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ABSTRACT

MOHAMED BALHAJ. Characterizing Latencies of Edge Video Streaming. (Under
the direction of DR. ARUN RAVINDRAN)

The use of video streaming has been growing rapidly in the recent years and has been

utilized in various applications. Many of these applications are latency sensitive, but

the latency requirements varies largely from one application to another. The high

quality videos captured by cameras are quite large in size, so they are encoded to

reduce the video size to achieve a reasonable bandwidth when sent over a network.

In this work, we characterize the latency components of edge video streaming with

the goal of identifying latency bottlenecks. In edge applications, the processing is per-

formed at the edge of the network close to data generation, rather than in the cloud,

to meet the latency requirements. This work specifically investigates the latencies

in the transmit and receive paths in the Linux networking stack, and the impact of

encoding parameters on the latency.
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CHAPTER 1: INTRODUCTION

In recent years, there has been a huge demand in the use of streaming videos in

various applications [1] [2]. These applications include video communication, video

conferences, video games, surveillance, and the recent use of artificial intelligence,

such as for real-time object recognition required for self driving vehicles [3].

Streaming video applications have three main components: a video encoder that

compresses the video captured by a camera to reduce the transmission bandwidth

requirements, a network for sending and receiving the encoded video, and a decoder

that decompresses the received video. The decoded video is either displayed (for

example, in video conferencing) or analyzed (for example, in surveillance).

Figure 1.1: End-to-end Streaming Video Application.

Many of the streaming video applications are latency sensitive. The latency re-

quired depends highly on the application. For example, while 100 ms is sufficient for

video conferences and video games [4], self driving vehicular requires latency of less

than 10 ms [5]. Depending on the application, the latency figure could be the average

latency or the tail latency such as the 99-th percentile latency.

In this thesis, we experimentally characterize latency components for video stream-

ing with the goal of identifying latency bottlenecks. While prior work has character-

ized end-to-end latencies of cloud video streaming services [6], our work specifically

focuses on the recently emerging edge video streaming applications (for example self
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driving cars). In edge computing, the data computation occurs at the edge of the

network close to data generation, rather than in the cloud, so as to meet latency

requirements [7]. The video captured by a camera is encoded and transmitted to an

edge micro-server over a local network, where it is decoded for further processing.

The thesis investigates latencies in the transmit and receive paths of the Linux net-

working stack, and the impact of the encoding parameters on latency. Note that the

transmit path is part of the camera system software, while the receive path is on the

edge micro-server. Characterization of network latencies (from the transmit NIC to

the receive NIC), while part of the overall end-to-end latencies, is outside the scope

of the thesis.

1.1 Thesis Contributions

In summary, our main contributions in this work can be listed as follows:

• We presented the path followed by the packets inside the Linux networking stack.

• We conducted in-depth analysis of the latency in the networking stack and iden-

tified that the major part of the latency is in the boundary between user and kernel

spaces.

• We conducted analysis to measure the latency caused by the encoding process,

and analyzed various parameters that can be adjusted to reduce this latency.

1.2 Thesis Organization

In this chapter, we provided an overview of the edge video streaming applications

and presented the research problem. In chapter 2, we present the tools and utilities

that have been utilized in this work. In chapter 3, we discuss the flow of the packets

in the networking stack and break down the latencies in the stack for both the trans-

mission and receive. In chapter 4, we present the latency results for the encoding

process and analyze how the various ffmpeg settings can be adjusted to reduce this

latency. In chapter 5, the conclusion of the work is presented.



CHAPTER 2: TOOLS AND UTILITIES

In this chapter, we provide a brief description of the tools used in this thesis. Some

of these tools were used for debugging and measurements, such as Ftrace, Strace, and

SystemTap. Others, such as sysctl and ethtool, were used to examine and modify the

settings in the kernel, driver, and NIC.

2.1 Ftrace

Ftrace is a tool used for kernel debugging. It utilizes the debugfs virtual file system,

and the control files of the tool reside there. This tool was mainly used in this work to

trace the path taken by the packets in the Linux networking stack. In order to be able

to timestamp the different points in the stack, we needed to know the exact names

of the functions. Since these names are not documented well and slightly change

between the different Linux versions, we used Ftrace to find the functions called in

the different layers in the stack. Ftrace by default probes all the functions in the

kernel. Using Ftrace for tracing during high traffic would very likely result in hogging

the system as there is extra work to be done whenever any function is called while the

system is already highly utilized. For this reason, we used Ftrace during low traffic

as the same functions will be called whether there is low or high traffic. However, it

is possible to track only certain functions by using the tool’s filtration mechanisms.

The filtration is performed by writing the function names into a special file called

set_ftrace_filter. We can examine the functions that currently being probed by

viewing the available_filter_functions file [8].
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2.2 Strace

Strace is a system call tracer that is mainly used to observe and debug the behavior

of an application by probing the interaction between the user and kernel spaces. By

observing the arguments passed to the system calls and their return values, we can

characterize the application’s behavior and speculate what it demands the kernel to

execute on its behalf. This tool can also measure the number of times each system

call is issued and the duration this syscall spent in execution [9].

2.3 Tcpdump

Tcpdump is a command-line packet sniffing tool that uses the libpcap library.

We used tcpdump to dump the packets into a file as we were accessing the server

remotely, then we used Wireshark for post processing analysis. This tool provides

filtration options, such as sniffing the packets that belong to a specific port number

or IP address [10].

2.4 Wireshark

Wireshark is a packet sniffing tool that has a graphical interface and provides a

visual analysis of the packet. For example, we can examine directly whether or not

the packet is fragmented by examining the MF flag in the IP header. In addition,

Wireshark has a filtering capability; for example, we can filter the packets by the IP

address or/and the port number of either the source or destination. Furthermore, the

coloring filtering tool makes it effortless to spot the erroneous packets [11].

2.5 SystemTap

SystemTap is a debugging and performance measurement tool that allows on-the-

fly kernel programming without the need to reboot or recompile the kernel each time

we add a new module. The scripts of SystemTap are written in a special scripting

language, which is then compiled and loaded into the kernel as a module. The module

is removed at the end of running the script. SystemTap can probe most of the
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functions in the kernel code and inspect their arguments, local variables, and return

values. In addition, we can add some extra code to be executed when a particular

function is called or when it is returning. Since we are dealing with high traffic, some

functions in the networking stack will be executed millions of times. So, we had to be

careful with the code we write to be executed when a function is called. For example,

if we try to print a value inside one of the frequently called functions, then the server

will hang, and we will have to reboot it [12].

2.6 Sysctl

Sysctl can be used to examine and adjust the kernel parameters in the /proc/sys/

directory at runtime. The parameters changed by sysctl does not persist after reboot.

To make the changes persistent, we have to add the values to /etc/sysctl.conf file.

The init process will execute this file at boot time to determine the values that should

be assigned to the kernel parameters. An example of a parameter can be adjusted

using sysctl is dev_weight, which is the maximum number of packets that NAPI can

process for a particular interface. The parameter dev_weight resides in the following

directory /proc/sys/net/core, so it can be modified by: [13]

1 $sysctl −w net.core.dev_weight=<weight>

2.7 Ethtool

Ethtool is a utility to view and modify the settings of the NIC and the network

device driver. For example, it can be used to view and change the speed, the duplex,

and the offload features of the interface. The tool also provide some statistics and

diagnostics for both the NIC and the driver and the parameters supported depends

on both the NIC and its driver [14].



CHAPTER 3: THE NETWORKING STACK LATENCIES

We begin this chapter by presenting a brief overview of the networking protocols

and codec standards used in this work. Next, we trace the flow of the packets in

the networking stack and identify the key functions executed during the transmit

and receive of packets. We then measure the latencies in the various parts of the

networking stack for both the transmission and receive.

The experiments in this chapter are performed using Intel W2600CR and Intel

SandyBridge machines. The two machines are connected directly to each other by an

Ethernet cable. Each of the machines have 32 cores and 1 Gb/s igb Intel NIC. Both

of the machines run Linux version 4.4.0. ffmpeg was used to encode and send the

frames and ffplay was used to receive and decode the frames but without displaying

them.

3.1 Network and Video Encoding Protocols

In this work, The Real-Time Transport Protocol (RTP) is used on top of the

User Datagram Protocol to transmit and receive the video frames. The H.264 codec

standard is used for encoding and decoding the videos.

3.1.1 Real-Time Transport Protocol (RTP)

RTP provides end-to-end network transport functionalities suitable for real-time

applications. RTP is not a transport layer protocol, so it is usually used with UDP or

TCP. The RTP standard defines a pair of protocols: RTP and RTCP. RTP is used for

transporting the data, while RTCP is used to periodically receive feedback about the

quality of the transmission. RTP does not reserve bandwidth or guarantee quality of

service. However, there are application layer control protocols, such as H.245, SIP,
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and RTSP, that can be used to negotiate the capabilities of the sender and receiver

and to control the running session. The Real-Time Streaming Protocol (RTSP) is

commonly used with RTP [4] [15].

The RTP header contains the following: the sequence number, which is incremented

by one for each packet sent in a session and could be used for detecting packet drops;

the timestamp, which provides timing information; the payload type, which identifies

the type of media codec of the payload; and the marker bit, which specifies the last

packet in the frame [4].

3.1.2 User Datagram Protocol (UDP)

UDP offers a simple, unreliable datagram transport mechanism. The only error

detection mechanism provided by UDP is checksumming which checks if the packet

is erroneous. So, packets can be lost, duplicated, or arrived out of order in their path

from source to destination. The mechanisms to deal with those situations should

be provided by upper layers if needed. TCP on the other hand provides guaranteed

transport service by retransmitting the lost and the erroneous packets [4].

UDP has been used as the transport layer protocol in this work because it is suitable

for real-time applications. UDP is faster than TCP due to its minimal header, lack

of acknowledgment, and lack of packet retransmission. Retransmission of packets is

usually not useful in real-time applications [16]. Using UDP yields an improvement

even in non real-time applications. For example, Facebook achieved 20% speedup in

Memcached when UDP was used instead of TCP in handling some requests [17].

3.1.3 H.264 Video Codec Standard

Video coding is an integral part of many visual information based applications.

There are two main parts in this process: The first part is the encoding, which

compresses the video to reduce its size so it can be stored on disk or sent through

network efficiently. The second is the decoding, which decompresses the encoded
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video to be displayed or processed further.

The H.264 is also known as MPEG-4 Advanced Video Codec (AVC), and it is a

product of the joint video team (JVT). Its design is based on the distinction between

the video coding layer (VCL) and the network adaptation layer (NAL). The VCL

deals with the compression of data, and comprises syntactical levels such as the block,

macroblock, and slice level. the NAL organizes the compressed data in order to be

stored or transmitted [4].

H.264/AVC standard has been chosen as the codec for this study because it is

one of the most efficient video standards [18] [19] [20] [21]. It provides better coding

efficiency, and gives lower bit rates than the previous standards such as MPEG-2

and H.263 [21]. H.264 is widely adopted in various multimedia devices, ranging from

mobile phones to high-definition television [19]. This codec has also been used for

low-latency applications [22].

3.2 Network Driver Initialization

The driver’s initialization is performed either during the boot or when its module

is being inserted into the kernel. There are several tasks that needs to be performed

before any packets could be received. These include allocating the receive and trans-

mit ring buffers, initializing NAPI, enabling the hardware interrupts, and registering

an interrupt handler to be executed each time the designated irq is received.

3.2.1 The Ring Buffers

The structure of the transmit and receive descriptors, which hold the metadata of

each buffer such as its address and length, is prescribed in the NIC manual. The driver

allocates memory to store these buffers and descriptors in RAM, which are shared by

both the NIC and the driver. For example, the NIC copies the received packet to the

receive ring buffer using DMA and then updates the associated metadata.
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3.3 The Packets’ Path inside the Networking Stack

There are a few resources describe the path taken by the packets inside the net-

working stack [23] [24] [25] [26] [27]. Unfortunately, these sources either describe the

flow for old versions of Linux (version 2.6 or older) or provide very short description

that are not sufficient for our purpose of breaking down the latencies of the network-

ing stack which require the knowledge of the exact names and order of the functions.

For this reason, we used a function tracer called Ftrace to find the exact path that

the packets take inside the stack. We provide an overview of the path taken by the

packets in the networking stack which can be used as a general reference, and will help

us in making decisions as to where to put the probe points which is our main goal.

Since there are significant number of functions in the stack, we will not be discussing

all of them. For example, in the IP layer, there are other functions that might be

called such as the functions related to the NF Hook filter, NAT, and iptables; besides

the fragmentation functions if we have large packets.

3.3.1 Identifying the Functions Executed In the Stack

The number of functions executed in the kernel is enormous! We couldn’t filter

for specific functions because we are using Ftrace to actually find the names of the

functions. Tracing even for a few seconds gave millions of functions, and soon enough

the output file of the tool would reach its maximum limit, and we could not even see

the functions related to the networking stack. A few approaches were used to solve

the problem: First, we monitored the functions for the duration needed to execute

only one command. We chose the ping command, and we pinged the loopback as it is

quite fast. This approach worked well, but it was somewhat limited for two reasons:

first, the loopback does not access the NIC, so we couldn’t see the functions related

to interrupts for example. Second, the ping command uses ICMP over IP, and we are

interested in the UDP protocol rather than ICMP. Using the ping command to ping
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a direct connected computer solved the first problem. So now we were able to see all

the functions related to the hardware interrupts and softirq. To reduce the context

switches, we assigned the highest priority to the process that executes the networking

protocol using the "nice" command. To reduce the unnecessary functions from the

other cores in the server, we turned off all the core except one core. This reduced the

number of functions unrelated to the networking stack significantly and enabled us

to follow the path of the packets in the stack. The following bash script disable all

the 32 cores in the server except core 0.

1 for i in ‘seq 1 31‘;

2 do

3 echo 1 | sudo tee /sys/devices/system/cpu/cpu$i/online

4 done

3.3.2 Identifying the packets

The number of the packets received by a gigabit link is enormous and can be

processed by multiple CPUs simultaneously. In order to make accurate measurements

and measure the latency of each packet individually, we needed a way to identify the

packets. We identified the packets using the identification field in the IP header

which was extracted from the skbuff structure. However, since there is only 16 bits in

this field, the id wraps around after 65,535 packets. We solved the wrapping around

problem by storing the measured timestamps in an array indexed by the id field; then,

the latencies were calculated every 1 ms, as the packets won’t wrap around in this

very short period.
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3.3.3 The Receive Side

Figure 3.1: The Receive Side.

3.3.3.1 The Interrupt Handler

The snippet shown below is for the functions executed in the interrupt handler. The

interrupt handler is very short and takes minimal time to execute. It raises the softirq

flag where the heavy work is done. In addition, the hardware interrupt handler wakes

up the NAPI softirq process. As long as we are not using the receive packet steering,

the NAPI and softirq will be executed on the same CPU as the hardware interrupt.

The number of interrupts issued is significantly less than the number of received

packets. This interrupt coalescing improves the performance during high traffic. If we

have an interrupt per packets for gigabit links, we might end up with a livelock where

the processor is just busy servicing the interrupts and cannot process the packets. A

higher coalescence setting will result in fewer interrupts generated, which in turn will

result in higher throughput, lower CPU usage, and lower power consumption. This

is mainly because it will reduce the number of context switches needed for interrupt

handling. However, it will cause the latency to increase as the packets will wait longer

before being handled [23]. The time taken to execute the interrupt handler is about

1 µs on average. The principle is to defer as much processing as possible to happen

outside the hardware interrupt context. We can view statistics about the hardware

interrupts and which CPUs handles which interrupt by accessing the following file:

/proc/interrupts.
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Figure 3.2: The Interrupt Handler.

3.3.3.2 The Softirq

The softirq could start running right after the hardware interrupt is handled or in

the context of the ksoftirqd daemon. There is one ksoftirqd per CPU, and they are

registered during boot. Each softirq has a specific handler associated with it, the han-

dler for the Ethernet receive is net_rx_action(). The __raise_softirq_irqoff()

function which called during the interrupt handler marks the NET_RX_SOFTIRQ

softirq as pending and wakes up the softirq thread on the current CPU to execute

the associated handler. The status of all softirqs and how many times they have been

executed on each CPU can be found in /proc/softirqs [26].

3.3.3.3 net_rx_action()

This function starts the NAPI processing loop to handle the packets that have been

DMAed to the ring buffer one at a time. This is done by browsing the poll_list of

the devices that have something in their ingress queue, and invoking the associated

poll() for each one until one of the following conditions is met:
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• There are no more devices in the list, which means all the packets in all interfaces

have been handled.

• net_rx_action() has run for too long and therefore it is supposed to release the

CPU. This occurs when the number of packets already dequeued and processed has

reached a given upper bound limit called the budget [23]. The default budget is 300

packets, but it can be changed using:

1 $ sysctl net.core.netdev_budget=<desired number of packets>

3.3.3.4 The New API (NAPI)

NAPI combines interrupts with polling to give higher performance under high traffic

by reducing significantly the load on the CPU. The load on the CPU is reduced by

minimizing the number of interrupts, as each interrupt takes time to be handled and

requires two context switches [23]. NAPI achieves fairness in handling the packets of

different interfaces by handling only specific number of packets from each interface

and then iterates through the rest of the interfaces in a round robin fashion. This

ensures that the interfaces with low traffic can experience acceptable latencies. The

default value of the limit of each interface is 64 and it is called dev_weigh, and can

be adjusted using:

1 $ sysctl −w net.core.dev_weight=<desired interface limit>

napi_schedule() is called to wake up the NAPI if it is not already active, and it

is called as part of the hardware interrupt handler. However, the NAPI processing

loop executes in a softirq context. During the driver initialization, the driver registers

a poll() function for each interface and assigns a weight for it. The poll() function

returns the number of packets that has been dequeued, which could be equal to the

weight or less. The net_rx_action() will subtract this from the budget.
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3.3.3.5 The Socket Buffer (skbuff or skb)

The socket buffer is a data structure used by various layers and protocols in the

Linux networking stack. The stack layers uses the same structure to avoid unnecessary

copying. For example in the transmission, the socket allocates an skbuff structure

and copies the payload data to it, then the transport layer adds its header and so does

the network layer, and finally the data link layer adds the MAC header. The kernel

maintains all skbuff structures in a doubly linked list [23]. The skbuff contains a lot

of information about the packet such as its length, and pointers to its payload and

headers. __napi_alloc_skb() is the function responsible for creating and building

the skbuff structure in the receive side. It calls __build_skb() which takes an skbuff

structure from the cache by calling the function kmem_cache_alloc(). The snippet

from Ftrace below shows the main functions discussed above.

Figure 3.3: The NAPI Processing Loop.

3.3.3.6 The Network and Transport Layers

The protocol is identified by a call to eth_type_trans(). Then, the packet is

delivered to the upper protocol layers using __netif_receive_skb_core() . In case

of IP protocol, it will deliver the packet to ip_rcv(). ip_rcv() is the first function

in the network layer and mainly checks for errors such as the header length and

the checksumming. It calls ip_rcv_finish() which checks whether this device is

the destination. If so, it calls ip_local_deliver(). If this device is not the final

destination, then ip_forward() will be called. The packet is subsequently passed to
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the UDP layer, starting with udp_rcv(). The code for this function is just one line

that calls directly __udp4_lib_rcv(). __udp4_lib_rcv() will validate the packet

and lookup the socket of which the packet belongs using __udp4_lib_lookup(). The

packet is then enqueued to the socket buffer using sock_queue_rcv_skb() which

checks for the security permission then pushes the packet into the socket buffer.

Before adding the packet to the socket queue, a check is made to see if there are any

syscalls issued by the application to receive from this socket. If there is a blocked

receive system call, then the packet is delivered to the user space. Otherwise, the

packet is enqueued into the socket buffer [25] [28].
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Figure 3.4: The Network and Transport Layers.

3.3.3.7 Harvesting the Packets

The packets will remain in the socket’s queue until the user issues a system call

to harvest the packets using the Linux APIs such as read(), recv(), recvfrom(),

recvmsg(), or recvmmsg(). Usually poll(), select(), or epoll() are used first to deter-

mine if one of the sockets in the group has data in its queue. epoll() has a performance

advantage over poll() when there are large number of sockets. All of the receive

syscalls will end up in sock_recvmsg() which checks that the caller has the right
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permission by calling security_socket_recvmsg(), and then calls the receive func-

tion associated with the protocol which is udp_recvmsg() for UDP. udp_recvmsg()

will deliver the packet to the user and then call __kfree_skb() to free the skbuff

structure [26]. If the user space harvests the packets faster than they arrive, then

the issued system call will either block or return a negative value depending on the

attributes passed to it. Notice that generally if the system call successfully harvests

a packet, it will return the number of bytes that have been read from the socket.

Issuing a system call and the associated context switches from user to kernel and to

user again can be somewhat expensive. Consequently, recvmmsg() was introduced

to harvest multiple packets using one system call [25].



18

Figure 3.5: Harvesting the Packets Using recvfrom() .

3.3.4 The Transmission Side

Figure 3.6: The Transmission Side.

The transmission starts with a Linux API such as send(), sendto(), or sendmsg().

These functions issue a system call to transit from the user to the kernel space. After

looking up the socket, sock_sendmsg() is called to check the permissions. It then calls

the appropriate functions depending on the protocol; for example, inet_sendmsg()
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and then udp_sendmsg() for UDP. udp_sendmsg() will allocate an skbuff and then

call ip_route_output_flow() to find the route that the packet will take. In ad-

dition, the UDP layer and the IP layer will append their headers. Afterwards,

dev_queue_xmit() enqueues the packet into the queuing discipline (Qdisk). There

are several scheduling policies that can be used with the Qdisk. The default policy

is called pfifo_fast which is a FIFO with three priorities. The packet’s priority

depends on the TOS field in the IP header [29]. Devices that don’t have a Qdisk such

as the loopback directly call dev_hard_start_xmit(). dev_hard_start_xmit() de-

queues the packet from the Qdisk and puts it in the ring buffer and updates the

relevant descriptors. Now the NIC can copy the packet to its own queue using DMA.

Both the scheduling policy and the length of the Qdisk can be adjusted. The length

of the Qdisk is called txqueuelen and its default value is 1000 packets [29], but can

be changed using:

1 $ ifconfig eth0 txqueuelen <desired length>
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Figure 3.7: The Transmission Side, Part1.
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Figure 3.8: The Transmission Side, Part2.

3.3.5 Dropping Packets

During high traffic, there is a possibility of packet drops. The first thing to do

to handle this problem is to find out where the packet drops occur. Fortunately,

all the packets dropped in the networking stack call the same function to drop the

packets; this function is kfree_skb()[23]. By probing this function and backtrace

the location from where it is called, we can determine which function in the stack

dropped the packet. For example, if the user’s application is slow in handling the

packets and does not issue system calls to harvest the packets frequently enough,

then the socket queue will get full and the packets will be dropped. This is occurred

when we used ffmpeg because decoding the video frames were taking significant time.

To solve this problem, we first identified the location where the packets being dropped

using SystemTap where we found that udp_queue_rcv_skb() was the function that

is dropping the packets. Then we looked at the kernel’s source code to see where

in that function the packets might be dropped. By examining the several places

where the packets are dropped in that function, we found that the reason is because

sk_rcvqueues_full() was returning a boolean true value. Examining the source
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code of the latter function confirmed that the socket receive queue is full. The limit

variable is $sk->sk_rcvbuf as we can see in the source code below. By tracing this

variable and examining its value using SystemTap, we confirmed that this is the value

of the socket buffer which can also be read from /proc/sys/net/core/rmem_default.

Since sk_rcvqueues_full() is an inline function, it cannot be probed directly, so we

probed the function that calls it instead which is udp_queue_rcv_skb().

Figure 3.9: A snippet from udp_queue_rcv_skb().

Figure 3.10: The Source Code of sk_rcvqueues_full()

Increasing the socket buffer supposedly can be done from the command line using

sysctl. However, this did not work for the Linux 4.4.0 used in this work although read-

ing the buffer value from the proc file system at /proc/sys/net/core/rmem_default

assured it has changed. However, When we read the $sk->sk_rcvbuf which holds the

socket buffer size using SystemTap, we found that strangely enough the value is fluctu-

ating between the old value of the socket buffer and the new value assigned by sysctl.

To fix this, we modified the value permanently by writing it into /etc/sysctl.conf

file and then executed $sysctl−p/etc/sysctl.conf . After this, the socket buffer value

were set at the boot and didn’t fluctuate. Increasing the socket buffer might not

work if the application tries to adjust it using setsockopt(). For example, we noticed

that the socket buffer size changes to a smaller value only when we ran the ffmpeg
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application. Further investigation of the ffmpeg source code has shown that ffmpeg

sets the buffer size using setsockopt() with the SO_RCVBUF option. Commenting

this function in the application’s source code and recompiling it fixed the problem.

3.3.6 Breaking down the Latencies of the Receive Side

We measured the average latency alongside with the 99th percentile latency (tail

latency). The tail latency is quite important in applications where the single request

is sent to multiple servers, and the decision cannot be made until all the request have

been serviced. In such cases, the average time is not an accurate measure because

the actual response time depends on the slowest server [30]. Table 3.1 shows the

latencies in the main parts of the stack. The first entry is for the interrupt handler

which takes a quite short time, as it mainly acknowledges the interrupt and raises

the softirq flag where the heavy processing will be done. There are many types of

interrupts and all of them are using the same initial function handle_irq(). To be

able to filter and measure only the interrupts of the ethernet interface under test, we

filtered the interrupts by the irq number. Since our NIC uses multiple queues, we

included all the irqs from 56 to 64 where each one of them is associated with one of

the NIC queues. The second entry in Table 3.1 is the latency in the IP and the UDP

layers. The latency in these two layers is only a few microseconds. The reason behind

this is that the UDP layer, which has a header of only 8 bytes, is quite thin and does

not do much processing. TCP, unlike UDP, is doing some complicated work like error

recovery, flow control, and packet acknowledgement. The cost of the UDP efficiency

is that the application has to implement its own flow control and error recovery if

required. The latency of enqueuing the packet in the socket is quite small as well.

This latency is simply the duration of the function sock_queue_rcv_skb().
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Table 3.1: Breaking down the Latency in the Networking Stack.

The location Average latency (µs) Tail latency (µs)

Interrupt handler 1.23 2.31

IP and UDP layers 3.32 11.24

Socket enqueue 2.91 10.21

Socket enqueue to user space 5564.23 23462.78

sys_recvmsg() 27.87 160.56

Next, we measured the latency right after enqueuing the packet into the socket

until it is delivered to the user space. This latency was quite huge compared to the

other parts, so we investigated further to characterize why the latency is very high.

First, we measured the time that the system call takes to execute since the boundary

between user space and kernel space has been blamed of causing high latency [31] [32].

There were even quite a few suggestions to improve this latency by making a zero

copy networking stack [32] [33]. Although the latency of the receive system call was

a few times larger than the latency in the other parts of the stack, it represented only

a fraction of the huge latency observed in the earlier measurement. Since there is no

processing done between enqueuing the packet into the socket and started harvesting

it using the syscall, the only explanation to this latency is that the application is

not issuing system calls fast enough. This is quite logical as the ffmpeg does spends

significant time in decoding the frames.

To prove the previous assumption, we used a trivial application that simply does

not do any noticeable processing [34]. It simply puts the received packets in a buffer

and then discards them. Measuring the latency from the moment the packet enqueued

into the socket until it is delivered to the user space for this application still gave a

large value, but not as huge as the ffmpeg measurement as can be seen in Table 3.2.

Observing the functions that caused this high latency in the trivial application case,
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we found that the function schedule() is responsible for this latency. This is because

the syscall is blocking when there is no packets in the socket queue, so the scheduler

simply schedules other work. So, this is rather a false latency because there are no

packets actually waiting during this time.

Table 3.2: Comparison Between ffmpeg and a Trivial Application.

The location ffmpeg Trivial app.

Avg. Lat. (µs) Tail Lat. (µs) Avg. Lat. (µs) Tail Lat. (µs)

Socket enqueue

to user space
5564.23 23462.78 323.46 897.32

sys_recvmsg() 27.87 160.56 56.32 449.1

3.3.7 Jumbo frames

The jumbo packets are packets larger than the default size of 1500 bytes; the most

common size of jumbo frames is 9000 bytes. The main advantage of jumbo frames

is reducing the overhead [23]. For example, if we assumed a packet with 46 bytes

of headers (18 bytes in the data link layer, 20 bytes in the IP layer, and 8 bytes in

the UDP layer). With 1472 payload, which is the maximum, as the 1500 limit must

include both the network and transport headers, the overhead is 3%. However, with

8972 as payload, the overhead is only 0.5%. The main drawback of jumbo frames

is that not all network devices fully support it yet. However, most of the Gigabit

routers, switches, and NICs support jumbo frames although the default is still mostly

the 1500 bytes. The default value of the Maximum Transmission Unit (MTU) is

1500 bytes excluding the ethernet header. This setting must be increased in order

to use jumbo frames which can be done using the ifconfig utility. Comparing the

receive side latency of the IP and UDP layers of using non-jumbo frames (Table 3.1)

and using jumbo frames (Table 3.3) shows that the time required to handle a jumbo

packet is quite larger. This is expected as the jumbo packet is six times larger. In
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Table 3.3, we observe the effect of sending large packets while maintaining the default

MTU of 1500. In this case, we need more work to reassemble the fragmented packets

which resulted in higher latency. The duration of the receive system calls however

is almost the same whether the MTU is 1500 or 9000. This is because fragmenting

and reassembling the packets occur in the IP layer, so for the layers above that, the

packet is already reassembled and there is no extra work to be done.

Table 3.3: The Latency Distributions When Using Jumbo Frames.

The location MTU 1500 MTU 9000

Avg. Lat. (µs) Tail Lat. (µs) Avg. Lat. (µs) Tail Lat. (µs)

IP and UDP Layer 63.21 189.67 15.35 59.24

Socket Enqueue 8.28 39.78 11.19 41.67

sys_recvmsg() 52.34 271.58 59.26 361.34

3.3.8 The Transmission Side Latency

The combined latency from the beginning of execution of the sendto() syscall in

the kernel (SyS_sendto()) until the function that delivers the packet to the NIC

(dev_hard_start_xmit()) is about 6.7 µs on average, while its tail latency is ap-

proximately 11 µs.

Table 3.4: The Transmission Side Latency.

Location Avg. Latency (µs) Tail Latency (µs)

SyS_sendto() to udp_send_skb() 2.71 4.025

udp_send_skb() to dev_hard_start_xmit() 3.92 6.95

3.3.9 Packet Fragmentation

We have seen in Table 3.3 that fragmenting a packet increases the latency in the IP

layer. The latency when the MTU size was kept at 1500 was four times larger than
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the latency when MTU was 9000. One approach to minimize this latency without

changing the MTU is by offloading the fragmentation to the NIC. The modern NICs

can handle the fragmentation and the reassembly of the packets of the commonly

used protocols such as UDP and TCP. Performing these operations in the hardware

is much faster than in the stack.

3.3.10 The Offloading Features

The NICs support several offload features where the NICs perform some operations

in their hardware rather than performing them in the stack by the operating system.

One example mentioned above is the fragmentation offload. Other features include the

checksumming, generic segmentation offload, and large receive offload. These features

helps in reducing the latency as the example of the fragmentation above shows. The

support for these features varies widely among NICs and driver versions. However,

the ethtool can be used to list the supported features using the --show-features

attribute.



CHAPTER 4: The ENCODING LATENCIES

In this chapter, we analyze the impact of encoding parameters on the latency.

The encoding process is computationally intensive, so in order to achieve real-time

encoding, hardware implementation is often required [35] [36]. However, here we

will use the ffmpeg implementation of the H.264 codec standard [37] to measure the

encoding latencies in software. We tuned several parameters to reduce the latency,

and observed the effect of these adjustments on the average frame latency and video

quality. We changed one parameter at a time while keeping the default values of the

other parameters.

4.1 Video Compression

Video compression involves reducing the video size by using fewer bits to represent

the same video content. This is achieved by finding similarities within the frame itself,

and similarities with neighbor frames. An uncompressed video has a constant bitrate

based on pixel representation, image resolution, and frame rate. The H.264 encoder

compresses the fast moving scenes more than the slow scenes, because humans are not

able to distinguish all the details in the fast moving scene, while they might inspect

the image of a slow scene more thoroughly [38].

4.1.1 Frame Types

Video compression utilizes different frames types in order to make the compression

more efficient. There are mainly three types of frames: (1) I-frames which act as a

reference, and they are usually the biggest in size since they do not use any other

frame as a reference. (2) P-frames which can use the previous frames as a reference,

so usually they are more compressible than I-frames. (3) B-frames can use both
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the previous and latter frames as references, so they tend to be much lower in size

compared to the other two types.

Figure 4.1: Typical Frame Sequence.

B-frames have to be encoded out of order since the latter P-frame has to be encoded

first. This leads to extra latency. In latency-sensitive applications, B-frames are

mostly avoided, and only I and P frames are used as shown in Fig 4.2

Figure 4.2: A Frame Sequence Without B-frames.

4.1.2 Video Quality

The video quality is quite important and can be measured in two different ways:

4.1.2.1 The Subjective Quality

Subjective quality is measured by the perception of the user. The problem with

subjective quality is that it is quite subjective as it varies from one individual to
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another, and also depends on the environment such as the amount of light in the

room. Moreover, the human perception of the quality highly depends on the task,

for example: watching a video content, video conference, or identifying a person in

surveillance application [39].

4.1.2.2 The Objective Quality

The objective quality is calculated quantitatively such as by comparing the original

video to the output video and measuring the noise ratio. There are two main methods

used: the first is using pure mathematical modeling to measure the error as the

difference between the original pixel and the processed one such as PSNR. The second

method uses characteristics similar to the Human Visual System (HVS) such as SSIM

[40].

• Peak Signal to Noise Ratio (PSNR) : In the context of video and image compres-

sion, the signal is the original image/video, while the noise is the error introduced by

compression. Normally, higher PSNR means higher quality. The ideal value of PSNR

is 100 dB, However, it ranges in practice between 30 and 50 dB [40]. The drawback

of PSNR is that it looks only at individual frames, so it cannot take into account the

perceptual effects such as motion.

• Structural Similarity (SSIM) : The SSIM is used to measure the similarity between

two images. It is considered to be correlated with the human visual system.

In our study here, we will rely on the objective quality by using two metrics PSNR

and SSIM to measure the quality. Measuring PSNR and SSIM using ffmpeg will in-

crease the latency of the video slightly. To exclude this extra latency, all the latencies

measured in this work are measured without including the objective quality metrics

measurements. The quality metrics are measured separately.
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4.2 Latency Measurements

4.2.1 Measurement Methodology

The sample video used in this work is a raw format 4k video that depicts nature

scenes. The total number of frames is 179 and the frame rate is 30 frames per second.

To measure the encoding latency, we need a way to measure the execution time of

the ffmpeg application. First, we used strace to list all the system calls that are

issued by this particular program. From the list of syscalls, we found that, execve()

is the first system call to be called, and sys_exit_group() is the last one. Using

strace, we used -ttt and -r flags to get the timestamping which provides microsecond

granularity. However, we noticed a big overhead when measuring using strace. So we

used SystemTap to make the measurements instead. The execution time measured by

strace was more than six times the execution time measured by SystemTap. Clearly,

the overhead of strace is unacceptable and most likely occurred because strace traces

all syscalls even if in the command line arguments we specified only the two system

calls that we are interested in probing. On the other hand, SystemTap traces only

the functions that are probed in its script. All the measurements in this chapter are

performed using SystemTap.

Since we measure the entry and exit of the program, the measurements will include

context switches. To reduce this, we gave the application the highest possible priority

in Linux which is -20 using "nice". This would limit the number of context switches,

but it will not eliminate them. The average latency per frame is calculated by di-

viding the execution time that the ffmpeg takes to encode the whole video by the

total number of frames in the video. Similarly, the average frame size is calculated

by dividing the output file size by the total number of frames. The frame latency

measured not only includes the encoding process, but also includes packaging the

frames and passing them to the networking stack in the form of RTP packets.
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4.2.2 The Encoding Latency

The main purpose of encoding is to compress the video to smaller size either to

store it on the disk or to send it through a network. The important factors in encoding

are: frame latency, frame size, and quality. The encoding process involves making

trade offs between these factors. To show that the encoding latency is significant, we

used ffmpeg to send a video. Initially, we did not change the codec (−vcodeccopy),

and then we encoded the raw format video to H.264 standard. As shown in Table 4.1,

The encoded operation took four times more execution time than the non-encoded

one. However, the encoded video is 30 times smaller than the non-encoded one.

Table 4.1: The Encoding Latency.

Avg Frame Lat. Avg. Frame Size File Size Execution Time

Non-encoded 18.97 ms 2258.25 KB 404272 KB 3397 ms

H.264 Encoding 68.71 ms 71.36 KB 12775 KB 12300 ms

4.2.3 Constant Rate Factor (CRF)

This attribute lets us define the quality of the overall video. The range is from

lossless (0) to the lowest quality (51). The default value (23) is near the middle [41].

The drawback of the CRF is that we do not know the average frame size or the output

file size, which are very important to determine the bandwidth and the bitrate. CRF

will try to maintain constant perceived quality throughout the video. This does not

mean encoding all the frames with the same Quantization Parameter (QP), because

this will result in higher quality for the fast motion scenes than the slow motion ones

[41]. CRF instead will compress frames by different amounts depending on the type

of motion in the scene. To set a minimum acceptable level of quality, −crf_max can

be used. As shown in Table 4.2, we see that increasing the quality results in larger

frame size and slower encoding. Choosing a lossless encoding resulted in a similar



33

average frame size as the original raw file, which is more than 30 times the resulted

frame size from the default quality, it also resulted in higher latency.

Table 4.2: The Constant Rate Factor Settings.

CRF Value Avg. Frame Latency (ms) Avg. Frame Size (KB) PSNR SSIM

0 (lossless) 91.07 2259.89

1 121.39 2166.67 60.37 30.88

20 79.43 138.43 45.87 15.30

23 (Default) 69.18 71.36 44.31 14.44

27 55.28 26.54 42.81 13.55

51 (low quality) 40.89 0.988 31.05 7.99

4.2.4 The Preset Setting

A preset is a setting that will provide a certain encoding speed to compression

ratio. A slower preset will provide better compression [37]. There are several presets

available for use with H.264 standard in ffmpeg. However, we will compare the

extreme two (ultrafast and veryslow). The ultrafast is faster than the veryslow

setting by almost eight times, and it is faster than the default preset by two times.

The cost is that the average frame size of the ultrafast is 3.5 times larger than the

veryslow, and 2.7 times larger than the default preset, which results in higher bitrate.

The ultrafast setting also counter intuitively results in higher quality video. In the

ultrafast preset, the speed is achieved by not using B-frames at all. B-frames are

slower than P-frames, because they require out of order processing, although they

result in very efficient video size. However, B-frames use significant approximations

which degrades the video quality.
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Table 4.3: The Preset Settings in H.264.

Preset Avg. Frame Lat. (ms) Avg. Frame Size (KB) PSNR SSIM

Ultrafast 34.11 194.54 45.32 14.79

Medium (default) 69.04 71.38 44.34 14.43

V eryslow 256.00 54.97 44.04 14.31

4.2.5 The Tune Setting

There are several tune settings that ffmpeg uses with the H.264 standard such as

zerolatency, film, and animation. We will focus on the setting related to latency

which is zerolatency. The zerolatency setting is surprisingly slower than the default

tuning setting. It also results in higher frame size though with slightly higher quality.

Although zerolatency disables the B-frames like the ultrafast preset does, it still

gives higher latency even compared to the default. We do not observe any benefit of

applying this setting.

Table 4.4: The Tune Settings in H.264.

Tune Avg. Frame Latency (ms) Avg. Frame Size (KB) PSNR SSIM

zerolatency 106.48 115.83 45.29 14.93

default 69.04 71.38 44.34 14.43

4.2.6 Threads Settings

Utilizing the multi cores in the machine by using multithreading yields significant

improvement in speeding up the encoding process. The average frame size and the

quality, as expected, are not affected by this setting. The main improvement observed

when utilizing the 32 cores in the machine is reducing the latency by more than

ten times compared to using only a single core. However, the default setting of

H.264 in ffmpeg chooses the optimum number of threads depending on the machine
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architecture, so there is no need to adjust this parameter.

Table 4.5: The Effect of Multithreading.

Threads Frame Latency (ms) Avg. Frame Size (KB) PSNR

1 thread 749.31 71.39 44.34

16 threads 97.85 71.34 44.34

32 threads 72.27 71.30 44.35

default 68.29 71.36 44.34

4.2.7 Group of Pictures

This attribute determines the maximum distance between I-frames in the video

[37]. A seen in Table 4.6, when choosing a small value of GoP such as 3, the latency

is reduced by 1.5 times and the quality improved slightly, while the average frame size

more than doubled. This is because I-frames are more accurate than B and P frames

as an I-frame results from direct compression of the frame rather than comparing it

with the neighbor frames. For the same reason, the frame size is larger. The latency

reduction is because unlike P and B frames, I frames does not require any comparison

with neighbor frames. Choosing smaller values of GoP is important when streaming

a video to several clients, as it reduces the startup latency. In addition, smaller values

of GoP will improve the seeking and fast forwarding in the player. The default value

is 250 frames, which result in far distanced I-frames. For example, for 30 fps frame

rate, we will have an I-frame only every 8.3 seconds [42].
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Table 4.6: The Distance Between I-frames.

GoP Avg. Frame Latency (ms) Avg. Frame Size (KB) PSNR SSIM

3 45.17 155.17 45.09 15.12

15 60.10 91.32 44.64 14.65

30 64.05 81.89 44.54 14.55

250 (default) 68.71 71.36 44.34 14.43

4.2.8 Psychovisual Optimizations

This setting improves the subjective quality by trying to approximate the human

visual system’s perception [43]. As seen In Table 4.7, turning on this optimization

slows down the encoding process and results in a bigger frame size. Although the

objective quality metrics used did not show any improvements in quality, this is

expected since this settings tries to improve the subjective quality. This setting

should be turned on if the video is intended to be watched by humans, and should

be turned off if the video will be supplied to a machine.

Table 4.7: Psychovisual Optimizations.

Psycho-Visual Avg. Frame Latency (ms) Avg. Frame Size (KB) PSNR SSIM

ON 68.28 71.36 44.34 14.43

OFF 61.49 55.88 44.43 14.60

4.2.9 The Resolution

The resolution of the raw input video is 4k (3840x2160), and the output will have

the same resolution unless otherwise specified. Using lower resolutions such as 1080p

and 720p resulted, as expected, in lower frame size and lower latency. The 720p

resolution resulted in reducing the latency by half, and reducing the average frame

size by thirteen times.
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Table 4.8: The Resolution Settings.

Resolution Avg. Frame Latency (ms) Avg. Frame Size (KB)

720p (1280x720) 35.73 5.11

1080p (1920x1280) 39.34 15.41

4k (3840x2160)) 69.04 71.36

4.2.10 Constant Bitrate (CBR)

There is no direct setting that can cause the bit rate to be constant. However, we

can have the same effect by setting the minimum, average, and maximum bitrates to

the same value [37]. This setting is useful only when we have a fixed bandwidth,and

seek to utilize all of it. This setting also requires setting the VBV buffer. The CBR

is not a good choice for storage as it will not allocate enough data for complex scenes

while wasting data on the simple ones. As seen in Table 4.9, choosing a low bitrate

speeds up the encoding process and gives smaller frame sizes but with largely degraded

quality.

Table 4.9: Constant Bitrate Measurements.

Bit rate Avg. Frame Latency (ms) Avg. Frame Size (KB) PSNR SSIM

1Mb/s 45.31 3.93 34.92 8.99

10Mb/s 60.40 39.36 42.51 13.37

17Mb/s 67.03 66.92 43.50 13.95

4.2.11 Coders

The default coder in H.264 is Context-based Adaptive Binary Arithmetic Coding

(CABAC). The other coder is Context-Adaptive Variable-Length Coding (CALVC)

[44]. Both coders gives similar quality. However, CABAC, which is the default, gives

better compression in terms of smaller frame size, but this comes at the cost of lower
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speed. The latency of CABAC is slightly higher than CALVC as seen in the Table

4.10.

Table 4.10: Coder Types in H.264 .

Coder Avg. Frame Latency (ms) Avg. Frame Size (KB) PSNR SSIM

CABAC 69.04 71.38 44.34 14.43

CALVC 65.41 77.81 44.28 14.42

4.2.12 Motion-Estimation Search Pattern (−motion− est)

The encoding process seeks to find similar patterns in previous areas and reuse

them. Most of the encoding time is spent in searching for similar patterns. The

more complex and thorough search algorithms will take longer time. There are five

methods presented here in order of complexity [43]:

• Diamond (dia): the simplest search pattern, it checks patterns at four directions

(up, left, down, and right) then picks the best candidate.

• Hexagon (hex): works similarly to Diamond, but uses 6-point hexagon instead.

• Uneven multi-hexagon (uhm): similar to Hexagon, but it is able to avoid missing

harder-to-find motion vectors.

• Exhaustive (esa): searches the complete motion vector space within a specified

range.

• Transformed exhaustive (tesa): similar to exhaustive, but with additional com-

plexities [43].

As seen in Table 4.11, all the search methods provide almost similar video quality

and similar average frames size. Regarding latency, the two exhaustive methods

perform poorly as they take double the time without any noticeable improvements

in quality. The diamond method is the fastest in this scenario. However, we must

stress on the fact that the performance of these methods depends highly on the video

content.
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Table 4.11: Motion Estimation Methods in H.264.

Search Pattern Avg. Frame Latency (ms) Avg. Frame Size (KB) PSNR SSIM

Diamond 66.32 71.03 44.33 14.42

Hexagon 69.18 71.36 44.31 14.44

UMH 73.18 71.41 44.36 14.46

Exhaustive 137.55 72.08 44.38 14.49

TESA 147.23 72.2 44.45 14.51

4.2.13 Lookahead (−rc− lookahead)

This setting specifies the number of frames to lookahead for macroblock tree rate

control [44]. We notice once again that we have to make a trade off between quality,

latency, and frame size. As can be seen in Table 4.12, a higher lookahead value will

improve the quality, but it will slow the encoding process and increase the frame

size. The default lookahead value is 40. If latency is more important than quality,

a much slower value should be chosen. For example, using the value 2, we achieve

lower latency and smaller frame size at the cost of lower quality.

Table 4.12: Lookahead Settings.

Setting Avg. Frame Lat. (ms) Avg. Frame Size (KB) PSNR SSIM

-rc-lookahead 2 61.31 53.86 43.6 14.02

-rc-lookahead 5 63.21 63.05 44.23 14.46

-rc-lookahead 10 64.8 68.86 44.24 14.33

Default setting 68.35 71.36 44.34 14.43



CHAPTER 5: CONCLUSION

In this work, we analyzed the latency of streaming video applications for edge

computing. In particular, we analyzed the encoding latency, and the transmission

and receive latencies in the Linux networking stack. We conclude that the encoding

latency is much higher than the latency in the networking stack. Although the Linux

networking stack has been blamed for its huge latency [31] [32]. However this does not

apply for our work as we used UDP instead of TCP, and the packet sizes were rather

large. Within the networking stack, the latency at the kernel and user boundary is

a few times higher than the latency in the IP and UDP layers. However, the total

latency is quite small compared to the encoding latency.

The combined Average transmission and receive latency in the networking stack is

about 50 µs. While The average encoding latency per frame was around 70 ms. The

encoding latency is comparably high. Applying the optimum parameters can reduce

the encoding latency by 50%. The most notable reduction in latency occurs when

B-frames are disabled. However, reducing the encoding latency often results in either

degrading the quality or increasing the bitrate.

The encoding process is computationally intensive, so in order to achieve real-time

encoding, hardware implementation is often required [35] [36]. Another solution that

eliminates the encoding and decoding latencies altogether is using raw videos. How-

ever, this will require very high bitrate which makes it suitable for only small range

of applications such as for application that share videos over a local area network.

For future work, the tail latency per frame can be measured for the encoding and

decoding. In addition, finding the optimum combination of the encoding parameters

can further reduce the encoding latency.
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APPENDIX A: List of SystemTap Scripts

A.1 Measuring the Duration of the Interrupt Handler

// global varibales

global irq_enter; // an array to store the timestamp of the start of executing the interrupt

handler

global irq_return;// an array to store the timestamp of the returning from the interrupt

handler

global num; // The total number of interrupts

probe kernel.function("handle_irq")

{

q = $desc−>irq_data−>irq //To get the IRQ number

//probe only the interrupts associated with the ethernet interface

if ( (q == 55) || (q ==56) || (q ==57) || ( q ==58) | ( q ==59) || ( q == 60) ||( q ==

61) || ( q == 62) || (q == 63))

{

num <<< 1;

irq_enter[cpu()] = gettimeofday_ns();

}

}

probe kernel.function("handle_irq").return // probe when the function returns

{

q = $desc−>irq_data−>irq

if ( (q == 55) || (q ==56) || (q ==57) || ( q ==58) | ( q ==59) || ( q == 60) ||( q ==

61) || ( q == 62) || (q == 63))

{

irq_return[cpu()] = gettimeofday_ns(); // time stamp the interrupt

printf("%d\n", irq_return[cpu()] − irq_enter[cpu()]) // print the Latency

}
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}

probe timer.s(10) // count the number of interrupts

{

printf("===> The number of interrupts = %d \n", @count(num))

exit();

}

A.2 Measuring the Latency in the IP and UDP Layers

// global variab

global skb_copy% [100000];

global netif% [100000] ;

global id_ip;

probe kernel.function("ip_rcv")

{

nh_addr = $skb−>head + $skb−>network_header; // the address of the beginning of

the network header

trans_addr =$skb−>head + $skb−>transport_header// the address of the beginning of

the transport header

d_port = ntohs(kernel_short(trans_addr+2)) // the destination port

id_ip_1= ntohs(kernel_short(nh_addr+4)) // the packet id

if (d_port == 3333) // filtering only the packets related to this experiment

{

netif[id_ip_1]= gettimeofday_ns(); // timestamping

}

}

// Probe the entry of the enqueuing the packet into the socket

probe kernel.function("sock_queue_rcv_skb")
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{

nh_addr = $skb−>head + $skb−>network_header; // the address of the network

header

trans_addr =$skb−>head + $skb−>transport_header // the address of the transport

header

d_port = ntohs(kernel_short(trans_addr+2)) // the destination port

id_ip= ntohs(kernel_short(nh_addr+4)) // the packet id

if (d_port == 3333)

{

skb_copy[id_ip]= gettimeofday_ns(); // time stamp at the end of the quiuing the

packet into the socket

}

}

// Compute the latency and store the packets every 1 ms, so the packets’ ids won’t wrap

around

probe timer.ms(1)

{

foreach ([id_ip] in skb_copy )

{

if ( skb_copy[id_ip] != 0) // if a time stamp has been taken

{

lat = skb_copy[id_ip] − netif[id_ip] ; // compute the latency for this particular

packet

printf("%d \n", lat)

}

}

delete skb_copy; // delete the array elements as we have alreay used them to find the latency

}
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A.3 Measuring The Latency of Enqeueuing the Packet into the Socket

// global variables

global sock_queu;

global sock_q_ret;

global id_ip;

//probing the entry of the function

probe kernel.function("sock_queue_rcv_skb")

{

nh_addr = $skb−>head + $skb−>network_header; // the address of the beginning of

the network header

trans_addr =$skb−>head + $skb−>transport_header// the address of the beginning of

the transport header

d_port = ntohs(kernel_short(trans_addr+2)) // the destination port

id_ip= ntohs(kernel_short(nh_addr+4)) // the packet id

if (d_port == 3333)

{

sock_queu[id_ip]= gettimeofday_ns(); //timestamping

}

}

//probing the return from the function

probe kernel.function("sock_queue_rcv_skb").return

{

nh_addr = $skb−>head + $skb−>network_header;

trans_addr =$skb−>head + $skb−>transport_header
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d_port = ntohs(kernel_short(trans_addr+2))

id_ip_1= ntohs(kernel_short(nh_addr+4))

if (d_port == 3333)

{

sock_q_ret[id_ip_1]= gettimeofday_ns();

}

}

// calculate the measured latency every 1 ms

probe timer.ms(1)

{

foreach ([id_ip] in sock_queu)

{

if ((sock_queu[id_ip]) != 0)

{

lat = sock_q_ret[id_ip] −sock_queu[id_ip]

if (lat > 0)

printf("%d\n", lat)

}

}

delete sock_queu;

delete sock_q_ret;

}

A.4 Measuring the Latency between Enqueuing the Packet into Socket and

Delivering it to User Space

global skb_copy% [100000];

global udp_queue% [100000] ;
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global id_ip;

// probing after finishing enquiing the packet in the socket queue

probe kernel.function("sock_queue_rcv_skb").return

{

nh_addr = $skb−>head + $skb−>network_header; // getting a pointer to the IP

header

trans_addr =$skb−>head + $skb−>transport_header // getting a pointer to the

transport header

d_port = ntohs(kernel_short(trans_addr+2)) // the destination port from the udp

header

id_ip_1= ntohs(kernel_short(nh_addr+4)) //the identification field in the ip header

if (d_port == 3333)

{

udp_queue[id_ip_1]= gettimeofday_ns(); // Storing the time stamp in an array

indexed by the packet id

}

}

// probing delivering the packet to user space

probe kernel.function("skb_copy_datagram_iter")

{

nh_addr = $skb−>head + $skb−>network_header; // Getting a pointer to the IP

header

trans_addr =$skb−>head + $skb−>transport_header // Getting a pointer to the

transport header

d_port = ntohs(kernel_short(trans_addr+2)) // the destination port from the udp

header

id_ip= ntohs(kernel_short(nh_addr+4)) //the identification field in the ip header

if (d_port == 3333) // filtering only the packets related to this experiment

{
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skb_copy[id_ip]= gettimeofday_ns(); // Storing the time stamp in an array indexed by

the packet id

}

}

// Compute the latencies and store the results evert 1 ms, so the packets’ ids won’t wrap

around

probe timer.ms(1)

{

foreach ([id_ip] in skb_copy ) // iterate for each packet

{

if ( skb_copy[id_ip] != 0) // if the time stamp is already taken

{

lat = skb_copy[id_ip] − udp_queue[id_ip] ; // measure the latency

printf("%d \n", lat)

}

}

delete skb_copy; // delete the elements of the array as we already used them to compute the

latency

}

A.5 Measuring the Duration of sys_recvmsg()

// probing the return of ___sys_recvmsg()

probe kernel.function("___sys_recvmsg").return

{

num <<< 1 // a counter

// computing the latency between the entry and exit of each call to the function

printf("time = %d and the return value = %d\n", gettimeofday_ns() − @entry(

gettimeofday_ns() ), $return )

}
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A.6 Finding the Locations of Packet Drops

global drops

probe kernel.trace("kfree_skb") // the function that called to drop the packets

{

drops[$location] <<< 1 // count the number of dropped packetes

}

probe timer.sec(5) // print the drop locations every 5 seconds

{

foreach (i in drops−)

{

printf("%d packets dropped at %s\n", @count(drops[i]), symname(i))

}

delete drops

}

A.7 Measuring the Latency of the First Part of the Transmission Side

global sys_sendto;

global t, t1;

probe kernel.function("SyS_sendto")

{

sys_sendto[cpu()] = gettimeofday_ns();

}

probe kernel.function("udp_send_skb")

{

nh_addr = $skb−>head + $skb−>network_header; // getting a pointer to the IP header



53

trans_addr =$skb−>head + $skb−>transport_header // getting a pointer to the

transport header

d_port = ntohs(kernel_short(trans_addr+2)) // the destination port from the udp header

id_ip_1= ntohs(kernel_short(nh_addr+4)) //the identification field in the ip header

if (d_port == 3333)

{

cpu = cpu()

t[cpu] = gettimeofday_ns();

t1 = t[cpu] − sys_sendto[cpu]

printf("%d\n", t1);

}

}

A.8 Measuring the Latency of the Second Part of the Transmission Side

global skb_copy% [100000]; // wrapping array to store the timestamping

global udp_queue% [100000] ;

global id_ip; // the packet id

probe kernel.function("udp_send_skb")

{

nh_addr = $skb−>head + $skb−>network_header; // getting a pointer to the IP

header

trans_addr =$skb−>head + $skb−>transport_header // getting a pointer to the

transport header

d_port = ntohs(kernel_short(trans_addr+2)) // the destination port from the udp

header

id_ip_1= ntohs(kernel_short(nh_addr+4)) //the identification field in the ip header

if (d_port == 3333)

{
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udp_queue[id_ip_1]= gettimeofday_ns(); // Storing the time stamp in an array

indexed by the packet id

}

}

probe kernel.function("dev_hard_start_xmit")

{

nh_addr = $first−>head + $first−>network_header;

trans_addr =$first−>head + $first−>transport_header

d_port = ntohs(kernel_short(trans_addr+2))

id_ip= ntohs(kernel_short(nh_addr+4))

if (d_port == 3333) // filtering only the packets related to this experiment

{

skb_copy[id_ip]= gettimeofday_ns();

}

}

// Compute the latencies and store the results evert 1 ms, so the packets’ ids won’t wrap

around

probe timer.ms(1)

{

foreach ([id_ip] in skb_copy ) // iterate for each packet

{

if ( skb_copy[id_ip] != 0) // if the time stamp is already taken

if ( udp_queue[id_ip] != 0)

{

lat = skb_copy[id_ip] − udp_queue[id_ip] ; // measure the latency

printf("%d \n", lat)

}
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}

delete skb_copy; // delete the elements of the array as we already used them to compute the

latency

}

A.9 Measuring the Encoding and Packetization Latency

global entry

probe kernel.function("sys_execve")

{

entry[pid()] = gettimeofday_ms()

}

probe kernel.function("sys_exit_group")

{

latency = gettimeofday_ms() − entry[pid()]

printf("Time in ms = %d for pid = %d and execname() = %s\n\n", latency, pid(),

execname())

}


