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ABSTRACT 

 

 

KERT EDWARD. Intracellular subsurface imaging using a hybrid shear-force feedback/ 

scanning quantitative phase microscopy technique. (Under the direction of Dr. TERRILL 

W. MAYES) 

 

 

Quantitative phase microscopy (QPM) allows for the imaging of translucent or 

transparent biological specimens without the need for exogenous contrast agents. This 

technique is usually applied towards the investigation of simple cells such as red blood 

cells which are typically enucleated and can be considered to be homogenous. However, 

most biological cells are nucleated and contain other interesting intracellular organelles. 

It has been established that the physical characteristics of certain subsurface structures 

such as the shape and roughness of the nucleus is well correlated with onset and progress 

of pathological conditions such as cancer. Although the acquired quantitative phase 

information of biological cells contains surface information as well as coupled subsurface 

information, the latter has been ignored up until now.  

  A novel scanning quantitative phase imaging system unencumbered by 2π ambiguities 

is hereby presented. This system is incorporated into a shear-force feedback scheme 

which allows for simultaneous phase and topography determination. It will be shown 

how subsequent image processing of these two data sets allows for the extraction of the 

subsurface component in the phase data and in vivo cell refractometry studies. Both 

fabricated samples and biological cells ranging from rat fibroblast cells to malaria 

infected human erythrocytes were investigated as part of this research. The results 

correlate quite well with that obtained via other microscopy techniques. 
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FIGURE 8.1: Experimental setup of a heterodyne scanning system 

for rapid phase data acquisition. An acousto-optic phase modulator 

in the reference arm outputs a signal given by f + Δf where Δf is 

the frequency shift introduced by the modulator. The light in the 

sample arm has a frequency of f. Thus the resultant interference 

signal is intensity modulated at Δf. A high speed lock-in amplifier 

is used to demodulate this signal and extract the sample phase.  144 
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CHAPTER1: INTRODUCTION 

 

 

1.1 Research Objective 

 

In conventional optical microscopy, specimens often exhibit poor contrast due to 

the negligible effect of the field/sample interaction on the transmitted or scattered field 

intensity. Such objects, e.g., biological cells, require an exogenous contrast agent which 

often renders these cells unsuitable for in-vivo imaging. This shortcoming was 

circumvented in part by the development of the phase contrast microscope (PCM) in the 

1930s. The PCM is, however, diffraction limited and yields qualitative results. A more 

complete understanding of the fundamental underlying mechanisms behind biological 

processes associated with physiological processes of living cells requires an imaging tool 

capable of quantitative non-invasive high resolution in-vivo imaging. Technical 

challenges notwithstanding, phase contrast microscopy appears uniquely positioned to fill 

this void.  

Traditional phase imaging techniques such as phase contrast and differential 

interference contrast microscopy are qualitative in nature.  Over the last decade however, 

there has been a proliferation of novel quantitative phase imaging techniques and 

instruments based on interference microscopy and phase shifting interferometry [1-8]. In 

all of these procedures, the phase data is strongly wrapped especially for samples with 

dimensions much greater than the incident wavelength. Although phase unwrapping is an 
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option, most unwrapping algorithms require subjective participatory involvement of the 

user when the feature height is greater than the wavelength of the illuminating source [9], 

except when multiple wavelength illumination is employed [10-12].  

 In quantitative phase imaging, optical path length (OPL) and refractive index 

contributions are coupled. Two recent yet innovative approaches to decoupling these 

components in biological cells involved physical confinement of the specimen in a micro-

fluidic cell of known dimensions [13] and an analysis of the phase data for the specimen 

in two solutions of slightly different refractive indices [14].  In the former instance, 

confinement is not always practical and in the later, the experimental setup can be 

complicated and tedious. The refractive index variation throughout the intracellular 

region of a cell is a fundamental quantity which is related to other biophysical properties 

(e.g. size and mass), cell permeability and hematology [15]. For example, since 

hemoglobin is the main constituent of red blood cells (RBCs), an abnormal hemoglobin 

to cell ratio such as is the case with anemia will cause a change in the refractive index. In 

addition, it is well known that cancerous cells have a higher refractive index compared to 

their normal counterparts due to higher protein content [16]. It is therefore clear that 

refractive index information provides valuable insight into the physiological state of a 

cell and the progress of pathological conditions.  

In addition to thickness and refractive index information, quantitative phase data 

often contains coupled surface and subsurface components. The subsurface contribution 

however, until now has remained largely unexplored. Over the last few years, many of 

the recently developed quantitative phase imaging systems have been utilized in 

morphological studies of biological specimens. The analysis is typically simplified by 
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assuming an average refractive index for the cell in concern. This is acceptable if the cell 

is homogenous such as human red blood cells but most cells contain a nucleus and other 

interesting organelles. As such, any acquired phase data contains surface information 

related to the morphology and subsurface information due to the intracellular organelles. 

Until now, the separation of the two components has been either very difficult or 

impossible. It is nevertheless known that subsurface information such as nuclear 

morphology and size is strongly correlated with physiological and pathological processes 

within the cell [18]. 

 These unanswered questions and technical challenges related to quantitative phase 

imaging served as the impetus for my research.  In prior investigations, I was involved in 

the development of a high resolution quantitative phase imaging procedure for the near-

field scanning optical microscope (NSOM) [17]. This was accomplished by incorporating 

an environmentally stabilized Mach Zehnder interferometer into a home-built NSOM. 

The resultant phase although unencumbered by 2π ambiguities, was determined to be 

intensity dependent. As part of my most recent research, I have perfected a procedure for 

intensity independent quantitative phase imaging without phase ambiguities. My current 

research would not be possible without this milestone. The author is unaware of any other 

interferometric quantitative phase imaging procedure capable of unambiguous 

quantitative phase determination with sub-wavelength resolution using single wavelength 

illumination. An analysis of the phase and simultaneously obtained independent shear-

force feedback topography information allows subsurface information in the phase data 

to be exploited for the first time. This new data has tremendous possibilities for 

intracellular investigations as will be shown later. By adapting the experimental setup for 



 

 

4 

in vivo liquid imaging, cell refractometry analysis was also possible. Acquired 

experimental refractive index values for rat fibroblast in phosphate buffer solution were 

in good agreement with previously published results. 

 Throughout this research, I chose to primarily investigate structurally simple 

biological cells such as RBCs. As a non-biologist, this choice made the interpretation of 

the results fairly straightforward. Malaria infected RBCs were of particular interest 

because after many decades of research, this condition still leads to millions of death 

annually, yet the host RBCs are elementary cells without a nucleus or other organelles. 

Some organisms such as fishes have nucleated RBCs which proved to be ideal for 

examination of nuclear morphology which is strongly correlated with the progress of 

certain cancers [18]. The line of enquiry pursued in my research was influenced in part by 

these considerations. 

1.2 Conventional Phase Contrast Microscopy 

There are several qualitative phase microscopy techniques for imaging transparent 

specimens with the most notable being Zernike’s phase contrast microscope [19]. The 

distinct advantage of this instrument over conventional bright field microscopy is that an 

exogenous dye is not required for contrast. Instead, these instruments convert phase shift 

introduced by thickness and refractive index variations across the sample into phase 

information. Unfortunately, there is not a linear relationship between the detected phase 

change and the sample thickness or refractive index and as such a quantitative analysis is 

typically precluded. Nevertheless, these novel microscopes have significantly impacted 

the field of biological imaging and a brief outline of the most notable of these instruments 

is presented in the next few subsections. 
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 1.2.1 Phase Contrast Microscopy 

 The phase contrast microscope (PCM) was invented by the Dutch physicist Fritz 

Zernike in 1934 [19]. This instrument works on the principle that zeroth order planar 

wavefronts transmitted by the specimen are phase shifted by a phase plate and combine 

with spherical diffracted transmitted wavefronts. The result is a significant improvement 

in contrast since subtle intensity changes due to absorption, which are otherwise difficult 

to observe visually, are converted into intensity variations due to thickness and refractive 

index changes. One of the distinct advantages of the PCM over other qualitative phase 

contrast microscopes is that this instrument is insensitive to polarization and 

birefringence effects, which means that living cells can be examined in plastic tissue 

culture vessels. The PCM is however hampered by the appearance of light halos at the 

edges of the specimen. This situation is not evident in the differential interference 

contrast microscope. 

 1.2.2 Differential Interference Contrast: Normarski Interference Contrast 

In the differential interference contrast microscope, the sample is illuminated by a 

plane-polarized wavefront [20]. A beam splitting modified Wollaston prism is used to 

first create orthogonal polarized, phase shifted wavefronts which impinge on the sample, 

and a second to combine the transmitted wavefronts. The specimen causes a relative or 

differential phase shift between the two wavefronts which are combined to produce a 

final image after passing through an analyzer. The DIC exhibits better resolution and 

axial specificity when compared to the PCM. The halo effect is also effectively 

eliminated using this procedure. However, the DIC is not conducive to imaging in plastic 

culture vessels due to the birefringence introduced by these containers. They are also 
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expensive to set up and require significant increases in incident light levels compared to 

the PCM. This instrument adds a spurious three dimensional effect to the sample and it is 

often necessary to validate specimen structure with a PCM. 

 1.2.3 Hoffman Modulation Contrast 

 

The Hoffman Modulation Contrast microscope (HCM) utilizes an optical 

amplitude spatial filter called a modulator, positioned on the back focal plane of an 

acromat or planchromat objective [21]. The intensity of the light transmitted through the 

system is modulated by the filter. The modulator consists of a small dark zone near the 

periphery of the back focal plane with about 1% transmission, a narrow gray zone which 

transmits about 15% and a third zone which constitutes most of the filter and transmits 

100%. Unlike the PCM, the HCM does not measure phase changes but instead provides a 

three dimensional relief appearance to a sample dictated by the sample’s phase gradient. 

The HCM makes full use of the objective’s numerical aperture and allows for excellent 

resolution compared to the PCM. This instrument shares the axial specificity of the DIC 

but unlike this instrument, the HCM can be used to image cultures in plastic containers. 

1.2.4 Summary of techniques  

 Qualitative phase imaging has had a tremendous impact on the field of biological 

imaging but detailed morphological cell analysis requires a quantitative phase imaging 

technique. In addition, setup should be relatively straightforward and in vivo image 

should be realized. An overview of a few of the most promising quantitative procedures 

is hereby presented. 
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1.3 Overview of Contemporary Quantitative Phase Imaging Procedures 

 

Over the last decade, the scientific community has witnessed a sudden surge in 

publications and research activity related to quantitative phase imaging. A research group 

at the George R. Harrison Laboratory at MIT has been responsible for at least five novel 

techniques [22-26], two of which are highlighted in this chapter. Another group from 

Switzerland has successfully commercialized a quantitative phase procedure using digital 

holography [27], forming the company Lynceetec in the process. The appeal of 

quantitative phase imaging is heavily skewed towards biological imaging since it allows 

for detailed non-invasive morphology studies with nanometric axial resolution [28-30]. 

This is not possible with any other optical imaging technique and the procedure holds the 

potential of helping to elucidate some of the fundamental processes associated with 

physiological cellular activity. The technique has also been employed in numerous non-

biological applications such as waveguide index profiling [31]. Quantitative phase 

imaging is also useful to the biologist because the phase data consists of thickness, 

refractive index and subsurface components which can be decoupled under certain 

circumstances. Changes in the refractive indices of a biological cell have been well 

correlated with pathological processes [32], thus the possibility of using quantitative 

phase imaging procedures for the detection of the early onset of diseases is a real 

possibility. Presented is a cross-section of a few of these techniques and their potential 

applications. 

 1.3.1 Point by point and full field illumination techniques 

Quantitative phase imaging can be broadly separated into point measurement and 

full field illumination technique. The subsequent subsections are almost entirely devoted 
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to full field illumination techniques since they have assumed greater prominence in recent 

years. However, several noteworthy point measurement techniques have been developed 

in only the last few years [33, 34]. Some of these procedures are based on Optical 

Coherence Tomography (OCT) imaging motifs such as the work of Rylander et al [35] on 

the differential phase contrast optical coherence microscope. In other low coherence 

techniques, a back-reflected signal from a single channel is analyzed to determine sample 

phase. In such an instance, some sort of compensation is required to deal with optical 

path length fluctuations. A dual channel approach such as that applied by Rylander is 

able to achieve very high sensitivity by cancelling common-mode phase noise. Phase 

sensitive OCT has the distinct advantage of allowing for three-dimensional refractive 

index distributions instead of integrated refractive index values which is typical with 

most full field techniques. 

Other scanning techniques have been developed base on confocal microscopy [36] 

and digital holography [37]. The main drawback of these procedures is the long data 

acquisition time compared to full field technique, however better measurement specificity 

is possible.   

 1.3.2 Phase Shifting Interferometry 

 Full field techniques have the advantage of a rapid data acquisition rate which is 

limited primarily by the refresh rate of the capture device such as a CCD camera. In 

phase shifting interferometry for example, a CCD camera is used to record the 

interferogram formed by a test and reference signal such that the resultant intensity signal 

is given by; 

                 1 2 1 2( , ) ( , ) ( , ) 2 ( , ) ( , ) cos cos( ( , ) ( ))sI x y I x y I x y I x y I x y x y t                    (1) 
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where I1(x,y) and I2(x,y) are the intensities of the test and reference wavefronts 

respectively and α(t) represents a controlled shifted phase introduced by a PZT actuator 

[38]. The objective is to solve for the sample phase δs(x,y) and to subsequently determine 

the optical path difference. In general, at least three interferograms with a PZT induced 

phase shift α(t) between them are needed to solve for the phase at each point on the 

investigated sample.  Since these instruments operate primarily in a reflection mode, they 

are seldom used to investigate biological samples. 

 1.3.3 Fourier Phase Microscopy 

 Fourier phase microscopy is based on the principles of phase contrast microscopy 

and phase shifting interferometry [23]. The procedure involves using scattered and 

unscattered light from a specimen as the object and reference fields, respectively, of an 

interferometer. The experimental setup for this procedure is shown in figure 1.  

 

 

 

 

 

 

 

 

Figure 1.1: Experimental setup for Fourier phase microscope. Light from a 

superluminescent diode (SLD) is projected onto a programmable phase modulator (PPM) 

which phase shifts the light which falls onto a 2D array of individually addressed liquid 

crystals. The reflected signal from the PPM interfere which a reference beam and the 

resultant signal detected by a CCD camera (G. Popescu et al [23]). 
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 A collimated low coherent field such as that from a superluminescent diode (SLD) 

is use as a source. A magnified image is formed at the image plane IP which coincides 

with the lens L1. The focal length of this lens is such that it collimates the zero spatial 

frequency or unscattered field. The Fourier transform of the resultant image is projected 

by the lens L2 onto the surface of a programmable phase modulator (PPM). The PPM 

consists of an optically addressed, two dimensional liquid crystal array with 768 times 

768 active pixels. The polarizer P allows the polarization of the field to be adjusted in a 

direction parallel to the axis of the liquid crystal. This allows for precise control of the 

light reflected from the surface of the PPM. The beam splitter BS2 is used for alignment 

purposes. The PPM is used to shift the phase of the scattered field component (shown as 

dotted lines) in four successive increments of π/2 and the phase is calculated from the 

four successive interferograms. As with the other techniques which will be reviewed, 

phase unwrapping of the final data is required. However, this phase shifting procedure 

operates in a transmission mode and has found a wide range of applications in biological 

imaging [39, 40] 

 1.3.4 Hilbert Phase Microscopy 

 Hilbert phase microscopy makes use of a single spatial interferogram recording 

for quantitative phase determination [22]. This procedure is well suited to the 

investigation of dynamic biological processes since the acquisition time is limited only by 

the refresh rate of the recording device.  In a typical experimental setup, light from a 

HeNe laser at 632.8 nm is coupled into a 1 times 2 single mode coupler with the outputs 

collimated. One of the outputs is used as an illumination field for an inverted microscope 

and the other as a reference. The two fields are combined at a beam splitter with the 
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resulting interferogram detected using a CCD device. The reference field, which can be 

approximated as a plane wave, is tilted with respect to the sample field such that uniform 

fringes are formed at an angle of 45˚ with respect to the x and y axes. In the x direction, 

the spatial irradiance is given by;  

                                             ( ) ( ) 2 ( ) cos ( )R S R SI x I I x I I x qx x                                          (2) 

where IR and IS are the reference and samples irradiances, q is the spatial frequency of the 

fringe and δ is the spatially varying object phase of interest. Utilizing high-pass filtering 

and Hilbert transformation, the phase at each point in the sample can be determined. 

 1.3.5 Digital Holographic Phase Imaging 

 Digital holography was developed as a technique which combines digital 

recording with traditional holography [41]. The procedure is based on phase retrieval by 

numerically solving the Fresnel propagation equation [42]. An alternate approach 

involves use of angular spectrum method for diffraction calculations [43].  In a typical 

setup, a Mach Zehnder interferometer is employed with a coherent light source divided 

into an object and reference wave by a beam splitter.   This allows for transmission mode 

imaging, although reflection mode imaging is possible with a Michelson setup [44].  In 

either case, the two waves interfere in an off-axis geometry and the hologram intensity at 

the output is given by; 

                                                       
2 2 * *( , )HI x y R O R O RO                                                     (3) 

where R represents the reference wave intensity and O the object wave intensity. This 

information is digitized and recorded using a CCD camera.  The digital hologram is the 

direct result of the two dimensional spatial sampling of IH(x,y).  In classical    holography, 

reconstruction is achieved by illuminating the hologram with a replica of the reference 
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wave.  In digital holography, reconstruction is accomplished by multiplication of the 

digital hologram with a digitally computed reference wave. This technique has become 

increasingly popular for biological imaging culminating in a commercially available 

instrument.  However, this instrument allows diffraction limited imaging and phase 

unwrapping is still an area of concern

 1.3.6 Non-interferometric approaches 

 It is possible to obtain quantitative phase information from a specimen sample 

without using an interferometric approach [45, 46]. The underlying principle involves an 

analysis of how the propagation of light is affected by the sample. In this approach, three 

images are captured from a standard bright field microscope. A computational algorithm 

is then applied to the analysis of an in focus image, and two equidistant positive and 

negative out of focus images. The algorithm entails calculations of the rate of change of 

the light intensity between the images to determine the sample induced phase. Unlike 

interferometric techniques, the resulting phase data is without 2π ambiguities and does 

not have to be unwrapped. The positions of the equidistant out of focus images depend on 

the thickness of the sample under investigation. Thus it appears that the most salient issue 

with this procedure is the determination of the precise defocus positions which will yield 

optimum results. Nevertheless, this procedure appears promising as a general approach to 

phase microscopy with electron and x rays, as well as visible electromagnetic radiation.  

 1.3.7 Phase Contrast NSOM 

 Iravani and Crow were among the first to demonstrate phase imaging capability in 

a conventional near-field scanning optical microscope [47]. Using a pseudo heterodyne 
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detection scheme with a slow feedback loop i.e. loop bandwidth much less than image 

bandwidth. A signal at the fundamental frequency fm was detected which was given by; 

                                                                     
1( )cos( )sABJ                                                                      (4) 

where A and B are the light intensities of sample and reference arm of the interferometer, 

J1 is the first order Bessel function  of the first kind and δs is the sample phase. Thus the 

extracted phase information is intensity modulated. As such, the technique suffered from 

a “loss of lock” with sharp changes in the intensity of the signal transmitted through the 

sample. 

 A few years later, Saeed et al demonstrated the same concept in a reflection mode 

but the aforementioned problems persisted [48]. Subsequently, a procedure in a collection 

mode without active feedback stabilization was presented for optical phase measurement 

in the near field [49]. Although these techniques are ideally suited to the examination of 

biological samples, they have remained largely ignored as tools for biological imaging. 

Part of the goal of my research is to help elucidate some of the potential applications for 

the phase imaging enabled NSOM. 

 1.3.8 Summary of techniques 

 Quantitative phase microscopy allows for the investigation of transparent 

specimen with negligible light scattering characteristics. Since most of these techniques 

are interferometric in nature, nanometric axial resolution is routine. Point measurement 

imaging techniques are slow and unsuitable for dynamic studies but allow excellent 

sample measurement specificity. Full field measurements are typical limited only by the 

acquisition time of the data capture device and are ideal for dynamic studies.  Without 

exception, interferometric quantitative phase techniques have to contend with 2π 
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ambiguities in the final data. Possible solutions include using multiple wavelengths for 

imaging and phase unwrapping algorithms although both approaches have certain 

inherent limitations. Also, although the investigation of several techniques for decoupling 

sample thickness and refractive index information in quantitative phase data has been 

pursued, the exploitation of subsurface information has been ignored. Some of these blind 

spots in the body of scientific knowledge were actively addressed during my research. 

1.4 Subsurface imaging: Decoupling phase components 

 Several traditional optical techniques are available for subsurface imaging 

including OCT and confocal microscopy. In recent years, several novel procedures have 

been developed such as the scanning near-field ultrasound microscope [50] and 

tomographic phase microscopy [51]. Interestingly, it was recently determined that 

features buried a few nanometers deep can be detected using a shear-force feedback 

detection scheme [52], and this will undoubtedly continue the debate concerning the 

nature of the shear-force interaction in the NSOM. All these disparate approaches have 

their pros and cons but the use of quantitative phase data for subsurface imaging has not 

yet been explored. Optical phase data contains coupled integrated refractive index and 

sample thickness information. Much research has been pursued towards decoupling these 

two components but not subsurface contributions. Presented is a new technique for 

accomplishing this task. 

1.5 Multi-modal Phase Imaging 

The Phase-Contrast NSOM allows for simultaneous quantitative phase, 

topography and intensity imaging by incorporating an environmental stabilized Mach 

Zehnder interferometer into a conventional home-built near-field scanning optical 
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microscope. The stabilized interferometer exhibits a change in the optical path length of 

approximately 2 nm over a period of several hours. The phase information can be 

converted into a height value using the equation hp(x,y) = θ(x,y)λ / 2πn(x,y) - 1  where 

hp(x,y) is the height at position (x,y), n(x,y) is the integrated refractive index at this 

position, θ(x,y) is the measured sample phase and λ is the illumination wavelength of 

632.8 nm. For homogenous biological specimens such as human erythrocytes, the 

refractive index can be considered to be a constant [53] and hence the cell morphology 

can be determined from the aforementioned equation. Such is the idea employed in the 

other quantitative phase imaging techniques previously mentioned.  

There are three salient features which differentiate my work from previously 

published results. The first is the circumvention of phase unwrapping. Subsequent 

subsurface information extraction would be severely limited without this accomplishment. 

The second is the potential for high spatial resolution due to the subwavelength NSOM 

probe and third being the independent shear-force feedback topography data. Since the 

topography data is simultaneously obtained in addition to the quantitative phase data, the 

refractive index n(x,y) can be independently determined from the previous equation. 

However, the fiber probe is almost always tilted from the vertical position which results 

in a displacement between the sample region with which the emitted field from the tip 

interacts and the region which experience the tip/sample interaction. This displacement 

means that the phase and topography datasets need to be registered such that the phase 

datum hp at the point (x,y) coincides with the topography datum ht at some point (x',y'), 

such that hp and ht represent the same feature information in both datasets. Registration is 

the process of mapping the two images such that common features exactly coincide and 
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this is performed using algorithms written in Matlab. Subsequent to this registration, 

subtraction and further processing of the two data sets allows for the decoupling of 

subsurface information in the phase data if the refractive index is known, or the 

determination of the integrated refractive index for homogenous samples as previously 

mentioned. This represents a novel solution to long standing problems in biological 

imaging. 

1.6 In-vivo Imaging: Imaging in a liquid 

Most of the biological cells investigated throughout my research were fixed dried 

cells. This is accepted preparation practice for cellular surface morphology studies [54] 

but in-vivo imaging is particularly desirable. In-vivo imaging is critical to the 

understanding of fundamental dynamic processes associated with cellular physiology and 

pathology. However, liquid imaging means that the fiber probe and perhaps the tuning 

fork of the shear-force feedback system need to be immersed in the culture medium. 

Shear-force feedback in a liquid is far from trivial [55] and several techniques have been 

proposed to deal with the numerous technical challenges [56-58]. A neoteric procedure 

for imaging in a liquid is presented. This technique was used to investigate fabricated 

samples image in distilled water and rat fibroblast cells image in a buffer solution. Both 

surface morphology and cell refractometry studies are possible using this procedure. Cell 

refractometry has the potential for the non invasive tracking of the progression of 

physiological and pathological processes and the determination of information which 

serves as a starting point for scattering analysis. 
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1.7 Fabricated Samples and Biological Imaging 

 

Various samples with surface and subsurface features were fabricated for testing 

and characterization of the imaging instrument. The surface topography samples 

consisted primarily of photolithography fabricated micro-structures. The subsurface 

featured samples were fabricated by etching miscellaneous patterns into quartz glass 

using reactive ion etching following by photo-resist planarization. The etched structures 

varied in depth from 100 nm to several microns and in width from 1 micron to 7.5 

microns. Samples with both surface and subsurface features were fabricated by 

depositing a resist pattern onto the planarization layer of the etched glass substrate. In an 

alternate design, red blood cells were deposited on top of the planarized subsurface 

features resulting in a surface/subsurface sample. These samples were used to test the 

subsurface imaging capability and the capacity for the extraction of subsurface 

information from raw phase data. These test proved the principle of operation before 

biological sample imaging. A selection of biological samples was investigated to 

illustrate some of the applications of the imaging device. These samples included human 

red blood cells, nucleated red blood cells, malaria infected cells, white blood cells and rat 

fibroblast cells. The results of these investigations and an analysis of the results are 

presented in the later chapters. 

1.8 Summary of Results. 

 Throughout the course of this research, both fabricated samples and non-

biological specimens were investigated. The following subsections briefly describe the 

types of samples investigate and comments on the rationale behind each choice. 
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1.81 Fabricated Samples 

 The fabricated samples were designed with subsurface and surface features as 

briefly described in section 1.7. A more detailed account of the fabrication process is 

found in chapter 3. The results indicate that subsurface features in the range 1 micron to 

7.5 microns can be readily resolved with planarization thickness up to 12 microns. It was 

noted that lateral dimensions appear slightly larger than expected for samples with 

planarization thicknesses greater than 4 microns due to beam spreading. This effect is 

further highlighted in the later chapters. Using the independently acquired topography 

data, it was possible to suppress the sample’s surface information in the phase data and 

successfully recover the subsurface information. The recovered height and lateral 

dimensions were in strong agreement with AFM and SEM results obtained prior to 

planarization. 

1.82 Red blood cells and White blood cell 

Enucleated, nucleated and malaria infected erythrocytes were imaged using the 

instrument. In the first instance, the size, thickness, morphology and homogenous nature 

of human erythrocytes were verified from the phase and extracted subsurface information. 

The subsurface image of the fish red blood cells clearly indicates the presence of a 

nucleus. The size, shape and lateral extent of this organelle was determined from the 

subsurface information. This has direct application to the study of the nuclear 

morphology of malignant cancer cells. Three different white blood cells were 

investigated and in each case the nucleus was clearly highlighted in the subsurface image. 

The overall shape and approximate sizes were readily discernable. This has direct 
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application to the non invasive classification of these cells. Leukocytes are typically 

identified by the shape of their nuclei but only after staining. 

1.83 In vivo imaging (Fibroblast cells)  

Rat fibroblast cells were successfully imaged in a liquid. This represents a 

significant accomplishment since liquid evaporation is a major problem with a partially 

submerged tip without liquid compensation [58]. Reproducibility scans in a liquid 

confirmed that there were no apparent artifacts due to liquid evaporation. This allowed 

for cell refractometry studies of biological specimens without ad hoc modifications. 

1.9 Dissertation Overview. 

Chapter 1 is a general introduction to my research which included motivation and 

a review of the results presented herein. In Chapter 2, I will introduce the theoretical 

framework for unambiguous quantitative phase and subsurface information determination. 

The general concept of imaging in a liquid will also be highlighted in addition to the 

theory underlying a novel liquid replenishment system for evaporation compensation. 

Chapter 3 will focus on the detail of sample fabrication and the preparation procedures 

for the biological samples. The experimental setup and imaging procedures are elaborated 

upon in Chapter 4. In Chapter 5, the imaging processing procedures employed in 

subsurface information extraction, cell refractometry and pseudo color 3D rendering are 

presented. Chapters 6 and 7 include all experimental results and Chapter 8 is an outline of 

potential future research.  
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CHAPTER 2: THEORY 

 

 

2.1 Introduction 

 

 The relevant theoretical framework for this research will be reviewed in this chapter.  

This includes the theory for phase determination and stabilization, subsurface imaging 

and in-vivo imaging. In the latter, the behavior of the tuning fork in air and water will be 

investigated. Proportional integrating circuits played a key role in this research and a 

general overview of these circuits will also be presented. A more detailed account of the 

actual circuits employed is described in my master’s thesis [17].   

2.2 Stabilization and Phase Determination 

 

In my setup, light from a linearly polarized 20mW HeNe laser at 632.8nm travels 

along the input arm of the coupler (figure 2.1), is split into two components, and is back-

reflected from both ends.  

 

 

 

 

 

Figure 2.1: Stabilized interferometer setup: D1, D2, D3, photodiode detectors; BS1, BS2, 

beam splitters; QWP, quarter wave plate; HWP, half wave plate. The XYZ precision 

stage has a feedback controlled z-axis and computer controlled x and y axes. Dotted line 

shows the path of light from the output ends of coupler to detectors D2 and D3. 
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A section of the input arm is tightly wrapped around a piezoelectric (PZT) tube to 

allow for signal modulation at Ω (1 kHz). The back-reflected light from the ends of the 

coupler is detected with a photo-detector at D1. Thus, the light intensity impinging on 

this detector is given by; 

                          1 2 1 22 cos cos( )o eI I I I I t          (5)                                     

where, o is the modulation amplitude of the signal, δe is the environmentally induced 

relative phase difference between the light traversing the two arms of the fiber coupler, 

and I1 and I2 represent the back-reflected intensities from the two ends. The cosine term 

in equation (5) can be expanded as an infinite Bessel function [47] series to give; 
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where Jn(o) represents the nth order Bessel function.  

Sample phase determination is possible only if the fiber portion of the 

interferometer is stabilized against environmentally induced phase noise. This was 

achieved using a technique similar to that pioneered by Iravani and Crow, whereby 

environmental stabilization was achieved by detecting the second harmonic signal of 

equation (6) at the output detector (D3 in figure 2.1), and maintaining the 2Ω signal at 

zero[47]. This procedure involves monitoring the first harmonic term, 2 21II J1(o)sinδe 

cosΩt in equation (6), of the back-reflected signal at detector D1. Although this could just 

as easily been achieved using the 2Ω signal, it is preferable to use the back-reflected 

instead of the output signal since the former does not contain any sample phase 

information. The Ω signal was monitored with a “stability” lock-in amplifier which 

outputs a proportional signal to a PI (proportional integrating) circuit. The PI circuit 
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sends an error signal to the fiber wrapped PZT to maintain the first harmonic term at 

zero. This signal induces an “error phase term” γpzt in the reference arm such that δe + γpzt 

= nπ. The resultant stability is equivalent to a change in the optical path length of less 

than 2nm over a period of several hours. The entire interferometric setup is enclosed in an 

isolation chamber to provide an additional measure of protection against random external 

thermal fluctuations. 

Sample phase was determined by monitoring the output signal from detector D3. 

As before, it can be shown that the detected intensity signal is given by: 
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               (7) 

where Is and Ir are the detected intensities of the light traversing the sample and reference 

arm respectively of the Mach Zehnder interferometer, and δs is the induced sample phase. 

Two additional “phase” lock-in amplifiers referenced at Ω and 2Ω are used to monitor the 

first and second harmonic voltages, VΩ and V2Ω respectively. At this point, there are 

several approaches available for sample phase determination. Three approaches were 

investigated as part of this research and they will be presented in the next few 

subsections. 

  2.2.1 Harmonics ratio method without phase plate 

  In this simple approach, the ratio of the first and second harmonic signals is used for 

phase determination. Before this can be accomplished, the amplitude o of the 

modulation signal to the PZT is adjusted such that the first and second harmonic Bessel 

Functions are equalized, i.e. J1(o) = J2(o). For an environmentally stabilized 

interferometer, the ratio of the first and second harmonic voltages yields: 
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It should be noted that s obtained using the first harmonic term is intensity independent. 

The system was operated in a transmission mode, although it is possible to implement 

this idea in a reflection regime [48].  The harmonic ratio of equation (8) was calculated in 

real-time using LabView and the resultant phase data stored as a 2-dimensional array. 

The phase is bounded within the limits 0 ≤ s ≤ 2π and as such, post imaging unwrapping 

is required for thick samples outside this limit. Using a 632.8 nm light source, it is 

theoretically possible to image samples up to approximately 1.3 microns thick, given an 

average sample refractive index of 1.5. This assumes that the scan is initiated at the 

lowest point and that the initial phase is 0 degrees. Since these two conditions are almost 

never achieved in practice, the maximum sample thickness which can be scanned without 

the need for unwrapping is typically half the theoretical maximum. 

 2.2.2 First harmonic controlled plate 

 A novel approach for phase imaging was explored which circumvented the need 

for post imaging phase unwrapping. A related idea was employed by R. Hocken in his 

investigation of the refractive index of the gas Xenon [59]. In this approach, the first 

harmonic signal, 2 21II J1(o)sin(nπ + δs) cosΩt was kept at zero by actively adjusting 

the position of an angular displacement plate in the reference arm. This plate was 

attached to a feedback control precision galvanometer (General Scanning Inc, model 

6124). During operation, the plate introduces a phase γplate such that the term δs + γplate  

was kept at an integral multiple of π, where δs is the sample phase.  Thus the phase 

change introduced by the plate is equal to the phase change introduced by the sample. 
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The change in phase introduced by the plate is directly related to its angular 

displacement, which is in turn related to the voltage applied to the galvanometer. To 

determine the relationship between induced phase and applied voltage, the system was 

calibrated with the calibration plot represented in figure 2.2. The equation of the best fit 

line was given by -41.33x
3
 + 362.29x

2
 -27.30x + 96.74. 

 

 

 

 

 

 

 

 

Figure 2.2: Calibration curve for galvanometer and angular displacement plate setup 

without a sample. As the applied voltage to the galvanometer was varied, the induced 

phase change was measured using the harmonic ratio method described in section 2.2.1. 

This curve was used to determine the induced sample phase by keeping the first harmonic 

voltage at zero. 

 

This curve was obtained by applying a known voltage to the galvanometer, and 

measuring the induced phase of the displacement plate without a sample in place. The 

plate induced phase was determined using the harmonic ratio method described in section 

2.2.1 and equation 8. Although the sample phase change can be determined by utilizing 

the first harmonic signal to control the displacement plate, the intensity term 2 21II in 

the expression renders the resultant phase intensity dependent. The extraneous intensity 

modulation causes the system to become unstable which can result in a “loss of lock” of 
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the lock-in amplifiers. This situation is further exacerbated when imaging thick samples 

with low throughout. To resolve this problem, the ratio of the harmonic terms was used to 

control the angular displacement plate. 

2.2.3 Harmonic ratio controlled plate 

 In this approach, the ratio signal of equation (8) was used to actively adjust the position 

of a galvanometer controlled angular displacement plate in the reference arm of the 

interferometer. Thus the setup was identical to that described in section 2.2.1 except that 

the ratio signal was calculated using the ratio function of the 2
nd

 harmonic lock-in instead 

of the LabView application. This is a faster process than using a Windows based PC and 

data acquisition card to access the galvanometer. Alternatively, a ratio circuit can be built 

using log and antilog operational amplifiers as shown in figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Figure (a) is a schematic of a simple ratio circuit using logarithmic and 

antilogarithmic components. Figures (b) and (c) are schematics of the individual 

component amplifiers which constitute (a). This circuit works well if the denominator 

voltage is sufficient large (i.e. several millivolts). 
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 The output of a logarithmic amplifier V
L

out is given by; 

                                                  lnL in
out

s

V
V k

RI
                                                                  (9)                                                

where k is a constant and Is is the saturation current. It can be shown that the input to the 

antilog circuit V
AL

in in figure 2.3(a) is related to the original inputs as shown below.   
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 The output of the antilog circuit is an exponential function and as such the output signal 

is proportional to the ratio V1/V2. These circuits proved to be very unstable for values of 

V2 much less than 1 millivolt and very sensitive to environmental temperature 

fluctuations. I also experimented with a few commercially available ratio amplifiers, such 

as the AD734 four-quadrant analog divider with limited success. Using the ratio function 

on the lock-in appears to be the most efficacious approach to dividing the 1
st
 and 2

nd
 

harmonic signals. The phase determination procedure is identical to that described in 

section 2.2.2, except that the PI circuit outputs a ratio signal instead of a signal 

proportional to the first harmonic voltage. With the feedback circuit engaged, the ratio 

signal is maintained at zero. Thus the first harmonic signal is kept at zero and the second 

harmonic at a maximum. As described before, the sample phase is determined from the 

calibration curve shown in figure 2.2. 

Detector D2 in figure 2.1 detects a portion of the light transmitted by the sample 

and reflected at the beam splitter BS1, resulting in an intensity signal. A topography 

image is obtained from the shear-force feedback error signal used for sample-probe 

distance regulation [60]. The images from the three imaging modalities are built up pixel 
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by pixel as the sample is raster scanned.  The phase data can be converted to topography 

information using the relationship, 
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  (11)                                                                                              

where t is the sample thickness or height, Δδs is the measured sample phase, λ is the 

wavelength of the illumination source and ns is the average refractive index of the 

sample.  

 2.4 Subsurface imaging 

 During a scan, intensity, phase and surface topography data points are 

simultaneously obtained at predetermined time intervals. The latter image is used to 

extract the subsurface details in the phase data. Intensity line scans are useful in locating 

subsurface features for the purpose of probe positioning prior to scanning.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.4: The schematic shown represents a simple biological cell with a single 

prominent subsurface feature. The nucleus has a height h and protrudes through the cell 

membrane as is typical. The cell has an external height H. 
 

Although a near-field setup is employed, the optical images are not near-field images due 

to the thickness of the samples imaged which range from 1 to 3 microns. Consider a 

simple biological cell with a nucleus of thickness h and refractive index nn shown in 

figure 2.4. The height of the cell is given by H, the refractive index of the cytoplasm is 
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given by nc and the induced phase values at points A and B are given by ΔθA and ΔθB 

respectively. The phase change ΔθBA between points B and A is given by ΔθBA = ΔθB - 

ΔθA. It can be shown that the subsurface feature height is given by,  

  2
1

2 ( )
h H n

BA cn n
n c
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where λ is the illumination wavelength of 632.8 nm. The cell thickness H is determined 

directly from the shear-force topography feedback data. This data contains information 

about the surface morphology and can be expressed as a phase change using the 

expression, 
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Thus we can represent the subsurface feature height at any point (x,y) as,    
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where Δn(x,y) is given by nn(x,y) – nc(x,y). Thus the subsurface height at any point is 

proportional to the difference between the acquired phase and the phase equivalence of 

the height at that point.  

During the experimental setup, it is extremely difficult to position the probe 

exactly orthogonal to the plane of the substrate beneath.  As such, there is a displacement 

between the shear-force and phase data because slightly different regions are accessed as 

shown in figure 2.5. The emitted field from the tip interacts with a sample region which 

depends on the tilt of the probe but the shear-force interaction occurs between the tip and 

the region directly below. Thus when the probe is above region A, T(x,y) and the phase 

P(x
'
, y

'
) at B are recorded, instead of P(x, y) at A. The displacement in the acquired 
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datasets ranges from 200- 500nm in both directions. This is corrected using image 

registration algorithms. 

 

 

 

  

 

 

 

Figure 2.5: The diagram depicts a typical orientation of the tip relative to the sample. The 

tilt of the probe is exaggerated to emphasize the displacement between the acquired phase 

and topography images. 
 

Thus for each point in the scan, the subsurface feature height is given by;    

                                          ( , ) ( , ) ( , )
2 ( , )

h x y P x y T x y
n x y
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     where P(x,y) is the registered phase value and Tθ(x,y) is the corresponding 

topography value converted to a phase value using Eq.13 at point (x,y). The data 

subtraction procedure is analogous to the case of digital subtraction angiography in which 

a mask (topography data) is subtracted from a reference dataset (phase) [61]. Unless 

registration is perfect, a residue difference error results after image subtraction. This error 

was minimized by suppressing sharp peaks in the final data. 

2.5 Shear force feedback imaging 

            The basic idea associated with the near-field scanning optical microscope (NSOM) 

is to position a sub-wavelength aperture probe in such close proximity to the investigated 

sample that the emitted field interacts with a highly localized sample region. Under this 
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condition, the field interacts with a region approximately equal to the size of the 

illuminating aperture (40-100nm). Hence it is possible to achieve very high sub-

wavelength optical resolution. Most NSOM probes are typically fabricated by etching [75] 

although other approaches are available [17]. Since the intensity image is generated in a 

point by point manner as the sample is raster scanned, it is necessary to maintain a 

constant tip/sample separation to avoid catastrophic collisions. This is typically 

accomplished using a shear-force feedback system in which a dithered tuning fork 

attached to a fiber probe acts as a mechanical “pick-up”. When the probe/sample 

separation is within the near field, the vibrations of the dithered probe are linearly 

damped within separation distance due to shear-forces. By monitoring the phase 

difference between the signal sent to a mini-PZT which dithers the tuning fork and the 

separation distance dependent signal generated by the tuning fork, it is possible to 

maintain a constant tip/sample separation during a scan. An error signal generated by a PI 

circuit is used to adjust the z-axis of a precision three axis controlled X,Y,Z stage on 

which the sample sits. It is possible to generate a simultaneous topography image using 

this error signal. In the next section, I will briefly review some of the relevant theory 

associated with operating a shear-force feedback system in air and in a liquid 

environment. 

 2.51 Tuning fork/ probe assembly in air and water 

The main component of the mechanical “pick-up” system is a quartz tuning fork. These 

devices have a resonant frequency which can range from 32 kHz-100 kHz. The tuning 

fork consists of a piezoelectric substrate which allows for the interchangeable conversion 

of electrical signals into mechanical motion [62]. Throughout this investigation, tuning 
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forks with a resonant frequency of 32.768 kHz were employed. The dithering of the tip 

occurs in a plane parallel to the surface of the sample. 

 

 

 

 

 

 

 

Figure 2.6: The diagram depicts the front and back of a crystal tuning fork with a 125 μm 

tapered fiber probe glued to one of the prongs. X, Y and Z are the quartz crystal axis.  

The shaded and dark regions serve as contacts pads which allow for coupling between the 

two prongs and also act as pickups for the piezoelectric signal [73]. 

 

 In an experimental setup, approximately 1 mm of fiber hangs over the prong. To 

determine the dynamics of the prong, the parameters required are the cantilever length L, 

rectangular cross-section wt and its Young’s modulus E and density ρ [73]. Using this 

model, the time dependence of the position of the tip is described by a harmonic 

oscillator equation driven at frequency ω as shown in the equation 16. 
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where me is an effective mass corresponding to about ¼ of the mass of one of the prongs, 

F is the amplitude of the driving force, k is the static compliance of one of the prongs and 

FD = meγ∂x/∂t is a viscous force which is the sum of all drag forces acting on the 

cantilever. For small drag (i.e. γ << ω), the solution of equation 16 is given by, 
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where FD is now given by FD = imeγωx and both the viscous force and x are characterized 

by a resonant frequency ωo=√(k/me). The amplitude of x  depicts a Lorenzian dependence 

which can be characterized by a Q or quality factor given by Q = fo/Δf where Δf is the full 

width at half the maximum amplitude at resonance. A tuning fork without a probe 

attached can have a Q factor as large as 7000 in air. With a probe attached, this value falls 

to between 400-1000. If a portion of the protruding fiber from the fork is immersed in a 

liquid of a given viscosity, at a constant drive force, as the immersion depth increases, so 

does the drag force. Therefore, we would expect the Q factor and the amplitude of 

displacement to decrease. Thus my strategy for imaging in a liquid was to minimize the 

drag and maximize Q by keeping the immersion depth to a minimum. The setup 

employed to accomplish this is briefly reviewed in the next section. A much more 

detailed account of the behavior of quartz tuning forks in air and in a liquid as applied to 

shear-force feedback can be found in the following references [63-68]. 

 2.52 Evaporation compensation. 

 The Q factor of a tuning fork is a measure of its sensitivity. This quantity is 

paramount when imaging soft samples in a liquid environment using a shear-force 

feedback setup.  If the immersion depth of the probe is too great, the Q factor is 

significantly decreased to the point where it impossible to scan the sample of interest 

without crashing. If the immersion depth is too shallow, then artifacts due to liquid 

evaporation and the resulting change in the immersion depth can occur. To achieve high 

Q liquid imaging, an evaporation compensation system was developed based on a setup 
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similar to that of Gheber et al [73]. In this approach however, the sample was completely 

immersed in a liquid chamber with a hole at the top for probe access, and as such large 

damping forces resulted in a 40% reduction in the Q factors. A similar idea was 

employed by a research group at Berkley except that an electronic pump was used to 

control the liquid level [87]. My setup is simpler and yields comparable results in terms 

of a minimal % drop in the Q factor for liquid imaging. 

 

 

 

 

 

 

Figure 2.7: Schematic of liquid evaporation compensation system. The system operates 

by the siphoning action of liquid movement between a reservoir and liquid cell of which 

the liquid heights are given by H and h respectively. The vertical position of the reservoir 

h
'
 can be adjusted so that the liquid flow from the reservoir to the cell is equal to the 

evaporation rate. The effective cross-sectional area of the tube connecting the cell and 

reservoir is larger for the reservoir S, than for the liquid cell. 

 

A schematic of my experimental setup is shown in figure 2.7. The sample sits in the 

liquid cell and an o-ring is used to create a negative meniscus above the sample, which 

helps to maintain a very thin film. The objective is to adjust the height h
'
 such that the 

liquid level in the cell remains constant even as evaporation occurs. This is easier to 

achieve when the tube leaving the reservoir has a larger effective cross-sectional area 

than that entering the cell. If the liquid level in the cell is constant, then the force through 

opening S is equal to the force through opening s. Once the volume of liquid V in the 
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reservoir, is sufficient large, then ∂V/∂t ~ 0 over the period of a few hours. A lid with tiny 

holes was placed on top the reservoir to minimize evaporation. Since the volume of liquid 

v in the cell is small compared to the evaporation volume, the liquid loss results in a force 

imbalance due to the reduced pressure exerted by the remaining liquid. This is 

compensated for by liquid slowly moving from the reservoir to the liquid cell. 

2.6 Proportional integrating circuits 

 Three proportional integrating circuits were used as part of this investigation. 

Environmental stabilization, shear-force feedback and control of the galvanometer 

mounted angular displacement plate were all achieved using PI circuits. Schematics of 

the circuits and an overview of the operation of each circuit can be found elsewhere [17]. 

In this section, I will provide a general introduction to PI circuits and their applications. 

 Proportional-integral/integrating control is a ubiquitous control approach used in 

industry which has found universal acceptance in industrial control. PI circuits are 

particularly popular because their robust performance over a wide range of operating 

conditions and functional simplicity allow for straight forward operation. As the name 

suggest, a PI controller consist of two main components; a proportional component and a 

integrating component. A control system consists of a PI circuit/controller, a sensor and 

an output actuator. In a control system, the system parameter which needs to be 

controlled (process variable) is monitored by a sensor. The difference between the 

desired value for the process variable (set point) and the process variable is kept at near 

zero via feedback control of the actuator, which in turn influences the state of the process 

variable. Figure 2.8 represent the two main components of a PI circuit. In my specific 

situation, the input signal Vin for both circuits components comes from the lock-in 
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amplifier. The set point is defined using the lock-in and the output is proportional to the 

difference between this value and the process variable e.g. z position of the precision 

stage. 
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Figure 2.8: Schematics of an opamp integrator and inverting amplifier are shown in (a) 

and (b). These two circuits constitute the basic components of a PI circuit. The 

capacitance and resistance values must be judiciously chosen to allow for stable 

operation. 

 

In that case, the PI output is given by, 
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where k1 is a proportional gain factor. If  Vlock-in (the difference between the set point and 

process variable) is zero, the error signal is a constant. If the set point and process 

variable are not equal, an output signal from the circuit given by equation 17 attempts to 

main Vlock-in at zero. 

This general idea is the principle of operation associated with all three 

proportional integrating circuits employed as part of this research. In each case, time 

constants were chosen so as to allow for stable long-term operation. In the case of the 

precision galvanometer, this meant that the rate of angular displacement had to be 

significantly reduced. This will be examined in chapter 8 together with new ideas for 

(a) (b) 
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improving the temporal resolution of the system. In the next chapter, the details of the 

sample fabrication process will be reviewed. 

 



21 

 

CHAPTER 3: SAMPLE PREPARATION, FABRICATION AND 

CHARACTERIZATION 

 

 

3.1 Overview of Investigated Samples 

 

 Selected fabricated structures and biological samples were investigated as test 

objects to analyze the quantitative phase, shear-force feedback topography and intensity 

imaging performance of the phase contrast NSOM.  The non-biological samples were 

fabricated using the clean room facilities of the Optics department at UNCC. These 

samples were all subsequently characterized using an atomic force microscope and a 

scanning electron microscope (SEM). Specific regions of the samples were also 

characterized using a profilometer. The fabricated samples consisted of samples with (1) 

surface features only, (2) samples with subsurface features only and (3) samples with 

both surface and subsurface features. In this chapter, the fabrication process for each of 

these samples will be reviewed in detail. 

  Several biological samples were imaged throughout the investigation. These 

samples were selected based on their structural simplicity and physiological 

characteristics such as the presence of absence of a nucleus. For example, human red 

blood cells were selected because they are simple cells without any intracellular 

components. These cells served as a control for the subsurface investigation of the 

biological samples. Fish red blood cells and human white blood cells however, are 
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nucleated with large easily identifiable nuclei which proved ideal for subsurface analysis. 

Plasmodium Falciparum (malaria) infected RBCs were chosen to illustrate a powerful 

potential application of the instrument. The malaria samples were obtained from the 

School of Public Health and the Department of Cell and Developmental Biological of the 

University of North Carolina Chapel Hill. My in vivo studies involved working with rat 

fibroblast cells obtained from UNCC’s Biology department.  All preparation techniques 

will be reviewed in further detail. 

 3.2 Fabricates Samples  

 Three different types of fabricated structures were investigated throughout my 

research. The simplest of these were the samples with surface features only. These 

samples consisted of phototresist microstructures. To detect subsurface features in the 

absence of surface features, a sample with RIE etched features was planarized. 

Planarization entailed coating several layers of a resist material over etched structures, 

such that top surface was nearly planar. The third type of samples with surface and 

subsurface features were designed to represent primitive biological cells. They were 

essentially “subsurface-feature” samples with surface features deposited on the planar 

surfaces. The fabrication details of all three types of samples will be reviewed in this 

section.  

 3.2.1 Surface Features: Photoresist Samples  

 The samples with surface features were fabricated via a photolithographic process. First 

a quartz glass substrate was cleaned by immersing in piranha solution (sulfuric 

acid/hydrogen peroxide solution mixture) to remove any organic impurities. The 

substrate was then spin coated with a thin layer of photoresist followed by a low 
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temperature soft baking. A mask with a pattern of 2 micron circles on 4 micron centers 

was used to selectively expose the resist layer with a UV light source via contact printing. 

In contact printing, the mask and resist coated substrate are in direct contact during the 

exposure process which allows for high resolution pattern transfer. If the photoresist is 

positive, the exposed region undergoes a chemical change and becomes soluble in a 

developer solution. In the case of negative resist, the unexposed region becomes soluble 

in developer solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Image (a) is a photograph of the contact alignment photolithography system. 

The UV source and alignment components sit on top with a viewing monitor on the right. 

Images (b) and (c) are photographs of the hot plate used for baking and wet bench area 

used for development respectively.  Image (d) depicts the spin coating system. The 

substrate is held in place on the circular plate in the image via vacuum adhesion. 

 

(b) (a) 

(c) (d) 

UV Exposure System Hot Plate  

Wet Bench Resist Coating System 

Circular plate 
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In either case, the sample is “developed” by rinsing in a developer solution which 

removes the soluble photoresist and leaves behind a pattern of insoluble resist. After this 

step, the sample typically undergoes a post exposure bake to allow for complete curing. 

Any defective transferred patterns can be removed from the substrate by etching in 

piranha solution and the process repeated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Image (a) is an optical image of the mask used for the sample fabrication 

process. The mask consists of 2 micron holes in a copper plate. The circular holes are 2 

microns in diameter on 4 micron centers. Image (b) is an optical image of the transferred 

resist pattern. An AFM line scan of the region identified by the dark line is shown in (c).  
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The mask used for sample fabrication consisted of 2 micron circles on 4 micron centers 

as shown in figure 3.2(a). The photolithographic process previously described allows for 

the effective transfer of this pattern to a layer of photoresist. An image of the resist 

pattern as seen under an optical microscope is shown in 3.2 (b). Figure 3.2(c) is an AFM 

line scan of the over the region indicated by the black line in 3.2(b). 

3.2.2 Subsurface Features: Planarized etched quartz glass 

  

 Fabrication of the samples with subsurface features involved dry etching micro-

structures onto a quartz glass substrate via  reactive ion etching (RIE) [69], followed by 

planarization of the features with photoresist.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: The stages in the fabrication of the samples with subsurface features are 

depicted in images a-e. In (a), the sample is exposed to UV light and subsequently 

developed to yield (b). The sample is then etched using RIE (c), followed by a striping of 

the resist mask (d). The result is a glass substrate with an etched pattern determined by 

the resist mask. This sample is then planarized with resist to produce a sample with 

subsurface features (e). 
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Prior to etching, a photoresist mask was created as describe in section 3.2.1. This mask is 

simply the transferred pattern of a copper mask onto a resist layer as shown in figures 3.3 

(a) and (b). The pattern protects all resist covered regions of the substrate from the 

etching effect of a gas plasma during RIE. All unprotected regions are anisotrophically 

etched as shown in figure 3.3(c). The resulting micro-structures in (d) are subsequently 

planarized as described earlier. 

 Reactive ion etching is a dry etching procedure which results in anisotropic etching 

(highly directional) compared to the isotropic nature of wet etching. This is very 

important for high fidelity pattern transfer such as in micro-fabrication. In this process, 

plasma is generated from a gas pumped into an evacuated chamber using a strong radio 

frequency electromagnetic field. An electric field is used to accelerate the ions towards 

the substrate where they bombard and chemical react with the atoms at the surface. The 

etching is typical produced by the action of fluoride ions generated from gases such as 

sulfur hexafluoride SF6 and carbon tetrafluoride (CF4). The resist mask selectively 

protects covered regions on the substrate while the exposed regions are etched to produce 

the desired pattern. 

 The copper mask used to create the resist mask consisted of an array of groups of 

rectangular structures. Each group contained up to seven of those structures with each 

structure separated from adjacent members by a fixed distance. Thus there exists a trench 

of fixed width between each rectangular structure. In this investigation, I was interested 

in the trenches and not the rectangular features. The resulting resist pattern created by the 

mask is shown in figure 3.4(a). A group of rectangular structures is highlighted in this 

figure although several other groups may be observed. The feature separation distance is 
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(a) (b) 

(c) 

Resist mask SEM of group structures 

AFM line scan 

fixed within a group, but it varies from one group to another, ranging from 2-10 microns. 

An SEM image of the highlighted group is shown in figure 3.4(b). The dark line in (b) 

represents a region of the sample which was scanned with an AFM. The line scan is 

shown in 3.4(c) and indicates that the separation distance for features in that group is 

approximately 5 microns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3.4: Image (a) is an optical image of the mask used for etching. It consisted of 

several groups of rectangular structures with one of the groups highlighted by a black 

square. A SEM image of the highlighted region in (a) is shown in (b). The dark line in (b) 

represents a region of the sample that was scanned using an AFM. A line scan of the 

scanned region is shown in (c). The etched trench was subsequently planarized in the 

final step in the fabrication process. 



 

 

44 

The scan indicates that although the side walls of the trench are sloped, they are 

nevertheless quite straight. It was possible to fabricated trenches of various depths by 

controlling the etch time for the etching process. The etch recipe used during sample 

fabrication allowed for etching at a rate of 62 Angstroms per second using quartz glass, 

so depth control was relatively straight forward. Features ranging in depth from 200nm to 

1 μm were fabricated. 

The final and most difficult step of the fabrication process is planarization. This 

was performed using SU8 photoresist which is essential transparent at optical frequencies. 

Thus it was possible to readily locate the underlying features by inspection with a light 

microscope. Planarization was achieved by overlaying several layers onto the etched 

substrate. Each layer was heated to ensure reflow and cross-polymerization of the resist. 

After each layer, the degree of planarization was determined using a profilometer. It was 

possible to planarize a 1 micron tall feature to within 100nm using this procedure.  

 3.2.3 Surface/ Subsurface features 

 

 Two different types of samples with surface/ subsurface features were fabricated. The 

first type of sample consisted the resist pattern of 3.21 deposited onto the planarized layer 

of the subsurface sample describe in 3.2.2. A schematic of the fabricated sample is shown 

in figure 3.5(a) with an optical image displaced in (b). 
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Figure 3.5: Image (a) is a schematic of the sample with both subsurface trenches and 

surface 2 micron resist circles. Image (b) is an optical image of one of the 5 micron array 

regions. The 5 microns features can be seen superimposed on the planarized subsurface 

trench features. 

 

From image (a), it can be seen that the sample consists of surface resist features and 

planarized RIE etched subsurface micro-structures. Due to the transparent nature of the 

planarization resist, the underlying features are readily indentified as observed in image 

(b). It is however difficult to identify the surface resist structures since they are out of 

focus in the image and the magnification is low. The number at the top left indicates the 

separation distance of the rectangular features for the group shown. It must be 

emphasized that the schematic in 3.5 (a) is not drawn to scale and that six trenches are 

indicated in (b) whereas only three are shown in (a). 

The second sample consisted of the same subsurface-feature sample but with 

human red blood cells deposited on the planarized layer instead of a resist pattern. Due to 

the group array nature of the features, it was possible to occasionally deposit red blood 

cells either partially or completely over an underlying trench by depositing a large 

number of cells in the general vicinity of the subsurface structures. 

(a) 

(b) 

Etched trench 

Rectangular feature 

Surface resist 

structure 

Indicates feature 

separation i.e. 5 μm 
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3.3 Biological Samples  

 

 The main focus of the research was the investigation of subsurface features in biological 

specimen. It was therefore necessary to have simple biological cells with and without 

salient subsurface features. Another requirement was that the cells needed to be easy to 

maintain (i.e. specific temperature or culture bath not required) and viable over a period 

of at least several hours. To avoid lengthy data acquisition times, samples less than 20 

microns were investigated. Due to the z axis translation restriction dictated by the shear-

force feedback PI circuit, it was necessary to image samples less than 8 microns in 

thickness. It was also important that selected samples were easier optically identifiable 

since the probe has to be placed as close to the bottom right of the sample as possible 

prior to each scan (scanning of the probe relative to the sample occurs from right to left 

and from the bottom to top). Taking all these factors into consideration, red blood cells 

were used as the primary biological cell for imaging. There are several recent 

publications [22-24] regarding quantitative phase imaging of these cells so it was possible 

to compared results when appropriate. An outline of the preparation procedures for the 

biological cells investigated is provided below. 

 3.3.1 Dried Red Blood Cells (RBCs) 

 

 Red blood cells or erythrocytes are interesting biological samples because of the 

contradiction of their physiological simplicity and functional complexity. They play a 

critical role in the transport of oxygen in living organism. In addition, these cells are 

readily obtainable and easily imaged in air. Human red blood cells lack a nucleus and can 

be considered to homogenous [5] with a refractive index of 1.41. A typical erythrocyte 

has a discoid (donut) morphology, is 7 microns in diameter and approximately 1 micron 



 

 

47 

(a) 

(b) 

Red blood cells 

Slide pushed 

forward 

dragging blood 

smear 

thick. The mechanism by which these relatively large cells are able to squeeze through 

blood capillaries half their size is not well understood.  The physical characteristics of 

human red blood were desirable for my research in that these cells are easy to image and 

the results straightforward to interpret. The imaging of red blood cells throughout this 

investigation was performed in air and without staining. Samples were prepared by 

spreading a drop of blood over the surface of a quartz glass slide as shown in fig 3.6 (a). 

This resulted in a mono layer of well distributed cells as shown in figure 3.6 (b). It is 

clear from the image that these cells have a well-defined shape and size and are without 

any major intracellular components. 

 

 

 

 

 

 

 

Figure 3.6: The schematic (a) illustrates the preparation procedure for the red blood cells 

sample. A drop of blood between two slides at an angle was spread thinly by moving the 

top slide forward. This results in mono layered cells. An optical image of a region of 

these cells on the sample is shown in (b). 

  

 3.3.2 Malaria Infected RBCs 

 

 Malaria is a disease which still affects numerous parts of sub-Saharan Africa and other 

third world countries. It is caused by one of several different malaria parasites and results 

in millions of deaths annually [70]. In my investigation, the parasite Plasmodium 
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Falciparum was investigated. This parasite is responsible for the most virulent form of 

malaria. In a laboratory setting, it is necessary to stain these cells before the parasite is 

visible but this step was unnecessary in my research. The stage of development of the 

disease can be determined from the morphology of the parasite and this was one of the 

objectives of this investigation. The sample was prepared by the method of Trager and 

Jensen [71]. The sample was rendered relatively safe to handle by rinsing the cells with 

methanol which effectively kills the parasite. 

3.3.3 Fish’s Red Blood Cells 

 

 Although mammals have enucleated RBCs; birds, amphibians and fishes all have 

nucleated RBCs. The RBCs in humans start off as nucleated cells in the bone marrow but 

these cells eventually lose their nuclei. The reason for this is still not known. However, I 

thought it would be interesting to compare and contract both nucleated and enucleated 

erythrocytes albeit from different species. The morphology and size of the nucleus is well 

correlated with the progress of pathological conditions such as cancer hence subsurface 

nuclear analysis is of great important. For this investigating, the red blood cells of the 

silver dollar fish (Metynnis Argenteus) were investigated. The sample was obtained from 

a “pet” fish and prepared in a similar manner to the human red blood cells. 

 3.3.4 White Blood Cells 

  

 White blood cells or leucocytes play an important role in helping the body ward off 

infections.  Their relative abundance is a strong indicator of physiological diseases such 

as leukemia. There are several types of white blood cells, each with its specific role in 

fighting infections. These cells are differentiated by their size and the shape of their 

nuclei as seen under an optical microscope after staining. In this investigation, I sought to 
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identify several leucocytes using quantitative phase imaging and subsequent analysis of 

their nuclear structures. These cells were identified in blood smear samples by 

meticulously sorting through the red blood cells. White blood cells appear translucent 

under a light microscope relative to red blood cells. They are generally larger and have an 

irregular shape so it easy to tell red and white blood cells apart. After imaging, the results 

were compared with standard optical images and previously published results. 

 3.3.5. Rat Fibroblast Cells 

 Rat fibroblast cells were obtained from the biology department at UNCC. These cells 

are much better suited for in-vivo analysis than red blood cells. It is difficult to fix RBCs 

in solution and as such motion artifacts are common. Fibroblast cells however, are easily 

fixed both in air and in a buffer solution. In addition, RBCs are surrounded by blood 

plasma in the body. This condition is difficult to reproduce in the lab. Fibroblast cells are 

normally surrounded by fluids which are similar in nature to buffered solutions such as 

phosphate buffer solution. These cells were image both in air and in PBS solution. 

3.4 Summary  

 

 A series of fabricated structures and biological specimens were chosen to demonstrate 

and analyze the imaging capabilities of the multimode imaging instrument. The non-

biological samples consisted of etched subsurface features with selected features 

deposited on top. The biological samples consisted of simple cells ranging in size from 7 

microns to about 20 microns. After scanning each sample, a series of imaging processing 

procedures were performed to obtain the final images. These steps are highlighted in the 

next chapter. 
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CHAPTER 4: EXPERIMENTAL SETUP 

 

 

4.1 General Setup 

 

 There are three primary requirements in an experimental setup for the 

simultaneous determination of quantitative phase, intensity and topography. The first is 

that the sample under investigation needs to be positioned and scanned to generate 

feature induced electronic signals. Secondly, optical and phase imaging requires at the 

very least, a light source, suitable optics and an interferometer such that physical 

characteristics of the investigated sample can be optically encoded.  The final 

requirement is the detection and conversion of all optical signals into electronic signals, 

followed by the processing of all three signals to produce the final images. 

  As such, my experimental setup consists of three major components. At the core 

is an inverted optical microscope, modified to accept a NSOM head assembly. The 

assembly houses a turning fork/probe unit and a three axis controlled positioning stage. 

The second major component includes a fiber interferometer, optics and a light source. 

The third component consists of instrumentation for signal detection, feedback control 

and image processing. Image processing was performed post scanning using code written 

in Matlab. In this chapter, I will discuss each of the three components in detail and 

explain how they are integrated together to make the phase contrast NSOM possible. I 
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will also discuss the modifications made to allow for imaging in a liquid environment at 

the end of the chapter.  

4.2 Component 1: Inverted Microscope, NSOM Head Assembly and Precision Stage 

In this section, I will review the details of the system’s optics including the 

precision positioning stage and NSOM head assembly. These components constitute the 

core of the image acquisition system. 

4.2.1 Inverted Optical Microscope 

 The Olympus IX50 inverted microscope was employed for visual positioning and 

inspection of the sample prior to scanning. In an inverted microscope, the sample is 

illuminated from above and the objective sits below the sample. This arrangement is 

absolutely necessary since the stage and head assembly must be positioned on top of the 

microscope. The head assembly houses the positioning stage, sample holder and 

PZT/tuning fork unit. Mounting the assembly unit onto an inverted microscope required a 

few modifications from the original design.  

 

 

 

 

 

 

 

Figure 4.1: The left image if of the unmodified Olympus IX50 with an overhead light 

attachment. The right image is a modified version of the microscope used in this research. 

The NSOM assembly unit sits on top the microscope over the objective and sample. 

 

 



 

 

52 

The original and modified versions are shown in figure 4.1. A standard objective with a 

10X magnification and 0.4 numerical aperture was used for all scans. 

 4.2.2 NSOM Head Assembly 

 The NSOM head assemble allows for fine positioning of the sample relative to the 

NSOM probe and coarse approach of the probe relative to the sample. The assembly 

consists of a base unit and a NSOM head unit and was designed and built by Ronnie 

Fesperman, then a graduate student in the department of mechanical engineering at 

UNCC. Schematics and optical images of this component are shown in figure 4.2. 

 

 

 

 

 

 

  

  

 

 

 

 

Figure 4.2: The image on the left is a 3-D rendering of the NSOM assembly. The top 

image on the right is an image of the NSOM head.  The bottom right image is of the base 

unit. The objective lens of the microscope can be seen at the center of the sample holder. 
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The NSOM head houses the pzt/ tuning-fork assembly shown in figure 4.3. A quartz 

tuning fork is glued onto a mini-PZT and a fiber probe glued onto the fork.  The PZT is 

electronically driven, causing the fork and probe to dither and a signal to be generated by 

the pieo-electric quartz tuning fork. This signal is utilized in fiber probe/sample distance 

regulation [72, 73]. The probe assembly can be moved in the x and y direction using the 

probe positioners of the NSOM head shown in top right image of figure 4.2. These 

degrees of freedom are important during optical alignment of the system.  The probe can 

also be lowered or raised in the z direction with a maximum range of 1mm via the z 

positioned of the NSOM head. During near-field engagement, the stage is raised 

electronically by applying an increasing voltage to the z axis of the stage controller, to a 

maximum displacement of approximately 16 microns. If there is no near-field 

engagement, the voltage to the stage is then reduced to zero, and the z position moved 

1/70 of 1mm or about 14 microns using a calibrated scale on the NSOM head. The stage 

is then raised electronically and the process repeated until near-field engagement.  

  

 

 

 

 

 

 

Figure 4.3: The left image is of the pzt/tuning fork assembly unit. The diagram on the 

right is a schematic of the assembly. The unit fits into a circular hole in the center of the 

NSOM head and is held securely in place.  This represents the sensing unit of the shear-

force feedback system. 

Quartz tuning fork 

NSOM fiber probe 

PZT actuator 
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 The base unit allows the sample to be moved relative to the probe. The sample 

holder is attached to the precision stage which sits securely in the base unit. The x and y 

stage controllers shown in figure 4.2 allow movement of the stage and sample in these 

two directions. The base also has three magnetic receptacles which keep the NSOM head 

in place. 

 4.2.3 Precision Stage 

  In my setup, a PZT nano-positioner model P 527.2CL from Physik Instrumente 

(PI) with linear travel ranges in the X, Y, and Z directions of 200 microns was utilized.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Controller for PZT precision stage. The x and y axis are controlled via a raster 

scanning program written in LabView. The z axis control voltage is generated as the 

output of a PI circuit which takes into account the dampening effect of the tuning fork 

with tip/sample separation. 

 

The unit was controlled using a three-channel output position controller model E 509 

from the same company. Z direction displacement is initiated by an error output voltage 

from a PI circuit which attempts to maintain tip/sample separation at a constant. The 
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stage moves 2nm/mV in the z direction and 10nm/mV in the x and y directions. The 

scanning voltage was provided by a LabView program via a data acquisition (DAQ) 

board. The overall setup is shown in figure 4.4. 

4.3 Component 2: Light Source, Fiber Interferometer and Optics.  

 4.31 Light Source 

 

 A helium-neon laser operating at 632.8 nm was used as the light source 

throughout the course of the investigation. The laser operated at 20 milliwatts with the 

plane of polarization parallel to the direction of the output. The relatively low power 

ensured that there was not excessive heating of the probe tip during the scans. It is well 

known that scanning a heated NSOM tip very close to biological samples can result in 

damage to the sample [74]. The single mode fiber utilized in our system required an 

operating wavelength near 630 nm for confinement hence our choice of the He-Ne laser. 

4.3.2 Fiber Interferometer and NSOM Probe 

 Sample phase was determined using a part air, part fiber hybrid interferometer. 

The fiber interferometer consisted of a bi-directional coupler with a portion of one of the 

output arms tightly wrapped around a cylindrical PZT transducer as shown in figure 4.5.  

The PZT is phase modulated at1 kHz via a signal from a signal generator. A secondary 

signal from a PI circuit is also sent to the PZT to maintain the environmentally induced 

optical path length difference between the reference and sample arms at a constant. As 

shown in figure 4.5, light from a He-Ne laser is launched into one of the two input arms. 

A fiber NSOM probe is spliced into the sample arm using a fusion splicer. This probe is 

fabricated by etching in hydrofluoric acid followed by coating with aluminum. The 

details can be found elsewhere [17, 75]. Prior to splicing, the length of the probe is 
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adjusted so that the sample arm length is exactly equal to the reference arm length of 52.5 

cm. The second input arm is used to detect the back-reflected light from the output ends. 

This signal is used to help maintain environmental stabilization. Three pressure plates in 

the reference arm help to control the polarization state of the back-reflected light and 

improve the fringe contrast or visibility. 

 

 

 

 

 

 

  

 

Figure 4.5: The left image is a top view of the bidirectional coupler enclosed in a 

plexiglass housing. Although two PZTs are present, only one is actively used. The three 

black circles on the left are cap covered accesses to polarization adjustment plates inside 

the housing. A schematic of the setup is shown on the right. 

 

The plates which sit on top of a section of the fiber, can be tightened or loosen thus 

changing the birefringence and polarization state of the light in that arm. With the 

exception of small sections of each arm, the coupler is enclosed in a small plexiglass 

housing to help provide some additional environmental stability. This housing, the 

inverted microscope and optics, are all enclosed in a larger plexiglass housing shown in 

figure 4.7. 

 4.3.3 Optics 

The output arms of the fiber interferometer forms the input arms of an air Mach-

Zehnder interferometer as shown in figure 4.6. The sample under investigation sits on a 
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precision stage positioned beneath the probe. Sample phase is determined via signal 

processing of the Fourier components of the output signal. The resulting phase is 

calculated as the inverse of the tangent function and consequently, the maximum phase 

which can be measured without unwrapping is 360 degrees. For samples with features 

greater than about 1.3 microns, phase unwrapping is required. To circumvent this 

inconvenience, a novel approach was prescribed which makes use of a 1mm square thin 

glass plate attached to a galvanometer for phase determination. The galvanometer and 

angular displacement plate are inserted into the reference arm and are shown in figure 4.6.  

 

 

 

 

 

 

 

 

 

 

  

 

Figure 4.6: On the left is an image of the Mach-Zehnder interferometer used for phase 

determination. The right image is a schematic of the setup. QWP and HWP represent 

quarter wave plate and half wave plates respectively. 

 

The effective determination of sample phase requires that the fringe contrast on the 

output be as high as practically possible. This is achieved using a quarter and half wave 
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plates in the arms of the Mach-Zehnder interferometer as shown in figure 4.6. Both arms 

of the interferometer contains quarter wave plates which convert the elliptically polarized 

light which results from the natural birefringence of the fiber coupler and induced 

birefringence of the polarization adjustment plates, into linearly polarized light. The half 

wave plates rotate the plane of polarization. In the case of the sample arm, the linearly 

polarized light is nearly extinguished by adjusting the polarization state of the polarizer to 

the right of the beam splitter, with the reference beam blocked.  Then with the sample 

beam blocked off and the polarization state of the polarizer unchanged, the quarter wave 

and half wave plates in the reference arm are adjusted until the light is extinguished by 

the polarizer. At this point, the light from both arms are linearly polarized and have the 

same polarizations states, thus maximum fringe contrast is achieved. 

 4.3.4 Enclosure 

 As mentioned before, a simple enclosure was built around the entire system to provide 

some degree of isolation from external thermal sources. A photograph of the plexiglass 

enclosure box is shown in figure 4.7. There are several removable lids and a flap opening 

which allow access to the components inside. 
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Figure 4.7: Environmental isolation enclosure for system. The top piece shown in the 

diagram can be removed completely. Access to the microscope is also available through 

the removable lid at the very top or through the flap opening shown in the diagram. 

 

4.4 Electronics and Software 

 Image generation in the phase contrast NSOM requires the conversion of optical 

signals into electrical signals, the electrical signals into binary data and the subsequent 

processing of this data. These important aspects of the imaging process will be discussed 

in this section from the instrumentation point of view. 

  4.4.1 Signal Generator 

 A 2 MHz sweep/function signal generator was used throughout my investigation. 

The generator was operated at 1 kHz with the main-out signal sent out environmental 

stabilization feedback circuit and the auxiliary signal used as a reference for the lock-in 

amplifiers in the setup. 

 4.4.2 Lock-in Amplifiers 

Four lock-in amplifiers were utilized in the experimental setup of the phase 

contrast NSOM. Each amplifier was referenced at 1 kHz. An amplifier is used as part of 



 

 

60 

Stabilization 

Lock-in 

Shear-force 

feedback lock-in 

Second harmonic 

voltage lock-in 

First harmonic 

voltage and ratio 

lock-in 

Output to 

stabilization PI 

circuit 

Output to shear-

force PI circuit 

Ratio Output to 

Phase PI circuit 

Output to 2
nd

 

harmonic lock-in 

the feedback system for stabilization. It monitors the first harmonic term of the back-

reflected signal and sends an output signal to the stabilization PI circuit. The circuit then 

outputs an error signal to the fiber wrapped PZT. Two lock-ins are used during the phase 

determination procedure. The first measures the first harmonic voltage of the output 

while the other measures the second harmonic voltage. The second lock-in also evaluates 

the ratio of the first and second harmonics voltages and sends a ratio signal to a separate 

PI circuit. The PI circuit then transmits an error signal to the galvanometer. The final 

lock-in serves a dual purpose. It functions as a signal generator for the PZT attached to 

the tuning fork and also monitors the signal generated by the tuning fork. An output 

signal is sent from this lock-in to a third PI circuit. This PI circuit sends an error signal to 

the z axis control of the precision stage which maintains constant tip/sample separation 

during the scanning process. 

 

 

 

 

 

 

 

 

 

Figure 4.8: The four lock-in amplifiers utilized in the experimental setup are depicted in 

the image shown. Three of the lock-ins outputs voltages to PI circuits. The second 

harmonic lock-in outputs a voltage to the first harmonic lock-in which in turn outputs a 

voltage proportional to the ratio of the two signals. 



 

 

61 

4.4.3 Feedback Circuits 

 Three PI circuits are used in the setup as mentioned in the previous section. The circuits 

are used for environmental stabilization, phase determination and maintaining constant 

tip/sample separation during a scan. The details of operation were previously reviewed in 

chapter 2 and further details can be found elsewhere [17]. 

4.4.4 Oscilloscope 

An oscilloscope was used to monitor the output and back-reflected signals 

generated by the system. Since these signals have well defined characteristics, the 

oscilloscope allowed for the immediate determination of any obvious problems with 

either signal. All signals were pre-screened with the oscilloscope before connecting them 

to the lock-ins 

4.4.5 Spectrum Analyzer 

The phase determination process requires that the first and second harmonic 

voltages be equalized. This is achieved by adjusting the amplitude of the modulation 

signal at the signal generator. The spectrum analyzer allows for visual monitoring of the 

amplitude of each signal and electronic verification of equalization of the two voltages. 

4.4.6 Detectors 

Throughout the course of this investigation solid state photo-diode detectors with 

632.8 nm filters were utilized. A total of three detectors were used to monitor the back-

reflectance, output and intensity signals. The intensity signal was generated by placing a 

thin glass cover slip in the sample arm of the interferometer as shown in figure 4.6, to act 

as a beam splitter. The signal from each detector after amplification was in the millivolt 

range. 
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4.4.7 Data Acquisition Board  

 Finally, all intensity, phase and topography signals were routed to a desktop 

Pentium II personal computer running windows 98. Data acquisition was realized using a 

National Instrument model BNC-2090 data acquisition (DAQ) board. The DAQ board 

was connected to the computer via a PCI interface card. 

 4.4.8 In-Vivo Imaging  

 In vivo imaging of biological cells requires that the cells be imaged in a liquid 

environment. The “natural” environment of biological cells is an aqueous solution. Just as 

important is the fact that cells quickly dry out in air. The main concerns with NSOM 

imaging in a solution are liquid loss due to evaporation and Q-factor loss due to increased 

damping. Without liquid replenishment, changes in the liquid height due to evaporation 

throughout a scan would result in image artifacts. To deal with this issue, a liquid 

replenishment system was designed.  The main strategy employed in the system is to 

maintain a very thin film of liquid above the sample during scanning. This ensures that 

damping is kept at a minimum and a high Q-factor can be achieved. To meet this 

objective, a 3cm diameter o-ring is positioned in the liquid on top of the sample. 
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Figure 4.9: The top image is of the actual experimental setup for liquid imaging and the 

bottom image is a schematic of the liquid replenishment system. As liquid evaporates 

from the sample holder, it is replenished by the reservoir. 
 

The meniscus formed at the face of the ring leads to a thin film over the surface of 

the sample as shown in figure 4.10. This approach proved quite effective in imaging both 

biological and non biological samples in a liquid environment. 
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Figure 4.10: An image of the o-ring positioned on top a glass substrate sitting over the 

lens objective of the inverted microscope is shown (top).  The bottom image is a 

schematic representation of the ring and substrate depicting the formation of a negative 

meniscus on the surface of the substrate/sample. 

 

4.4.9 Software 
 

 The original code for data acquisition was written in LabView by Michael Riley, a past 

member of the research group. The code has since been modified to accommodate a ratio 

signal instead of individual first and second harmonic voltages. This change was 

implemented as the research transitioned from measuring phase using the tangent 

function to unambiguous phase determination. At the DAQ board, the analog signal from 

the detectors and circuits are converted into digital signals to be processed and interpreted.  

  

 



 

 

65 

4.4.9.1 Raster Scanning  

 

 During the scanning process, voltage signals generated by a LabVeiw program are used 

to position the precision stage in the x and y directions. LabView (version 5) software 

was used to perform both raster scanning and the acquisition of the voltage values 

required to generate all images. In each instance, the data was stored as a two 

dimensional data array in a proprietary format which was subsequently converted to a 

Microsoft Excel file for processing. Since in a raster scan odd numbered lines are 

scanned in the opposite direction, a post imaging line scan correction was required.  

 4.4.9.2 Image Processing 

 

 All the image processing was performed using MatLab. Ronnie Ferperman wrote 

the initial code for generating the three dimensional representation of the data and for 

some basis image processing such as slope removal. Since then I have substantially 

rewritten all the old code and included several new algorithms to allow for greater 

efficiency and functionality. Some of the details are reviewed in chapter 5. The 

improvement includes better slope removal, improved 3-D representation and noise 

filtering. New codes were written for image registration and image subtraction. Image 

subtraction is required during the extraction of subsurface information from the phase 

data. The subtraction process results in difference residue errors which led to a separate 

program being written to minimize this error. It was determined after careful observation 

that there was a lateral shift between successive line scans during the scanning process. 

This error due to hysteresis of the precision stage was also corrected using Matlab code. 

Much of the details are reviewed in chapter 5. 
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4.5 The Phase Contrast NSOM 

 The phase contrast NSOM allows for tri-modal high resolution in vivo imaging. 

Before this can be achieved, there are several important steps which need to be followed 

as part of the setup. The first step in imaging requires that the sample and probe be 

engaged in the near field.  

 

 

 

 

 

 

 

 

 

Figure 4.11: This is an image of the complete system. The detection electronics are on the 

left. Up front are the optical components and the inverted microscope is toward the right. 

  

Once this is done, the stage is lowered several microns using the electronic z –axis fine 

adjustment and the optics aligned. This usually takes about 20 minutes. After this step, 

the probe is visually positioned near the region of the sample to be imaged and the 

sample re-engaged in the near field. With the sample engaged, the phase detection and 

stabilizations circuits are turned on. During a scan, the time interval between data 

acquisition points is 100 ms with a step size of about 100 nm. Thus a 15 microns by 15 

microns scan size with 100 pixels in the x and y directions takes approximately 20 

minutes. The post imaging processing has been streamlined to the point where the final 
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images are available a few minutes after each scan. The details of this part of the process 

is explored in the next chapter 



 

 

CHAPTER 5: IMAGE PROCESSING 

 

 

5.1 Data Acquisition 

 

 During a sample scan, voltage values from the intensity amplification circuit, 

phase PI circuit and shear-force feedback PI circuit are channeled to three of the available 

sixteen inputs of the DAQ board. The BNC 2090 DAQ board used throughout the 

investigation has only two outputs which were used for X and Y positioning of the 

precision stage. The line scan voltage values for each signal are represented graphically 

in LabView, as the scan progresses. This provides real time information on the progress 

of each scan and an early indication of any potential problem, in which case the scan can 

be terminated. At the end of the scan, the three datasets corresponding to the three 

different imaging modalities are stored as two dimensional arrays of voltage values in a 

LabView proprietary file format. The files are subsequently converted into Microsoft 

Excel files and imported into Matlab for processing. Throughout this research, acquired 

tri-modal datasets are represented as pseudo-color rendered three dimensional images. In 

the case of the shear-force feedback and phase data, the corresponding voltage values are 

usually converted to topography height values in nanometers or microns using 

appropriate conversion factors. The intensity information is expressed in arbitrary units.  

 In this section, I will review the steps involved in converting each Excel file into a 

three dimensional image representation. All post processing procedures such as slope 
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removal and filtering will be discussed in detail. Finally, I will discuss the steps involved 

in extracting the subsurface information from the phase data using the topography data 

and present both simulated and experimental results to demonstrate the process.  

5.2 Pre-Plotting Image Processing  

 Prior to conversion of the original two dimensional data arrays into three 

dimensional images, the data needs to be pre-processed. This step involves the reversal of 

alternate lines, removal of slope from the data and a correction for scanning hysteresis. 

Each of these procedures is further expanded below. 

 5.2.1 Line Reversal 

 In a typical scan, the probe moves from the left to the right relative to the sample 

(i.e. the sample which sits on the stage moves from right to left) in the initial line scan. At 

the end of this line scan, the probe moves forward by a specified distance, and the scan 

continues from right to left. This process continues until the specified region of the 

sample is scanned. Therefore, alternate lines in the scan need to be reversed. The original 

LabView files are converted to Excel files and the line reversal procedure and all 

subsequent processing is perform in a Matlab environment.  

 5.2.2 Slope and Curve Removal  

 Square quartz glass substrates of 1mm thickness and 1ʺ dimensions were used for 

both the fabricated and biological samples. The lateral dimensions of the sample 

correspond to the size of a grooved sample-receptacle of the sample holder. Larger 

substrates need to be modified accordingly or placed on top the 1ʺ substrate. Imaging of 

the glass slides with a white light interferometer verified that surfaces were not “perfectly” 

flat.  Another cause of image slope is the gradual heating or cooling of the laboratory 
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environment.  A third cause is due to the fact that the substrate is slightly tilted relative to 

the probe while positioned in the sample-receptacle. Figure 5.1 shows a phase image of 

an RIE etched trench in a glass substrate with and without slope removal. After slope 

removal, it is much easier to ensure that the phase and SFF images lie on the same plane 

prior to further processing. This is a critical step in the registration process prior to image 

subtraction.  

 

 

 

 

 

 

 

 

Figure 5.1: Figures (a) and (b) represents phase images of a RIE etched trench before and 

after slope removal respectively. A gradual slope is observed in image (a) together with 

significant curvature. After processing, the slope and curve are effectively removed as 

shown in (b). 

 

 Slope removal is performed via an interactive process. At least three points on the 

substrate are interactively selected from a two dimensional representation of the two data 

sets. The objective is to remove any slope present in the substrate. This is accomplished 

by fitting a plane to the substrate then subtracting the plane from the original data. We 

can write the equation of a plane as; 

                                                             ax by d cz                                                       (19) 

(b) (a) 

PHASE WITH SLOPE AND CURVE PROCESSED PHASE 
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where a, b, c and d are constants. Thus if we consider a series of selected points z1, z2, 

z3...zn from the original dataset with coordinates (x1, y1), (x2, y2), (x3, y3)… (xn, yn), we 

can write; 

                                                                     kX Z                                                       (20) 

                                                                  
1X k Z                                                          (21) 

where k is a n x 3 matrix with the nth row containing the elements xn, yn and 1; X is a 1 x 

3 matrix with the coefficients a, b and c; and Z contains elements z1 through zn. Thus X 

coefficients are determined using the inverse of the matrix k. A plane is built up with 

dimensions determined from the size of the original dataset using these coefficients. This 

best fit plane is then subtracted from the original data. When imaging in a liquid, it was 

difficult to maintain environmental stability. The result was that there was a pronounced 

curve in the phase over a time interval of several minutes. This can be corrected by fitting 

a curve to a one of the edges of the substrate and subtracting this information from the 

original data along a direction orthogonal to the edge. During this process, extreme care 

must be taken to ensure that the features of interest are not affected by the process. It was 

nevertheless fairly easy to remove any gradual curvature in the topography and phase 

data. The intensity data did not demonstrate these effects. 

 5.2.3 Hysteresis Correction 

 As the sample is moved in a particular direction during a scan, an increasing 

voltage is applied to the appropriate axis controller of the stage. As the sample is scanned 

in the opposite direction, the voltage is gradually decreased. However, the path travelled 

in one direction is slightly offset with respect to the other direction of travel. This offset 

has a constant value for a given scan range and is corrected for post-scanning by shifting 
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alternate lines by  a few tens of nanometers relative to the other lines. This effect is 

minimal for small travel ranges. 

5.3 3-D Plotting 

 After the initial processing, the data is typically represented in a 3-D topography 

format (i.e. the z axis is expressed as a height value.  The lateral displacement voltages 

used for raster scanning is converted to displacement distances in the x and y directions 

using the conversion factor 1mV equals 10nm. 

 5.3.1 Topography 

 The shear-force feedback voltage is converted to a height value using the 

conversion factor 1mV equals 2nm. The data is represented as pseudo color rendered 3D 

images using code written in matlab. Any slope or noise is subsequently removed.  

 5.3.2 Phase 

 The phase compensation voltage to the galvanometer is converted to a height 

phase value using a calibration curve as previously explained. The phase value in degrees 

is then converted to a height value using.  

                                                                      
0.6328( )

360( 1)ave

h
n





                                                         (22) 

where Δθ is the phase in degrees and nave is the average refractive index of the sample. If 

necessary, slope removal and filtering is performed to produce a final image. For the 

image subtraction process, the phase is not converted to a height value since nave is not 

constant as is usually assumed. Instead, the topography height is converted to a phase 

value as seen later. 
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 5.3.3 Intensity 

 There is little processing performed on the intensity data. The voltage values are 

not converted to any other form. The only processing performed is a vertical shift such 

that the lowest point in the data corresponds to zero. Another noteworthy point is that the 

intensity image is inverted so that it corresponds to the topography.  

 5.34 Noise filtering 

 It is sometimes necessary to filter out high frequency noise from the final data. 

Inherent noise is always present in the system but the effect is exacerbated when the 

optical light signals are low or the feature height is a few hundred nanometers. This 

condition is easily remedied by filtering out high frequency components in the frequency 

domain followed by an inverse transform. This step is typically unnecessary for 

microscopic specimens such as biological cells.  

5.4 Subsurface Imaging 

 There are three processing stages involved in the extraction of subsurface 

information from the phase data. The first step involves registration of the two data sets. 

This is followed by the conversion of the topography data into phase information 

followed by an image subtraction. The final data is usually expressed in degrees unless 

the refractive index of the subsurface feature is known.  

 5.4.1 Image Registration 

 Registration was accomplishing using Matlab code which allowed a 

corresponding point in the SFF and phase data sets to be manually selected followed by 

the relative translation of one of the data sets such that the selected points coincided. This 

procedure was fairly simple but there are numerous techniques available which are far 
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more sophisticated [76-77]. For example, if one image is of a small size (i.e. smaller 

dimensions) compared to the other, registration may be performed using a cross 

correlation. If the unregistered images are the same size, it is possible to crop one of the 

images before performing a cross correlation.  I investigated both approaches and the 

manual method proved more reliable. It was very important that slope in the original data 

sets be removed to ensure reliable registration. Once this condition was met, excellent 

registration was routine. 

 5.4.2 Data Conversion 

 Before subtraction, the topography data was converted to phase information using 

equation 4 and solving for Δθ. This was discussed in chapter 2. The sample in concerned 

is assumed to be homogenous with a constant refractive index nave. In the case of a cell, 

the refractive index of the cytoplasm was taken as the average refractive index value. The 

conversion of the height to phase step was followed by image subtraction. 

 5.4.3 Image subtraction 

 The shear-force data after conversion to phase data was subtracted from the 

quantitative phase data. This was performed via a simple subtraction algorithm and the 

absolute difference determined.  

 5.44 Residue error suppression 

 A residue difference error is always obtained when two images are subtracted 

unless there is perfect alignment. In this investigation, I approached this problem by 

attempting to suppress sharp spikes in the difference data. To illustrate, the procedure 

employed, simulated results are presented. Figure 5.2 explains the origin of the residue 

error. 
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Figure 5.2: Image (a) is a simulated 3D phase representation of a sample with a central 

subsurface feature. Image (b) is a simulated topography image of the sample. Line scans 

from each simulated data set are shown in (c). The two images are not perfectly 

registered and thus a residue difference error is results after subtraction (d). 

 

 To minimize the residue error, I attempted to selectively suppress sharp spikes in the 

difference data (difference of phase and SFF data). Before performing this step, I 

attempted to predict the location of the spikes by examining the gradient of the 

topography data. One would expect a high gradient at surface feature boundaries of the 

topography image and this is precisely where sharp spikes will occur in the difference 

data. The gradient of the phase data would indicate spikes at the boundaries of the surface 
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(a) (b

) 

features, but also at the subsurface features. It would not be advisable to suppress any 

data near the subsurface feature since this could lead to loss of “real” data, hence my 

rationale for using the topography data. 

 

 

 

 

 

 

 

 

 

Figure 5.3: Image (a) is a plot of the gradient function in the x direction for the 

topography data. Image (b) is a plot of the gradient function in the y direction. The spikes 

in the two images occurs at the surface feature boundary and coincides with the location 

of the difference reside error in figure 5.2 (d). 

 

Once the location of the spikes has been determined, a threshold is set which will 

determine which spikes will be suppressed. This is accomplished by sampling the 

background of the gradient image i.e. I chose points from the gradient image which are 

away from the spikes and find the average of these points. The threshold chosen depends 

on the nature of the sample but is usually 5 times the background “noise”. 

  The residue noise suppression algorithm suppresses spikes when they are found at 

any point in the data, by searching for the nearby neighbor from a group of neighbors in a 

defined interval, which result in the smallest difference error. This interval is defined by 

the relative shift between the two unregistered data sets which is obtained from the 
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registration algorithm. For example, in figure 5.4, during the subtraction process, points A 

and A' when subtracted from each other will leads to a spike. My algorithm searches for 

points around A which lie within the interval of the relative shift between the 

unregistered images, and selects the point which results in the smallest difference.  

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Indicates the line scans for the simulated phase date (red) and the topography 

data (blue). The phase values in the range X to Y are greater than any other values in the 

topography line scan, hence they must correspond to the subsurface feature. A residue 

error occurs when A' is subtracted from A which is corrected using the noise suppression 

algorithm. 
 

Since this process is computationally intensive, spike suppression is not performed when 

not required. For example, the phase points between X and Y have a greater value than 

any other topography points in the line scan. Thus they are automatically chosen as “real” 

data points in the subsurface image without any processing.  

 The results of applying the algorithm are shown in figure 5.5. Image (a) 

represents the extracted subsurface feature without suppression while (b) represents the 

results with suppression. It is observed that the noise is significantly reduced but that the 

A
' 

X Y 

A 
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(a) (b) 

subsurface feature is unaffected. This procedure allows fine detail to be preserved in the 

subsurface result. 

 

 

 

 

 

 

 

 

Figure 5.5: Image (a) is the extracted subsurface image obtained by subtracting the two 

data sets and taking the absolute value of the difference. Image (b) is the extracted 

subsurface result employing the spike suppression algorithm described in this section. It 

can be seen that the error is reduced but the subsurface feature is unaffected. 

 

This algorithm is well suited for simple cells but does not always perform as well with 

not biological samples. The code work best when the subsurface feature and residue noise 

are well separated. 

5.5 Summary 

 The phase, topography and intensity data sets are all represented as pseudo color 

rendered 3D images throughout this work. Before this can be accomplished, the data 

must be pre-processed to remove all slope and noise. Subsurface feature extraction 

involves subtracting the shear-force feedback data converted to phase, from the 

quantitative phase data. The two images must be well registered before the subtraction. 

Subsequent suppression of sharp peaks allows subsurface information to be extracted. 
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CHAPTER 6: IMAGING IN AIR 

 

 

6.1 Introduction 

 

 The results of this research can be subdivided into imaging in air and imaging in a 

liquid environment. In this chapter, the results of the former are presented and the later 

results are presented in chapter 7. Throughout this research, both fabricated non 

biological samples, and biological specimens were investigated.  

 My master’s thesis research was based on an investigation into the near-field 

phase imaging of selected samples. The goal was to extend the phase contrast capable 

NSOM to the imaging of biological specimens. Since these specimens are relatively thick 

(greater than 1 micron), it was necessary to design a novel phase detection scheme which 

allow for real time unwrapping [78]. Although a successful system was implemented, the 

detected phase was intensity dependent as explained in chapter 2. Nevertheless, human 

and rat red blood cells were imaged without the need for post scanning phase unwrapping 

which plagued my prior research [17]. It is worth making the clarifying point that most of 

my earlier images were not near-field images since the sample thickness often exceeded 

500nm. However, high spatial phase resolution was demonstrated by resolving 100 nm 

separated lines in a PMMA sample [78]. In this case the sample thickness was only 220 

nm and as such, high resolution near-field imaging was possible. The samples imaged 

were generally homogenous and lack any significant subsurface features. As such, it was 

possible to define each sample by an average refractive index value. 
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Figure 6.1: Experimental results for the imaging of a small section of a Fresnel lens: a, 

Phase image of lens; b, Topography image of lens; c, Intensity image of the same lens. 

The features are only partially resolved in the intensity image but clearly identified in the 

phase image. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Experimental results for the imaging of a 500 nm x 500 nm region of a 

PMMA sample with 100 nm thick lines separated by 150 nm. The image on the left (a), is 

a phase image and the region on the right (b), is an SEM image of the same region. 
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The main focus of my most recent research was to decouple the surface and 

subsurface contributions in the phase data and to extend the phase NSOM technique to 

liquid imaging. Biological cells for example are often nucleated and contain many other 

organelles unlike the red blood cells of mammals. Recently, several novel quantitative 

phase imaging techniques have been proposed and applied to the study of the surface 

morphology of biological specimens including red blood cells (RBCs) [22-25].  

Erythrocytes are commonly used in quantitative phase investigations because depending 

on the species of origin, these simple cells are typically enucleated and can be considered 

to be homogenous. However, most biological cells are nucleated and contain several 

subsurface organelles. Thus the resulting phase data contains valuable subsurface 

information which up until now has been ignored.  

In my investigation, intracellular information was extracted using simultaneously 

obtained sample phase and shear-force feedback topography data. After image 

registration, the topography data was used to suppress surface information in the phase 

data to revealed enhanced subsurface information. Unlike confocal and optical coherence 

microscopy, the generated subsurface data is integrated rather than consisting of 

individual slices. This new technique however is much better suited for imaging 

individual cells than the aforementioned techniques, which are more appropriate for 

imaging thicker samples. Much of this research was focused on imaging relatively simple 

cells with a single major intracellular component, such as nucleated red blood cells. The 

procedure was initially applied to the imaging of fabricated structures with surface and 

subsurface features. In each case, both the shape and height of the subsurface structures 

were extracted with excellent reproducibility.  
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6.2 Subsurface imaging: Fabricated Structures 

 Samples with surface features only, subsurface features only and both 

surface/subsurface features were fabricated as described in chapter 3. The samples with 

surface features consisted of 2 microns resist circles on 4 micron centers. In the case of 

the samples with subsurface features only, they were fabricated by planarizing trenches 

etched onto a quartz glass substrate. The subsurface/subsurface sample was fabricated by 

either deposited human red blood cells on top the planarized trench or depositing the 2 

micron resist circle pattern onto the planarization layer. The results of imaging these 

samples are discussed in the next few sections.  

 6.2.1 Fabricated structure: Subsurface 

 The subsurface trenches ranged in size from 2 microns to 10 microns wide and 

from 200nm to about 1 micron in depth. In the case of the 200nm sample, approximately 

1 micron of resist was required to achieve about 90% planarization. The 1 micron deep 

trench features required approximately 6-10 microns of resist to achieve 90% 

planarization. The width of the trenches did not significantly affect the planarization 

thickness layer. Figure 6.3 depicts the phase (a), topography (b) and intensity image (c) 

of a 5 micron wide, 180 nm deep trench prior to planarization. The overall shape and 

dimensions correspond quite well on both the phase and topography images. This is 

expected since there are no subsurface features present. It was often difficult to image the 

side walls of the etched samples due to significant loss in the optical signal at these 

regions. I attempted to minimize this problem by immersing the etched samples in diluted 

HF to reduce the gradient of the side walls with success. Several of these samples were 

planarized with resist for the subsurface imaging part of the investigation. 
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Figure 6.3: Experimental results for the imaging of a 15micron x 15 micron region of a 5 

micron wide 180 nm deep RIE etched trench in a glass substrate. Images (a) and (b) are 

3D representations of the phase and shear-force feedback topography data respectively of 

the same feature. Image (c) is an intensity image of the sample. A schematic of the 

sample is shown at the top right. 

 

(b) 

(a) 

(c) 
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6.2.2 Subsurface features 

The planarized samples were fabricated by overlaying a layer of resist over the etched 

RIE trench pattern. In figure 6.4, the phase and topography images of the planarized 

sample in figure 6.3 are shown. The subsurface feature is clearly resolved in the phase 

image but almost imperceptible in the shear-force feedback topography (SFF) result. 

Only the edges are discernible in the intensity image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Experimental results for the imaging of a 15micron x 15 micron region of a 5 

micron wide 180 nm deep planarized trench in a glass substrate. Images (a) and (b) are 

phase and shear-force feedback topography images of a region of the sample. Image (c) is 

an intensity image of the same region. 

(b) 

(a) 

(c) 
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A comparison of line scans from the sample before planarization (red line trace in figure 

6.5) and the extracted subsurface feature from the phase data (blue line trace in figure 6.5) 

indicate that the height and lateral dimensions of the extracted feature corresponds well 

with expected results. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: The red trace is a line scan from the 180 nm deep 5 micron scan taken before 

planarization. The blue trace is a line scan from the phase data of the sample after 

planarized with a layer of resist. The profiles in air (before planarization) and after 

planarization were very consistent. 
 

Figure 6.6 represents the results for a 800 nm deep, 5 micron wide planarized trench. The 

planarization thickness was about 6 microns in this instance because of the increased 

depth. The subsurface structure is well resolved in the phase data but is less than 100 nm 

in the SFF topography image. The height of the sample as determined from the 

subsurface phase results compared well with the measure height before planarization. 

However, for thick planarization layers, a “spreading effect” of the lateral feature 

SURFACE AND SUBSURFACE LINE SCAN OF 5 MICRON TRENCH  

Unplanarized sample Planarized sample 
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dimensions is observed.  In the line scans of 6.6 (c), the width of the planarized trench 

appears slightly larger than that of the unplanarized trench. This is due to the spreading of 

the beam emanating from the tip of the probe with sample separation. This effect is 

minimal for separation distances less than 6 microns and is characterized in further detail 

in the next section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Experimental results for the imaging of a 5 micron wide 800 nm deep 

planarized trench. Images (a) and (b) are 3D representations of the phase and SFF 

topography data respectively. The planarized feature appears to be about 100nm but the 

subsurface feature is clearly resolved in the phase image. Image (c) indicates line scans 

from the phase data before planarization (red) and after planarization (blue). 

(c) 

(a) (b) 
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6.23 Lateral feature spreading 

 As the probe to sample separation is increased, spreading of the emitted field 

results in a loss in resolution relative to imaging in the near-field. Figure 6.7 represents 

series of images obtained for a 5 micron wide, 800 nm unplanarized trench with a near-

field probe sample separation (a), 2 microns separation (b), 4 microns separation (c) and 

12 microns of separation (d). It is seen that the edges are progressively rounded and some 

of the details on the bottom surface of the trench is lost at larger separation distances. The 

overall shape and size is nevertheless conserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Series of phase images for different probe sample separation distances. Image 

(a) is an image of an 800nm deep, 5 microns wide unplanarized trench obtained with a 

near-field probe/sample separation. Images (b), (c) and (d) were obtained at 2, 4 and 12 

microns separation respectively. It is observed that the edges are rounded of and some of 

the surface details are loss with increasing separation.  

(a) (b) 

(c) (d) 



 

 

88 

In biological cells, the subsurface organelle of interest often protrudes through the 

surface membrane but a substantial portion remains below the surface. In some instances, 

the feature of interest may be completely below the surface. The results of figure 6.7 

suggest that it should possible to determine the shape and size of subsurface features 

several microns below the surface. The cells investigated in this research were typically 

less than two microns thick so it is expected that the “spreading effect” and the loss of 

resolution should be minimal. Figure 6.8 is a plot of FWHM (full width at half maximum) 

width of the trench feature versus separation distance for a 3.4 microns wide planarized 

trench. The blue plot illustrates how the FWHM value of the width of the trench increases 

with separation. This effect is minimal for separation distances less than about 4 microns 

but is notable for greater distances.  

 

Figure 6.8: A plot of the FWHM value for a 3.5 micron trench verses probe/ sample 

separation distance is shown. The FWHW value for a separation of 0 microns 

corresponds to the near-field value.  As the separation increases, the width of the lateral 

dimension of the subsurface feature also increases. This effect is minimal for separation 

distances of less than 4 microns. Most of the samples investigated as part of this research 

were less than 2 microns thick. 

PLOT OF FWHM VALUE FOR 3.4 MICRON TRENCH 

VERSES PROBE/ SAMPLE SEPARATION DISTANCE 



 

 

89 

 6.24 Fabricated structure: Surface/Subsurface 
 

 The surface/subsurface samples consisted of a planarized trench with either red 

blood cells or a 2 micron resist pattern deposited on top. Figure 6.9 depicts the SFF 

topography (a), phase (b) and intensity images (c) for a sample with a surface human red 

blood cell on top a subsurface 10 microns wide trench. The trench was about 500 nm 

deep with a 6 wide micron thick planarization layer. A schematic of the sample is shown 

in (d) with the subsurface result in (e). In the SFF images, only the surface RBC is 

observed whereas both the RBC and subsurface trench is observed in the phase data. This 

is confirmed from the line scans from the SFF and phase images. It is worth noting that 

the nature of the sample is unclear from an examination of the phase data only, without 

prior knowledge.  That fact that a subsurface feature is present in the phase data is only 

apparent after an examination on the topography result. During the image processing 

stage, the topography data is converted to a phase equivalent data and both data sets are 

pre-processes before subtraction as explained in chapter5. The registration process is 

never perfect and a residue error results after subtraction. The result of the subtraction is 

shown in (e). The subsurface trench is clearly observed but the RBC has been effectively 

eliminated. After suppression of the residue error using the algorithm described in 

chapter 5, the error is substantially reduced but not completely eliminated.  

 Thus it seen that it is possible to effectively suppressed surface information in a 

sample with both surface and subsurface features to yield a final image with essentially 

only subsurface information. The sample investigated was quite simple in that there was a 

single dominant surface feature. Although this is often the case with biological cells, it 

was nevertheless decided that a more complex sample with multiple surface features 

would be investigated to test the robustness of the registration algorithm. 
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Figure 6.9: Figure (a) is a shear-force feedback (SFF) topography image of a human red 

blood cell deposited on a 10 microns wide subsurface trench. Images (b) and (c) are the 

corresponding phase and intensity images respectively. Image (d) is a schematic of the 

fabricated sample. Image (e) represents the extracted subsurface image and image (f) 

depicts line scans in the x direction of the SFF and the phase images in (a) and (c), 

indicated by black dotted lines. 
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 Results for the circular resist pattern covered planarized trench are shown in 

figure 6.10. The SFF and phase images are indicated in (a) and (b) respectively and the 

subsurface results in (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.10: Experimental results for circular resist pattern covered planarized trench. 

Images (a) and (b) are the SFF and phase images respectively. 3D and 2D representation 

of the extracted subsurface trench are shown in image (c). The dotted black lines indicate 

the edges of the trench. 
 

The width of the trench as measured before planarization was approximately 2 microns 

with a depth of about 200 nm. A negative resist was used for planarization because the 

optical opacity allowed for the visible detection of the subsurface trench prior to scanning. 

(a) (b) 

(c) 

Trench 
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Thus the 2 micron circular pattern is the negative of that usually obtained. This represents 

a difficult case as there are multiple periodic surface features in the phase result. The SFF 

result depicts only the resist pattern but the subsurface trench is also observed in the 

phase image. The dotted lines in (c) indicate the edges of the trench. It was very difficult 

to register the two images and as such the subtraction procedure resulted in less than ideal 

results. The subsurface feature is nevertheless readily identified. 

6.3 Subsurface imaging: Biological samples 

 One of the primary objectives of this research was to image the subsurface 

intracellular components of biological cells. The most prominent and readily identifiable 

structure of a cell is the nucleus. This organelle is typically several microns in diameter 

depending on the cell in concern. As indicated previously, the shape and size of this 

organelle is often an indicator of the progression or onset of pathological conditions 

including cancer.  

 Malaria is characterized by the development of the plasmodium parasite inside 

red blood cells. Another stated objective of this research was to successfully image the 

plasmodium parasite while inside a red blood cell. There are very few non invasive 

techniques for the imaging of malaria infected RBCS and as such these results may prove 

very useful to researchers in the field of malaria research. The results of the biological 

specimen imaging is provided in the next few sections. 

 6.31 Human red blood cells 

 Most RBCS including those of mammals and birds are enucleated and are 

considered to homogenous [53]. Amphibians, fishes and reptiles in particular have 

nucleated RBCs. Human RBCs are enucleated homogenous with an average refractive 

index of 1.41. Thus a SFF scan of such a cell should appear identical to the corresponding 
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phase result. The subsurface result should also not reveal any significant intracellular 

features as there are none. A sample was prepared by smearing a drop of blood onto a 

glass substrate as describe in chapter 3. Images (a), (b) and (c) indicates the SFF, 

intensity and phase results respectively. The line scans of the SFF and phase data shown 

in (d) indicate a very close match after registration. Images (e) and (f) represent the 

subsurface results before and after residue suppression. It is clear from (f) that there are 

no significant subsurface features. 
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Figure 6.11: Experimental results for a human red blood cell. Images (a), (b) and (c) 

represents the SFF, intensity and phase of the red blood cell. Image (d) indicates line 

scans in the x and y directions for the SFF (red) and phase (blue) images. A very good 

match was obtained after registration. Images (e) and (f) are the subsurface results before 

and after residue noise suppression respectively. 
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 6.32 Fish red blood cells 

A fish’s red blood cells present a very different situation to that of a human being. 

Erythrocytes from the silver dollar fish (Metynnis Argenteus) were examined as part of 

this investigation. The results are shown in figure 6.12.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.12: Images (a), (b) and (c) represent the SFF, intensity and phase images of a 

fish’s red blood cell. Image (d) indicates the 3D representation of the extracted 

subsurface nucleus. The white arrows point to small pits on the surface of the nucleus. In 

image (e), the red line represents a line scan of the surface topography while the blue line 

represents a line scan of the extracted subsurface feature i.e. the nucleus. 
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Figures 6.12(a), (b) and (c) represent SFF, intensity and phase images of a fish’s 

red blood cell. The nucleus protrudes through the surface and this is reflected as a bump 

at the center of the elliptical cell in both images. However, the highest point in the phase 

data corresponds to approximately 400 degrees whereas the highest point in the 

topography data (converted to degrees) corresponds to approximately 300 degrees. Thus 

it is apparent that there exists extra information in the phase which is not present in the 

topography data. The extracted subsurface nucleus is shown in 6.12 (d). The residue error 

has been substantially suppressed and the dominant features are clearly visible. The 

nucleus has an elliptical shape and a much rougher surface than that suggested by either 

the topography or phase data. The white arrows in image 6.12(d) identify tiny pits on the 

surface which is consistent with published descriptions [79].   

Line scans of the surface and subsurface morphology are indicated by the red and 

blue plots respectively in 6.12 (e). It is clear from these plots that the spatial extent of the 

nucleus is greater than that indicated by the rounded bump in either the topography or 

phase image. This is easy to see from the dotted black lines in (e). If the refractive index 

of the nucleus is known, the volume can be easily calculated. Even if this information is 

unavailable, changes in the volume can be determined. 

 Figure 6.13 highlights some of the results for a collection of fish red blood cells. Image 

(a) represents the phase result while image (b) depicts 3D (left) and 2D (right) 

representations of the subsurface nuclei. This result indicates that the registration 

procedure is robust enough to provide excellent registration even if there are multiple 

features of interest in the phase and SFF topography images. It should be mentioned that 

the residue suppression algorithm works best when the feature in concern is away from 
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any edges in the sample. If this is not the case, it is usually very difficult to differentiate 

between the residue noise and the subsurface feature. Fortunately, with most of the 

biological cells encountered, the dominant intracellular features were present near the 

center of the cell and away from the cell boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 6.13: Experimental results for the imaging multiple fish red blood cells. Image (a) 

is a phase image of the cell collection. Image (b) indicates 3D (left) and 2D (right) 

representations of the subsurface results for the group of cells. The three nuclei are 

clearly observed. 
 

 

 

 6.33 Malaria infected cells 
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Malaria is caused by any one of several parasites which invade and eventually destroy red 

blood cells (RBCs). The Plasmodium Falciparum parasite in particular is one of the most 

insidious and virulent microscopic pathogen responsible for this disease. In spite of the 

global effort targeted at managing malaria, this disease results in millions of annual 

deaths worldwide [70]. Upon invasion of human erythrocytes, these pathogens cause 

significant changes to the cell’s surface morphology [80, 81]. The parasite develops in 

distinct stages, consuming the red blood cells’ hemoglobin and converting it to an 

insoluble form known as hemozoin [51]. In the later stages of development, large empty 

regions or vacuoles appear near the parasite where the hemoglobin has been totally 

consumed. Although a significant amount of research has been pursued towards 

understanding the mechanism by which these intracellular parasites evades detection of 

the body’s immune system, much remains unknown.  

 Optical microscopy and florescent microscopy are the two most common 

techniques for investigating these cells [82, 83]. However, in the former, an exogenous 

contrast agent such as Giemsa stain is used and in the later, a fluorescence tag is required. 

With Geimsa staining, the quality of the diagnosis is strongly dependent on the skill and 

experience of the researcher [84]
 
and neither approach can be considered to be non-

invasive. X-ray imaging has been used for malaria studies but the technique can cause 

severe damage to the RBCs [85].  Atomic force microscopy studies of malaria infected 

red blood cells yields high spatial resolution but only surface morphology investigations 

are possible. Higher resolution surface morphology studies are possible with the SEM but 

this requires deleterious and invasive preparation techniques and does not allow for 

subsurface investigation. Confocal microscopy has proven to be a very powerful 
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technique for malaria studies but the process is computationally intensive when 

attempting to reconstruct 3D images of the parasite. 

 There are three discrete stages in the development of the Plasmodium Falciparum 

parasite referred to as the ring, trophozoite and schizoint stages, each with well defined 

characteristics which will be highlighted in the respective results. In the ring stage, a ring-

shaped vacuole is located near the parasite. By the time the cell progresses to the 

trophozoite stage of development, the size of the vacuole has increased significantly due 

to consumption of hemoglobin near the parasite. In the schizoint stage, the parasite has 

self replicated several times and occupies a large percentage of the volume of the cell.  

Series A of figure 6.14 depict the results for the ring stage. Images (a) through (e) 

depict the optical, phase, topography, intensity and subsurface result in each series. In 

image (e) of the ring stage, it is seen that the parasite is relatively small compared to the 

cell and very little of the hemoglobin has been consumed. At this stage, the cell’s surface 

morphology is not drastically altered although it is possible to determine the presence of 

the parasite in either the phase or topography image.  

Series B is indicative of the trophozoite stage. A large circular region is observed 

where most of the hemoglobin has been consumed by the parasite in image (e). The cell 

is clearly deformed with a large bump on one side indicating the presence of the parasite. 

The shape of the parasite at this stage agrees quite well with that of previously published 

results using other imaging techniques [51, 86]. 
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Figure 6.14: Results for imaging of the different developmental stages of the malaria 

parasite.  Series A represents the first stage or ring stage of development. Series B 

represent the trophozoite stage of development and series C represent the final or 

schizoint stage. For each series, the images (a) through (d) represent the optical, phase, 

topography and subsurface images for the respective developmental stage of the parasite. 

In the ring stage, the parasite is tiny and the surface morphology of the cell is barely 

affected. In the next two stages, significant alterations to the surface morphology are 

observed. 
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The final series includes images of an infected cell in the schizoint stage. In this 

instance, the surface morphology departs significantly from that of a normal red blood 

cell. Several bumps are observed on the surface which corresponds to the individual 

parasite. The subsurface image indicates that the parasites occupies most of the volume of 

the cell and are clustered together. These results are in close agreement with the most 

recently published literature on the developmental stages of the Plasmodium Falciparum 

parasite [51, 82, 83]. In each stage, the parasite is readily identified and its spatial extent 

easily determined. Unlike most other techniques, this was achieved without any invasive 

preparation.  

 6.34 White blood cells 

White blood cells or leukocytes play a vital role in helping the body fight infections. 

These cells appear translucent to the naked eye and are very difficult to observe without 

the use of a contrast agent or dye. The white blood cells investigated as part of this 

research were identified optically by painstakingly sifting through the red blood cells on a 

quartz substrate. They are easily differentiated from red blood cells due to their 

translucence appearance and their size. The imaging results for two different leukocytes 

are presented in figures 6.15 and 6.16. The first cell shown in figure 6.16 was identified 

as a neutrophil due to its size (approximately 10 microns in diameter) and overall 

granulated morphology. The SFF topography (a) and phase images (b) indicate a 

granulated morphology which is consistent with expected results. Nuetrophils are the 

most abundant white blood cells and are characterized by a “U” shaped nucleus as shown 

in image (c). 

This cell depicted in figure 6.16 is smooth and agranular and as such can only be 

either a monocyte or a lymphocyte. However lymphocytes are only slightly larger than 
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red blood cells and have a nucleus to cell ratio of almost 1:1. It is therefore clear that the 

white blood cell in question is a monocyte. The nucleus of the cell is clearly identifiable 

in both the topography and phase scans of 6.16 (a) and (b) respectively.  Although the 

two images appear similar, the maximum height in degrees of the phase data is greater 

than that of the shear-force feedback topography information expressed as a phase value. 

Thus it is clear that at least part of the nucleus is subsurface. Also, more detailed 

structures are observed in the phase image when compared to the topography which 

suggests that there is additional information in this data. 

Image 6.16 (c) indicates that the nucleus of the cell is smooth and large. A careful 

observation reveals that the nucleus has a bean-shaped appearance as is typical for these 

cells. This imaging procedure is useful in that it allows for the identification of white 

blood cells without the need for any exogenous dyes. 
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Figure 6.15: Experimental results for a human neutrophil. Images (a) and (b) represent 

the topography and phase images of the nuetrophil respectively.  The images in (c) are 

3D (left) and 2D (right) representation of the subsurface information. This image depicts 

the nucleus which has a typical “U” shape. 
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Figure 6.16: Experimental results for a human monocyte. Images (a) and (b) represent the 

topography and phase images of the monocyte respectively.  The images in (c) are 3D 

(left) and 2D (right) representation of the extracted subsurface information. These images 

present a more detailed view of the nucleus that either the phase or SFF image. 

 

(a) 

(c) 

(b) 

Bean-shaped 

 nucleus 

Detailed 

intracellular 

structure 

Finer detailed are observed in the phase 

image compared to the SFF 



 

 

105 

6.4 Conclusion 

 The hybrid SFF/ scanning phase system has been shown to be effective in imaging 

subsurface features in both fabricated structures and biological cells. In the former, the 

extracted surface results after planarization of RIE etched trenches showed strong 

agreement in shape and dimensions when compared with the results of the pre-

planarizations scans. A spreading effect is observed for thicker samples but this effect is 

minimal for samples less than 4 microns thick. It was also shown that surface and 

subsurface information in the phase data could be reliably decoupled. The decoupling 

procedure proved to be quite useful with regards to biological specimen, allowing for the 

study of intracellular structures. In the case of a nucleated red blood cell, it was possible 

to determine the shape and “true” spatial extent of the nucleus. Given the refractive index 

of the nucleus, it is possible to determine the volume. Even if the refractive index is 

unknown, it is still possible to determine the change in volume with time. This has direct 

application to oncology studies. 

 This technique also allowed for the in-vivo investigation of the malaria parasite 

while inside the host red blood cell. This was achieved without staining or slicing of the 

specimen and using information obtained in a single scan. The subsurface information is 

always integrated data along the optical path of the transmitted beam through the sample 

but for simple, relatively thin (less the 4 microns) cells, it is clear that the results show 

very strong potential for intracellular studies. This approach is ideal for samples with 

isolated subsurface features which are away from the cell boundary.  

 All the results were obtained for dry samples using standard but non invasive 

preparation techniques such as fixing. Such was the case with the white blood cells. 

While red blood cells are able to maintain their shape very well due to their exoskeleton, 
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the same is not necessarily true for other cells. However, the shape of the nucleus is 

typically not affected as significantly due to drying. Nevertheless, investigation to the 

surface morphology biological cells is best pursued in an environment similar to the 

native environment of the cell. For most living cells, this is an aqueous environment. In 

the next chapter, I will present the details and results of modification made to my system 

to allow for imaging in a liquid.  
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CHAPTER 7: IMAGING IN A LIQUID 

 

 

7.1 Introduction 

 

 Biological cells in living organisms are typically surrounded by an aqueous 

medium which plays a critical role in nutrient uptake and waste material exchange. This 

medium also helps to maintain a viable pH environment for the cell. Thus the 

investigation of live specimens is only possible in an aqueous solution which is similar to 

their native interstitial medium. This is considered the “Holy Grail” in biological imaging 

since dynamic physiological processes can only occur in a live cell.  An understanding of 

these fundamental processes is critical to our understanding of the onset and progress of 

pathological diseases such as cancer. An aqueous environment also allows chemical 

agents to be administered to a cell and the effects observed in real-time.  

 As described previously, the damping effect of a liquid on the NSOM tip and 

changes in the liquid level can adversely affect shear-force feedback system. A liquid cell 

with a replenishment system to compensate for evaporation was designed to circumvent 

this problem. As part of this investigation, both fabricated resist structures and rat 

fibroblast cells were imaged. The resist sample was imaged in distilled water and the 

fibroblast cells in phosphate buffer solution. In each instance, the results of the scans in a 

liquid environment compared very well to the scans in air. In the final part of my 

investigation, cell refractometry studies were performed on the rat cells. The refractive 
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index information obtained for these cells in air and water correspond quite well with 

previously published results. In a recent publication, a direct relationship was established 

between the refractive index of certain biological cells and the onset of certain cancer 

[16]. As with this technique, there are several other quantitative phase procedures which 

allow for cell refractometry analysis [13-14], but they either lack the spatial specificity 

affording by a scanning probe system or are technically challenging to implement. The 

results of my investigation into imaging in a liquid environment are included in this 

chapter.  

7.2 Shear-force feedback in a liquid 

 There are three major potential problems when imaging in a liquid; the first 

involves overcoming the surface tension of the liquid, the second involves the reduced Q-

factor due to damping and the third is related to liquid evaporation. I have proposed some 

novel solutions to these problems which will be highlighted in this chapter. 

 7.21 Surface tension of aqueous solution 

 During the imaging process, one of my primary objectives was to maintain a thin 

film of liquid over the sample. This was facilitated in part by the use of an o-ring to form 

a negative meniscus over the sample. However if distilled water is used, the surface 

tension causes “beading” instead of a thin film. It was therefore useful to add a surfactant 

such as an alcohol (isopropanol was used in this investigation) to help reduce the surface 

tension. However, due diligence is required as the evaporation rate is higher for the 

mixture. When imaging the resist sample in a liquid one part of isopropanol was used for 

every four parts of distilled water. This allowed a thin film to be formed over the sample 

with a manageable evaporation rate. 
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 7.22 Reduction in Q-factor 

 When the dithered probe attached to the quartz tuning fork is slowly dipped into a 

liquid, the system experiences a significant damping effect which is proportional to the 

insertion length [87]. In air, the tuning fork has a resonant frequency of 32.76 kHz with a 

Q-factor as high as 7,000. Once the probe is attached, the resonant frequency typically 

increases to between 33 and 34 kHz although it is possible to have a slight decrease. The 

combined effect of changes in the mass and stiffness of the system influences the 

outcome since an increased mass lowers the resonant frequency while an increase in 

stiffness has the opposite effect. A corresponding decrease is observed in the Q-factor 

with the probe attached. Typically values are in the range of 200 to 1000. In my 

experiments, a Q-factor of about 400 with the probe attached was usual for a free 

oscillator. Q-factors of 1000 or more often resulted in an unstable system probably due to 

the time constant setting used on the lock-in amplifier and PI circuit. In practice, an ideal 

Q-factor was in the range of 200 to 400. Upon immersion in a liquid, it was observed that 

there was always a decrease in the resonance frequency and Q factor. If the behavior of 

the system is described using a harmonic oscillator model, it is seen that the Q-factor is 

inversely proportional to the viscosity of the medium as observed. Modeling the behavior 

of the system in a liquid as a forced oscillator, we have 

                                                      (23)                                                             

where the resonant frequency in a liquid is given by ωmax and the resonant frequency of 

the free oscillator is given by ωo. It is seen that as Q decreases, so does the resonant 

frequency. Also, for a slight decrease in Q, there should be a correspondingly small 

change in the resonant frequency in a liquid. Figure 7.1 shows frequency response plots 
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for a mechanically driven tuning fork when the probe is dithered in air (blue plot), and for 

slight (black plot) and deep immersion (red plot) in a liquid. The colored arrows indicate 

the maximum amplitude for the corresponding curve e.g. the blue arrow indicates the 

maximum amplitude for the blue plot. In this investigation and subsequent liquid imaging, 

the prongs of the fork were not allowed to come into contact with the liquid since this 

results in electrical “shorting”. The behavior of the tuning fork is consistent with that of a 

forced harmonic oscillator. The amplitude of the response signal decreased by about 6.6 % 

with “slight immersion” and by approximately 14.2 % with “deeper immersion”. 

Immersion was achieved by applying an electronic signal to the z-axis of the precision 

stage to move the liquid cell towards the fixed dithered probe. It was therefore possible to 

determine that the immersion depth for “slight immersion” was about 10 microns and 

about 50 microns for “deeper immersion”. 

 

 

 

 

 

 

 

 

Figure 7.1: The plots shown depicts the frequency response of a tuning in air (blue), after 

slight immersion in water (black) and after  approximately 50 microns of immersion (red). 

Alcohol was added to the distilled water to reduce the surface tension. The arrows 

indicate the maximum amplitude for the response curve of the corresponding color i.e. 

the blue arrow corresponds to the maximum of the blue curve etc. 
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A Q-factor of approximately 800 was obtained for the tuning fork in air. There was only 

a slight reduction in this value with an immersion depth of up to 50 microns and a slight 

downshift in the resonant frequency. Taking all these facts into consideration, it was 

determined that fiber probe should be only slightly immersed in the imaging liquid. This 

requires a thin liquid film and evaporation compensation. 

 7.23 Effects due to evaporation 

 Using a thin film of liquid over the sample requires evaporation compensation. 

The details of the theory and the experimental setup are described in chapters 2 and 4 

respectively. Figure 7.2 represents line scans of 2 micron circles on 4 micron centers, 

imaged in distilled water without evaporation compensation. A selected region of the 

sample was scanned repeated back and forth in the x direction over a period of about 24 

minutes. As the liquid evaporated throughout the progression of the scan, it is seen that 

noise artifacts start to appear in the line scans. In addition, the height of the feature starts 

to gradually decrease after about 6 minutes. This effect occurs primarily due to a loss of 

sensitivity of the feedback system as the scan progresses.  

 Prior to each scan, the phase difference between the driving signal of the dithering 

PZT and the signal generated by the tuning fork is set at some fixed value (usually minus 

20 degrees). As the probe starts to engage the sample while approaching the near-field, 

this phase value rapidly increased as a result of the increased damping which results from 

the sample interaction. It was determined experimentally that an increase in phase from 

minus 20 to 0 degrees results in a stable point for near-field scanning. For liquid imaging, 

this phase difference is set while the probe is in the liquid. As the liquid evaporates, this 

phase difference increases. Thus the engagement point of the sample with the probe is 
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further away as more liquid evaporates. This leads to a lower resolution and the 

introduction of noise artifacts as the scan progresses. This effect was effectively 

eliminated by compensating for evaporation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Reproducibility line traces in the x-direction for a 2 micron photoresist 

sample in a liquid without evaporation compensation after (a) 3 minutes, (b) 6 minutes, (c) 

12 minutes and (d) 24 minutes of scanning. It is observed that the measured height 

decreases throughout the scan duration. Between 6 and 12 minutes, the first artifacts start 

to appear. This effect is due to a loss in sensitivity of the feedback system. 

 

7.3 Imaging in a liquid: Resist and Fibroblast Samples 

 In this part of the investigation, rat fibroblast cells were imaged in phosphate 

buffered saline. This aqueous solution is ideal for imaging biological specimens because 

it helps to maintain a constant pH. The solution is isotonic in that the osmolarity and ion 

concentration usually matches that of the cell. If the ion concentration of the medium is 

Artifacts 
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too high, water tends to leak out of the cell and shrinkage occurs. If the ion concentration 

is too low, water enters the cell and can cause it to burst. PBS has the added advantage of 

being non toxic to biological cells. Prior to biological imaging, the liquid imaging system 

was testing by imaging a resist sample in both air and water. The results for the resist and 

fibroblast samples are included in the next two sections. 

 7.31 Resist sample 

 The resist sample was fabricated as described in chapter 3. Several scans of the 

sample were performed first in air, then in a solution of distilled water with isopropanol 

added. The scans in both air and in the liquid were highly reproducible. The test resist 

sample had a slightly irregular shape as seen in figure 7.3. The top of the sample did not 

have the characteristic dip in the center which characterized previous samples. It should 

also be noted that the regions scanned in the air and water are not exactly the same. The 

reason for this is subsequent to scanning the sample in air, the NSOM head needs to be 

removed and water added to the liquid cell. This is typically followed by a realignment of 

the optics. Thus the probe is not returned to its previous position over the sample. A 

solution to this problem is to use a CCD camera to monitor the water level and tuning 

fork/probe unit with the NSOM head in place. This would allow water to be added to the 

cell and the liquid level head adjusted without the need to remove the head unit. It is 

important that the prongs of the fork be kept dry and water not allowed to spill from the 

cell into into the precision stage since this would ruin this expensive equipment. The 

camera would also allow for monitoring of the specimen sample without having to open 

the box enclosure and peer through the microscope. 
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 Image 7.4 indicates the result results for imaging 2 microns resist circles in air. 

These scans and those of the rat’s fibroblast cells were performed with evaporation 

compensation. The top two images are 3D and 2D representations of the phase 

information while the bottom images are 3D and 2D representations of the SFF data It is 

seen that the features are slightly bigger than 2 microns and that the height is 

approximately 0.6-0.7 microns if one accounts for slope in the sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Results for imaging of the resist sample in air. The two images at the top are 3 

D (left) and 2D (right) representations of the phase data and the bottom results are 3 D 

(left) and 2D (right) representations of the SFF information.   

 

IMAGING IN AIR 
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Figure 7.4 indicates the results for imaging the same sample in distilled water.  As in 

figure 7.3, the top two images represent the phase results and the bottom two represents 

the SFF data. The height and shape of the features are consistent with the results obtained 

in air. These results were reproducible after multiple scans over the period of several 

hours which verified the efficacy of the evaporation control system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Results for imaging of the resist sample in distilled water with evaporation 

compensation. The two images at the top are 3 D (left) and 2D (right) representations of 

the phase data and the bottom results are 3 D (left) and 2D (right) representations of the 

SFF information.  These results compare quite well with those obtained in air.  

IMAGING IN DISTILLED WATER 
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 7.32 Rat fibroblast cells 

 The rat fibroblast cells were obtained from ATCC (American Type Culture Collection), 

an independent, private, non-profit biological resource center and research organization. 

These cells were extracted from a normal rat embryo and derived from the 3T3 line. This 

line was established in 1962 by two researchers at NYU. The 3T3 has become the 

standard fibroblast cell line with the “3T3” designation referring to the abbreviation of “3 

day transfer, inoculum 3x10
5
 cells”. Thus the original embryonic cells were transferred 

from the original culture every 3 days and inoculated at the rigid density of 3x10
5
 cells 

per 20 cm
2
 dish. Cells with stable growth rates were obtained after 20-30 generations in 

culture before being labeled 3T3.  

Fibroblasts are important cells involved in the synthesis of extracellular matrix 

and collagen for animal tissue. They play an important role in wound healing and are the 

most common cells of connective tissue in animals. The term blast indicates that these 

cells are stem cells. Fibroblasts have branched cytoplasm surrounding an elliptical 

speckled nucleus. I attempted to image the nuclei but the thickness (more than 6 microns) 

and size (more than 100 microns) precluded such an investigation. The cells were fixed 

on a glass substrate and the branched cytoplasm regions imaged in air. The cells were 

then completely immersed in phosphate buffer solution (PBS) and the same regions 

reimaged. The results of these investigations are presented herein. 

The fibroblast cells were fixed onto a quartz glass substrate and imaged in air then 

in PBS. Two different regions labeled region A and region B in figure 7.5 were imaged. 

Each region was imaged a total of three times in air and in the buffered solution. The 

selected regions were chosen to be away from the center of the cell where it was unlikely 
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to find a nucleus or other organelles. It was therefore expected that the content of the cell 

would be homogenous in these two regions. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 7.5: Optical image of rat fibroblast cells as seen under an optical microscope at 

low magnification. The two regions imaged are highlighted as region A and region B. 

These regions are away from the center of the cell.  Magnified images of the region are 

shown below. 

  

 Image 7.6 represents the result obtained for imaging region A in air. The two top 

images are 3D and 2D representations of the phase data while the bottom images are 

similar representations of the SFF data. The results in both images compared quite well 

with each other as expected because the cell is homogenous in this region. Three scans 

were performed over several hours with excellent reproducibility.  
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Figure 7.6: Results for region A of fibroblast cells imaged in air. The two images at the 

top are 3 D (left) and 2D (right) representations of the phase data and the bottom results 

are 3 D (left) and 2D (right) representations of the SFF information.  The phase and SFF 

compare quite well since region A is homogenous. 

 

 Region A was subsequently rescanned with the cells completely immersed in 

phosphate buffer solution. Evaporation compensation was employed for these scans. A 

comparison of the images in air and in PBS indicates that the cell exhibits similar shape 

and height characteristics. This result was highly repeatable and confirmed that there 

were no artifacts induced by changes in the level of the liquid. It also verified that the 

feedback system was sufficiently sensitive in a liquid to allow for the imaging of soft 

samples. 

REGION A: AIR 
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Figure 7.7: Results for region A of the fibroblast cells imaged in PBS. The two images at 

the top are 3 D (left) and 2D (right) representations of the phase data and the bottom 

results are 3 D (left) and 2D (right) representations of the SFF information.   

 

 To verify these results, a second region of the sample was scanned both in air and in 

PBS. The results for region B are represented in figures 7.8 and 7.9. The phase and SFF 

results of figure 7.8 (imaging in air) are quite similar although some of the features in the 

topography image appear larger than the corresponding features in the phase. The overall 

shape and morphology of the features in both data sets are nevertheless consistent.  

 

REGION A: PBS SOLUTION  
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Figure 7.8: Results for region B of the fibroblast cells imaged in air. The two images at 

the top are 3 D (left) and 2D (right) representations of the phase data and the bottom 

results are 3 D (left) and 2D (right) representations of the SFF information.   

 

 Figure 7.9 presents the results for imaging region B in PBS. It is seen that the 

phase and topography (SFF) results are in excellent agreement with regard to the surface 

morphology and size of the feature. As with region A, the reproducibility of the results 

was excellent. 

 

 

REGION B: AIR 
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Figure 7.9: Results for region B of the fibroblast cells imaged in PBS. The two images at 

the top are 3 D (left) and 2D (right) representations of the phase data and the bottom 

results are 3 D (left) and 2D (right) representations of the SFF information.  These results 

are consistent with those obtained in air. 

  

These results confirm that it is possible to obtain simultaneous SFF and phase 

information in vivo. Using this information, it is then possible to examine the spatial 

variations in the refractive index of a cell. This analysis was performed and the results are 

presented in the next section.  

 

 

REGION B: PBS SOLUTION 
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7.4 Cell Refractometry Study 

The integrated refractive index at any point (x,y) on a 3D object is given as;  

   

                                                                                              

                               (24) 

 

 

where λ is the illumination wavelength, H (x, y) is the height of the sample and Δθ (x, y) 

is the measured phase of the sample at the point (x, y). Since H (x, y) and Δθ (x, y) are 

determined directly from the SFF and phase data, it is relatively straightforward to 

determine the refractive index at the point (x, y). As is the case with image subtraction, it 

is critical that the two images are precisely registered.  

For this investigation, the refractive index was determined at five different points 

for regions A and B as indicated in figure 7.9.1. For each region, the refractive index was 

determined both in air and in phosphate buffer solution. 

 

 

 

 

 

 

 

 

Figure 7.10: The two images shown indicate the five points on regions A and B for which 

the refractive index was determined. Each region was scanned a total of three times both 

in air and in water, from which an average refractive index value was determined for each 

of the five point and finally,  for the region. 
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Each region was scanned a total of three times in air and in water. The results of this 

investigation are shown in table 1. Each of the five values for regions A and B represent 

the average refractive index at that point for three successive scans. 

Table 1: The table on the left represents the average refractive index information at five 

different points from regions A for 3 successive scans. The refractive index information 

for scans in both air and PBS are indicated. The table on the right represents the same 

information for region B. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A standard deviation of ± 0.02 was determined for the refractive index value of the 

system in air and water. This was determined by repeatedly scanning a given region of a 

fibroblast cell a total of 10 times in the x direction without y translation. This was 

repeated at 5 different locations for the selected cell. In total, three cells were scanned in 

this manner both in air and in PBS. The selected regions were chosen to be away from the 

cell’s center for reasons previously mentioned. 

Region B     n 

(AIR) 

  n 

(WATER)  

1  1.46 1.42 

2  1.49 1.40 

3  1.52 1.43 

4  1.55 1.44 

5  1.57 1.45 

AVERAGE   1.52 1.43 

Region A     n 

(AIR) 

  n 

(WATER)  

1  1.48 1.46 

2  1.59 1.40 

3  1.56 1.43 

4  1.50 1.44 

5  1.57 1.45 

AVERAGE   1.54 1.44 
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For both regions, we can conclude that the average refractive index (RI) value in 

air is higher than the average value in water, since the difference in the two values (~ 0.9) 

is well outside the margin of error in the measurement. This is predicted from the 

equation n = no + αC where no is the refractive index of the cell’s cytoplasm (~1.33), α is 

the specific refraction increment which depends on the nature of the solute of the 

cytoplasm (e.g. whether proteins or lipids are present and in what proportion) and C is the 

concentration of the fluid which makes up the cytoplasm [88]. Thus when the cell is place 

in PBS, this reduces C and the refractive index n decreases.  

In both air and water, Region A yielded a slight higher refractive index value than 

region B but the difference is with the margin of error and not significant.  The refractive 

index of a cell is strongly influenced by the composition of bimolecular ingredients such 

as lipids, sugars, proteins, etc [90]. Of all the ingredients, proteins are the main 

contributors due to their abundance and high refractive index (1.50-1.58) [91]. In air, the 

average refractive index of regions A and B are 1.54 and 1.52 respectively which is 

probably due to a high concentration of proteins in these regions. The  refractive index 

values obtained for the fibroblast cells in a buffer solution falls within the expected range 

of 1.4 to 1.5 [94]. 

There is a growing interest in the use of refractive index information for the 

identification of pre-invasive and pre-cancerous cells. Before cells become invasive, the 

nuclear architecture changes, becoming enlarged and crowded [92]. The resulting change 

in the refractive index can range from 0.04 to 0.06 [93]. This expected change in the 

refractive index is larger than the measurement error of my system, and is probably 
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detectable using the current setup. Thus the potential exist for oncology studies with 

single cells.  

7.5 Conclusion 

 It has been clearly demonstrated that the shear-force feedback/scanning 

quantitative phase system can be stabilized in a liquid environment. The liquid scans 

were highly reproducible over a period of several hours. This opens up a new avenue for 

in vivo biological studies. It was also demonstrated that cell refractometry analysis was 

possible in both air and in a liquid without any ad hoc modifications. These results are 

applicable to oncology studies since a clear relationship between intracellular refractive 

index and the onset of certain types of cancer has been established. A possible area of 

future research is in high speed imaging. This is discussed further in chapter 8. 
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CHAPTER 8: FUTURE WORK 

 

 

8.1 Limitations of the current system: 

 

 Incorporating a stabilized part fiber/ part air interferometer into a conventional 

near-field scanning optical microscope allows for ultra high optical resolution. The 

resolution of the system is a function of the aperture size of the probe. As the aperture 

size is reduced, there is a corresponding improved resolution capacity which results from 

the restricted spatial extent of the evanescent field from the probe. This improvement in 

resolution is achieved at the expense of a reduction in throughput, which places a severe 

restriction on the thickness of the samples which can be successfully imaged. In spite of 

this, the phase contrast NSOM yields the highest resolution quantitative phase results of 

any contemporary quantitative phase technique. This is the case because without 

exception, these techniques yield diffraction limited results. However, many of these 

techniques are full field. Thus the entire region of interest is imaged in a single frame and 

image acquisition is typical limited by the acquisition rate of the system’s image capture 

device. The Fourier phase contrast microscope for example, has an image acquisition rate 

in the millisecond range [23]. My system by comparison has an acquisition time of 

almost 40 minutes for a scan of a 15 micron x 15 microns with a step size of 100nm. 

Dynamic biological processes occur over the time scale of milliseconds to a few seconds 



     127 

 

[98] and as such are precluded from investigation with the current setup. Towards the 

goal of improving the temporal resolution of the system, there are two distinct approaches 

which may be adopted. The first approach involves the incorporation of a full field 

imaging modality into the current system. In this approach, the system would have two 

modes of operation. In the so called “fast mode”, a large region of interest would be 

quickly scanned to assist in the identification of specific regions of interest. However, 

only quantitative phase data would be acquired. These regions would be subsequently 

scanned in the slow, high resolution mode in which both phase and topography data 

would be acquired.  

 The second approach entails improving the overall temporal resolution of the 

current system (i.e. speeding up the scanning process). Since the rate of phase acquisition 

can be significantly improved relatively easily, the main challenge in this approach would 

be to improve the temporal resolution of the SFF data acquisition. This is an ongoing area 

of research and several approaches have been proposed for achieving this objective [95 - 

97]. Invariably, the maximum scan rate is determined by the resonant frequency of the 

scanner but newer and faster scanners are constantly being developed. In spite of this fact, 

it is probably unrealistic to expect to achieve an acquisition time of much less than 1 

second for a “regular” size scan (15 microns x 15 microns) especially if the sample 

specimen is more than 1 micron in thickness. Nevertheless, I will further discuss the 

details of both ideas in the next two sections. 

8.2 Full Field Quantitative Imaging  

 Many of the contemporary techniques for quantitative phase imaging use a full 

field setup in which the entire region of the sample to be imaged is illuminated. Although 
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there exit a few approaches which are based on image acquisition using a single 

interferogram [7,12], my inclination would be to adopt  phase shifting approach since the 

setup is straightforward and can be easily incorporated into my current setup. Using a 

phase shifting approach, several interferograms (3 to 4 in most cases) are acquired from 

which the sample phase is determined. This was discussed in chapter 1. Subsequent phase 

unwrapping if often required but since the rate of acquisition of the interferograms is 

determined primarily by the speed of the image capture device, these techniques offer 

very high temporal resolution. In published results [23], it has been demonstrated that 

full-field phase images can be acquired in milliseconds. It may be possible to adapt the 

current system for full field imaging using a cleaved probe instead of a tapered NSOM 

probe. This would also allow for the imaging of samples much greater thicker than 6 

microns and for scans sizes far greater than the usual 15 microns x 15 microns. I would 

suggest using phase shifting interferometry to acquire at least four interferograms which 

would then be used for phase determination as described in chapter 1. Once a specific 

region of interest is identified, an NSOM probe can then be spliced onto the cleaved fiber 

and the sample imaged in a high resolution mode.  

8.2.1 High speed NSOM 

 It has been established that high speed NSOM imaging requires a quartz tuning 

fork with a resonant frequency of at least 100 kHz. The tuning forks used in my setup 

have a resonant frequency of approximately 32.76 kHz. At 100 kHz, the system has a 

much faster response time since sample information is accessed much more rapidly. This 

would require a faster lock-in than that currently used (current lock-in operate in the kHz 

range) and a reduction of the time constant on the feedback PI circuit. However, it is 
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important to keep in mind that an inherent limit to data acquisition using this approach is 

the resonant frequency of the precision stage.  Fortunately, a high frequency tuning fork 

is not necessarily required for high speed SFF imaging. In a paper by Humphris et al, the 

author was successful in achieving an acquisition rate of 100 frames per second by 

vibrating a probe with amplitude of several microns instead of a few nanometers which is 

typical. Using a 32.76 kHz tuning fork, the author was able to obtain a fast line scan for 

each oscillation cycle of the probe, and a slow scan as the probe was advanced. Thus the 

amplitude of the probe oscillation dictated the scan size in one direction and the 

displacement during advancement in the slow line scan determined the scan size in the 

orthogonal direction. My preference would be to use a high frequency fork and to operate 

the system well below the resonant frequency of the stage, but it is nevertheless possible 

to significantly reduce the data acquisition time for the SFF system. 

8.2.2 High speed scanning quantitative phase 

 The temporal resolution of the quantitative phase imaging component of the 

current system can be significantly improved by increasing the modulation frequency to 

the fiber wrapped PZT shown in figure 2.1. Commercially available ceramic cylindrical 

PZTs can be modulated at frequencies upwards of 100 kHz, which is 100 times faster 

than the current modulation. However, heating of the actuator at these high frequencies 

can potentially result in thermal instability problems. Nevertheless, simply increasing the 

modulation frequency of the fiber wrapped PZT and appropriately adjusting the time 

constants on the lock-in amplifiers and PI circuits is sufficient to meet the stated objective. 

The lock-in in current use is the SR830 which operates at frequencies ranging from 1 

millihertz to 100 kilohertz with an adjustable time constant from 10 microseconds to 30 
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kiloseconds.  The time constant of the PI circuit which controls the galvanometer in the 

current setup, was reduced to the point where the motion of the plate was severely under-

damped. Thus there exists significant unutilized capability within the current system even 

without increasing the modulation frequency. 

 Further capacity and far greater speeds can be achieved via acousto-optic 

frequency shifting or heterodyne interferometry. The basic idea of heterodyne 

interferometry is to introduce a small frequency shift Δf between two interfering beams. 

This is typically accomplished using an acousto-optic modulator (AOM) which is a 

device which makes use of the acousto-optic effect to diffract and shift the frequency of 

light using sound waves. Commercially available AOMs can produce frequency shifts 

ranging from a few hundred kilohertz to several hundred megahertz. Acousto-optic 

modulators operating at 40 MHz and below are cheap and widely available. The SR 844 

lock-in can operate at frequencies as high as 200 MHz and is compatible with most 

commercially available AOMs. Acousto-optic modulators produce a relative frequency 

shift between interfering signals which results in an intensity modulated interference 

signal at a beat frequency equal to the shift.  

 A proposed setup is shown in figure 8.1. The AOM is placed in one of the output 

arms of the bi-directional coupler to exploit the stabilization system of the current setup. 

For data acquisition rates in the millisecond time scale, environmentally induced noise is 

unlikely to exert much of an influence on the system. If this is the case, the AOM can be 

placed immediately after the laser source with the shifted and un-shifted components 

launched into separate, uncoupled input arms. In either setup, the detected output signal 

will be modulated at a beat frequency equal to the frequency shift between the light 
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traversing the reference and sample arms. Induced phase in the sample arm can be 

extracted by demodulating the interference signal using a lock-in amplifier referenced at 

this beat frequency.  

 It can be shown that the electric fields for the sample and reference arms of the 

interferometer shown in figure 8.1 are given by E1cos(ω1t+θs) and E2cos(ω2t)  

respectively where θs is the sample phase, ω1=2π(f+Δf) and ω2=2πf. After filtering out 

high frequency and dc terms, the output signal is given by E1E2cos(Δf+θs). Synchronized 

detection of the heterodyne signal with a high speed lock-in allows for the extraction of 

the phase θs. This information can then be used to actively adjust the angular position of 

the precision galvanometer as explained in chapter 2, which would obviate the need for 

phase unwrapping.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1: Experimental setup of a heterodyne scanning system for rapid phase data 

acquisition. An acousto-optic phase modulator in the reference arm outputs a signal given 

by f+Δf where Δf is the frequency shift introduced by the modulator. The light in the 

sample arm has a frequency of f. Thus the resultant interference signal is intensity 

modulated at Δf. A high speed lock-in is used to demodulate this signal and extract the 

sample phase. 
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It should therefore be possible to complete full scans with acquisition rates of a few 

seconds and potentially in the millisecond time scale, without the need for post imaging 

unwrapping. A procedure similar to the one proposed here has been successfully 

implemented in an NSOM but without environmental stabilization and real-time 

unwrapping [99].  

8.3 Conclusion 

 A novel procedure has been presented for the investigation of subsurface 

intracellular features. This technique is noninvasive and requires only a single scan for 

the acquisition of the data required for subsurface information extraction. With only 

minor modifications, it was possible to perform cellular refractometry studies on 

biological samples in an aqueous environment. The system has the drawback of a long 

acquisition time. This is balanced by the ultra-high resolution capability for thin samples 

but the low temporal resolution essentially excludes dynamic studies. Although this 

system can be sped up, it is in my opinion inherently unsuited for dynamic studies. 

Exceptions would include dynamic processes which occur over a very long period of 

several seconds to a few minutes.  I believe that the future of this instrument lies in a dual 

mode operation. In the high resolution mode, the instrument would operate in a scanning 

regime acquiring simultaneous SFF topography data and phase information. In the fast 

mode, the instrument would operate in a full-field high temporal resolution regime 

acquiring only phase information. Nevertheless, the heterodyne technique previously 

described should allow for a much shorter acquisition time which is always desirable. 
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APPENDIX A: SAMPLE FABRICATION 

 

 

Prior to RIE etching, a mask was created by first spin coating the substrate with 

HMDS adhesion promoter at 4000 rpm for 70 seconds. The promoter was allowed to sit 

on the substrate for 60 seconds before spin coating.  This step improved the likelihood 

that the smallest photo-resist features would adhere to the substrate in the next stage of 

the fabrication process. S1813 resist was then spun onto the substrate at 2500 rpm for 

30seconds followed by 5000 rpm for 30 seconds. The resist was soft baked at 115 
˚
C for 

60 seconds. This was followed by UV exposed for 22.4 seconds at 7.64 mW /cm
2
. After 

exposure, the sample was baked a second time for 60 second at 115 
˚
C. The desired 

irradiation for optimum photo-activation is 120mJ/ cm
2
 so the exposure time will depend 

on power rating of the UV lamp which should be determined when the equipment is first 

turned on. Development was performed using (1:5) 354 developer (1 part developer 4 

parts distilled water) for 40 seconds. Finally, the sample was hard baked at 115 
˚
C for 5 

minutes. 

The resulting photoresist sample was used to as a mask for RIE etching as 

described in chapter 3. Using the STS Advance Oxide Etcher system available in the 

clean room, a recipe was used which included a mixture of C4F8, H2 and He gases at flow 

rates of 10 sccm (standard cubic centimeter per minute), 174 sccm and 8 sccm 

respectively. A pressure of 20 mT and a power or 250 W was chosen. An etch rate of 62 

Angstroms per second was determined for quartz glass using the aforementioned receipe. 

Therefore, to etch 1 micron deep structures, the total time required is just over 2.5 

minutes. The etcher system was designed to accommodate 6
˝
 diameter wafers but the 

glass substrates were only 1
˝
 square in size. An aluminum paste has used to adhere the 
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substrate to a “dummy” wafer prior to etching. The paste was cleaned afterwards using 

isopropanol. It is important that the substrate be place in the middle of the wafer to avoid 

the wafer tipping over inside the chamber during the sample loading and unloading 

process. After etching, Removal of the resist mask was achieved by etching the sample in 

piranha solution. 

The most important step of the fabrication process is planarization. This was 

performed using SU8 photoresist because it was easier to optically locate the underlying 

structure compared to using S1316 or PGMI resist which are more opaque. Planarization 

was achieved by overlaying several layers onto the etched substrate. Each layer was 

heated to ensure reflow and cross-polymerization of the resist. Cross polymerization is 

desired to ensure that the planarization layer is unaffected by the subsequent lithography 

procedure for the deposition of surface structures on top of the planarized subsurface 

features. After each layer, the degree of planarization was determined using a 

profilometer. Three layers were sequentially placed onto the etched substrate and spun at 

2000 rpm for 30 seconds. The estimated thickness of each layer was approximately 2.4 

microns. The glass transition temperature of SU8 is 210 
˚
C so the substrate was heated to 

215
˚
C for 15 minutes. This resulting in planarization to within 100 nm for 1 micron 

features. Fewer layers were required for features much less than 1 micron.  

The final step in the sample fabrication process involved the deposition of resist 2 

micron circles onto the planarized layer of the subsurface sample. A negative resist was 

used to create the pattern since the underlying trenches were difficult to observe optically 

when a positive resist such as S1813 was utilized. Subsequent imaging of the subsurface 

features involves carefully placing the NSOM probe near the edge of the feature prior to 
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scaning, hence it is critical that the subsurface features were optical visible through the 

resist layer. SU8 resist was spin coated onto the planarized layer at 4000 rpm for 30 

seconds. The layer was the soft baked for 100 seconds at 95
˚
C prior to exposure. The 

sample was exposed for 7 seconds followed by a post exposure bake for 60 seconds at 

95
˚
C. Development was performed for 10 seconds followed by a hard bake at 180

˚
C for 

10 minutes. The features developed were the negative of the mask used.  
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