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ABSTRACT 
 
 

PRASANNA REDDY KUSAM. Methods to estimate link level travel based on spatial 
effects. (Under the direction of DR. SRINIVAS S. PULUGURTHA) 

 
 

Annual Average Daily Traffic (AADT) is used in several planning, roadway 

design, operational and safety analyses by transportation planners and engineers. Existing 

methods are very complex and do not adequately address the modeling needs. Errors and 

inaccuracies in a traditional four-step method get carried to later steps often resulting in 

incorrect estimates of travel demand. The primary focus of this research is to develop a 

systematic and simplified methodology to estimate link level travel on roadways. The 

proposed methodology involves scientific principles and statistical techniques, but 

bypasses the tedious four-step method. Two spatial methods, first one based on “spatial 

proximity” and second one based on “spatial weighting”, are proposed to estimate link 

level travel. While the former method investigates to identify ideal “proximal” distance to 

capture spatial data, the later method involves application of “spatial weights” that 

decrease with an increase in distance to integrate spatial data from multiple buffer 

bandwidths. Generalized Estimating Equations (GEE) models are developed for both the 

methods using Poisson and Negative Binomial distributions with and without network 

characteristics to facilitate transportation planning and analysis. Validation of the 

developed models is carried out using Chi-Square Statistic test. The goodness of fit 

statistics indicates that Negative Binomial models performed better than Poisson models. 

Models with network characteristics performed better than models without network 

characteristics. Model validation results indicate that link level travel can be accurately 

estimated using both the spatial methods. 
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CHAPTER I: INTRODUCTION 
 
 

Growth in population along with increased human activity and settlement in and 

around cities has completely changed the urban environment and its landscape over the 

past few decades.  This had a direct impact on travel demand, traffic congestion, and 

associated air quality problems. Economic losses due to traffic congestion are noteworthy 

during the last two decades. A total delay of 36 billion hours and an associated combined 

delay and fuel waste cost of $959 billion (adjusted to year 2005 dollars) occurred during 

this period. Congestion cost due to delay and excessive fuel wastage in 2005 itself was 

$78 billion according to “The 2007 Urban Mobility Report”. Travelers burnt 2.9 billion 

gallons and wasted 4.2 billion hours on roads in 2005 due to congestion. The cost of 

wasted fuel and delay per traveler was $710 in 2005 compared to an adjusted $260 in 

1982 (Schrank and Lomax, 2007). Also, the present transportation infrastructure 

capacities are becoming inadequate to cater to the current needs of the users. This is 

expected to worsen in the future.  

Congestion on road network occurs due to an imbalance between supply and 

demand (i.e., when demand exceeds capacity).  Understanding and identifying the factors 

causing travel and thus congestion helps to accurately estimate and forecast travel and its 

growth in the future. Accurate estimation of travel demand facilitates planners to plan, 

propose and prioritize infrastructure projects for capacity improvements. It helps to 

evaluate and select strategies to provide remedial measures to the new and existing 
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infrastructure and mitigate congestion related problems. Strategies to reduce congestion 

include capacity expansions, congestion management using advanced or intelligent 

transportation systems, public transportation, reduced or staggered work hours, mixed 

and dense land use development, and improving non-motorized transportation facilities to 

name a few. 

1.1 Background 

Traffic volume data for interstates, major and minor thoroughfares (or arterials) 

and local roads are necessary for transportation planning, roadway design, congestion 

management, scenario and trend analysis, before and after studies of newly added 

transportation infrastructure, and in several other transportation related decision making 

processes (Zhao and Park, 2004; Goel et al, 2005). Traffic volume for a particular 

highway is defined as the number of vehicles passing a specific point on the highway in a 

given lane or direction during a specified time interval (Roess, Prassas and Mc Shane, 

2004, page no. 106).  The unit of time considered is “per day” for planning and general 

analysis purposes whereas “per hour” is used for detailed investigations such as traffic 

control and operations. Commonly known daily volume measurements are Average 

Annual Daily Traffic (AADT), Average Annual Weekday Traffic (AAWT), Average 

Daily Traffic (ADT) and Average Weekday Traffic (AWT). Of these, AADT is of prime 

importance for many planning and analysis purposes. 

Use of AADT can be broadly divided into four transportation engineering areas, 

namely, planning, design, traffic operations and safety. A summary of uses of AADT in 

each of these areas is discussed below.  
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Planning and Design: 

• as an indicator of roadway usage and congestion levels; 

• as an important variable in geometric design; 

• for planning purposes such as determining capacity (number of lanes), type of 

road and additional links to carry the estimated AADT smoothly and effectively 

and to validate planning models; 

• to estimate vehicle miles traveled, and traffic flow between origins and 

destinations; 

Operational and Safety Analysis: 

• to select operational methods, intersection features and signal controls, and to 

conduct operational analysis for finding vehicle delays, density and level of 

service (LOS); 

• to compute crash rates and identify high crash locations for safety analysis. For 

example Section 1401 of SAFETY-LU requires all the states to report top 5% of 

locations requiring the most severe highway safety needs. AADT estimates help 

analysts to evaluate the safety needs of high crash locations based on the demand; 

Other Uses: 

• to predict, evaluate and prioritize transportation infrastructure needs; 

• to assist in air quality conformity analysis and decision making process; 

1.2 Motivation  

 Travel demand modeling is part of Urban Transportation Planning Process 

(UTPP) employed by many metropolitan organizations to estimate traffic (AADT) on 

urban roads. Since the 1950s, the traditional sequential Four Step Modeling (FSM) 
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process has dominated transportation planning in developed countries. FSM typically is 

an aggregate zonal level analysis that restricts consideration of spatial variations of 

factors influencing travel demand in the estimation process. Due to its nature of trip 

based serial step by step approach, it cannot address all the aspects of demand jointly and 

in the presence of congestion. The errors, assumptions and relaxations are carried over 

throughout the process. It lacks behavioral attention, sensitivity to policy changes, and 

temporal variations. Also, travelers might not follow the same sequence of steps defined 

in the FSM.  

To address problems inherent in the FSM process and to avoid its limitations, 

researchers developed combined travel demand models, disaggregate behavioral/activity 

based models, and made estimations using traffic counts. Each model/method has its own 

limitations and drawbacks. Combined travel demand models are developed to account for 

error transfer between the steps with success in small scale applications only.  Also, an 

aggregate model by itself, spatial variations is ignored in this modeling process. 

Disaggregate models require a lot of data and are typically suitable for small scale 

applications. Though it became computationally easier with the advancement in 

processing and computing technology, data collection is a very difficult problem for 

activity based models. Tracking each and every individual’s activity (a sample is 

collected in general to make interpretations) and incorporating them in the modeling 

process for an entire metropolitan area is not an easy task. Therefore, there is reluctance 

among practitioners to shift entirely from FSM to these other methods. 
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Estimation using short term traffic counts is another easy and useful method but it 

does not give accurate results. AADT is estimated from short term and long term traffic 

counts using various seasonal and weekly factors on roadway links. But there is a large 

difference between the available traffic counts to the number of links and roads in a huge 

transportation network. It is difficult, practically impossible, and economically not 

feasible to conduct traffic counts on all the roadways. At the same time, estimating traffic 

from a very few number of counts available leads to uncertainties and inaccuracies.  

To summarize, the estimation process in previous travel demand models are 

complex, data hungry, and time consuming. The transfer of errors is unavoidable. These 

models do not account for spatial variations of the characteristics influencing travel 

demand.  Researchers in the past did not attempt to estimate link level traffic directly 

using the spatial characteristics of travel demand. Those that attempted did not consider 

the effect of spatial proximity or integrating data using spatial weights that decrease with 

an increase in distance. There is a need to develop, a simple and systematic methodology, 

to estimate link level travel bypassing the tedious FSM process. Such a methodology 

should use scientific principles, spatial analytical methods, and statistical techniques for 

accurate estimation of traffic. It should be easy to adopt at any scale, size and level. 

1.3 Problem Statement 

Due to rapid urbanization and sprawl, supported by huge transportation 

infrastructure investments and policies, urban settlements became segregated. As a result, 

urban citizens have to travel to work, shop, and perform various daily activities typically 

from their places of residence.  Various modes of travel such as walking, bicycle, transit 

and vehicle are used for travel. While walking and biking trips in general are less than 
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“one-half” or “one” mile; trips more than “one” mile are carried out using vehicular 

mode. Land development that typically takes place along the transportation corridors 

allows various roadways to attract traffic for certain distance (say “five” miles) 

depending on the level of urbanization and road network system. Various road functional 

classes are used in their journeys. Higher functional classes typically attract more traffic 

supplied by lower functional classes, in a hierarchical order in general.  

Each functional class of roadways collects traffic at varying distances. Lower 

level functional classes such as driveways and local roads collect traffic from local land 

developments. These lower functional classes feed major streets and arterials that serve 

comparatively larger areas to move people and traffic. Major roads and arterials generally 

feed freeways/expressways that serve an entire region. The characteristics as well as 

level-of-service provided by these functional classes vary. User’s expectation of level-of-

service offered by the functional classes also varies. Further, higher functional classes are 

also given more priority in allocation of funds for improvements by transportation 

agencies.  Therefore, there is a need to capture spatial characteristics that influence travel 

demand such as, demographic, socio-economic and land use data at various distances and 

develop models for various functional classes. Assessing models developed by capturing 

data at various “proximal” (accessible) distances helps to select the best model to 

accurately estimate traffic by road functional class. 

It is well known in the literature that the effect (travel) decreases with increase in 

distance (one type of accessibility measure).  Combining data captured at various 

accessible distances by applying gradually decreasing weights would improve the 

accuracy of the models. Therefore, spatial variations of demographic, socio-economic 



7 
 

   
 

and land use characteristics based on accessible distances and spatial weights that 

decrease with an increase in distance (analogous to distance decay) should be 

incorporated in the estimation process.  

1.4 Research Goal and Objectives 

The primary goal of this research is to develop methods and assess models to 

accurately estimate link level travel or AADT for transportation planning, operational and 

safety analysis.  Several objectives were identified to achieve this goal. They are: 

• Identify on-network characteristics (such as number of lanes, and speed limit) and 

off-network characteristics (such as area type, demographic, socio-economic, 

employment, and land use) that explain travel demand with minimal multicollinearity.  

• Develop models to estimate travel demand for the following road functional classes 

as a function of on-network and off-network characteristics.    

(i.) Freeway/Expressway   

(ii.) Major thoroughfares 

(iii.) Minor thoroughfares 

• Examine the effect of “spatial proximity” to extract and capture off-network 

characteristics and identify the most appropriate network-accessibility to develop 

models. 

• Develop and assess whether models developed by integrating data from different 

buffer bandwidths based on “spatial weights” that decrease with an increase in 

distance would yield better results than models based on “spatial proximity”.    

• Examine the effect of spatial dependency of network characteristics by considering 

the role of upstream and downstream network links in estimating traffic on a link. 



8 
 

   
 

• Compare outcomes with field counts and demonstrate the applicability of models to 

estimate traffic. 

1.5 Organization  

The proposed methodology in this research deals with the estimation of traffic on 

roadway links for various road functional classes. Various on-network and off-network 

characteristics data were considered as independent variables in the development of 

models. On-network characteristics of the study links, as well as upstream, downstream, 

and cross-streets network links, were considered to account for spatial dependency. In 

addition to the socio-economic and demographic characteristics, land use characteristics 

were also considered to capture the travel/traffic demand accurately.  

Spatial buffer widths of varying sizes are considered to capture the off-network 

data and develop models. Two spatial methods are used to develop models in this 

research, namely, “spatial proximity” and “spatial weighting”. Incorporating network 

characteristics in the estimation process helps to directly estimate traffic on roadways for 

analysis purposes. On the other hand, models developed without network characteristics, 

facilitates estimation of travel demand for planning purposes. An assessment of models 

based on several scenarios is carried out to select the best model to estimate traffic. While 

comparison of models to estimate travel using various methods helps to identify the best 

model to accurately estimate traffic, model validation using actual traffic counts also 

helps to compare predictive capability among the models. The estimation of traffic on 

roadway links usually accomplished in the final step of the FSM process is achieved 

directly using the proposed methodology. The methodology is easy to adopt and can be 

applied universally to urban settings of any size and level.  
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The remainder of the dissertation consists of seven chapters. Chapter II discusses 

various travel demand estimation/modeling techniques such as sketch planning, O-D 

estimation, the traditional four step method, combined travel demand models and their 

merits and demerits. Various models to estimate AADT using short-term traffic counts 

and their limitations are also discussed.  Further, various spatial principles and methods 

like accessibility, gravity principles and geographic weighted regression are introduced. 

A brief discussion of statistical analysis methods and distributions is also presented. 

Chapter III describes the proposed methodology.  Data processing involving data 

integration and measuring accessibility are explained. The spatial density concept to 

integrate data from different buffer bandwidths based on spatial weights that decrease 

with an increase in distance and its application in a GIS environment is illustrated. 

Statistical analysis procedure adopted is discussed leading to the data compilation, and 

results based on various spatial methods in the following chapters.  

Chapter IV describes the selection of study area, data collection, design of sample 

size, and various characteristics of the data considered for the analysis. Chapter V and VI 

presents results for various models developed to estimate AADT based on “spatial 

proximity” method and the “spatial weighting” method, respectively. Poisson and 

negative binomial regression models results were presented for all road functional 

classes, freeways/expressways, major thoroughfares, and minor thoroughfares with and 

without network characteristics. An assessment is carried out based on the model results. 

Chapter VII provides model validation results. Finally, a summary of findings, 

conclusions, and potential for future research are presented in chapter VIII. 



CHAPTER II: LITERATURE REVIEW 
 
 
2.1 Travel Demand Modeling 

To estimate the demand for travel and understand the travel patterns, Metropolitan 

Planning Organizations (MPOs) conduct traffic and planning studies. Travel demand 

forecasting is a part of the planning process which predicts the traffic volumes, flows on 

links of a road network and transit patronage in the future. The process considers socio-

economic, demographic, land use and any new developments or transportation 

infrastructure projects in a region. The basic objective of this process is to provide 

comprehensive and continuing guidance for the development, evaluation and 

implementation of future transportation planning proposals, policies and in prioritizing 

projects to allocate available funds for future investments.  Various policy evaluations are 

carried out in a planning process that would impact travel or transportation with new 

projects under consideration. Various methods and models used in practice in the 

transportation planning process are discussed next. 

2.2 Simple Transportation Demand Models 

2.2.1 Sketch Planning  

Sketch planning is a simple to use, less data intensive model with outcomes 

sufficient to prioritize and test policy options, transit pricing policies and infrastructure 

investment programs primarily in the very initial stages of the planning process (Ortuzar 

and Willumsen, 2001). Zahavi’s (1979) Unified Mechanism of Travel (UMOT) model 

based on consumer behavior and utility maximization of available opportunities, 
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represented by total daily travel distance under travel cost (money) budget constraints, is 

a typical example of this kind.  

2.2.2 Estimation using Traffic Counts 

 Traffic counts can be used to estimate origin destination matrix. Unlike the 

traditional interview-based surveys, traffic data using in-pavement and video sensors 

collect vehicle information automatically and require very minimal man power. 

Moreover, the traffic data collection does not disrupt travelers, unlike the conventional 

survey approaches. Several studies have been conducted to estimate Origin-Destination 

(O-D) matrices from traffic counts. Several models and algorithms were developed to 

estimate O-D matrix from traffic counts – Van Zuylen and Willumsen (1980) used 

information minimization and entropy maximization approaches. Fisk and Boyce (1983) 

adopted a network equilibrium based approach, Cascetta (1984) used a generalized least 

squares method, Reddy and Chakraborthy (1998) developed fuzzy inference based 

algorithms, Baek et al. (2004) used genetic algorithms to estimate multi vehicles O-D 

matrix.  

Abrahamsson (1998) attempted to provide a literature survey classifying different 

models based on transportation modeling and statistical inference approaches, and 

gradient based solution techniques. Traffic counting stations and the number of traffic 

counts available in a regional network are limited, typically far less than the number of 

links available to obtain solutions. Traffic count locations and disappearance of traffic 

flow at link ends are a few problems associated with estimation using traffic counts. 

Associated problems and alternatives are discussed in detail later in the report. 
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2.3 Traditional Transportation Planning Models 

Urban transportation planning in North America started in the year 1953 when the 

first transportation study was conducted in Detroit, Michigan followed by Washington 

D.C and Chicago, Illinois in the next two to three years. Later, many metropolitan areas 

in North America and developed European countries started conducting major 

transportation studies. The traditional sequential Four-Step Model (FSM) progressively 

evolved into an established methodology over the past fifty to sixty years. It is used to 

estimate and forecast traffic on the road network.  The FSM consists of trip generation, 

trip distribution, mode split and traffic assignment derived from the travelers necessity to 

perform an activity from available choices. 

 The FSM requires a significant amount of data to define travel and transportation 

systems. The transportation network is generally represented as a graph with links and 

nodes. A variety of travel and activity surveys supplements the travel or activity data 

needed for the FSM. The information gathered by such surveys is typically aggregated to 

a zonal level of convenient size that represents a group of individuals or households over 

geographical space. The zones are typically termed as traffic analysis zones (TAZ). 

Defining the TAZs is an important part of modeling travel demand because the level of 

aggregation has a significant effect on the results and ultimately the policy measures.  

The selection of TAZ size and number depends on several factors – 

socioeconomic, demographic and land use characteristics and also on the project 

objectives and the type of study conducted. The size and area of the TAZ plays an 

important role throughout the FSM, from calculating the number of trips generated from 

each zone to trip distribution and assignment. The selection of routes gets complicated 
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with smaller TAZs (more number of internal zones). The smaller the area of a TAZ, the 

greater the detail captured of an area with a tradeoff between modeling complexity and 

computational tractability. While modeling travel demand, regional barriers such as 

county, city and municipal jurisdictions are typically ignored and the region as a whole is 

considered. The trips expected from areas out of the study area are modeled as external 

zones or stations, connected to the network on its periphery. The trips originating from 

each TAZ are loaded on to the network from the centroid of the TAZ to physical links in 

the network using centroid connectors. A centroid typically represents the attributes of 

the entire TAZ. The basic sequential FSM is presented next, though the order of sequence 

may not be the same in practice. A brief overview and deficiencies in each step are also 

discussed.  

2.3.1 Trip Generation 

Trip generation is a process of estimating the total number of trips produced or 

attracted by each TAZ (at an aggregate level) as a function of socio-economic, 

demographic, employment and land-use characteristics. Trip productions (P) and 

attractions (A), termed in a sense synonymous as the total number of trips produced 

(origins) should be equal to the total number of trips attracted (destinations) by each TAZ 

in the system (study region). Because trips produced in an origin should have a 

destination, all the productions in origin zones should be balanced by trip attractions in 

the destination zones in the study region. The number of trips produced in a TAZ 

commonly from home (origin) depends on population size and density, household size, 

structure, income levels, car ownership, and accessibility. On the other hand, trip 

attractions depend on employment, land use type (industrial, commercial, retail, and 
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recreational) and floor space available. Trips are typically classified by purpose (home 

based work, home based other and non-home based trips) and time of day (AM, PM). 

The main problem with trip attractions is the data availability. While significant progress 

and understanding has been observed in the production models, literature documents 

limited research for models based on trip attractions. Data collection efforts for modeling 

trip attractions were also observed to be minimal in practice. Trip attractions are 

primarily indices of relative attractiveness of zones helpful in later stages (trip 

distribution) of the FSM. Trip generation (P/A) is generally carried out using two 

methods, linear regression analysis and the cross classification/category analysis (Ortuzar 

and Willumsen, 2001).  

Multiple Regression Analysis: 

Multiple regression analysis derives a linear relationship between the number of 

trips generated, a dependent variable, and different explanatory or predictor variables, 

typically termed as independent variables, with parameters to explain the weight of the 

variables in determining the dependent variable. Trips can be estimated at TAZ or 

household level with household level values typically aggregated to TAZ level. 

Regression analysis employs strict statistical assumptions like linearity, normality and 

homogeneity (variances of the observed data are similar). The presence of correlation 

between the selected independent variables is a major concern that leads to unstable 

regression parameter values. In the spatial context of trip generation models using 

regression, spatial dependency and heterogeneity properties have significant ill effects in 

parameter estimation (Miller and Shaw, 2001). Spatial dependency is a phenomenon in 

which independent variables are related to each other over space (often measured as the 
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degree of spatial autocorrelation). Spatial heterogeneity is an inadequate representation of 

estimated parameters of spatial model at the local level, because variables are non-

stationary over space. Problems of spatial heterogeneity can be addressed with newly 

developed Geographically Weighted Regression (GWR) technique (discussed in later 

sections of the report) that allows variation in the independent and dependent variables at 

local level. The parameters are estimated using weighted least squares based on local 

weighting functions.  

Cross-classification/Category Analysis: 

Regression based trip generation models dominated until the late 1960’s (Ortuzar 

and Willumsen, 2001). Later, many preferred category or cross-classification analysis to 

regression models in the FSM. Various attributes of household data are grouped to 

classify under each category. The response of such cross-classification is estimated from 

the cell values of each category. The advantages of this method are (Ortuzar and 

Willumsen, 2001): groupings are independent of the zone system, no prior assumptions 

of the relationship are required (in regression analysis a linear relationship is assumed at 

the beginning itself) and relationships can vary in each category by the group classified. 

The disadvantages are that the classification is restricted by the upper and lower ends, 

there is no statistical goodness of fit and a large sample size is required for reliable 

results. 

Trip production estimates are generally considered superior and comparatively 

well defined than attractions. Once the trip productions and attractions are estimated, they 

are matched using trip balancing techniques for consistency typically by a factor based on 



16 
 

   
 

total trip productions (since production estimates are comparatively more reliable). This 

is necessary, especially in the subsequent trip distribution step of the traditional FSM. 

2.3.2 Trip Distribution 

Trip distribution attempts to model the way in which the generated or attracted 

trips to various zones are linked. Principles from different areas like physics (gravity 

model), sociology and psychology (intervening opportunity and destination choice 

models) were used to demonstrate the urban travel phenomena. The gravity model 

adapted from Newton’s gravitational law of physics is commonly used in trip 

distribution. According to the method, the trip attractions between origin-destination 

TAZs diminish with an increase in the distance between the TAZs.  Growth rates 

observed from the previous year data and experience were also generally applied for trip 

distribution (Stopher and Meyburg, 1975).  However, the traditional gravity model does 

not consider temporal variations of trips, special attractions, and future developmental 

attractions. Moreover, travel time matrices for inter and intra-zonal trips are required for 

both base year and forecast year and the traffic mix by mode is undefined at this stage to 

predict travel time matrices accurately (Stopher and Meyburg, 1975). The limitations of 

this step are hence transferred to the next step; “the modal split” (if mode split follows 

trip distribution). 

2.3.3 Mode Split 

Mode split is typically performed after trip distribution, though in some cases it is 

performed after trip generation and before distribution. The origin destination volumes 

are split or distributed by available alternate modes in this phase. Trip-end models used 

before the trip distribution and after generation are good in small networks for preserving 
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characteristics of individuals. However, they are not viable for large networks where 

different modes have various levels of influence on the choice of the mode (Ortuzar and 

Willumsen, 2001). Trip interchange models are based on service characteristics, like 

travel time, cost and accessibility to different modes. Since the travel costs are to be 

determined in trip interchange models, they always follow trip distribution. Problems 

with carrying the trip distribution step prior to mode split were discussed in the previous 

subsection. 

2.3.4 Trip Assignment 

Trip assignment is the final step of the FSM process. The trips from a given origin 

to a given destination on a given mode obtained in the previous step are now assigned to 

routes comprising of a set of links. The trips are assigned to links based on shortest path 

or minimum impedance (travel time) paths for a no congestion scenario. Several 

techniques, methods and market equilibrium theories are generally used in practice. Trip 

assignment or network assignment in congested networks is addressed using equilibrium 

principles developed by Wardrop (1952) in his seminal work on road traffic research. 

User optimal and system optimal principles, Wardrop’s first and second principles, 

respectively, are built on assumptions that the users do not have a choice to change routes 

to minimize cost and the entire system balances out to equilibrium (Miller and Shaw, 

2001). Dynamic models to account for time variations, stochastic models for allowing 

user cost minimization, dynamic traffic assignment to predict and incorporate future 

traffic in the iterations and advanced variational inequality models entertained in the trip 

assignment are still left with several questions.  
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2.3.5 Summary of Drawbacks of Conventional FSM Process 

(i.) Travelers may not follow the same sequence of steps of the FSM. Traveler 

behavior and choices are much more complex than the modeler’s definition 

of sequence. 

(ii.) The conventional approach lacks the single unifying rationale that would 

explain all aspects of demand jointly and in the presence of congestion 

(Oppenheim, 1995). 

(iii.) Due to the sequential top down approach, each level is treated serially and 

independent of others. The outputs are carried to the next levels. Likewise, 

the errors, assumptions and relaxations applied are also carried over to the 

succeeding steps. 

(iv.) Travel costs are dependent of travel volumes and vice versa if congestion is 

present on the road network. Iterative processes applied in the present travel 

demand estimates might not give single convergent solutions (Boyce, 2002). 
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Figure 2.1 below outlines the traditional four-step process with feedback loops. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.1: The Four Step Process 

There are several other critiques on the traditional urban transportation planning 

process. Readers may want to refer to Stopher and Meyburg (1975), Ortuzar and 

Willumsen (2001), Oppenheim (1995), and Miller and Shaw (2001). A detailed review of 

travel forecasting, history, development and application of network traffic equilibrium 

was also discussed by Boyce (2007). 

Trip Distribution 

Trip Generation 
(Productions / Attractions) 

 

Employment  
& 

Land use 
Characteristics Data 

Socio-Economic 
& 

Demographic 
Characteristics Data 

Trip Assignment 

Mode Split 

Link flows, Travel times 
and Travel costs 

 



20 
 

   
 

2.4 Combined Four Step Methods – Merits and Demerits 

In order to reduce errors and uncertainties transferred in the sequential approach, 

combined models were developed to carry out all the four steps simultaneously. These 

include efforts by Beckman et al. (1956), Florian, Nguyen and Ferland (1975), Evans 

(1976), Florian and Nguyen (1978), Friesz (1981), Fisch (1985), Safwat and Magnanti 

(1988), Oppenheim (1995), Bar-Gera and Boyce (2003), Boyce and Bar-Gera (2003, 

2004), Ho et al. (2006), and Hasan and Dashti (2007). Most recently, Zhou et al. (2009) 

developed a mathematical programming based variational inequality formulations for a 

combined model integrating all the four steps of a travel demand model. 

Safwat (1982) developed a simultaneous transportation equilibrium model 

(STEM) and later applied it (Safwat and Magnanti, 1988) to the intercity road network in 

Egypt and the urban transportation network in Austin, Texas. They found that the model 

can have sufficient behavioral richness and computational advantages. Boyce et al. 

(1994) compared FSM with feedback and combined trip distribution, mode split and 

assignment steps with a sketch planning model for a network in Chicago, Illinois with 

300 TAZs and 3,000 links and suggested the use of a combined model. Oppenheim 

(1995) in his book on Urban Travel Demand Modeling provided good theoretical 

foundation on combined travel demand models in congested and uncongested networks. 

Hasan and Safwat (2000) compared the traffic predictions by STEM, and FSM   

for a small transportation network in Tyler, Texas. The results indicated that the 

simultaneous approach performed better when compared to the sequential approach. 

Siegel et al. (2006) compared the urban travel forecasts prepared with sequential and 

combined methods for City of Concepcion, Chile, which is a smaller network again. The 
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study found key inconsistencies in the traditional sequential approach without applying 

feedbacks, particularly in congested conditions. Feedbacks reduced error propagation and 

similar solutions were found with respect to combined models, but important 

inconsistencies remained. Yang and Chen (2009), in a most recent study, conducted a 

gradient-based sensitivity analysis of a combined travel demand model considering five 

applications - identification of critical parameters, paradox analysis, access control, 

destination choice, and error and uncertainty analysis. They demonstrated the usefulness 

of the analysis for assessment of various transportation improvement policies. 

Practical application of simultaneous or combined models are limited with very 

few exceptions of real world applications in Egypt; Riyadh, Saudi Arabia (Hasan and Al-

Gadhi, 1998); Austin and Tyler, Texas (Hasan and Safwat, 2000); Economic and Social 

Commission for Western Asia (ESCWA) countries (Safwat and Hasan, 2004); and City 

of Concepcion, Chile (Siegel, 2006). Siegel et al. (2006) suggested that more testing is 

required with different kinds (size and operating conditions) of networks. Moreover, 

combined models are mathematically complex to incorporate temporal and spatial 

variations. It is also difficult to change the existing regional models to a new method 

without testing it on a wide variety of networks. The extreme hardship for a wide spread 

application of these models is the availability of a software and the lack of knowledge of 

the underlying principles of the models for a common transportation modeler. 

Simultaneous models are still aggregate models and do not accommodate local variations 

in the modeling process. 
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2.5 Estimation of AADT 

  Typical traffic count types are permanent, seasonal and short term counts, 

collected at portable traffic counting (PTC) sites or telemetry traffic counting (TTC) sites 

with little variations in the terminology used by various transportation departments. 

However, oftentimes, traffic counts are not available for all the roadway segments in the 

transportation network due to associated problems in collecting, storing and transferring 

data whenever needed. The lack of funds or resources to collect data at several locations 

continuously throughout a year is another problem.  

Short term traffic counts that are less expensive and easy to collect are typically 

used to estimate AADT by applying appropriate adjustment factors available in the 

Traffic Monitoring Guide (2001). Ritchie and Hallenbeck, 1986; Sharma et al, 1996a; 

Stamatiadis and Allen, 1997; Granato, 1998; Zhao et al., 2004; and Li et al., 2006 provide 

information on various types of factors applied to short duration volume counts. The 

AADT values for several roadways are estimated to replicate the homogenously 

classified roadway segments with similar temporal properties using data collected with 

temporary traffic recorders located along the homogenous group road segments (Goel et 

al., 2005). Several methods have been proposed earlier to accurately estimate AADT 

volumes from a sample of traffic counts available. Estimating data with a far less number 

of “knowns” compared to a very large number of “unknowns” is always associated with 

errors and inaccuracies.   

Several attempts were made to estimate, predict and forecast AADT from 

available intermittent seasonal coverage and short duration count data. State, county and 

local transportation departments use growth factor, time series or linear regression 
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analysis techniques to estimate or forecast AADT values (Park, 2004). Time series 

analyses assume that the past trends are repeated in the future and forecast based on the 

trends observed. Growth factor models simply apply annual growth rates (growth rate 

trends) observed over a period of history (Smith and Demetsky, 1997). Regression 

analysis is commonly used in explaining linear relationships between dependent and 

independent variables (factors expected to influence variation in AADT in this context).  

Neveu (1983) developed a quick response method to forecast rural highway 

traffic at specified locations in New York. The author developed elasticity models to 

estimate traffic on rural roads based on road functional classification - Interstate, 

principal arterial and major and minor arterials.  Continuous count data (present year 

AADT) in rural locations modified by various town (population, housing units and 

households), county (population, housing units, households, automobile registrations, 

employment, labor force, personal income, and income per capita) and state (gasoline 

sales) level demographic and socio-economic (predictor) variables were used in 

developing the models.  

Mohamad et al. (1998) developed a similar multiple regression model to estimate 

AADT from relevant demographic variables for county roads. The authors found that 

county arterial mileage, population, location and access to other roads are influential in 

predicting the future AADT values. Xia et al. (1999) attempted to estimate AADT for 

non-state roads that do not have traffic counts in Broward County, Florida. The authors 

used predictor variables such as roadway characteristics (number of lanes, area type and 

functional classification), socio-economic data variables (different types of employment, 

school enrollment and hotel occupancy) and accessibility to state and non-state roads. 
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Accessibility of non-state roads to other county roads, number of lanes, area type, 

functional class and auto ownership and service employment (being comparatively less 

predictive of all) were found to be significant predictors of AADT. Service employment 

was later excluded from the final AADT model developed for the same study area by 

Shen et al. (1999, as cited in Zhao and Chung (2001)).  

Zhao and Chung (2001) extended the models used in the above two studies using 

larger data sets. The authors included AADTs on state roads and used new federal 

functional classification to develop four multiple regression models. The authors found 

regional accessibility to employment centers to be comparatively more predictive than 

other variables and included in the final model. Overall, six predictor variables were 

included in the final model. They are number of lanes, functional classification, direct 

access from a count station to expressway access point, employment, accessibility to 

regional employment and population in a variable sized buffer around a count station. 

The authors concluded that the number of lanes and functional class are the best 

significant predictors and models without functional class are the worst performers. They 

felt that the performance of the model improved significantly but was inadequate to meet 

the engineering design and travel demand model calibration needs. They also suggested 

that further examination of causes and spatial pattern of errors are needed and expressed a 

need for more effective land uses. 

Sharma (1999) developed a neural network based multi-layered, feed forward, 

and backward propagation design method to estimate AADT from 48 hour traffic counts. 

Artificial Neural Network (ANN) and regression analysis techniques were compared by 

Lam and Xu (2000) to conclude that ANN performs better than regression techniques in 
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predicting AADT (as cited in Zhao and Park, 2004). Sharma et al. (2000) made a similar 

comparison study that resulted in a favorable comparison between literature reported 

factor approach values and neural network model error values for low volume roads.  

Tang et al. (2003) developed four models for the short term prediction of daily 

traffic flows by day of week, month and current AADT for the entire year of 1999, using 

time series, neural network, Non-Parametric Regression (NPR) and Gaussian Maximum 

Likelihood (GML) using historical (1994-1998) and current year data. They found GML 

to be the most promising and robust of all the models. 

Zhao and Park (2004) used the GWR technique that allows local model parameter 

estimation instead of global parameters used in an Ordinary Least Squares (OLS) linear 

regression analysis. The authors investigated spatially variable parameter estimates and 

local R-Square from the GWR model to analyze the errors in AADT estimation. It was 

found that the GWR model provided accurate AADT values when compared to OLR 

models. 

Jiang (2005) and Jiang et al. (2006) incorporated image based vehicle data with 

AADT estimation and found improved accuracy. Lam et al. (2006) compared NPR and 

GML, both being nonparametric models, to find that NPR performed better using annual 

traffic census data in Hong Kong.  

Recently, Neto et al. (2009) used Support Vector Regression with Data 

Dependent parameters (SVR-DP) using 20 years of data for rural and urban roads in 25 

counties in the state of Tennessee. The forecasted AADT results were compared with 

OLS regression results and Holt-Exponential Smoothing (Holt-ES). The SVR-DP method 

performed better than both the methods. Wang and Kockleman (2009) developed Kriging 
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based methods for network and count data mining over time and space that performed 

better than other spatial extrapolation options. 

Despite the presence of several models and studies, estimation of AADT in any of 

the models is neither accurate nor close to reality. There are several uncertainties in the 

estimation process similar to any estimation or forecasting models, especially with the 

limited and inconsistent data. One possible reason could be the different traffic data 

collection methodologies adopted by individual states. For instance, data collection 

schedules and methodologies to obtain AADT values for different types of roads adopted 

by North Carolina (NC) are different from the Commonwealth of Virginia, New York 

(NY) and Florida states (found on state department of transportation (DOT) traffic data 

web pages of NCDOT, VDOT, NYSDOT and FDOT, respectively). NCDOT traffic data 

collection corresponds to the Traffic Monitoring Guide (TMG) published by Federal 

Highway Administration, FHWA (TMG, 2001). 

Sharma et al. (1996b), in an extension to earlier studies (Sharma and Leng, 1994 

and Sharma et al., 1996a), addressed statistical accuracy of AADT estimates for seasonal 

traffic counts (STC) with statistical precision of short period traffic counts (SPTC) 

analyzed using automatic traffic recorder (ATR) data from Alberta and Saskatchewan 

provinces in Canada. SPTC sites were assigned to homogeneous ATR groups to calculate 

AADT values using respective expansion factors of the ATR group. Appropriateness of 

volume adjustment factors, expressed in terms of assignment effectiveness, is used in the 

study to represent the degree of correctness in assigning the sample sites to an ATR 

group.  The authors stressed the need for effective assignment of count sites. They found 

that estimates of a properly assigned 6 hour counts proved better than the improperly 
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assigned 72 hour count sites. Grouping of fairly similar (homogenous) ATRs with 

temporal commonalities in traffic for practical applications can be carried out using the 

most recent Traffic Monitoring Guide (2001).  

Consistent with previous research findings, Granato (1998) found that continuous 

consecutive day count improved the estimation only by 5%. Using a single ATR count 

station data in Cedar Rapids, Iowa, a 25% (one-quarter) error reduction in the AADT 

estimates was found with the application of day of week and month of year factors when 

compared to using continuous 24 hour counts (though the results based on single count 

observation is questionable, the results support previous research findings). Granato 

suggested using multi day traffic counts scattered across two or three weeks over 

consecutive-day counts. 

Davis and Guan (1996) developed a Bayesian estimator of MDT to assign a short 

count site when an unclear situation arises to which group an ATR is to be assigned. 

Davis (1997) stated that the errors in short count estimation due to seasonal and day of 

week adjustments were neglected in the previous attempts. The estimation errors can be 

substantive with incorrect adjustments. The author concluded that when appropriate 

adjustment information is lacking, seasonal counts are preferred for accurate estimation 

over short term counts.  

Davis and Yang (2001) attempted to understand the uncertainties associated with 

the estimation of total traffic volumes from a sample of daily traffic volumes based on 

traffic data variability equations. A computationally practical empirical Bayes approach 

was used to compute quantiles of predictive probability distribution of traffic totals. The 

median or the 50th percentile of the predictive distribution using the probable ranges and 
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their associate probability values were used to obtain total traffic. AASHTO (1992) and 

TMG (1995) recommends that Mean Daily Traffic (MDT), typically used for calculating 

AADT, can be estimated with acceptable precision by suitably adjusting 48 hour short 

counts (Davis and Yang, 2001). The authors identified two sources of potential errors – 

1) the sampling error being unrepresentative of the entire year traffic flow, and 2) 

adjustment errors that arose from the applied adjustment factors to account for seasonal, 

day of week and month of year traffic flow variations.  

With an impression that assigning SPTCs to factor groups based on count station 

proximity is oversimplified and prone to subjectivity, Li et al. (2004) conducted a 

regression analysis for estimating seasonal factor (SF)s that contribute to seasonal 

variations in traffic volumes. According to Li et al. (2006), typical established factor 

groupings are based on short count station proximity to permanent count station, 

functional class or engineering judgment. The authors developed a fuzzy tree construct 

based on known SF groupings of permanent count stations and their four land use 

categories to determine the SF category of a given portable count station. The land use 

categories used did not sufficiently represent the permanent count station locations and, 

with limited sample size, the traffic variations were not completely explained, due to 

which, ambiguity still remained in the results.  

Goel et al. (2005) argued that segment traffic volumes are a result of traffic flow 

from origin (O) to destination (D) and AADTs estimated from coverage counts and 

adjustments on overlapping (O-D) segments need to be correlated. A correlation based 

method derived from Generalized Least Squares (GLS) that exploits correlations between 

24-hour segment volumes and a traditional OLS estimation method were compared using 
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Monte-Carlo simulations on a small network representing intercity flows in Ohio. The 

authors found remarkably low errors in AADT estimation using the GLS method 

compared to the traditional OLS method with high correlations between segment 

volumes, whereas little variations were found with low correlations. In reality, the 

network segments have more of a variety of mix than the one considered by the authors 

(single coverage segment compared with single permanent ATR (PATR) segment). The 

results indicated that the method performed well only if correlations are high, leaving 

segments with low correlations in confusion without assignment to a PATR, or assigned 

to an improper PATR. Also, more realistic networks will have more O-D pairs sharing a 

highway segment and more PATRs over space near a coverage count station.  

Eom et al. (2006) suggested that spatial dependencies need to be considered to 

estimate AADT on lower classification roads like collectors and local roads. This is 

because traffic volumes at one monitoring station are often correlated with volumes at 

neighboring stations. The authors used a geostatistical approach called kriging to develop 

a spatial regression model to improve AADT estimation. Both spatial trend and 

correlation on non-freeway facilities in Wake County, North Carolina were taken into 

account. The results indicated that the predictive power of the spatial regression model is 

much better than the traditional method. The prediction is more reliable in urban areas 

when compared to rural areas. In addition, it was expected by the authors that the model 

could be very useful in predicting traffic volumes at locations where observed data is not 

available. The only concern is that the Euclidean distances between any two stations 

considered by the authors might not be the shortest in reality. However, better predictions 

are expected if the actual roadway distances are obtained. 



30 
 

   
 

Gadda et al. (2007) attempted to quantify all major sources of errors like factoring 

errors, sampling errors, misclassification, and spatial and temporal approximations 

present in the AADT estimation process in one piece using the datasets of Minnesota, 

Florida, Southern California and Austin, Texas. Errors resulting from spatial 

extrapolation were studied using network flow estimates from Austin’s travel demand 

model as a function of distance from nearest sampling site. The authors found that the 

results were consistent across states, indicating transferability in different contexts and 

suggested classification by fine clustering on the basis of functional class, lane count and 

multiple area types. A dramatic increase in spatial errors was observed beyond a 0.5 mile 

buffer in urban areas and beyond a 1 mile buffer in rural areas.  

2.6 Spatial Principles, Accessibility and Modeling 

Several models and principles have been developed and used for many years to 

understand and predict the interactions between places of attractions and productions. 

Principles and methods related to physics, economics, and information theory has been 

borrowed and used to demonstrate spatial interactions of various land uses. Spatial 

interactions are generally modeled using the gravity model, the intervening opportunity 

model, entropy maximization and destination choice models. The gravity model is the 

most extensively used spatial interaction model.  

2.6.1 Gravity Model 

The original gravity model of gravitational forces between two masses separated 

by a distance is converted by replacing masses with population of origins and 

destinations for transportation planning applications. The population at origins and 

destinations were then replaced by trip productions and attractions at the respective 
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places, with distance replaced by negative exponential and power functions (Stopher and 

Meyburg, 1975). The gravitational constant was replaced with the constant K (usually 

between 1 and 2), which was later split into two constants that improves the model when 

trip conservation rules are applied (pg. no. 141; Stopher and Meyburg, 1975). The 

exponent and power functions are replaced by travel time or distance decay functions that 

are determined from calibration. Stopher and Meyburg (1975, page no. 142) described 

the gravity model as follows. 

𝑇𝑖𝑗 =  𝑃𝑖𝐵𝑖𝐴𝑗𝐶𝑗𝑓 (𝐷𝑖𝑗)             [2.1] 

Where, Tij = trips from i to j, 

Pi = total trips produced by zone i, 

Aj = total trips attracted by zone j, 

Bi, Cj = constants associated with productions and attractions respectively, 

f (Dij) = measure of spatial separation between zones i and j. 

2.6.2 Accessibility 

The term accessibility is defined in several forms in the literature based on the 

context in which it is used. Accessibility, in general, is the ease at which a location or 

facility can be reached. In transportation planning, a region is divided into TAZs and 

accessibility is expressed as a function of intensity of activity at a location and spatial 

separation and impedances in reaching other points (Hansen, 1959). In other words, 

accessibility is directly proportional to intensity of activity (opportunities/employment, 

population) and inversely proportional to the impedance function (distance, travel time or 

travel cost) slightly concurring with Stewart’s (1948) demographic gravitation concept. 

Accessibility measures developed by Stewart and Warntz (1958) and Hansen (1959) are 
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based on the weightage of the size of their locations (Pooler, 1995). Pooler (1987) 

reviewed geographical accessibility in terms of population potential based on Stewart’s 

concept.  

Hansen’s empirical study on residential developmental patterns suggested use of 

accessibility for residential land use model. Neuburger (1971), in his discussion on user 

benefits of transport and land use plan evaluations, stated that improved transportation 

network increases access to places and ensues more travel. Wachs and Kumagai (1973) 

expressed their concern over the negligence of regional accessibility (mobility of total 

population in a region) in comprehensive urban transportation planning. The authors 

stated that regional accessibility can be an important constituent of social report, helpful 

in reaching the national and regional objectives of equality in opportunities. In their 

analysis, they found significant differences in the regional accessibility to employment 

and healthcare centers primarily due to socio-economic status and spatial location of 

communities in a region.   

Savigear (1967) discussed the measures of accessibility in terms of distance from 

remaining zones and activity in the central area zones. This study only looked at the 

accessibility to the central area. It was later extended by Ingram (1971) to any area in the 

region. Ingram (1971) introduced concepts of relative and integral accessibility. Relative 

accessibility is defined as the degree of connection between two points, whereas integral 

or total accessibility is defined as the degree of interconnection of a point with all other 

points on a surface. The author stated that attraction related characteristics like 

employment used by Hansen (1959) are distributed unequally over space and reflect 

spatial variations in both degree of accessibility and attractivity. Ingram assessed various 
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simple linear to rectangular, reciprocal and negative exponential functions based on 

normal and Gaussian curves. The study found Gaussian curves to be the most applicable 

for quantitative measurement of accessibility, but left the constant to be used in the 

function “unknown”, requiring further work to determine the constant.  

Dalvi and Martin (1976); and Weibull (1976) went little further and added 

attraction characteristics to the points under consideration in an integral accessibility 

scenario used in Ingram’s method. Dalvi and Martin (1976) found that accessibility 

measure is highly sensitive to the attractor variable. They defined accessibility as a 

measure of ease to reach a land use activity from a location using a private transport 

mode. The accessibility pattern reversed between the central area and peripheries when 

household and population variables are replaced by employment variables. A sensitivity 

study of zonal configuration and aggregation showed strong sensitivities with 

accessibility. Similar problems identified in transportation demand literature were found 

in the zonal analysis. Interestingly, they did not find any effective relationship between 

trip generation and accessibility measure. While a few studies observed a relationship 

between accessibility and trip generation, a few others found accessibility to play a role 

in explaining trip making (Thill and Kim, 2005). 

In the late 1970’s, researchers started using concepts of accessibility in 

transportation planning and trip making related applications. From the earlier studies it 

can be understood that attractions and activities (the prime factors that drive travel) can 

influence accessibility. Koenig (1977) and Black and Conroy (1977), as cited in Morris et 

al. (1979) argued that accessibility is a good criterion for transportation planning that can 

evaluate land use patterns and transportation systems performance. Morris et al. (1979) 
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described time, money and human effort as variables of travel choices borne by the 

communities that motivate level of service use and participation in desired activities and 

are consequently influenced by accessibility. They developed interrelations among 

accessibility indexes and underlying theories and linkages with consumer demand, 

evaluation, and accessibility.  

Leake and Huzayyin (1979) appraised the use of accessibility measures in trip 

generation modeling. They developed accessibility indices for all types of modes 

(highway and transit) based on travel time, distance and public service frequency to 

represent the transportation system. Koenig (1980) developed Hansen type accessibility 

measures to estimate zonal trips at an aggregate level and person trips at a disaggregate 

level. It was believed that quality of transport and availability of attractive destinations is 

going to affect the number of trips made by people apart from their socio economic 

characteristics. Koenig believed that introducing the accessibility indicators into the trip 

generation modeling shall improvise and resemble equilibrium models. A study similar to 

Dalvin and Martin (1976) was conducted in five French cities by Koenig, who developed 

graphs for all the cities classified by age group, car ownership, and people employment. 

In all the cases, accessibility emerged as a powerful player in modeling trip generation.  

Downes and Morrell (1981), in their study using household data in 1971, found a 

little effect of accessibility in terms of household location from the central area on travel. 

The authors said that their findings supported the early research of Fawcett and Downes 

(1977); and Downes et al. (1978) that the household trip making depended mainly on the 

household size and vehicle ownership. Similar conclusions were made in a study 

conducted by Williams (1989) to identify household travel related behavior and its 
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relationship with residential accessibility. The socio-economic spatial structure of urban 

areas ought to have influence over household travel behavior rather than the residential 

accessibility conditions.  

Hall (1983) proved that the performance of transportation infrastructure and the 

outcome of the destination activity are two important factors that can dictate accessibility. 

In other words, travel outcome and performance can affect or define a region’s 

accessibility to a traveler. A shopping travel demand study in Sussex, UK demonstrated 

that attraction and accessibility are prime determinants of variations in household 

shopping activity (Robinson and Vickerman, 1976). Similar findings were found between 

accessibility levels and shopping travel patterns but, interestingly, not with the trip 

frequency (Handy, 1994). In other words, no matter what the accessibility levels are or 

the travel distance is, the residents are going to make a certain number of trips. A higher 

level of local accessibility is needed for low regional accessibilities, and vice versa. A 

better access to regional centers lowers the impact of local activity. On the other hand, an 

improved or greater activity at the local level lessens the impact of good access to 

regional centers. Local and regional accessibility of shopping travel were assessed in the 

study and suggested to enhance accessibility at both the local and regional levels.  

Guy (1983) assessed access to local shopping opportunities with seven 

accessibility measures, using shortest distance (developed by the author) and cumulative 

opportunity, gravity, and Gaussian indices. Song (1996) successfully tried to statistically 

assess the usefulness of accessibility measures. The author evaluated nine accessibility 

measures based on a population density function using maximum explanatory power in a 
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standard regression and a non-nested test on alternative pairs and concluded that gravity 

type accessibility measure performed better than any other measure. 

A slight deviation to the conventional accessibility measurement but an 

emergence of promising measures took place in terms of transportation network design. 

Current et al. (1987) introduced a median shortest path problem (a combination of p-

median and shortest path problem) to analyze cost and accessibility in designing 

transportation networks that deal with a completely different area of accessibility. In 

optimization problems like shortest coverage and maximum coverage/shortest path 

problem, accessibility is measured as maximum covering distance for location of 

facilities analysis. Interested readers may want to look at Current et al. (1984), Current et 

al. (1985a and 1985b), Current and Min (1986), Balinski and Spielburg (1969), ReVelle 

and Swain (1970), Toregas et al. (1971), Toregas and Revelle (1972), and Church and 

ReVelle (1974, 1976) that dealt with optimization, linear programming and location 

problems.  

Kockelman (1997) researched on the influence of accessibility, land use mix and 

land use (job housing), and their relative significance on travel behavior. The author used 

a gravity index for accessibility, entropy for land use balance and dissimilarity index for 

land use mix.  These measures emerged as more relevant players in predicting travel 

behavior than the conventional household and travel characteristics. A strong linkage 

between accessibility and travel behavior was found and proved to be a much better 

predictor of vehicle kilometers of travel and mode choice than density.  

Sathisan and Srinivasan (1998) developed an accessibility index useful for 

transportation planning purposes. The method involves a series of steps developing an 
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impedance network, an accessibility network, a ratio of accessibility, the extraction of 

demographic data and finally, a construction of accessibility index.   

Thill and Kim (2005) found that both trip productions and trip attractions are 

significantly affected by geographic accessibility between origins and destinations, both 

at aggregate (TAZ) and disaggregate (household) levels. The authors used a combination 

of various mathematical formulations, spatial impedance functions, travel cost and 

attractiveness proxies and parameters by plugging in 72 metrics of accessibility in each 

demand model. The authors acknowledged that the significant positive results achieved in 

their analysis are because they did not make any a priori assumption anywhere, 

throughout the process of measurement of accessibility. Their research also indicated that 

various trips made are driven by different relationships to accessibility and compliments 

Kwan’s (1998) conclusions that accessibility is situation or context dependent (Thill and 

Kim, 2005). 

There is another view of accessibility based on a constraint-oriented approach 

implemented by Hägerstrand’s space-time prisms (Miller, 1999). The author derived a 

space-time accessibility and benefit measure incorporating location, time and distance 

applicable to an urban transportation network. Kwan (1999) argued that the conventional 

accessibility measures ignore the complex activity of travel behavior and the role of 

space-time constraints that motivate an individual’s accessibility experience. Kwan’s 

study investigated individual access by gender based on the space-time construct measure 

of accessibility. The study found that females have significantly less access to urban 

opportunities than men. The differences observed according to the author are due to 

differences in space-time constraints. Many studies followed the Hägerstrand’s (1970) 
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seminal space-time construct and geographic framework. Lenntorp (1976) and Burns 

(1979) are examples of early operational formulas (Kwan, 1999). Interested readers may 

want to look at Kwan (1998), Miller (1991), and Recker et al. (2001) for applications of 

space-time constraints in accessibility measures.  

Murray and Wu (2003) indicated that accessibility is a tradeoff between public 

access to bus stops and geographic coverage in their search for optimal spacing of bus 

stops along a route.  Other research contributions related to transit accessibility include 

efforts by Murrary (2003), O’Sullivan (2000), Polzin (1999), and Pulugurtha et al. 

(1999). Liu and Zhu (2004) developed an integrated GIS tool for accessibility analysis 

called “Accessibility Analyst”, capable of performing cumulative-opportunity measures, 

gravity-type measures, and utility-based measures. 

 To summarize, there are several ways to measure accessibility. Research shows 

that accessibility measures are very useful in various transportation, urban planning, 

public transport and geography related issues. Looking at several accessibility indicators 

discussed so far, one can understand that while one study looks at one aspect of 

accessibility, the other looks at accessibility from a different angle and tries to improve or 

suggest a different way of addressing the problem. It is not always possible to address 

each and every aspect in a single measure, especially when accessibility issues are 

concerned. Two basic elements were always found in the discussion of various 

accessibility measures: “impedance” and “attractiveness” (Thill and Kim, 2005).  

2.6.3 Geographically Weighted Regression 

 National, state or local level statistics were often seen in representing or reporting 

various phenomena with an averaged global figure to a particular context (example, 
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travel time index). They are typically averaged from a range or group of values giving 

equal weight to each individual group. Relatively accurate results can be obtained by 

looking at spatial maps with corresponding local variations of attributes and their 

relationships to approximate global figures (generally single valued). 

An objective of understanding the relationships in the attribute data is to include 

significant variables that contribute to the strength of the relationship. Consider trip 

generation using regression analysis for instance. The trips produced are estimated using 

a variety of demographic, socio-economic, employment and land use characteristics. 

Trips generated at household level are aggregated to TAZ level (a global figure to that 

particular zone and forced to be concentrated at zonal centroid to support aggregate 

FSM). In reality travel preferences vary with each individual, based on several factors 

that make the global parameters estimated in the trip production incorrect. Irrespective of 

the care taken in allocating the area of a TAZ, problems continue to stay that leads to 

growing interest in disaggregate travel demand modeling practice. Another example is 

travel time index (TTI). A user is interested in travel time index of a route for his daily 

travel instead of a city, region, statewide or national index. City or regional TTI is useful 

in selecting an area or a city respectively to live. The difference between trip production 

and TTI examples discussed is that the former one represents spatial relationships and the 

later represents spatial data. To summarize, local data or local variations in the 

characteristics of data attributes are very useful to accurately utilize information and to 

develop models with relative accuracy. 

 There are two types of data, spatial and aspatial – spatial data is represented over 

geographic space and aspatial data contains only the attribute data without reference to 
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their location. Spatial data analysis and modeling with local variations is of prime 

importance to the present research. Local variation deals with local disaggregation of 

global variables. It emphasizes differences across space and helps to search for local hot 

spots (Fotheringham et al., 2002). Social processes as opposed to physical processes tend 

to be non-stationary i.e., the models derived in one system can rarely be exactly 

represented in other systems. This in case of spatial social processes is termed as spatial 

non-stationarity. It means that the investigating processes under consideration are not 

constant over space and varies with the locality in which case a global statistic will be 

misleading locally.  

The local variations of spatial dependencies of attribute values were addressed 

using spatial autoregressive models developed by Getis and Ord (1992) and Ord and 

Getis (1995, 2001). Brunsdon et al. (1998a) later applied the conceptual and theoretical 

models of GWR to the Ord models to demonstrate the problems associated with using 

global models of spatial association using an empirical example with data on owner-

occupation in the housing market of Tyne and Wear in northeast England. Interested 

readers may want to look at Brundson et al. (1996, 1998b, 1999, 2001 and 2007); Foody 

(2003); for more discussion on the GWR and related research. 

The GWR Concept: 

The GWR allows local variations to be included in the regression model in which 

weighting functions define the influence of data in the region defined around the 

regression points on parameter estimates. Regression points is a concept used in Moving 

Window Regression (MWR) in which a regional grid of regression points are constructed 

to calibrate the regression model based on the data defined in the proximity of regression 
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points. The parameter estimates are assigned to the location of regression points. The 

output results are mapped after conducting similar process for all the regression points at 

the end. The fundamental idea of the GWR is to use the concepts partly of MWR’s 

regression points and kernel regression in determining parameter estimates for each 

location of regression point using weighting functions that gives more priority to the data 

points close to the regression point than to the data points away from the location. It was 

expected that the weighting function approach used in GWR should provide better results 

when compared to the MWR method that defines region around a regression point as the 

four cells in which the regression point is centered (Fotheringham et al., 2002).   

The GWR overcomes the associated problems of non-stationarity, heterogeneity 

and spatial dependence in spatial modeling.  Unlike the traditional regression model 

which estimates single set of global parameters for the entire study area, the GWR allows 

to estimate parameters for each individual location based on the traditional regression 

technique assigning gradually decreasing weights with increasing distance to data points 

away from the point of interest. The GWR model allows local disaggregation 

emphasizing differences in relationships across space. The final output can be represented 

in maps convenient to show spatial variations and non-stationarity over geographic space. 

Selection of Spatial Weighting Function and Bandwidth: 

In a global model, a unit weight is assigned to each observation. In other words, 

all the observations in a global model are given equal weights. However, in a Weighted 

Least Squares (WLS) method, weighting functions are used to give different levels of 

importance to the observations made over space at various distances. Observations at data 

points in the close proximity of a location are given more weightage compared to an 
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observation made farther away from the location. The section follows with a weighting 

function employed in an MWR approach and extends to various weighting functions to 

address problems of discontinuity and spatial variation of influence area. Essentially the 

idea of GWR is to understand and predict the relationships using observed data that 

influences a local regression point i termed as ‘bump of influence’ using appropriate 

weighting functions. 

In a global regression model, the unit weightage of observation points is 

expressed as wij = 1 for all (i, j) where, j represents observation point in space and i 

represents the regression point. A simple way to exclude observation points beyond a 

certain distance in the model parameter estimation is giving a weighting function as 

below (MWR approach).  

wij = 1 if dij < d, j = 1, 2, …., n 

     = 0 otherwise 

A problem of discontinuity is encountered when such weighting functions are 

applied. By assigning a zero weight to the observation points beyond a particular distance 

a sudden change in the estimated parameters is expected when a regression point is 

changed causing observed points move in and out of a window. A continuous weighting 

function is proposed to address this problem that allows assigning a decreasing weight 

with an increase in distance dij. The two most commonly used methods are (i) Gaussian 

weighting function and (ii) Bi-square function. 

i. wij = exp [-1/(dij/b) 2]                                            

ii. wij = [1- (dij/b)2]2 if dij < b 

        = 0 otherwise 
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where, dij is the Euclidean distance between observation points i and j;    

b is the distance decay function also referred to as bandwidth. 

In the former case, the weight wij = 0.5 implies that the contribution of data point j 

is only half the weight in the calibration process as that of the regression point i by itself. 

The weight for observation points farther away from the regression point i is almost 

nearly zero. This means that all the observation points in the study area should be 

considered in the calibration process irrespective of its influence at regression point. This 

concern is addressed with a continuous near-Gaussian weights assigned to observation 

points up to a distance b from the regression point i and zero weights beyond b. The bi-

square function is used by an alternate kernel, both the kernels being fixed in their shape 

and magnitude spatially.   

GWR in Transportation: 

 Given the benefits of underlying concepts of local variations in the regression 

analysis with geographical weights there is a growing interest in the use of GWR in 

transportation field. Zhao and Park (2004) research on estimating AADT for the first time 

used GWR to address transportation related problems. They analyzed AADT estimation 

errors after investigating spatial variation of parameter estimates and local R2 from the 

GWR models. Relationship between AADT and number of lanes, regional accessibility 

to employment, population, and employment in the buffer area of a count station and 

direct access to expressways was studied for a regional data in Broward County, Florida, 

USA. The authors found that GWR models predicted more accurately when compared to 

OLS regression models. Other research includes GWR in transit ridership models (Chow 
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et al., 2006; and Zhao et al., 2005), relationship between out-commuting and socio-

economic variables (Lloyd, 2005), intermodal freight transportation and regional 

accessibility (Lim and Thill, 2008), land use – transport models (Paez, 2006), car 

ownership models (Clark, 2007) and trip end models of local rail demand (Blainey, 

2010).    

2.7 Statistical Methods and Distributions 

Since it is practically impossible to collect entire population data (for example, 

traffic on all types of roads present in the study area) for planning purposes, it is a 

standard practice to collect samples (a subset of the population), conduct statistical 

analysis and make inferences about the population. Regression analysis has dominated in 

the transportation literature (safety and planning) to estimate or predict trips, traffic and 

crashes. It is used to interpret the relationship between the covariates (predictor variables) 

and the dependent variable. The variables considered in the analysis could be discrete 

(integer) or continuous (real). A discrete random variable can take any integer value from 

zero to infinite, whereas a continuous random variable can take any value on a number 

line without interruptions.  

A probability distribution is associated with any kind of variable that tell the 

distribution of the population. It is a mathematical formula, that gives the probability of 

each value for a discrete random variable and a curve that specifies the areas under the 

curve, and the probability of a continuous variable falls within a particular interval of the 

curve (Everitt, 1995). Since traffic counts are integers and are non-negative they can be 

considered as discrete counts. In general, counts are modeled as a Poisson distribution, a 
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generalization of which is the “Negative Binomial distribution”. More about the 

distributions and various types of models are discussed next. 

2.7.1 General Linear Models 

 Linear regression or ordinary least squares regression models are predominantly 

used in the trip generation, traffic estimation and other related estimation purposes. A 

simple linear model looks like the equation (Long, 1997) given below. 

𝑦 =  𝛽0 + 𝛽1𝑥 + 𝑒                 [2.2] 

where, y is the dependent variable, 

x is the independent variable, 

e is the error term, and 

β0 is the intercept and β1 is the slope coefficient of the independent variable. 

A multiple linear regression equation is formed when more predictor variables are 

added to the equation on the right hand side. 

 𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 … + 𝛽𝑝𝑥𝑝 + 𝑒                         [2.3] 

Assumptions of Linear Regression Models: 

The four basic assumptions found in standard textbooks (Tabachnick and Fidell, 

1996; Long 1997; Hocking, 2003 and Freedman, 2005) on regression modeling are (i) 

Linearity, (ii) Normality, (iii) Homoscedasticity and (iv) Multi-collinearity, discussed in 

detail next. 

(i.) Linearity: 

It is assumed in the regression analysis that the dependent and independent 

variables have a straight line relationship. Practically, linearity is needed for regression 
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modeling because the ordinary least squares determine the regression line (equation) that 

optimally selects the minimum sum of the squared deviances (residuals) of all possible 

straight line relations between the variables. It is evident from equations 2.2 and 2.3 that 

the dependent variable is linearly related to the independent variable(s) through the 

parameters β. Often times, the relation between the variables may not be linear. For 

example, it has been extensively mentioned in the literature that traffic is non-linearly 

(exponentially) related to the predictor variables in many cases (especially in safety 

research). Techniques to address non-linearity have been addressed in Berry (1993), Fox 

(1991), and Tabachnick and Fidell (1996). A common way of establishing a linear 

relationship for nonlinearly related variables is to transform the variables (by applying 

square root, logarithm or inverse). Such transformations results in the loss of integrity of 

the data and also make it hard to interpret the outcomes.  

(ii.) Normality: 

The most common distribution used in the regression analysis is the normal 

distribution. Its density function (Everitt, 1995) is given by  

𝑓(𝑥) =  1
𝜎√2𝜋

�− 1
2

(𝑥−µ)2

𝜎2
�                  [2.4] 

where, ‘x’ is the outcome variable and µ and σ2 are mean and variance of x, respectively. 

It has a bell-shaped symmetric distribution about its mean and takes all real values. The 

distribution is standard normal at mean ‘0’ and variance ‘1’ (Freedman, 2005). According 

to the central limit theorem, with a large sample size (n), the sample means tend to have 

an approximately normal distribution (Everitt, 1995).  The normal distribution has been 

extensively used in simple and multiple linear regression analysis when large samples are 

available to model the data.  
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However, the problems with assumption of normality have been discussed 

elsewhere (Tabachnick and Fidell, 1996 and Hocking, 2003). When samples are overly 

dispersed or negatively or positively skewed it is not recommended to use the normal 

distribution. Most of the times traffic counts are positively or negatively skewed, which 

means that the basic assumption of symmetrical distribution over the mean is violated. In 

such cases a normal distribution may not be a good fit for the traffic counts. Also since 

the traffic counts can only take discrete positive integer values count models are 

preferred. Developing a model with normal distribution may result in negative predicted 

values which is not suitable for traffic counts. 

(iii.) Homoscedasticity: 

Homoscedasticity is yet another assumption in the linear regression models that 

assumes a constant variance of errors across all the variables (Tabachnick and Fidell, 

1996). It is very likely that the assumption is violated which leads to heteroscedasticity of 

variance. It leads to distorted estimated variance of the regression coefficients (β), 

deflates the estimated standard errors of β that in turn inflates t-values relative to the true 

values (Gardner et al, 1995). This potentially leads to Type I errors (Elhai et al, 2008). 

(iv.) Multicollinearity: 

Multicollinearity is a problem observed when the independent variables are highly 

correlated to each other. In other words, the independent variables might have a linear 

relationship with each other or a linear combination of variables represents a variable. It 

might also occur from the data collected or represented in which a variable is a sum of 

the other variables. For instance, total employment could be a sum of all the employment 

categories in the data (employment categories could be redundant for the model). Due to 
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multicollinearity, error terms are highly inflated ending up with none of the coefficients 

being significant. Since multicollinearity deals with independent variable(s), it is 

observed in almost all types of models (including Poisson and Negative Binomial). 

2.7.2 Count Models 

As the name indicates the count models deals with counted data, the data that 

represents the number of times something occurred. Count data always takes non-

negative integer values. Linear regression models are used to estimate counted data 

treating them as if they are rather continuous than discrete that results in inefficient, 

inconsistent and biased estimates (Long, 1997). Count regression models are best suited 

for analyzing skewed (non-normal) data with non-linear relationships (Elhai et al., 2008). 

Also the independent variables could be continuous, binary or a mixture similar to normal 

linear regression model independent variables.   

Poisson Models: 

Poisson model is the basic and simplest count regression model (Long, 1997 and 

Elhai et al., 2008). Unlike the normal linear regression models in which the dependent 

variable is transformed (logarithmic in most cases), in a Poisson model the probability of 

counts are determined by a Poisson distribution (a probability distribution of non negative 

integers) in which the coefficients are exponentiated.  By doing so, the estimated 

outcome is always positive. The assumption of Homoscedasticity mentioned earlier in the 

linear regression model can be addressed in a Poisson model since it allows the variance 

of the residuals to increase as the mean increases. Also, the problems with the non-

normal distribution and heteroscedasticity can be addressed simply by using the Poisson 

model. If a discrete variable such as AADT termed as ‘y’ is assumed to be Poisson 
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distributed, with a mean annual daily traffic, µ > 0, over all sites and unit time period, 

then the probability density function (PDF) of ‘y’ is given by (Cameron and Trivedi, 

1998): 

𝑝 (𝑦 | µ) = exp(−µ)µy

y!
 ,    y = 0, 1, 2, ….                                            [2.5] 

µ = E (y | µ) = exp (Xβ)              [2.6] 

Where,  

(y | µ) ~ Poisson (µ) 

X is a matrix of covariates.  

The constraint in using the Poisson model is that the model assumes that the mean 

equals the variance (equidispersion), which is violated in many practical situations (Long, 

1997). The violation of this assumption called overdispersion leads to a fairly different 

model called the Negative Binomial model. 

E (y | µ) = Var (y | µ) = µ              [2.7] 

Negative Binomial Models: 

According to Gourieroux et al. (1984), the Poisson regression estimates could be 

consistent with a correctly specified mean structure but inefficiency exists with 

overdispersion and also a downwardly biased stand errors results in large z-values that 

may over estimate the significance of the variables (Cameron and Trivedi, 1986) as cited 

in Long (1997). Various Poisson mixture models to account for overdispersion have been 

implemented and used but Negative Binomial models (traditionally characterized as a 

Poisson-Gamma mixture model) addresses overdispersion using a simple mathematical 

representation of means and variances by incorporating a random component (Hilbe, 

2007).  
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The conditional mean of y: µ = exp (Χβ) is replaced by a random variable µ (Long, 1997) 

as follows 

µ  = exp (Xβ + 𝜀)         

µ  = exp (Xβ).exp (𝜀) = µ.exp (𝜀) µ                 [2.8] 

The unobserved heterogeneity in µ is introduced by 𝜀. For convenience, it is 

assumed that exp (𝜀) is independent and Gamma distributed with unit mean and variance 

ν. If the PDF of exp (𝜀) is assumed to be g (𝜀) then 

𝑓 (𝑦) =  ∫ 𝑝(𝑦|µ).𝑔(𝜀)𝑑(𝜀)∞
0             [2.9] 

Various Poisson mixture models can be derived depending on the parameters 

imposed on the function g (𝜀). In the equation 2.9 the first term p (y|µ) represents the 

Poisson function and the second term g (𝜀) represents the gamma function (ν, ν) thus 

making the Poisson – Gamma mixture model, Negative Binomial (µ, ν).  Th e PDF o f 

Negative Binomial (µ, ν) is given by (Hilbe, 2007): 

𝑝(𝑦, 𝑣) =  
Г(𝑦+1𝛼)

Г(𝑦+1)Г1𝛼
� 1
1+𝛼µ

�
1/𝛼

� 𝛼µ
1+𝛼µ

�
𝑦

         [2.10] 

The mean and variance of the Negative Binomial variable is given by  

E(y) = µ; V(y) = µ + αµ2           [2.11] 

The term α is called the dispersion (over) parameter of the Poisson-Gamma (or 

Negative Binomial) distribution. Also, as α value approaches zero the distribution 

becomes Poisson distribution (mean equals variance).  Both the Poisson and the Negative 

Binomial models address the common problems of count data, heteroscedasticity (allows 

increase in variance as the mean) and protects the non negativity and discreteness of 

count data without having to transform them to a different scale. While Poisson models 
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do not account for overdispersion, the Negative Binomial (a mixture of Poisson – 

Gamma) models accounts for the overdispersion (variance greater than mean). Both the 

models are widely used for count data though there are some limitations to specific cases. 

A more detailed discussion on count models can be found at Long, 1997; Cameron and 

Trivedi, 1998; and Hilbe, 2007. 

2.7.3 Generalized Linear Models (GLMs) 

GLMs are a class of statistical models that are obtained by a natural 

generalization of standard linear models (McCullagh and Nelder, 1989). Often 

categorized as extensions to the standard linear regression, GLMs can incorporate various 

response outcomes such as count, binary, proportions and positive valued continuous 

variables (Hilbe, 1994).  

 Scaling problems have been greatly reduced with the introduction of GLMs. This 

is one of the reasons of increased momentum in the use of GLMs in statistics. Moreover, 

the normality and constant variance of errors are no longer required (McCullagh and 

Nelder, 1989). A typical GLM is characterized by a random component ‘Y’ with a 

distribution belonging to the exponential family, a systematic component with covariates 

and parameters that produces a linear predictor ‘η’ and a canonical link function that 

connects the two components. The link function is the key of a GLM that can take any 

monotonic differentiable function. It explains how the linear predictor η is related to the 

mean of expected response µ, given by 

𝜂 =  ∑𝑋𝛽  ;  µ = 𝑔(𝜂−1) = 𝐸(𝑌)         [2.12] 

It is particularly useful when transformations are needed and the expected mean 

can take only few values on the real line without losing the originality of the data. For 
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instance, a Poisson count model (where mean can only take positive integers) uses a link 

function η = log µ, where the inverse function is µ = eη. Here the additive effects of η are 

converted to multiplicative effects where µ can never be negative. Several goodness of fit 

statistics are used for model selection in the GLM method, such as, likelihood ratio, 

Akaike Information Criterion (AIC) and corrected AIC (AICC).  

Like any other model in the GLM, it is assumed that the variables are 

independently and identically distributed and the models are based on maximum 

likelihood theory for independent observations (McCullagh and Nelder, 1989). GLM 

might give inaccurate parameter estimates if the observations are correlated. It is 

particularly not suited for repeated measurements where correlation among the observed 

values is predominant.  

2.7.4 Generalized Estimating Equations (GEE) 

Liang and Zeger (1986) developed Generalized Estimating Equations (GEEs) as 

an extension to the GLMs to analyze longitudinal data. The GEE method is based on 

quasilikelihood theory (Wedderburn, 1974) and do not make any assumptions regarding 

the distributions of response observations. Quasilikelihood methods allow calculation of 

parameter estimates exclusively by specifying the mean and variance of the observations 

rather than specifications originating from single-parameter exponential family 

distributions (Hilbe, 2007). As the repeated measures are expected to be correlated, the 

GEE method requires specification of one of the working correlations structures available 

in most of the standard statistical software namely: independent, exchangeable, 

autoregressive, stationary, non-stationary and unstructured correlations structures. For a 
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more detailed discussion on GEE models readers may want to read Hardin and Hilbe 

(2003).  

Since the GEE methods uses quasilikelihood method, AIC statistic derived from 

likelihood theory cannot be applied directly (Pan, 2001a). Pan (2001a, b) developed two 

statistics namely Quasilikelihood under independence model criterion (QIC) and 

corrected QIC (QICC) respectively. While QIC is used to select the best correlation 

structure, QICC is used to select the best subset of model variables for a particular 

correlation structure (Hilbe, 2007). GEEs are preferred to GLMs even for independent 

observations as the former models are based on quasilikelihood methods that are 

considered to be better than the likelihood based methods used in the GLMs. 

2.8 Limitations of Past Research and Need for Current Research 

The traditional FSM process is a serial step by step aggregate approach in which 

transfer of errors is inevitable. It cannot address all aspects of demand jointly and in the 

presence of congestion. Though feedback loops are employed to address induced 

demand, the iterative processes might not give single convergent solutions. Combined 

travel demand models address some of the problems associated in the FSM process. 

However, being an aggregate approach by itself, combined models carry the basic 

assumptions and thus the drawbacks associated with the FSM. Activity based models 

employ sound social, behavioral and theoretical techniques. However, they are relatively 

new modeling methods that did not gained expected momentum. This is because of the 

enormous amount of data needed, computational complexities involved, and lack of 

familiarity of its concepts to a normal modeler. Also, modeling each and every 

individual’s daily tours and travel choices is very hard and difficult. 
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On the other hand, several state and local DOTs and planning organizations 

estimate AADT on roads from available short term traffic counts by applying seasonal 

and daily factors with continuous traffic counts as a reference.  However there is a large 

difference between the available traffic counts and the number of road links in a huge 

transportation network. It is practically not feasible to collect traffic volumes on all the 

roads. With very few number of traffic counts available, estimation of AADT results in 

significant errors and uncertainties. 

   Use of AADT estimation models in urban travel demand estimation is still 

rudimentary in some aspects. Several AADT estimation models were developed in the 

past, but they are limited in the scope by several ways. While a few conducted time series 

analysis using historic traffic counts, a few others developed models using various 

statistical models for rural, county, non-state roads and other functional classes. They are 

also limited by the type of spatial data used (limited demographic and employment data 

were used to develop models). 

 Overall, none of the past research attempted to directly estimate traffic on the 

road network links by spatially capturing the characteristics of travel demand such as 

demographic, socio-economic, and land use data. Those that attempted did not consider 

the effect of spatial proximity or integrating data using spatial weights that decrease with 

an increase in distance. Spatial dependence of road network links was also not tested in 

the previous research. Therefore, there is a need to develop, a simple and systematic 

methodology, to estimate link level travel bypassing the tedious FSM process. Such a 

methodology should use scientific principles, spatial analytical methods, and statistical 
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techniques for accurate estimation of traffic. It should be easy to adopt at any scale, size 

and level. A detailed discussion on the methodology developed is presented next. 

 

 



CHAPTER III: METHODOLOGY 
 
 

The primary objective of this research is to develop and assess models to estimate 

traffic demand on road network links for selected road functional classes based on on-

network characteristics such as number of lanes and speed limit and off-network 

characteristics such as area type, demographic, socio-economic, and land use data in the 

vicinity of the network links. Vicinity for a selected road link in the network is the area 

within the generated spatial network buffer (or service area) around the road link (say, 1 

mile).  

 The proposed methodology uses various spatial principles and statistical 

techniques to estimate traffic on a road link.  It includes the following steps. 

1. Select study area and links pertaining to each road functional class 

2. Generate buffers around each link 

3. Spatial overlay, data processing and integration 

4. Develop statistical models to estimate traffic demand  

 Spatial proximity 

 Spatial weights 

 Statistical analysis 

5. Validation of the developed models 

Each of the above listed steps in the methodology is discussed next in detail.   
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3.1 Select Study Area and Links Pertaining to each Road Functional Class 

A study area should be selected such that it represents various levels of 

urbanization. Travel activity varies based on the area type (CBD, Urban and Suburban), 

demographic, socio-economic, and land use characteristics. Traffic levels vary based on 

the type of road functional class. Higher functional classes are designed to carry high 

vehicular volumes at higher speeds. Likewise, major and minor arterials serve various 

levels of traffic and speeds. The higher the speed limit is, the higher is the throughput 

expected on the roadway section. Hence, it is necessary to consider various roadway 

types to develop and assess models.  

Study locations should be selected in such a way that they are geographically 

distributed throughout the study area to capture various on- and off-network 

characteristics equally throughout the study area. For obtaining statistically meaningful 

estimates while developing models, sample size of the study locations selected should be 

sufficiently large. A sample size of 30 or more is generally considered as large enough 

for conducting statistical analysis. Maintaining large sample sizes among various road 

functional classes as well as area types helps to obtain statistically unbiased estimates.  

3.2 Generate Buffers around each Link 

 People live and work at different locations in an urban region and access various 

roadways at various accessible distances as part of their daily travel. Twenty percent of 

driving trips are less than “one” mile whereas 87% of walking trips and 59% of biking 

trips are less than “one” mile (NHTS, 2009).  It is expected that trips less than “half” or 

“one” mile are always walk or bike trips and hence a minimum buffer width of “one” 

mile is needed to capture driving trips. In a typical urban setting, land developments takes 
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place along the transportation corridors and are expected to limit their access to around 

“five” miles. Depending on the roadway accessibility, a majority of users may access 

various roadways anywhere from “one” mile to “five” miles. 

Various off-network characteristics data such as demographic, socio-economic 

and land use data influence the estimation of traffic on various roads. To quantitatively 

assess the influence of such characteristics, they should be captured and analyzed to 

estimate traffic. While it is evident that off-network characteristics data needs to be 

captured, there is no documented evidence on the distance at which the data has to be 

captured. Also, various functional classes of roadways collect traffic at varying distances. 

Collectors and local streets serve minor arterials and minor arterials serve major arterials. 

While smaller functional classes serve short trips or serve long trips as a medium to 

connect to higher functional classes, higher functional class roadways typically serve 

longer trips. Freeways and expressways typically have a wider reach than other 

functional classes. Therefore, it is necessary to capture data at various buffers widths to 

develop and assess models to estimate traffic. Hence, buffer widths of 1 mile, 1.5 mile, 2 

mile, 3 mile, 4 mile, and 5 miles are considered to capture data to assess models to 

estimate traffic on different roadways.  

3.2.1 Network Buffers (Service Area): 

Three types of buffers, circular, polygon based network buffer and line based 

network buffers may be used to capture spatial data (Oliver et al., 2007). Circular buffers 

have been employed to capture the spatial information in many GIS based applications. 

Circular buffers capture the spatial information around a location with a constant 

Euclidean distance (generally described as a path of flying crow) covered by a radius ‘r’ 
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irrespective of the accessibility to the road network. Circular buffers are a straight 

forward and a more crude form of spatial analysis.  

A network buffer approach captures information based on accessibility of street 

network. In this case, the end points of a specified, say ‘y’ mile accessible network are 

joined to form an irregular polygon. Most off-the-shelf GIS software has tools available 

to generate network buffers using basic path search algorithms. Figure 3.1 shows an 

example 2-mile network buffer. Figure 3.2 below compares a 2-mile circular buffer with 

the corresponding polygon based road network buffer. It can be clearly observed from the 

figure that a circular buffer is spread over a larger area compared to a polygon based 

network buffer.  

 

FIGURE 3.1: A 2-Mile Polygon Based Network Buffer 

A line based road network buffer is similar to the polygon based network buffer 

but an additional constraint is laid on the network say, ‘x’ feet distance all along the road. 

The endpoints are not connected here but the buffer is drawn alongside the road with an 

‘x’ feet distance up to ‘y’ miles.  
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It was felt that the polygon based network buffer approach is suitable for the 

present study because the accessible distances employed in the study are very large (up to 

5 miles). It would be computationally very intensive and also difficult to determine the 

optimal line buffer distance ‘x’. Also, in the regional planning network, secondary road 

network information is typically not available. The secondary road information, if 

considered to generate line based network buffer, will cover most of the buffer area 

generated using the polygon based approach.    

 

FIGURE 3.2: Comparison of Circular and a Polygon based Network Buffer 

3.3 Spatial Overlay, Data Processing and Integration 

In this step, the generated spatial buffers are overlaid on demographic, socio-

economic and land use data to capture and extract data for processing and model 

development. Figure 3.3 shows an overlay of a network spatial buffer on TAZ layer with 

demographic and socio-economic information.  
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FIGURE 3.3: Spatial Network Buffer Overlaid on a TAZ Layer 

Spatial buffers are typically spread over multiple TAZ’s or land use polygons. As 

an example, Figure 3.4 shows a spatial network buffer overlaid on the TAZ layer with 

TAZs numbered 1, 2, 3, .., and 8. The attributes of the spatial buffer are calculated based 

on the degree of overlap of the TAZs.  

 

FIGURE 3.4: TAZs and Overlay of Spatial Network Buffer 
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3.3.1 Computation of Demographic and Socio-economic related Characteristics within 

a Spatial Buffer 

The demographic and socio-economic characteristics (excluding mean income) 

are assumed to be distributed uniformly throughout a TAZ. A weighted aerial 

interpolation method was used to calculate the attributes. Based on this method, the ratio 

of the area of the TAZ in the buffer zone to the area of the TAZ gives the proportion of 

the attribute data (example, population) in the portion of the TAZ in the buffer zone. 

Summing data from portions of these TAZs gives the data within the service area or 

spatial buffer. As an example, the population in the generated spatial buffer is estimated 

using the following equation.  

 Pi = ∑ Aj,i
Aj𝑗 ∗ Pj                 [3.1] 

where,  

Pi = Population of a buffer zone, 

Pj = Population in a TAZ “j”, 

Aj,i = Area of a TAZ “j” in the buffer zone, and, 

Aj = Area of a TAZ “j”.  

Similar equations are developed and used to compute other attributes of the TAZ, 

such as, number of households, household population, number of employees of various 

types, and number of pupils enrolled in private and public kindergarten, elementary, 

middle and high schools and colleges and universities. 

3.3.2 Computation of Mean Income within a Spatial Buffer 

Since mean income is an average income of the household in the spatial buffer, it 

cannot be summed based on the ratio of area representing the TAZ. It is computed as a 
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function of number of households in a TAZ in the spatial buffer and mean income of the 

TAZ. The computation of mean income of the spatial buffer is mathematically expressed 

as follows.   

 Ii =
∑ Hj,ij ∗Ij
∑ Hj,ij

              [3.2] 

where, 

Ii  = Mean income of the spatial buffer, 

Ij  = Mean income in a TAZ “j”, and, 

Hj,i  = Number of households in TAZ “j” in the spatial buffer “i”.   

3.3.3  Computation of Land Use Area within a Spatial Buffer 

Generated spatial buffers are overlaid on the Land use polygon data to extract the area of 

each land use category in each buffer.   Once the area of each land use in a spatial buffer 

are calculated, pivot tables are used to sum the areas of each land use type and are 

presented in separate columns using equation 3.3 below. Figure 3.5 below shows a 

network buffer overlaid on a land use zoning layer. 

 Alu = ∑ alu                  [3.3] 

where,  

 Alu = Total area of a land use type in a spatial buffer, and, 

 alu   = Area of a type of land use zone in the spatial buffer. 
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FIGURE 3.5: Network Buffer Overlaid on a Land use Zoning Layer 

3.4 Develop Statistical Models to Estimate Traffic Demand 

Two different methods are adopted to develop models in the present study. While 

the first one is based on spatial proximity, the second one is based on spatial weights that 

decrease with an increase in distance.  They are discussed next in detail. 

3.4.1 Spatial Proximity 

The rationale behind developing models based on spatial proximity is to identify 

the ideal buffer width to capture and extract spatial data.  In this case, models are 

developed for each spatially accessible network distance from the selected link or the 

traffic count location. In this research, spatial information is captured within  1.0 mile, 

1.5 mile, 2 mile, 3 mile, 4 mile, and 5 mile accessible network distances from the study 

location. Models are then developed for each individual buffer distance. In other words, a 

2 mile road network buffer would capture all the spatial information between the study 

location and the boundary line of the corresponding 2 mile network buffer. The best 

model from the above six models was selected based on goodness of fit and variable 

coefficients. 
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3.4.2 Spatial Weights 

The rationale behind developing models based on spatial weights is to capture the 

spatial variations in the network level planning variables and land use data in the process 

of estimating travel demand. Geographically weighted regression models have been 

employed previously in many applications for capturing the variations in the local level 

attributes. It revolves around the observation points located at various distances in space. 

The proposed spatial weight method uses concepts from such models.  

In a spatial weighting method, network buffers are generated in such a way that 

the spatial information is captured between the buffers. The spatial information is 

captured from 0 to 1 mile; 1 to 1.5 mile; 1.5 to 2 mile; 2 to 3 mile; 3 to 4 mile and 4 to 5 

mile distances.  

A distance decay function is used to apply weights for data captured from 

different spatial buffers. As discussed earlier in the GWR approach the sphere of 

influence or the traffic supply density is assumed to decrease as the distance from the 

point of interest increases. Figure 3.6 below (drawn for illustration) depict the decrease in 

traffic supply from an area around a point in a link with an increase in distance or travel 

time. Varying intensities of color is used to represent the change in traffic supply.  

The strength of the method vests in selecting the critical accessible distance for a 

roadway. The sphere of influence or the area of attraction decreases from top to bottom in 

the hierarchical functional classes (freeways/expressways being on the top and minor 

thoroughfare in this case at bottom). A freeway/expressway attracts trips or traffic from a 

larger surrounding area from several lower level functional classes (major and minor 

thoroughfares and arterials). On the other hand, major and minor thoroughfares collect 
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traffic from hierarchically lower level functional classes from a comparatively smaller 

surrounding area in the same order. So the weighting functions and bandwidths for such 

models based on functional class needs to be carefully derived based on the land use, 

demographic, socio-economic and employment characteristics in the vicinity of particular 

links.  

 

FIGURE 3.6: Distance Vs Traffic Supply 

In this research, the weights for each bandwidth of network buffers were applied 

based on the inverse of the square of the network distance and corresponding proportion 

of the total. Figure 3.7 depicts the bandwidths used and the weighting represented by the 

darkness of the color. The darker the color, the higher the weight for a bandwidth. 
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FIGURE 3.7: Bandwidths indicating the Intensity of Weights 

If bi-j is the bandwidth between ‘i’ miles and ‘j’ miles, the weight applied to that 

bandwidth (i-j) is  

Weight of i-j, Wi-j =  
�1 𝑗2� �

∑�1 𝑗2� �
            [3.4] 

The idea is to keep the total weight equal to “1” (100%). As an example, Table 

3.1 below shows the weights (in proportions) for each bandwidth for a five mile 

accessible distance. As stated before, a 5 mile accessible distance was considered for all 

road functional classes combined and freeways/expressways. Using the above formula, 

W0-1 is 0.52 (52%) for bandwidth of “0” to “1” mile, W1-1.5 is 0.23 (23%) for bandwidth 

of “1” to “1.5” miles,  W1.5-2 is 0.13 (13%) for bandwidth of “1.5” to “2” miles, W2-3 is 

0.06 (6%) for bandwidth of “2” to “3” miles, W3-4 is 0.03 (3%) for bandwidth of “3” to 

“4” miles, and W4-5 is 0.02 (2%) for bandwidth of “4” to “5” miles. The sum of all 

weights is equal to 1.00 (100%).  
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TABLE 3.1: Weights in each Bandwidth for a Five Mile Accessible Network Distance 
Considered 

 

Likewise, weights were calculated for major thoroughfares and minor 

thoroughfares for an accessible network distance of “3” miles and “2” miles respectively 

without changing the bandwidth sizes.  

   Sphere of influence for a freeway/expressway, major thoroughfare and minor 

thoroughfare for corresponding accessible distances considered in this research are shown 

in Figure 3.8 (a), (b) and (c) below.  

The weights are applied to the data captured in each corresponding bandwidth and 

summed to obtain the final data set. Mathematical representation of the spatial weighting 

applied on various off-network spatial variables data is given below.  

Xa =  ∑(Xa (i−j)  Wi−j)            [3.5] 

where,  

Xa is the off-network characteristics variable with the combined weighted data, and, 

Xa (i-j) is the off-network characteristics variable corresponding to the bandwidth i-j. 

 

i j
0 1 1.00 0.52
1 1.5 0.44 0.23

1.5 2 0.25 0.13
2 3 0.11 0.06
3 4 0.06 0.03
4 5 0.04 0.02

1.91 1.00

Bandwidth (miles)

Total

1/j2 Wi-j
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(a). Freeway/Expressway 

       

    (b). Major Thoroughfare      (c). Minor Thoroughfare 

FIGURE 3.8: Sphere of Influence around Various Road Functional Classes 

3.4.3 Statistical Analysis 

The data gathered, processed and cleaned in the previous steps is then used to test 

correlation between independent variables, conduct statistical analysis and identify 

parameters significant to estimate AADT (dependent variable).  

Correlation and Multicollinearity: 

Prior to developing the models, correlations among the independent variables are 

studied using Pearson correlation coefficient. Pearson correlation coefficient is the ratio 

of covariance to the product of standard deviations. It represents the strength of 

association or linear relationship between two variables. The higher the absolute value 
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the higher is the relationship. It ranges from -1 to +1, the two boundaries of perfect 

negative and positive correlations. The negative lowest (-1) is a strong negative 

correlation that indicates that an increase in a variable value decreases the other at the 

corresponding rate. The positive highest (+1) is a strong positive correlation that indicates 

an increase in a variable value with a decrease in the other variable at the corresponding 

rate. Table 3.2 below shows the Pearson correlation ranges and the corresponding 

association strength. 

TABLE 3.2: Pearson Correlation Coefficient Range and the Associated Strength 

 

Highly correlated predictor (independent) variables could produce significant 

overall p-values even when the variables do not produce an effect on the dependant 

variables or insignificant t-values because of high standard errors. This problem of 

unreliable results due to correlation among the independent variables is called as 

multicollinearity effect. It is recommended that the correlations among the (independent) 

variables considered for developing the models are in the range (-0.3, +0.3). A rational 

approach should be adopted in identifying and eliminating variables with inter-

correlations. A more detailed explanation of variables retained or eliminated is given in 

the subsequent chapters. 

  

 

-1.0 -0.7 Strong Negative
-0.7 -0.3 Weak Negative
-0.3 +0.3 Very little or No
+0.3 +0.7 Weak Positive
+0.7 +1.0 Strong Positive

Pearson Correlation 
Ranges

Strength of 
Correlation
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Development of Models: 

Determination of optimal buffer size to be used to capture spatial data for 

estimating travel demand typically is based on the road functional class type. All the data 

is classified based on the functional class (freeway/expressway, major and minor 

thoroughfares in a regional network model). Models are developed for each road 

functional class, as a function of demographic, socio-economic and land use 

characteristics. Generalized Estimating Equations (GEE) are used to develop and assess 

the models and identify significant predictors with comparatively better predicting 

capability.  

 “Spatial proximity” and “spatial weighting” models are developed separately. 

While the former models are developed based on the characteristics of data close to the 

roadway links considered, the later models applies various weighting factors based on the 

distance from the roadway links.  

In each of the methods after conducting the correlation analysis and retaining the 

most relevant independent variables with minimal inter-correlations, GEE models are 

developed and tested for various probability distributions. Further, independent variables 

with a significance value less than 90 percent (P-Value greater than 0.1) were eliminated 

in each of the models. The models are recalibrated and the process is repeated until all the 

independent variables had the specified level of significance. The final model consists of 

variables with minimal inter-correlations (0.3) and a significance value less than 90 

percent. 
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3.5 Validation of the Developed Models 

Model validation is designed in two steps. Firstly, percent differences between the 

actual traffic counts (AADT) and estimated AADT are calculated. The average of all the 

absolute percent differences is then calculated.  Secondly, model validation is carried out 

using Pearson’s Chi Square (Χ2) Statistic. The mathematical formula to compute 

Pearson’s Chi Square (Χ2) Statistic (McCullagh and Nelder, 1989, Page No. 34) is shown 

next.  

Χ2 = ∑ (𝑦 − µ)2 𝑉(⁄ µ)            [3.6] 

V (µ) = µ+ kµ2                        [3.7]      

where,  

 Χ2 is the chi-square statistic,  

y is the observed mean, 

 µ is the predicted mean, 

 V (µ) is the variance, and, 

 k is the dispersion parameter of the Negative Binomial model. 

Also, known as the modified or concocted chi-square (𝑋𝑚2 ), the above equation is 

used to calculate the Chi-Square Statistic (CSS) of the observed and predicted values for 

model validation. The CSS thus calculated is compared with Critical-CSS at 99% 

confidence level. If CSS is less than Critical-CSS, the test is satisfied and the predicted 

values are statistically close to the observed values. 



CHAPTER IV: DATA COMPILATION 
 
 
This chapter discusses study area, selection of locations and various data elements to 

develop models. It also describes data elements and the data collected for this research. 

4.1 Study Area and Locations/Sites 

Mecklenburg County in the state of North Carolina (NC) is selected as study area. 

It is located in the southern part of the state of North Carolina. The total area (land) of the 

County is 526.28 square miles with a population of approximately nine hundred thousand 

distributed at a rate of 1322.2 persons per square mile according to US Census Bureau 

quick facts (US Census, 2008). It consists of city of Charlotte and towns such as 

Mathews, Pineville, Mint Hill, Davidson, Cornelius and Huntersville. However, major 

area of the Mecklenburg County is occupied by the city of Charlotte. Charlotte is the 

financial capital of North Carolina and a rapidly growing urbanized area with a 

population of close to 700,000 (US Census Estimates, 2008). It ranks top in terms of 

population, traffic congestion and urbanization in the state of North Carolina. According 

to the 2008 US Census population estimates, the city is one of the fastest growing cities 

and one among the twenty most populous cities in the United States.  

The city’s downtown attracts large number of traffic from within the 

Mecklenburg and several adjacent counties. The Mecklenburg County highway network 

is a radial design with a spoke like extension of roads from the Central Business District 

(CBD) to the outskirts. Several major and minor arterials serve the traffic generated from 
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various origins and destinations. There are two routes that serve as inner and outer loops 

(ring roads) of the region. The inner loop consists of Interstate-277 and Interstate-77 

surrounding downtown Charlotte, whereas the outer loop is served by Interstate-485 and 

Interstate-85 connecting major suburban centers. Besides these there is another loop 

Route-4. It is served mostly by four lane roads and partly with a limited access parkway 

and I-85. It surrounds uptown Charlotte at a radius of about 4 miles between inner and 

outer loops. This is essentially the basic structure of the highway network of the study 

region that also helps to distinguish various areas types of the same. The Charlotte – 

Mecklenburg highway network (approximately 1,100 TAZ’s) is extracted from the 

regional network covering 13 counties (~3000 TAZ’s) considering availability and 

consistency of data such as land use zoning. Figure 4.1 below gives a map with road 

network links (approximately, 7,375) in Mecklenburg County extracted from the 2005 

regional travel model network. 
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FIGURE 4.1: 2005 Mecklenburg County Highway Network 

Geographically distributed study locations are selected based on road functional 

class and area type to develop models based on road functional class. Three area types 

(CBD, Urban and Suburban) were considered in the study.  

The following road functional classes are considered in the study: 

 Freeway or Expressway 

 Major thoroughfares  

 Minor thoroughfares 
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As discussed earlier the three loops (ring roads) in the study region are used to 

select links from various area types. The links inside and around the inner loop were 

considered as area type “CBD”. Links away from inner loop and around Route 4 are 

considered as “Urban” and links away from Route 4 and around the present outer loop 

and proposed extension of Interstate-485 are considered as “Suburban”. The Charlotte 

Department of Transportation (CDOT) uses population and employment densities to 

classify area types. However, from a general observation of a map representing area types 

using the CDOT approach, several urban areas are represented as suburban and vice 

versa. To be consistent and to be representative of any metropolitan setting nationwide, 

the above method is used to classify area types in this dissertation. Figure 4.2 below 

shows the selected study locations by area type for major thoroughfares from 2005 base 

year Mecklenburg region highway network for Charlotte metropolitan area for 

illustration. 

 



77 
 

 
 

 

FIGURE 4.2: 2005 Study Locations for Major Thoroughfares by Area Type  

The initial data consisted of nine datasets (a combination of three roadway types 

and three area types). The sample size of each data set consisted of not less than 30 links. 

More study links were considered where ever possible. For instance freeway/expressway 

type links in the CBD area were very few and hence only 33 links with traffic counts 

available were considered. Also the sample locations/links are considered in such a way 
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that they are geographically distributed over the study area. Table 4.1 below shows the 

number of links considered for each road functional class and area types.  

 

TABLE 4.1: Study Links in Each Road Functional Class and Area Type 

 

4.2 Data Collection 

The regional network and travel demand model data is obtained from the CDOT. 

Highway network and TAZ level planning variables data of Mecklenburg County is 

extracted from the regional travel demand model in a GIS format. Local or regional 

transportation planning objectives are considered while defining the TAZs whereas the 

geographical disintegration of census data typically at block group or zonal level is 

carried out with broader objectives. TAZ data is preferred in this research to the census 

block group data. Also the census data is available for the year 2000 at the time of this 

research while other data are for year 2005. 

For consistency all the traffic, network, demographic, socio-economic, 

employment, and land use data for the year 2005 is used as a basis for data collection. 

Though year 2009 base year data is available 2005 base year data is considered to 

account for the effect of recession (started in late 2007 and intensified from early 2008) 

and LYNX blue line light rail transit that started in November 2007.  

Network characteristics such as number of lanes, and speed limit of the study 

links and the corresponding spatially dependant links such as upstream and downstream 

links and upstream and downstream cross street links were collected and stored in each 

Roadway / Area Types CBD Urban Suburban All Area Types 
Freeways/Expressways 30 37 35 102
Major Thoroughfare 35 38 38 111
Minor Thoroughfare 29 33 36 98
All Roadway Types 94 108 109 311
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data set. Spatial network buffers of varying sizes were generated for each study link to 

capture the demographic, socio-economic, and land use characteristics in the vicinity of 

the study link. Finally three databases were generated by combining the data sets of each 

road functional class. The final dataset for each road functional class contains three 

different area types. The area type is included as an independent variable in the final 

database.  

4.2.1 Traffic Volumes 

AADT volumes are obtained from the North Carolina Department of 

Transportation (NCDOT) for the years 2002 to 2008 (that would be used for calibration 

and validation of the models in the later part). In addition average annual weekday traffic 

(AAWT) from short term traffic counts conducted by Charlotte Department of 

Transportation (CDOT) during the years 2004, 2005 and 2006 were obtained. 

Appropriate adjustment factors provided by the CDOT were used to calculate AADT. 

2005 traffic counts were used where ever possible and appropriate adjustments were 

made for 2004 and 2006 data where 2005 data is not available.  

4.2.2 Network Characteristics Data 

Number of lanes, speed limit and various road functional classes discussed earlier 

were collected for all the study links. In addition, number of lanes and speed limits of 

upstream and downstream links and upstream and downstream cross street links were 

also collected. It was expected that traffic on study links are subjected to spatial 

dependency of network and hence the characteristics of the corresponding upstream and 

downstream network links were also included in the analysis as independent variables.  
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Roadway running towards or away from the downtown is considered as vertical 

and the perpendicular roads are considered as horizontal. For consistency, links on the 

left are considered as cross-street link 1 and links to the right are considered as cross-

street link 2. It was felt that cross-street links cannot be considered as one due to the 

differences observed in the number of lanes and speed limit between the two cross street 

links (left and right of the study link) while collecting the cross-street information. When 

T-intersections are encountered, there will be only one cross-street. So, it was felt more 

appropriate to consider the two cross-street links both upstream and downstream as two 

separate entities. For T-intersections, the cross-street variable values are taken as ‘zeros’. 

Figure 4.3 below shows typical links in a highway network and the corresponding 

spatially dependent links. 

 

Horizontal Links  

Left – Upstream (US); Right – Downstream (DS); 

Above – UCL1, DCL1; Below – UCL2, DCL2 
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Vertical Links     

Above – Upstream (US); Below – Downstream (DS) 

Left – UCL1, DCL1; Right – UCL2, DCL2. 

FIGURE 4.3: Illustration of Spatially Dependent Links 

4.2.3 Socio – Demographic and Employment Data 

Demographic characteristics such as number of households, population, 

household population; social characteristics such as mean income; and employment by 

type and total employment based on Standard Industry Classification (SIC), pupil 

enrolled in kindergarten, elementary, middle and high schools, colleges and universities 

were considered in the analysis.  

4.2.4 Land use Data 

Land use zoning characteristics such as single family and multi-family, urban 

residential, office, business, institutional, industrial, commercial/retail and other land uses 

expected to be significant attractors and generators of trips were included in the analysis.  
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Zoning regulations are adopted by the Charlotte-Mecklenburg planning department to 

promote and protect similar types of development in support of public policy objectives 

(City of Charlotte), each land use codified by the City of Charlotte Zoning Ordinance 

(2010). Such land use zoning allows development of land uses of certain category coded 

in the text of the ordinances. The zoning districts are classified as residential and non-

residential land uses depending on the purpose served by each. Residential land uses 

include single family housing, multifamily housing, urban residential and primarily 

residential mixed use land uses. Other land uses such as industrial, business, commercial 

center, office, institutional, research district and other mixed use districts are also 

considered. Land uses such as rural, mobile residential, planned unit development and 

neighborhood service district are small in area and are under mostly residential category. 

Table 4.2 below gives a description of each land use district described by the City of 

Charlotte Zoning Ordinance in general. Table 4.3 below summarizes the characteristics 

of all the data used in the analysis. All the demographic and socio-economic variables are 

converted to thousands (for example, thousand population, and employees in thousands) 

and the land use variables are converted to thousand square ft. All the calculations are 

carried out using SQL Server 2005®.  
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TABLE 4.2: Description of various Land use Characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

Land Use Characteristics Description
Single Family Residential Area 3 to 8 dw elling units/acre
Multi Family Residential Area 12 – 43 dwelling units/acre 
Urban Residential Area Encouraged for infill development and increase density near employment core

Office District
Establishments for office, institutional, and commercial ope rations not involving sale of 
merchandise

Industrial
Wholesale, manufacturing, processing and assembling units, transportation terminals and a broad 
variety of industrial ope rations

Research District Higher end research, development and high technology manufacturing
Urban Residential - 
Commercial Area Residential, retail outlets and offices conducive for higher density patterns

Institutional Major educational, medical, government, cultural and religious and other institutions

Business Neighborhood business to support residential areas to general and distributive businesses for retail 
merchandise and business parks

Mixed use District Full range of housing types, and compatible non residential uses to provide goods, services and 
employment primarily for the planned community residents

Mobile Residential Proper location and planning of manufactured homes and mobile home parks and subdivisions
Rural District zones that are rural in nature

Manufactured House Permits farms, manufactured homes, service buildings (laundry and recreational facilities), parks, 
greenways and detached dwellings

Commercial Center Retail establishment or shopping center of larger than 70,000 square feet (approximately)
Neighborhood Service District Retail and service activity needs of neighborhoods and accommodates mixed use existence
Innovative Planned for development for specific public policy objectives
Planned Unit Development Planned for development for specific public policy objectives
Mixed use Development Zones that are planned and encouraged for mixed use developments

Right of Way State owned right of ways of interstates, major and minor thoroughfares and any right of way for 
roads
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TABLE 4.3: Characteristics of the Data 

 

Network Characteristics Area Type
Roadway Type / Category CBD
# Lanes Urban
Speed Limit Suburban

Demographic Land Use Characteristics
# Households Single Family Residential Area
Total Population Multi Family Residential Area
Household Population Urban Residential Area
Group Quarters Population Office District

Socio Economic Industrial
Mean Income Research District

Urban Residential - Commercial Area
Institutional

# Retail Employees Business
# Highway Retail Employees Mixed District
# Low Visitor Service Employees Mobile Residential
# High Visitor Service Employees Rural District
# Office and Government Employees Manufactured House
# Bank Employees Commercial Center
# School, College and University Employees Neighborhood Service District

Innovative
Planned Unit Development

# Pupils Enrolled in Public or Private High Schools Mixed use Development
# Pupils in Public or Private Colleges and Universities Right of Way
Total Number of Employees (Sum of all Employees)

# Manufacturing, Industrial, Warehouse, Transpor tation, 
Communication, and Utilities Employees

# Pupils Enrolled in Public or Private Kindergarten, 
Elementary and Middle Schools 



CHAPTER V: MODELS BASED ON SPATIAL PROXIMITY 
 
 
 Buffers of width 1 mile, 1.5 mile, 2 mile, 3 mile, 4 mile and 5 miles were 

generated around each study link belonging to freeway/expressway, major thoroughfare 

and  minor thoroughfare road functional classes. Demographic, socio-economic and land 

use data were then overlaid on the generated buffers. Network characteristics were also 

collected as discussed earlier. Data are then processed and integrated to generate 

databases for model development. An examination of correlation between independent 

variables and development of models for different buffer widths was then conducted. The 

models are developed for all road functional classes, freeways/expressways, major 

thoroughfares and minor thoroughfares, with and without considering network 

characteristics to estimate AADT for transportation planning and analysis purposes. The 

examination of correlation between independent variables followed by models developed 

using spatial proximity (individual spatial buffers) method is discussed next. 

5.1 Correlation Matrices and Selection of Independent Variables 

To avoid or minimize multicollinearity effect, a two tailed, bivariate Pearson 

correlation analysis is conducted among all the independent variables. A correlation 

matrix is generated in the SPSS® software. Independent variables are screened, such that, 

no final selected variables have correlations out of (-0.3, +0.3) range. Variable selection 

is carried out in a logical way. Among the four types of independent variables (network, 

demographic, socio-economic, and land use variables), the variables that are expected to 
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be directly related to the AADT are included whereas the variables that are comparatively 

unexplainable are excluded in the case of correlation between the two. For example in the 

network characteristics data, more number of lanes allows more throughputs and hence is 

included. The posted speed limit facilitates higher thru traffic but highly fluctuates 

depending on the actual speeds and hence is considered only when not correlated with the 

number of lanes. Functional classification depends on the number of lanes and speed 

limit and hence is eliminated when found correlated with lanes or speed limit. Since, 

separate models were developed for each road functional class, it was felt that functional 

class is not a significant variable. Also, if the upstream or downstream number of lanes or 

posted speed limit is correlated with the selected link number of lanes or speed limit the 

upstream or downstream link variables are eliminated.  

Likewise, population living in a service or buffer area can be easily quantified 

whereas, households and household population are difficult to track (there might be 

empty households, houses on rent and other). Population could account for the people 

living in the households and could be accounted for twice if both are considered. It was 

found that for almost all the spatial buffers (for all accessible distances considered) for all 

the road functional classes, number of households, household population and group 

quarter population are correlated with population. Likewise, if the population is related 

with any of the employee types they are eliminated. Also the “total number of 

employees” variable is calculated as a sum of employees in all the employment 

categories. Hence, if the total employment is correlated with employment types they are 

eliminated.  
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In the land use characteristics data, elimination is carried out on a case by case 

basis. The objective is to eliminate the effect of multicollinearity to the extent possible 

and to keep the number of variables in the final model precise. Population in an area 

depends on the type of land use such as single family and multifamily residential, urban 

residential, office, institutional and other land uses. So if population is correlated with 

any of these land uses they are eliminated. If they have no correlation with population but 

are correlated among the land use types care was taken in eliminating the land use that is 

insignificant in terms of traffic generation. Neighborhood service district, innovative, 

planned unit development, right of way land uses are less in area. If they are correlated 

with other land uses they are eliminated. They are included only when they are not 

correlated with any other socio-economic and land use variables. Common land uses that 

are representative of a typical urbanized area are retained in case of a correlation, such 

that the models developed could be used nationally. Multifamily land uses bear more 

population compared to single family that can be accounted for in population. So, if 

single family and multifamily land uses are correlated, single family land use is retained. 

Research district is retained if research district and employees and pupils enrolled in 

public and private colleges or universities are correlated. Oftentimes, it was observed that 

land use variables and “population” are correlated. Since all the final independent 

variables retained in each set of processed data have inter correlations in the +/- 0.3 

range, any significant multicollinearity is ruled out. 

The above process was repeated for all selected buffer widths for each type of 

road functional class considered in this research. The final set of independent variables 
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(that are not correlated to each other) selected to develop the models for each buffer 

width for various road functional classes considered are listed tables 5.1, 5.2, 5.3, and 5.4. 

 

TABLE 5.1: Variables Selected for each Buffer Width for All Road Functional Classes

 

 

 

 

 

 

 

 

 

Variable / Spatial Buffer 1 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile
CBD      
Urban      
Suburban      
Freeway/Expressway      
Major Thoroughfare      
Minor Thoroughfare      
# Lanes      
Upstream Cross Street Link 1 # Lanes      
Downstream Cross Street Link 1 Speed Limit      
Population      
Mean Income 
# Pupils Enrolled in Public or Private High Schools    
SingleFamily  
Industrial 
Research District  
Institutional      
Mobile Residential   
Rural District    
Manufactured House     
Commercial Center  
Neighborhood Service District 
Innovative  
Planned Unit Development   
RightofWay  
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TABLE 5.2: Variables Selected for each Buffer Width for Freeways/Expressways 

 

 

TABLE 5.3: Variables Selected for each Buffer Width for Major Thoroughfares 

 

Variable / Spatial Buffer 1 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile
CBD      
Urban      
Suburban      
# Lanes      
Speed Limit      
Upstream Cross Street Link 1 # Lanes      
Upstream Cross Street Link 1 Speed Limit      
Upstream Cross Street Link 2 # Lanes      
Downstream Link Speed Limit      
Downstream Cross Street Link 1 # Lanes      
Downstream Cross Street Link 1 Speed Limit      
Population      
# Pupils Enrolled in Public or Private High Schools 
Institutional      
Mobile Residential   
Rural District  
Manufactured House     
Commercial Center  
Innovative  
Planned Unit Development    
RightofWay 

Variable / Spatial Buffer 1 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile
CBD      
Urban      
Suburban      
# Lanes      
Speed Limit      
Upstream Link Speed Limit      
Upstream Cross Street Link 1 # Lanes      
Upstream Cross Street Link 2 Speed Limit      
Downstream Cross Street Link 1 # Lanes      
Downstream Cross Street Link 2 Speed Limit      
Population      
# Pupils Enrolled in Public or Private High Schools    
SingleFamily   
OfficeDistrict 
Industrial 
Research District   
Institutional    
Mixed use District  
Mobile Residential  
Rural District   
Manufactured House   
Commercial Center 
Neighborhood Service District   
Innovative   
Planned Unit Development  
RightofWay     
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TABLE 5.4: Variables Selected for each Buffer Width for Minor Thoroughfares 

 

 The datasets thus retained were used to run the generalized estimating equations 

in the SPSS®. The independent variable is the thousand AADT, and all the other 

independent variables that are not correlated to each other such as network 

characteristics, demographic, socio-economic and land use characteristics (in thousands) 

are considered as covariates (that includes the categorical data in binary format). 

Statistical analyses and model development is discussed next. 

5.2  Statistical Analyses and Assessment of Models to Estimate AADT  

Initially general and stepwise Multiple Linear Regression (MLR) models were 

developed along with a log transformed MLR model. Results with a log transformed 

model sounded to be comparatively better than the simple MLR model based on 

goodness of fit statistics like R-Square, adjusted R-Square and Predicted Error Sum of 

Variable / Spatial Buffer 1 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile
CBD      
Urban      
Suburban      
# Lanes      
Upstream Link Speed Limit      
Upstream Cross Street Link 1 # Lanes      
Upstream Cross Street Link 2 Speed Limit      
Downstream Link Speed Limit      
Downstream Cross Street Link 1 # Lanes      
Downstream Cross Street Link 2 Speed Limit      
Population      
Mean Income 
# Pupils Enrolled in Public or Private High Schools    
SingleFamily   
Industrial 
Research District     
Institutional      
Business
Mobile Residential  
Rural District    
Manufactured House   
Commercial Center 
Neighborhood Service District 
Innovative  
Planned Unit Development 
RightofWay    
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Squares (PRESS). This indicated that a non-linear relationship is predominant between 

the dependent and independent variables. Hence, Generalized Estimating Equation (GEE) 

models were developed using simple normal distribution, and, normal, Poisson and 

Negative Binomial distributions with log-links.  

The Quasi Information Criteria (QIC), and the corrected QIC (QICC) are used as 

goodness of fit statistics. In general, QIC is used for selecting the correlation structure, 

whereas, QICC is used to select a model among a group of models. Normal and Normal 

with log-link have comparatively very high QIC and QICC values (fifty times larger than 

Poisson with log-link). Hence, models were developed using Poisson and Negative 

Binomial distribution with a log-link (typical count models). SPSS® is used to run the 

GEE analysis for developing the models.  

Independent variables are further screened based on predicting power 

(significance levels) in the models. A 90% level of significance is used to develop the 

models. Thus independent variables with a P – Value greater than or equal to 0.1 were 

eliminated and the analysis is repeated. Wald Chi Square should be typically larger 

(greater than 1.0). The elimination process is continued till all the variables in the final 

model have a P – Value less than 0.1. Since, most of the variables were eliminated in the 

correlation analysis the final model is obtained typically by second or third run.   

Since the data collected is not longitudinal in nature (AADT for the year 2005 

only), correlation structures were not evaluated. Evaluation and selection of models is 

based on low QICC and difference between QIC and QICC (the lesser the difference, the 

better the model). The variables included and their coefficients were also examined to 

select the final model.  
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The models for all road functional classes, freeways/expressways, major 

thoroughfares, and minor thoroughfares, for all buffer widths considered are presented 

and discussed next. To facilitate planners to develop models for analysis as well as 

planning purposes, models with and without network characteristics were developed. 

5.3 Models with Network Characteristics 

Models were developed to estimate AADT for analysis purposes using the final 

variables obtained from the correlation analysis conducted among all the independent 

variables such as network characteristics, socio-economic and land use characteristics 

data. Models developed based on all and each individual road functional classes are 

presented in this section. Only the variables that contributed to the final model and their 

corresponding parameters were presented in the results tables. Variables that do not 

contribute to the final model were left blank in the tables. All land uses in the tables are 

in thousand square feet. 

5.3.1 Models based on All Road Functional Classes 

 A summary of parameters and the corresponding goodness of fit statistics for 

each selected buffer width for Poisson and Negative Binomial distributions with log link 

were presented in Table 5.5 and Table 5.6, respectively.  

It is evident from the goodness of fit statistics that the Negative Binomial with log 

link fits the model better than the Poisson with log link. While the Poisson based models 

have QIC and QICC around 1,900, the Negative Binomial models have QIC and QICC 

around 60 and 70. The QIC and QICC are relatively close to each other for all buffer 

widths examined in this research. 
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The Negative Binomial model based on one and a half mile buffer width has the 

lowest QIC and QICC. This model indicates that area type (urban), 

freeways/expressways, major thoroughfares, number of lanes, single family housing and 

the presence of manufactured house land use are significant variables in estimating 

AADT.   It is expressed mathematically as follows. 

(AADT in thousands)1.5 Mile = Exp (1.578 + 0.149 × Urban + 2.117 × 

Freeway/Expressway + 0.660 × Major Thoroughfare + 0.106 × Number of Lanes + 

0.000007 × Single Family housing – 0.013 × Manufactured House) 

 

TABLE 5.5: Generalized Estimating Equations Models based on Poisson - Log Function 
with Network Characteristics - All Road Functional Classes 

 

 

 

 

 

 

 

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 1.530 .000 1.604 .000 1.813 .000 1.803 .000 1.812 .000 1.919 .000
CBD .510 .057
Urban .116 .047 .123 .037 .122 .037 .412 .008
Freeways/Expressways 2.129 .000 2.085 .000 1.930 .000 1.933 .000 1.926 .000 1.942 .000
Major Thoroughfares .713 .000 .674 .000 .674 .000 .679 .000 .674 .000 .706 .000
# Lanes .120 .000 .116 .000 .120 .000 .120 .000 .119 .000 .113 .000
Population -.004 .073
Single Family 0.000014 .000 0.000007 .000
Industrial 0.000014 .011
Research District 0.000035 .080
Mobile Residential
Commercial Center
Neighborhood Service District
Rural District 0.001640 .085
Manufactured House -0.014088 .000 -0.013476 .000 -0.002863 .012
Innovative 0.000020 .046
QIC
QICC

1962.042
1813.390 1814.764 1897.426 1918.809 1919.433 1854.635
1882.234 1869.950 1952.710 1976.275 1977.016

Variables 1.0 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile
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TABLE 5.6: Generalized Estimating Equations Models based on Negative Binomial - 
Log Function with Network Characteristics - All Road Functional Classes 

 

5.3.2 Models based on Freeways/Expressways 

 A summary of parameters and the corresponding goodness of fit statistics for 

each selected buffer width for Poisson and Negative Binomial distributions with log link 

were presented in Table 5.7 and Table 5.8, respectively. 

It is evident from the goodness of fit statistics that the Negative Binomial with log 

link fits the model better than the Poisson with log link. It was also observed that the 

goodness of fit statistics were better than the models for all road functional classes. While 

the Poisson based models have QIC and QICC values around 1,000, the Negative 

Binomial models have QIC and QICC around10 and 20. The QIC and QICC are 

relatively close to each other for all the buffer widths considered in the research. 

The Negative Binomial model based on two mile buffer width has the lowest QIC 

and QICC. The difference between these two statistics is also comparatively lower. This 

model indicates  that area type (CBD), number of lanes, downstream link speed limit, 

downstream cross-street link 1 – number of lanes, mobile residential and manufactured 

house land use are significant variables in estimating AADT.  It is expressed 

mathematically as follows. 

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 1.665 .000 1.578 .000 1.585 .000 1.875 .000 1.858 .000 1.909 .000
Urban .176 .003 .149 .006 .239 .000 .236 .000 .248 .000 .251 .000
Freeways/Expressways 2.061 .000 2.117 .000 1.975 .000 1.927 .000 1.925 .000 1.942 .000
Major Thoroughfares .670 .000 .660 .000 .674 .000 .672 .000 .667 .000 .668 .000
# Lanes .112 .000 .106 .000 .123 .000 .120 .000 .121 .000 .116 .000
Population -.003 .035 -.001 .080 -.001 .031
Mean Income .003 .060
Single Family 0.000010 .001 0.000007 .000
Mobile Residential
Commercial Center
Neighborhood Service District
Manufactured House -0.012998 .000 -0.012757 .000 -0.005117 .098 -0.003701 .004
Innovative
QIC
QICC 73.891

61.969
71.292
59.200

71.047
61.052

73.306
61.597

72.202
62.283

73.615
62.105

Variables 1.0 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile
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(AADT in thousands)2 Mile = Exp (2.425 + 0.203 × CBD + 0.138 × Number of Lanes + 

0.017 × Downstream Link Speed Limit + 0.078 × Downstream Cross Street Link 1 

Number of lanes – 0.0000056 × Mobile Residential – 0.011473 × Manufactured House) 

 

TABLE 5.7: Generalized Estimating Equations Models based on Poisson - Log Function 
with Network Characteristics – Freeways/Expressways 

 

 

TABLE 5.8: Generalized Estimating Equations Models based on Negative Binomial - 
Log Function with Network Characteristics – Freeways/Expressways 

 

 

5.3.3 Models based on Major Thoroughfares 

  A summary of parameters and the corresponding goodness of fit statistics for 

each selected buffer width for Poisson and Negative Binomial distributions with log link 

were presented in Table 5.9 and Table 5.10, respectively. 

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 2.377 .000 2.371 .000 2.620 .000 2.320 .000 2.693 .000 2.724 .000
CBD .208 .002 .213 .002 .205 .003
Urban
# Lanes .132 .000 .136 .000 .108 .000 .134 .000 .128 .000 .122 .000
Downstream Link Speed Limit .019 .000 .019 .000 .019 .000 .020 .000 .020 .000 .020 .000
Downstream Cross Street Link 1 # Lanes .082 .003 .074 .006 .053 .099 .080 .003
# Students enrolled in High Schools 0.080317 .086
Mobile Residential -0.000746 .003 -0.000084 .000
Rural District -0.000937 .007
Manufactured House -0.011399 .000 -0.013618 .000 -0.003669 .028
Planned Unit Development -0.000114 .000 -0.000018 .001
Right of Way
QIC
QICC

1026.497
879.788 885.731 923.215 875.047 1012.259 985.475
939.845 943.504 979.174 936.508 1044.391

Variables 1.0 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 1.791 .000 2.374 .000 2.425 .000 1.829 .000 2.499 .000 2.688 .000
CBD .363 .000 .217 .002 .203 .004 .316 .001
Urban .195 .036 .163 .089
# Lanes .126 .000 .144 .000 .138 .000 .128 .000 .139 .000 .134 .000
Speed Limit .013 .061 .012 .088
Downstream Link Speed Limit .014 .000 .018 .000 .017 .000 .016 .000 .019 .000 .019 .000
Downstream Cross Street Link 1 # Lanes .081 .002 .076 .004 .078 .004 .079 .003 .052 .100
Mobile Residential -0.000466 .000 -0.000056 .000
Rural District -0.001115 .001
Manufactured House -0.011216 .000 -0.011473 .000 -0.003562 .002
Planned Unit Development -0.000058 .032 -0.000011 .042
Right of Way 0.000145 .087
QIC
QICC

11.678
29.406 21.987 23.795 25.660 21.205 19.146
10.606 10.754 10.582 10.764 11.874

Variables 1.0 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile
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It is evident from the goodness of fit statistics that the Negative Binomial with log 

link fits the model better than the Poisson with log link. It was also observed that the 

goodness of fit statistics were better than the models for all road functional classes 

combined. While the Poisson based models have QIC and QICC values around 350, the 

Negative Binomial models have QIC and QICC around 20 and 30. The QIC and QICC 

are relatively close to each other for all the buffer widths considered in the research. 

The Negative Binomial model based on one and a half mile buffer width has the 

lowest QIC and QICC. The difference between these two statistics is also comparatively 

lower. This model indicates that area type (urban), speed limit, planned unit development 

and right of way land uses are significant variables in estimating AADT.  It is expressed 

mathematically as follows. 

(AADT in thousands)1.5 Mile = Exp (0.753 + 0.509 × Urban + 0.048 × Speed Limit + 

0.000045 × Planned Unit Development + 0.000384 × Right of Way) 

 

TABLE 5.9: Generalized Estimating Equations Models based on Poisson - Log Function 
with Network Characteristics – Major Thoroughfares 

 
 

 

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 1.679 .000 1.308 .001 1.380 .002 1.477 .000 1.589 .000 .614 .067
CBD -.423 .003 -.268 .044
Urban .360 .000 .467 .000 .469 .000 .528 .000 .412 .000
Speed Limit .024 .014 .033 .000 .035 .000 .032 .000 .029 .002 .048 .000
Upstream Link Speed Limit .007 .016 .005 .080 .006 .039 .006 .040 .007 .030 .005 .092
Downstream Cross Street Link 1 # Lanes .049 .043
Population -.014 .020 -.006 .007 -.005 .001
# Education related Employees
Single Family 0.000008 .061
Research District
Rural District -0.002672 .068
Manufactured House -0.003486 .002 -0.004298 .000
Planned Unit Development 0.000029 .020
QIC
QICC

378.744
375.003 344.011 349.836 348.610 335.867 362.360
394.175 362.481 368.204 364.917 355.015

Variables 1.0 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile
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TABLE 5.10: Generalized Estimating Equations Models based on Negative Binomial - 
Log Function with Network Characteristics – Major Thoroughfares 

 

5.3.4 Models based on Minor Thoroughfares 

  A summary of parameters and the corresponding goodness of fit statistics for 

each selected buffer width for Poisson and Negative Binomial distributions with log link 

were presented in Table 5.11 and Table 5.12, respectively. 

It is evident from the goodness of fit statistics that the Negative Binomial with log 

link fits the model better than the Poisson with log link. It was also observed that the 

goodness of fit statistics were better than the models for all road functional classes 

combined. While the Poisson based models have QIC and QICC values around 130, the 

Negative Binomial models have QIC and QICC around 15 and 25. The QIC and QICC 

are relatively close to each other for all the buffer widths considered in the research. 

The Negative Binomial model based on one and a half mile buffer has the lowest 

QIC and QICC, The difference between these two statistics is also comparatively lower. 

This model   indicates that area type (urban), upstream link speed limit, downstream link 

speed limit and institutional land use are significant variables in estimating AADT.   It is 

expressed mathematically as follows. 

(AADT in thousands)1.5 Mile = Exp (1.756 + 0.204 × Urban + 0.006 × Upstream Link 

Speed Limit + 0.004 × Downstream Link Speed limit - 0.000027 × Institutional) 

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 1.456 .000 .753 .027 1.539 .000 1.594 .000 1.589 .000 .594 .075
CBD -.378 .003
Urban .323 .000 .509 .000 .514 .000 .511 .000 .534 .000 .471 .000
Speed Limit .028 .003 .048 .000 .029 .003 .028 .003 .029 .001 .053 .000
Upstream Link Speed Limit .005 .079 .006 .045 .006 .059 .005 .077
Downstream Cross Street Link 1 # Lanes .050 .067 .054 .047 .057 .039 .053 .049
Population -.018 .002 -.008 .001 -.005 .001
Research District
Manufactured House -0.003913 .001 -0.003921 .000
Neighborhood Service District
Planned Unit Development 0.000045 .000
Right of Way 0.000384 .000
QIC
QICC

22.322
31.926 30.246 31.826 33.753 33.689 27.363
21.562 21.366 21.441 21.404 21.314

Variables 1.0 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile
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TABLE 5.11: Generalized Estimating Equations Models based on Poisson - Log 
Function with Network Characteristics – Minor Thoroughfares 

 

 

TABLE 5.12: Generalized Estimating Equations Models based on Negative Binomial - 
Log Function with Network Characteristics – Minor Thoroughfares 

 

5.4 Models without Network Characteristics 

Models were developed to estimate AADT for planning purposes using the final 

variables obtained from the correlation analysis conducted among all the independent 

variables such as socio-economic and land use characteristics data (network 

characteristics are excluded here). Models developed based on all and each individual 

road functional classes are presented in this section. Only the variables that contributed to 

the final model and their corresponding parameters were presented in the results tables. 

Variables that do not contribute to the final model were left blank in the tables. All land 

uses in the tables are in thousand square feet. 

 

 

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 1.742 .000 1.755 .000 1.742 .000 1.894 .000 1.742 .000 1.742 .000
Urban .190 .012 .197 .009 .190 .012 .183 .017 .190 .012 .190 .012
Upstream Link Speed Limit .006 .002 .006 .003 .006 .002 .006 .002 .006 .002 .006 .002
Downstream Link Speed Limit .004 .093 .005 .069 .004 .093 .004 .093 .004 .093
Downstream Cross Street Link 1 # Lanes
Institutional -0.000025 .030
Research District
Mobile Residential
Manufactured House -0.011807 .000
QIC
QICC

133.198
131.702 132.002 131.702 130.810 131.702 131.702
133.198 132.146 133.198 129.872 133.198

Variables 1.0 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 1.860 .000 1.756 .000 1.860 .000 1.886 .000 1.860 .000 1.860 .000
Urban .190 .012 .204 .006 .190 .012 .182 .015 .190 .012 .190 .012
Upstream Link Speed Limit .007 .001 .006 .003 .007 .001 .007 .002 .007 .001 .007 .001
Downstream Link Speed Limit .004 .091
Downstream Cross Street Link 1 # Lanes
Institutional -0.000027 .009
Research District
Mobile Residential
Manufactured House -0.011727 .000
QIC
QICC

15.610
20.829 24.268 20.829 22.044 20.829 20.829
15.610 15.397 15.610 14.794 15.610

Variables 1.0 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile
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5.4.1 Models Based on All Road Functional Classes  

 A summary of parameters and the corresponding goodness of fit statistics for 

each selected buffer width for Poisson and Negative Binomial distributions with log link 

were presented in Table 5.13 and Table 5.14, respectively.  

It is evident from the goodness of fit statistics that the Negative Binomial with log 

link fits the model better than the Poisson with log link. While the Poisson based models 

have QIC and QICC around 7,000 and 10,000, the Negative Binomial models have QIC 

and QICC around 230 and 310. The QIC and QICC are relatively close to each other for 

all buffer widths examined in this research. 

The Negative Binomial model based on one mile buffer width has the lowest QIC 

and QICC. This model indicates that area types (CBD, urban), population, single family 

housing, industrial, institutional, mobile residential, and right of way land uses are 

significant variables in estimating AADT It is expressed mathematically as follows. 

(AADT in thousands)1.0 Mile = Exp (4.063 + 0.969 × CBD + 0.898 × Urban – 0.240 × 

Population – 0.00003 × Single Family housing – 0.00002 × Industrial – 0.00009 × 

Research District – 0.00005 × Institutional – 0.00029 × Mobile Residential + 0.0007 × 

Right of Way) 
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TABLE 5.13: Generalized Estimating Equations Models based on Poisson - Log 
Function without Network Characteristics - All Road Functional Classes 

 

 
 
 

TABLE 5.14: Generalized Estimating Equations Models based on Negative Binomial - 
Log Function without Network Characteristics - All Road Functional Classes 

 

5.4.2 Models based on Freeways/Expressways 

  A summary of parameters and the corresponding goodness of fit statistics for 

each selected buffer width for Poisson and Negative Binomial distributions with log link 

were presented in Table 5.15 and Table 5.16, respectively. 

It is evident from the goodness of fit statistics that the Negative Binomial with log 

link fits the model better than the Poisson with log link. It was also observed that the 

goodness of fit statistics were better than the models for all road functional classes. While 

the Poisson based models have QIC and QICC values around 1,300 and 1,400, the 

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 4.050 .000 4.100 .000 5.914 .000 4.194 .000 4.406 .000 4.453 .000
CBD 1.236 .000 1.159 .000 1.198 .000 2.130 .000 2.455 .000 2.289 .000
Urban .905 .000 .882 .000 .611 .000 1.073 .000 1.483 .000 1.515 .000
Population -.259 .000 -.097 .000 -.084 .000 -.045 .000 -.029 .000 -.019 .000
Mean Income -.026 .000
# Students Enrolled in High Schools .144 .008
Single Family -0.00003 .000 -0.00001 .000
Industrial -0.00002 .028
Institutional -0.00004 .091 -0.00005 .002
Mobile Residential -0.00031 .008 -0.00021 .010 -0.00018 .000
Rural District -0.00959 .000 -0.00715 .030 -0.00487 .046
Manufactured House -0.01491 .000
Planned Unit Development -0.00003 .066
Right of Way 0.00053 .003 0.00021 .003
QIC
QICC

7661.710
10663.981
10970.45410747.58310123.7528144.3799436.570

7271.903 9038.138 7828.160 9695.196 10412.094

Five MileVariables One Mile One Half Mile Two Mile Three Mile Four Mile

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 4.063 .000 4.054 .000 5.408 .000 4.284 .000 4.383 .000 4.520 .000
CBD .969 .000 .931 .003 1.404 .000 2.352 .000 2.358 .000 2.298 .000
Urban .898 .000 .817 .000 .808 .000 1.431 .000 1.564 .000 1.684 .000
Population -.240 .000 -.084 .000 -.088 .000 -.048 .000 -.029 .000 -.020 .000
Mean Income -.018 .000
Single Family -0.00003 .000 -0.00001 .001
Industrial -0.00002 .022
Research District -0.00009 .005
Institutional -0.00005 .069 -0.00005 .018 -0.00005 .000
Mobile Residential -0.00029 .003 -0.00014 .043 -0.00015 .000
Rural District -0.00938 .000 -0.00726 .004 -0.00509 .007 -0.00382 .029
Manufactured House -0.01272 .000
Right of Way 0.00070 .001 0.00031 .003
QIC
QICC

Variables One Mile One Half Mile Two Mile

313.156
250.753

289.546245.981
238.018 285.765

259.964 298.512 310.462

Five Mile

296.476 309.808 312.192

Three Mile Four Mile
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Negative Binomial models have QIC and QICC around 15 and 25. The QIC and QICC 

are relatively close to each other for all the buffer widths considered in the research. 

The Negative Binomial model based on one and a half mile buffer width has the 

lowest QIC and QICC. The difference between these two statistics is also comparatively 

lower. This model indicates that area type (urban), population, and manufactured house 

land use are significant variables in estimating AADT.   It is expressed mathematically as 

follows. 

(AADT in thousands)1.5 Mile = Exp (4.282 + 0.206 × urban + 0.026 × Population – 

0.010164 × Manufactured House) 

 

TABLE 5.15: Generalized Estimating Equations Models based on Poisson - Log 
Function without Network Characteristics – Freeways/Expressways 

 

 

 

 

 

 

 

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 4.411 .000 4.284 .000 4.353 .000 4.306 .000 4.370 .000 4.306 .000
CBD .296 .002 .290 .003 .296 .002
Urban .142 .068 .199 .009 .311 .001 .352 .000 .311 .001
Population .046 .039 .026 .000 .008 .064
# Students enrolled in High Schools .141 .028
Institutional -0.000008 .099
Mobile Residential -0.000839 .002 -0.000112 .000
Rural District -0.001900 .001
Commercial Center -0.000178 .052
Manufactured House -0.010218 .000 -0.012600 .000
Innovative -0.000718 .000
Planned Unit Development -0.000151 .000
QIC
QICC

Variables 1.0 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile

1521.122
1389.640 1411.386 1401.984 1445.380 1408.240 1445.380
1479.961 1479.328 1471.010 1521.122 1505.162
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TABLE 5.16: Generalized Estimating Equations Models based on Negative Binomial - 
Log Function with Network Characteristics – Freeways/Expressways 

 

5.4.3 Models based on Major Thoroughfares 

  A summary of parameters and the corresponding goodness of fit statistics for 

each selected buffer width for Poisson and Negative Binomial distributions with log link 

were presented in Table 5.17 and Table 5.18, respectively. 

It is evident from the goodness of fit statistics that the Negative Binomial with log 

link fits the model better than the Poisson with log link. It was also observed that the 

goodness of fit statistics were better than the models for all road functional classes. While 

the Poisson based models have QIC and QICC values around 400, the Negative Binomial 

models have QIC and QICC around 20 and 30. The QIC and QICC are relatively close to 

each other for all the buffer widths considered in the research. 

The Negative Binomial model based on one mile buffer width has the lowest   

QIC and QICC. The difference between these two statistics is also comparatively lower. 

This model   indicates that area type (CBD), population, and neighborhood service 

district land use are significant variables in estimating AADT.  It is expressed 

mathematically as follows. 

 

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 4.415 .000 4.282 .000 4.407 .000 4.306 .000 4.372 .000 4.333 .000
CBD .296 .002 .286 .003 .268 .006
Urban .141 .070 .206 .008 .311 .001 .343 .000 .284 .002
Population .045 .041 .026 .000 .010 .022
Institutional -0.000008 .080
Mobile Residential -0.000860 .000 -0.000106 .000
Rural District -0.001860 .001
Commercial Center -0.000199 .014
Manufactured House -0.010164 .000 -0.012546 .000 -0.003116 .041
Innovative -0.000721 .000
Planned Unit Development -0.000148 .000
QIC
QICC

Variables 1.0 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile

18.084
30.345 24.881 25.226 23.328 26.895 25.053
17.464 17.708 17.833 18.217 18.074
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(AADT in thousands)1.0 Mile = Exp (2.964 – 0.976 × CBD + 0.062 × Population – 

0.000379 × Neighborhood Service District) 

 

TABLE 5.17: Generalized Estimating Equations Models based on Poisson - Log 
Function without Network Characteristics – Major Thoroughfares 

 

 

TABLE 5.18: Generalized Estimating Equations Models based on Negative Binomial - 
Log Function with Network Characteristics – Major Thoroughfares 

 

5.4.4 Models based on Minor Thoroughfares 

 A summary of parameters and the corresponding goodness of fit statistics for 

each selected buffer width for Poisson and Negative Binomial distributions with log link 

were presented in Table 5.19 and Table 5.20, respectively. 

It is evident from the goodness of fit statistics that the Negative Binomial with log 

link fits the model better than the Poisson with log link. It was also observed that the 

goodness of fit statistics were better than the models for all road functional classes. While 

the Poisson based models have QIC and QICC values around 140, the Negative Binomial 

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 2.964 .000 2.883 .000 3.048 .000 3.074 .000 3.032 .000 3.033 .000
CBD -.976 .000 -.997 .000 -.668 .000 -.693 .000 -.652 .000 -.653 .000
Urban .232 .012 .203 .033 .227 .016 .228 .015
Population .062 .014 .037 .002
# Education related Employees
Research District -0.000026 .061
Neighborhood Service District -0.000379 .005 -0.000253 .029
Manufactured House -0.005796 .000 -0.005375 .000 -0.005995 .000
Right of Way -0.000062 .010
QIC
QICC

Variables 1.0 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile

403.395
387.225 381.429 384.379 382.429 391.286 390.245
401.162 396.218 402.576 395.771 404.322

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 2.988 .000 2.847 .000 3.046 .000 3.073 .000 3.032 .000 3.032 .000
CBD -.942 .000 -.991 .000 -.667 .000 -.692 .000 -.652 .000 -.653 .000
Urban .231 .012 .199 .037 .227 .016 .227 .015
Population 0.054308 .035 0.038948 .001
Research District -0.000024 .087
Manufactured House -0.005785 .000 -0.005375 .000 -0.005695 .000
Neighborhood Service District -0.000395 .001 -0.000268 .010
Right of Way 0.000332 .060 -0.000055 .001
QIC
QICC

Variables 1.0 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile

23.109
29.993 31.255 29.765 31.547 30.021 29.982
23.185 22.573 23.214 22.728 23.148
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models have QIC and QICC around 15 and 20. The QIC and QICC are relatively close to 

each other for all the buffer widths considered in the research. 

The Negative Binomial model based on one mile buffer width has the lowest QIC 

and QICC. The difference between these two statistics is also comparatively lower. These 

models indicate that area type (urban), and mean income are significant variables in 

estimating AADT.  It is expressed mathematically as follows. 

(AADT in thousands) 1.0 Mile = Exp (2.231 + 0.219 × urban - 0.003 × mean income) 

 

TABLE 5.19: Generalized Estimating Equations Models based on Poisson - Log 
Function without Network Characteristics – Minor Thoroughfares 

 
 

TABLE 5.20: Generalized Estimating Equations Models based on Negative Binomial - 
Log Function with Network Characteristics – Minor Thoroughfares 

 

5.5 Summary: Models based on Spatial Proximity Method 

The above results indicate that Negative Binomial is better than Poisson models in 

all the cases. The goodness of fit statistics indicates that the models performed better, 

when each individual road functional classes are modeled than the models for all the road 

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 2.060 .000 2.081 .000 2.060 .000 2.072 .000 2.060 .000 2.060 .000
Urban .227 .005 .234 .004 .227 .005 .216 .007 .227 .005 .227 .005
Institutional -0.000026 .082
Research District
Mobile Residential
Manufactured House -.014 .000
QIC
QICC

Variables 1.0 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile

145.235
143.892 144.160 143.892 139.599 143.892 143.892
145.235 144.526 145.235 138.818 145.235

Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value Coefficient P Value
(Intercept) 2.231 .000 2.080 .000 2.060 .000 2.072 .000 2.060 .000 2.060 .000
Urban .219 .008 .236 .003 .227 .005 .216 .007 .227 .005 .227 .005
Mean Income -.003 .051 -0.000026 .048
Research District
Mobile Residential
Manufactured House -.014 .000
QIC
QICC

Variables 1.0 Mile 1.5 Mile 2 Mile 3 Mile 4 Mile 5 Mile

16.853
21.911 22.084 20.297 21.269 20.297 20.297
16.692 16.739 16.853 15.807 16.853
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functional classes combined.  This suggests that the models should be developed 

considering each road functional class.  

The models with network characteristics have comparatively better goodness of 

fit statistics than that of the models without including network characteristics. This 

satisfies the intuition that better models can be obtained when network characteristics are 

also considered. Also, upstream and downstream network link variables are found to be 

significant in the models based on freeways/expressways and minor thoroughfares. This 

suggests that spatial dependency could affect link level travel. 

A closer look at the best models among each road functional class reveals some 

important findings. All road functional classes combined have a better model at “1.5” 

mile and “1.0” mile buffers for models with and without network characteristics 

respectively. The freeway/expressway road functional class have a better model at “2” 

mile and “1.5” mile buffers, while major thoroughfare and minor thoroughfare type of 

road functional classes have a better model at “1.5” and “1.0” mile buffers with and 

without network characteristics respectively. This suggests that the sphere of influence 

decreases as the hierarchy of road functional class decreases. In other words, freeways 

and expressways have a sphere of influence or accessibility levels higher than compared 

to the major and minor thoroughfares. However, the results indicate that accessible 

distances for various roads are varying from 1 mile to 2 mile and are not consistent. 

Accessibility and intensity of travel differs as the distance increases and the variations in 

the way people access roadways are expected. It is expected that better estimates can be 

obtained by applying gradually decreasing weights with respect to accessible distance. 
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Hence, there is a need to use multiple buffers and apply varying weights depending on 

the proximity to the study link.  

 

 



CHAPTER VI: MODELS BASED ON SPATIAL WEIGHTS 
 
 
 An examination of results obtained for different spatial buffers showed that the 

sphere of influence decreases as the accessible distance increases from the roadway. It 

was also felt that the lower functional classes have comparatively lower sphere of 

influence in attracting traffic than the higher functional class roads. Hence, it was felt that 

developing models by combining data for different spatial buffers based on spatial 

weights would give better results. The spatial weights for different spatial buffers are 

applied based on spatial gravity principles derived from the “Gravity” method of the trip 

distribution. Spatial weights are calculated based on the assumption that the trip density 

decreases proportionally with the square of the distance. The calculation of spatial 

weights, statistical analysis and models developed based on combined data are discussed 

next. 

6.1 Selection of Weights 

 Various weights are applied for the spatial data captured from “0” to “5” mile 

network distances based on the type of road functional class. The data are captured at 

various network bandwidths (0-1, 1-1.5, 1.5-2, 2-3, 3-4 and 4-5 mile) in the shape of a 

multiple “donuts” of various sizes.  

It is observed in the spatial proximity method that the best models for 

freeways/expressways are based on “2” mile and “1.5” mile buffer width data, major 

thoroughfares are based on “1.5” mile buffer width data, and minor thoroughfares are 
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based on “1.5” mile and “1.0” mile buffer width data for models with and without 

network characteristics respectively. Considering the best models selected previously, a 

larger network distance, “5” mile (all the six network buffer bandwidths considered) was 

used for all road functional classes combined and for freeways/expressways to capture 

the data. Comparatively less buffer widths were considered for major and minor 

thoroughfares as the best models are indicating a comparatively decreasing sphere of 

influence.  For major thoroughfares, data captured over a “3” mile network distance was 

considered while data captured over a “2” mile network distance was considered for 

minor thoroughfares.    

  The computed weights for all road functional classes, freeways/expressways, 

major thoroughfares and minor thoroughfares are shown in Table 6.1 (a, b & c). 

 

TABLE 6.1: Computed Spatial Weights for Different Road Functional Classes   

(a). Weights for All Road Functional Classes Combined and for Freeways/Expressways 

 

 

 

 

i j
0 1 0.52
1 1.5 0.23

1.5 2 0.13
2 3 0.06
3 4 0.03
4 5 0.02

1.00

Bandwidth (miles)

Total

Wi-j
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(b). Weights for Major Thoroughfares    (c). Weights for Minor Thoroughfares 

            

Data are processed to develop an integrated database using the above weights for 

each road functional class. Note that only demographic, socio-economic and land use 

data are multiplied by spatial weights. On-network characteristics were not multiplied by 

spatial weights. 

Correlation analysis was conducted (as in the case of spatial proximity method) to 

eliminate variables with Pearson coefficient beyond the +/- 0.3 range and retain the 

variables within the +/- 0.3 range to avoid multicollinearity. The final set of independent 

variables (that are not correlated to each other) selected to develop the models for all and 

each road functional class considered, are listed in Table 6.2 below. GEE Models were 

developed with and without network characteristics using Poisson and Negative Binomial 

with log-link. The model parameters and goodness of fit statistics are presented and 

discussed next. 

 

 

 

 

 

 

i j
0 1 0.55
1 1.5 0.25

1.5 2 0.14
2 3 0.06

1.00

Bandwidth (miles)
Wi-j

Total

i j
0 1 0.59
1 1.5 0.26

1.5 2 0.15
1.00Total

Bandwidth (miles)
Wi-j
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TABLE 6.2: Variables Selected for All and each Individual Road Functional Classes 
Considered 

 

6.2 Models with Network Characteristics 

Models based on spatial weighted data were developed to estimate AADT for 

analysis purposes using the final variables obtained from the correlation analysis.   

Models developed based on all and each individual road functional classes are presented 

in this section. Only the variables that were found to be significant in the final model and 

their corresponding parameters are presented in the results tables. Variables that do not 

contribute to the final model were left blank in the tables. All land uses in the tables are 

in thousand square feet. 

 

 

Variable / Spatial Buffer All Roadways Freeway/Expressway Major Thoroughfare Minor Thoroughfare
CBD    
Urban    
Suburban    
Freeway/Expressway 
Major Thoroughfare 
Minor Thoroughfare 
# Lanes    
Speed Limit  
Upstream Link Speed Limit  
Upstream Cross Street Link 1 # Lanes    
Upstream Cross Street Link 1 Speed Limit 
Upstream Cross Street Link 2 # Lanes 
Upstream Cross Street Link 2 Speed Limit  
Downstream Link Speed Limit  
Downstream Cross Street Link 1 # Lanes   
Downstream Cross Street Link 1 Speed Limit  
Downstream Cross Street Link 2 Speed Limit  
Population    
# Pupils Enrolled in Public or Private High Schools  
SingleFamily  
Industrial 
Research District    
Institutional  
Mobile Residential 
Rural District    
Manufactured House   
Commercial Center 
Neighborhood Service District 
Innovative    
RightofWay 
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6.2.1 Models based on All Road Functional Classes 

Results obtained for all road functional classes are summarized in Table 6.3.  As 

expected the goodness of fit statistics indicate that the Negative Binomial model is better 

than the Poisson model. The model parameters for the Negative Binomial model indicate 

that area type (urban), freeway/expressway, major thoroughfare, number of lanes, 

population, and manufactured house, and innovative land uses are significant variables in 

estimating AADT. It is expressed mathematically as follows. 

(AADT in thousands) = Exp (1.837 + 0.244  urban + 1.961  Freeway/Expressway + 

0.651  Major Thoroughfare + 0.115  number of lanes - 0.013  population – 0.067  

manufactured house + 0.0002  innovative)  

 

TABLE 6.3: Generalized Estimating Equations Models for All Road Functional Classes 
with Network Characteristics 

 

 

 

 

 

Coefficient P Value Coefficient P Value
(Intercept) 1.837 .000 1.777 .000
Urban .244 .000 .120 .040
Freeways/Expressways 1.961 .000 1.962 .000
Major Thoroughfares .651 .000 .651 .000
# Lanes .115 .000 .117 .000
Population -.013 .092
Manufactured House -.067 .001 -.050 .005
Innovative 0.0002 .051 0.0002 .049
QIC
QICC 74.756 1875.639

Variables Negative Binomial Poisson

61.336 1945.937
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6.2.2 Models based on Freeways/Expressways 

Results obtained for freeways/expressways are summarized in Table 6.4.   As 

expected, the goodness of fit statistics indicates that the models performed better than all 

the road functional classes combined. Even in this case, the Negative Binomial models 

are better than Poisson models. The model parameters indicate that number of lanes, 

downstream link speed limit, downstream cross street link 1 number of lanes, population 

and manufactured house land use are significant variables in estimating AADT. It is 

expressed mathematically as follows. 

(AADT in thousands) = Exp (2.36 + 0.133  number of lanes + 0.018  downstream link 

speed limit + 0.07  downstream cross street link 1 number of lanes  + 0.029  

population – 0.036  manufactured house)  

 

TABLE 6.4: Generalized Estimating Equations Models for Freeways/Expressways with 
Network Characteristics 

 

6.2.3 Models based on Major Thoroughfares 

Results obtained for major thoroughfares are summarized in Table 6.5.   As 

expected, the goodness of fit statistics indicates that the models performed better than all 

the road functional classes combined. As observed previously, the Negative Binomial 

Coefficient P Value Coefficient P Value
(Intercept) 2.360 .000 2.325 .000
# Lanes .133 .000 .122 .000
Downstream Link Speed Limit .018 .000 .019 .000
Downstream Cross Street Link 1 # Lanes .070 .010 .072 .009
Population .029 .002 .032 .001
Manufacture House -.036 .029
QIC
QICC 891.417

Variables Negative Binomial Poisson

21.998
953.21510.850
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models are better than Poisson models. The model parameters indicate that area type 

(Urban), speed limit, upstream link speed limit, downstream cross street link 1 number of 

lanes, population and manufactured house land use are significant variables in estimating 

AADT. It is expressed mathematically as follows. 

(AADT in thousands) = Exp (1.538 + 0.505  urban + 0.03  speed limit + 0.06  

upstream link speed limit + 0.053  downstream cross street link 1 number of lanes  - 

0.051  population – 0.059  manufactured house)  

 

TABLE 6.5: Generalized Estimating Equations Models for Major Thoroughfares with 
Network Characteristics 

 

6.2.4 Models based on Minor Thoroughfares 

Results obtained for minor thoroughfares are summarized in Table 6.6.   As 

expected, the goodness of fit statistics indicates that the models performed better than all 

the road functional classes combined. Also, the Negative Binomial models are better than 

Poisson models. The model parameters indicate that area type (Urban), speed limit, 

upstream link speed limit, and rural district land use are significant variables in 

estimating AADT. It is expressed mathematically as follows. 

Coefficient P Value Coefficient P Value
(Intercept) 1.538 .001 1.366 .006
Urban .505 .000 .458 .000
Speed Limit .030 .006 .035 .001
Upstream Link Speed Limit .006 .053 .006 .042
Downstream Cross Street Link 1 # Lanes .053 .055
Population -.051 .007 -.037 .045
Manufactured House -.059 .004 -.049 .015
QIC
QICC 33.991 355.256

Variables
Negative Binomial Poisson

21.685 372.446
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(AADT in thousands) = Exp (1.86 + 0.188  urban + 0.007  upstream link speed limit - 

0.005  rural district)  

 

TABLE 6.6: Generalized Estimating Equations Models for Minor Thoroughfares with 
Network Characteristics 

 

6.3 Models without Network Characteristics 

Models based on spatial weighted data were developed to estimate AADT for 

planning purposes using the final variables obtained from the correlation analysis.   

Models developed based on all and each individual road functional classes are presented 

in this section. Only the variables that were found to be significant in the final model and 

their corresponding parameters are presented in the results tables. Variables that do not 

contribute to the final model were left blank in the tables. All land uses in the tables are 

in thousand square feet.   

6.3.1 Models based on All Road Functional Classes 

Results obtained for all road functional classes are summarized in Table 6.7.   As 

expected, the goodness of fit statistics indicates that the Negative Binomial model is 

better than the Poisson model. The model parameters for the Negative Binomial model 

indicate that area type (CBD, urban, population, institutional, rural district and 

Coefficient P Value Coefficient P Value
(Intercept) 1.860 .000 1.740 .000
Urban .188 .014 .188 .014
Upstream Link Speed Limit .007 .001 .007 .002
Downstream Link Speed Limit .004 .089
Rural District -.005 .095 -.007 .028
QIC
QICC

15.606 133.093
22.819 133.524

Parameter Negative Binomial Poisson



115 
 

 

manufactured house land uses are significant variables in estimating AADT. It is 

expressed mathematically as follows. 

(AADT in thousands) = Exp (4.729 + 2.936  CBD + 1.778  urban - 0.371  population 

– 0.0001  institutional – 0.094  rural district – 0.09  manufactured house)  

 

TABLE 6.7: Generalized Estimating Equations Models for All Road Functional Classes 
without Network Characteristics 

 

6.3.2 Models based on Freeways/Expressways 

Results obtained for freeways/expressways are summarized in Table 6.8.  As 

expected, the goodness of fit statistics indicates that the models performed better than all 

the road functional classes combined. Also, the Negative Binomial models are better than 

Poisson models. The model parameters indicate that area type (urban), population and 

manufactured house land use are significant variables in estimating AADT. It is 

expressed mathematically as follows. 

(AADT in thousands) = Exp (4.276 + 0.168  urban + 0.031  population – 0.04  

manufactured house)  

 

Coefficient P Value Coefficient P Value
(Intercept) 4.729 .000 4.729 .000
CBD 2.936 .000 3.227 .000
Urban 1.778 .000 1.764 .000
Population -.371 .000 -.382 .000
Institutional -0.00010 .067 -0.00012 .081
Rural District -.094 .000 -.100 .003
Manufactured House -.090 .085
QIC
QICC 261.435 8297.823

Variables Negative Binomial Poisson

256.336 8580.255
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TABLE 6.8: Generalized Estimating Equations Models for Freeways/Expressways 
without Network Characteristics 

 

6.3.3 Models based on Major Thoroughfares 

Results obtained for major thoroughfares are summarized in Table 6.9.   As 

expected, the goodness of fit statistics indicates that the models performed better than all 

the road functional classes combined. As observed previously, the Negative Binomial 

models are better than Poisson models. The model parameters indicate that area type 

(urban), population, single family, rural district, manufactured house and neighborhood 

service district land uses are significant variables in estimating AADT. It is expressed 

mathematically as follows. 

(AADT in thousands) = Exp (3.078 + 0.398  urban - 0.079  population + 0.00001  

single family + 0.038  rural district – 0.126  manufactured house - 0.001  

neighborhood service district)  

 

 

 

 

 

 

Coefficient P Value Coefficient P Value
(Intercept) 4.276 .000 4.251 .000
Urban .168 .029 .175 .023
Population .031 .006 .034 .003
Manufacture House -.040 .036
QIC
QICC 25.239 1455.051

Variables Negative Binomial Poisson

18.211 1530.247
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TABLE 6.9: Generalized Estimating Equations Models for Major Thoroughfares without 
Network Characteristics 

 

6.3.4 Models based on Minor Thoroughfares 

Results obtained for minor thoroughfares are summarized in Table 6.10.   As 

expected, the goodness of fit statistics indicates that the models performed better than all 

the road functional classes combined. As was seen previously, the Negative Binomial 

models are better than Poisson models. The model parameters indicate that area type 

(CBD) and population are significant variables in estimating AADT. It is expressed 

mathematically as follows. 

(AADT in thousands) = Exp (1.903 - 0.422  CBD + 0.081  population) 

 

TABLE 6.10: Generalized Estimating Equations Models for Minor Thoroughfares 
without Network Characteristics 

 

Coefficient P Value Coefficient P Value
(Intercept) 3.078 .000 3.097 .000
Urban .398 .001 .398 .001
Population -.079 .000 -.078 .000
Single Family 0.00001 .047 0.00001 .080
Rural District .038 .000 .034 .001
Manufactured House -.126 .000 -.122 .000
Neighborhood Service District -.001 .007 .000 .041
QIC
QICC

23.238 411.568
35.680 395.220

Variables Negative Binomial Poisson

Coefficient P Value Coefficient P Value
(Intercept) 1.903 .000 1.911 .000
CBD -.422 .009 -.406 .011
Population .081 .005 .079 .007
QIC
QICC 22.345 146.633

Variables Negative Binomial Poisson

17.175 148.632
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6.4 Summary: Models based on Spatial Weighting Method 

In general, the above results indicate that Negative Binomial models are better 

than Poisson models in all the cases. The goodness of fit statistics indicates that the 

models performed better, when each individual road functional classes are modeled than 

the models for all the road functional classes combined.  This suggests that the models 

should be developed considering each road functional class.  

The models with network characteristics have comparatively better goodness of 

fit statistics than the models without including network characteristics. This satisfies the 

intuition that better models can be obtained when network characteristics are also 

considered. Also, upstream and downstream network link variables are found to be 

significant in the models developed for each individual road functional classes. This 

suggests that spatial dependency of network links can affect link level travel. 

Models based on “spatial proximity” and “spatial weighting” methods were 

similar when goodness of fit statistics was compared. Though, in theory, it was felt that 

“spatial weighting” method is comparatively sound and would yield better results, the 

model results turned out to be similar. The best model selected in the spatial weighting 

method for all road functional classes has comparatively higher goodness of fit statistics 

than for all road functional classes in the spatial proximity method. This indicates that a 

common weighting scheme for all road functional classes is not suitable and that each 

road functional class should be applied a weighting scheme that is suitable for that 

particular road functional class. It can be observed from models developed that after 

applying different weights for each road functional class, depending on the accessible 

distances for each model, performance improved well. 



CHAPTER VII: VALIDATION 
 
 

Model validation using CSS and percent differences calculated between the actual 

and predicted AADT from the best model selected in each method for each road 

functional class are discussed in this Chapter. Validation of models developed for all road 

functional classes was not performed as the models for each road functional class is 

expected to be performing better. Links were selected separately for validation purpose. 

In other words, links selected for developing the models are not repeated while selecting 

links for validation. Links are selected in all three road functional classes and area types 

considered. The number of links selected for validation for each combination of road 

functional class and area types is around 10% of the links considered for developing the 

models. Table 7.1 below shows the number of links considered in each road functional 

class and area type. The links were selected in such a way that the AADT is varied from 

low to high. Table 7.2 below shows the minimum and maximum AADT of the links 

considered in the validation analysis. 

 

TABLE 7.1: Links Considered in each Road Functional Class and Area Type 

 

Road Functional Class / 
Area Type

CBD Urban Suburban All Area Types 

Freeways/Expressways 2 5 4 11
Major Thoroughfare 4 5 4 13
Minor Thoroughfare 2 4 3 9
All Roadway Types 8 14 11 33
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TABLE 7.2: Minimum and Maximum AADT of Links Considered in each Road 
Functional Class 

 

Percent differences are calculated between the estimated AADT and actual AADT 

(observed). These are summarized in Table 7.3. It can be seen from the table that the 

models with network characteristics give better estimates than models without network 

characteristics. The spatial weighting models performed comparatively better than spatial 

proximity models.  

 

TABLE 7.3: Average Percent Difference of Observed and Estimated AADT by Road 
Functional Class using Various Models 

 

As stated in the “Methodology” chapter, a modified Chi Square Statistic (𝑋𝑚2 ) was 

used to perform a Chi-Square test. The CSS calculated was compared with Critical CSS 

(at 99% confidence level) of the corresponding degrees of freedom (df = n – p) for each 

model, here, n is the validation sample size and p is the number of predictors of the 

corresponding model used.  

Table 7.4 shows the CSS and Critical-CSS for each model. CSS is less than 

Critical-CSS in all the cases considered in the table. This indicates that both spatial 

Road Functional Class Minimum Maximum

Freeways/Expressways 48 160
Major Thoroughfare 5 42
Minor Thoroughfare 6 18

Spatial 
Proximity

Spatial 
Weighting

Spatial 
Proximity

Spatial 
Weighting

Spatial 
Proximity

Spatial 
Weighting

With Network 
Characteristics

27.12% 27.81% 39.24% 35.37% 26.02% 25.83%

Without Network 
Characteristics 37.97% 36.29% 36.38% 35.84% 30.24% 27.08%

Road Functional Class / 
Spatial Method

Freeway/Expressway Major Thoroughfare Minor Thoroughfare
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proximity and spatial weighting methods, with and without network characteristics can be 

appropriately applied and used when and where they are deemed necessary. 

 

TABLE 7.4: Chi-Square Test for Observed and Estimated AADT by Road Functional 
Class using Various Models 

 

In general, model validation conducted indicates that models developed using 

both the spatial methods, spatial proximity and spatial weighting methods yielded 

comparatively equal estimates. Models with more details (with network characteristics) 

give comparatively more accurate results than models with less detail (without network 

characteristics). 

 

 

 

 

CSS Critical CSS CSS Critical CSS CSS Critical CSS
Yes 9.06 13.28 13.56 20.09 8.37 13.28
No 16.28 18.48 9.66 21.67 11.29 16.81
Yes 10.28 15.09 10.85 16.81 8.00 15.09
No 15.51 18.48 8.64 16.81 11.33 16.81

Proximity

Weighting

Road Functional Class 
/ Spatial Method

Network 
Characteristics

Freeway/Expressway Major Thoroughfare Minor Thorougfare



CHAPTER VIII: CONCLUSIONS 
 
 

Annual Average Daily Traffic (AADT), an output of Urban Transportation 

Planning Process (UTPP), is used in several planning, roadway design, operational and 

safety analysis by transportation planners and engineers. Accurately estimating or 

predicting travel demand helps planners and engineers to better utilize limited 

transportation funds to improve transportation system performance and cater to the future 

needs.  

Existing methods are very complex and do not adequately address the modeling 

needs. The traditional four-step method is an aggregate sequential top down model. 

Errors and inaccuracies get carried to later steps often resulting in incorrect estimates of 

travel demand. Due to the aggregate nature of the modeling methods, spatial variations in 

the characteristics of data that influence travel demand are overlooked. Combined four-

step and disaggregate tour based activity methods address some of the limitations of the 

aggregate model. However, they are computationally intensive and require enormous 

amounts of data limiting them currently to small scale applications. Estimation of travel 

demand using short term traffic counts using various seasonal and weekly factors is 

another easy method. However, estimating travel demand for all the links in the network 

from a very few number of traffic counts available leads to uncertainties and 

inaccuracies. 
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A methodology is proposed in this research involving scientific principles and 

statistical techniques but bypassing the tedious four-step method. As travel demand on 

roadways depends on road functional classification and their characteristics, three 

different road functional classes - freeways and expressways, major thoroughfares, and 

minor thoroughfares identified in the regional network model were selected to develop 

models to estimate travel demand by road functional class. Two methods are proposed to 

accomplish the task. While the first one is based on spatial proximity, the second is based 

on data integrated using spatial weights. 

Various on-network and off-network characteristics data were considered as 

independent variables in the development of models. On-network characteristics of the 

study links, as well as upstream, downstream, and cross-streets network links, were 

considered to account for spatial dependency. Off-network characteristics considered 

include demographic, socio-economic, and land use characteristics.  

In the first method, different buffer widths were considered to extract spatial data 

and develop models to examine the role of spatial proximity in estimating travel demand. 

The buffer widths considered include 1 mile, 1.5 mile, 2 mile, 3 mile, 4 mile and 5 mile 

distances. In the second method, spatially decreasing weights (based on gravity 

principles) are applied on data captured at various bandwidths and combined to develop 

models for various road functional classes. A summary of the research findings is 

presented next. 

8.1 Summary of findings 

Results obtained indicate that models based on Negative Binomial distribution 

yield better travel demand estimates than models based on Poisson distribution for data 
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used in this research. This could be attributed to over-dispersion observed in the data. The 

goodness of fit statistics indicate that better travel demand estimates can be achieved 

when models are developed for each road functional class than when data was combined 

for all road functional classes.  

Analysis based on various buffer widths to capture data showed that spatial 

proximity plays a vital role in accurately estimating travel demand. A comparison of 

results obtained from models generated using different buffer widths showed that using 

“2” mile or “1.5” mile buffer width (for higher road functional classes) followed by “1.0” 

mile buffer width (for lower road functional classes) to extract demographic, socio-

economic, and land use data would yield the best estimates. In general, freeways and 

expressways, major thoroughfares and minor thoroughfares have decreasing sphere of 

influence or accessibility levels in the same order. 

Based on the above research findings it was felt that the effect is expected to 

decrease away from the study location. Hence, spatial weights are applied using distance 

decay principles with decreasing weights applied on spatial off-network characteristics 

data away from study locations. Likewise, decreasing maximum accessible distances are 

considered for various road functional classes in a hierarchical order. It was proved that, 

based on the goodness of fit statistics, models developed for each road functional class 

performed better than for all road functional classes combined. The goodness of fit 

statistics indicates that models developed based on “spatial proximity” and “spatial 

weighting” methods have similar or not so different goodness of fit statistics.  

Validation of the models developed was carried out using Chi-Square test. Chi-

Square Statistic (CSS) was computed between estimates obtained from the proposed 
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methodology and observed traffic counts and compared with critical value of CSS at 99 

percent level of significance (P = 0.01). It was observed that the estimates are statistically 

close to the observed traffic counts. The average absolute percent difference is less than 

30%, in general.  

Models with more details (with network characteristics) were observed to be 

comparatively more accurate results than models with less detail (without network 

characteristics). Spatial dependency of network links was found to play a role in models 

developed based on both “spatial proximity” and “spatial weighting” methods. 

Significant differences were not observed between estimates obtained from “spatial 

proximity” and “spatial weighting” methods. Though the results are similar in terms of 

goodness of fit statistics and model validation, it was felt that spatial weighting method is 

theoretically sound and hence could better explain the travel compared to spatial 

proximity method. Also, the significant variables selected in the final models of the 

spatial weighting method are quantifiable and are widely used. They are easy to be 

forecasted in the future and hence easy to apply models for estimating future traffic.  

The methods proposed in this research are easy to adopt and can be applied 

universally to urban settings of any size and level.  

8.2 Limitations and Scope for future work 

Data such as auto-ownership, number of drivers per household, and, 

population by gender and age group were not available in the planning variables data 

used in this research. Considering data along with those used in this research could 

increase predictive capability of the models. 



126 
 

 

Variation in travel by the time of the day was not considered in this research. 

Developing models by time of the day could help estimate demand and congestion on 

road links during peak and non-peak hours (by time of day). It can also help better 

design roads based on the duration of congestion.   

 The effect of mode choice was not considered in this research. The presence 

or access to public transportation systems could play a role on vehicular volume. The 

role of public transportation system on vehicular volume needs an examination.  

Discrete spatial decay weights were applied for each road functional class 

considered to capture the effect of distance on travel demand. The application of 

continuous decay weights and varying weighting functions by road functional class 

may provide better and more accurate results. This merits an investigation.   

Further, research needs to be carried out to determine the maximum accessible 

distances for each road functional class and the percentage of people accessing each 

road functional class within a specified buffer bandwidth. 
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