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ABSTRACT

MICHAEL JOEL FAIRCHILD. Symmetry and constraints in hydrodynamics and
mechanical locomotion. (Under the direction of DR. DOUGLAS S. SHAFER)

This dissertation introduces new models for the locomotion and control of me-

chanical and hydrodynamic systems that exhibit symmetry, constraints, and control.

I introduce the class of unbalanced Chaplygin control systems and analyze the dy-

namics and control of two new examples in this class — the Chaplygin beanie and

the Chaplygin pendulum. I then prove for the former, and numerically verify for

the latter, that a single-input control strategy is able to generate locomotion and

asymptotically control both heading and speed. The resulting underactuated control

strategy provides a basis for single-input navigation of planar robots subject to a

nonholonomic no-slip constraint. Next, I introduce a new model for the locomotion

of articulated rigid bodies in ideal fluids and demonstrate that even in the absence

of added-mass effects arising from an asymmetric shape, these swimmers may nev-

ertheless locomote provided symmetry of the fluid boundary is broken. I also show

that an underlying geometric phase may govern their motion. I then introduce a

new technique for devising reduced-order models of the interaction of infinitesimal,

stationary rigid bodies immersed in inviscid incompressible fluids with point vorticity.

The rigid bodies considered in this dissertation impose four types of constraints on the

fluid flow — velocity, direction (or tangency), distance, and position constraints. It

is found that energy is generally conserved but that linear and angular impulse of the

fluid are not, and that the constraints may dramatically alter the system dynamics.
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I also show that this technique may be used to generate approximate models for the

interaction of moving rigid bodies and vortical fluids. Finally, motivated by both the

relevance of principal bundles to locomotion and by the mismatch between the data

needed to prove important theorems vs. the data available in a typical application, I

elucidate the relationship between three definitions of a principal bundle appearing

in the literature, introduce a new definition, and demonstrate mutual equivalence of

all four.
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CHAPTER 1: OUTLINE OF CONTRIBUTIONS

The theme of this dissertation is geometry, locomotion, and reduced-order mod-

els for mechanical and hydrodynamic systems exhibiting symmetry, nonholonomic

constraints, and control. The interaction between these three features leads to rich

nonlinear dynamics and enables such phenomena as locomotion generation and un-

deractuated control.

I introduce the class of Chaplygin control systems, obtained by adjoining internal

degrees of freedom to the Chaplygin sleigh. This work extends the previous literature

in that I consider control of the unbalanced sleigh, whereas previous work considers

control of the balanced sleigh. The equations of motion are significantly more com-

plicated in the unbalanced case. After studying the general features of these systems

and recovering the known dynamics of the sleigh as a special case, I introduce two

new examples in this class, the Chaplygin beanie and the Chaplygin pendulum. For

these two systems I analyze a single-input control strategy and find that it is possible

to control the asymptotic evolution of two outputs — heading and speed — with

only a single input, thus demonstrating a form of underactuated control. I give a

rigorous proof for the former system and a numerical verification for the latter. I also

demonstrate that both systems exhibit the phenomenon of locomotion generation,

whereby starting from rest a net locomotion through the environment is induced by

the actuation of internal shape variables.
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Turning to hydrodynamics, I introduce a new class of articulated rigid bodies swim-

ming in an inviscid incompressible fluid. Unlike previous work in this area, the swim-

mers considered here have completely symmetric inertia tensors and therefore do not

benefit from added-mass effects arising from their shape. I compensate for this by

breaking a symmetry in the boundary of the fluid region and show that this broken

symmetry enables their locomotion. Although the broken symmetry rules out the

relevance of the mechanical connection, I do find numerical evidence for an under-

lying geometric phase and suggest that a hidden connection may be relevant to the

locomotion of these systems.

I then introduce a reduced-order model for the dynamics of fixed, infinitesimal rigid

bodies immersed in an inviscid incompressible fluid with point vorticity. The bodies

impose hydrodynamic constraints on the evolution of the fluid. I first consider three

constraints of this kind — velocity constraints, direction (or tangency) constraints,

and distance constraints. The first arises from a small cylinder in the flow, the

second from a small fin, and the third from a vortex dipole. The idea of the model is

to capture the essential physics using a system of finitely many ordinary differential

equations without requiring the full power of the Euler or Navier-Stokes equations.

I do this by expressing the fluid constraints in terms of the evolution of the vortices

and then applying Dirac’s method of constraints to the Hamiltonian formulation

of the classical N -vortex problem. I find that for the constraints considered here,

energy is conserved but linear and angular impulse of the fluid are not, and that the

constraints may alter the system dynamics dramatically — in one case changing a

symmetric periodic vortex orbit to an asymmetric scattering orbit. I then consider a
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fourth kind of constraint, the position constraint, and show that it may be used to

derive an approximate reduced-order model for the dynamic interaction of a moving

cylinder with an external point vortex. The resulting model produces dynamics with

qualitative similarities to the known solution. Although not exact in its details, the

benefit is that it does not require a detailed control-volume analysis but rather only

a judicious choice of image vortices that satisfy certain boundary conditions.

Returning to geometry and locomotion, I elucidate the relationship between three

different definitions of principal bundle appearing in the literature, introduce a new

definition, and demonstrate that all four are mutually equivalent. This is motivated

not only by the importance of principal bundles and connections to the geometry

and dynamics of locomotion, as explained in the preliminary material, but also by

the mismatch between the data one needs to prove important results and the data

available at hand in a typical application. Specifically, it is demonstrated through

proofs appearing in the appendices that important results in locomotion rely on the

presence of an atlas of equivariant charts for a principal bundle, whereas the data at

hand in a typical mechanics application is the smooth, free, and proper action of a

Lie group on the system’s configuration space. Hence it is of significant benefit to

know that the latter set of data implies the former. Although this result is known, I

have not yet found a proof in the literature, nor of the other equivalences established

in this work. I present this material at the beginning of the dissertation because the

resulting geometry of locomotion is invoked in the interpretation of later examples.

This concludes the discussion of the original research material, and I now discuss

the appendices, which serve two purposes — to give additional details and explicit
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examples that aid in the understanding of the new research material but whose inclu-

sion in the body of the dissertation would be disruptive, and to rigorously establish

known “folklore” results whose proofs I did not find in the literature. The first ap-

pendix discusses Ehresmann and principal connections in detail, giving an explicit

example in coordinates of an Ehresmann connection and the local factorization of its

connection form. In the mechanics literature on principal bundles, much attention is

understandably given to left principal bundles, because it is left multiplication that

leads to symmetry in particle and rigid body mechanics. However, right multiplica-

tion is what gives symmetry in ideal hydrodynamics, and by working through explicit

proofs I show how to handle this case as well. Since I define connections geometri-

cally in terms of a direct-sum splitting of tangent spaces, whereas in applications it

is connection forms that are used, I explain in detail the relation between the two,

again with an emphasis on the distinction between left and right multiplication. Of

course these considerations are not of concern for abelian bundles, but most of the Lie

groups relevant to mechanics are nonabelian, such as the rotation groups SO(n) and

the rigid motion groups SE(n). I give an alternate proof of the classical reconstruc-

tion formula for parallel transport in abelian principal bundles by using a formula for

the derivative of the exponential map, rather than using the usual structure theorem

for abelian Lie groups. Next, because the mechanical connection is discussed at least

three times in the dissertation, and because I find somewhat unsatisfactory the usual

definition of it in terms of its connection form, I give its geometric definition as the

metric connection induced by the kinetic-energy metric. I then prove that this ge-

ometric definition induces the usual “master formula” for the connection form, and



5

I then treat Elroy’s beanie as a concrete example of the mechanical connection and

geometric phase. Finally, the last appendix gives an example of Dirac’s method of

constraints.

The literature relevant to the material in this dissertation is reviewed in context in

the individual chapters.



CHAPTER 2: PRELIMINARIES

I assume the reader is familiar with the theory of differentiable manifolds and Lie

groups. This purpose of this chapter is to concisely gather together only those key

concepts from the theory of bundles and connections and from geometric mechanics

needed to understand the new material in the sequel. Principal references for the

differential geometry material are [35], [32], [43], [9], [62], and [16], and references for

geometric mechanics include [1], [36], [38], [37], [25], [7], and [8].

2.1 Submersions, Fiber Bundles, and Ehresmann Connections

Recall that a smooth map π : M → N between manifolds is a submersion if its

differential is everywhere surjective. A local section for π is an open set U ⊂ N

together with a smooth map σ : U → M such that π ◦ σ = idU ; the section is global

if U = N . The following theorem is proved in [35].

Theorem 1. A map π : M → N is a submersion if and only if M is covered by

the images of local sections. Every submersion is an open map, and a surjective

submersion is a quotient map.

Theorem 2. Let a surjective submersion π : M → N and a map f : N → P be

given. Then f is smooth if and only if its lift f ◦ π : M → P is smooth. If f is a

smooth bijection and its lift f ◦ π is a submersion, then f is a diffeomorphism.
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M

N P

π
f◦π

f

Proof. This first part of this theorem is proved in [35]. To prove the last part, assume

f is a smooth bijection. Then f−1 is smooth by a similar diagram but with P and

N swapped, f−1 on the bottom, f ◦ π on the left, and f−1 ◦ (f ◦ π) = π on the

diagonal.

Finally, recall the level set theorem, whose proof may be found in [35].

Theorem 3 (Level Set). Each level set of a smooth map of constant rank r is a

properly embedded submanifold of codimension r. In particular, a regular level set of

a submersion M → N is a properly embedded submanifold of codimension dimN .

A fiber bundle is a quadruple (Q, π,M, F ) comprising smooth manifolds Q,M,F

and a smooth surjection π : Q → M such that to each p ∈ M there corresponds an

open set U ⊂M about p and a fiber-preserving diffeomorphism φ : π−1(U)→ U ×F ,

which means the diagram

π−1(U) U × F

U

φ

π
pr1

commutes, where pr1 : U × F → U : (r, s) 7→ r is the projection onto the first factor.

It follows that φ may be factored as φ(q) = (π(q), φ̃(q)), which defines the principal

part φ̃ : π−1(U)→ F of φ. We call Q the total space, M the base space, F the model

fiber (or typical fiber), π the projection, and say that Q is an F bundle over M . A

pair (U, φ) as in the definition is called a local trivialization, as illustrated in Figure 1.

Given p ∈ M the set Qp := π−1(p) is the fiber over p, and elements in Qp are said
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to be over p. Depending on the data to be emphasized, the bundle may be denoted

(Q, π,M, F ), or F ↪→ Q
π→M , or π : Q→M , or just Q.

U U

π−1(U)

M
rr

U × F

φ

Figure 1: A local trivialization φ : π−1(U) → U × F maps the
cylinder π−1(U) diffeomorphically onto the product cylinder U × F
while preserving fibers.

Theorem 4. In every fiber bundle the projection is a submersion and a quotient

map, each fiber is a properly embedded submanifold diffeomorphic to the fiber, and the

dimension of the total space equals the sum of the dimensions of the base and fiber.

Proof. Let π : Q → M be an F -bundle. Let q ∈ Q and choose a local trivialization

(U, φ) with q ∈ π−1(U). Differentiate π = pr1 ◦φ at q to obtain Tqπ = Tφ(q) pr1 ·Tqφ.

Since Tφ(q) pr1 is surjective, so too is Tqπ surjective, and hence π is a submersion.

Since π is also surjective, it is a quotient map by Theorem 1. Finally, consider any

fiber π−1(r). Choose a local trivialization (U, φ) with r ∈ π(U). The level set theorem

implies π−1(r) is a properly embedded submanifold of codimension dimM . Hence the

restriction of φ to π−1(r) is smooth; this restriction gives a diffeomorphism π−1(r)→

{r} × F ∼= F , which also implies dimπ−1(r) = dimF . The codimension statement

now gives dimQ− dimπ−1(r) = dimM , so dimQ = dimM + dimF .

An important consequence of the local trivialization property is that locally coordi-

nates can always be chosen that factor in a nice way. Indeed, if φ : π−1(U)→ U×F is
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any local trivialization, then product coordinates on U ×F may be pulled back along

φ to obtain give bundle coordinates (or product coordinates) q = (r, s) on π−1(U),

where r encodes position along the base and s encodes position along the fiber.

A smooth structure (or bundle atlas) for a bundle F ↪→ Q
π→ M is a collection

G = {(Uα, φα)} of local trivializations such that
⋃
Uα = M . By definition, every

bundle comes equipped with a smooth structure. Two local trivializations (Uα, φα)

and (Uβ, φβ) in G overlap if Uαβ := Uα ∩ Uβ is nonempty, in which case the diagram

Uαβ × F π−1(Uαβ) Uαβ × F

Uαβ

pr1
π

φα φβ

pr1

commutes. Since φα and φβ are fiber-preserving diffeomorphisms, so is

φαβ := φα ◦ φ−1
β : Uαβ × F → Uαβ × F.

Hence for each r ∈ Uαβ there is a diffeomorphism gαβ(r) : F → F defined by

φαβ(r, s) = (r, gαβ(r)(s)).

Letting r vary over Uαβ gives a family {gαβ(r) : r ∈ Uαβ} of diffeomorphisms F → F ,

one for each point of Uαβ. Let D(F ) denote the group of diffeomorphisms F → F

and define the transition function

gαβ : Uαβ → D(F ) : r 7→ gαβ(r).
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φα φβq

M
rrr

φαβ := φα ◦ φ−1
β

(r, s)

φαβ(r, s)

UαβUαβ Uαβ

π−1(r) {r} × F{r} × F

Figure 2: Two overlapping trivializations induce a diffeomorphism
F → F (green) for each fiber (red) corresponding to a point r in the
overlap Uαβ. Letting r vary over Uαβ induces the transition function
gαβ : Uαβ → D(F ).

The transition function is illustrated in Figure 2. On a practical level, it relates

two overlapping trivializations; indeed, if π(q) ∈ Uα ∩ Uβ, then φα(q) and φβ(q) are

related according to

φβ(q) = (r, s)⇒ φα(q) = (r, gαβ(r)(s)). (1)

Every transition function gαβ is differentiable in the sense that Uαβ × F → F :

(r, s) 7→ gαβ(r)(s) is differentiable, which follows from differentiability of φαβ. On

triple overlaps Uαβγ := Uα ∩ Uβ ∩ Uγ 6= ∅, the transition functions obey the cocycle

condition

gαβ(r) ◦ gβγ(r) = gαγ(r)

for every r ∈ Uαβγ. The cocycle condition implies that for each r ∈M the collection

Gr := {gαβ(r)} is a subgroup of D(F ). In particular, gαα(r) is the identity diffeomor-

phism for every α, and gβα(r) is the inverse of gαβ(r). If there is a fixed Lie group
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G ⊂ D(F ) in which all transition functions take their values, i.e. Gr ⊂ G for every

r ∈ M , then G is said to be a structure group of the bundle. Hence any larger Lie

group G ⊂ G′ ⊂ D(F ) is also a structure group. To emphasize that G is a structure

group, the bundle may be denoted (Q, π,M, F,G).

Associated to every fiber bundle π : Q → M is its vertical distribution q 7→ Vq,

defined by

Vq := ker(Tqπ) = {vq ∈ TqQ : Tqπ · vq = 0}.

We call Vq the vertical space at q.1 An Ehresmann connection is a smooth distribution

q 7→ Hq such that

TqQ = Hq ⊕ Vq. (2)

We call Hq the horizontal space at q. There is no natural choice of a connection

on a bundle unless that bundle has extra structure. Two examples for which there

is such structure are product bundles Q = M × F , in which case the direct sum

T(r,s)Q = TrM ⊕ TsF defines a connection (r, s) 7→ H(r,s) := TrM , and bundles Q

endowed with a Riemannian metric g, in which case the metric connection q 7→ Hq

is defined such that horizontal is metric orthogonal to vertical, i.e.

Hq := V ⊥q = {vq ∈ TqQ : g(vq, wq) = 0 for all wq ∈ Vq}. (3)

The horizontal bundle H and the vertical bundle V are the subbundles of TQ whose

fibers at q are Hq and Vq, respectively. A tangent vector vq ∈ TQ is horizontal or

1The word “vertical” is explained by that fact that fibers are typically drawn vertically over the
base
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vertical if v ∈ Hq or v ∈ Vq, respectively; it need not be either. However, due to

the direct sum (2), it is uniquely a sum of a horizontal and vertical vector, vq =

hor vq + ver vq. Likewise, a vector field X on Q is horizontal or vertical if for every

q ∈ Q, Xq ∈ Hq or Xq ∈ Vq, respectively, and every vector field on Q may be

decomposed uniquely as the sum of a horizontal and a vertical vector field. Finally,

a trajectory γ : [a, b] → Q is horizontal or vertical if γ̇(t) ∈ Hγ(t) or γ̇(t) ∈ Vγ(t),

respectively, for every t ∈ [a, b].

Given a bundle π : Q → M , a base trajectory r : [a, b] → M , and a point

q ∈ π−1(r(a)), the parallel transport problem, shown in Figure 3, is to find a trajectory

γ : [a, b]→ Q that is a lift through q of the base trajectory in the sense that γ(a) = q

and π(γ(t)) = r(t) for all t ∈ [a, b]. In general there are many such lifts and no natural

way of selecting among them. However, given a connection there is a unique such lift

— at least on some subinterval [a, a+ ε) — that is horizontal. Indeed, differentiation

of π(γ(t)) = r(t) shows that finding the horizontal lift γ of r amounts to solving the

initial-value problem

Tγ(t)π · γ̇(t) = ṙ(t), γ̇(t) ∈ Hγ(t), γ(a) = q, a ≤ t ≤ b,

but the local existence and uniqueness theory for ordinary differential equations only

guarantees a solution on some small interval [a, a+ε). It is a theorem (see [32] or [43])

that a horizontal lift exists for all time t ∈ [a, b] provided the model fiber is compact,

or if the connection is a principal connection on a principal bundle. (Principal bundles

are defined in §3.2, and principal connections are defined in §A.2).



13

Q

π

M r

r

γ

γ

Figure 3: Parallel transport relative to an Ehresmann connection.

Note in Figure 3 that the lift of a closed loop in base space, although it must

return to the same fiber, need not return to the same point along the fiber. This

translation along the fiber associated with horizontal lifts of closed base loops is

known as geometric phase when it is independent of the time parameterization along

the trajectories.

Finally, because it is easier to work with maps than subspaces, it is helpful to have

a characterization of an Ehresmann connection in terms of a map satisfying certain

properties. Recall that a projection on a vector space W is a linear map P : W → W

such that P ◦ P = P . Such a projection induces the direct-sum decomposition W =

kerP ⊕ imgP . Conversely, given any decomposition W = U ⊕ V where U, V of are

subspaces of W , there is an associated projection operator P : W → W characterized

by the property that kerP = U . Applying this observation pointwise, it follows that

to each connection q 7→ Hq there is a vertical-valued 1-form A : TQ→ V , called the

connection form, with the property that for each q the restriction A|q : TqQ → Vq

is a linear projection. So the connection form returns the vertical part of a vector,

A(vq) = ver vq. Then hor vq = vq − A(vq), and Hq = ker(Aq). Conversely, a vertical-

valued 1-form A : TQ → V satisfying the properties above induces the Ehresmann

connection q 7→ Hq := ker(Aq). More details are given in §A.1, where an explicit
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example is worked out in coordinates.

2.2 Geometric Mechanics

The description of a mechanical system begins with its configuration manifold Q

whose points encode the distinct configurations of the system. This is then enlarged

to a phase space P that encodes additional dynamical variables, such as velocities

or momenta, that are used to describe the governing equations of the system. These

equations are obtained by the interaction between a given structure and a distin-

guished function on phase space. In Lagrangian mechanics the phase space is the

tangent bundle TQ, the structure is Hamilton’s principle, and the distinguished func-

tion is a Lagrangian L : TQ → R. For Hamiltonian mechanics the phase space is a

symplectic or Poisson manifold, the structure is a symplectic form or Poisson bracket,

respectively, and the distinguished function is a Hamiltonian H : P → R.

Consider now Lagrangian mechanics. Let Q be a configuration space for a mechan-

ical system and L : TQ → R be the Lagrangian, i.e. kinetic minus potential energy.

Define the fiber derivative FL : TQ → T ∗Q such that for every q ∈ Q and every

vq, wq ∈ TqQ,

〈FL(vq), wq〉 =
d

dt

∣∣∣∣
t=0

L(vq + twq).

For each of the Lagrangian systems considered in this work, there is a Riemannian

metric g on Q and a function V : Q→ R such that the Lagrangian takes the form

L(vq) =
1

2
g(vq, vq)− V (q). (4)

Then the triple (Q, g, L) is referred to as a simple mechanical system. In this case, it



15

may be shown that if vq = (q, q̇) in tangent-lifted coordinates, then

FL(vq) = gij q̇
j dqi =

∂L

∂q̇i
dqi = pi dq

i, (5)

where the components pi = ∂L
∂q̇i

of the fiber derivative are known classicaly as conjugate

momenta. Hence the fiber derivative and the metric carry the same information in

the sense that

〈FL(vq), wq〉 = g(vq, wq). (6)

Turning to dynamics, let γ : [a, b] → Q be a curve in Q. A variation of γ is a C2

map θ : [−ε, ε] × [a, b] → Q such that θ(0, t) = γ(t) for all t ∈ [a, b]. It is said

to have fixed endpoints if θ(s, a) = γ(a) and θ(s, b) = γ(b) for all s ∈ [−ε, ε]. The

virtual displacement is the map δγ : [a, b] → TQ defined by δγ(t) := ∂
∂s

∣∣
s=0

θ(s, t).2

The curve γ is said to obey Hamilton’s principle if for every fixed-endpoint every

variation θ of γ, we have

0 = δ

∫ b

a

L(γ(t), γ̇(t)) dt :=
d

ds

∣∣∣∣
s=0

∫ b

a

L(θ(s, t), θ̇(s, t)) dt. (7)

Assuming that Q is finite dimensional, say dimQ = n, then arguments from the

calculus of variations show that a curve γ obeys Hamilton’s principle if and only the

Euler-Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, (i = 1, . . . , n), (8)

hold along the trajectory in every chart that meets the image of γ, and where (q, q̇) are

2I think “virtual velocity” is more fitting since δγ(t) is a velocity vector, but I yield to tradition.
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the chart’s tangent-lifted coordinates. It is experimentally observed that a trajectory

taken by an unconstrained Lagrangian system obeys Hamilton’s principle and hence

the Euler-Lagrange equations.

Mechanical systems often exhibit symmetry that may be exploited for insight or

to simplify the dynamics. A symmetry of a simple mechanical system is the smooth

action of a Lie group G on configuration space Q such that for every g ∈ G and every

vq ∈ TQ,

L(TqΦg · vq) = L(vq). (9)

Corresponding to this symmetry is a momentum map J : TQ → g∗, taking values

in the dual g∗ of the Lie algebra g of G, defined such that for every velocity vector

vq ∈ TQ and for every Lie algebra element ξ ∈ g,

〈J(vq), ξ〉 = 〈FL(vq), ξQ(q)〉 . (10)

Here ξQ is the infinitesimal generator corresponding to ξ, i.e. the vector field on Q

defined by

ξQ(q) :=
d

dt

∣∣∣∣
t=0

Φ(exp(tξ), q), (11)

where exp : g→ G is the Lie exponential map, defined such that exp(ξ) is the point

in G obtained by starting at the identity e ∈ G and flowing for one unit of time along

the left-invariant vector field Xξ of G defined by Xξ(g) := TeLg · ξ. The pairings on

the left and right sides of (10) are the natural ones between g∗ and g, and between
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T ∗Q and TQ, respectively. When the Lagrangian is of the form (4), then (6) gives

〈J(vq), ξ〉 = g(vq, ξQ(q)) = gijv
i
qξ
j
Q(q),

which is an explicit formula for the component of the momentum map that corre-

sponds to the Lie algebra element ξ. The importance of the momentum map stems

from Noether’s theorem, which asserts that if the Lagrangian is invariant in the sense

of (9), then the momentum map is conserved along solutions of the Euler-Lagrange

equations; i.e. if φt : Q → Q is the time-t flow of the Euler-Lagrange equations and

q ∈ Q, then d
dt

J(φt(q)) = 0. A proof may be found in [7].

Consider now Hamiltonian mechanics. A (finite-dimensional) symplectic manifold

comprises a manifold P endowed with a symplectic form, i.e. a closed and nondegen-

erate 2-form Ω on P ; that is, dΩ = 0 and the map X 7→ X Ω := Ω(X, ·) gives an

isomorphism from vector fields to 1-forms on P . Every cotangent bundle P = T ∗Q is a

symplectic manifold in a natural way. Define the Liouville 1-form Θ on T ∗Q such that

whenever µ ∈ T ∗Q and v ∈ TµT ∗Q then 〈Θ(µ), v〉 = µ(Tµπ · v), where π : T ∗Q→ Q

is the projection. The canonical symplectic form is then Ω := −dΘ. If dimT ∗Q = 2n

and (q, p) are cotangent-lifted local coordinates, then Ω = dq1∧dp1 + · · ·+dqn∧dpn.

Turning to dynamics, the Hamiltonian vector field associated to a smooth function

H : P → R is that vector field XH on P such that XH Ω = dH. Hamilton’s

equations are the evolution equations ż(t) = XH(z(t)) for a curve t 7→ z(t) ∈ P . In

cotangent-lifted coordinates (q, p), these are

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (12)
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Meanwhile, a Poisson manifold is a smooth manifold P endowed with a Poisson

bracket operation {·, ·} : C∞(P ) × C∞(P ) → C∞(P ) that makes C∞(P ) into a Lie

algebra and obeys the Leibniz rule, {fg, h} = f{g, h} + g{f, h}. The Hamiltonian

vector field associated with H : P → R is the unique vector field XH on P such that

XHf = {f,H} for every f ∈ C∞(P ). This is well defined, because the Leibniz rule

implies that f 7→ {f,H} is a derivation, and there is a one-to-one correspondence

between derivations of the algebra C∞(P ) and vector fields on P . Every symplectic

manifold (Ω, P ) is also a Poisson manifold because Ω induces the Poisson bracket

{f, g} := Ω(Xf , Xg). In cotangent-lifted coordinates (q, p), Hamilton’s equations are

the evolution equations

q̇i = {qi, H}, ṗi = {pi, H}. (13)

If the Poisson bracket is induced by the canonical symplectic form on a cotangent

bundle, this reproduces the symplectic form of Hamilton’s equations (12).

Turning to constraints, in the most basic formulation a constraint is an equation on

phase space that must be satisfied along system trajectories. I will only be interested

in linear velocity constraints. By linearity, such a constraint is represented by a 1-

form ω ∈ Ω1(Q) such that a velocity vector vq ∈ TQ satisfies the constraint if and

only if ωq(vq) = 0, i.e. if and only if vq ∈ ker(ωq). Assume now that k linearly

independent such constraints are present, represented by 1-forms ω1, . . . , ωk. The

resulting constraint distribution D ⊂ TQ is the codimension-k distribution defined
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by

D = ker(ω1) ∩ · · · ∩ ker(ωk).

Such a system of constraints is said to be holonomic or nonholonomic according as

to whether the induced constraint distribution is integrable or not in the sense of

Frobenius. That is, the constraints are holonomic if and only if whenever X, Y are

vector fields in D then [X, Y ] ∈ D. To accommodate the constraints in the dynamics,

Hamilton’s principle is modified as follows — a trajectory γ : [a, b] → Q obeys the

Lagrange d’Alembert principle if (7) holds for every fixed-endpoint variation θ of γ

whose virtual displacements satisfy the constraints in the sense that δγ(t) ∈ Dγ(t) for

all t ∈ [a, b]. A detailed discussion may be found in [40] and [7].

2.3 Geometry of Locomotion

A recurring theme in this work is the geometry of locomotion, and I now discuss

the relevance of the foregoing geometric machinery — bundles, connections, parallel

transport, and geometric phases — in understanding locomotion. Most of the systems

I consider have configuration spaces that may be factored as a product of two mani-

folds, Q = M × G, where points of M encode the internal shape of the system, and

where G is a Lie group whose points encode the system’s position and orientation in

ambient space. Accordingly, in this context M is called the shape manifold or shape

space. When endowed with the canonical projection π : Q → M , the configuration

space naturally has the structure of a principal G-bundle (defined in §3.2) in two

different ways, via left or right multiplication by G in the second factor of Q. It turns
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out that for problems in rigid body mechanics it is the left multiplication that leads

to symmetry, whereas for fluid mechanics right multiplication does so. The systems

I consider will be endowed with left multiplication.

Now suppose that, in addition to having the aforementioned structure of a left

principal G-bundle, Q is also a simple mechanical system; that is, it is endowed with

a Riemannian metric g such that the Lagrangian is given by (4). Then the bundle has

a metric connection defined by (3), and I prove in §A.4 that the resulting connection

— known as the mechanical connection — is a principal connection on this bundle.

This principal connnection is represented by a 1-form Γ : TQ → g, taking values

in the Lie algebra g of the symmetry group G, defined such that Γ(vq) returns the

unique Lie algebra element ξ such that ξQ(q) is the vertical part of vq. If we define

the local connection form A : TM → g by A(r, ṙ) := Γ(r, e, ṙ, 0), then it is proved

in §A.3 that the horizontal lift t 7→ (r(t), g(t)) passing through g0 of a given curve

r : [0, T ]→M is determined by the initial-value problem

ġ(t) = g(t)A(r(t), ṙ(t)),

g(0) = g0.

Since r(t) and hence A(r(t), ṙ(t)) are known, this initial-value problem may be inte-

grated in order to reconstruct the evolution of the group variables g(t), which encode

the system’s position and orientation in its environment, from the known initial con-

ditions and the evolution of the shape variables r(t). What’s more, if G is an abelian
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Lie group an explicit solution is given by

g(t) = g0 exp

(
−
∫ t

0

A(r(s), ṙ(s)) ds

)
,

where exp : g→ G is the Lie exponential map. As a special case, if the path in shape

space is a closed loop to which Stokes’ theorem applies, the preceding display equals

g(T ) = g0 exp

(
−
∫∫

S

dA

)
,

where S is any oriented submanifold of M whose boundary coincides with the given

loop in shape space; this formula is called the area rule for abelian bundles, and

— since it is manifestly independent of the time parameterization — it gives the

geometric phase associated with the closed loop in shape space.



CHAPTER 3: ON THE DEFINITION OF A PRINCIPAL BUNDLE

In this chapter I prove the mutual equivalence of three seemingly different defi-

nitions of a principal bundle that appear in the literature, and I introduce another

definition with certain simplifications and prove its equivalence as well. I also give an

elementary proof of a theorem that relates the vertical spaces to the tangent spaces

of the group orbits and to the infinitesimal generators induced by the Lie algebra of

the bundle’s structure group.

3.1 Introduction

Bundles and connections, and principal bundles and connections in particular, are

of central importance in differential geometry ([32], [58]), in geometric mechanics and

the theory of geometric phases ([36], [42], [37], [11], [8], [7], [27]), and in theoretical

physics ([54], [6], [22], [5]) in which a field (e.g. the electromagnetic field) is a section

of a bundle over spacetime, a gauge potential is a connection, a choice of gauge is a

local trivialization, and field strength corresponds to the curvature of a connection.

Principal bundles arise in mechanics in at least two ways, both of which appear

in this dissertation. First, the configuration space of a mechanical system has the

structure of a trivial principal G-bundle π : M × G → M , where M is a manifold,

G is a Lie group, and π is the projection. Not only do the systems I consider in

Chapter 4 and Chapter 5 have this structure, for example, but so do many examples
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appearing in the mechanics literature (e.g. [29], [44], and [49]). Second, mechanical

systems frequently exhibit symmetry in the sense of the action of a Lie group on the

system’s configuration manifold Q whose lift to phase space leaves invariant some

important structure — such as a Lagrangian, or a Hamiltonian, or a variational

principle — and under suitable technical conditions discussed in this chapter, the

canonical projection from Q onto the quotient Q/G comprising orbits of the action

forms a principal G-bundle.

Principal bundles are ubiquitous in differential geometry and mechanics, and it is

therefore quite profitable to study them in some detail. To this end, there appear in

the literature several definitions of a principal bundle so different from one another

that it is not at all obvious if they are equivalent, much less how to move between

them if they are ([32], [35], [43]). In this chapter I elucidate the relationship between

these definitions, I introduce a new definition that is a simpler version of the one

appearing in [32], and I prove their mutual equivalence.

Because powerful machinery is associated with the theory of bundles and connec-

tions — for example parallel transport, geometric phase, holonomy, and curvature

— it is beneficial to have a means of constructing, or at least recognizing when

present, the structure of a principal bundle. The theorems in this chapter provide

some progress in that direction.

3.2 On the Definition of a Principal Bundle

Consider the following definitions, in which M is a manifold and G is a Lie group.

1. [32] defines a right principal-G bundle over M as a manifold P together with
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a smooth, free right action P × G → P : (u, g) 7→ ug such that P/G is diffeo-

morphic to M , the canonical projection π : P → P/G ∼= M is a submersion,

and such that every point in p ∈ M belongs to an open set U ⊂ M for which

there is a diffeomorphism φ : π−1(U) → U × G : u 7→ (π(u), φ̃(u)) where

φ̃ : π−1(U)→ U ×G satisfies φ̃(ug) = φ̃(u)g for all u ∈ π−1(U) and all g ∈ G.

2. [35] defines a right principal G-bundle as a bundle π : P → P/G arising from

the quotient of a manifold P by a smooth, free, proper right action P ×G→ P ,

and where π : P → P/G is the canonical projection onto the orbit space.

3. [43] defines a right principal G-bundle over M as a fiber bundle over M with

model fiber G and whose structure group, as defined in §2.1, is G in the sense

that every transition function is left multiplication by a group element.

A few questions immediately arise. First, are these definitions equivalent? If so,

how does one move between them? Why does the last definition of a right bundle

require transition functions to be left multiplication? Finally, are there any ineffe-

ciencies or redundancies in the definitions? For example, the first definition seems to

demand a lot when compared to the other two. I begin to address these questions —

and the claims made in the chapter’s opening paragraph — by introducing the fol-

lowing definition, which emphasizes the concept of equivariance due to its usefulness

in applications.

Definition 5. If G is a Lie group, a right principal G-bundle is a fiber bundle

(P, π,M,G) together with a smooth right action R : P × G → P : (u, g) 7→ ug such

that every local trivialization (U, φ) is equivariant, meaning that that φ̃(ug) = φ̃(u)g
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for every u ∈ π−1(U) and every g ∈ G.

The equivariance condition means that for every g ∈ G the diagram

π−1(U) U ×G

π−1(U) U ×G
Rg

φ

R̃g

φ

commutes, where R̃g : U × G → U × G is right multiplication in the second factor,

i.e. R̃g(r, h) = (r, hg). That is, equivariance says that if u ∈ π−1(U) and g ∈ G then

φ(u) = (r, h)⇒ φ(ug) = (r, hg), or equivalently, φ̃(ug) = φ̃(u)g.

This is illustrated in Figure 4.

φα

φα

M
rr

Uαβ Uαβ

π−1(r)

Rg

R̃g

{r} ×G

Figure 4: Equivariance of the local trivializations in a principal bun-
dle.

I now turn to the consequences of Definition 5. The following proposition shows

that equivariance severely restricts the action. At the same time, it shows that the

definition of [32] has certain redundances; for example, freeness of the action is a

consequence of equivariance.

Proposition 6. The action of a principal bundle is fiber-preserving, free, and proper,

and its restriction to each fiber is transitive.
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Proof. Let π : P → M be a right principal G-bundle. Let u ∈ P , let g ∈ G,

choose a local trivialization (U, φ) such that r := π(u) ∈ U , and write φ(u) = (r, h).

By equivariance, φ(ug) = (r, hg). Then ug = φ−1(r, hg) ∈ π−1(r) because φ, and

hence φ−1, is fiber-preserving. Therefore, the action is fiber preserving. To prove the

action is free, assume u = ug. Since φ is bijective, (r, h) = (r, hg), which implies

g = e, so the action is free. To see that it acts transitively on each fiber, let u′ also

belong to the fiber π−1(r) and write φ(u′) = (r, h′). Let g be the unique element

of G such that h′ = hg. By equivariance, φ(ug) = (r, hg) = (r, h′), which implies

ug = φ−1(r, h′) = u′, hence the action is transitive on each fiber.

Finally, to prove the action is proper, let Φ : P ×G→ P ×P : (u, g) 7→ (u, ug), and

let K ⊂ P × P be compact. It must be shown that Φ−1(K) is compact. Since man-

ifolds are metrizable, compactness and sequential compactness are equivalent. Thus

let (un, gn) be a sequence in Φ−1(K). Then Φ(un, gn) = (un, ungn) is a sequence in the

compact set K, hence it has a convergent subsequence, say (unk , unkgnk) → (u, u′).

This implies unk → u, unkgnk → u′, and π(unk)→ π(u) because π is continuous. Let

(U, φ) be a local trivialization such that π(u) ∈ U . Since unk → u ∈ π−1(U), by

throwing away finitely many leading terms it may be assumed that all unk ∈ π−1(U).

Continuity of π implies π(unkgnk) → π(u′). Since the action preserves fibers, it is

also true that π(unkgnk) = π(unk) → π(u). Since limits are unique in a Hausdorff

space, π(u′) = π(u). Because the action is free and transitive on the fibers and u, u′

belong to the same fiber, there is a unique g ∈ G such that u′ = ug. Taken together,

unkgnk → ug and unk → u imply that gnk → g. Hence (unk , gnk) → (u, g), which

proves that Φ−1(K) is sequentially compact, hence compact, and so Φ is proper.
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Corollary 7. In a principal bundle, the group orbit through any point coincides with

the fiber through that point. That is, for every point q in the total space, π−1(π(q)) =

Oq.

For a principal bundle there is a nice correspondence between local sections and

local trivializations in the sense that choosing one determines the other:

Proposition 8. Let π : P → M be a principal G-bundle. If (U, φ) is a local trivial-

ization, then σ : U → P : r 7→ φ−1(r, e) is a local section. Conversely, if σ : U → P

is a local section then φ : π−1(U) → U × G : u 7→ (π(u), g), where g is the unique

element in G such that σ(π(u))g = u, defines a local trivialization.

Proof. The first part is clear. To prove the second part, let σ : U → P be a local

section, and let u ∈ π−1(U). By Proposition 6, the action is free and transitive on the

fibers, so there is a unique g ∈ G such that σ(π(u))g = u. Since σ ◦ π and the action

are smooth, the implicit function theorem implies that the solution g to the equation

σ(π(u))g = u depends smoothly on u. Therefore φ is smooth. Since the inverse

φ−1 : U ×G→ π−1(U) : (r, g) 7→ σ(r)g is also smooth, φ is a diffeomorphism.

Corollary 9. A principal bundle is trivial if and only if it admits a global section.

I now demonstrate the equivalence of the various definitions of a principal bundle

and show how the quotient of a manifold by a smooth, free, and proper Lie group

action induces a principal bundle.

Theorem 10. If π : P → M is a right principal G-bundle, then the quotient space

P/G comprising orbits of the bundle action is a manifold diffeomorphic to the base

M . Conversely, a smooth, free, proper right action of a Lie group G on a manifold
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P makes the canonical projection π : P → P/G into a right principal G-bundle.

Proof. Let π : P → M be a principal G-bundle with smooth action P × G → P :

(u, g) 7→ ug. By Proposition 6 this action is free and proper. Hence the quotient

manifold theorem implies P/G is a smooth manifold and the natural projection πG :

P → P/G : u 7→ [u] is a submersion. To show that P/G is diffeomorphic to M ,

consider the following diagram, in which f : P/G→M : [u] 7→ π(u).

P

P/G M

πG
π

f

To prove f is well defined, let u′ ∈ [u]. Then u′ = ug for some g ∈ G, and

f([u′]) = π(u′) = π(ug) = π(u) = f([u]),

where the third equality holds because Proposition 6 says the action preserves the

fibers of π. Hence f is well defined. Moreover, the definition of f implies that

f ◦ πG = π. Now apply both parts of Theorem 2: that the lift f ◦ πG = π is smooth

implies f is smooth, and since f is bijective and π is a submersion it follows that f

is a diffeomorphism.

Conversely, assume P × G → P is a smooth, free, proper right action. The quo-

tient manifold theorem asserts that P/G is a smooth manifold, and that the natural

projection π : P → P/G is a submersion. We construct a smooth structure of equiv-

ariant local trivializations for P . Because π is a submersion, Theorem 1 implies that

for any u ∈ P there is an open set U ⊂ P/G and a local section σ : U → π−1(U) ⊂ P

such that π(u) ∈ U . Define φ : π−1(U) → U × G by φ(u) = (π(u), g) where g is
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the unique element in G such that σ(π(u))g = u. There is such a g because π(u)

is (by definition) the orbit through u, and g is unique because the action is free.

Both σ ◦ π and the action are smooth, so the implicit function theorem implies that

the solution g to σ(π(u))g = u depends smoothly on u, so φ is smooth. Its inverse

φ−1 : U×G : (r, g) 7→ σ(r)g is also smooth, so φ is a diffeomorphism. The family of all

such (U, φ) is a smooth structure for P . It remains to prove equivariance. To do so, let

(U, φ) be one of the local trivializations just constructed. Let u ∈ π−1(U) and write

φ(u) = (r, h), where by definition of φ we have r = π(u) and σ(π(u))h = u. If g ∈ G,

then ug = σ(π(u))hg = σ(π(ug))hg because π(u) = π(ug), and so φ(ug) = (r, hg) by

definition of φ. Therefore, φ is equivariant.

Consider now the third definition of a principal bundle, in terms of the structure

group. Recall that if G is a Lie group and a ∈ G, then La : G → G denotes the left

multiplication diffeomorphism, i.e. Lag = ag for every g ∈ G.

Theorem 11. If G is a Lie group, then a bundle (P, π,M,G) admits {La : a ∈ G} ⊂

D(G) as a structure group if and only if there is a smooth right action relative to

which every local trivialization is equivariant.

The idea for the first half of the proof is due to [43].

Proof. Assume the first statement and define P × G → P : (u, g) 7→ ug as follows.

Given u ∈ P and g ∈ G, choose a local trivialization (Uα, φα) such that r := π(u) ∈

Uα, write φα(u) = (r, h), and define

ug := φ−1
α (r, hg). (14)
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To prove this is well defined, let (Uβ, φβ) be another local trivialization such that

φβ(u) = (r, h′). Then φ−1
β (r, h′g) = φ−1

α (r, hg) if and only if (r, h′g) = (φβ◦φ−1
α )(r, hg),

if and only if h′g = gβα(r)(hg). Let a ∈ G be such that gβα(r) = La. By definition of

gβα(r) and associativity of group multiplication, h′g = (gβα(r)h)g = (ah)g = a(hg) =

gβα(r)(hg). Therefore, the action is well defined, and it is smooth because the local

trivializations by which it is defined are smooth. The equivariance property follows

from (14).

Conversely, assume P × G → P : (u, g) 7→ ug is a smooth, right action relative

to which the local trivializations are equivariant. Suppose (U, φα) and (Uβ, φβ) are

overlapping trivializations, and let r ∈ Uαβ. We will find a ∈ G such that gβα(r) = La.

To do so, let fα : π−1(r)→ G and fβ : π−1(r)→ G be the restrictions of the principal

parts φ̃α and φ̃β to π−1(r). Then fα and fβ are diffeomorphisms, gβα(r) = fβ ◦f−1
α by

definition, and for all u ∈ π−1(r) and all h, g ∈ G equivariance implies fα(ug) = fα(u)g

and f−1
α (hg) = f−1

α (h)g, and similarly for fβ. Choose u ∈ π−1(r). Put hα := fα(u)

and let a be the unique element of G such that fβ(f−1
α (hα)) = ahα. We claim that

gβα(r) = La. To prove this, let h′α ∈ G be arbitrary, and let g be the unique element

of G such that hαg = h′α. Applying equivariance twice and then associativity gives

gβα(r)(h′α) = fβ(f−1
α (hαg)) = fβ(f−1

α (hα)g) = fβ(f−1
α (hα))g = (ahα)g = a(hαg) =

ah′α = Lah
′
α. Since h′α was arbitrary, gβα(r) = La as claimed.

The proof explains the left-right distinction as follows: the Lie group of a princi-

pal bundle need not be abelian, but in every group (abelian or not) left and right

multiplication commute. Each part of the proof involved a string of equations where
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two group elements flanked a third element in the middle, and associativity was used

in an essential way. Had we considered {Ra : a ∈ G} as a structure group instead,

commutativity rather than mere associativity would have been necessary; since the

group was not assumed to be commutative, the conclusion would not have followed.

Looking back on the preceding results, I now make the following remarks.

1. There is nothing special about right bundles. All of the preceding development

applies equally well with “left” and “right” interchanged, obtaining the notion

of a left principal G-bundle, where the action is L : G × P → P : (g, u) 7→ gu

and the equivariance condition for a local trivialization φ : π−1(U) → U × G

becomes φ(u) = (r, h)⇒ φ(gu) = (r, gh).

2. Many situations are described in terms of principal bundles, and others in terms

of vector bundles. It is natural to wonder how they are related. It turns

out that every vector bundle induces in a natural manner a principal bundle

known as the frame bundle associated with the given vector bundle. Conversely,

a principal bundle leads to various vector bundles, for example the adjoint

bundle. These constructions are standard and will not be given here (see [32]).

However, principal bundles are more general than vector bundles because while

a vector bundle must have a general linear group as its structure group, any

Lie transformation group of the fiber may serve as the structure group of a

principal bundle. This generality partially explains why so much attention is

given to principal bundles, e.g. in [32].

3. Since a principal bundle is equivalent to the quotient of a smooth, free, proper
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action of a Lie group G on a manifold Q, it will often be denoted by Q→ Q/G,

especially when it is unnecessary to emphasize the distinction between left and

right, or when a statement applies equally well to both cases. For the same

reasons, the group action will be denoted Φ rather than R or L.

3.3 Vertical Spaces in a Principal Bundle

In any bundle, vertical vectors are tangent to the fibers. In a principal bundle

Q → Q/G with action Φ, the fiber through any point q is the orbit Oq = {Φgq :

g ∈ G} through q because the action is fiber-preserving and transitive according to

Proposition 6. Therefore, it might be hoped that the vertical spaces in a principal

bundle may be characterized in terms of the group action. This is indeed the case.

Although a version of the theorem below appears in §4.1 of [1], it does not emphasize

the principal bundle setting. Furthermore, I will make significant use of this theorem

in Chapter 4, by way of Theorem 14 and (23). Therefore, I present here an elementary

proof, different from the one given in [1].

Theorem 12. For any point q in a principal bundle Q→ Q/G,

Vq = TqOq = {ξQ(q) : ξ ∈ g}.

Proof. Let ξ ∈ g, let q ∈ Q, and let t ∈ R. Then π(Φexp(tξ)q) = π(q) because the

action preserves fibers. Therefore, Tqπ · ξQ(q) = d
dt

∣∣
t=0

π(Φexp(tξ)q) = d
dt

∣∣
t=0

π(q) = 0.

Hence {ξQ(q) : ξ ∈ g} ⊂ Vq := ker(Tqπ). I will show that equality obtains. Indeed,

λ : g 7→ Vq : ξ 7→ ξQ(q) is a linear map of vector spaces whose kernel is {0} by freeness

of the action. Since the kernel is trivial, λ is injective. Meanwhile, Theorem 4 implies
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that π : Q → Q/G is a submersion and that dimQ = dimQ/G + dimG. Because

π is a submersion, Tqπ : TqQ → Tπ(q)Q/G is surjective, which implies rank(Tqπ) =

dimQ/G. It now follows by the rank+nullity theorem that dimVq = dim(kerTqπ) =

dimQ − dimQ/G = dimG = dim g. Since g and Vq are equidimensional and λ is a

linear injection, λ is an isomorphism, so Vq = {ξQ(q) : ξ ∈ g}.

To obtain the characterization Vq = TqOq, note that for each ξ ∈ g the image of

the curve t 7→ Φexp(tξ)q is contained in Oq. Hence ξQ(q) := d
dt

∣∣
t=0

Φexp(tξ)q ∈ TqOq,

so that Vq = {ξQ(q) : ξ ∈ g} ⊂ TqOq. For the same reasons as above, the map

µ : g 7→ TqOq : ξ 7→ ξQ(q) is linear and injective. Now the orbit Oq is the fiber over

π(q) ∈ Q/G, and so Oq is diffeomorphic to G by Theorem 4. Therefore, dimTqOq =

dimOq = dimG = dim g. By the same dimension argument as above, µ is a an

isomorphism, so Vq = TqOq.

3.4 Summary

In this chapter, I elucidated the relationship between different definitions of a

principal G-bundle appearing in the literature. I introduced a new definition that

emphasizes equivariance and eliminates some unnecessary assumptions appearing in

[32], and I gave explicit proofs of the equivalences between the definitions according

to the following diagram.

Lee Definition 5 Kobayashi and Nomizu

Morita

Finally, I gave an elementary proof of the known theorem that the vertical spaces of

a principal bundle Q → Q/G coincide with the tangent spaces of the group orbits



34

and with the set of infinitesimal generators induced by elements in the Lie algebra of

the structure group.



CHAPTER 4: CHAPLYGIN CONTROL SYSTEMS

In this chapter I introduce a general class of nonholonomic mechanical control sys-

tems, which I call Chaplygin control systems, obtained by enlarging the configuration

space of the classical Chaplygin sleigh to allow for internal degrees of freedom. The

resulting systems have the structure of a principal SE(2)-bundle in a natural way,

and symmetry will be exploited in deriving the dynamics. Next, I analyze those parts

of the geometry, dynamics, and constraints that are relevant to the entire class. I then

show that by considering the Chaplygin sleigh as a trivial Chaplygin control system,

the known equations of motion for the sleigh are recovered. Finally, I introduce two

new systems, the Chaplygin beanie and the Chaplygin pendulum. The former is a

synthesis of Elroy’s beanie (discussed in Appendix A) and the Chaplygin sleigh, and

the latter is a combination of the inverted pendulum on a cart (treated in [7]) and

Chaplygin’s sleigh. The resulting dynamics and control of these two systems exhibit

a number of interesting phenomena — such as locomotion generation and asymp-

totic underactuated control — which arise from complicated nonlinear interactions

between nonholonomic constraints, symmetry, and control inputs. For the Chaplygin

beanie, I prove a rigorous control result, to the effect that both heading and speed

may be asymptotically controlled with a single input, and a similar result is verified

numerically for the Chaplygin pendulum.
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4.1 Introduction

The Chaplygin sleigh was introduced in [12] and studied extensively in [45]. Mod-

ified versions of the Chaplygin sleigh have been the subject of persistent interest in

the literature, including many recent papers. For example, a discrete version of the

system is analyzed in [21], a hydrodynamic version is treated in [19] and [20], and a

sleigh with two control inputs was considered in [48]. Among these, the latter work is

closest in its considerations and approach to this work, but it differs in two important

ways. First, that paper considers only the balanced sleigh, whereas I consider the

more general unbalanced sleigh (definitions to appear in the sequel). Second, I am

concerned with underactuated single-input controls rather than multi-input controls.

The reason is that control is generally harder to achieve with fewer inputs, and this

makes for a more challenging analysis. The material in this chapter is a synthesis and

generalization of my two recent papers [17] and [28], which build upon a large body

of earlier work.

4.2 Chaplygin Control Systems

The Chaplygin sleigh comprises a rigid body moving in the Euclidean plane and sub-

ject to a nonholonomic constraint that permits forward motion but disallows sideslip.

The constraint is represented by a blade, or skate, such that the sleigh may translate

parallel to the blade or pivot about the contact point of the blade with the ground.

The allowed motions of the system are akin to those of a one-legged ice skater.
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b1b2

θ

e1

e2 a

(x, y)

Figure 5: The Chaplygin sleigh, a nonholonomic mechanical system.

The Chaplygin sleigh is depicted in Figure 5, in which the shaded box illustrates

the blade, {e1, e2} is a fixed inertial coordinate system relative to which (x, y) are the

coordinates of the center of mass, and {b1,b2} is a noninertial body coordinate system

that moves with the sleigh and is oriented such that b1 is parallel to the blade. Let a

be the distance from the center of the blade (its contact point) to the center of mass.

I assume the center of mass lies along the line through the blade. Let θ denote the

angle between b1 and e1. The inertial and body coordinate systems are related by

b1 = cos θ e1 + sin θ e2,

b2 = − sin θ e1 + cos θ e2.

(15)

The configuration space of the Chaplygin sleigh is the Lie group G = SE(2) of rigid

Euclidean motions of the plane with local coordinates (x, y, θ). Let M be the mass

of the sleigh, and let J be the moment of inerta of the sleigh about the vertical axis

through its center of mass. There are two distinct cases which exhibit very different

dynamics: the balanced case, where the contact point coincides with the sleigh’s center
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of mass, and the unbalanced case otherwise. These two cases correspond to a = 0

and a 6= 0, respectively, and it will be seen that the unbalanced case exhibits much

richer dynamics than the balanced one.

I now enlarge the Chaplygin sleigh by allowing for internal degrees of freedom —

such as momentum wheels, movable masses, and the like — so that the configuration

space becomes Q = M ×G, where M is a manifold whose points encode the internal

configuration.3 Such a system will be referred to as a Chaplygin control system when

the internal variables are interpreted as control inputs, as throughout the remainder

of this chapter. The coordinates on M will be denoted (r1, . . . , rk). Local coordinates

on Q are therefore (r1, . . . , rk, x, y, θ). The dynamic coupling between the system’s

internal configuration and its position and orientation is encoded in the Lagrangian.

Consider now a typical configuration q = (r1, . . . , rk, x, y, θ) ∈ Q. Since pivoting

about the blade is permitted but sideslip is not, it follows from Figure 5 that the

component of the sleigh’s translational velocity in the b2 direction must coincide

with circular motion of angular velocity θ̇ and of radius a; that is, (ẋ, ẏ) · b2 = aθ̇.

Referring to (15), the constraint is therefore represented by the equation

−ẋ sin θ + ẏ cos θ = aθ̇. (16)

This is a linear velocity constraint, so as disucssed in §2.2 there is a 1-form ω ∈ Ω1(Q)

such that a velocity vector vq ∈ TQ satisfies the constraint if and only if ωq(vq) = 0.

3It should not cause confusion that the symbol M is used to denote both a manifold and the
mass of the sleigh.
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This 1-form is

ωq := − sin θ dx+ cos θ dy − adθ. (17)

Let q 7→ Dq := ker(ωq) be the resulting constraint distribution. Since dimQ = 3 + k

and there is one constraint, it follows that dimDq = 2 + k. To find a basis of vector

fields that span D, begin by noting that ∂
∂r1
, . . . , ∂

∂rk
are k linearly independent vector

fields in D. Two more independent vector fields that lie in D may be found either by

linear algebra, or — what is easier — by physical considerations. In particular, two

motion primitives that satisfy the constraint are forward motion along the blade and

pivoting motion about the contact point. These are represented, respectively, by the

linearly independent vector fields

X1 := cos θ
∂

∂x
+ sin θ

∂

∂y
,

X2 := −a sin θ
∂

∂x
+ a cos θ

∂

∂y
+

∂

∂θ
.

(18)

It follows that for each q ∈ Q,

Dq = Span

{
X1, X2,

∂

∂r1
, . . . ,

∂

∂rk

}
. (19)

The resulting constraint distribution D is nonholonomic. In verifying this, it suf-

fices by Frobenius’ theorem to show that [X1, X2] /∈ D. Note that [X1, X2] ⊂

Span{ ∂
∂x
, ∂
∂y
, ∂
∂θ
}, and this justifies omission of ∂

∂r1
, . . . , ∂

∂rk
in the following computa-
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tion:

[X1, X2] = DX2 ·X1 −DX1 ·X2

=


0 0 −a cos θ

0 0 −a sin θ

0 0 0




cos θ

sin θ

0

−


0 0 − sin θ

0 0 cos θ

0 0 0




−a sin θ

a cos θ

1



=


sin θ

− cos θ

0

 .

If [X1, X2] ∈ D, then there exist scalars α, β such that [X1, X2] = αX1 + βX2, which

in coordinates amounts to the matrix equation
cos θ −a sin θ

sin θ a cos θ

0 1


α
β

 =


sin θ

− cos θ

0

 ,

which has no solution. Therefore [X1, X2] /∈ D, and the constraint is nonholonomic

according to the definition given in §2.2.

For Chaplygin control systems there is a natural Lie group action, Φ : G×Q→ Q

given by left multiplication in the group factor of Q. It is defined such that an element

h = (u, v, φ) ∈ G acts on Q according to

Φh(r
1, . . . , rk, x, y, θ) = (r1, . . . , rk, u+x cosφ−y sinφ, v+x sinφ+y cosφ, θ+φ). (20)
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In local coordinates, the derivative of the action is represented by the matrix

TqΦ(u,v,φ) =



Ik×k 0k×3

03×k

cosφ − sinφ 0

sinφ cosφ 0

0 0 1


. (21)

It follows that if q̇ = ṙi ∂
∂ri

+ ẋ ∂
∂x

+ ẏ ∂
∂y

+ θ̇ ∂
∂θ
∈ TqQ, then

TqΦ(u,v,φ) · q̇ = ṙi
∂

∂ri
+ (ẋ cosφ− ẏ sinφ)

∂

∂x
+ (ẋ sinφ+ ẏ cosφ)

∂

∂y
+ θ̇

∂

∂θ
. (22)

In preparation for a subsequent use of Theorem 14, I now show that the constraint is

symmetric with respect to the group action.

Lemma 13. The action leaves the constraint 1-form ω invariant in the sense that

Φ∗hω = ω for all h ∈ G.

Proof. The constraint 1-form ω is invariant if Φ∗hω = ω for every h ∈ G. In local

coordinates, write h = (u, v, φ), q = (r1, . . . , rk, x, y, θ), and X = ṙi ∂
∂ri

+ ẋ ∂
∂x

+ ẏ ∂
∂y

+

θ̇ ∂
∂θ

. Then (17), (20), (22), and the addition formulas for sine and cosine give

ωΦhq(TqΦh ·Xq) = − sin(θ + φ)(ẋ cosφ− ẏ sinφ)

+ cos(θ + φ)(ẋ sinφ+ ẏ cosφ)− aθ̇

= − (cos θ sinφ+ sin θ cosφ)(ẋ cosφ− ẏ sinφ)

+ (cos θ cosφ− sin θ sinφ)(ẋ sinφ+ ẏ cosφ)− aθ̇

= −ẋ sin θ + ẏ cos θ − aθ̇

= ωq(Xq).
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It follows that the constraint distribution is invariant with respect to the action in

the sense that DΦgq = TqΦg · Dq for every q ∈ Q and every g ∈ G. Furthermore, in

the particular examples that follow I will also verify that the Lagrangian is invarant

under the tanent-lifted action in the sense of (9). Hence the Chaplygin control systems

considered here exhibit both constraints and symmetry. To determine the dynamics

of this class of systems, for each q ∈ Q define

Sq := TqOq ∩Dq, (23)

and let gD be the bundle over Q whose fiber through q comprises those Lie algebra

elements ξ ∈ g whose infinitesimal generators at q belong to Sq, i.e.

gD := {(q, ξ) ∈ Q× g : q ∈ Q, ξQ(q) ∈ Sq}.

Define the nonholonomic momentum map Jnh : TQ → (gD)∗ such that for every

section q 7→ ξq of the bundle gD,

〈
Jnh(vq), ξ

q
〉

=
〈
FL(vq), ξ

q
Q(q)

〉
. (24)

The pairing on the left is the natural one between (gD)∗ and gD, namely 〈(q, µ), (q, ξ)〉 :=

µ(ξ), whereas the pairing on the right is the natural one between the cotangent bun-

dle T ∗Q and the tangent bundle TQ. This definition mirrors the one given in §2.2 for

a system without constraints, but it is bundle-valued rather than Lie-algebra valued.

The reason it cannot simply be Lie-algebra valued is that the Lie algebra elements

whose infinitesimal generators are consistent with the constraints may vary from point
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to point. The physical interpretation of Jnh is that it gives the components of the or-

dinary momentum map J that satisfy the constraints. The following theorem appears

in [8].

Theorem 14. If a Lie group G acts on a simple mechanical system (Q, g, L) en-

dowed with a nonholonomic constraint distribution D such that the Lagrangian and

constraint distribution are invariant, then any path t 7→ q(t) ∈ Q satisfying the La-

grange d’Alembert principle must, in addition to satisfying the given constraints, also

satisfy

d

dt

〈
Jnh(q(t), q̇(t)), ξq(t)

〉
=

〈
FL(q(t), q̇(t)),

(
d

dt
ξq(t)

)
Q

〉
(25)

for every section q 7→ ξq of gD. Furthermore, if ξQ(q(t)) ∈ Dq(t) for all t, then

d

dt

〈
Jnh(q(t), q̇(t)), ξq(t)

〉
= 0.

(Actually, the hypothesis of invariance may be weakened to infinitesimal invariance

as discussed in [8], but this more general statement will not be needed in the sequel.)

We refer to (25) as the nonholonomic momentum equation, or just the momentum

equation. A key distinction between the ordinary momentum map and the nonholo-

nomic momentum map is that while the former is conserved along Euler-Lagrange

trajectories, the latter is generally not conserved. Indeed, according to the theorem

the nonholonomic momentum map Jnh, rather than being conserved, evolves accord-

ing to the momentum equation (25). It follows that for systems with nonholonomic

constraints, momentum is not necessarily conserved.

I now compute (23) for the class of Chaplygin control systems. First, it may be
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shown that the infinitesimal generator ξQ corresponding to a Lie algebra element

ξ ∈ g is

ξQ = (ξ1 − yξ3)
∂

∂x
+ (ξ2 + xξ3)

∂

∂y
+ ξ3 ∂

∂θ
. (26)

Now recall from Theorem 12 that the tangent space TqOq to the group orbit through

q ∈ Q is

TqOq = {ξQ(q) : ξ ∈ g}.

To compute this explicitly, use linearity of the map ξ 7→ ξQ, the fact that {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

is a basis for g ∼= R3, and (26) to obtain

TqOq = Span{(1, 0, 0)Q, (0, 1, 0)Q, (0, 0, 1)Q}

= Span

{
∂

∂x
,
∂

∂y
, −y ∂

∂x
+ x

∂

∂y
+

∂

∂θ

}
= Span

{
∂

∂x
,
∂

∂y
,
∂

∂θ

}
.

(27)

It now follows from (18), (19), and (27) that

Sq = Dq ∩ TqOq = Span{X1, X2}.

Since for each q ∈ Q the vectors {X1(q), X2(q)} form a basis for Sq, there are two

sections of gD, say q 7→ ζq and q 7→ ηq, such that for every q ∈ Q,

ζqQ(q) = X1(q),

ηqQ(q) = X2(q).

(28)

Finding these sections is a matter of linear algebra. Let q = (r1, . . . , rk, x, y, θ) and
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write ζq = (ζ1, ζ2, ζ3) and ηq = (η1, η2, η3). Then (28) becomes

(ζ1 − yζ3)
∂

∂x
+ (ζ2 + xζ3)

∂

∂y
+ ζ3 ∂

∂θ
= cos θ

∂

∂x
+ sin θ

∂

∂y
,

(η1 − yη3)
∂

∂x
+ (η2 + xη3)

∂

∂y
+ η3 ∂

∂θ
= −a sin θ

∂

∂x
+ a cos θ

∂

∂y
+

∂

∂θ
.

Comparing like coefficients on each side of these equations leads to the two linear

systems
1 0 −y

0 1 x

0 0 1




ζ1

ζ2

ζ3

 =


cos θ

sin θ

0

 ,

and 
1 0 −y

0 1 x

0 0 1




η1

η2

η3

 =


−a sin θ

a cos θ

1

 .

The solutions to these systems of equations are found to be

ζq = (cos θ, sin θ, 0),

ηq = (y − a sin θ,−x+ a cos θ, 1).

I now calculate some additional quantities that will be needed later when computing

the nonholonomic momentum equations. First,

dζq

dt
= (−θ̇ sin θ, θ̇ cos θ, 0),

dηq

dt
= (ẏ − aθ̇ cos θ,−ẋ− aθ̇ sin θ, 0).
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It follows from (26) that(
dζq

dt

)
Q

= −θ̇ sin θ
∂

∂x
+ θ̇ cos θ

∂

∂y
,(

dηq

dt

)
Q

= (ẏ − aθ̇ cos θ)
∂

∂x
+ (−ẋ− aθ̇ sin θ)

∂

∂y
.

(29)

Since gD has two-dimensional fibers, there are two scalar components of the nonholo-

nomic momentum map defined in (24). I denote these two components by Jζ and

Jη, chosen so that Jζ corresponds with the section q 7→ ζq and Jη corresponds to

the section q 7→ ηq. (In turn, these correspond to the forward and pivoting motions,

respectively.) Then

Jζ(vq) :=
〈
Jnh(vq), ζ

q
Q(q)

〉
=
〈
FL(vq), ζ

q
Q(q)

〉
,

Jη(vq) :=
〈
Jnh(vq), η

q
Q(q)

〉
=
〈
FL(vq), η

q
Q(q)

〉
.

(30)

Meanwhile, according to Theorem 14 the two sections q 7→ ζq and q 7→ ηq induce the

following two scalar evolution equations that are satisfied along trajectories of the

system.

d

dt
Jζ(vq(t)) =

〈
FL(vq(t)),

(
dζq(t)

dt

)
Q

(q(t))

〉
,

d

dt
Jη(vq(t)) =

〈
FL(vq(t)),

(
dηq(t)

dt

)
Q

(q(t))

〉
.

(31)

The details of the nonholonomic momentum and its dynamics depend on the par-

ticular Lagrangian, and the remainder of this chapter is dedicated to the analysis of

three specific examples in this class of systems.
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4.3 The Chaplygin Sleigh

The Chaplygin sleigh is the degenerate case of a Chaplygin control system in which

there are no internal degrees of freedom. The configuration space is merely Q = G =

SE(2). For vq ∈ TQ, write vq = ẋ ∂
∂x

+ ẏ ∂
∂y

+ θ̇ ∂
∂θ

. Then the Lagrangian L : TQ→ R

is given by

L(vq) =
1

2
M(ẋ2 + ẏ2) +

1

2
Jθ̇2, (32)

which corresponds to the Riemannian metric g given in local coordinates by

g =


M 0 0

0 M 0

0 0 J

 .

From (5) the fiber derivative is given in local coordinates by

FL = gij q̇
j dqi

= Mẋdx+Mẏ dy + Jθ̇ dθ.

(33)

To see that the Lagrangian is invariant under the group action (20), begin by noting

that (21) simplifies in this case to

TqΦg =


cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 .

Hence if vq = ẋ ∂
∂x

+ ẏ ∂
∂y

+ θ̇ ∂
∂θ

and h = (u, v, φ) ∈ G, then

TqΦh · vq = (ẋ cosφ− ẏ sinφ)
∂

∂x
+ (ẋ sinφ+ ẏ cosφ)

∂

∂y
+ θ̇

∂

∂θ
. (34)
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Since (32) depends only on q̇, and since TqΦh preserves θ̇, I need only check that

the term ẋ2 + ẏ2 in the Lagrangian is preserved. To do so, note that TqΦh maps

ẋ 7→ ẋ cosφ− ẏ sinφ, and it maps ẏ 7→ ẋ sinφ+ ẏ cosφ. Then

(ẋ cosφ− ẏ sinφ)2 = ẋ2 cos2 φ− 2ẋẏ cosφ sinφ+ ẏ2 sin2 φ,

(ẋ sinφ+ ẏ cosφ)2 = ẋ2 sin2 φ+ 2ẋẏ sinφ cosφ+ ẏ2 cos2 φ.

Adding these two equations gives

(ẋ cosφ− ẏ sinφ)2 + (ẋ sinφ+ ẏ cosφ)2 = ẋ2 + ẏ2,

so the Lagrangian is invariant under the tangent-lifted action.

The scalar components Jζ , Jη of the nonholonomic momentum map are given by

(30),

Jζ(vq) =
〈
FL(vq), ζ

q
Q(q)

〉
= (Mẋdx+Mẏ dy + Jθ̇ dθ)

(
cos θ

∂

∂x
+ sin θ

∂

∂y

)
= M(ẋ cos θ + ẏ sin θ),
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and

Jη(vq) =
〈
FL(vq), η

q
Q(q)

〉
= (Mẋdx+Mẏ dy + Jθ̇ dθ)

(
−a sin θ

∂

∂x
+ a cos θ

∂

∂y
+

∂

∂θ

)
= Mẋ(−a sin θ) +Mẏ(a cos θ) + Jθ̇

= Ma(−ẋ sin θ + ẏ cos θ) + Jθ̇

= (J +Ma2)θ̇,

where the constraint (16) was used in the last step. Summarizing, the nonholonomic

momenta for the Chaplygin sleigh are defined by

Jζ = M(ẋ cos θ + ẏ sin θ),

Jη = (J +Ma2)θ̇.

(35)

I now make the following observations. First, note that Jη = (J + Ma2) is simply

the angular momentum of the system as it pivots about a vertical axis through the

blade. Second, it follows by writing Jζ = M(ẋ, ẏ) · (cos θ, sin θ) = M(ẋ, ẏ) ·b1 that Jζ

is the projection of the system’s linear momentum along the sleigh’s heading. Hence

Jζ and Jη may be interpreted as the components of the ordinary linear and angular

momentum that are consistent with the constraints. (In subsequent and more com-

plicated examples the physical interpretation of the components of the nonholonomic

momentum map will not be quite so immediate.) Third it follows by taking norms

that ||(ẋ, ẏ)|| =
|Jζ |
M

, and so
Jζ
M

is the sleigh’s translational speed — positive or neg-

ative according as to whether its translation motion is parallel or antiparallel to the

blade.
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There are two contributions to the system’s motion — one due to translational mo-

tion and the other due to rotational motion. For pure translation, note that if at some

instant the sleigh’s heading and forward speed are θ and
Jζ
M

, then after a small time

∆t has elapsed, the sleigh’s position has changed by the amounts ∆x = (
Jζ
M

cos θ)∆t

and ∆y = (
Jζ
M

sin θ)∆t. For pure rotation, note that if the sleigh is rotating with

angular velocity θ̇, then in a small time ∆t the position has changed by the amounts

∆x = (−aθ̇ sin θ)∆t and ∆y = (aθ̇ cos θ)∆t. Adding these contributions, dividing

through by ∆t, and taking the limit ∆t→ 0 gives the reconstruction equations,

ẋ =
Jζ
M

cos θ − aJη sin θ

J +Ma2
,

ẏ =
Jζ
M

sin θ +
aJη cos θ

J +Ma2
,

θ̇ =
Jη

J +Ma2
,

(36)

where the last equation is a consequence of (35). Once the momentum equations

governing Jζ and Jη have been solved, the reconstruction equations may be integrated

to find the system trajectory in configuration space.

I turn now to a derivation of the nonholonomic momentum equations. Using (33)
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and (29), the momentum equations (31) become

J̇ζ =
〈
FL,

(
dζq

dt

)
Q

〉
= (Mẋdx+Mẏ dy + Jθ̇ dθ)

(
−θ̇ sin θ

∂

∂x
+ θ̇ cos θ

∂

∂y

)
= Mẋ(−θ̇ sin θ) +Mẏ(θ̇ cos θ)

= Mθ̇(−ẋ sin θ + ẏ cos θ)

= Maθ̇2

=
MaJ2

η

(J +ma2)2
,

on account of (16) and (35). Meanwhile,

J̇η =
〈
FL,

(
dηq

dt

)
Q

〉
= (Mẋdx+Mẏ dy + Jθ̇ dθ)

(
(ẏ − aθ̇ cos θ)

∂

∂x
+ (−ẋ− aθ̇ sin θ)

∂

∂y

)
= Mẋ(ẏ − aθ̇ cos θ) +Mẏ(−ẋ− aθ̇ sin θ)

= −Maθ̇(ẋ cos θ + ẏ sin θ)

= −aJζ θ̇

=
−aJζJη
J +Ma2

,

by using (35). Summarizing, the nonholonomic momenta evolve according to the

following coupled, nonlinear system of equations.

J̇ζ =
MaJ2

η

(J +Ma2)2
,

J̇η =
−aJζJη
J +Ma2

.

(37)

These are the same nonholonomic momentum equations for the Chaplygin sleigh
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that appear in [21], despite the fact that the configuration variables in that paper are

defined somewhat differently, thus emphasizing the intrinsic nature of the momentum

equations.

I now make a few remarks on the dynamics of the Chaplygin sleigh. In the balanced

case (a = 0), the momentum equations (37) yield J̇ζ = J̇η = 0, so that both nonholo-

nomic linear momentum and nonholonomic angular momentum are conserved. In the

unbalanced case however, this is not so. Indeed, when a 6= 0 the system (37) has a

one-dimensional manifold of equilibria, namely the line Jη = 0. These equilibria cor-

respond to the straight-line motions where the sleigh is not rotating but is translating

along the line parallel to the blade with speed
Jζ
M

. Generically, however, Jη 6= 0, in

which case neither linear nor angular momenta are conserved. The phase portrait in

the Jζ-Jη plane, shown in Figure 6, is foliated by heteroclinic connections described

by elliptic arcs joining the unstable fixed points along the negative Jζ axis and the

stable fixed points situated along the positive Jζ axis.

Jζ

Jη

Figure 6: The phase portrait for the nonholonomic momenta Jζ , Jη
of the Chaplygin sleigh, a degenerate Chaplygin control system.

Furthermore, note that J̇ζ ≥ 0, so that even if Jζ = 0 initially, so long as Jη 6= 0
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then Jζ > 0 after a small time. This means that in the unbalanced case, a pivoting

motion of the sleigh about its blade directly induces a component of linear motion

along the blade. This phenomenon is called locomotion generation, and it will be

exploited in the sequel.

The dynamics of a Chaplygin sleigh with a typical set of parameters and initial

conditions is shown in Figure 7. The corresonding trajectory of the blade’s contact

point is shown in Figure 8.
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0£t£20, a=0.1, M=1, J=1.5, JΖH0L=-0.5, JΗH0L=-1, ΘH0L=0, xH0L=0, yH0L=0

Figure 7: Dynamics of the Chaplygin sleigh for a typical set of pa-
rameters and initial conditions.
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Figure 8: The trajectory of the blade’s contact point for the Chap-
lygin sleigh in Figure 7.
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4.4 The Chaplygin Beanie

I now introduce the Chaplygin beanie as a nontrivial Chaplygin control system

that synthesizes the Chaplygin sleigh and Elroy’s beanie.4 The system is depicted

in Figure 9. Elroy’s beanie, discussed in Appendix A, is a simple mechanical system

comprising two planar rigid bodies pinned together and free to rotate about their

common joint by exertion of an internal torque, and it is perhaps the simplest sys-

tem that exhibits the phenomena of geometric phase discussed in §2.2 — whereby a

change in the internal shape of a system results in a net reorientation in the ambient

environment in a manner that is independent of time parameterization.

(x, y)

θ
a

e1

e2

φ

b1

b2

Figure 9: The Chaplygin beanie is depicted at left, and a top view
showing the model parameters is shown at right.

Referring to Figure 9, the Chaplygin beanie is constructed by affixing a momentum

wheel — also called the beanie — to the center of mass of the Chaplygin sleigh. Let

m denote the beanie’s mass and let B denote its moment of inertia about a vertical

axis through its center. The configuration space of the resulting system is the product

Q = M × G, where M = S1 and G = SE(2), with coordinates (φ, x, y, θ). Here φ

4This resulting system might also have been called Elroy’s sleigh, but as Elroy is a fictional
character whereas Chaplygin is not, I give deference to the latter.
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denotes the angle a fixed line in the momentum wheel makes with b1. The kinetic

energy of the sleigh is 1
2
M(ẋ2 + ẏ2) + 1

2
Jθ̇2 and that of the momentum wheel is

1
2
m(ẋ2 + ẏ2) + 1

2
B(θ̇ + φ̇)2. The Lagrangian L : TQ→ R is the total kinetic energy,

L =
1

2
(M +m)(ẋ2 + ẏ2) +

1

2
Jθ̇2 +

1

2
B(θ̇ + φ̇)2

=
1

2
(M +m)(ẋ2 + ẏ2) +

1

2
(J +B)θ̇2 +Bθ̇φ̇+

1

2
Bφ̇2.

(38)

This corresponds to the nondiagonal Riemannian metric

g =



B 0 0 B

0 M +m 0 0

0 0 M +m 0

B 0 0 J +B


.

By (21), the tangent lift of the group action leaves θ̇ and φ̇ unchanged, so to verify

invariance of the Lagrangian I need only check that 1
2
(M +m)(ẋ2 + ẏ2) is invariant.

The calculation is much the same as was given for the Chaplygin sleigh and is omitted.

The fiber derivative is

FL = gij q̇
j dqi

= B(θ̇ + φ̇) dφ+ (M +m)ẋdx+ (M +m)ẏ dy + [(J +B)θ̇ +Bφ̇] dθ.

The nonholonomic momenta (30) are

Jζ =
〈
FL, ζqQ

〉
= (M +m)ẋ(cos θ) + (M +m)ẏ(sin θ)

= (M +m)(ẋ cos θ + ẏ sin θ),
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and

Jη =
〈
FL, ηqQ

〉
= (M +m)ẋ(−a sin θ) + (M +m)ẏ(a cos θ) + (J +B)θ̇ +Bφ̇

= (M +m)a(−ẋ sin θ + ẏ cos θ) + (J +B)θ̇ +Bφ̇

= (M +m)a2θ̇ + (J +B)θ̇ +Bφ̇

= (J +B + (M +m)a2)θ̇ +Bφ̇,

where in the penultimate equality the constraint (16) was used.

As in the Chaplygin sleigh, note that Jζ = (M + m)(ẋ, ẏ) · b1 is the projection of

the system’s linear momentum along the sleigh’s heading b1, and that
Jζ

M+m
gives the

translational speed of the system. Similarly, Jη encodes angular momentum of the

system. By the same argument as given for the sleigh, the reconstruction equations

for the Chaplygin beanie take the form

ẋ =
Jζ

M +m
cos θ − a(Jη −Bφ̇) sin θ

J +B + (M +m)a2
,

ẏ =
Jζ

M +m
sin θ +

a(Jη −Bφ̇) cos θ

J +B + (M +m)a2
,

θ̇ =
Jη −Bφ̇

J +B + (M +m)a2
.

(39)

Once the nonholonomic momentum equations have been solved, the reconstruction

equations may be integrated to yield the evolution of the group variables of the
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Chaplygin beanie. The nonholonomic momentum equations (31) are

J̇ζ =
〈
FL,

(
dζq

dt

)
Q

〉
= (M +m)ẋ(−θ̇ sin θ) + (M +m)ẏ(θ̇ cos θ)

= (M +m)θ̇(−ẋ sin θ + ẏ cos θ)

= (M +m)aθ̇2

=
(M +m)a

(J +B + (M +m)a2)2
(Jη −Bφ̇)2

and

J̇η =
〈
FL,

(
dηq

dt

)
Q

〉
= (M +m)ẋ(ẏ − aθ̇ cos θ) + (M +m)ẏ(−ẋ− aθ̇ sin θ)

= −aθ̇(M +m)(ẋ cos θ + ẏ sin θ)

= −aθ̇Jζ

=
−aJζ

J +B + (M +m)a2
(Jη −Bφ̇)

Summarizing, the nonholonomic equations of motion for the Chaplygin beanie are

given by

J̇ζ =
(M +m)a

(J +B + (M +m)a2)2
(Jη −Bφ̇)2,

J̇η =
−aJζ

J +B + (M +m)a2
(Jη −Bφ̇).

(40)

These equations, together with (39) and a control law for the momentum wheel,

comprise the equations of motion for the system in momentum form. Note that if

m = B = 0 then the Lagrangian, the nonholonomic momenta, and the nonholonomic
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momentum equations each simplify to recover the corresponding quantities for the

Chaplygin sleigh, thus providing a check of the computations above.

Before turning to control of the Chaplygin beanie, I consider its unforced dynamics,

whereby the momentum wheel is rotating about its center with a constant angular

velocity. To highlight differences between the unforced Chaplygin beanie and the

Chaplygin sleigh that are attributed to the system dynamics rather than the choice of

parameters or initial conditions, I consider an example of the former with exactly the

same base parameters as given for the Chaplygin sleigh in Figure 8. After adjoining

to these base parameters a typical choice for the mass m, moment of inertia B, and

constant angular velocity φ̇ := α of the momentum wheel, the resulting trajectory of

the blade’s contact point for the unforced system is shown in Figure 10. Notice that

the trajectory is qualitatively the same as for the Chaplygin sleigh in Figure 8, but

the system executes its reversal (i.e. reaches the cusp in its trajectory) faster than

the sleigh. The trajectory in the Jζ-Jη plane for the unforced beanie is shown in

Figure 11; note the resemblance to a portion of one of the heteroclinic connections of

the Chaplygin sleigh from Figure 6.
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0£t£20, M=1, m=0.5, a=0.1, J=1.5, B=1, k=0.,

JΖH0L=-0.5, JΗH0L=-1, ΘH0L=0, ΦH0L=0, ΑH0L=1

Figure 10: Trajectory of the blade’s contact point for the unforced
Chaplygin beanie. The parameters and initial conditions for the
underlying sleigh are the same as those appearing in Figure 8.
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Figure 11: The trajectory in nonholonomic momentum space for the
unforced Chaplygin beanie of Figure 10.

I now turn to control of the Chaplygin beanie. The objective is to steer the system

— at least asymptotically — along a specified heading and with a specified speed.
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To do so, I assume that a control torque may be applied to the momentum wheel.

Without loss of generality, choose the inertial coordinate system so that the target

heading is θ = 0. Since there are two demands — heading and speed — in the

presence of a single control parameter, this is a form of underactuated control. If the

momentum wheel is given an impulsive counterclockwise rotation with φ̈ > 0, then

the sleigh will tend to rotate clockwise, and vice versa. By analogy with a mass-

spring system, I therefore suggest the feedback control law that the applied torque is

proportional to the error in the heading, i.e.

φ̈ = kθ, (41)

for a tunable gain constant k. I demand k > 0 so that the system corrects, rather

than reinforces, an error in heading. I will prove that every choice of gain k > 0 causes

the system to asymptotically limit on the desired heading. I also prove that given any

target speed greater than a particular value (depending on initial conditions), there

is a gain k such that the target speed is approached asymptotically from below.

To begin the analysis, make the change of variables

u := Jζ , v := Jη −Bφ̇, w := θ

and define the nonzero constants

C1 :=
(M +m)a

(J +B + (M +m)a2)2
,

C2 :=
−a

J +B + (M +m)a2
,

C3 :=
1

J +B + (M +m)a2
.

(42)
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Note that C1, C3 > 0 and C2 < 0. Then equations (39), (40), and (41) become

u̇ = C1v
2,

v̇ = C2uv −Bkw,

ẇ = C3v.

(43)

together with the equations

φ̇ = α,

α̇ = kw.

(44)

governing control of the momentum wheel. With the equations of motion in this

form, I can make some immediate observations. First, u̇ = C1v
2 ≥ 0 implies u is

monotonically increasing. Because Jζ is the projection of the linear momentum along

the sleigh’s heading, the translational speed of the system is monotonically increasing.

Therefore, the Chaplygin beanie has drift in the sense that a cessation of the beanie’s

actuation does not result in a cessation of the sleigh’s motion through its environment.

Furthermore, like the Chaplygin sleigh, any actuation of the momentum wheel imparts

forward momentum to the system, even from rest. Indeed, ẇ 6= 0 implies v 6= 0, which

then implies u̇ = J̇ζ > 0. Finally, the system (43) has a one-dimensional manifold

of equilibria, namely the u-axis {(u, v, w) : v = w = 0}, and the fixed points on this

axis correspond to uniform motion along a straight line in the desired heading.

I am going to use the LaSalle invariance principle, stated below, to establish some

facts about the controller. (This theorem is found on page 93 of [13].)

Theorem 15 (LaSalle Invariance Principle). Suppose that the differential equation

ẋ = f(x) with flow φt has a compact invariant set K, and V : K → R is a C1
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function such that V̇ (x) ≤ 0 for all x ∈ K. If Ω is the largest invariant set in

{x ∈ K : V̇ (x) = 0}, then every solution in K approaches Ω as t→∞.

Theorem 16. Assume the initial condition x0 = (u0, v0, w0) ∈ R3 is not a fixed point

of (43). Then for any k > 0, the forward orbit of the trajectory through x0 limits on

the point (u∗, 0, 0), where

u∗ =

√
u2

0 + (M +m)

(
v2

0

J +B + (M +m)a2
+Bkw2

0

)
.

Equivalently, as t→∞ then

Jζ → u∗, Jη → Bφ̇, θ → 0.

On the other hand, given any real number J∞ζ >
√
u2

0 +
(M+m)v20

J+B+(M+m)a2
, it may be

arranged that limt→∞ Jζ(t) = J∞ζ by choosing

k =
1

Bw2
0

(
(J∞ζ )2 − u2

0

M +m
− v2

0

J +B + (M +m)a2

)
.

Proof. To use LaSasalle’s theorem, I begin by seeking a first integral of the motion,

because the level sets of a first integral are invariant sets. A first integral of (43) is

a scalar-valued function G : R3 → R whose orbital derivative d
dt
G(φt(q)) vanishes.

Here φt : Q→ Q denotes the time-t flow of the system. Consider the trial function

G(u, v, w) =
1

2
(λ1u

2 + λ2v
2 + λ3w

2)
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for some unknown constants λ1, λ2, λ3. The chain rule gives

DG · (u̇, v̇, ẇ) =

(
∂G

∂u
,
∂G

∂v
,
∂G

∂w

)
· (C1v

2, C2uv −Bkw,C3v)

= C1v
2∂G

∂u
+ (C2uv −Bkw)

∂G

∂v
+ C3v

∂G

∂w

= (λ1C1 + λ2C2)uv2 + (λ3C3 − λ2Bk)vw.

It follows that if λ1, λ2, λ3 are chosen to satisfy the system

λ1C1 + λ2C2 = 0,

λ3C3 − λ2Bk = 0,

then G will be a first integral of (43). There are three degrees of freedom and only

two equations, so I make an arbitrary choice by setting λ1 = 1
M+m

in order that G

has units of energy. Solving this system by hand, and using (42), it follows that

λ2 = −C1

(M+m)C2
= C3, and λ3 = λ2Bk

C3
= Bk. Therefore, the function

G(u, v, w) :=
1

2

(
1

M +m
u2 + C3v

2 +Bkw2

)
(45)

is a first integral. Note that since 1
M+m

, C3, and Bk are all positive, the level sets of

(45) are compact invariant ellipsoids centered at the origin in (u, v, w) space. These

ellipsoids foliate all of R3.

Since the level sets of G foliate all of R3, the initial condition (u0, v0, w0) ∈ R3 lies

on one of these level sets K, namely

K := {(u, v, w) ∈ R3 : G(u, v, w) = G(u0, v0, w0)}.

It was already observed that this is a compact invariant set for the flow. Define
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V : K → R : (u, v, w) 7→ −u. Then

V̇ = −u̇ = −C1v
2 ≤ 0,

so V̇ = 0 exactly when v = 0. Therefore, {x ∈ K : V̇ = 0} = K∩{v = 0}, which is the

equator of the ellipse K shown in Figure 12. The hypotheses of LaSalle’s invariance

principle hold, so the forward orbit limits on the largest invariant set Ω inside this

equator. I claim that Ω = {(±(u∗, 0, 0)}, where u∗ is given in the statement of the

theorem.

K

u

v

w

+u∗−u∗

Figure 12: The initial condition (u0, v0, w0) determines the level set
K = {G(u, v, w) = G(u0, v0, w0)} of the first integral G, defined in
(45). This level set is a compact invariant ellipsoid.

To prove this, consider an arbitrary point p = (u, 0, w) on the equator. Then

(u̇, v̇, ẇ)|p = (0,−Bkw, 0), which is transverse to the equator (and hence not part

Ω) unless w = 0. It follows that the only points in Ω are the antipodal fixed points

(±u∗, 0, 0) in K ∩ {v = 0}, where u∗ is determined from initial conditions according

to G(u∗, 0, 0) = G(u0, v0, w0). Using (45), this is

1

2

(
u2
∗

M +m

)
=

1

2

(
1

M +m
u2

0 + C3v
2
0 +Bkw2

0

)
,
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which by using (42) may be rearranged to yield

u∗ = ±
√
u2

0 + (M +m)(C3v2
0 +Bkw2

0)

= ±
√
u2

0 + (M +m)

(
v2

0

J +B + (M +m)a2
+Bkw2

0

)
.

The negative branch of this square root may be ruled out as follows. First, by

assumption the initial condition (u0, v0, w0) was not the fixed point (−u∗, 0, 0), and

so u0 > −u∗. Second, u̇ ≥ 0, so u is monotonically increasing, so u(t) ≥ u0 > −u∗ for

all time t, so the forward orbit cannot limit on (−u∗, 0, 0). This proves the first part

of the theorem.

To prove the second statement of the theorem, set u∗ = J∞ζ into the formula for u∗

and solve for k to obtain

k =
1

Bw2
0

(
(J∞ζ )2 − u2

0

M +m
− v2

0

J +B + (M +m)a2

)
.

This is positive — and hence the first statement of the theorem applies — provided

J∞ζ >

√
u2

0 +
(M +m)v2

0

J +B + (M +m)a2
,

which is true by assumption. This completes the proof.

The effectiveness of the controller and the details of the preceding theorem will

now be verified numerically for two different configurations — one system initially at

rest, and another not. Figure 13 depicts the dynamics of a Chaplygin beanie that

begins from rest at the origin but which has an initial heading error, in the sense its

initial heading is θ0 = 1, which is not the target heading of zero. With the model

parameters and initial conditions shown in the figure, and for the (arbitrary) choice
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of asymptotic speed limt→∞ u(t) = J∞ζ = π, Theorem 16 implies that if the gain k is

set to π2

3
≈ 3.28987, then limt→∞ Jζ = π. This is numerically verified in the figure.

Snapshots of the system at equally spaced times along its trajectory, reconstructed

by using (39), are shown in Figure 14.
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Figure 13: Dynamics of the controlled Chaplygin beanie starting
from rest, verifying Theorem 16.
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Figure 14: Snapshots at equally spaced times of the controlled Chap-
lygin beanie characterized in Figure 13.

Now consider a Chaplygin beanie that has nonzero initial momentum. With the

(arbitrary) choice of gain k = 1, and with the parameters and initial conditions shown

in Figure 15, Theorem 16 guarantees that J∞ζ =
√

23/5 ≈ 2.14, which is numerically

verified in the figure. Snapshots of the system at equally spaced times are shown
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in Figure 16, where as before the trajectory was reconstructed from the momentum

dynamics by (39).

Finally, the effect of gain constant k is shown in Figure 17. As might be expected,

a larger gain increases both the asymptotic speed and the rapidity at which the

oscillations about the target heading quiesce.
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Figure 15: Dynamics of a controlled Chaplygin beanie with nonzero
initial momentum, verifying Theorem 16.
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Figure 16: Snapshots at equally spaced times of the controlled Chap-
lygin beanie characterized in Figure 15.
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Figure 17: Trajectories of the controlled Chaplygin beanie with var-
ious choices of gain k, truncated to the interval 0 ≤ x ≤ 15.

4.5 The Chaplygin Pendulum

I now consider another nontrivial Chaplygin control system, the Chaplygin pendu-

lum, obtained by combining the Chaplygin sleigh and the inverted pendulum on a

cart. This system is shown in Figure 18. The inertial and body coordinate systems,

as well as the parameters M,J , and a, are defined as in the Chaplygin sleigh. I sim-

plify matters somewhat by modeling the pendulum as a bob of mass m that slides

along a fixed line segment in the sleigh, situated perpendicular to the blade. The

distance between this line segment and the sleigh’s center of mass is denoted b.

(x, y)

θ
a

e1

e2

b1

b2

c

b

m

Figure 18: The left panel depicts the Chaplygin pendulum. The right
panel is a top view showing the model parameters.
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The configuration space for the system isQ = R×SE(2) with coordinates (c, x, y, θ).

It follows from the geometry of Figure 18 that the control mass has position (x, y) +

bb1 + cb2. Therefore, the coordinates (xm, ym) of the mass are

xm = x+ b cos θ − c sin θ,

ym = y + b sin θ + c cos θ.

(46)

The Lagrangian L : TQ→ R is simply the total kinetic energy,

L =
1

2
M(ẋ2 + ẏ2) +

1

2
Jθ̇2 +

1

2
m(ẋ2

m + ẏ2
m).

Using (46) to expand ẋ2
m and ẏ2

m gives

L =
1

2
M(ẋ2 + ẏ2) +

1

2
Jθ̇2

+
1

2
m
[
(ẋ− bθ̇ sin θ − ċ sin θ − cθ̇ cos θ)2 + (ẏ + bθ̇ cos θ + ċ cos θ − cθ̇ sin θ)2

]
.

(47)

To verify the Lagrangian is invariant under the tangent-lifted action, one must check

that it is unchanged under the following substitutions:

x 7→ u+ x cosφ− y sinφ, ẋ 7→ ẋ cosφ− ẏ sinφ,

y 7→ v + x sinφ+ y cosφ, ẏ 7→ ẋ sinφ+ ẏ cosφ,

θ 7→ θ + φ, θ̇ 7→ θ̇.

This is a tedious computation best suited for a computer algebra system; it was

straightforward to verify this result with Mathematica, which I also used to compute
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the fiber derivative

FL = pc dc+ px dx+ py dy + pθ dθ,

where

pc = m(ċ− ẋ sin θ + ẏ cos θ + bθ̇),

px = −mċ sin θ + (M +m)ẋ−mθ̇(c cos θ + b sin θ),

py = mċ cos θ + (M +m)ẏ +mθ̇(b cos θ − c sin θ),

pθ = m (bċ− ẋ(c cos θ + b sin θ) + ẏ(b cos θ − c sin θ)) + (J +m(b2 + c2))θ̇.

By computations similar to those given for the Chaplygin beanie, the nonholonomic

momenta (30) are found to be

Jζ =
〈
FL, ζqQ

〉
= (pc dc+ px dx+ py dy + pθ dθ)

(
cos θ

∂

∂x
+ sin θ

∂

∂y

)
= px cos θ + py sin θ

= [(M +m) cos θ]ẋ+ [(M +m) sin θ]ẏ −mcθ̇
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and

Jη =
〈
FL, ηqQ

〉
= (pc dc+ px dx+ py dy + pθ dθ)

(
−a sin θ

∂

∂x
+ a cos θ

∂

∂y
+

∂

∂θ

)
= a(−px sin θ + py cos θ) + pθ

= m(a+ b)ċ+ [−mc cos θ − (bm+ a(m+M)) sin θ]ẋ

+ [(bm+ a(m+M)) cos θ −mc sin θ]ẏ + [J +mb(a+ b) +mc2]θ̇

Unlike the Chaplygin beanie, the equation for θ̇ is more simply recovered from Jζ

rather than Jη,

θ̇ =
(M +m)(ẋ cos θ + ẏ sin θ)− Jζ

mc
.

Next, I found the nonholonomic momentum equations (31) using Mathematica as

follows.

A = bm+ a(m+M),

B = mcJζ + (m+M)Jη,

C = m((m+M)(J − abM) +mMc2)ċ2

D = (m+M)((a+ b)mċ− Jη)−mcJζ ,

E = (J + (a+ b)2m+ a2M +mc2)Jζ

F = mc(Jζ − (a+ b)mċ),

G = (J + b2m)(m+M) +mMc2.
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Then it may be shown that

J̇ζ =
−D(AB + C)

G2
,

J̇η =
−(AB + C)(E + F )

G2
.

(48)

I checked that when m = 0 the preceding nonholonomic momentum equations (48)

recover those for the Chaplygin sleigh, (37). Since the right side of (48) depends only

on known constants, the control t 7→ c(t), and the nonholonomic momenta Jζ , Jη,

these equations may be intergrated and then used to reconstruct the group motion

according to the reconstruction equations

ẋ =
Jζ +mcθ̇

M +m
cos θ − (a sin θ)[(M +m)(ẋ cos θ + ẏ sin θ)− Jζ ]

mc
,

ẏ =
Jζ +mcθ̇

M +m
sin θ +

(a cos θ)[(M +m)(ẋ cos θ + ẏ sin θ)− Jζ ]
mc

,

θ̇ =
(M +m)(ẋ cos θ + ẏ sin θ)− Jζ

mc
.

(49)

The resulting controlled dynamics corresponding to the parameters

a = 3, b = 2, M = 1, J = 4, m = 0.5 (50)

are shown in the following figures. The first three figures depict the orientation, speed,

and lateral displacement of the control mass for the control gain k = 0.25, and the

next three figures depict the same quantities for the choice of gain k = 1. These figures

were obtained by numerically integrating (48) and the reconstruction equations (49).

However, it must be noted that the controller for the Chaplygin pendulum is not as

robust as that for the Chaplygin beanie. Large step changes in the desired heading

lead to instability in the control parameter c(t), and even for small changes the initial

value of c must be chosen judiciously. Finally, a snapshot of the system’s motion is
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shown in Figure 25.
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Figure 19: Orientation of the Chaplygin pendulum’s sleigh with pa-
rameters (50) and control gain k = 0.25.

0 200 400 600 800 1000
time0.00

0.02

0.04

0.06

0.08
sleigh speed

Figure 20: Translational speed of Chaplygin pendulum’s sleigh with
parameters (50) and control gain k = 0.25.
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Figure 21: Lateral displacement of the control mass of the Chaplygin
pendulum with parameters (50) and control gain k = 0.25.
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Figure 22: Orientation of the Chaplygin pendulum’s sleigh with pa-
rameters (50) and control gain k = 1.
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Figure 23: Translational speed of Chaplygin pendulum’s sleigh with
parameters (50) and control gain k = 1.
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Figure 24: Lateral displacement of the control mass of the Chaplygin
pendulum with parameters (50) and control gain k = 1.
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Figure 25: A snapshot of the motion of the controlled Chaplygin
pendulum with gain k = 0.25.

4.6 Summary

In this chapter I introduced the class of Chaplygin control systems, and after

showing that the Chaplygin sleigh may be realized as a special case, I analyzed the

nonlinear dynamics and control of two new examples in this class, the Chaplygin

beanie and the Chaplygin pendulum. I studied closed-loop controllers for both such

systems, where the control input is a torque that is directly proportional to the error in

the desired system heading. For the Chaplygin beanie system, I was able to rigorously

prove and numerically verify that the controller drives the system asymptotically to

the desired heading and with an arbitrary preselected speed. The efficacy of this

control strategy for the Chaplygin pendulum, however, was found to be somewhat

delicate. Nevertheless, the resulting control strategy provides a basis for single-input
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planar navigation of terrestrial vehicles.



CHAPTER 5: LOCOMOTION IN FLUIDS VIA BROKEN SYMMETRY

In this chapter I present a model for the locomotion of swimming microorganisms

moving in proximity to a wall in an ideal fluid. The swimmers are modeled by artic-

ulated linkages that join several spherical bodies. This differs from previous work in

that the bodies are symmetric, thus eliminating any added-mass effects that might

arise from an asymmetric inertia tensor. The resulting locomotion stems from a bro-

ken symmetry in the fluid boundary — the wall. I consider two examples in detail,

the symmetric scallop with one internal degree of freedom, and the articualted swim-

mer with two. I show that both swimmers are able to propel themselves towards the

wall through cyclic actuation of their internal joint angles. Although the wall breaks

the translational symmetry needed for the motion to be governed by a mechanical

connection, I present numerical evidence that a geometric phase may be present, thus

suggesting the motion is governed by some hidden connection. The material in this

chapter is an expanded version of my recent paper [18].

5.1 Introduction

The locomotion of microorganisms swimming in Stokes flow was investigated in

[50], where the scallop theorem was introduced (emphasis in the original):

There is a very funny thing about motion at low Reynolds number, which

is the following. One special kind of swimming motion is what I call
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reciprocal motion. That is to say, I change my body into a certain shape

and then I go back to the original shape by going through the sequence

in reverse. At low Reynolds number, everything reverses just fine. Time,

in fact, makes no difference — only configuration. If I change quickly or

slowly, the pattern of motion is exactly the same ... So, if the animal

tries to swim by a reciprocal motion, it can’t go anywhere. Fast or slow,

it exactly retraces its trajectory and it’s back where it started. A good

example of that is a scallop. You know, a scallop opens its shell slowly

and closes its shell fast, squirting out water. The moral of this is that the

scallop at low Reynolds number is no good. It can’t swim because it only

has one hinge, and if you have only one degree of freedom in configuration

space, you are bound to make a reciprocal motion. There is nothing else

you can do.

In other words, an isolated microorganism enjoying only one internal degree of

freedom cannot swim when viscous forces dominate. In this regime, inertial effects

are inconsequential, the organism’s motion immediately halts when its joint ceases

to be activated, and closing the hinge of a scallop exactly undoes whatever motion

through the environment the scallop achieved by opening its hinge. As pointed out

in [50], Aristotelian mechanics is correct in this regime; it was also remarked that

locomotion is possible when two internal degrees of freedom are available, for example

by driving two joints in a complementary periodic fashion.

In this chapter I am interested in the analogous locomotion problem for ideal fluids,
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by which I mean an inviscid incompressible fluid of constant density. The ideal

flow version of Purcell’s scallop theorem — that an isolated swimmer in an infinite

ideal fluid with only one internal degree of freedom cannot swim — holds because of

parallels in the mathematical structure of ideal flow and Stokes flow detailed in [30].

As already remarked, however, I will demonstrate that when a wall is introduced into

the fluid, the wall breaks the symmetry and enables even the scallop — with only

one internal degree of freedom — to locomote in an ideal fluid.

The locomotion of swimmers with multiple internal degrees of freedom has been

studied extensively in the literature. For example, [51], [26], and [52] each demon-

strated that a planar swimmer comprising multiple links can propel itself in an ideal

fluid through a combination of cyclic shape changes and added-mass effects, generat-

ing geometric phase relative to a connection on a principal bundle. Meanwhile, [33]

showed that a pair of scallops can exploit their hydrodynamic coupling in Stokes flow

to propel themselves as a team in a mathematically analogous fashion. However, in

each of these cases, the locomotion may ultimately be attributed to shape-dependent

added-mass effects arising from the asymmetry in the geometry of the locomoting

body.

This chapter is organized as follows. First I give a brief treatment of the motion of

Purcell’s three-link swimmer for a particular gait by modeling the system as a prin-

cipal bundle whose motion is governed by geometric phase relative to the mechanical

connection. I do this to illustrate the main ideas and also serve as a point of contrast

for the subsequent systems I introduce. Then I place a wall into an infinite ideal

fluid, and I introduce the symmetric scallop. This is Purcell’s scallop but swimming
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in an ideal fluid and whose body is comprised of spheres rather than ellipses. In the

absence of the wall, this system could not locomote. By introduction of the wall, how-

ever, I demonstrate that the symmetric scallop is able to locomote. I then introduce

and analyze the motion of a second system, the articulated swimmer, which has two

internal joint angles rather than one. In both cases the presence of the wall breaks a

symmetry that would otherwise render impossible the locomotion of the swimmers.

The locomotion of the swimmers appears, therefore, to be solely accounted for by

wall effects.

5.2 Three-Link Swimmer

Consider the three-link swimmer, depicted in Figure 26. This is a microorganism

moving in an infinite ideal fluid, modeled by a linkage comprising three identical

ellipses and two internal joints. It may swim by actuating its two internal joint

angles in a periodic fashion.

r0

r1

r2

θ

φ1

φ2

Figure 26: A three-link swimmer in an infinite ideal fluid.

The configuration space is the principal bundle Q = T2×SE(2) with the canoncial

projection π : Q → T2 and local coordinates (φ1, φ2, x, y, θ). The coordinates φ1, φ2

on the torus encode the orientation of the two internal joint angles in the system,



82

defined so that φ1 is the angle the major axis of the second link makes with the major

axis of the first link, and φ2 is the angle the major axis of the third link makes with

the second. Let r0 = (x, y) be the center of the leftmost link, let r1 = (x1, y1) and

r2 = (x2, y2) be the centers of the middle and right links, respectively, and let θ, θ1, θ2

be the angles these links make with the horizontal. Then

θ1 = θ + φ1, θ2 = θ + φ1 + φ2,

x1 = x+ a cos θ + a cos θ1, x2 = x1 + a cos θ1 + a cos θ2,

y1 = y + a sin θ + a sin θ1, y2 = y1 + a sin θ1 + a sin θ2.

Let ρ denote the density of the fluid, and let a, b denote the semi-major and semi-

minor axes of the ellipse. Here and in the sequel I make use of the commonly employed

hydrodynamic decoupling assumption, which asserts that each body in an ideal fluid

interacts only with the fluid and not with other immersed bodies. Using this assump-

tion and the formula for the kinetic energy of an ellipse in an infinite ideal fluid found

in [41], it may be shown that the Lagrangian L : TQ→ R is

L =
1

2

3∑
i=1

πρ(b2ζ2
i + a2η2

i ) +
π(a2 − b2)

8
θ̇2
i , (51)

where ζi, ηi are the projections of the translational velocity (ẋi, ẏi) of the ith ellipse

along its major and minor axes, respectively, and where θ̇i is the angular velocity

of the ith ellipse about its center. It may also be shown that the Lagrangian is

invariant under the tangent lift of the naturally defined left multiplication of SE(2)

on Q. Therefore, as described in §2.2, the principal bundle Q admits the mechanical

connection defined such that horizontal is metric orthogonal to vertical, where the
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Riemannian metric g onQ is chosen so that (51) takes the form L(vq) = 1
2
g(vq, vq), and

the equations of motion are obtained by demanding that trajectories are horizontal

relative to this connection. For the gait shown in Figure 27, the resulting dynamics

obtained by integrating the group reconstruction equations (80) are shown Figure 28

and Figure 29, the latter showing snapshots of the system at equally spaced times

during the simulation.

The periodic behavior for each of the group variables (x, y, θ) shown in Figure 28

is explained as a geometric phase arising from the periodic behavior of the gait. One

full cycle of the gait corresponds to a closed loop in shape space, and this induces

corresponding changes in the group variables as described in §2.2. Since the Lie group

SE(2) is nonabelian, this geometric phase is not given by (81), but rather may be

found by integrating the inital-value problem (80) over one full loop in shape space.

-1.0 -0.5 0.5 1.0
Φ1

0.5

1.0

1.5

2.0

Φ2

Figure 27: The periodic gait φ1(t) = sin(2t) and φ2(t) = 1− cos(3t)
in shape space T2 of the three-link swimmer.
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Figure 28: Motion of the three-link swimmer resulting from the gait
in Figure 27. The periodic behavior of the group coordinates is
explained as a geometric phase arising from closed loops in shape
space determined by the periodic gait of Figure 27.
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Figure 29: Snapshots at equally spaced times for the three-link swim-
mer, with gait shown in Figure 27, shown clockwise from top left.
As time elapses, the swimmer translates and rotates through its en-
vironment.
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The ellipses reduce to circles when the semi-axes are equal, a = b, in which case the

added-mass effects vanish, and the Lagrangian simplifies to L = πρa2

2

∑3
i=1 ẋ

2
i + ẏ2

i .

Then a net translation of the system is not possible, due to symmetry, no matter

how the internal joint angles are actuated. I now add an infinite wall to the fluid and

show that even when a = b, so that the bodies are spheres rather than ellipses, then

both the resulting scallop and three-link spherical swimmers are able to locomote.

5.3 A Symmetric Scallop Near a Wall

Recall that if u is the steady flow of an inviscid, incompressible fluid without vortic-

ity, there is a velocity potential φ such that u = ∇φ. That the fluid is incompressible

implies 0 = ∇ · u, and the velocity potential therefore satisfies the Laplace equation

∇2φ = 0, subject to appropriate boundary conditions. For rigid bodies in an infinite

ideal fluid, the boundary conditions are of the Neumann type, requiring that the

fluid velocity ∇φ is everywhere tangent to the boundary. These are supplemented by

suitable decay conditions at infinity. An elementary discussion may be found in [2].

Consider now a rigid sphere of radius a and mass m moving in an infinite ideal

fluid near an infinite wall. Choose an inertial coordinate system, with coordinates

denoted (x, y), such that the wall is described by y = 0. The corresponding Laplace

problem for the velocity potential is solved in [41] by first considering two spheres

moving along their line of centers — in the absence of a wall — and then using the

method of images to obtain the result for a single sphere near an infinite wall. From

this, a first-order approximation to the kinetic energy of the sphere, located at (x, y),
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is derived as

T =
1

2

[(
m+

mf

2

(
1 +

3a3

16y3

))
ẋ2 +

(
m+

mf

2

(
1 +

3a3

8y3

))
ẏ2

]
, (52)

where mf denotes the mass of the fluid displaced by the sphere. Note that the energy

is independent of x, as it must be due to symmetry. Furthermore, it is highly nonlinear

in y, and — all else being equal — the energy due to the sphere’s vertical motion is

larger than that due to its horizontal motion.

This system will serve as a building block for the models in this chapter, so it is

worthwhile to investigate its dynamics. With no potential energy in the system, the

Lagrangian is simply the total kinetic energy, L = T . As in [41], define

A(y) = m+
mf

2

(
1 +

3a3

16y3

)
,

B(y) = m+
mf

2

(
1 +

3a3

8y3

)
.

Note that A(y), B(y) > 0 because the motion is confined to the half plane y > 0.

Then the Lagrangian may be written

L =
1

2

(
A(y)ẋ2 +B(y)ẏ2

)
.

It follows from Lagrange’s equations (8) that

0 =
∂L

∂x
=

d

dt

∂L

∂ẋ
=

d

dt
(A(y)ẋ) =

∂A

∂y
ẋẏ + A(y)ẍ,

and

1

2

(
∂A

∂y
ẋ2 +

∂B

∂y
ẏ2

)
=
∂L

∂y
=

d

dt

∂L

∂ẏ
=

d

dt
(B(y)ẏ) =

∂B

∂y
ẏ2 +B(y)ÿ.
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Therefore,

ẍ =
−1

A(y)

∂A

∂y
ẋẏ,

ÿ =
1

2B(y)

(
ẋ2∂A

∂y
− ẏ2∂B

∂y

)
.

Meanwhile,

∂A

∂y
=
−9mfa

3

32y4
< 0 and

∂B

∂y
=
−9mfa

3

16y4
< 0.

Furthermore, note that ∂B
∂y

= 2∂A
∂y

. Since −1
A(y)

∂A
∂y

> 0, it follows that the sphere’s

horizontal acceleration has the same sign as the product ẋẏ. Meanwhile,

ÿ =
1

2B(y)

∂A

∂y
(ẋ2 − 2ẏ2),

and since 1
2B(y)

∂A
∂y

< 0, it follows that ÿ has the opposite sign as ẋ2 − 2ẏ2. Hence

ÿ > 0 when ẋ2 < 2ẏ2, and ÿ < 0 when ẋ2 > 2ẏ2. That is, the sphere is

repelled from the wall when ẋ2 < 2ẏ2,

attracted towards the wall when ẋ2 > 2ẏ2.

The resulting dynamics for a typical case are depicted in Figure 30 and Figure 31.
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Figure 30: Position of a sphere moving in an ideal fluid near an
infinite wall.
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Figure 31: Velocity and acceleration of the sphere of Figure 30.

I now introduce the symmetric scallop, a variation of Purcell’s hydrodynamic scal-

lop with three important differences:

1. The symmetric scallop swims in ideal flow, rather than Stokes flow.

2. The body of the scallop is comprised of spheres, not anisotropic bodies such as

ellipses.
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3. There is an infinite wall in the fluid.

It has already been discussed how the last two points are related to one another: the

wall introduces an asymmetry, compensating for the asymmetry lost by using spheres

rather than ellipses. The symmetric scallop is depicted in Figure 32.

r0

r1

r2

l

l

φ

θ

x

y

Figure 32: A symmetric scallop in an ideal fluid near an infinite wall.

The three spheres are identical, each with radius a and mass m. Let r0 = (x0, y0)

denote the position of the central sphere, and let r1 = (x1, y1) and r2 = (x2, y2)

denote those of the distal spheres, which are joined to the central sphere by rigid,

infinitesimally thin, near-massless rods of length l ≥ 2a. I assume the idealized rods,

when compared to the bluff spheres, do not make a significant contribution to the

system dynamics, and I view them merely as a means of enforcing constraints between

the positions of the spheres. The joint angle of the scallop is denoted by φ, and I

assume the ability to control this variable (through the exertion of an internal motor

located at r0, say). The orientation of the scallop, denoted θ, is defined to be zero

when the vertical line through r0 is the perpendicular bisector of the line segment
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joining r1 to r2. Given these parameters, the geometry of Figure 32 implies that

x1(t) = x(t) + l sin

(
θ(t)− φ(t)

2

)
,

y1(t) = y(t)− l cos

(
θ(t)− φ(t)

2

)
,

x2(t) = x(t) + l sin

(
θ(t) +

φ(t)

2

)
,

y2(t) = y(t)− l cos

(
θ(t) +

φ(t)

2

)
.

(53)

The configuration space is Q = S1 × SE(2) with coordinates (φ, x, y, θ). By using

(52) and the hydrodynamic decoupling assumption, the Lagrangian L : TQ→ R for

this system is

L =
2∑
i=0

1

2

[(
m+

mf

2

(
1 +

3a3

16y3
i

))
ẋ2
i +

(
m+

mf

2

(
1 +

3a3

8y3
i

)
ẏ2
i

)]
, (54)

where x1, y1, x2, y2 and their derivatives are determined from (53). Note that un-

like the three-link swimmer of §5.2, the Lagrangian is not symmetric under vertical

translations y 7→ y + constant, and so the motion is not governed by a mechani-

cal connection on the principal bundle Q. Instead, the dynamics are determined by

Lagrange’s equations,

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, q = (φ, x, y, θ). (55)

Since the Lagrangian is cyclic in the x coordinate, i.e. ∂L/∂x = 0, it follows that

d
dt
∂L
∂ẋ

= 0. Hence the conjugate momentum px := ∂L
∂ẋ

is conserved. This observation

will be used as a check of the numerical integration.

I now investigate the dynamics that result from controlled actuation of the joint

angle φ. It follows from the geometry of Figure 32 that the minimum physically



91

realizable joint angle φmin, defined as the joint angle when the distal spheres are

tangent to one another, is

φmin = 2 arcsin
(a
l

)
.

By prescribing the open-loop control

φ(t) = φmin +
(π − φmin)(1 + sin t)

2
, (56)

the joint angle undergoes a sinusoidal motion with a minimum value of φmin and a

maximum value of π, where the joint is “wide open.” The resulting dynamics for

a typical set of parameters are shown in Figure 33. Since I wish to investigate the

locomotion of the system arising solely from actuation of its internal shape and not

from any drift momentum that may be present, the initial velocities ẋ(0), ẏ(0), θ̇(0)

were chosen by requiring that the system’s net initial momentum vanishes. This was

not done by simply choosing zero initial velocities because even at t = 0 the controller

is driving the system. Instead, the condition of zero net initial momentum is obtained

by solving, after all other parameters are specified, the following system of equations

px(y, θ, ẋ, ẏ, θ̇) = 0,

py(y, θ, ẋ, ẏ, θ̇) = 0,

pθ(y, θ, ẋ, ẏ, θ̇) = 0,

at t = 0 for ẋ(0), ẏ(0), θ̇(0), given the known values of the parameters and φ̇(0). Since

the system starts with zero net momentum, this means that any net locomotion

through the environment must arise solely from the actuation of the internal shape
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variable.
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x'H0L=0.603458, y'H0L=-0.348139, Θ'H0L=0.0000385509

Figure 33: Dynamics of the symmetric scallop in an ideal fluid near
an infinite wall and with zero net initial momentum.

Note that the scallop slowly inches its way towards the wall located at y = 0, as

evidenced by the oscillatory decrease in the y coordinate. The horizontal coordinate

of the central sphere oscillates about its initial value, but on average its position is

unchanged. This comports with the fact that, due to translational symmetry of the

Lagrangian and Noether’s theorem, the horizontal component of momentum of the

system is conserved; although the central sphere’s horizontal position oscillates, there

are compensating oscillations of the distal spheres as well, so that i.e. ∂L
∂ẋ

is conserved

throughout the motion. Evidence for this is presented in Figure 34.
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Figure 34: The horizontal component px = ∂L
∂ẋ

of the total linear mo-
mentum for the scallop in Figure 33 is conserved up to 10−4 through-
out the simulation.

Snapshots of the system’s motion at equally spaced times during the motion are

presented in Figure 35. A comparison of the first snapshot with the last shows that

the scallop is not only moving towards the wall, but is also rotating counterclockwise

as it does so, as may also be seen by the plot of θ(t) in Figure 33.
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Figure 35: Snapshots at equally spaced times of the symmetric scal-
lop from Figure 33. As time elapses, the swimmer moves towards
the wall.

Since the motion of the joint angle is prescribed by (56), to fully understand the

motion it is only necessary to know the trajectory of the scallop’s central sphere. This

is shown in Figure 36. The symmetric scallop is seen to undergo a swinging motion,

with a net translation towards the wall and a net positive reorientation.
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Figure 36: Trajectory of the central sphere for the scallop in
Figure 33.

It is natural to ask how the initial orientation θ0 affects the system’s motion.

To investigate this, the dynamics were determined for the initial orientations θ0 =

0, π/3, 2π/3, and π, all other parameters being left unchanged. By symmetry of the

system, there will be corresponding motions for negative values of θ0. I concentrate

attention on the vertical component of the motion, since the horizontal motion is, in

the net, trivial. A plot of y(t) for each of these four cases is shown in Figure 37. The

case θ0 = π/3 in the upper-right panel of the figure is most successful in generating

vertical motion. (In fact, this motivated the choice θ0 = π/3 used throughout the

rest of this section.) That this initial orientation leads to more vertical motion than
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the other choices may be explained by examining the initial configuration of the sys-

tem, depicted in the upper-left panel of Figure 35. There, one of the distal spheres

hangs low, closer to the wall than any of the spheres would be in the other cases

θ0 = 0, 2π/3, or π. Together with the y−3 dependence of the energy (54), motion to-

wards the wall is most energetically favorable when y is small since the y−3 terms are

then comparatively large. Note that in each of the four cases considered in Figure 37,

the symmetric scallop locomotes towards the wall.

The symmetric scallop has only one internal degree of freedom. Since its geometry

prohobits the joint angle from completing a revolution, there can be no geometric

phase associated with a closed loop in shape space. To allow for the possibility of

geometric phase I introduce in the next section an analogous swimmer but with two

internal degrees of freedom.
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Figure 37: Vertical position of the central sphere of the symmetric
scallop. The system parameters are defined as in Figure 33 but with
different initial orientations, namely θ0 = 0, π/3, 2π/3, and π. In
each case, the scallop slowly inches its way towards the wall.
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5.4 An Articulated Swimmer Near a Wall

Consider now an articulated swimmer comprising three spheres again but now

joined by a linkage with two internal joint angles. It will be seen that this system

subsumes as a special case the symmetric scallop. On the one hand, with two degrees

of freedom it might be hoped that the system’s motion through its enviornment is

governed by an underlying geometric phase. On the other hand, the Lagrangian

is not invariant under vertical translations due to the wall, so the full mechanical

connection arising from an SE(2) symmetry, as in the three-link swimmer considered

in §5.2, will not be relevant here. Nevertheless, I will show that there does seem to

be an underlying geometric phase associated with this system.

As with the symmetric scallop, the spheres are assumed to be identical, each with

mass m and radius a. Let l1, l2 represent the distances from the central sphere’s center

to the joints and from the joints to the distal spheres’ centers, respectively, and let

r0 = (x, y) and let ri = (xi, yi) for i = 1, 2 denote the coordinates of the centers of

the spheres.
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Figure 38: An articulated swimmer near an infinite wall in an ideal
fluid.

Then it follows from the geometry of Figure 38 that

x1(t) = x(t)− l1 cos θ(t)− l2 cos(θ(t) + φ1(t)),

y1(t) = y(t)− l1 sin θ(t)− l2 sin(θ(t) + φ1(t)),

x2(t) = x(t) + l1 cos θ(t) + l2 cos(θ(t) + φ2(t)),

y2(t) = y(t) + l1 sin θ(t) + l2 sin(θ(t) + φ2(t)),

(57)

To permit the distal spheres to rotate freely while rendering self-collisions impossible,

the parameters l1 and l2 are required to satisfy the inequalities

l1 ≥ 2a and a ≤ l2 ≤ l1 − 2a. (58)

(Without these restrictions, the single-jointed scallop considered earlier is recovered

as the special case l1 = 0, in which case the single joint angle is φ = π − φ1 + φ2.)

The orientation angle θ is now defined relative to the horizontal, and I assume that

the internal angles φ1, φ2 may be independently actuated for control.

With the aid of two — rather than one — shape variables, more sophisticated gaits
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may be studied. As with the symmetric scallop, the Lagrangian for the articulated

swimmer is given by

L =
2∑
i=0

1

2

[(
m+

mf

2

(
1 +

3a3

16y3
i

))
ẋ2
i +

(
m+

mf

2

(
1 +

3a3

8y3
i

)
ẏ2
i

)]
, (59)

where x1, x2, θ1, θ2 and their derivatives defined by (57). I now drive the system with

according to the periodic gait

φ1(t) := sin(t),

φ2(t) := sin(t) cos(t),

(60)

whose image is a figure eight depicted in Figure 39.

-1.0 -0.5 0.5 1.0
Φ1

-0.4

-0.2

0.2

0.4

Φ2

Figure 39: The gait in shape space for the articulated swimmer,
defined by (60).

I will now carry out a similar analysis of the resulting dynamics for the articulated

swimmer as for the symmetric scallop. In order that the differences in behavior be-

tween the two cases be isolated to the dynamics rather than the choice of parameters,

the numerical values for the parameters in the new model are chosen to agree, insofar

as possible, with those from the symmetric scallop considered in the previous sec-

tion. For the gait depicted in Figure 39, the resulting vertical motion of the system
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is shown in Figure 40. The vertical motion is somewhat less pronounced than that

of the symmetric scallop, in part due to the fact that the outermost distal sphere is

further from the wall than in the symmetric scallop. Furthermore, the complicated

gait of the two-jointed scallop is reflected in the jagged evolution of y(t) in Figure 40.

(Contrast this with the smooth oscillations of y(t) in Figure 33.)

The orientation of the articulated swimmer is illustrated in Figure 41. Unlike the

symmetric scallop, the orientation of its two-jointed counterpart is primarily oscilla-

tory, although its orientation angle does increase over a longer time scale.
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Figure 40: The vertical motion of the articulated swimmer with gait
depicted in Figure 39.
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Figure 41: The orientation of the articulated swimmer depicted in
Figure 40.

As a check on the numerical integration, the horizontal component px = ∂L
∂ẋ

of

the translational momentum must be conserved by symmetry of the Lagrangian and

Noether’s theorem. A graph of the horizontal momentum for this system is shown in

Figure 42.
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Figure 42: The horizontal component of momentum, px = ∂L
∂ẋ

, for
the articulated swimmer in Figure 40 is conserved up through 10−5.

Just like the scallop, the articualted swimmer slowly inches towards the wall while
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simultaneously rotating counterclocwise as time evolves. Snapshots at equally spaced

times during the motion are shown in Figure 43, while the trajectory of the central

sphere is depicted in Figure 44. Compare the two lobes of the resulting trajectory

with the lobes appearing in the gait Figure 39.
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Figure 43: Snapshots at equally spaced times of the articulated
swimmer depicted in Figure 40.
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Figure 44: Trajectory of the central sphere in the articulated swim-
mer from Figure 40.

I now consider the effect of different initial orientations, θ0 = 0, π/3, 2π/3 and π on

the articulated swimmer. Figure 45 depicts the effect of the initial orientation on the

subsequent evolution of y(t), the vertical coordinate of the central sphere. The same

reasoning as given for the symmetric scallop explains why the initial angle θ0 = π/3

is most effective of those considered in generating vertical motion.
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Figure 45: Vertical position of the articulated swimmer for various
initial orientations.

Finally, I now consider the possiblity of an underlying geometric phase governing

the motion of the articulated swimmer. Recall from §2.2 that a hallmark of geometric

phase is that motion in the group variables is related to the gait in shape space in a

manner that is independent of the time parameterization. Although the articulated

swimmer considered in this section is not governed by a mechanical connection, there

may still be some notion of connection that leads to geometric phase. To investigate

this possiblity, I modified the gait (60) to the following parameterized version,

φ1(t) = sin(t/τ),

φ2(t) = sin(t/τ) cos(t/τ).

(61)

I varied the parameter τ and then adjusted the length of the numerical integration

accordingly. For example, when τ = 10 the gait in shape space is traversed one-tenth

as fast, and so the length of the numerical integration (when compared to the case
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τ = 1) is increased by a factor of ten. Intriguingly, the resulting plots of the system

trajectory and orientation angle for τ = 1, 10, 100, shown in Figure 46 and Figure 47,

suggests that an underlying geometric phase may be present.
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Figure 46: Trajectories (x, y) for the articulated swimmer corre-
sponding to the parameterized gaits τ = 1, 10, 100, from left to right.
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Figure 47: Orientation θ(t) of the articulated swimmer correspond-
ing to the parameterized gaits τ = 1, 10, 100, from left to right.

5.5 Summary

In this chapter I introduced a new model for the locomotion in an ideal fluid of

jointed rigid bodies that do not benefit from shape-dependent added-mass effects.

The model was built upon on a first-order approximation for the kinetic energy of a

sphere moving near a wall in an ideal fluid. I considered two systems of this type,

neither of which would be able to locomote in the absence of the wall. The first was

a variant of Purcell’s scallop, which — despite having only a single degree of freedom

— is able to swim towards the wall. This system cannot be governed by a geometric
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phase of any type because it has only one internal variable that cannot complete a

closed loop due to steric collisions. I then introduced another example, an articulated

swimmer with two joint angles. This system was also shown to swim towards the wall

with a particular gait, and although its motion cannot be governed by the mechanical

connection, I conjectured on the basis of numerical evidence that there is a hidden

connection that governs the motion.



CHAPTER 6: CONSTRAINED VORTEX MOTION

In this chapter I study the dynamics of point vortices in an inviscid incompressible

fluid interacting with solid bodies that impose constraints on the fluid flow. The basic

idea is to start with the classical N -vortex problem in its Hamiltonian formulation,

then express the constraints on the velocity field in terms of the vortex strengths

and locations, and finally to apply Dirac’s method of constraints. After studying a

few examples of this type, I then use this same technique to devise an approximate

reduced-order model for the interaction of a vortical fluid with a bluff rigid cylinder.

This chapter is organized as follows. I begin by reviewing the Hamiltonian formu-

lation of the classical N -vortex problem, which is needed in order to apply Dirac’s

method of constraints. I then use Dirac’s method to introduce constraints of three

types into the classical N -vortex problem: (i) velocity constraints, which may model

a stagnation point, (ii) direction constraints, which may model an infinitesimal fin in

the fluid, and (iii) distance constraints, which may model vortex dipoles. The sec-

ond of these constraints is the hydrodynamic analog of the nonholonomic constraint

featured in the Chaplygin control systems of Chapter 4, in that it permits fluid mo-

tion along, but not perpendicular to, a given direction. For each of these types of

constraints, I analyze the resulting dynamics and the evolution of four quantities —

energy, angular impulse, and two components of linear impulse — that are known to

be conserved in the unconstrained vortex dynamics. It is found that generally en-
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ergy is conserved by the constraints, but that neither linear nor angular impulse are

conserved, so the constraints impart momentum but not energy to the fluid. Finally,

I use constrained vortex dynamics to devise a reduced-order model for the dynamic

interaction of a rigid cylinder with a single external point vortex. For this problem, I

use the method of images to introduce artificial point vortices and constrain their mo-

tion so as to always satisfy the boundary conditions along the boundary of the moving

cylinder if it were present. The dynamics are shown to agree qualititatively, if not

quantitatively, with the known exact solution. I delivered a talk about the material

in this chapter at the 2015 SIAM Conference on Dynamical Systems in Snowbird,

Utah.

6.1 Introduction

A persistent theme throughout this dissertation has been that of symmetry and

constraints in mechanical systems. There is a long and venerable history, and a

vast array of techniques, for analyzing systems of particles and rigid bodies subject

to constraints. The same cannot be said for constraints in fluid systems. Even a

seemingly simple question — such as, in what sense may a stagnation point in a

fluid be viewed as a constraint on its phase space? — seems to not have a clear

or satisfactory answer. One reason is that fluids are governed by the Navier-Stokes

equations, a nonlinear system of partial differential equations, and unlike the ordinary

differential equations that arise in rigid body and particle mechanics these equations

are infinite-dimensional in the sense that the underlying configuration space is an

infinite-dimensional space of functions — for inviscid incompressible fluids, for ex-
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ample, it is the group of volume-preserving diffeomorphisms from the fluid region to

itself (see [4] and [38]).

A very fruitful idea for the analysis of fluid systems is to devise reduced-order

models, which means a system of finitely many ordinary differential equations that

govern the fluid dynamics. Then all of the theory and techniques from ordinary

differential equations and dynamical systems may be brought to bear in the analysis.

In simple cases, such as the classical N -vortex problem considered below, this can be

done to great effect. Devising reduced-order models for any but the simplest fluid

systems is generally a very difficult task. For example, it is surprising that a reduced-

order model for the interaction of a rigid cylinder and an inviscid incompressible

fluid with point vortices was only developed very recently, in [55] and [10]. Previous

attempts at devising reduced-order models for this system omitted essential physics

and did not produce the correct dynamics of the true nonlinear system, as explained in

[55]. The problem of finding reduced-order models for more complicated interactions

of fluids and solids has so far eluded solution.

The technique introduced in this chapter is found to have application to both of

the research questions above.

6.2 The Classical N -Vortex Problem

TheN -vortex problem is to solve the dynamics ofN mutually interacting vortices in

an infinite, inviscid, incompressible fluid. It is the hydromechanical analog of the grav-

itational N -body problem. The N -vortex problem was studied by Helmholtz ([24]),

Lord Kelvin ([60]), and Kirchhoff ([31]). Research today continues along many lines,
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including vortex motion on curved manifolds with applications to geophysical flows,

vortex motion in bounded domains and in periphractic (i.e. non-simply-connected)

domains, numerical methods such as Lie group integrators, reduced dynamics and

stability of relative equilibria, statistical point vortex and equilibrium theories, ge-

ometrization of vortex motion, and the dynamical interaction of vortices with rigid

bodies. The reader is referred to [46] for details and an extensive survey of the

literature, as well as to [2], [34], [41], and [53] for elementary treatments of point

vortex dynamics. The N -vortex problem exhibits a wide range of behavior depend-

ing on the number of vortices. When N ≤ 3, the motion is known to be completely

integrable, but for N ≥ 4 nonintegrable examples exist in which the phase space

simultaneously admits regions with periodic, quasiperiodic, and chaotic orbits ([46]).

The different mathematical techniques relevant to the problem are so varied that the

N -vortex problem has more than earned its appellation as a “classical mathematics

playground,” given to it by Aref in his influential review paper [3].

Let an inviscid, incompressible fluid of constant density fill the unbounded plane

R2. Let u be the vector field on R2 such that u(x, t) is the velocity of a fluid parcel

at position x and time t. The vorticity of the fluid is ω := ∇ × u, and it measures

the local rate of rotation of the fluid. By the Helmholtz-Hodge theorem, there exists

a scalar potential φ and a vector potential Ψ such that the velocity field may be

decomposed as

u = ∇φ+∇×Ψ, (62)

where ∇φ is the irrotational part of the fluid velocity and ∇ × Ψ is the vortical
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part. Since the motion is in the plane, one may write ω = ω n̂ and Ψ = ψ n̂ for two

scalar functions ω and ψ, with n̂ denoting the unit normal vector to the plane, so that

ω = ω ·n̂ and ψ = Ψ·n̂. Taking the divergence of (62) and using the incompressibility

condition ∇ · u = 0 gives the Laplace problem ∆φ = 0. Meanwhile, taking the curl

of (62) and applying some vector identities leads to the Poisson problem

−∆ψ = ω. (63)

The point vortices are modeled as singularities in the vorticity field; that is, I assume

the vorticity field may be written as the linear combination

ω =
∑
i

Γi δ(xi), (64)

where δ is the Dirac-delta distribution. The weight Γi is called the strength of the

ith vortex, and it represents the circulation
∮

u · dl of the fluid around a small loop

enclosing only that vortex. To see this, let D denote a small disk centered at xi

enclosing no other vortices. Green’s theorem gives

∮
∂D

u · dl =

∫
D

(∇× u) · n̂ dA =

∫
D

ω dA =
∑
i

∫
D

Γiδ(xi) dA = Γi,

and since the left side is exactly the circulation around the ith vortex, the assertion is

proved. To solve the Poisson problem (63), recall the Green’s function for the Laplace

operator in R2,

G(x; y) =
1

2π
log ||x− y||.
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Then for a single vortex of strength Γi at xi,

ψ(x) =

∫
R2

G(x; y)ω(y) dy =
−Γi
2π

log ||x− xi||, (65)

and for N point vortices superposition gives

ψ(x) =
−1

2π

N∑
i=1

Γi log ||x− xi||.

By direct computation,5 the velocity field is

u = ∇×Ψ =
−1

2π

N∑
i=1

Γi
(y − yi,−(x− xi))
||x− xi||2

. (66)

Of course this velocity field has singularities at each vortex location — which may be

interpreted as vortex self-energy as in [39] — and we regularize by asserting that the

velocity of each vortex is the sum of the velocity contributions from vortices other

than itself, thus arriving at the well known point vortex equations,

ẋi =
−1

2π

∑
j 6=i

Γj
yi − yj
||xi − xj||2

,

ẏi =
1

2π

∑
j 6=i

Γj
xi − xj
||xi − xj||2

.

(67)

As pointed out in [34], this regularization procedure is completely standard and goes

back at least to Kirchhoff [31].

In studying the constrained N -vortex problem I will apply Dirac’s method of con-

straints, so I need to get the (67) into Hamiltonian form. With no potential energy,

the Hamiltonian H is simply the kinetic energy of the fluid,

H =
1

2

∫
R2

||u(x)||2 dx.

5Subscripts denote vortex labels, and superscripts denote components; thus x1 = (x1, y1), etc.
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It can be shown (see [53]) that
∫
||u||2 =

∫
ω ψ, so that by using (64) and (65),

H =
1

2

∫
R2

(∑
i

Γiδ(xi)

)
ψ(x) dx =

1

2

∑
i

Γiψ(xi) =
−1

4π

∑
j>i

ΓiΓj log ||xi − xj||2.

(68)

By introducing the (noncanonical) Poisson bracket

{f, g} :=
∑
i

1

Γi

(
∂f

∂xi
∂g

∂yi
− ∂f

∂yi
∂g

∂xi

)
, (69)

one may verify that Hamilton’s equations (13)

ẋi = {xi, H},

ẏi = {yi, H},
(70)

relative to (69) and (68) reproduce the point vortex equations (67). (This is rather

unusual in that a position coordinate, y, is playing the role of conjugate momenta.)

6.3 The Constrained N -Vortex Problem

I now introduce constraints into the N -vortex problem. I consider the following

four concrete examples, the first three of which are illustrated in Figure 48.

1. A velocity constraint, in which the fluid velocity at a point is required to main-

tain its initial velocity at that point for all time. The case of zero initial velocity

gives a stagnation-point constraint, modeling an infinitesimally small cylinder

immersed in the fluid.

2. A direction constraint, in which the fluid velocity at a specified point is tan-

gent to a fixed direction for all time, modeling an infinitesimally small rigid fin

immersed in the fluid.
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3. A distance constraint, in which a pair of vortices must maintain a fixed distance

from one another at all times, modeling a vortex dipole.

4. A position constraint, in which one or more vortices are forced to move so as to

satisfy a given condition, to be used in modeling certain fluid-solid interactions.

Figure 48: A (zero) velocity constraint (left), a direction constraint
(center), and a distance constraint (right).

In Lagrangian mechanics constraints may be treated with Lagrange multipliers.

However, the N -vortex dynamics encoded in (70) are in Hamiltonian form. One way

of treating constraints in Hamiltonian mechanics is by Dirac’s method of constraints,

first introduced in [14] and further expounded upon in [15] and [38], the latter of which

I take as my primary reference. When a constraint is present, trajectories evolve on

a constraint submanifold, and the essence of Dirac’s method is that the ordinary

Poisson bracket {f, g} may contain terms representing derivatives of f and g along

directions pointing out of the constraint submanifold. Since the motion is confined

to the constraint submanifold, however, the offending terms must be subtracted off;

doing so produces a new bracket, called the Dirac bracket, relative to which the

equations of motion are in Hamiltonian form.

Before stating the relevant theorem, recall that an embedded submanifold S of a

symplectic manifold (P,Ω) is a symplectic submanifold if ω := i∗Ω is a symplectic
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form on S, where i : S ↪→ P is the inclusion map. The submanifold inherits a Poisson

bracket that is related to the bracket on P by the following modern formulation of

Dirac’s theorem. The reader is referred to [38] for more details on this theorem,

including a coordinate-free version, and its proof.

Theorem 17 (Dirac). Let (P,Ω) be a symplectic manifold of dimension 2n, and let

S ⊂ P be an embedded, symplectic submanifold of dimension 2k with k < n. Endow

P with the induced Poisson bracket {f, g} := Ω(Xf , Xg). Assume (U, zi) is a chart

for P on which

S ∩ U = {z ∈ U : z2k+1 = · · · = z2n = 0}.

Let (Cij) be the inverse of the matrix (Cij), where Cij := {zi, zj} for i, j = 2k +

1, . . . , 2n. If f |S and g|S denote the restrictions of f, g : P → R to S, then

{f |S, g|S} = {f, g} −
2n∑

i,j=2k+1

{f, zi}Cij{zj, g},

and

Xf |S = Xf −
2n∑

i,j=2k+1

{f, zi}CijXzj .

Define the Dirac bracket [·, ·] by

[f, g] := {f |S, g|S} = {f, g} −
2n∑

i,j=2k+1

{f, zi}Cij{zj, g}. (71)

The time evolution of a function f along a trajectory of the constrained system is

ḟ = [f,H].
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A concrete example of Dirac’s method appears in Appendix B.

To explain how this method may be used to handle the constraints above, recall

that the velocity field of the fluid may be expressed via (66) in terms of the locations

and strengths of the point vortices. Therefore, provided a constraint or system of

constraints can be expressed in terms of the fluid flow at finitely many points, then it

may be recast in terms of the locations and strengths of the point vortices. The re-

maining sections in this chapter apply this technique to the hydrodynamic constraints

listed above.

6.4 Velocity Constraint

For this constraint, the fluid velocity at a specified point must maintain its initial

value for all time. This initial velocity can be made arbitrary by judiciously choosing

initial placement of the vortices. Without loss of generality, I assume the point in

question to be the origin. The constraint, therefore, is that u(0, t) = u(0, 0) for all

t ≥ 0.

To keep the complexity somewhat under control, I take N = 3 in this example.

With three vortices the phase space is twelve-dimensional: there are 6 phase space

variables encoding the positions of the three vortices and six encoding their momenta.

Let the vortex strengths be Γ1 = Γ2 = Γ3 = 1 and write their locations as x1 =

(x1, y1), x2 = (x2, y2), and x3 = (x3, y3). If u, v are the components of the fluid

velocity, i.e. u = (u, v), then (66) gives the velocity field due to these three unit-
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strength vortices as

u(x, y) =
−1

2π

(
y − y1

(x− x1)2 + (y − y1)2
+

y − y2

(x− x2)2 + (y − y2)2
+

y − y3

(x− x3)2 + (y − y3)2

)
,

v(x, y) =
−1

2π

(
x1 − x

(x− x1)2 + (y − y1)2
+

x2 − x
(x− x2)2 + (y − y2)2

+
x3 − x

(x− x3)2 + (y − y3)2

)
.

(72)

Since the velocity field u = (u, v) is now expressed solely in terms of the point vortex

locations, the constraint may be expressed in terms of the phase space variables, and

Dirac’s method of constraints may be applied. In particular, define (u0, v0) := u(0, 0).

Then the constraint u(0, t) = u(0, 0) is, according to (72),

−y1

(x1)2 + (y1)2
+

−y2

(x2)2 + (y2)2
+

−y3

(x3)2 + (y3)2
+ 2πu0 = 0,

x1

(x1)2 + (y1)2
+

x2

(x2)2 + (y2)2
+

x3

(x3)2 + (y3)2
− 2πv0 = 0.

To apply Theorem 17, I now define z11 and z12 by the left sides of the preceding

equations, so that the constraint submanifold is described locally by z11 = z12 = 0.

Now define the Dirac bracket according to (71) and (69). With the point-vortex

Hamiltonian H given by (68), the unconstrained and constrained equations of motion

are

ẋi = {xi, H}, ẏi = {yi, H}, (unconstrained dynamics)

ẋi = [xi, H], ẏi = [yi, H], (constrained dynamics).

For the unconstrained N -vortex problem, the Hamiltonian exhibits translational

and rotational symmetries, so by Noether’s theorem there are corresponding conserved
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quantities. In fact, four integrals of motion are known,

H =
−1

4π

∑
j>i

ΓiΓj log ||xi − xj||2,

Q =
∑
i

Γix
i,

P =
∑
i

Γiy
i,

J =
∑
i

Γi||xi||2.

(73)

The first of these is just the Hamiltonian (68), encoding the system’s total energy.

The quantities Q and P are the components of the system’s linear impulse, and J is

the angular impulse. The reader is referred to [46] and [34] for further details. In this

and the following examples, I plot these four quantities for both the unconstrained

and constrained dynamics; in the former case to verify accuracy of the numerical

integration, and in the latter case to investigate the energy or momentum imparted

to the fluid by the constraints.

I now consider, for a typical set of parameters, the unconstrained and constrained

dynamics. The unconstrained vortex trajectories are shown in Figure 49. They are

seen to orbit around the center of vorticity x∗ defined by

x∗ :=
1∑
i Γi

∑
i

xi,

which for this problem is x∗ = (1/3, 0). As time evolves, their trajectories seem

to densly fill a certain subset of the plane. Next, Figure 50 shows the energy H,

components Q,P of linear impulse, and angular impulse J for the unconstrained

motion of the vortices. Note that, as expected, these quantities are all conserved.
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The fluid velocity u(0, t) = (u(0, t), v(0, t)) is graphed in Figure 51. Note that as the

vortices evolve in the fluid, the velocity at the origin is changing in a periodic fashion

that corresponds to the periodic motion of the vortices.

Turning to the constrained dynamics, the vortex trajectories are shown in Figure 52.

Qualitatively, these trajectories exhibit similar periodic behavior as for the uncon-

strained dynamics, and although they still appear to densly fill a subregion of the

plane, the vortices no longer orbit the center of vorticity; instead, the center of their

orbit has been shifted to the left half-plane. In Figure 53, the energy H, compo-

nents Q,P of linear impulse, and angular impulse J are shown, but now we see that

the constraint breaks the conservation of both linear and angular impulse, although

it does conserve the energy H. Furthermore, the magnitude of the linear impulse√
P 2 +Q2 and that of the angular impulse |J | of the fluid are fluctuating period-

ically. Finally, the fluid velocity u(0, t) = (u(0, t), v(0, t)) is graphed in Figure 54,

and we see that the method introduced here succeeds in forcing the fluid velocity to

maintain its initial value at the origin.
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Figure 49: Unconstrained vortex dynamics.
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Figure 50: Energy H, components Q,P of linear impulse, and an-
gular impulse J for the motion of the vortices in Figure 49.
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Figure 51: Fluid velocity at the origin for the motion of the vortices
in Figure 49.
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Figure 52: Trajectories of the vortices considered in Figure 49, but
subject now to the constraint the fluid velocity at the origin main-
tains its initial value.
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Figure 53: Energy H, components Q,P of linear impulse, and an-
gular impulse J for the motion of the vortices in Figure 52
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Figure 54: Fluid velocity at the origin for the motion of the vortices
in Figure 52.

6.5 Direction Constraint

I now consider a different kind of hydrodynamic constraint, one that might arise

from the presence of an infinitesimal fin immersed in the fluid, as shown in the middle

panel of Figure 48. Such a fin would not constrain the speed of the fluid at the given

point, but only its direction — which must be tangent to the fin. This is, therefore,

the hydrodynamic analog of the nonholonomic no-slip constraint appearing in the
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Chaplygin control systems of Chapter 4.

If a fin tangent to the vector v is placed at a point p, the resulting constraint

is that u(p, t) · v = 0 for all time t. Unlike the velocity constraint considered in

the previous section, this is a scalar constraint. Since an even number of constraint

equations is needed for Dirac’s method, I place two fins in the fluid at points p1,p2

with corresponding orientations v1,v2. Furthermore, since the initial conditions must

satisfy the constraints, I chose the initial vortex positions arbitrarily, determined the

resulting velocity field according to (66), and then selected arbitrary locations p1,p2

for the fins and set v1,v2 equal to the initial fluid velocity at these points. In other

words, I placed the fins so that the initial fluid velocity was guaranteed to satisfy the

constraints. The two constraint equations are

u(p1, t) · v1 = 0,

u(p2, t) · v2 = 0.

The unconstrained vortex trajectories are shown in Figure 55. Next, Figure 56 shows

the energy H, components Q,P of linear impulse, and angular impulse J for the

unconstrained motion of the vortices. As before, these quantities are all conserved.

The component un of the fluid velocity normal to the two fins appearing in Figure 58

is graphed in Figure 57. Note that the fluid velocity at the origin is always horizontal,

even in the unconstrained system, by symmetry of the vortex locations. Since all the

vortices are of equal strength and symetrically aligned along the vertical axis, the

fluid velocity at the origin must be horizontal by symmetry. At the other fin location,

however, the normal component of the fluid velocity is not conserved, and there is no
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reason it should be.

Turning to the constrained dynamics, the vortex trajectories are shown in Figure 58.

Here — unlike for the velocity constraint — the unconstrained and constrained vor-

tex trajectories are dramatically different. The introduction of the constraints has

pushed the dynamics from a symmetric periodic orbit to an asymmetric scattering

orbit. In Figure 59, the energy H, components Q,P of linear impulse, and angular

impulse J are shown. As before, energy is still conserved, but the constraint breaks

the conservation of both linear and angular impulse. The magnitude
√
P 2 +Q2 of

the linear impulse and that of the angular impulse |J | are increasing with time as well,

so the constraint is injecting linear and angular momentum into the fluid. Finally,

Figure 60 graphs the normal velocity of the fluid at the location of the two fins. It is

effectively zero at both locations, which means the velocity field is indeed tangent to

the two fins, as required.
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Figure 55: Unconstrained vortex dynamics.
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Figure 56: Energy H, components Q,P of linear impulse, and an-
gular impulse J for the motion of the vortices in Figure 55.
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Figure 57: Component un of the fluid velocity normal to the in-
finitesimal fins at (0, 0) and (1, 1) for the unconstrained vortices of
Figure 55.
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Figure 58: Trajectories of the vortices considered in Figure 55, but
subject now to the constraint that the fluid velocity is tangent to the
two infinitesimal fins shown in the figure as thick black line segments.
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Figure 59: Energy H, components Q,P of linear impulse, and an-
gular impulse J for the motion of the vortices in Figure 58
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Figure 60: Component un of the fluid velocity normal to the in-
finitesimal fins at (0, 0) and (1, 1) for the constrained vortices of
Figure 58.

6.6 Distance Constraint

Now I consider a third kind of hydrodynamic constraint, a distance constraint. I

require the distance between a pair of vortices to maintain their initial values, as

illustrated in the third panel of Figure 48. If the two vortices have positions x1,x2

and are initially separated by a distance d0, the constraint is that ||x1 − x2|| = d0

for all time. That is,
√

(x1 − x2) · (x1 − x2) = d0. To avoid numerical complications

with square roots, I use the equivalent formulation that

(x1 − x2) · (x1 − x2)− d2
0 = 0.

This is a single scalar equation. To get an even number of constraint equations for

Dirac’s method, I consider the three-vortex problem and impose the constraints that

the distances between x1 and x2 and between x2 and x3 remain constant.

The unconstrained vortex trajectories for a typical set of parameters are shown

in Figure 61. The vortices orbit around their center of vorticity, located at approxi-
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mately (0.60,−0.17). Next, Figure 62 shows the energy H, components Q,P of linear

impulse, and angular impulse J for the unconstrained motion of the vortices. These

quantities are all conserved. The distances between the first and second and between

the second and third vortices, graphed in Figure 63, are seen to undergo periodic

variations consistent with Figure 61.

Turning to the constrained dynamics, the vortex trajectories are shown in Figure 64.

Here we see that the motion is simply rigid body rotation, which is also verified by

the graphs of the distances between the two pairs of vortices shown in Figure 66.

This may be explained heuristically as follows. It is known that two vortices of equal

strength orbit one another in a circular fashion about their center of vorticity (see

[46] or [53]), so one of these two distance constraints adds nothing. The third vortex

is constrained to move at a fixed distance from the second, so this leaves two possi-

bilities — an orbit resembling the Sun-Earth-Moon system (circles within circles), or

a rigid body rotation. I don’t have a good explanation for why the latter motion is

chosen, and perhaps the former is possible in other cases. In Figure 65, the energy

H, components Q,P of linear impulse, and angular impulse J are shown. We see

that all of them are conserved by the system, consistent with the uniform rotation of

a rigid body.
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Figure 61: Unconstrained vortex dynamics.
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Figure 62: Energy H, components Q,P of linear impulse, and an-
gular impulse J for the motion of the vortices in Figure 61.
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Figure 63: Inter-vortex distances for the unconstrained motion of
the vortices in Figure 61.
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Figure 64: Trajectories of the vortices considered in Figure 61, but
subject now to the constraint the distances between x1 and x2, and
between x2 and x3 are constant. The vortices evolve so that the
triangle, signified with a dashed line, rotates as if it were a rigid
body.
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Figure 65: Energy H, components Q,P of linear impulse, and an-
gular impulse J for the motion of the vortices in Figure 64

distHx1,x2L distHx2,x3L

0 20 40 60 80 100
time

1.6

1.8

2.0

2.2

2.4

0£t£100, G1=1, G2=1, G3=1, x1=H-0.785398,0.L, x2=H1.5708,0.5L, x3=H1.,-1.L

Figure 66: Inter-vortex distance for the constrained motion of the
vortices in Figure 58.

6.7 Point Vortex and a Rigid Body

The final problem I consider is using constrained vortex dynamics as a reduced-

order model for the interaction of rigid bodies with point vortices. The most basic

problem of this form is the dynamic interaction of a rigid cylinder and a single external

point vortex. As mentioned in the introduction to this chapter, the fully nonlinear

equations of motion for this system — in terms of an exact reduced-order model —
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were only recently discovered in [55] and [10]. The dynamics of a cylinder and a

single external point vortex given by the equations in [55] are shown in Figure 67.

This paper demonstrated that if the vortex strengths sum to zero and the cylinder

has circular cross section, then the resulting equations are Hamiltonian relative to

a Poisson bracket that is the sum of the rigid body Lie-Poisson bracket on the dual

of the Lie algebra se(2) and the standard Poisson bracket for point vortices in the

unbounded plane, (69). The equations of motion were derived by a lengthy and ad hoc

control volume analysis, and the Hamiltonian formulation was essentially discovered

by accident. The equations in [10] were derived by a different method, but [61] showed

that they are ultimately equivalent to those in [55]. The question I ask in this section

is — rather than carrying out a difficult control-volume analysis, to what extent

can the dynamic interaction of rigid bodies with an inviscid incompressible fluid with

vorticity be modeled by judiciously introducing constraints into the classical N -vortex

problem? If this is possible at all, it should be so for the simplest case of a rigid circular

cylinder interacting with a single external point vortex.
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Figure 67: Trajectories over the interval 0 ≤ t ≤ 250 for a rigid cylin-
der and a vortex of unit strength interacting dynamically according
to the equations in [55]. The cylinder is taken to have unit radius
and mass-plus-added-mass equal to 2π. The central trajectory gives
the position of the center of the cylinder, and the outer trajectory
depicts the position of the external vortex.

To obtain an approximate model using constrained vortex dynamics, I will use

the method of images. Recall that the complex potential for an ideal fluid with flow

velocity u in the complex plane is the function f : C→ C : z 7→ φ(z) + iψ(z), where

φ is the velocity potential satisfying u = ∇φ and ψ is the stream function satisfying

(u · ∇)ψ = 0. The complex potential for a single point vortex of strength Γ at z0 is

shown in [2] to be the function z 7→ Γ
2πi

log(z − z0). By superposition, the complex

potential f(z) for N point vortices of strengths Γ1, . . . ,ΓN is

f(z) =
1

2πi

N∑
i=1

Γi log(z − zi).
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Recall now the Milne-Thomson circle theorem, also appearing in [2], which is a method

of images for the Laplace problem in circular domains.

Theorem 18 (Milne-Thomson Circle). If f : C → C is the complex potential for a

flow whose singularities are external to the circle |z| = a, then the complex potential

w : C→ C for a flow with this circle as a streamline and having the same singularities

external to this circle is given by

w(z) := f(z) + f(a2/z).

Note that if a point vortex singularity is located at a point z0 outside the circle

|z| = a, then a2/z0 lies interior to this circle. In effect, the theorem makes the circle a

streamline at the cost of introducing new singularities at certain image points inside

the circle.

Returning to the cylinder and vortex problem, assume the vortex has strength Γ.

At all times the boundary of the cylinder is a streamline of the fluid flow. Coupled

with the Milne-Thomson theorem, this suggests that the dynamics may be modeled

by a constrained 3-vortex problem such that one vortex of strength Γ lies exterior

to the cylinder, another vortex of strength −Γ is constrained to reside at the Milne-

Thomson image location, and a third vortex of strength Γ is placed at the location

where the cylinder’s center would be in order to cancel — or more generally, set to any

desired value — the circulation around the cylinder. For this constrained 3-vortex

problem, the circulation around the cylinder matches that of the cylinder+vortex

problem, and there is a streamline where the cylinder would be.

To make the foregoing considerations more definite, let a be the radius of the
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cylinder. Let z1 = (x1, y1) denote the position of the vortex where the cylinder’s

center would be, let z2 = (x2, y2) be the position of the Milne-Thomson image vortex,

and let z3 = (x3, y3) denote the position of the external vortex. The Milne-Thomson

constraint becomes the pair of equations

x2 − x1 − a2(x3 − x1)

(x3 − x1)2 + (y3 − y1)2
= 0,

y2 − y1 − a2(y3 − y1)

(x3 − x1)2 + (y3 − y1)2
= 0.

If one applies Dirac’s method with these constraint equations in the same manner

as in the previous examples, the resulting vortex trajectories are shown in Figure 68.

The innermost trajectory near the origin shows the cylinder’s location, the middle

trajectory is of the image vortex, and the outer trajectory is that of the external point

vortex. On the scale shown in the figure, the motion of the central vortex is not so

clear, so a blown-up version of it is shown in Figure 69. We see that the motion of the

cylinder and external point vortex are qualitatively similar, but different in detail, to

those given by Figure 67. In particular, the exterior vortex is seen to orbit around

the cylinder in a Lissajous-like pattern, and the central vortex (cylinder location) un-

dergoes quasiperiodic motion, both of which resemble the motion in Figure 67. These

encouraging results demonstrate that it may be appropriate in certain situations to

model complicated interactions of solids and fluids with conceptually simpler point

vortex dynamics.
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Figure 68: Motion of three vortices of strengths Γ1 = 1, Γ2 = −1,
and Γ3 = 1 modeling a circular cylinder interacting with a single
external point vortex over the interval 0 ≤ t ≤ 100.
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Figure 69: Motion for 0 ≤ t ≤ 50 of the central vortex in Figure 68.

6.8 Summary

In this chapter I devised new reduced-order models for hydrodynamic constraints

arising from fixed rigid bodies immersed in inviscid incompressible fluids with point

vorticity by applying Dirac’s method to judiciously chosen constraints in the Hamil-

tonian formulation of the classical N -vortex problem for four different classes of con-

straints — velocity, direction, distance, and position. I found that the constraints

generally preserve energy while modifying the linear and angular impulse of the sys-

tem, and that they may change the qualitative nature of the dynamics, for example

changing a periodic orbit to a scattering orbit. Finally, I showed that constrained

vortex dynamics may be used to develop approximate reduced-order models for the

interaction of moving rigid bodies and vortical fluids.



CHAPTER 7: FUTURE WORK

There are several lines of research suggested by the results in this dissertation. For

Chaplygin control systems, a natural extension is to design controllers for motion

planning and optimal control. In the former one seeks to steer the system along a

particular path through its environment, and in the latter one seeks to achieve a

control objective while at the same time minimizing a cost function. It may also be

possible to achieve control in finite time, rather than mere asymptotic control, by

allowing for multiple control inputs for the unbalanced sleigh. Yet another avenue for

research is the coordinated control of multiple Chaplygin control systems, in which

multiple robots mutually interact to achieve a shared goal.

Turning to articulated swimmers, the same optimal control and motion planning

suggestions discussed for Chaplygin control systems pertain here as well. Further-

more, an investigation into the numerically suggested geometric phase seems war-

ranted; perhaps by factoring the system into its symmetric and asymmetric parts,

it may be possible to find a connection on the symmetric factor that governs the

motion. Also, the validity of the hydrodynamic decoupling assumption — although

widely used in the literature — should still be revisited, perhaps by including first-

order interactions between the spheres.

In the treatment of hydrodynamic constraints via Dirac’s method, one obvious

drawback is the requirement that there be an even number of scalar constraints due
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to the Hamiltonian formulation of the problem. However, the point vortex equations

are also known to have a Lagrangian form, and the usual treatment of constraints

in Lagrangian mechanics is able to accommodate any number — even or odd — of

constraints. It also seems advisable to compare the reduced-order models discussed

in this work to high-fidelity Navier-Stokes simulations and to physical experiments.

A full accounting should be made of the discrepancy between the constrained-vortex

model of a cylinder interacting with an external vortex vs. the known dynamics.

In particular, since both are governed by Poisson brackets, an understanding of the

differences between their brackets might lead to insight. Finally, another idea is to

allow the infinitesimal rigid bodies imposing the constraints to move, rather than

be fixed; equivalently, to consider time-dependent constraints. Since the constraints

affect the vortex dynamics, it is conceivable that time-dependent constraints may be

used to control the vortex dynamics.
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APPENDIX A: MORE ABOUT CONNECTIONS

A.1 Factoring an Ehresmann Connection

Since local coordinates in a bundle factor as q = (r, s), with r encoding position in

the base and s encoding position along the fiber, it makes sense that the connection

form of an Ehresmann connection might factor in a way that respects this coordinate

factorization.

Indeed, let π : Q→M be an n-dimensional bundle with p-dimensional fiber, and let

A : TQ→ V be the connection form of an Ehresmann connection on this bundle. If

we choose any local trivialization π−1(U)→ U×F with bundle coordinates q = (r, s),

and if vq is any tangent vector in T (π−1(U)), then in these bundle coordinates we

may write vq = ṙα ∂
∂rα

+ ṡa ∂
∂sa

, where α = 1, . . . , n − p and a = 1, . . . , p. Now vq is

vertical if and only if Tqπ · vq = 0, if and only if ṙα = 0 for all α.6 Since A : TQ→ V

is vertical-valued and linear in each fiber, it follows that there are locally defined

1-forms ωa on π−1(U) such that

A(vq) = ωa(vq)
∂

∂sa

∣∣∣∣
q

.

For each a, b = 1, . . . , p and α = 1, . . . , n−p, let Aaα : π−1(U)→ R and Ba
b : π−1(U)→

R be the functions such that ωa = Aaαdr
α +Ba

bds
b. Now recall that A is a projection

6Warning : it is not true that vq is horizontal if and only if ṡa = 0 for all a, as will be seen in the
example to follow.
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on vertical vectors. Therefore, for c = 1, . . . , p it follows that

∂

∂sc
= A

(
∂

∂sc

)
=

[
Aaαdr

α

(
∂

∂sc

)
+Ba

bds
b

(
∂

∂sc

)]
∂

∂sa
= Ba

c

∂

∂sa
,

which implies that Ba
c = δac , and hence

ωa = Aaα drα + dsa.

Meanwhile, since the connection form returns the vertical part of a vector,

ver(vq) = A(vq) = (Aaα(q)ṙα + ṡa)
∂

∂sa
.

Then the horizontal part is

hor(vq) = vq − ver(vq) = ṙα
∂

∂rα
− Aaα(q)ṙα

∂

∂sa
.

This discussion proves the following.

Theorem 19 (Factorization of an Ehresmann connection). Let A be the connection

form of an Ehresmann connection on a fiber bundle (Q, π,M, F ). Let n = dimQ

and p = dimF . Then in every local trivialization π−1(U) → U × F with bundle

coordinates q = (r, s) there exist locally defined 1-forms ωa on π−1(U) and smooth

functions Aaα : π−1(U)→ R such that

A = ωa
∂

∂sa
= (dsa + Aaαdr

α)
∂

∂sa
, (a = 1, . . . , p and α = 1, . . . , n− p). (74)

Furthermore, if vq = ṙα ∂
∂rα

+ ṡa ∂
∂sa

is any tangent vector in T (π−1(U)) then

ver(vq) = (ṡa + Aaα(q)ṙα)
∂

∂sa
,

hor(vq) = ṙα
∂

∂rα
− Aaα(q)ṙα

∂

∂sa
.

(75)
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I now give a simple, concrete example of an Ehresmann connection and the factor-

ization of its connection form. Consider the bundle π : R3 → R2 : (x, y, z) 7→ (x, y).

The fiber over p := (x0, y0) ∈ R2 is π−1(p) = {(x0, y0, z) : z ∈ R} ∼= R. Let

q = (x, y, z) ∈ R3 and vq = ẋ ∂
∂x

+ ẏ ∂
∂y

+ ż ∂
∂z
∈ TqQ. Then Tqπ · vq = ẋ ∂

∂x
+ ẏ ∂

∂y
, which

is zero if and only if ẋ = ẏ = 0. Hence Vq = ker(Tqπ) = Span{ ∂
∂z
}. Let q 7→ Hq be

the distribution spanned by the vector fields (1 + y2) ∂
∂x
− ∂

∂z
and ∂

∂y
+ xz ∂

∂z
. Then

Vq = Span

{
∂

∂z

}
, Hq = Span

{
(1 + y2)

∂

∂x
− ∂

∂z
,
∂

∂y
+ xz

∂

∂z

}
.

Since the distribution q 7→ Hq is smooth and TqQ = Hq ⊕ Vq everywhere, it defines

an Ehresmann connection. Let us determine the horizontal and vertical parts of vq.

Since TqQ = Hq ⊕ Vq, there are unique scalars a, b, c such that

vq = ẋ
∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
= a

(
(1 + y2)

∂

∂x
− ∂

∂z

)
+ b

(
∂

∂y
+ xz

∂

∂z

)
+ c

∂

∂z

= a(1 + y2)
∂

∂x
+ b

∂

∂y
+ (bxz + c− a)

∂

∂z
.

Comparing coefficients on each side of the equation gives the system of equations

a(1 + y2) = ẋ, b = ẏ, bxz + c− a = ż

whose solution is

a =
ẋ

1 + y2
, b = ẏ, c =

ẋ

1 + y2
− xzẏ + ż.
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Therefore,

hor vq = a

(
(1 + y2)

∂

∂x
− ∂

∂z

)
+ b

(
∂

∂y
+ xz

∂

∂z

)
= ẋ

∂

∂x
+ ẏ

∂

∂y
+

(
xzẏ − ẋ

1 + y2

)
∂

∂z
,

ver vq = c
∂

∂z
=

(
ẋ

1 + y2
− xzẏ + ż

)
∂

∂z
.

Referring to Theorem 19, the connection form is A : TQ → V : ẋ ∂
∂x

+ ẏ ∂
∂y

+ ż ∂
∂z
7→

( ẋ
1+y2
−xzẏ+ ż) ∂

∂z
, and since the fiber is 1-dimensional, A is represented locally by the

single 1-form ωz = dz+ 1
1+y2

dx−xzdy in the sense that A = ωz ∂
∂z

. The corresponding

connection coefficients are Azx = 1
1+y2

and Azy = −xz.

A.2 Principal Connections

A principal bundle has additional structure beyond that of a general fiber bundle,

namely a Lie group action relative to which the local trivializations are equivariant.

The natural way to specialize an Ehresmann connection to a principal bundle in a

manner that respects this additional structure is to require that horizontal spaces at

two different points along a fiber should be related by the group action: a principal

connection on a principal G-bundle Q → Q/G, whose action is denoted Φ, is an

Ehresmann connection q 7→ Hq such that if q ∈ Q and g ∈ G then

HΦgq = TqΦg ·Hq.

Turning to the connection form, the isomorphism λ : g → Vq : ξ 7→ ξQ(q) of vector

spaces induces the map Γ : TQ→ g such that Γ(vq) is the unique Lie algebra element

ξ ∈ g such that ver vq = ξQ(q). In words, Γ(vq) returns the Lie algebra element whose

infinitesimal generator at q equals the vertical part of vq. Hence Γ(vq)Q(q) = ver vq.
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Since infinitesimal generators are everywhere vertical,

Γ(ξQ(q)) = ξ (76)

for every ξ ∈ g, which I call the projection property of Γ. Note that Γ is fiberwise

linear, in the sense that each Γq : TqQ → g is linear, precisely because ξ 7→ ξQ(q) is

linear. Moreover, TqQ = Hq⊕Vq implies Hq = {vq ∈ TqQ : ver(vq) = 0} = {vq ∈ TqQ :

Γ(vq)Q(q) = 0} = {vq ∈ TqQ : Γ(vq) = 0} = ker Γq, where the penultimate equality

holds because λ is an isomorphism. Hence Hq = ker Γq, just as for the connection

form of an Ehresmann connection. It remains to account for equivariance. Recall that

(Φg)∗ξQ = (Adg ξ)Q for a left action, and (Φg)∗ξQ = (Adg−1 ξ)Q for a right action (see

[1]). From this the equivariance property of Γ follows, namely that Φ∗g Γ = Adg ◦Γ

for a left action, and that Φ∗g Γ = Adg−1 ◦Γ for a right action. It is sometimes more

convenient to write these equations in the equivalent form

Γ(TΦg · vq) = Adg Γ(vq) (left action),

Γ(TΦg · vq) = Adg−1 Γ(vq) (right action).

(77)

These considerations motivate the following definition. A principal connection form

on a principal bundle Q→ Q/G is a Lie algebra-valued 1-form Γ : TQ→ g satisfying

the projection and equivariance properties. Define a connection and a connection form

to be compatible if they induce the same distribution. Then we have the following

theorem.

Theorem 20. If q 7→ Hq is a principal connection on a principal bundle Q→ Q/G,

there is a unique principal connection form with which it is compatible, namely Γ :
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TQ → g defined such that Γ(vq)Q(q) = ver vq. Conversely, to each principal con-

nection form Γ : TQ → g there is a unique principal connection with which it is

compatible, namely q 7→ Hq := ker Γq.

I now show how to locally factor a principal connection form Γ : TQ → g on a

principal bundle Q → Q/G. Let π−1(U) → U × G be any local trivialization and

write the induced bundle coordinates q = (r, g). If (q, q̇) is any tangent vector in

T (π−1(U)), then in tangent-lifted coordinates (q, q̇) = (r, g, ṙ, ġ), and it follows from

linearity of Γ(q, ·) : TqQ→ g that

Γ(q, q̇) = Γ(r, g, ṙ, ġ) = Γ(r, g, ṙ, 0) + Γ(r, g, 0, ġ). (78)

Assume the action is to the left. Since (r, g, ṙ, 0) = TΦg · (r, e, ṙ, 0), the equivariance

property (77) implies Γ(r, g, ṙ, 0) = Adg(r, e, ṙ, 0). Define the local connection form

A : TU → g by

A(r, ṙ) := Γ(r, e, ṙ, 0). (79)

Then I have just shown that Γ(r, g, ṙ, 0) = Adg A(r, ṙ). Meanwhile, for every ξ ∈ g the

infinitesimal generator for the left action is given in bundle coordinates on π−1(U)

by ξQ(r, g) = (0, ξg). In particular, taking ξ := ġg−1 ∈ g gives ġ = ξg, so the

projection property (76) implies Γ(r, g, 0, ġ) = Γ(r, g, 0, ξg) = Γ(ξQ(r, g)) = ξ =

ġg−1 = Adg(g
−1ġ). Therefore, (78) becomes Γ(r, g, ṙ, ġ) = Adg(g

−1ġ + A(r, ṙ)), for a

left action. Hence as a g-valued 1-form, Γ = Adg(g
−1 dg + A(r) dr) on π−1(U) ⊂ Q,

for a left action. The proof for a right action is similar, except then the infinitesimal

generator is ξQ(r, g) = (0, gξ) and one uses the equivariance condition for a right
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action in (77). This discussion proves the following.

Theorem 21 (Factorization of a principal connection). If Γ is a principal connection

form on the principal bundle π : Q→ Q/G, if π−1(U)→ U×G is a local trivialization

with induced bundle coordinates q = (r, g) and tangent-lifted coordinates (q, q̇) =

(r, g, ṙ, ġ), and if A : TU → g is the local connection form defined in (79), then as a

g-valued 1-form,

Γ = Adg(g
−1 dg + A(r) dr) (left action),

Γ = Adg−1((dg)g−1 + A(r) dr) (right action).

In particular, for any (q, q̇) = (r, g, ṙ, ġ) ∈ Tπ−1(U) ∼= T(r,g)(U ×G),

Γ(r, g, ṙ, ġ) = Adg(g
−1ġ + A(r, ṙ)) (left action),

Γ(r, g, ṙ, ġ) = Adg−1(ġg−1 + A(r, ṙ)) (right action).

I have shown that a principal connection on Q→ Q/G may be defined equivalently

as an Ehresmann connection whose horizontal spaces are invariant under the group

action or as an equivariant connection form Γ : TQ → g that is a projection on

vertical vectors. There is a third equivalent definition in terms of a family of 1-forms

ωU : U → g (physicists call these gauge potentials), one for each local trivialization

π−1(U)→ U×G, satisfying conditions analogous to that of the local connection form

we derived above as well as compatability conditions on overlaps. This point of view

is common in theoretical physics (see [6]), but I shall not pursue the matter here.
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A.3 Parallel Transport in Principal Bundles

Let π : Q→ Q/G be a left principal bundle endowed with a principal connection.

Let Γ : TQ→ g be the associated connection form. Let a base curve r : [0, T ]→ Q/G

and a point g0 ∈ π−1(r(0)) be given. Suppose γ : [0, T ] is a horizontal lift of this

curve. Then γ̇(t) is horizontal for all t ∈ [0, T ], and since horizontal vectors are sent

to zero by the connection form, it follows that Γ = 0 along a horizontal lift. Working

in local bundle coordinates q = (r, g), Theorem 21 implies that

0 = Γ(r, g, ṙ, ġ) = Adg(g
−1ġ + A(r, ṙ)).

Applying Ad−1
g to each side and rearranging gives ġ = −gA(r, ṙ). Therefore, the

evolution of the group variables are governed by the initial-value problem

ġ(t) = g(t)A(r(t), ṙ(t)),

g(0) = g0.

(80)

Since r(t) and hence A(r(t), ṙ(t)) are known, this initial-value problem may be inte-

grated in order to reconstruct the evolution of the group variable g(t), which encode

the system’s position and orientation in its environment, from the known initial con-

ditions and the evolution of the shape variables.

For an abelian principal bundle, i.e. principal bundles whose fiber is an abelian Lie

group, there is an explicit solution parallel transport problem given by

g(t) = g0 exp

(
−
∫ t

0

A(r(s), ṙ(s)) ds

)
, (81)

where exp : g→ G is the Lie exponential map. As a special case, if the path in shape
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space is a closed loop to which Stokes’ theorem applies, then we recover the formula

g(T ) = g0 exp

(
−
∫∫

S

dA

)
,

where S is any oriented submanifold of M whose boundary coincides with the given

path in shape space; this formula is called the area rule for abelian bundles, and

— since it is manifestly independent of the time parameterization — it gives the

geometric phase associated with the closed loop in shape space. The reconstruction

formula (81) for abelian principal bundles is proved in [36] by making use of a powerful

structure theorem that says every abelian Lie group is a product of tori and Euclidean

spaces. Here I give a different proof that relies on a formula for the derivative of the

exponential map. If t 7→ η(t) is a curve in the Lie algebra g, the derivative of

t 7→ exp η(t) is

d

dt
exp η(t) = (exp η(t))

∞∑
n=0

(−1)n

(n+ 1)!
(adη(t))

nη̇(t),

where (adη(t))
n signifies the n-fold composition adη(t) ◦ · · · ◦ adη(t). This formula is

derived, for example, in [59]. Since adη(t) η̇(t) = [η(t), η̇(t)], the preceding formula

may be expressed as the following series involving iterated Lie algebra brackets,

d

dt
exp η(t) = exp η(t)

(
η̇(t)− [η(t), η̇(t)] +

1

2!
[η(t), [η(t), η̇(t)]]

− 1

3!
[η(t), [η(t), [η(t), η̇(t)]]] + · · ·

)
.

All brackets in the preceding display are zero becauseG is abelian, and so d
dt

exp η(t) =

(exp η(t))η̇(t). Let ξ(t) denote A(c(t), ċ(t)) ∈ g and assume temporarily that g0 = e

in the inital-value problem (80). Recall that the exponential map of a connected,
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abelian Lie group is surjective. Therefore, if t 7→ g(t) is the solution to the initial-

value problem, there is a curve [0, T ] → g : t 7→ η(t) such that g(t) = exp η(t). By

the formula we just derived, this is equivalent to ġ(t) = d
dt

exp η(t) = (exp η(t))η̇(t) =

g(t)η̇(t). However, we also have ġ(t) = −g(t)ξ(t) from the initial-value problem.

Setting these equal and cancelling g(t) gives η̇(t) = −ξ(t), and integration gives

η(t) = −
∫ t

0
ξ(s) ds. Hence the solution to the initial-value problem ġ(t) = −g(t)ξ(t)

with g(0) = e is g(t) = exp(−
∫ t

0
ξ(s) ds) = exp(−

∫ t
0
A(c(s), ċ(s)) ds). To obtain the

solution with g(0) = g0, simply left translate by g0 the solution just obtained for

g0 = e to arrive (81).

A.4 The Mechanical Connection and the Master Formula

The mechanical connection was defined in [23], building on Smale’s earlier work

on the Kepler problem (see [56] and [57]). In much of the literature (e.g. [36]), the

mechanical connection is defined by the formula for its connection form Γ,

Γ = I−1 ◦ J, (82)

which is shorthand for Γ(vq) = (I(q))−1(J(vq)), where J : TQ→ g∗ is the momentum

map and I(q) : g→ g∗ is defined such that for any two Lie algebra elements ξ, η ∈ g,

〈I(q)ξ, η〉 = 〈FL(ξQ(q)), ηQ(q)〉. Here ξQ and ηQ are the infinitesimal generator vector

fields on Q induced by the given Lie algebra elements and the group action, as defined

in (11). The motivation for this formula is that I(q) represents the classical moment

of inertia tensor for a mechanical linkage with all its internal joint angles “locked”

into place, and that Γ = I−1 ◦J gives the body angular velocity of this locked system
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(see [36]). As pointed out in [37], the formula (82) is referred to as the “master

formula” by Shapere and Wilczek, authors of the important paper [54] that addresses

geometric phases in fluid locomotion.

In this appendix I derive the master formula as a consequence of a more geometric

definition for the mechanical connection. For a simple mechanical system with con-

figuration space a principal bundle Q → Q/G endowed with a Riemannian metric

g and a Lagrangian L : TQ → R of the form (4), the mechanical connection is the

induced metric connection. That is, its horizontal spaces are defined to be metric

orthogonal to vertical, as in (3). Because Q→ Q/G is a principal bundle, the group

action preserves vertical spaces, i.e. TqΦh : Vq → VΦhq is an isomorphism of vector

spaces for every q ∈ Q and every h ∈ G. If the metric is invariant in the sense that

Φ∗hg = g for every h ∈ G, then it follows that the horizontal spaces are also preserved,

i.e. TqΦh ·Hq = HΦhq. This proves the following theorem.

Theorem 22. If the metric g on the total space of a principal bundle Q → Q/G is

invariant, then the induced metric connection is a principal connection.

Meanwhile, the metric and the group action interact to induce a natural family of

inner products (·, ·)q on the Lie algebra g, one for each q ∈ Q, defined by

(ξ, η)q := g(ξQ(q), ηQ(q)).

Each inner product induces an isomorphism I(q) : g→ g∗ in a natural way, namely

〈I(q)ξ, η〉 := (ξ, η)q = g(ξQ(q), ηQ(q)) = gijξ
i
Qη

j
Q. (83)

As already mentioned, we call I(q) the locked inertia tensor in this context. We
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now have the following theorem.

Theorem 23. Let g be an invariant metric on the total space of a principal bundle

Q → Q/G with momentum map J : TQ → g∗. If Γ is the connection form of the

mechanical connection, then for every vq ∈ TQ,

Γ(vq) = I−1(q)(J(vq)).

Proof. By decomposing each of vq, wq ∈ TqQ as the sum of vertical and horizontal

vectors, bilinearity of the metric and Hq = V ⊥q imply that

g(vq, wq) = g(hor vq, horwq) + g(ver vq, verwq).

In particular, if wq is either vertical or horizontal, then

g(vq, wq) =


g(ver vq, wq), if wq is vertical,

g(hor vq, wq), if wq is horizontal.

(84)

Since ver vq = Γ(vq)Q(q) and ξQ(q) are vertical, (10), (6), (84) and (83) imply

〈J(vq), ξ〉 = 〈FL(vq), ξQ(q)〉 = g(vq, ξQ(q)) = g(Γ(vq)Q(q), ξQ(q)) = 〈I(q)Γ(vq), ξ〉 .

Since this holds for all ξ ∈ g, it follows that J(vq) = I(q)(Γ(vq)), or Γ(vq) =

I−1(q)(J(vq)).

The foregoing constructions may summarized by saying that the following diagram

commutes.

TQ

g g∗

J
Γ

I
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The horizontal spaces may also be characterized in terms of the momentum map.

Indeed, note that vq ∈ TqQ is horizontal if and only if 0 = ver(vq) = Γ(vq) =

I−1(q)(J(vq)), which is zero if and only if J(vq) = 0 because I(q) (and hence I−1(q))

is an isomorphism of vector spaces. Therefore,

Hq = {vq ∈ TqQ : J(vq) = 0}.

Hence a trajectory in TQ evolves horizontally with respect to the mechanical connec-

tion if and only if the momentum J is identically zero along that trajectory.

A.5 Elroy’s Beanie

The simple mechanical system known as Elroy’s beanie appears in [37]. It is a

mechanical system comprising two planar rigid bodies pinned at their centers of mass

but free to rotate relative to one another, as depicted in Figure 70. The configuration

manifold for the system is the torus Q = S1×S1 with coordinates φ, θ that describe,

respectively, the joint angle between the two bodies and the orientation of one body

relative to a fixed inertial system.

I2

I1

θ

φ

Figure 70: Elroy’s beanie. The darkly shaded ellipse is Elroy, and
the lightly shaded one is his beanie.

We assume there are no external forces or torques, but that an internal torque permits



157

variation of the joint angle. Let I1, I2 be the moments of inertia about the vertical

axis through the pin. Conservation of angular momentum for this system implies

I2 ∆φ+ (I1 + I2) ∆θ = 0, and consequently

∆θ = − I2

I1 + I2

∆φ. (85)

That is, if the beanie undergoes a rotation of ∆φ relative to the first body, then

Elroy undergoes a rotation of − I2
I1+I2

∆φ relative to the environment. As mentioned

in [37], this result may be interpreted as geometric phase arising from the mechanical

connection for this system, but no derivation is given. I give the derivation here

in order to concretely illustrate the mechanical connection and the geometric phase

formula (81).

The Lagrangian L : TQ→ R for the system is

L =
1

2
I2(φ̇+ θ̇)2 +

1

2
I1θ̇

2.

From this the fiber derivative FL : TQ → T ∗Q, given in coordinates by FL(q, q̇) =

∂L
∂q̇i

dqi, is seen to be

FL(φ, θ, φ̇, θ̇) = I2(φ̇+ θ̇) dφ+
(
I2(φ̇+ θ̇) + I1θ̇

)
dθ.

There is a natural G := S1 action Φ : G×Q→ Q given by

Φψ(φ, θ) = (φ, θ + ψ),

corresponding to rotation of the entire system through angle ψ. This action makes

Q → Q/G into a trivial principal G-bundle over Q/G ∼= S1. The coordinate on
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the base is, of course, φ. By inspection, the tangent lift of this action is given by

TΦψ : (φ, θ, φ̇, θ̇) 7→ (φ, θ + ψ, φ̇, θ̇), from which we also see that L is invariant under

the tangent-lifted action. Since the Lie algebra g := T1S
1 is one-dimensional, we

identify it with R. The exponential map exp : g→ S1 is computed to be exp(ξ) = ξ.

Using this, the fundamental vector field for the action corresponding to a Lie algebra

element ξ is computed to be

ξQ = ξ
∂

∂θ
.

Let q = (φ, θ) denote a general point of Q, so in tangent-lifted coordinates, (q, q̇) =

(φ, θ, φ̇, θ̇). The momentum map J : TQ→ g∗ is determined by

〈J(q, q̇), ξ〉 = 〈FL(q, q̇), ξQ(q)〉

=

〈
I2(φ̇+ θ̇) dφ+

(
I2(φ̇+ θ̇) + I1θ̇

)
dθ, ξ

∂

∂θ

〉
=
(
I2(φ̇+ θ̇) + I1θ̇

)
ξ.

By identifying g∗ ∼= R∗ with R via multiplication, it follows that

J(q, q̇) = I2(φ̇+ θ̇) + I1θ̇,

which is nothing but the total angular momentum of the system about the axis

through the pin. To compute the locked inertia tensor I(q) : g→ g∗ at q, let ξ, η ∈ g.
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Then

〈I(q)ξ, η〉 = 〈FL(ξQ(q)), ηQ(q)〉

=

〈
FL(φ, θ, 0, ξ), η

∂

∂θ

〉
=

〈
I2ξ dφ+ (I2 + I1)ξ dθ, η

∂

∂θ

〉
= (I2 + I1)ξη.

In general, if dim g = n then the linear map I(q) : g → g∗, when identified with the

bilinear map I(q) : g×g→ R : (ξ, η) 7→ 〈I(q)ξ, η〉, is represented in coordinates by the

n × n matrix (I(q)ij) such that if ξ = ξiei and η = ηjej relative to a basis e1, . . . , en

for g then 〈I(q)ξ, η〉 = I(q)ijξiηj. In this case, dim g = 1, so I(q) is simply a scalar,

and the preceding computation implies

I(q) = I1 + I2, I−1(q) =
1

I1 + I2

.

Note that I(q) = I1 + I2 is just the inertia of the “locked” system (i.e. with the joint

angle φ fixed). The mechanical connection Γ : TQ→ g is determined by

Γ(q, q̇) = I−1(q) ◦ J(q, q̇) =
I2(φ̇+ θ̇) + I1θ̇

I1 + I2

=
I2

I1 + I2

φ̇+ θ̇.

It could be concluded here that since Γ = 0 along a horizontal trajectory, θ̇ = − I2
I1+I2

φ̇,

integration of which gives recovers (85). However, in order to illustrate the concepts

of local connection and geometric phase, I continue. It follows from the previous

display that as a g-valued 1-form on Q,

Γ =
I2

I1 + I2

dφ+ dθ.
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The local connection form A : T (Q/G)→ g is

A(φ, φ̇) = Γ(φ, e, φ̇, 0) =
I2

I1 + I2

φ̇,

where e denotes the identity element of S1. Hence as a g-valued 1-form on Q/G ∼= S1,

A =
I2

I1 + I2

dφ.

Now assume a curve t 7→ φ(t) is given in the base S1, and that initially θ(0) = θ0.

Since G = S1 is abelian, according to (81) the horizontal lift of the base curve φ to

Q is the curve t 7→ (φ(t), θ(t)) where θ(t) is given by

θ(t) = θ0 exp

(
−
∫ t

0

A(φ(s), φ̇(s)) ds

)
.

Since the group is additive, and since the exponential map on S1 is exp(ξ) = ξ, by

putting ∆θ = θ(t)− θ0 and ∆φ = φ(t)− φ(0) this formula recovers (85),

∆θ = −
∫ t

0

I2

I1 + I2

φ̇(s) ds = − I2

I1 + I2

∆φ.



APPENDIX B: AN EXAMPLE OF DIRAC’S METHOD

I present here an expanded version of an example of Dirac’s method appearing in

[47]. Consider a particle of mass m moving in Q = R2 with Euclidean coordinates q =

(x, y). The phase space is the cotangent bundle P := T ∗Q = T ∗R2 with coordinates

(x, y, px, py) and endowed with the canonical symplectic form

Ω := dx ∧ dpx + dy ∧ dpy.

This induces the canonical Poisson bracket {f, g} := Ω(Xf , Xg) =
∑

i
∂f
∂qi

∂g
∂pi
− ∂f

∂pi

∂g
∂qi
.

Explicitly, if f, g : P → R are smooth functions, then

{f, g} =

(
∂f

∂x

∂g

∂px
+
∂f

∂y

∂g

∂py

)
−
(
∂f

∂px

∂g

∂x
+
∂f

∂py

∂g

∂y

)
.

Assume the particle is constrained to move along the graph of

f(x, y) = 0 (86)

for some smooth function f such that df is never zero. This last condition implies

that zero is regular value of f , and so f−1(0) is an embedded submanifold of P by the

level set theorem. In applying the Dirac method, the constraint submanifold S ⊂ P

must be a symplectic submanifold, and so in particular S must be even dimensional.

Therefore, an even number of independent constraints are required. To find another

constraint, note that f is identically zero along the particle’s trajectory. Since the
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vector field X = px
∂
∂x

+ py
∂
∂y

is tangent to the particle’s trajectory, it follows that

Xf = 0; that is,

px
∂f

∂x
+ py

∂f

∂y
= 0. (87)

More prosaically, (87) says the particle’s momentum is tangent to the graph of f . Now

there are four coordinates and two constraint equations, (86) and (87). To apply

Dirac’s method, change coordinates from (x, y, px, py) to coordinates (x, y, z3, z4),

where z3 and z4 are defined by

z3 := f(x, y),

z4 := px
∂f

∂x
+ py

∂f

∂y
,

so that in these coordinates the constraint submanifold S consists of the level set

{z3 = z4 = 0}. The constraint matrix is

(Cij) :=

{z3, z3} {z3, z4}

{z4, z3} {z4, z4}

 =

 0 {z3, z4}

−{z3, z4} 0

 ,

the last equality following by antisymmetry of the Poisson bracket. Explicitly,

{z3, z4} =

(
∂z3

∂x

∂z4

∂px
+
∂z3

∂y

∂z4

∂py

)
−
(
∂z3

∂px

∂z4

∂x
+
∂z3

∂py

∂z4

∂y

)
=

(
∂f

∂x

∂f

∂x
+
∂f

∂y

∂f

∂y

)
−
(

0
∂z4

∂x
+ 0

∂z4

∂y

)
=

(
∂f

∂x

)2

+

(
∂f

∂y

)2

.
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Hence

(Cij) =

[(
∂f

∂x

)2

+

(
∂f

∂y

)2
] 0 1

−1 0

 ,

(Cij) = (Cij)−1 =
1(

∂f
∂x

)2
+
(
∂f
∂y

)2

0 −1

1 0

 .

To be definite, assume the particle is in a uniform gravitational field and has Hamilto-

nian H := p2x
2m

+
p2y
2m

+mgy. Assume further that f(x, y) = y− x2, so that the particle

is constrained to move along the graph of y = x2. Then df = −2xdx + dy 6= 0,

and (∂f
∂x

)2 + (∂f
∂y

)2 = 1 + 4x2. A tedious computation leads to the following system of

first-order equations

ẋ = [x,H] =
px + 2xpy
m(1 + 4x2)

,

ẏ = [y,H] =
2x(px + 2xpy)

m(1 + 4x2)
,

ṗx = [px, H] = −2(pxpy +m2gx)

m(1 + 4x2)
,

ṗy = [py, H] =
2(p2

x − 2m2gx2)

m(1 + 4x2)
.

Note that ẏ = 2xẋ, so that dy
dx

= 2x and y = x2 + constant, as required.


