFM=MH 8 43 

185  Male17-24=H Income=L ==> TFM=MH 11 43 

186  Male17-24=H Employment=H ==> TFM=MH 6 43 

187  Male17-24=L HEdu=L ==> TFM=MH 10 43 

188  Male17-24=L Employment=H HEdu=M ==> TFM=MH 6 43 

189  Male17-24=L AfircanA=L HEdu=L ==> TFM=MH 8 43 

190  Male17-24=L HeterogeneityInx=L Employment=H ==> TFM=MH 6 43 

191 
 Male17-24=L HeterogeneityInx=L AfircanA=L Employment=H ==> 
TFM=MH 5 43 

192  SingleParentF=H HomeOwn=L AfricanA=H ==> TFM=MH 5 43 

193  SingleParentF=L Employment=H ==> TFM=MH 13 43 

194  SingleParentF=L AfircanA=L Employment=H ==> TFM=MH 11 43 

195 
 SingleParentF=L AfircanA=L Employment=H UnstableRent=L ==> 
TFM=MH 5 43 
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APPENDIX C: (continued) 

196  AfircanA=L MUHouse=H ==> TFM=H 6 42 

197  Male17-24=H Employment=M Income=L ==> TFM=H 5 42 

198  SingleParentF=H Male17-24=H ==> TFM=H 8 42 

199  SingleParentF=H Male17-24=H Income=L ==> TFM=H 8 42 

200  HEdu=M MUHouse=L ==> TFM=MH 10 42 

201  Employment=H ==> TFM=MH 19 42 

202  Employment=H MUHouse=L ==> TFM=MH 7 42 

203  Employment=H UnstableRent=L MUHouse=L ==> TFM=MH 7 42 

204  AfricanA=H MUHouse=L ==> TFM=MH 6 42 

205  Male17-24=H AfricanA=H ==> TFM=MH 8 42 

206  Male17-24=H AfricanA=H Income=L ==> TFM=MH 7 42 

207  Male17-24=H HeterogeneityInx=H Income=L ==> TFM=MH 7 42 

208  Male17-24=L Employment=H MUHouse=L ==> TFM=MH 5 42 

209  Male17-24=L Employment=H UnstableRent=L ==> TFM=MH 6 42 

210  HomeOwn=H Employment=H MUHouse=L ==> TFM=MH 6 42 

211  HomeOwn=H Employment=H UnstableRent=L MUHouse=L ==> TFM=MH 6 42 

212  HomeOwn=L Income=L ==> TFM=MH 10 42 

213  HomeOwn=L HEdu=M Income=L ==> TFM=MH 6 42 

214  HomeOwn=L HEdu=L ==> TFM=MH 5 42 

215  HomeOwn=L HeterogeneityInx=L ==> TFM=MH 6 42 

216  SingleParentF=H AfricanA=H Income=L ==> TFM=MH 10 42 

217  SingleParentF=L MUHouse=M ==> TFM=MH 7 42 

218  SingleParentF=L Employment=H MUHouse=L ==> TFM=MH 5 42 

219  SingleParentF=L AfircanA=L HEdu=L ==> TFM=MH 8 42 

220  SingleParentF=L Male17-24=L AfircanA=L HEdu=L ==> TFM=MH 7 42 

221  SingleParentF=L HomeOwn=H Employment=H ==> TFM=MH 6 42 

222  UnstableRent=H HEdu=M Income=L ==> TFM=H 5 41 

223  Male17-24=H Employment=M ==> TFM=H 5 41 

224  HomeOwn=L UnstableRent=H Income=L ==> TFM=H 7 41 

225  HomeOwn=L AfircanA=L ==> TFM=H 6 41 

226  HEdu=L ==> TFM=MH 15 41 

227  UnstableRent=L HEdu=M ==> TFM=MH 9 41 

228  Employment=H HEdu=M ==> TFM=MH 10 41 

229  Employment=M UnstableRent=M ==> TFM=MH 5 41 

230  AfircanA=L MUHouse=M ==> TFM=MH 7 41 

231  AfircanA=L HEdu=L ==> TFM=MH 9 41 

232  HeterogeneityInx=H MUHouse=L ==> TFM=MH 7 41 

233  HeterogeneityInx=H UnstableRent=M ==> TFM=MH 5 41 

234  HeterogeneityInx=H AfricanA=H Income=L ==> TFM=MH 6 41 

235  Male17-24=H ==> TFM=MH 14 41 

236  Male17-24=H HeterogeneityInx=H ==> TFM=MH 8 41 
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APPENDIX C: (continued) 

237  Male17-24=L ==> TFM=MH 23 41 

238  Male17-24=L HEdu=M MUHouse=L ==> TFM=MH 7 41 

239  Male17-24=L UnstableRent=L HEdu=M ==> TFM=MH 7 41 

240  Male17-24=L UnstableRent=L HEdu=M MUHouse=L ==> TFM=MH 6 41 

241  HomeOwn=H Employment=H UnstableRent=L ==> TFM=MH 6 41 

242  HomeOwn=H Male17-24=L HEdu=M MUHouse=L ==> TFM=MH 5 41 

243  SingleParentF=H HEdu=M Income=L ==> TFM=MH 8 41 

244  SingleParentF=H AfricanA=H ==> TFM=MH 10 41 

245  SingleParentF=L Employment=H HEdu=M ==> TFM=MH 6 41 

246  SingleParentF=L HomeOwn=H AfircanA=L Employment=H ==> TFM=MH 5 41 

247  UnstableRent=H Income=L ==> TFM=H 8 40 

248  Male17-24=H HeterogeneityInx=H Income=L ==> TFM=H 7 40 

249  MUHouse=L ==> TFM=MH 17 40 

250  HEdu=M ==> TFM=MH 23 40 

251  UnstableRent=L HEdu=M MUHouse=L ==> TFM=MH 8 40 

252  AfircanA=L HEdu=M MUHouse=L ==> TFM=MH 5 40 

253  AfircanA=L Employment=H UnstableRent=L ==> TFM=MH 5 40 

254  HeterogeneityInx=H Income=L ==> TFM=MH 11 40 

255  HeterogeneityInx=L ==> TFM=MH 16 40 

256  Male17-24=L HEdu=M ==> TFM=MH 13 40 

257  Male17-24=L AfircanA=L MUHouse=M ==> TFM=MH 5 40 

258  Male17-24=L HeterogeneityInx=L ==> TFM=MH 13 40 

259  HomeOwn=H HEdu=M MUHouse=L ==> TFM=MH 7 40 

260  HomeOwn=H UnstableRent=L HEdu=M MUHouse=L ==> TFM=MH 6 40 

261  HomeOwn=H Employment=H ==> TFM=MH 8 40 

262  HomeOwn=H Employment=H HEdu=M ==> TFM=MH 5 40 

263  SingleParentF=H MUHouse=L ==> TFM=MH 5 40 

264  SingleParentF=H HEdu=M ==> TFM=MH 8 40 

265  SingleParentF=L HEdu=M MUHouse=L ==> TFM=MH 5 40 

266  SingleParentF=L HeterogeneityInx=L Employment=H ==> TFM=MH 6 40 

267 
 SingleParentF=L HeterogeneityInx=L AfircanA=L Employment=H ==> 
TFM=MH 6 40 

268  SingleParentF=L Male17-24=L MUHouse=M ==> TFM=MH 5 40 

269  SingleParentF=L HomeOwn=H MUHouse=L ==> TFM=MH 7 40 

270  SingleParentF=L HomeOwn=H UnstableRent=L MUHouse=L ==> TFM=MH 7 40 

271  SingleParentF=L HomeOwn=H Male17-24=L Employment=H ==> TFM=MH 5 40 
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APPENDIX D: REPRENTATIVE MINED FUZZY SARS FOR DANGEROUS 

STREET DUE TO CRIME OF ALL TYPES USING SUPPORT THRESHOLD OF 5%, 

CONFIDENCE THRESHOLD OF 40%  

 

 

 Rules S% C% 

1  Male17-24_H UnstableRent_M ==> CAT_MH 5 77 

2  HomeOwn_MH Employment_M UnstableRent_M ==> CAT_MH 6 77 

3  HomeOwn_MH MUHouse_M Income_L ==> CAT_MH 6 75 

4  SingleParentF_H UnstableRent_H MUHouse_H ==> CAT_H 5 75 

5  HomeOwn_MH UnstableRent_M HEdu_L ==> CAT_MH 5 73 

6  HomeOwn_MH HeterogeneityInx_MH MUHouse_M ==> CAT_MH 6 73 

7  HeterogeneityInx_MH MUHouse_M Income_L ==> CAT_MH 5 73 

8  SingleParentF_H HomeOwn_L HEdu_M Income_L ==> CAT_H 5 73 

9  SingleParentF_H MUHouse_H Income_L ==> CAT_H 5 72 

10 
 HomeOwn_MH HeterogeneityInx_MH UnstableRent_M ==> 
CAT_MH 6 72 

11  SingleParentF_H MUHouse_H ==> CAT_H 6 72 

12  SingleParentF_H HomeOwn_L HEdu_M ==> CAT_H 5 72 

13  HomeOwn_MH Male17-24_H ==> CAT_MH 7 71 

14  HomeOwn_MH Male17-24_H Income_L ==> CAT_MH 5 70 

15  HomeOwn_L HeterogeneityInx_H Income_L ==> CAT_H 5 70 

16  SingleParentF_H UnstableRent_M ==> CAT_MH 5 69 

17  HomeOwn_MH UnstableRent_M Income_L ==> CAT_MH 7 69 

18  HomeOwn_MH UnstableRent_M MUHouse_M ==> CAT_MH 8 69 

19  SingleParentF_H UnstableRent_M Income_L ==> CAT_MH 5 69 

20  SingleParentF_H MUHouse_L Income_L ==> CAT_MH 7 68 

21  SingleParentF_H HomeOwn_MH Income_L ==> CAT_MH 7 68 

22  SingleParentF_H HomeOwn_MH ==> CAT_MH 7 68 

23  HomeOwn_MH HeterogeneityInx_MH Income_L ==> CAT_MH 7 68 

24  Male17-24_H MUHouse_M ==> CAT_MH 5 68 

25  HomeOwn_MH UnstableRent_M ==> CAT_MH 13 68 

26  HeterogeneityInx_H UnstableRent_M Income_L ==> CAT_MH 5 67 

27  HomeOwn_MH AfricanA_M ==> CAT_MH 7 67 

28  AfricanA_H UnstableRent_M ==> CAT_MH 5 67 

29  HeterogeneityInx_H UnstableRent_H Income_L ==> CAT_H 5 67 

30  HeterogeneityInx_MH AfricanA_M ==> CAT_MH 6 67 

31 
 SingleParentF_H HomeOwn_MH AfricanA_H Income_L ==> 
CAT_MH 5 67 
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APPENDIX D: (continued) 

32  Employment_M UnstableRent_M Income_L ==> CAT_MH 5 67 

33  SingleParentF_H MUHouse_L ==> CAT_MH 7 66 

34  SingleParentF_H HomeOwn_MH AfricanA_H ==> CAT_MH 5 66 

35  HomeOwn_L HeterogeneityInx_H ==> CAT_H 6 66 

36  UnstableRent_M MUHouse_M Income_L ==> CAT_MH 5 66 

37  HeterogeneityInx_MH UnstableRent_M ==> CAT_MH 8 66 

38  Male17-24_MH AfricanA_M ==> CAT_MH 5 66 

39  SingleParentF_H HomeOwn_L UnstableRent_H ==> CAT_H 5 66 

40  HeterogeneityInx_MH MUHouse_M ==> CAT_MH 9 66 

41  HomeOwn_MH HeterogeneityInx_MH ==> CAT_MH 11 66 

42  HomeOwn_MH AfricanA_H Income_L ==> CAT_MH 6 65 

43  Employment_M UnstableRent_M ==> CAT_MH 8 65 

44  SingleParentF_H AfricanA_H MUHouse_L ==> CAT_MH 5 65 

45  Male17-24_MH UnstableRent_M ==> CAT_MH 7 65 

46  HomeOwn_MH HeterogeneityInx_MH HEdu_M ==> CAT_MH 6 65 

47  HeterogeneityInx_MH HEdu_L ==> CAT_MH 7 65 

48  SingleParentF_H MUHouse_M ==> CAT_MH 5 65 

49 
 SingleParentF_L HomeOwn_MH AfricanA_L UnstableRent_M ==> 
CAT_MH 5 64 

50  UnstableRent_M MUHouse_L ==> CAT_MH 5 64 

51  HomeOwn_MH MUHouse_L Income_L ==> CAT_MH 5 64 

52  SingleParentF_MH UnstableRent_M ==> CAT_MH 7 64 

53  SingleParentF_H MUHouse_M Income_L ==> CAT_MH 5 64 

54  HeterogeneityInx_H UnstableRent_M ==> CAT_MH 7 64 

55  HomeOwn_MH MUHouse_M ==> CAT_MH 11 64 

56  HomeOwn_MH HEdu_L ==> CAT_MH 10 64 

57  SingleParentF_H HomeOwn_L ==> CAT_H 7 63 

58  HomeOwn_L UnstableRent_H MUHouse_H Income_L ==> CAT_H 5 63 

59  HomeOwn_MH HeterogeneityInx_H Income_L ==> CAT_MH 5 63 

60  HomeOwn_MH AfricanA_H ==> CAT_MH 7 63 

61  HomeOwn_MH Employment_M Income_L ==> CAT_MH 7 63 

62  SingleParentF_H HomeOwn_L Income_L ==> CAT_H 6 63 

63  HomeOwn_L MUHouse_H Income_L ==> CAT_H 6 63 

64  HomeOwn_MH Male17-24_MH Income_L ==> CAT_MH 6 63 

65  HeterogeneityInx_H UnstableRent_H MUHouse_H ==> CAT_H 5 63 

66  AfricanA_H MUHouse_M Income_L ==> CAT_MH 5 63 

67  UnstableRent_M HEdu_L ==> CAT_MH 7 63 
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APPENDIX D: (continued) 

68  HomeOwn_MH Income_L ==> CAT_MH 14 63 

69  HomeOwn_MH Employment_M ==> CAT_MH 10 63 

70  Male17-24_H HeterogeneityInx_MH ==> CAT_MH 6 62 

71  Male17-24_MH HEdu_L ==> CAT_MH 5 62 

72  HomeOwn_MH HeterogeneityInx_H ==> CAT_MH 7 62 

73  SingleParentF_L HomeOwn_MH UnstableRent_M ==> CAT_MH 5 62 

74  AfricanA_M ==> CAT_MH 13 62 

75  MUHouse_M Income_L ==> CAT_MH 10 62 

76  UnstableRent_M Income_L ==> CAT_MH 11 62 

77  HomeOwn_MH AfricanA_L UnstableRent_M ==> CAT_MH 7 62 

78  Employment_L Income_L ==> CAT_MH 8 62 

79  HomeOwn_MH Male17-24_MH ==> CAT_MH 8 62 

80  Employment_M MUHouse_L Income_L ==> CAT_MH 5 62 

81  HomeOwn_MH UnstableRent_M HEdu_M ==> CAT_MH 7 62 

82  AfricanA_M Income_L ==> CAT_MH 9 61 

83  Male17-24_MH Employment_M ==> CAT_MH 6 61 

84  AfricanA_H MUHouse_L Income_L ==> CAT_MH 6 61 

85  AfricanA_M HEdu_M ==> CAT_MH 7 61 

86  HeterogeneityInx_MH Income_L ==> CAT_MH 12 61 

87  AfricanA_H MUHouse_M ==> CAT_MH 6 61 

88  Male17-24_H MUHouse_H Income_L ==> CAT_H 5 61 

89  SingleParentF_H UnstableRent_H HEdu_M Income_L ==> CAT_H 5 61 

90  UnstableRent_M ==> CAT_MH 19 61 

91  HomeOwn_L Male17-24_H Income_L ==> CAT_H 6 61 

92  Male17-24_MH MUHouse_M ==> CAT_MH 5 61 

93  Male17-24_H UnstableRent_H HEdu_M ==> CAT_H 5 61 

94  HomeOwn_L UnstableRent_H HEdu_M Income_L ==> CAT_H 5 60 

95  HomeOwn_MH MUHouse_L ==> CAT_MH 7 60 

96  HeterogeneityInx_H UnstableRent_H ==> CAT_H 6 60 

97  HomeOwn_MH ==> CAT_MH 23 60 

98  HeterogeneityInx_MH HEdu_M MUHouse_M ==> CAT_MH 5 60 

99  SingleParentF_H UnstableRent_H HEdu_M ==> CAT_H 6 60 

100  SingleParentF_H HomeOwn_L AfricanA_H ==> CAT_H 5 60 

101  HomeOwn_MH Employment_H UnstableRent_M ==> CAT_MH 6 60 

102  SingleParentF_MH HomeOwn_MH ==> CAT_MH 7 60 

103  HomeOwn_MH AfricanA_L HEdu_L ==> CAT_MH 5 60 

104  UnstableRent_H MUHouse_H Income_L ==> CAT_H 7 59 
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APPENDIX D: (continued) 

105  AfricanA_H Employment_L Income_L ==> CAT_MH 5 59 

106  HeterogeneityInx_MH Employment_M ==> CAT_MH 7 59 

107  HomeOwn_MH Income_M ==> CAT_MH 7 59 

108  HomeOwn_L AfricanA_H ==> CAT_H 6 59 

109  HomeOwn_L HEdu_M Income_L ==> CAT_H 6 58 

110  SingleParentF_L HomeOwn_MH Employment_H ==> CAT_MH 6 58 

111  AfricanA_H Employment_L ==> CAT_MH 5 58 

112  UnstableRent_M MUHouse_M ==> CAT_MH 11 58 

113  HomeOwn_MH AfricanA_L MUHouse_M ==> CAT_MH 5 58 

114  SingleParentF_MH HeterogeneityInx_MH Income_L ==> CAT_MH 5 58 

115  HeterogeneityInx_MH HEdu_M Income_L ==> CAT_MH 7 58 

116  Male17-24_MH AfricanA_H ==> CAT_MH 5 58 

117  HEdu_L Income_L ==> CAT_MH 9 58 

118  SingleParentF_MH HeterogeneityInx_MH ==> CAT_MH 7 57 

119  HomeOwn_MH HEdu_M Income_L ==> CAT_MH 8 57 

120  MUHouse_L Income_L ==> CAT_MH 12 57 

121  SingleParentF_MH AfricanA_M ==> CAT_MH 6 57 

122  HeterogeneityInx_MH UnstableRent_H ==> CAT_MH 6 57 

123  SingleParentF_MH Male17-24_MH ==> CAT_MH 6 57 

124  HomeOwn_L AfricanA_H Income_L ==> CAT_H 6 57 

125  UnstableRent_M Income_M ==> CAT_MH 6 57 

126  SingleParentF_H UnstableRent_H Income_L ==> CAT_H 7 57 

127  HomeOwn_MH HEdu_M MUHouse_M ==> CAT_MH 6 57 

128  HEdu_M MUHouse_H Income_L ==> CAT_H 5 57 

129  HomeOwn_MH Employment_H ==> CAT_MH 10 57 

130  SingleParentF_H UnstableRent_H ==> CAT_H 7 57 

131  HomeOwn_MH HEdu_M ==> CAT_MH 12 57 

132  Male17-24_H UnstableRent_H Income_L ==> CAT_H 6 57 

133  HomeOwn_MH AfricanA_L Employment_H ==> CAT_MH 7 56 

134  HEdu_L MUHouse_M ==> CAT_MH 6 56 

135  HomeOwn_L HeterogeneityInx_MH ==> CAT_MH 6 56 

136  Employment_H UnstableRent_M MUHouse_M ==> CAT_MH 5 56 

137  Male17-24_H UnstableRent_H MUHouse_H ==> CAT_H 5 56 

138  HeterogeneityInx_H MUHouse_L Income_L ==> CAT_MH 6 56 

139  Male17-24_MH MUHouse_L ==> CAT_MH 5 56 

140  HomeOwn_L Male17-24_H ==> CAT_H 6 56 

141  Employment_H UnstableRent_M ==> CAT_MH 8 56 
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APPENDIX D: (continued) 

142  Male17-24_MH Income_L ==> CAT_MH 10 56 

143  UnstableRent_M HEdu_M ==> CAT_MH 10 56 

144  Male17-24_MH ==> CAT_MH 14 56 

145  SingleParentF_MH HEdu_M ==> CAT_MH 8 56 

146  SingleParentF_L HomeOwn_MH ==> CAT_MH 9 55 

147  SingleParentF_MH HEdu_M Income_L ==> CAT_MH 6 55 

148  AfricanA_H MUHouse_L ==> CAT_MH 7 55 

149  HeterogeneityInx_MH ==> CAT_MH 19 55 

150  HomeOwn_MH AfricanA_L ==> CAT_MH 10 55 

151  HomeOwn_MH MUHouse_H ==> CAT_MH 6 55 

152  SingleParentF_MH ==> CAT_MH 13 55 

153  UnstableRent_M HEdu_M Income_L ==> CAT_MH 6 55 

154  SingleParentF_L HomeOwn_MH AfricanA_L ==> CAT_MH 7 55 

155  AfricanA_M Employment_H ==> CAT_MH 5 55 

156  UnstableRent_H HEdu_M MUHouse_H ==> CAT_H 6 55 

157  HeterogeneityInx_H MUHouse_H ==> CAT_H 6 55 

158  HEdu_M MUHouse_L Income_L ==> CAT_MH 7 54 

159  SingleParentF_H Income_L ==> CAT_MH 14 54 

160  HomeOwn_L UnstableRent_H Income_L ==> CAT_H 7 54 

161  SingleParentF_H AfricanA_H Income_L ==> CAT_MH 10 54 

162  HomeOwn_MH UnstableRent_L ==> CAT_MH 5 54 

163  Employment_L ==> CAT_MH 8 54 

164  UnstableRent_H HEdu_M Income_L ==> CAT_H 7 54 

165  SingleParentF_L AfricanA_L UnstableRent_M ==> CAT_MH 7 54 

166  SingleParentF_MH Income_L ==> CAT_MH 10 54 

167  Male17-24_MH HeterogeneityInx_MH ==> CAT_MH 7 54 

168  SingleParentF_L UnstableRent_M ==> CAT_MH 8 54 

169  AfricanA_H Income_L ==> CAT_MH 13 54 

170  HomeOwn_L UnstableRent_H HEdu_M ==> CAT_H 6 53 

171  SingleParentF_H AfricanA_H ==> CAT_MH 10 53 

172  SingleParentF_L MUHouse_H ==> CAT_MH 6 53 

173  Male17-24_MH HEdu_M Income_L ==> CAT_MH 5 53 

174 
 SingleParentF_H HeterogeneityInx_H AfricanA_H Income_L ==> 
CAT_MH 5 53 

175  HomeOwn_MH Male17-24_L ==> CAT_MH 9 53 

176  HEdu_M MUHouse_M Income_L ==> CAT_MH 6 53 

177  SingleParentF_H ==> CAT_MH 14 53 
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APPENDIX D: (continued) 

178  AfricanA_L UnstableRent_M ==> CAT_MH 9 53 

179  Income_L ==> CAT_MH 27 53 

180  MUHouse_H Income_L ==> CAT_H 8 53 

181  UnstableRent_L Income_L ==> CAT_MH 7 53 

182  Employment_H MUHouse_H ==> CAT_MH 7 52 

183  Employment_M MUHouse_M ==> CAT_MH 7 52 

184  AfricanA_H Employment_M Income_L ==> CAT_MH 6 52 

185  HomeOwn_L UnstableRent_H MUHouse_H ==> CAT_H 7 52 

186  MUHouse_M ==> CAT_MH 17 52 

187  Employment_M Income_L ==> CAT_MH 11 52 

188  Male17-24_MH HEdu_M ==> CAT_MH 7 52 

189  Male17-24_H Income_L ==> CAT_MH 11 52 

190  HeterogeneityInx_H AfricanA_H Income_L ==> CAT_MH 6 52 

191  HomeOwn_L MUHouse_H ==> CAT_H 7 52 

192  SingleParentF_H HeterogeneityInx_H AfricanA_H ==> CAT_MH 5 52 

193  UnstableRent_L MUHouse_L Income_L ==> CAT_MH 6 52 

194  AfricanA_H Employment_M ==> CAT_MH 6 52 

195  HomeOwn_MH Male17-24_L AfricanA_L ==> CAT_MH 6 52 

196  Male17-24_L HeterogeneityInx_MH ==> CAT_MH 6 52 

197  SingleParentF_MH MUHouse_L ==> CAT_MH 5 52 

198  SingleParentF_H Employment_M ==> CAT_MH 7 52 

199  SingleParentF_H Employment_M Income_L ==> CAT_MH 7 52 

200  SingleParentF_H HeterogeneityInx_H Income_L ==> CAT_MH 8 52 

201  Male17-24_H ==> CAT_MH 13 51 

202  SingleParentF_L UnstableRent_M MUHouse_M ==> CAT_MH 5 51 

203  SingleParentF_H Male17-24_H Income_L ==> CAT_MH 7 51 

204  Male17-24_H MUHouse_H ==> CAT_H 5 51 

205  HeterogeneityInx_MH HEdu_M ==> CAT_MH 11 51 

206  AfricanA_H UnstableRent_H Income_L ==> CAT_H 6 51 

207  Employment_H MUHouse_M ==> CAT_MH 7 51 

208  Male17-24_H AfricanA_H Income_L ==> CAT_MH 6 51 

209  AfricanA_L Employment_H UnstableRent_M ==> CAT_MH 5 51 

210  Male17-24_H Employment_H ==> CAT_MH 6 51 

211  AfricanA_H ==> CAT_MH 14 51 

212  AfricanA_L UnstableRent_M MUHouse_M ==> CAT_MH 6 50 

213  HomeOwn_MH HeterogeneityInx_L ==> CAT_MH 6 50 

214  AfricanA_H UnstableRent_H ==> CAT_H 6 50 
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215  HomeOwn_L Income_L ==> CAT_H 10 50 

216  SingleParentF_H Male17-24_H ==> CAT_MH 7 50 

217  Male17-24_MH Employment_H ==> CAT_MH 5 50 

218  SingleParentF_L HomeOwn_MH Male17-24_L ==> CAT_MH 5 50 

219  HeterogeneityInx_MH MUHouse_L ==> CAT_MH 6 50 

220  Male17-24_H AfricanA_H ==> CAT_MH 6 50 

221  SingleParentF_MH Employment_H ==> CAT_MH 6 50 

222  Male17-24_L Income_L ==> CAT_MH 6 50 

223  SingleParentF_H HeterogeneityInx_H ==> CAT_MH 8 50 

224  HeterogeneityInx_H Income_L ==> CAT_MH 11 50 

225  Male17-24_L UnstableRent_M ==> CAT_MH 7 49 

226  UnstableRent_M HEdu_M MUHouse_M ==> CAT_MH 5 49 

227  Male17-24_H UnstableRent_H ==> CAT_H 6 49 

228  Employment_H UnstableRent_H ==> CAT_MH 6 49 

229  Employment_M HEdu_L ==> CAT_MH 6 49 

230  HeterogeneityInx_H MUHouse_L ==> CAT_MH 8 49 

231  HeterogeneityInx_H AfricanA_H ==> CAT_MH 7 49 

232  HeterogeneityInx_H Employment_M Income_L ==> CAT_MH 6 48 

233  HomeOwn_L UnstableRent_H ==> CAT_H 9 48 

234  HEdu_M Income_L ==> CAT_MH 15 48 

235  UnstableRent_H Income_L ==> CAT_H 10 48 

236  HeterogeneityInx_MH Employment_H ==> CAT_MH 8 48 

237  AfricanA_H HEdu_M Income_L ==> CAT_MH 8 48 

238  SingleParentF_L HeterogeneityInx_MH ==> CAT_MH 7 48 

239  UnstableRent_H HEdu_M ==> CAT_H 8 48 

240  SingleParentF_H HEdu_M Income_L ==> CAT_MH 8 48 

241  AfricanA_L MUHouse_H ==> CAT_MH 6 47 

242  Male17-24_L AfricanA_L UnstableRent_M ==> CAT_MH 5 47 

243  Employment_M UnstableRent_H ==> CAT_H 5 47 

244  Employment_M HEdu_M Income_L ==> CAT_MH 6 47 

245  HomeOwn_L HEdu_M ==> CAT_H 7 47 

246  SingleParentF_H AfricanA_H HEdu_M Income_L ==> CAT_MH 6 47 

247  HEdu_L ==> CAT_MH 17 47 

248  UnstableRent_H ==> CAT_MH 13 46 

249  Male17-24_H HEdu_M Income_L ==> CAT_MH 6 46 

250  HeterogeneityInx_MH AfricanA_L ==> CAT_MH 8 46 

251  SingleParentF_H AfricanA_H HEdu_M ==> CAT_MH 6 46 
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252  Employment_H Income_L ==> CAT_MH 8 46 

253  HeterogeneityInx_MH Income_M ==> CAT_MH 6 46 

254  SingleParentF_H HEdu_M ==> CAT_MH 8 46 

255  Employment_H HEdu_L ==> CAT_MH 7 46 

256  HEdu_M MUHouse_M ==> CAT_MH 9 46 

257  AfricanA_H HEdu_M ==> CAT_MH 9 46 

258  UnstableRent_H MUHouse_H ==> CAT_H 9 46 

259  HeterogeneityInx_H ==> CAT_MH 15 45 

260  HomeOwn_L Employment_M ==> CAT_H 5 45 

261  HomeOwn_H HeterogeneityInx_H ==> CAT_MH 6 45 

262  HEdu_M MUHouse_H ==> CAT_H 6 45 

263  HeterogeneityInx_H Employment_M ==> CAT_MH 7 45 

264  UnstableRent_H Income_L ==> CAT_MH 9 44 

265  Male17-24_H HeterogeneityInx_H ==> CAT_MH 6 44 

266  Male17-24_H HEdu_M ==> CAT_MH 7 44 

267  Employment_M ==> CAT_MH 18 44 

268  Male17-24_H HeterogeneityInx_H Income_L ==> CAT_MH 6 44 

269  MUHouse_H ==> CAT_MH 11 44 

270  HomeOwn_L Income_L ==> CAT_MH 8 44 

271  Employment_M MUHouse_L ==> CAT_MH 7 43 

272  AfricanA_L Employment_H HEdu_L ==> CAT_MH 5 43 

273  UnstableRent_H HEdu_M ==> CAT_MH 7 43 

274  Employment_H ==> CAT_MH 19 43 

275  HomeOwn_L UnstableRent_H ==> CAT_MH 8 42 

276  SingleParentF_L MUHouse_M ==> CAT_MH 7 42 

277  SingleParentF_H Male17-24_H Income_L ==> CAT_H 5 42 

278  HomeOwn_L UnstableRent_H Income_L ==> CAT_MH 5 42 

279  HomeOwn_L ==> CAT_MH 12 42 

280  AfricanA_L MUHouse_M ==> CAT_MH 7 42 

281  HEdu_M MUHouse_H ==> CAT_MH 5 42 

282  Male17-24_H HeterogeneityInx_H Income_L ==> CAT_H 5 42 

283  HEdu_L MUHouse_L ==> CAT_MH 6 42 

284  Male17-24_H UnstableRent_H ==> CAT_MH 5 42 

285  HEdu_M ==> CAT_MH 24 41 

286  HomeOwn_L ==> CAT_H 12 41 

287  SingleParentF_H Male17-24_H ==> CAT_H 6 41 

288  HeterogeneityInx_H Employment_H ==> CAT_MH 6 41 
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APPENDIX D: (continued) 

289  SingleParentF_H AfricanA_H HEdu_M Income_L ==> CAT_H 5 41 

290  HeterogeneityInx_H HEdu_M Income_L ==> CAT_MH 6 41 

291  UnstableRent_H HEdu_M Income_L ==> CAT_MH 5 41 

292  UnstableRent_H ==> CAT_H 11 40 

293  Male17-24_H HEdu_M Income_L ==> CAT_H 5 40 

294  SingleParentF_L AfricanA_L MUHouse_M ==> CAT_MH 6 40 
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APPENDIX E: REPRENTATIVE MINED FUZZY SARS FOR DANGEROUS 

STREET DUE TO MOTOR VEHICLE THEFT USING SUPPORT THRESHOLD OF 

5%, CONFIDENCE THRESHOLD OF 40%  

 

 

Rules S% C% 

 HeterogeneityInx_H UnstableRent_H Income_L ==> MVT_H 5 65 

 HeterogeneityInx_H UnstableRent_H MUHouse_H ==> MVT_H 5 63 

 HeterogeneityInx_H UnstableRent_H ==> MVT_H 6 60 

 HeterogeneityInx_H MUHouse_H ==> MVT_H 6 56 

 Male17-24_H MUHouse_H ==> MVT_H 6 51 

 Male17-24_H UnstableRent_H Income_L ==> MVT_H 5 51 

 UnstableRent_H HEdu_M MUHouse_H ==> MVT_H 5 51 

 UnstableRent_H MUHouse_H Income_L ==> MVT_H 6 48 

 Male17-24_H UnstableRent_H ==> MVT_H 6 47 

 Male17-24_H HeterogeneityInx_H Income_L ==> MVT_H 6 46 

 HEdu_M MUHouse_H ==> MVT_H 6 45 

 Male17-24_H HeterogeneityInx_H ==> MVT_H 6 44 

 MUHouse_H Income_L ==> MVT_H 6 43 

 SingleParentF_H UnstableRent_H ==> MVT_H 5 43 

 SingleParentF_H UnstableRent_H Income_L ==> MVT_H 5 43 

 HomeOwn_L UnstableRent_H MUHouse_H ==> MVT_H 6 42 

 UnstableRent_H HEdu_M Income_L ==> MVT_H 5 42 

 HomeOwn_L MUHouse_H ==> MVT_H 6 40 
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APPENDIX F: REPRENTATIVE MINED FUZZY SARS FOR DANGEROUS 

STREET DUE TO THEFT FROM MOTOR VEHICLE USING SUPPORT 

THRESHOLD OF 5%, CONFIDENCE THRESHOLD OF 40%   

 

 

 Rules S% C% 

1  HomeOwn_MH AfricanA_H ==> TFM_MH 8 74 

2  AfricanA_H MUHouse_M ==> TFM_MH 7 74 

3  SingleParentF_MH UnstableRent_M ==> TFM_MH 8 74 

4  SingleParentF_MH HEdu_M ==> TFM_MH 10 72 

5  UnstableRent_L Income_L ==> TFM_MH 10 72 

6  HeterogeneityInx_L Income_L ==> TFM_MH 6 72 

7  SingleParentF_MH Male17-24_L ==> TFM_MH 6 72 

8  SingleParentF_MH HeterogeneityInx_H ==> TFM_MH 6 71 

9  AfricanA_H Employment_L ==> TFM_MH 6 71 

10  SingleParentF_MH MUHouse_M ==> TFM_MH 6 71 

11  HeterogeneityInx_L UnstableRent_M ==> TFM_MH 7 71 

12  HomeOwn_MH HeterogeneityInx_H ==> TFM_MH 8 71 

13  Employment_L HEdu_M ==> TFM_MH 6 70 

14  AfricanA_H UnstableRent_M ==> TFM_MH 6 70 

15  AfricanA_M MUHouse_L ==> TFM_MH 5 70 

16  Male17-24_MH UnstableRent_M ==> TFM_MH 8 70 

17  Employment_L Income_L ==> TFM_MH 9 70 

18  SingleParentF_H Employment_L ==> TFM_MH 6 70 

19  MUHouse_L Income_L ==> TFM_MH 14 70 

20  HomeOwn_MH MUHouse_M ==> TFM_MH 12 69 

21  HomeOwn_MH UnstableRent_M ==> TFM_MH 13 69 

22  SingleParentF_MH Employment_H ==> TFM_MH 8 69 

23  Male17-24_MH HEdu_M ==> TFM_MH 9 69 

24  AfricanA_M HEdu_M ==> TFM_MH 7 69 

25  HomeOwn_MH MUHouse_L ==> TFM_MH 7 69 

26  HEdu_L Income_H ==> TFM_MH 6 68 

27  HomeOwn_MH HEdu_M ==> TFM_MH 14 68 

28  MUHouse_M Income_L ==> TFM_MH 11 68 

29  HomeOwn_MH Income_L ==> TFM_MH 15 68 

30  HeterogeneityInx_H AfricanA_M ==> TFM_MH 6 68 

31  SingleParentF_MH HomeOwn_MH ==> TFM_MH 8 68 

32  HomeOwn_L Employment_L ==> TFM_MH 5 68 

33  Male17-24_MH AfricanA_H ==> TFM_MH 6 68 

34  Male17-24_L Income_L ==> TFM_MH 9 68 

35  Male17-24_MH MUHouse_L ==> TFM_MH 7 67 

36  Employment_L ==> TFM_MH 10 67 
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APPENDIX F: (continued) 

37  SingleParentF_L Income_L ==> TFM_MH 5 67 

38  SingleParentF_MH MUHouse_L ==> TFM_MH 7 67 

39  HomeOwn_MH Male17-24_L ==> TFM_MH 11 67 

40  SingleParentF_H HomeOwn_MH ==> TFM_MH 7 67 

41  SingleParentF_MH Income_L ==> TFM_MH 12 67 

42  UnstableRent_M Income_L ==> TFM_MH 12 66 

43  HomeOwn_MH UnstableRent_L ==> TFM_MH 7 66 

44  SingleParentF_MH ==> TFM_MH 16 66 

45  Male17-24_MH MUHouse_M ==> TFM_MH 6 66 

46  HomeOwn_MH HeterogeneityInx_L ==> TFM_MH 7 66 

47  HeterogeneityInx_L MUHouse_M ==> TFM_MH 8 66 

48  HomeOwn_MH ==> TFM_MH 26 66 

49  Employment_H MUHouse_M ==> TFM_MH 9 65 

50  HomeOwn_MH Employment_M ==> TFM_MH 10 65 

51  SingleParentF_H MUHouse_M ==> TFM_MH 5 65 

52  HomeOwn_MH Male17-24_MH ==> TFM_MH 8 65 

53  UnstableRent_M MUHouse_M ==> TFM_MH 12 65 

54  UnstableRent_M HEdu_M ==> TFM_MH 11 65 

55  UnstableRent_M ==> TFM_MH 21 65 

56  SingleParentF_H MUHouse_L ==> TFM_MH 7 65 

57  HomeOwn_MH Male17-24_H ==> TFM_MH 6 65 

58  Employment_H UnstableRent_M ==> TFM_MH 10 65 

59  Employment_H Income_L ==> TFM_MH 11 65 

60  HEdu_M MUHouse_L ==> TFM_MH 16 65 

61  SingleParentF_MH Employment_M ==> TFM_MH 5 65 

62  HomeOwn_H Income_L ==> TFM_MH 6 64 

63  HomeOwn_MH Employment_H ==> TFM_MH 12 64 

64  HeterogeneityInx_H UnstableRent_L ==> TFM_MH 8 64 

65  HeterogeneityInx_H MUHouse_L ==> TFM_MH 10 64 

66  UnstableRent_M MUHouse_L ==> TFM_MH 5 64 

67  HeterogeneityInx_MH HEdu_M ==> TFM_MH 13 64 

68  SingleParentF_H MUHouse_H ==> TFM_H 5 64 

69  SingleParentF_MH AfricanA_M ==> TFM_MH 7 64 

70  HeterogeneityInx_H Employment_H ==> TFM_MH 9 64 

71  Male17-24_L HeterogeneityInx_MH ==> TFM_MH 8 63 

72  HeterogeneityInx_MH MUHouse_L ==> TFM_MH 8 63 

73  MUHouse_M ==> TFM_MH 20 63 

74  AfricanA_M ==> TFM_MH 13 63 

75  SingleParentF_L HomeOwn_MH ==> TFM_MH 10 63 

76  HomeOwn_MH AfricanA_L ==> TFM_MH 12 63 

77  AfricanA_H Income_L ==> TFM_MH 16 63 



275 
 

APPENDIX F: (continued) 

78  Employment_H UnstableRent_L ==> TFM_MH 12 63 

79  HeterogeneityInx_MH UnstableRent_M ==> TFM_MH 7 63 

80  HeterogeneityInx_MH Income_L ==> TFM_MH 12 63 

81  Male17-24_MH Employment_H ==> TFM_MH 6 63 

82  AfricanA_H MUHouse_L ==> TFM_MH 8 63 

83  Male17-24_MH Income_L ==> TFM_MH 11 63 

84  AfricanA_H UnstableRent_L ==> TFM_MH 5 63 

85  Employment_H MUHouse_L ==> TFM_MH 11 62 

86  Male17-24_MH Employment_M ==> TFM_MH 6 62 

87  UnstableRent_M HEdu_L ==> TFM_MH 7 62 

88  HomeOwn_MH HeterogeneityInx_MH ==> TFM_MH 11 62 

89  Male17-24_MH ==> TFM_MH 16 62 

90  HEdu_L MUHouse_M ==> TFM_MH 6 62 

91  Male17-24_MH HeterogeneityInx_MH ==> TFM_MH 8 62 

92  SingleParentF_MH Male17-24_MH ==> TFM_MH 6 62 

93  HomeOwn_MH HEdu_L ==> TFM_MH 10 62 

94  Male17-24_L Income_H ==> TFM_MH 8 62 

95  HomeOwn_MH AfricanA_M ==> TFM_MH 6 62 

96  HeterogeneityInx_H UnstableRent_M ==> TFM_MH 6 62 

97  AfricanA_M Income_L ==> TFM_MH 9 62 

98  HEdu_M Income_L ==> TFM_MH 20 62 

99  HomeOwn_H Employment_H ==> TFM_MH 11 61 

100  Male17-24_L MUHouse_M ==> TFM_MH 9 61 

101  HeterogeneityInx_L HEdu_L ==> TFM_MH 10 61 

102  HEdu_M MUHouse_M ==> TFM_MH 12 61 

103  Male17-24_L Employment_H ==> TFM_MH 14 61 

104  Employment_M UnstableRent_M ==> TFM_MH 8 61 

105  HomeOwn_MH Income_M ==> TFM_MH 7 61 

106  Income_L ==> TFM_MH 31 61 

107  SingleParentF_L Income_H ==> TFM_MH 9 61 

108  HomeOwn_H HeterogeneityInx_H ==> TFM_MH 8 61 

109  Male17-24_L UnstableRent_M ==> TFM_MH 9 61 

110  Income_H ==> TFM_MH 9 61 

111  SingleParentF_MH HeterogeneityInx_MH ==> TFM_MH 8 61 

112  AfricanA_L UnstableRent_M ==> TFM_MH 11 61 

113  AfricanA_L Income_H ==> TFM_MH 9 61 

114  AfricanA_L Employment_H ==> TFM_MH 17 61 

115  UnstableRent_L HEdu_M ==> TFM_MH 14 61 

116  HeterogeneityInx_MH MUHouse_M ==> TFM_MH 8 60 

117  AfricanA_H ==> TFM_MH 17 60 

118  AfricanA_H HEdu_M ==> TFM_MH 12 60 
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APPENDIX F: (continued) 

119  SingleParentF_L UnstableRent_M ==> TFM_MH 9 60 

120  Male17-24_L HEdu_M ==> TFM_MH 17 60 

121  Employment_H ==> TFM_MH 27 60 

122  SingleParentF_L Employment_H ==> TFM_MH 16 60 

123  MUHouse_L ==> TFM_MH 25 60 

124  Employment_H HEdu_M ==> TFM_MH 15 60 

125  Employment_H HEdu_L ==> TFM_MH 10 60 

126  HomeOwn_L HeterogeneityInx_H ==> TFM_H 5 59 

127  HeterogeneityInx_MH UnstableRent_L ==> TFM_MH 6 59 

128  HEdu_L Income_L ==> TFM_MH 9 59 

129  HeterogeneityInx_MH ==> TFM_MH 20 59 

130  HeterogeneityInx_MH AfricanA_M ==> TFM_MH 6 59 

131  HomeOwn_H MUHouse_L ==> TFM_MH 14 59 

132  HeterogeneityInx_L Income_H ==> TFM_MH 8 59 

133  HomeOwn_MH UnstableRent_H ==> TFM_MH 6 58 

134  SingleParentF_L MUHouse_M ==> TFM_MH 9 58 

135  SingleParentF_H AfricanA_H ==> TFM_MH 11 58 

136  HEdu_M ==> TFM_MH 33 58 

137  Male17-24_MH AfricanA_L ==> TFM_MH 5 58 

138  SingleParentF_L HeterogeneityInx_H ==> TFM_MH 5 58 

139  HeterogeneityInx_MH AfricanA_L ==> TFM_MH 10 58 

140  HeterogeneityInx_L ==> TFM_MH 20 58 

141  AfricanA_M Employment_H ==> TFM_MH 6 58 

142  HeterogeneityInx_L Employment_H ==> TFM_MH 8 58 

143  UnstableRent_L MUHouse_L ==> TFM_MH 19 58 

144  HeterogeneityInx_MH Employment_H ==> TFM_MH 9 58 

145  SingleParentF_L HeterogeneityInx_MH ==> TFM_MH 8 58 

146  HEdu_L MUHouse_H ==> TFM_MH 6 58 

147  UnstableRent_M Income_M ==> TFM_MH 6 58 

148  Male17-24_L ==> TFM_MH 28 58 

149  HomeOwn_MH MUHouse_H ==> TFM_MH 6 58 

150  SingleParentF_L HEdu_L ==> TFM_MH 12 58 

151  HomeOwn_H UnstableRent_L ==> TFM_MH 15 58 

152  UnstableRent_L ==> TFM_MH 23 58 

153  AfricanA_L MUHouse_M ==> TFM_MH 10 57 

154  Employment_M MUHouse_M ==> TFM_MH 7 57 

155  AfricanA_L Income_L ==> TFM_MH 7 57 

156  HomeOwn_L HeterogeneityInx_L ==> TFM_MH 6 57 

157  HomeOwn_H HEdu_M ==> TFM_MH 12 57 

158  MUHouse_M Income_M ==> TFM_MH 6 57 

159  Male17-24_L UnstableRent_L ==> TFM_MH 15 56 
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160  HomeOwn_L HeterogeneityInx_MH ==> TFM_MH 6 56 

161  HEdu_L ==> TFM_MH 20 56 

162  HomeOwn_H ==> TFM_MH 18 56 

163  AfricanA_L HEdu_L ==> TFM_MH 12 56 

164  Male17-24_L HeterogeneityInx_H ==> TFM_MH 6 56 

165  Male17-24_L MUHouse_L ==> TFM_MH 14 56 

166  HeterogeneityInx_H ==> TFM_MH 18 56 

167  Male17-24_H Income_L ==> TFM_MH 12 56 

168  HeterogeneityInx_MH Employment_M ==> TFM_MH 7 56 

169  HeterogeneityInx_H Income_L ==> TFM_MH 13 56 

170  Male17-24_L HeterogeneityInx_L ==> TFM_MH 14 56 

171  HeterogeneityInx_L HEdu_M ==> TFM_MH 9 56 

172  SingleParentF_L ==> TFM_MH 27 56 

173  Male17-24_L HEdu_L ==> TFM_MH 11 56 

174  SingleParentF_H Income_L ==> TFM_MH 14 55 

175  SingleParentF_L MUHouse_H ==> TFM_MH 6 55 

176  SingleParentF_L HomeOwn_H ==> TFM_MH 12 55 

177  HeterogeneityInx_H MUHouse_H ==> TFM_H 6 55 

178  Male17-24_L AfricanA_L ==> TFM_MH 20 55 

179  HeterogeneityInx_MH UnstableRent_H ==> TFM_MH 6 55 

180  Employment_M MUHouse_L ==> TFM_MH 9 55 

181  HeterogeneityInx_H HEdu_M ==> TFM_MH 11 55 

182  HomeOwn_H Male17-24_L ==> TFM_MH 13 54 

183  Employment_H Income_M ==> TFM_MH 12 54 

184  Male17-24_H Employment_H ==> TFM_MH 6 54 

185  AfricanA_L MUHouse_L ==> TFM_MH 12 54 

186  SingleParentF_L AfricanA_L ==> TFM_MH 23 54 

187  SingleParentF_L UnstableRent_L ==> TFM_MH 14 54 

188  SingleParentF_L Male17-24_L ==> TFM_MH 19 54 

189  AfricanA_L ==> TFM_MH 28 54 

190  Male17-24_H MUHouse_H ==> TFM_H 6 54 

191  SingleParentF_L HEdu_M ==> TFM_MH 14 54 

192  SingleParentF_H ==> TFM_MH 14 54 

193  HeterogeneityInx_H AfricanA_H ==> TFM_MH 8 54 

194  HEdu_M Income_M ==> TFM_MH 10 54 

195  SingleParentF_L MUHouse_L ==> TFM_MH 12 54 

196  HeterogeneityInx_L AfricanA_L ==> TFM_MH 14 54 

197  HeterogeneityInx_H UnstableRent_H ==> TFM_H 5 54 

198  SingleParentF_L HeterogeneityInx_L ==> TFM_MH 14 54 

199  HomeOwn_H AfricanA_L ==> TFM_MH 12 53 

200  AfricanA_H Employment_M ==> TFM_MH 6 53 
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201  SingleParentF_H HEdu_M ==> TFM_MH 9 53 

202  Employment_M Income_L ==> TFM_MH 12 53 

203  Male17-24_H AfricanA_H ==> TFM_MH 7 53 

204  Male17-24_H ==> TFM_MH 14 53 

205  HomeOwn_H HEdu_L ==> TFM_MH 5 53 

206  AfricanA_L UnstableRent_L ==> TFM_MH 14 53 

207  HomeOwn_L MUHouse_H ==> TFM_H 8 53 

208  AfricanA_L HEdu_M ==> TFM_MH 14 53 

209  Employment_M HEdu_M ==> TFM_MH 13 53 

210  Male17-24_H HeterogeneityInx_H ==> TFM_MH 8 53 

211  HeterogeneityInx_MH Income_M ==> TFM_MH 7 52 

212  UnstableRent_L HEdu_L ==> TFM_MH 8 52 

213  HomeOwn_H HeterogeneityInx_L ==> TFM_MH 7 52 

214  HeterogeneityInx_L Employment_M ==> TFM_MH 7 52 

215  Employment_M ==> TFM_MH 21 52 

216  AfricanA_H UnstableRent_H ==> TFM_MH 6 52 

217  HeterogeneityInx_L UnstableRent_L ==> TFM_MH 9 52 

218  HomeOwn_L Income_L ==> TFM_MH 10 51 

219  HEdu_L MUHouse_L ==> TFM_MH 8 51 

220  Income_M ==> TFM_MH 17 51 

221  HomeOwn_L AfricanA_H ==> TFM_MH 5 51 

222  HeterogeneityInx_L MUHouse_L ==> TFM_MH 7 51 

223  Employment_H MUHouse_H ==> TFM_MH 7 51 

224  HomeOwn_H Income_M ==> TFM_MH 8 51 

225  HomeOwn_L Male17-24_H ==> TFM_H 5 50 

226  Male17-24_L Employment_M ==> TFM_MH 10 50 

227  Employment_M HEdu_L ==> TFM_MH 6 50 

228  Employment_M UnstableRent_L ==> TFM_MH 8 50 

229  HeterogeneityInx_MH HEdu_L ==> TFM_MH 5 50 

230  UnstableRent_H ==> TFM_MH 14 50 

231  AfricanA_L MUHouse_H ==> TFM_MH 6 49 

232  Male17-24_L Income_M ==> TFM_MH 11 49 

233  SingleParentF_H Employment_M ==> TFM_MH 6 49 

234  UnstableRent_H Income_L ==> TFM_MH 10 49 

235  HomeOwn_H Employment_M ==> TFM_MH 6 49 

236  SingleParentF_L Income_M ==> TFM_MH 13 49 

237  MUHouse_L Income_M ==> TFM_MH 8 49 

238  AfricanA_L Income_M ==> TFM_MH 12 49 

239  Employment_H UnstableRent_H ==> TFM_MH 6 49 

240  UnstableRent_L Income_M ==> TFM_MH 8 49 

241  HomeOwn_L ==> TFM_MH 14 48 
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APPENDIX F: (continued) 

242  HeterogeneityInx_H Employment_M ==> TFM_MH 7 48 

243  SingleParentF_L Employment_M ==> TFM_MH 9 48 

244  HEdu_M MUHouse_H ==> TFM_H 6 48 

245  MUHouse_H ==> TFM_MH 12 48 

246  UnstableRent_H HEdu_M ==> TFM_MH 7 47 

247  SingleParentF_H HeterogeneityInx_H ==> TFM_MH 7 47 

248  UnstableRent_H MUHouse_H ==> TFM_H 9 47 

249  Male17-24_H HEdu_M ==> TFM_MH 7 47 

250  HeterogeneityInx_L Income_M ==> TFM_MH 5 47 

251  SingleParentF_L HomeOwn_L ==> TFM_MH 5 46 

252  HomeOwn_L HEdu_M ==> TFM_MH 7 46 

253  Employment_M Income_M ==> TFM_MH 5 46 

254  HomeOwn_L UnstableRent_H ==> TFM_MH 8 46 

255  SingleParentF_H Male17-24_H ==> TFM_MH 6 46 

256  Male17-24_H UnstableRent_H ==> TFM_MH 6 45 

257  AfricanA_L Employment_M ==> TFM_MH 10 45 

258  Male17-24_H UnstableRent_H ==> TFM_H 6 44 

259  MUHouse_H Income_L ==> TFM_H 7 44 

260  HomeOwn_L UnstableRent_H ==> TFM_H 8 44 

261  SingleParentF_H UnstableRent_H ==> TFM_MH 5 44 

262  HEdu_L Income_M ==> TFM_MH 5 44 

263  SingleParentF_H UnstableRent_H ==> TFM_H 5 44 

264  HEdu_M MUHouse_H ==> TFM_MH 5 42 

265  UnstableRent_H MUHouse_H ==> TFM_MH 8 41 

266  MUHouse_H Income_L ==> TFM_MH 6 41 

267  Employment_H MUHouse_H ==> TFM_H 5 40 

 

 


