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ABSTRACT 
 
 

NAVID FARAHI.  Resolution analysis of films with embedded microsphere for Imaging 
of nanoplasmonic arrays.  (Under the direction of DR. VASILY ASTRATOV) 

 
 

With the advent of microsphere assisted microscopy in 2011, this technique 

emerged as a simple and easy way to obtain optical super-resolution. Although the 

possible mechanisms of imaging by microspheres are debated in the literature, most of 

the experimental studies established the resolution values well beyond the diffraction 

limit. It should be noted, however, that there is no standard resolution measurement in 

this field that researchers can use. The reported resolution has been based on the smallest 

discernible feature; although it seems logical but it is not based on the standard textbook 

definition, and so far it has ended to a wide range of resolution reports based on 

qualitative criteria which can lead to exaggerated resolution values. In addition, this 

method has another limitation related to its limited field-of-view. In this work, first we 

fabricated a novel optical component for super-resolution imaging based on an attachable 

polydimethylsiloxane (PDMS) thin film with embedded high index (n~2) barium titanate 

glass (BTG) microspheres. It is shown that such films can be translated along the surface 

of investigated structures to enhance field-of-view. Second, we introduced a method of 

image treatment which allows determining the super-resolution values consistent with the 

resolution definition in the conventional diffraction-limited optics. We demonstrated this 

method for a typical microsphere-assisted image where we measured the super-resolution 

of ~λ/5.5. We also developed this technique to measure the resolution of a micro-

cylindrical-assisted system. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Resolution of the Optical System 

In 1873, Ernst Karl Abbe published a paper on the resolution of optical microscope 

[1, 2]. Using wave optics, he showed that there is a limit for conventional optical 

microscope to resolve an object and this limit was written in the form:   

𝑑𝑑 = 𝐾𝐾
𝜆𝜆
𝑁𝑁𝑁𝑁

   , 
 

(1) 

where d is the distance between the two point sources, λ is the wavelength of the light 

used for imaging and NA is numerical aperture which is defined by:  

𝑁𝑁𝑁𝑁 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , (2) 

where θ is the half angle of the cone of light which can enter the lens (objective) from a 

point source, see Figure 1.1, and n is the refractive index of the object-space. 
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Figure 1.1: Shows a schematic diagram of the cone of light limited by the aperture lens to 
the half angle θ. 

 

The parameter K in the Eq. (1) represents a somewhat arbitrary criterion of 

resolution of two point objects. There is a series of definitions of resolution which results 

in the parameter K varying from 0.473 to 0.61. Rayleigh’s criterion [2, 3] is defined as 

the distance of two point sources where the center of maximum irradiance of one source 

is on the first minimum of the other. Applying circular aperture (since in current thesis 

we assume we have a circular aperture) the summation of both irradiance make the final 

irradiance whose profile has a saddle to pick (S/P) ratio of 73.6% for Rayleigh’s criterion 

θ 
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[4]. Passing through the circular aperture, the light makes the irradiance pattern to be an 

Airy disk which also called the point spread function (PSF) of the system [4, 5]. 

𝐼𝐼(𝑟𝑟) = 𝐼𝐼0(
2𝐽𝐽1(𝑘𝑘0𝑟𝑟𝑁𝑁𝑁𝑁)
𝑘𝑘0𝑟𝑟𝑁𝑁𝑁𝑁

)2, 
(3) 

 

where 𝐽𝐽1 is the Bessel function of first kind of order 1 and 𝑘𝑘0 is 2𝜋𝜋
𝜆𝜆0

 the free-space wave 

number of the illuminating light. The Rayleigh’s criterion consequently corresponds to 

K=0.61 which means that: 

𝑑𝑑 =
0.61𝜆𝜆
𝑁𝑁𝑁𝑁

, 
(4) 

 

The next resolution criterion was introduced by Sparrow [6]. According to this 

criterion, two point sources are resolved if the saddle is flat and both picks are connected 

by a flat line in the intensity profile leading to K=0.473. Mathematically it is: 

𝑑𝑑 =
0.473𝜆𝜆
𝑁𝑁𝑁𝑁

, 
(5) 

 

Houston criterion is another resolution criterion which is based on a definition 

that the resolution is the full width half maximum (FWHM) of the PSF. In this case the 

resolution is: 

𝑑𝑑 = FWHM =
0.515𝜆𝜆
𝑁𝑁𝑁𝑁

, 
(6) 
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Figure 1.2: Different criteria [7]. 

 

By looking more accurate at the criteria definitions above one can notice the 

following points. First is that the Rayleigh’s criterion is more suitable for the cases of 

coherent illumination when the image has a classical Airy disk shape with well 

pronounced zeros. In the case of incoherent illumination in most of practical cases the 

zeros of the intensity profiles are not pronounced that complicates the application of 

Rayleigh’s criterion. In such cases, often Houston’s criterion can be applied in practice 

since measurement of FWHM of the intensity profile can be usually performed in any 

cases including the incoherent illumination. Second is, all the criteria above are defined 

based on having two ideal identical point sources. Third is that in principle we can define 

resolution based on a single point source. In the latter case, the logical way of defining 

the resolution would be to use FWHM of the PSF divided by the magnification (M) of the 

optical system as a resolution of the system. It is easy to see that such definition 

corresponds to the Houston’s criterion for the two-point object. In the following Sections, 
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we will review some of the techniques developed to enhance the resolution of optical 

microscopes. 

1.2 Microscopy and Nanoscopy Techniques 

Abbe’s work was critical and influential in this field [1, 2]. He introduced the 

fundamental formula for diffractive limit which has been the most important guideline for 

improvement of the resolution of microscopes. According to Eq. (1), to enhance the 

resolution one can shorten the wavelength of the illumination or increase the NA of the 

optical system. In 1904 Kohler constructed the ultraviolet (UV) microscope [8]. Later X-

rays were used in biological microscopy and crystallography [9, 10]. Another 

achievement was electron microscopy where electrons with shorter de Broglie 

wavelength are used for microscopy [11]. NA enhancement was another way to decrease 

the diffraction limit and accidentally it began by the first immersion lens [12] even before 

introducing the Abbe’s formula in order to decrease the aberration. All these 

developments led to invention of solid immersion lens (SIL) by the 1990s [13], since 

generally solid materials provide high refractive index even higher than liquids which are 

used in liquid immersion technique, see Figure 1.3 (a-c). 
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Figure 1.3: Optical microscope (top) with λ = 472nm, NA = 0.9) and corresponding SEM 
(bottom) images of individual nanoscale solid-immersion lenses (nSILs) sitting on 
metallic stripes separated by 250nm (a, b) and 220nm (c) [14]  

 

Besides all the benefits of both strategies to improve the resolution by using Abbe’s 

resolution formula, still there are some drawbacks: 

- Using UV or X-ray has risk of damaging biological sample and also has very 

small penetration depth. 

- Higher refractive index is always followed by higher absorption and chromatic 

aberration. 
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  In 1950s by the advent of confocal microscope another step was taken towards 

better resolution by using Abbe’s formula but still avoiding the drawbacks above. Using a 

laser and a pinhole into the optical path to block the out-of-focus light and make the PSF 

narrower [15], this technique can enhance both the lateral and axial resolutions 

approximately 1.4 times better than that of conventional microscopy, See Figure 1.4. 

 

Figure 1.4: Typical design of a confocal microscope. It has two pinholes for illumination 
and detection of light paths. The second pinhole only passes light coming from focal 
plane of objectives to reduce the blurriness [95].  

 

Although these techniques showed some resolution enhancement but diffraction 

limit was a bottleneck for enhancement of spatial resolution of microscopes which use 

visible light. Breaking diffraction limit in order to do imaging on sub-100-nm gradually 
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became a hot topic. The term “super-resolution” has been used for the resolution of such 

techniques which can provide the resolution better than what the Abbe’s diffraction limit 

suggests. Evanescent waves have been introduced as the key to break the diffraction limit 

since they have very short wavelengths compared to the wavelength of visible light 

which can interact with the object and provide the object’s detail [2, 16]. In the next 

paragraphs we are going to briefly review some techniques which use evanescent waves. 

The existence of evanescent waves was first theoretically postulated by Francia in 

1942 [17] and the first experiment was performed in 1949. Despite propagation waves, 

evanescent wave is a near-field standing wave on a surface which its electric field decays 

exponentially with distance from the surface. The evanescent waves have wave vectors of 

the form [2]: 

𝐾𝐾𝑒𝑒 = 𝑘𝑘∥ + 𝑛𝑛𝑘𝑘⊥; |𝐾𝐾𝑒𝑒|2 = �𝑘𝑘∥�
2 + |𝑘𝑘⊥|2 = �

2𝜋𝜋
𝜆𝜆
�
2

 
 

(7) 

where Ke is the wave vector of the evanescent wave,  𝑘𝑘⊥and 𝑘𝑘∥ are the wave vectors 

perpendicular and parallel to the surface respectively. The electromagnetic theory shows 

the parallel component of the wave vector of the evanescent wave is larger than the wave 

vector of correspondent propagation wave and can provide the finer detail, namely it can 

provide super-resolved image of the object.  

 In 1972 by the invention of near-field scanning microscope (NSOM) [18], the 

first super-resolution microscope based on evanescent waves came to exist. NSOM uses a 

probe to transfer light to the sample. The probe should be in the nanometric vicinity close 



9 
 

to the sample. After scattering light the probe collects the evanescent waves which 

provide high spatial frequencies to resolve features below the diffraction limit, see Figure 

1.5. This method needs scanning the area by the probe and it makes NSOM a complex 

and fairly slow microscope. This technique was an inspiration to develop other probe 

detection techniques such as scanning tunneling microscopy (STM) (1982) [19] and 

atomic force microscopy (AFM) (1986) [20]. 

 

Figure 1.5: Schematic illustration of a probe and process of the near-field scanning 
optical microscope. Such probes can be used for both illumination the light and detection 
the near-field’s evanescent waves [2]. 
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 Amplifying evanescent waves is another approach. Detecting evanescent waves 

before they decay totally, is another big challenge. In 2000, Pendry published a paper 

suggesting a slab of material with negative refractive index called “perfect lens” [21]. He 

showed theoretically that such a perfect lens is able to focus all Fourier components of a 

two-dimensional (2D) image. In other words, it can form the image using both 

propagation and evanescent waves. However practically there is a lack of natural 

negative index material in visible light. Some groups have tried to fabricate negative 

index refractive index material artificially. On the other hand some others have looked for 

alternatives. Pendry himself suggested that if we have a pure p-polarized light it can 

eliminate the dependency of the transition coefficient on μ, like negative index material 

which does the same by eliminating μ. In 2005, Zhang and his colleagues confirmed 

Pendry’s conjecture using a silver superlens [22, 23], see Figure 1.6 (a). which could 

provide a subdiffraction-limited image on the other side of the lens. Zhang’s group even 

went beyond that and two years later projected this image to the far-field and named the 

technique far-field superlens (FSL) [24], see Figure 1.6 (b). Xiong et al. developed the 

capability of FSL to 2D using a multilayer grating [25], see Figure 1.6 (c). Still the 

magnification of such subdiffraction image to the far-field was not possible until the 

advent of hyperlens [26], see Figure 1.6 (d). A sandwich-like half-cylindrical cavity (a 

piece of artificial meta-material) in the hyperlens will magnify the object while changing 

the evanescent waves into propagation waves. The wave vectors of the propagation 
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waves gradually decrease while passing through the anisotropic meta-material so that 

subdiffraction information will be propagated and detected in air, see Figure. 1.6 (g). 

 

Figure 1.6: Schematic of (a) a superlens, (b) an FSL, (c) a 2D FSL, (d) a hyperlens, (e-g) 
Theoretical comparison of the lenses [22, 24-26].  

 

 Illuminating the sample with evanescent waves also can provide optical super-

resolution. In this technique there is no need to amplify the evanescent wave like 

previous method. Illumination by the evanescent waves will be converted to propagation 

wave by being scattered from the sample and be easily detected from the far-field while it 

has the super-resolution information from the sample. For metallic samples surface 

plasmon polariton (SPPs) as the evanescent waves along the metal-dielectric interface 

play this role to extract the supper-resolution information due to the very short 

wavelengths they have compare to the incident light. The wave vector of SPPs is: 

𝑘𝑘𝑠𝑠𝑠𝑠 = 𝑘𝑘0(
𝜀𝜀𝑑𝑑𝜀𝜀𝑚𝑚
𝜀𝜀𝑑𝑑 + 𝜀𝜀𝑚𝑚

)1/2 ≫ 𝑘𝑘0 (8) 
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where 𝑘𝑘0 and 𝑘𝑘𝑠𝑠𝑠𝑠 are the wave vector of excited light in vacuum and wavelength of SPP. 

𝜀𝜀𝑑𝑑 and 𝜀𝜀𝑚𝑚 are dielectric functions of the dielectric and metal respectively. In 2005 

Smolyaninov et al. demonstrated super-resolution imaging using SPPs [27, 28]. They 

etched the sample onto the gold film and deposited a microdroplet of glycerine onto the 

structure to create total internal reflection. It also acted as a magnifying mirror. They 

could see a magnified super-resolved image under the conventional optical microscope. 

SPPs only could provide super-resolved image if we have a metallic sample or a coated 

sample by metal. As another alternative to use evanescent wave, recently Hao et al. used 

near-field illumination by microfibers [29], see Figure 1.7 (a). They also could get super-

resolution image of their sample without localized field enhancement. They showed for a 

sample with subdiffraction details illuminated by an external evanescent field, that 

somehow it was possible to shift the spatial frequencies to a propagation mode; 

consequently it was possible to projects the super-resolution information to the far field, 

see Figure 1.7 (b). They reported a resolution of 75nm approximately, see Figure 1.7 (c), 

although, for an arbitrary 2D pattern, this passive frequency conversion has not been able 

to reconstruct the image. To solve this problem, applying a series of recovery algorithms 

was needed beside the optical means. 



13 
 

 

Figure 1.7: Microfiber-based nanoscopy. (a) Schematic view of microscope 
configuration. (b) SEM image of 75-nm-gap line pairs (left), wide-field optical 
microscopy (middle) and the image of microfiber nanoscopy (right). The length of the bar 
is 1 mm [29]. 

 

1.3 Microsphere-assisted Imaging  

  The new development in this area, which is closely related to the subject of this 

thesis, took place in 2011, when Wang, et. al, demonstrated a new nanoscopy technique 

based on using silica (n~1.46) microspheres 2<D<9 μm deposited at the top of 

b 
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investigated sample [30]. These microspheres act as microlenses which provide the 

virtual image of the sample captured by imaging through the sphere. For the purpose of 

showing the super-resolution capability of this technique, images of the stripes of a Blu-

ray disk were demonstrated, where the stripes have a width of 200 nm and are separated 

by 100 nm, along with a nanometric scale star fabricated which had ~90 nm corners, see 

Figure 1.8 (a-c). 
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Figure 1.8: (a) Schematic image of white light microsphere-assisted microscope in 
transmission mode. (b) SEM image of a blu-ray disk shows the 200nm thickness and 
100nm gap (left) and the super-resolved image by microsphere under the microscope. (c) 
SEM image of the star structure made on thin film for DVD disk with 90nm corners (left) 
and the super-resolved image of the star corners through a microsphere [30]. 
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In order to explain the super-resolution capability of microspheres, they proposed 

that this phenomenon has the same origin which is extremely sharp focusing capability of 

small spheres termed “photonic nanojet” effect [31]. Due to reciprocity principle, sharper 

focusing is related to higher resolution imaging. It was also argued that this technique 

cannot be used in liquid and also for microsphere with n~1.8 or higher. 

 Lately, Dr. Astratov’s Mesophotonics group has shed more light on this 

microsphere-assisted super-resolution technique [32]. They used fully immersed high-

index barium titanate glass (BTG) microspheres with 1-50 μm diameter and index n~1.9-

2.1 immersed in IPA with n~1.37. Using this technique, they demonstrated that this 

technique provides images with discerned minimal features on the order of λ/7 for 

relatively compact spheres with D<10 µm and for larger microspheres 50<D<220 µm the 

resolution drops to ~λ/4 (D is the diameter of the sphere). The field of view of such 

images through microspheres linearly increases as a function of D. Lateral magnification 

also changes and has a peak for spheres with 5-10 µm diameters, see Figure 1.9 (e-d). 
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Figure 1.9: (a), (c) Two high index BTG microspheres fully immersed in IPA with the 
sizes of 100 μ and 20 μ. (b), (d) The super-resolved image of a nanoplasmonic array and 
Blu-ray. (e) Lateral magnification and (f) FOV obtained by BTG microspheres with 
n~1.9 as a function of D [33].  

 

 A direct comparison of microsphere-assisted optical super-resolution microscopy 

technique with conventional optical microscopy and confocal microscopy were 

performed with microsphere size D~15 µm and n~1.9 and objective lens with NA 0.95, 

see Figure 1.10 (a-d). 
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Figure 1.10: (a) SEM of the Au nanoplasmonic structure with gaps of ~50-60 nm and 
posts of 100 nm in diameter. (b) Super-resolved image of the structure by microsphere 
assisted technique. (c) Diffraction-limited image using conventional microscopy. (d) 
Confocal microscopy image of the same object. All of the images b-d were obtained 
through a 100x (NA=0.95) [34]. 

 

This comparison shows this technique provides superior quality and the higher 

resolution compared to both conventional and confocal microscopy. Another direct 

comparison with SIL technique also showed the microsphere-assisted microscopy 

provides superior resolution compared to millimeter-scale hemispherical SILs with the 

same index of refraction. 



19 
 

 Investigating the role of the NA in microsphere-assisted technique revealed that 

drastic change in NA does not have much effect on the resolution of the image taken 

through the microsphere since the angle of light collected by microsphere is large enough 

regardless of the NA of microscope objective, whereas without microsphere NA of the 

objective plays an important role, see Figure 1.11 (a-f). 

 

Figure 1.11: (a) SEM of the sample. (b), (c) Images through a 20 μm liquid immersed 
BTG microsphere (n=1.9) for NA=0.4 and NA=0.9 respectively. (d-f) Images from 
conventional optical microscope using different numerical apertures [34]. 

 

Beside some remarkable benefits of microsphere-assisted technique such as 

enhancement of magnification, resolution and easy to use, the broad application of this 

technique is under consideration which will be more discussed in Chapter 2.  
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As we already stated, a limiting factor for this method is represented by its small 

FOV. In order to expand the FOV of the image produced by these microspheres, in 

November 2013, Krivitsky et al. showed the locomotion of low-index microspheres 

provided by a glass micropipette [35]. Using micro-vacuum suction a silica sphere 

(D=6.1 μm, n~1.47) was attached to the tip of the micropipette. Their method made it 

possible to position the sphere with the accuracy of ~20 nm, See Figure 1.12. 
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Figure 1.12: (a) SEM image of the sample. (b) Optical microscope image. The scale bar 
is 10μm. (c) Magnified virtual image using a microsphere attached to a 
micromanipulator. (d) Intensity profile of the magnified virtual image [35].  

 

By the advent of  microsphere assisted technique, a competitive area in the 

optical super-resolution microscopy has begun. Several groups have attempted to 

investigate this technique from different aspects such as the physics of this super-

resolution technique and resolution enhancement as well as applications. Confocal mode 

of imaging through the microspheres was demonstrated by Yan et al [36]. Basically, 

confocal laser scanning microscopy (CLSM) provides better resolution compared to 
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conventional optical microscope [36, 37]. Claimed resolution generally have been based 

on “smallest discernible feature size” which can be considered as an intuitively 

understandable qualitative resolution criterion. However, its relevance to classical 

textbook resolution criteria needs to be established.  

1.4 Resolution Measurement Procedure and Conclusions 

In this section we review several methods for measuring the PSF of a confocal 

microscope as well as the basic theory of our method used in Chapter 3. 

Two methods can be used to estimate the width of PSF of a CLSM [38, 39]. The 

first method is based on using standard slides which are specially designed for 

microscopy such as Richardson Test Slide Gen III and the MBL-NNF Test Slide [39]. 

The aforementioned slides have periodic line gratings of several spatial frequencies. 

There are two kinds of slides made for reflection and fluorescent mode separately. The 

resolution in this case is the spatial frequency at which the contrast of grating image 

disappears.  

 The second method is based on using very small beads of fluorescent polystyrene 

on the order of 200 nm, 100 nm or less as point sources with dyes suitable for measuring 

resolution at different wavelengths. The full width at half maximum of the pick (FWHM 

of the PSF) is the resolution of the system. Figure 1.13 shows a 3D image of a bead by a 

typical CLSM to measure both lateral and axial resolution of the system. Generally axial 

resolution is larger than the lateral resolution but in this work, we only discuss lateral 

resolution. 



23 
 

 

Figure 1.13: The image of a typical fluorescent bead from a fluorescent LCM shows both 
the lateral and axial PSF [39]. 

  

 There is another method to measure resolution of the system based on analogy 

with the classical theory [40] where the image I(x, y) is considered as a convolution of a 
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diffraction-limited PSF and intensity distribution of the object O (u, v). The mathematical 

relation between I and O is: 

𝐼𝐼(𝑥𝑥, 𝑦𝑦) =  �𝑂𝑂(𝑢𝑢, 𝑣𝑣)𝑃𝑃𝑛𝑛𝑃𝑃(𝑢𝑢 − 𝑥𝑥/𝑀𝑀, 𝑣𝑣 − 𝑦𝑦/𝑀𝑀)𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣
∞

−∞

 (9) 

 

In which u, v are the coordinates in the object plane and x, y are also the coordinates in 

the image plane. The coordinates x and y are linearly related to the coordinates of object 

plane, while the coordinates u and v are generally defined in the object plane via 

magnification M as (𝑢𝑢0,𝑣𝑣0) = (𝑥𝑥0/M, 𝑦𝑦0/M). The result of convolution, I(x, y), is defined 

in the image plane and it is a computed image of the system. This result can be compared 

with experimental image. The width of PSF can be used as a fitting parameter in this 

procedure. Finding the best match between the computed and measured image would 

mean that we found FWHM of PSF. The resolution of the system can be obtained by 

dividing this parameter by M. 

So far, it was shown during full liquid immersion, high-index spheres provide 

superior resolution on the order of ~λ/7 in comparison to low-index spheres in air [37]. 

Initially, this resolution was established based on semi-quantitative criteria of 

discernibility of certain feature sizes in the optical images obtained through microspheres 

[32, 33]. After that, similar resolution of ~ λ/6 was estimated by using a simplified one-

dimensional treatment with 100 nm rectangular functions separated by the gaps [34].Still, 

a compete treatment of the images in two dimensions which would be precise and 
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applicable to objects with arbitrary shape still has not been developed in the previous 

work.  

Also, using semi-quantitative criteria [29, 30, 32-34, 36]and in some cases using 

simplified one-dimensional methods of resolution estimation [34] it was demonstrated that 

microsphere-assisted technique’s resolution exceeds that of SIL technology, conventional 

microscopies and confocal microscopies. Even with poor quality numerical aperture 

objective lenses (NA~0.4) this effect still exists. Beside all the benefits provided above by 

this technique, it still had serious limitations such as a small FOV and, poor control of 

positions of spheres. In 2013, a good step had been taken by Krivitsky et al. [35] with 

locomotion a microsphere, however the micromanipulator can damage the sample 

locomotion. On the other hand having access to a variety of microspheres of different 

sizes and having control over them by ease is still desirable.  

To address these problems, we explore two approaches to developing 

microsphere-assisted imaging in this thesis. One approach is based on a technology 

development, so that we embedded high-index microspheres in a slab formed by 

transparent elastomeric material PDMS. This is described in Chapter 2 of this thesis. 

Such slabs attach easily to the sample and in a few seconds the microspheres come in the 

nanometric vicinity of the sample and provide super-resolution images. They also capable 

of be removed from the sample easily. We developed this technology in winter and 

spring of 2014 and published in a proceeding of conference NAECON in June of 2014. 

Another approach is based on developing resolution treatments which would be 
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applicable to imaging of two-dimensional objects with arbitrary shape. This is described 

in Chapter 3. 

 Regarding standard methods of measuring resolution of optical system, one 

standard approach is based on using objects much smaller than the resolution of the 

system. Such objects create images which can be associated with PSF of the system. In 

this case, the resolution according to the Houston criterion, can be determined as FWHM 

of PSF divided by M. This simple approach can be applied to two-dimensional point 

objects (true “dots”) as well as to one-dimensional point objects (“stripes”). The most 

important conditions for this type of resolution testing is have the object size well below 

the diffraction limit and to have sufficient brightness of the image for measuring it with 

good signal-to-noise ratio. These conditions are relatively easy to satisfy in diffraction-

limited optics where semiconductor quantum dots, dye molecules and doped 

nanospheres, nanoplasmonic clusters, usually have dimensions well below 100 nm and 

sufficient brightness. In the case of optical super-resolution, however, it is much more 

difficult to find “good” point sources. As an example, for studying the resolutions about 

50 nm only individual quantum objects such as single quantum dots or dye molecules 

would be sufficiently small to qualify as single point sources. However, brightness of 

such objects is usually prohibitively small for precise resolution measurements. 

Consequently, in order to circumvent these problems researchers usually use a different 

approach based on using relatively large-scale objects (sometimes millimeter-scale) with 

small size features (nanometer-scale) such as widths of metallic stripes or distances 
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between the stripes or circles. In this approach only particular feature of the image such 

for example as the gaps between the stripes or between the circles can be sufficiently 

small. The resolution claims are made based on the observability or discernibility of this 

feature. 

It should be noted that this is much more subjective technique requiring more 

detailed analysis.  In what follow we show that this approach can lead to greatly 

exaggerated resolution values. Another problem is connected with the gravity and 

Brownian motion which can cause the beads move out of the image area which is limited 

by a circle with D/4 diameter centered with the vertical axis of the microsphere or push it 

to the edge of this area, which means having a bad result with low quality image because 

of the spherical aberration or pincushion effect. 

In Chapter 3, we presented the classical theory of image creation formulated in 

Eq. (9), however we allowed subdiffraction-limited FWHM of PSF. Conventionally, Eq. 

(9) was used only in the domain of diffraction-limited optics. We are not aware about 

previous use of this approach for the resolution treatment of super-resolved images. In 

this work, however, we suggest to extend this approach in the domain of optical super-

resolution by allowing the PSF to take subdiffraction-limited widths. Thus, our approach 

does not allow to identify the mechanism of super-resolution. However, it allows 

determining the super-resolution in a way consistent the classical text-book definitions 

well accepted in diffraction-limited optics. In some sense, our resolution treatment 

represents a phenomenological approach to this problem. We demonstrated this approach 
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to measure the super-resolution of an experimental image from a microspherical lens. We 

also developed this method to measure the resolution of cylindrical lens.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

CHAPTER 2: FABRICATION OF PDMS THIN FILM WITH EMBEDDED 
MICROSPHERES 

 

 Introduction 

Since the adventure of microsphere-assisted microscopy, some groups have tried to 

develop this technique [2, 30, 32-36, 41, 42]. Although this is a very simple way to obtain 

the super-resolved images, the broad applications of this method are somewhat 

complicated due to several factors. First, the super resolved image obtained through 

microsphere are limited to FOV ~D/4 which D is the diameter of the microsphere [33]. 

Second, in order to get super-resolved image, the smaller microspheres about 10 µm 

diameter or less are needed [37]. The reason why the super-resolution can be attained 

with relatively small, almost wavelength-scale spheres is still debated in the literature 

[43, 44]. Actually, the smaller sphere is, closer contact with nanoscale object can be 

achieved. However, there might be other more fundamental factors responsible for this 

behavior such as the fact that sharper focusing can be performed only with smaller 

spheres [45]. For now, the need of use relatively small microspheres still remains largely 

an experimental fact. However, in any case, it would mean that field-of-view (FOV) is 

rather limited in this technique. Third, the microsphere immersed in liquid generally is 

not stable and moves with micro-fluidic flow; therefore there is no control over it. Forth, 

after evaporation of the liquid, there are some microspheres which stuck to the sample. 

The mechanism of such stickiness is not completely clear, and it can be different for 

different spheres, including charging effect, Van der Waals forces, and chemical 

interaction with the substrate. In order to tackle these drawbacks, Krivitsky et al. have 
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used a micromanipulator with an attached microsphere in order to probe the desired part 

of the sample [35]; although it provides some control, but, the sample can be easily 

damaged by micromanipulator during landing and locomotion. In addition, such 

microprobes are usually fragile and precise positioning of microsphere usually requires 

complicated additional 3-D micromanipulation kit. On the other hand, handling 

individual microspheres is not an easy task. In some cases, optical tweezers can be used 

[46] to position microspheres. However, in any case, such manipulation requires 

additional equipment which somewhat detracts from the simplicity of this method.  

In this work, as an alternative solution of this problem we fabricated microsphere-

embedded PDMS thin film with almost the same refractive index contrast as silica 

microspheres in air in order to obtain super-resolved image while avoiding the above 

listed difficulties. Our approach is based on an idea that such thin films with embedded 

microspheres can be translated along the surface of the sample to align different spheres 

with objects of studies. However, our approach involved several hurdles which we had to 

overcome to achieve good results. 

 To this end, PDMS is a very well-known material which satisfies the desired 

optical and mechanical properties which are interested [47-49]. Some of those properties 

are as follows: 

- Transparent for visible light with n=1.4. 

- Highly flexible. 

- Moderately viscoelastic. 

- Durable in flexibility and viscoelasticity for several uses. 

- Chemically inactive. 
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 Historically, microspheres were embedded in PDMS films by Whitesides group 

[47] and by the Mesophotonics group (Prof. Astratov’s group) at UNCC [48]. There are 

mainly two features of this technology which are special for this work and make it 

different from the previously published results. First is that in order to realize right 

conditions for virtual imaging we needed to provide a certain refractive index contrast 

between the PDMS and embedded spheres. This index contrast is about 1.4-1.6 range. 

Taking into account that the index of PDMS is close to 1.4, it means that we had to use 

high-index spheres with n~2.0. Second, is that for the purpose of imaging we had to 

assemble microspheres very close to the lower surface of the PDMS films. This is 

required for picking object optical near-fields by the microsphere. For these reasons, we 

are interested in fabricating a PDMS (Sylgard 184, Dow Corning) thin film with 

embedded high index microspheres touching the thin film surface or protruding from it. 
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a) 

b) 

c) 

d) 

 

Figure 2.1:  Step-by-step fabrication of PDMS thin film with embedded spheres. (a) 
Deposition of microspheres on glass substrate. (b) Casting and curing PDMS layer. (c) 
Lifting the layer off. 

 
 

2.2 Fabrication 

 The fabrication is a 3-step process illustrated schematically in Figure 2.1 (a-c). 

Figure 2.1 (a) shows some high index microspheres (n~1.9-2.1) with different sizes are 
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deposited on a cleaned glass substrate. Then the PDMS is provided with the base/curing 

agent ratio of 10/1 successively and well mixing process. The mixing of PDMS leads to 

creation of microbubbles throughout the volume.  Leaving the PDMS for enough time let 

the bubbles escape from the surface of the PDMS. Then the PDMS is casted over the 

spheres, see Figure 2.1 (b). After that, it is heated in 200F in a mini oven for about 1 

hour. In order to take the PDMS off the glass substrate, a thermal treatment is used by 

putting the samples in a freezer or using ice. Figure 2.1 (c) shows schematically the 

PDMS with embedded microspheres taken off from the surface by a few minutes of 

thermal treatment.  
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Figure 2.2:  Physical test of fabricated PDMS layer is done under conventional and AFM 
microscopes. (a) Side view of the PDMS layer. (b) Top view of the layer. (c) AFM of the 
same spot in (b). 
 

 

2.3 Characterization of the Fabricated Structures 

 Figure 2.2 (a) is shown a side view of a fabricated PDMS layer cut by a scalpel 

and viewed under a conventional optical microscope. It shows all microspheres are 

embedded at the bottom side of the layer. The edge of the PDMS slab looks rough in this 

image; however it reflects the quality of cutting by the scalpel. The actual quality of 

surface of PDMS slab is much higher.  Figure 2.2 (b) is the top view of such 

microspheres embedded in the PDMS layer. Figure 2.2 (c) is the AFM image of the same 

spot in Figure 2.2 (b). Characterization by AFM was done in collaboration with Kenneth 

W. Allen. It shows that the surface bumps coincide with the positions of the spheres that 

a) 

b) c) 
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basically indicates that the spheres are located in nanometric vicinity of the surface. In 

some cases the microspheres were found to protrude through the PDMS slab. Generally, 

estimating the gap separating the spheres from the surface is a complicated task and we 

did not have sufficiently precise methods for this type of characterization. One approach 

of estimating the gap is to measure the magnification. The derivation of magnification 

formula below was done separately by the author and Kenneth W. Allen, This derivation 

is based on geometrical optics analysis: 

𝑀𝑀(𝑛𝑛′, 𝑟𝑟,𝑔𝑔) =
𝑛𝑛′

2(𝑛𝑛′ − 1) �𝑔𝑔𝑟𝑟 + 1� − 𝑛𝑛′
 

(10) 

where r is the radius of the sphere, 𝑔𝑔 is the gap between sphere and the object and 𝑛𝑛′ =

(𝑛𝑛𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑚𝑚𝑒𝑒𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚)⁄ . Eq. (10) was obtained in the limit of geometrical optics. This means 

that it can only be used with sufficiently large spheres such as D>10 µm. Generally, these 

studies showed that the spheres are separated from the surface by gaps which are smaller 

than 100 nm. However, the accuracy of determination of parameter 𝑔𝑔 using Eq. (10) 

drops for smaller gaps. 

Studies of AFM bump maps, also showed that on average the spheres are 

extremely close to the lower surface of the slab with the separation being much smaller 

than the wavelength of light. Therefore this test shows the PDMS layer is ready to use 

and a good number of microspheres which protrude the PDMS can make good contacts 

with the sample in order to provide the best quality image. 
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CHAPTER 3: METHOD OF RESOLUTION TREATMENT 
 
 

3.1 Introduction 

 Following the fabrication of microsphere-embedded PDMS thin film, as we 

discussed in Chapter 1, in order to report an accurate and reliable resolution of our 

microsphere-assisted microscope, we need to use a method based on textbook definition 

of resolution. A conventional way of defining the resolution would be based on using 

“point” sources. The width of the image of point source divided by M can be assumed as 

being a resolution of the system. In practice, this approach can be applied to various 

nanoscale objects such as quantum dots or dye molecules. The imaging of such objects, 

however, can be difficult because of their vanishingly small intensity. Alternative way 

would be to use different large-scale objects which have some small-scale details with a 

recognizable shape. Sometimes the researches tend to conclude that if a given feature is 

seen by the imaging device, this feature “is resolved” which means that the resolution of 

the system is equal to the size of this feature. Although this is intuitively understandable 

logic from the first sight, it requires more rigorous mathematical justification. It can only 

be done based on the textbook first principles. Developing such mathematical apparatus 

allowing treatment different images and aimed at defining their resolution was a main 

task of this Chapter. It also provides a reliable way to compare different results reported 

by other groups that are reported based on observability of “minimal discernible feature 

sizes”. We show that the latter criterion is not reliable and in some cases can be 

misleading. In this chapter we are going to introduce our method. This work was mostly 
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begun by collaboration with Yangcheng Li and Kenneth W. Allen at the very beginning. 

The development of this method by doing several simulations and the analyses was done 

by the author in this chapter.  

 

 
Figure 3.1: (a) Optical microscope image showing the large area of the sample with 
multiple arrays of the gold nanostructures.  Each square represents an array with different 
dimer size and separation. (b) SEM showing a typical array of dimers. 
 
 

3.2 Nanoplasmonic samples  

 In order to investigate super-resolution of our system we need a well 

characterized nanostructure sample as a reference and known object. It should contain 

small structures with typical dimensions on the scale of a diffraction limit or smaller. We 

have used gold and aluminum nanostructure samples which were fabricated at Air Force 

Research Laboratory (AFRL). These samples contain several arrays of dimers. Each 

dimer consists of two closely spaced metallic cylinders which are seen as circles in 

Figure 3.1 (b). Figure 3.1 (a) shows a typical overview of such a sample. Each array 

contains a large number of dimers with different diameters and separations. They were 

a) b) 

y 

x 

300nm 

190nm 
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assembled in 2D with periods of 700 nm and 350 nm respectively in x and y directions. 

Figure 3.1 (b) shows a typical array of dimer with the dimer diameter of 190 nm and 300 

nm center to center separations.   The heights of the metallic cylinders (along z-axis) are 

about 45 nm. The fabrication is performed on a sapphire substrate, by the lift-off process 

technique. First, a 10 nm titanium layer is deposited on the sample. Second, a sacrificial 

resist is deposited on the Titanium layer. Third, an inverse pattern is etched on the resist 

by electron beam lithography. Forth, gold or aluminum will be deposited all over the 

sample. And at last, the resist with the metal deposited on it is developed (“is washed 

out”) using a solvent. So the remaining pattern is the metallic structure on the titanium 

layer. 

3.3 Resolution Treatment Method for 2D Lens (Spherical Lens) 

As we discussed in Chapter 1, the image of an ideal point source object is defined 

as PSF. Different criteria (Abbe, Rayleigh, Houston and Sparrow) were discussed which 

are all sufficiently close to ~0.5𝜆𝜆
𝑁𝑁𝑁𝑁

. Among these criteria Houston criterion has been used 

for measurement of CLSM resolution. There might be a very good reason for that. The 

prevalent method discussed in Chapter 1 which uses beads as the available point sources, 

make it possible to obtain the PSF directly. And Houston criterion is the only criterion 

which has a simple direct relation to PSF, and it is the width of the PSF divided by M 

which is the resolution itself. Thus, we decided to follow the Houston criterion in our 

work. It should be noted, however, that the point sources are difficult to find in super-

resolution regime (see Chapter 1). Many objects such as Blu-ray disk, dye-doped 

microspheres, nanoplasmonic dimers and bow-ties with typical dimensions on the order 

of ~100 nm would not qualify as “point sources” for systems providing resolution, for 
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example, about 50 nm. If the object is not point-source, then it was a procedure in 

diffraction optics for treating such images based on convolution of the object with PSF. 

 To investigate the resolution of our microsphere-assisted microscope, we have 

used the classical theory formula Eq.9: 

𝐼𝐼(𝑥𝑥, 𝑦𝑦) =  �𝑂𝑂(𝑢𝑢, 𝑣𝑣)𝑃𝑃𝑛𝑛𝑃𝑃(𝑢𝑢 − 𝑥𝑥/𝑀𝑀, 𝑣𝑣 − 𝑦𝑦/𝑀𝑀)𝑑𝑑𝑢𝑢𝑑𝑑𝑣𝑣
∞

−∞

 (11) 

 

Figure 3.2 (a) shows the schematic diagram of an actual image formation process through 

the microscope step-by-step with a typical dimer sample as the object. It is very 

important to remind that we are not allowed to apply any of the criteria formulated for 

two point-objects, since the dimer contains two circles with a finite size. Figure 3.2 (b) 

shows the image reconstruction and resolution treatment step-by-step based on the 

analogy with the established image formation process according to the classical theory. 

Having SEM image of the nanostructure sample, we have drawn the idealized object. Our 

approach to the image reconstruction is similar to classical diffraction-limited optics in a 

sense that we convolved the drawn image with Gaussian PSFs. The convolution was 

repeated many times using PSFs with different widths. In order to find the most similar 

image to the experimental image we have checked the similarity of intensity profile of 

each calculated image to the experimental image. We have used Houston criterion for 

defining the resolution. According to this criterion, FWHM of the PSF which provides 

the most similar intensity profile divided by M is the resolution of the system.  
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Figure 3.2: Comparison of image creation processes through a typical microscope and 
through the model. (a) Shows the step-by-step process of image creation through a 
microscope. (b) Shows the step-by-step process of image creation through the suggested 
model. 
 
 

3.4 Effect of Nanostructure Size on the Precision of the Method 

 During fitting process, one important factor which needs to be taken into account 

is the diameters of nanocylinders and their separations in the dimers which we selected 

for investigating the resolution of our system. In this Section, it is shown how this would 

affect the precision of determination of resolution by this method. It should be noted that 

the basic principle of convolution with PSF does not depend on the characteristic 

dimensions of the object. However, the “sensitivity” of the image to the changes of the 

width of PSF is dependent on the size of the object. The basic idea is that if the object 

features are much larger than PSF width then the image should not be sensitive to the 
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variations of PSF. In the opposite limit we might expect that the calculated image would 

be looking similar to PSF. However, if the object is too small, it becomes too week and 

difficult to observe. So, the task was to determine the range of variation of object 

dimensions which would produce most visible changes in the quality of the image and for 

this reason would be most suitable for undertaking an experimental study of the 

resolution of the system. The difference with conventional diffraction-limited optics, 

though, was that we generally are not restricted to the PSF widths determined by the 

fundamental diffraction limit.  

To show how the size and separation of the nanostructure would affect the 

precision of the final calculated resolution, we selected two cases for this purpose. We 

consider an idealized drawn dimer with 240 pixels diameter size and 390 pixels center to 

center separation. We used two small PSFs compare to the size of the dimer. Figure 3.3 

(a) shows the intensity profiles of the convolved images for two different PSFs with the 

FWHMs 30 (black) and 60 pixels (green). Since it is a hypothetical example, there is no 

real profile to represent. 

By looking at these profiles one can see they have similar shape, but slightly 

different steep around the flat top and the flat down areas. It shows that neither FWHM 

nor the slopes of the picks are sensitive enough to change of the PSF; therefore, these 

calculations support our initial assumption that the large-scale objects are not suitable for 

defining the resolution of our system experimentally. 

In contrast, Figure 3.3 (b) shows the case for PSF with the FWHM about the size 

of the dimer. We used the same idealized drawn image which used in Figure 3.3 (b). For 

the black curve, the PSF width is equal to 120 pixels and for the green curve, the PSF 
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width is equal to 240 pixels. It is seen that for a green curve, the 240 pixel PSF width is 

comparable to the 240 pixel diameter and 390 pixel separation of the dimer. Whereas for 

a black curve, the PSF width is 120 pixel which is two times smaller than these 

characteristic object dimensions. As we can see, there is a change in FWHM of the picks 

but there is also very noticeable change in the saddle-to-pick (S/P) ratio for the intensity 

profile.  
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Figure 3.3: Comparison of two calculated intensity profile for (a) 390 pixel dimer 
diameter size. Green represents PSF with 60 pixel width and black represents PSF with 
30 pixel width.  (b) 390 pixel dimer diameter size. Green represents PSF with 240 pixel 
width and black represents PSF with 120 pixel width.   

  

 Considering two different cases in Figure 3.3 (a), (b), one can notice 4 important 

outcomes. First, the size of the nanostructure has significant effect on how strongly the 

calculated image depends on the PSF width. Second, the most markedly pronounced 
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variations of the image can be detected for the PSF widths comparable with the typical 

dimensions of the object. Third, S/P ratio and FWHM of the profile respectively are good 

parameter to compare experimental and calculated profile. Fourth, further reduction of 

the size of the object leads to the image quality deterioration. It can be explained by the 

reduced intensity of the image. In principle, the image can still be calculated by 

increasing as an example the time of computations. However, experimentally the image 

may become two weak at some point. Due to a finite signal-to-noise ratio any imaging 

system would become incapable for recording such weak images of extremely small 

nanoscale objects. On the other hand, the image of two extremely small size objects 

calculated in this limit will be similar to superposition of two PSFs. So, the calculated 

image would be sensitive to variation of PSF width, but insensitive to variation of the size 

of extremely small objects in this limit. To summarize, the best tradeoff for experimental 

studies of resolution seem to take place in the intermediate regime when the objects has 

dimensions comparable with PSF, on the other hand we do not have the PSF of the 

system. In order to solve this cyclic problem we need to do some modelling.       

3.5 Analysis to Find the Optimum Nanostructure Size 

Since we have variety of dimer sizes and separations, we need to know which array 

is the best for measuring the resolution. Our goal is to find an array which has both 

sensitive S/P to change of PSF and has a wide range of S/P from zero to one for the PSF 

range of 25nm to 200nm, since 25 nm is the best resolution which can in principle be 

expected based on published work [36] and 200 is ~λ/2 diffraction limit of the LEXT 

OLS4000 confocal microscope with 405nm laser available in the cleanroom of our 

department. 
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 Our samples, have arrays of dimers with diameter range 90 nm to 190 nm and 

separation range 150nm to 300nm. So, the minimal dimensions were limited by 90 nm 

and 150 nm for the diameter and the gap, respectively. For our analysis, however, we 

studied three cases with the different diameter sizes 50, 100 and 200 pixels, and with 

different edge to edge gaps of 25, 50 and 100 pixels. Different combinations of these 

parameters form 9 different structures. We have examined each structure by 4 different 

PSFs 25, 50, 100 and 200nm. As we discussed earlier, calculations with different PSFs 

result in differently looking images. In order to compare these images, we paid attention 

to their overall appearance (flat top or round top, S/P ratio and total width of double-peak 

structure), however for quantitative comparison we focused on the S/P ratio which 

generally represent the “quality” of resolution of these two circular objects with finite 

dimensions. Figure 3.4 (a) shows the S/P versus dimer diameter for the case of 25 pixel 

edge-to-edge gap. Such a graph shows both sensitivity of S/P to PSF and the range of 

PSFs which provide 0<S/P<1. For instance, for the dimer with 50 pixel diameter and 25 

pixel gap, the range of S/P begins with 0.2 for 25 pixel PSF and ends for 100 pixel PSF. 

Figures 3.4 (b), (c) respectively show the results for 50 pixel gap and 100 pixel gap for 

the same dimer sizes. 
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Figure 3.4: Graphs show S/P versus dimer diameter for different PSFs. (a) for dimers 
with 25 pixels edge-to-edge gap. (b) for dimers with 50 pixels edge-to-edge gap. (c) for 
dimers with 100 pixels edge-to-edge gap. 
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 By analyzing the S/P ratio dependencies presented in Figure 3.4 (a-c), one can 

conclude that for the array containing dimer with 100 pixel diameter and 50 pixel gap S/P 

ratio changes from 0 to 1 for PSF increasing from 25 pixels to 200 pixels. It also shows 

that the sensitivity of S/P ratio to the width of PSF is not linear. Generally, these graphs 

confirm our initial assumption that the maximal “sensitivity” of the S/P ratio indeed 

occurs for the objects with the characteristic dimensions comparable with the PSF width. 

In order to select the nanostructure for the resolution studies we first estimate the 

diffraction-limited resolution of our system based on the Abbe formula which gives us 

something on the order of λ/2~200 nm. After that, we make an assumption that the super-

resolution (resolution better than diffracton limit) is possible and estimate the expected 

range of resolutions as λ/4~100 nm. The super-resolution would correspond to sub-100 

nm values. According to our analysis this means that the array of dimers with sub-100 nm 

dimensions would be the best. In practice, however, it simply means that we should select 

the array with the smallest dimers with 100 nm diameter size and 50 nm gap; therefore 

this array will be the best choice for our resolution analysis. 

3.6 Resolution Treatment Method for 1D (Cylindrical Lens) 

 Assuming we have a cylindrical lens, we would like to know how we are able to 

apply the above resolution method for this type of lens. In previous section our focus was 

on microsphere lens which was an isotropic lens for 2D image along x and y. In this 

section we take the asymmetric characteristics of cylindrical lens into account and modify 

our method for this lens. 

 Figure 3.2 (b) shows our general approach to study symmetric lens. The first step 

is drawing a simplified object with the perfect shape based on the results of SEM 
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characterization. In our case, it represented by the circular dimers in Figure 3.2 (a). After 

that, we need to take into account that in contrast to spherical lens, the cylindrical lens 

has magnification across the fiber (x-axis) and it does not possess any magnification 

along the fiber (y-axis). Assuming the fiber is along the y axis and knowing that the 

image is magnified across the fiber, we adjusted our object for imaging by cylindrical 

lens by applying different magnifications along both x and y axis. Figure 3.5 (b) shows 

the modified object demonstrating the higher magnification across the fiber (x axis).  

 

Figure 3.5: (a) Drawn trace of SEM image of the sample. (b) The modified trace by 
applying magnification across the direction of the fiber. (c), (d) The asymmetric Gaussian 
PSF from top view and 3D view respectively. e) The modified trace after being 
convolved with PSF. 
 
 

The next step is to take into account that PSF can be also highly asymmetric in the 

case of cylindrical lens. In this case we assumed that the resolutions along the fiber and 

across the fiber are not the same which means FWHMs of the PSF along x and y is 

different and has to be considered separately. Figure 3.5 (c), (d) show a typical Gaussian 

PSF which has different FWHM along each axis. Such PSF can be used for convoluting 
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with the object. By changing the PSF’s width the image which resembles the object most 

closely can be identified. Figure 3.5 (e) shows a typical convolved image.  

 In order to fit the experimental profiles, after each convolution we have to 

compare the S/P ratio in both directions along the fiber and across the fiber. Figure 3.6 (a) 

is a calculated image of an array of dimers with 100 pixels diameters, 150 pixels 

separation along the x direction and 350 pixels along the y direction. The PSF has 125 

pixels and 190 pixels width along the x and y directions respectively. However the 

separation along x axis increases to 300 pixels as for the magnification. 
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Figure 3.6:  Analysis of the calculated intensity profile and demonstration of parameters 
saddle (S) and pick (P) (a) A typical calculated image of an array of dimers with 350 
pixels separation along y axis and 150 pixels separation along x axis for a cylindrical lens 
(fiber) The separation across x direction increased to 300 pixels as for the magnification. 
(b) The calculated intensity profile along x direction (across the fiber) for the PSF with 
125 pixels width. (c) The calculated intensity profile along y direction (along the fiber) 
for the PSF with 190 pixels width along the fiber. 

 

 Figure 3.6 (b) shows the typical calculated intensity profile across the fiber along 

x axis. We observed S/P ratio similar to what we previously presented in the case of 

imaging by microspheres, see Figure 3.3. It means we can use the PSF width and S/P 

ratio again as a useful parameter for comparison. Figure 3.6 (c) shows the typical 



51 
 
intensity profile along the fiber. As it is noticeable, along the fiber we are able to see an 

array of dimers. There are many saddles and peaks which theoretically we can select for 

comparison with experiment. After all, the FWHM of the PSF which describes both S/P 

ratios along x and y determines the resolution in both directions.  

3.7 Experimental Result and the Resolution by Using Our Model 

  In this section, we are going to apply all theoretical analysis we established above 

for a microsphere-assisted microscopy image. As Figure 3.7 (a) shows, the quality of this 

sample is low and the circular dimer during the fabrication process has become ellipse. 

But the advantage of this method is that regardless of the geometry of the structure this 

method can be employed to any well characterized sample. The image was taken through 

a BTG microsphere with the diameter of 8 µm. The dimer center-to-center separation is 

180nm and the major and minor axes respectively are 140nm and 100nm.  
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Figure 3.7: Experimental and modeling results. (a), (c) show the SEM and confocal 
microscope image of the aluminum sample. Dimer’s major and minor diameters are 
100nm and 140nm respectively and 180nm center-to-center separation. (b), (d) show the 
drawn (idealized) and calculated images. (e) Shows the experimental profile and the best 
fit. 
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The image was obtained using CLSM (LEXT OSL4000 with 405nm laser line). 

Figure 3.7 (b) shows the drawn idealized object based on the SEM characterization. (c 

and d) show respectively the confocal image of the dimer and the convolved image which 

is for the best fit by PSF ~70nm (λ/5.5).  

 The results presented in Figure. 3.7 show that generally our methodology of the 

resolution treatment works for images obtained using barium titanate spheres with 

diameter 8 µm. We believe that this method can be used with different spheres and 

different structures. Similar approach should be applicable to fitting images obtained by 

different super-resolution methods as well. The examples exclude near field scanning 

microscopy, far field super lenses, plasmonic nanogratings, two-photon absorption and 

other super-resolution techniques. The common approach to fitting images obtained by 

these techniques is based on using PSFs with the width which is not limited by the 

diffraction limit, as it is accepted in diffraction-limited optics. 

 Imaging by microspheres can be performed using spheres with different 

diameters. The results of these studies can be a subject of future work, however, we can 

hypothesize about the resolution expected for spheres with different diameters. In the 

limit of large, submillimeter-scale spheres we would expect the diffraction-limited 

resolution on the order of λ/2no. For spheres with n~2 this means that the resolution is 

limited at the level ~λ/4. For spheres with progressively smaller diameters the resolution 

can improve due to formation of photonic nanojets with very small sub-diffraction beam 

waists. We expect such behavior for spheres approximately within 3<D<10 µm range, 

however it requires more detailed experimental studies. For smaller spheres, the dielectric 
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particles cannot operate as lenses, and they usually play the part of scattering particles. 

So, for such small spheres the imaging would not be possible. 

3.8 Conclusion 

 The super-resolution imaging by films with embedded spheres is one of 

applications of so-called microspherical photonics actively developing in the Prof. 

Astratov’s Lab. Microspherical photonics deals with the optical properties and 

applications of structures and devices formed by dielectric microspheres. The interest in 

this area is exponentially growing in recent years due to novel fundamental properties of 

individual and, especially, more complicated multisphere structures in some cases termed 

photonic clusters or molecules.  

 The terminology of “photonic atom” was first introduced by Arnold [50] in the 

context of understanding eigenmodes of spherical resonator based on an analogy 

quantum mechanical atoms. Mathematically, this analogy was pointed out by 

Nussenzveig [51] and Johnson [52]. Correspondingly, coupled photonic atoms can be 

termed “photonic molecules”. In recent years this terminology has been used in a much 

broader context of cavities, not limited with microspheres. For example, photonic crystal 

cavities and semiconductor microcavities [53-56] can be also termed photonic atoms and 

corresponding coupled-cavity structures can be termed photonic molecules. 

 These include coupled whispering gallery modes [57-70], photonic nanojets and 

nanojet-induced modes [31, 71-82], resonant light pressure effects [8, 83-88], and optical 

super-resolution properties [32-34, 37, 89-92] Microspherical photonics can result in 

various applications such as sorting microspheres with almost identical resonant 

properties [8, 83-88], developing microsphere-chain waveguides [57-61, 31,82] and 
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polarizers [79], surgical scalpels [72-78, 80, [93] and developing novel optical 

components for super-resolution imaging [35]. Three PhD dissertations were recently 

defended based on these studies in the Mesophotonics Lab at UNCC [4, 89, 94]. 

 The imaging by microspheres emerged in 2011 [30]. However, the practical 

applications of this technology can be obtained by either immersing the high-index 

microspheres in a liquid, most importantly in water, or by embedding such spheres in 

elastomeric materials with ability to solidify. The water-immersion is critical for 

developing applications of this technology in life sciences where most of the cultures and 

samples are water-based solutions. On the other hand, immersion in elastomeric thin 

films, opens a way of developing surface scanning functionality of various solid-state and 

semiconductor samples and structures. Such solidified thin films containing embedded 

microspheres can be applied to investigated surfaces to achieve high-resolution 

microscopy. Both ways were invented in 2012 in the Mesoscale Photonics Lab by Prof. 

Vasily Astratov and his student, Arash Darafsheh [32]. 

 In Chapter 2 of this MS thesis work, we developed a technology of embedding 

high-index BTG microspheres inside of transparent elastomeric PDMS slab. This PDMS 

slab can be considered as a novel optical component for super-resolution microscopy. 

Previously, embedding microspheres inside PDMS slabs have been used in different 

optical applications [?]. For super-resolution imaging applications, the important novel 

features were: i) using high-index barium titanate glass spheres and ii) positioning them 

in the optical near-field vicinity of the lower interface of the PDMS slab. The advantage 

of such thin films with embedded spheres is a possibility to have access to variety of 

microsphere sizes which provides different magnification and different resolution as well. 
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Another potential advantage is based on ability to shift the entire thin film with embedded 

spheres along the surface of investigated samples until some spheres would be aligned 

with the objects of studies. Such translation of thin films requires a liquid lubrication of 

the sample surface. Describing this functionality goes beyond the scope of this MS theses 

work, but generally it allows scanning large areas at the surface of investigated samples.  

 In Chapter 3 of this MS thesis work, we developed a rigorous method to 

determine the resolution of an arbitrary optical microscope, in our case microsphere-

assisted microscope. Our approach is based on classical procedure of convolution with 

PSF well known for diffraction-limited systems. However, in our work we show that the 

same approach can be used for reconstructing the super-resolved images. The 

microscopic mechanism of super-resolution achieved in this method is debated in the 

literature. The possible mechanisms include so-called “photonic nanojet” properties [43, 

44], excitation of resonant surface plasmons in metallic nanostructures, dielectric 

nanoantenna effect, or near-field excitation of whispering-gallery modes in dielectric 

microspheres. The study of specific mechanism goes beyond the scope of this work. We 

showed, however, that by using the PSF with subdiffraction-limited width, we can obtain 

images which are very similar to our experimental observations. We also performed the 

image analysis which shows the range of sizes of nanostructures which is most suitable 

for experimental studies of super-resolution. Using aluminum nanoplasmonic array we 

observed their virtual images through the microspheres and determined that the resolution 

casting on the order of λ/6 can be achieved in such cases. 

 We also developed our resolution analysis in the case of cylindrical lens formed 

by etched microfiber. We showed that it is possible to develop this method to calculate 
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the super-resolution of a cylindrical lens by taking magnification across the fiber and the 

casymmetric PSF into account which both are imposed by the anisotropic structure of 

cylindrical lens.  

  For future work, having different nanoplasmonic samples, microsphere-embedded 

PDMS slab and this resolution treatment technique, we will be able to investigate the 

effect of Surface Plasmon Resonance (SPR) in super-resolution microsphere-assisted 

microscopy. 
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