
IMPLEMENTATION OF PATH PLANNING ALGORITHMS ON A MOBILE
ROBOT IN DYNAMIC INDOOR ENVIRONMENTS

by

Aishwarya A. Panchpor

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Electrical Engineering

Charlotte

2018

Approved by:

Dr. James M. Conrad

Dr. Andrew R. Willis

Dr. Ronald Sass

ii

c©2018
Aishwarya A. Panchpor

ALL RIGHTS RESERVED

iii

ABSTRACT

AISHWARYA A. PANCHPOR. Implementation of path planning algorithms on a
mobile robot in dynamic indoor environments. (Under the direction of DR. JAMES

M. CONRAD)

The objective of this thesis was to review and analyze existing algorithms for robot

localization and mapping in dynamic indoor environments. Some of the existing algo-

rithms include occupancy grid approach, artificial intelligence approach, dense scene

flow approach for localization and mapping in dynamic environments. The occupancy

grid approach maintains static and dynamic occupancy grids in parallel. The artifi-

cial intelligence approach uses efficient path planning algorithms like Reinforcement

Learning along with Simultaneous Localization and Mapping (SLAM) to find a path

and map the unknown dynamic environment. The dense scene flow approach detects

moving objects to improve the visual SLAM process.

The review phase of this work included identifying different approaches and classi-

fying them. The classification of the different approaches was based on sensors used

(in the data acquisition process), localization method used, and map management

techniques used. These approaches were categorized into fixed sets. The review of

these algorithms lead to a comparison of the already obtained results of these algo-

rithms.

The analysis phase of this work included implementing path planning algorithms

on TurtleBot2 with real-time obstacle detection and avoidance. The results obtained

were evaluated in terms of a set of fixed parameters. These parameters were accuracy

of the algorithm, total time for execution, and errors in planning the final path for

the robot.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. James Conrad for being a constant source

of support and encouragement right from the first semester of my Master’s program.

Dr. Conrad’s Embedded Systems coursework inclined me towards research. In the

course of my thesis, he has helped me realize my potential and always motivated me

to aim higher and achieve better results. Dr. Conrad introduced me to the TurtleBot

which is the primary component of my thesis work. I am very grateful to Dr. Conrad

for guiding me towards achieving my Master’s degree.

I would also like to thank my thesis advising committee members Dr. Andrew

Willis and Dr. Ronald Sass. Dr. Willis has always helped me in overcoming the

different challenges I was facing during the implementation phase of my thesis. His

coursework on Mobile Robot Sensing, Mapping and Exploration piqued my interest

in this domain. Dr. Sass’ coursework on Advanced Embedded Systems helped me

in understanding the very basics of any embedded system. His lectures on this topic

were very beneficial for my academics as well as my thesis work.

I also want to thank Dr. Sam Shue for his help and guidance all along this thesis.

Right from selection of topic for my thesis till the actual implementation of my work,

he has helped me every step of the way. I am thankful for all his ideas and suggestions

to implement and test my thesis work.

My parents and my sister have always supported me and without their encour-

agement, this work would not have been possible. I would also like to thank my

friends and roommates, Bhagyashree Desai and Karishma Keshav for all their help

and support during the course of this thesis.

v

TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF TABLES xi

LIST OF ABBREVIATIONS xii

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 1

1.2. Completed Thesis Work 3

1.3. Organization of the Report 4

CHAPTER 2: LITERATURE SURVEY 5

2.1. Survey of Existing Methods 5

2.2. Artificial Intelligence-based Approach 6

2.2.1. Reinforcement Learning as Control System 7

2.2.2. Inverse Optimal Control 7

2.3. Particle Filter-based Approach 8

2.3.1. Distance Filter and Scan Matching 8

2.3.2. Server-Agent Architecture 10

2.3.3. RFID Tags and Dynamic Bayesian Network 11

2.3.4. Modified Particle Filter 13

2.4. GraphSLAM-based Approach 13

2.4.1. Use of Static Point Weighting 13

2.4.2. Long-Term Mapping 15

2.4.3. Use of Moving Landmarks 15

vi

2.5. Visual SLAM-based Approach 16

2.5.1. Visual SLAM and Dense Scene Flow Approach 16

2.5.2. Visual SLAM and Exclusion of Dynamic Features 17

2.6. Other Methods 18

2.6.1. Use of Path Planning Algorithms 18

2.6.2. Use of Segmentation 18

2.6.3. Real-time 3D Data-based Obstacle Avoidance 19

2.6.4. Use of Navigation Function 19

2.6.5. FPGA-based Approach 20

2.7. Inference from the Survey 20

CHAPTER 3: IMPLEMENTATION 22

3.1. Introduction to Path Planning 22

3.2. Map Representations 22

3.3. Types of Path Planning Algorithms 23

3.3.1. Dijkstra’s Algorithm 23

3.3.2. A* Algorithm 27

3.4. Introduction to Robot Operating System 30

3.5. System Configuration 32

3.5.1. TurtleBot2 Specifications 32

3.5.2. Assumptions 34

3.6. Implementation 34

3.6.1. Gmapping and AMCL 34

3.6.2. A* algorithm 37

vii

3.6.3. Optimized Path Planner Algorithm 40

CHAPTER 4: RESULTS 44

4.1. Navigation on ROS Gazebo using Gmapping and AMCL 44

4.1.1. Output from the Built-in Path Planner 44

4.1.2. Limitations of Built-in Path Planner 51

4.2. Navigation on ROS Gazebo using A* Algorithm 54

4.3. Navigation on ROS Gazebo using the Optimized Path Planner
Algorithm

55

4.3.1. Output from the Optimized Path Planner Algorithm 55

4.3.2. Limitations of the Optimized Path Planner Algorithm 58

4.4. Navigation on TurtleBot using the Optimized Path Planner
Algorithm

65

4.5. Comparison of Different Path Planner Algorithms 73

CHAPTER 5: CONCLUSIONS AND FUTURE SCOPE 74

REFERENCES 77

viii

LIST OF FIGURES

FIGURE 2.1: Architecture of cooperative SLAM 11

FIGURE 2.2: Dynamic Bayesian Network model 12

FIGURE 2.3: Visual odometry system 14

FIGURE 2.4: Use of segmentation 19

FIGURE 3.1: Map Representation 23

FIGURE 3.2: Dijkstra’s Algorithm 25

FIGURE 3.3: Dijkstra’s Algorithm 25

FIGURE 3.4: Dijkstra’s Algorithm 26

FIGURE 3.5: Dijkstra’s Algorithm 26

FIGURE 3.6: A* Algorithm 30

FIGURE 3.7: TurtleBot2 32

FIGURE 3.8: Kinect Camera 33

FIGURE 4.1: Static World 45

FIGURE 4.2: Map from Gmapping 45

FIGURE 4.3: New Static World 46

FIGURE 4.4: Map and World Prior to Navigation 47

FIGURE 4.5: Start point in the map 48

FIGURE 4.6: Goal point in the map 48

FIGURE 4.7: Planned trajectory for the TurtleBot 49

FIGURE 4.8: Mid-path trajectory for the TurtleBot 50

FIGURE 4.9: TurtleBot reaches the goal point 50

ix

FIGURE 4.10: Messages on the terminal 51

FIGURE 4.11: Obstacle In Map 52

FIGURE 4.12: Obstacle In Map 52

FIGURE 4.13: Output on the terminal when the TurtleBot collides with
an object and tries to re-plan the path

53

FIGURE 4.14: Output on the terminal after the built-in planner tries to
re-plan the path and fails to reach the goal point

53

FIGURE 4.15: Output on the terminal indicating that there is collision
with an object in the world. Map and world displaying the collision
of the TurtleBot with the cylindrical object

54

FIGURE 4.16: Map and World Prior to Navigation 56

FIGURE 4.17: Solid cylinder is moved from its location which is detected
as an obstacle in the path of the TurtleBot

56

FIGURE 4.18: Solid cylinder moved again and detected again as an ob-
stacle in the path of the TurtleBot

57

FIGURE 4.19: TurtleBot is able to find a path around the obstacle 57

FIGURE 4.20: Goal point reached after re-planning the path 58

FIGURE 4.21: Map and World Prior to Navigation 59

FIGURE 4.22: Edge of the wall detected as an obstacle by the sensor 60

FIGURE 4.23: Leg of the table detected as an obstacle by the sensor 61

FIGURE 4.24: Unable to detect table top as an obstacle 62

FIGURE 4.25: Unable to re-plan the path as the sensor does not detect
the table top as an obstacle

63

FIGURE 4.26: Unable to reach the goal point on account of the obstacle
which cannot be perceived by the sensor

64

FIGURE 4.27: Map of the UNCC ECE lab 66

x

FIGURE 4.28: Start point selection 66

FIGURE 4.29: Start position for the TurtleBot 67

FIGURE 4.30: TurtleBot starts moving on the planned path 68

FIGURE 4.31: Obstacle is detected in the path of the TurtleBot and it
turns to avoid the obstacle

69

FIGURE 4.32: TurtleBot starts moving on the new path and detects the
obstacle again

70

FIGURE 4.33: TurtleBot turns again to avoid the obstacle 71

FIGURE 4.34: TurtleBot reaches the goal position 72

xi

LIST OF TABLES

TABLE 2.1: Comparison of Static and Dynamic Methods 10

TABLE 2.2: Comparison of Error for CSAIL Reading Room 15

TABLE 2.3: Comparison of the Distance Covered 16

TABLE 2.4: Indoor Experimental Results 17

xii

LIST OF ABBREVIATIONS

AMCL Adaptive Monte Carlo localization

AOI Area Of Interest

APF Artificial Potential Field

DBN Dynamic Bayesian Network

DPG Dynamic Pose Graph

DWA Dynamic Window Approach

ECE Electrical and Computer Engineering.

EKF-SLAM Extended Kalman Filter Simultaneous Localization and Mapping

HMM Hidden Markov Model

IAICP Intensity Assisted Iterative Closest Point

ICGM Incremental Center of Gravity Matching

LRF Laser Range Finder

RBPF Rao-Blackwellised Particle Filter

RL Reinforcement Learning

ROS Robot Operating System

SLAM Simultaneous Localization and Mapping

UNCC University of North Carolina at Charlotte

CHAPTER 1: INTRODUCTION

1.1 Motivation

Commercial robots have been in existence for more than 50 years. The earlier

robots were preprogrammed to carry out specific tasks in a fixed environment. Over

the years, due to the use of powerful sensors, the robots were able to detect obstacles.

The robots that were developed in this period were able to take actions by processing

the input from the sensors. Ultrasonic sensors, infrared sensors, and laser range

finders are the most popular distance sensors. Cameras are powerful sensors used in

a wide variety of applications. The images from a camera can be processed to detect

natural landmarks like the presence of walls, doors, windows or artificial landmarks

strategically placed for localizing the robot in unknown environments. To process the

data received from these sensors, image and signal processing techniques are used.

The processed data is then used to send out control signals to the robot. Control

theory is the most widely used technique to issue commands to the robot or to decide

action to be taken by the robot.

The use of robots to reduce human effort and simultaneously increase process effi-

ciency has expanded to a great number of fields. Robots are being used in industry

for tasks which require heavy lifting. For example, in the transportation industry,

a robot lifting heavy equipment reduces the human effort. The car manufacturing

industry uses high-precision robotic arms to streamline the production line. The

medical robotics field is continuously growing. Use of surgical robots to perform min-

imally invasive and highly precise procedures, use of rehabilitation robots to improve

strength and coordination of people with disabilities, use of disinfection robots to

sterilize operating rooms for sensitive medical procedures are some of the applica-

2

tions of robotics in the medical field. Robots are also used for surveillance purposes,

to gather information in space exploration missions and in the study of underwater

environments. These are few of the large scale applications of robots.

Use of robots is no longer limited to large scale industries. Robots are now being

used in our everyday life. The robotic vacuum cleaner Roomba has made home floor

cleaning a trivial task. Laundroid, a completely autonomous laundry folding robot

for washing, drying, folding and sorting clothes is another example of day to day use

of robots. Another category of robots is social robots. These are mainly used as

caretaker and companion robots.

All these different uses of robots need to sense their environment and build a

comprehensive map for moving around in the environment. This has led to the devel-

opment of various algorithms for effective localization and mapping in the presence

of moving obstacles. A mobile robot needs to simultaneously solve many problems

like sensing, mapping, localization, path planning, obstacle detection and avoidance

for a completely autonomous system [1]. When a robot needs to go from one point

to another, it needs a definite path. Path planning algorithms play a key role in au-

tomating the movements of a robot. In real world scenarios, the environment in which

a mobile robot has to operate is dynamic due to moving obstacles. Unlike humans,

a robot cannot adapt to the constant changes in the environment. In the pursuit of

building intelligent robots, various path planning algorithms have been developed to

aid the movements of a robot when the environment is changing continuously. These

intelligent robots have the ability to sense the obstacles in the field of vision of the

robot and re-plan its path so that it is able to avoid the obstacle and continue towards

its desired goal. Real-time obstacle detection and avoidance has been a challenging

problem to solve. Because of the varied nature of the obstacles in the surroundings, it

is difficult to model the obstacles. If the nature of the obstacles is known in advance

then it is easier to categorize the obstacles. For example, if the moving obstacles

3

are boxes of fixed length, width and height then it is relatively easier to avoid these

obstacles. Another method to detect and avoid obstacles is to assign them a motion

model and re-plan the path of the robot according to their movement. These scenarios

only consider obstacles that fit in a set of specifications. If the nature of the obstacle

is not known prior to their detection, then it is difficult to re-plan the path of the

robot. The motivation for this thesis is the need to solve the problems arising due to

the dynamic nature of the environment as the robot moves from the start point to

its goal point.

1.2 Completed Thesis Work

Over the years, various path planning algorithms have been developed to guide a

robot from the start point to the goal point. These algorithms work on the premise

that the robot has a map of the environment and the position of the robot in this

map is known. Combining powerful path planning algorithms with real-time obstacle

detection and obstacle avoidance is the main purpose of this thesis.

The work presented in this thesis aims at comparing the implementation of various

path planning algorithms in the presence of moving obstacles. The algorithms that

have been studied and implemented are Dijikstra’s algorithm and A* algorithm. The

algorithm developed as part of this thesis is a path planner which takes the minimum

number of turns with real-time obstacle detection and avoidance. The Reinforcement

Learning algorithm has also been studied as part of the background study and im-

plemented on an arbitrary grid map. The moving obstacles are assumed to have a

height equal to or greater than the height of the sensor installed on the robot. The

robot used for the purposes of implementation is the TurtleBot2. The contribution of

this work is to compare the performance of the path planner developed in the imple-

mentation phase to the path found from implementation of Reinforcement Learning

on the same grid in the presence of moving obstacles. The work presented in this

thesis shows how the built-in global planner fails in the presence of moving obstacles

4

and the implementation of the path planner developed in this work. Also, the system

uses only the Kinect sensor installed on the TurtleBot2 to detect and avoid obstacles

which makes it a very low cost option. The results are compared based on the robot

reaching the goal point while detecting and avoiding obstacles and the time required

to plan the path using various path planning algorithms.

1.3 Organization of the Report

This section gives an overview of the organization of the report. The remainder

of the report is organized into following sections: Literature Survey, Implementation,

Results, Conclusions and Future Scope, References, and Appendix.

Chapter 2 presents a survey of various algorithms that have been developed to

detect and avoid obstacles while localizing the robot and mapping the environment.

Some of the algorithms that are surveyed work under the assumption that the map

is already given. Some of them assume that the localization of the robot is given or

the robot has perfect odometry. These cases are further discussed in Chapter 2.

Chapter 3 discusses the different path planning algorithms, their pseudo code,

advantages and disadvantages, and their implementation. The implementation of

the proposed optimised path planner algorithm with real-time obstacle detection is

further explained in Chapter 3. This chapter also explains the configuration and

specifications of the system.

Results obtained from the implementation of the different algorithms discussed in

Chapter 3 are presented in Chapter 4. It includes images of the map used and images

of the robot as it follows the path. It also includes images of the obstacles used. This

chapter also discusses the time required for the algorithms.

Chapter 5 concludes the work done in this thesis and interprets the results that

have been presented in Chapter 4. It also discusses the future scope for this thesis.

CHAPTER 2: LITERATURE SURVEY

2.1 Survey of Existing Methods

Mobile robot localization and mapping is an essential part of building an au-

tonomous system. Simultaneous Localization and Mapping (SLAM) algorithms are

used to build a map of an unknown environment, while keeping track of the position

of the robot. Probabilistic formulations are based on Extended Kalman Filters, par-

ticle filters, and maximum likelihood estimation for approximating the pose of the

robot and map have been reviewed by Durrant-Whtye and Bailey in their two survey

papers [2, 3]. Most of the SLAM methods are developed with the assumption that the

environment is static. The work presented in [4] uses the wireless signal strength to

localize the robot in indoor environments. When the environment consists of moving

objects, their pose changes affect the localization and mapping of the mobile robots.

In real life scenarios, there are moving obstacles like humans in the path of the

robot. Apart from humans, there are objects which may change their positions such

as tables and chairs. In an industrial setting, there may be shelves or cabinets which

are relocated from time to time. In such dynamic environments, the mobile robot

must perform SLAM and account for these possible changes within the environment

to avoid obstacles to reach the desired goal point. To cope with the dynamic changes,

previously explored regions of the map must be updated to account for these dynamic

aspects of the environment.

Static and dynamic maps are created for a complete description of the environment

over time [5]. The method described in this work assumes that the localization of the

robot is already established. The occupancy grid techniques [6] are used for creating

a static map and a dynamic map. Occupancy probability is defined for each cell

6

in both maps. The confidence that the cell is occupied or not is indicated by the

occupancy probability. Dynamic objects are represented as free space in the static

map and static parts of the environment are represented as free space in the dynamic

map. In both the static and the dynamic map, the inverse observation model is used

to define if the occupancy probability will be high or low based on the occupancy

states in the previous static or dynamic map respectively and the current sensor

information. Object detection is carried out by setting a high threshold (in this case

0.85) to the occupancy probability of a region to detect a moving object. Objects

are differentiated and classified based on their size. Whenever there is a new sensor

reading, to determine if the new cell is part of an existing moving object or if it is a

new moving object, the system checks the neighboring cells for objects in the dynamic

map. If there exists a moving object in the cells close to the newly observed cell, then

that cell is incorporated into that object. Otherwise, it is considered as a new moving

object.

Various SLAM methods like Extended Kalman Filter Simultaneous Localization

and Mapping (EKF-SLAM) [7], FastSLAM [8], GraphSLAM [9] have been devel-

oped for uninhabited and static environments. For dynamic environments, obstacle

avoidance plays an important role.

The following sections illustrate different methods developed for localization and

mapping of mobile robots along with obstacle avoidance in dynamic indoor environ-

ments.

2.2 Artificial Intelligence-based Approach

The artificial intelligence based approach of Reinforcement Learning (RL) [10] is

used to find a path and create a map of the unknown environment. The following

two methods combine RL and SLAM for dynamic indoor environments.

7

2.2.1 Reinforcement Learning as Control System

The work by Arana-Daniel et al. [11] focuses on integrating reinforcement learning

for navigation in unknown and dynamic environments and utilizes a SLAM algorithm

for localization and mapping. EKF-SLAM and fast-SLAM have been used in this

implementation. Reinforcement Learning (RL) algorithm known as Q-Learning, a

type of RL algorithm, has been used for this application. It consists of state-action

pairs, a function of immediate reward for action taken, and a Q value function to

determine quality of the action taken. The Q function is defined as follows,

Q(st, at)→ Q(st, at) + α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)]

Where α is the learning rate, r is the reward, t is the time taken, s denotes the state,

and γ is the forgetting factor. In this implementation α=0.9 and γ is eliminated. An

expected map is given to obtain the optimal route and the same RL algorithm is

used for obstacle avoidance in dynamic environments. To find alternative routes to

avoid obstacles, the long-term memory obtained from the first run of the Q-learning

algorithm is used. Reinforcement learning is used as the control input for the SLAM

algorithm. A desired exploration policy is used as a priori to guide the robot. The

scanning process creates two maps. The first map describes the environment in a

feature based way generated by the SLAM algorithm. The second map contains

the discrete representation of the environment and provides relevant information to

implement RL.

2.2.2 Inverse Optimal Control

Another method by Guevara-Reyes et al. [12] uses Reinforcement Learning and

SLAM to create a map and find a path in an unknown and dynamic environment. The

algorithm starts with an initial state and a goal. The initial desired route is obtained.

After the first observation, until the goal point is reached, the system continuously

updates the map with the current state of the robot and the new observations. The

8

route is updated based on the new observations and detection of obstacles. RL

algorithm is used for finding a new path in the presence of obstacles. The control of

the robot is executed based on the high order extension of Hopfield model (RHONN).

The neural network is trained with EKF wherein the weights in the neural network

are the state to be estimated. EKF is defined as,

Ki(k) = Pi(k)Hi(k)M
−1
i(k)

ωi(k+1) = ωi(k) + ηiKi(k)ei(k)

Pi(k+1) = Pi(k) −K(i,k)H
T
i(k)Pi(k) +Qi(k)

Mi(k) = [Ri(k) +HT
i(k)Pi(k)Hi(k)]

−1

ei(k) = xi(k) − x̂i(k)

Where Ki is the Kalman gain matrix, ωi is the weight (state) vector, Pi is the

prediction error covariance matrix, Ri is the measurement noise covariance matrix,

and each Hij entry of Hi is the derivative of one of the neural network outputs x̂i with

respect to one neural weight ωij. The Lyapunov Control Function is designed as an

inverse optimal controller which satisfies the passivity condition. The purpose of the

inverse optimal controller and the RHONN model is to force the angular velocities of

the left and right wheels of the robot to follow the desired reference signal. After the

control action is obtained, the prediction step and the measurement step of SLAM is

performed.

2.3 Particle Filter-based Approach

2.3.1 Distance Filter and Scan Matching

Sun et al. [13] presents an approach for localizing in dynamic environments with

the use of a particle filter, distance filter and a scan matching method and mapping

with the use of an extended sensor model. In scan matching, a multi-layer searching

technique is used to find the local maximum of the robot’s position given observations

9

of its environment through the use of a laser range finder. A matching score is obtained

which is used to prevent updates based on wrong estimates. For each measurement,

the distance filter computes the probability that the distance is shorter than expected

from the map as follows,

pshort(di) = Σlpshort(di|xl)× p(xl)

Where di is the measurement, xl is the position based on current belief and p(xl)

is given by the particle filter.

A full posterior distribution is unnecessary because only the latest configuration of

the map is of importance. Hence, the marginal distribution is recursively computed

for the current map using a Bayesian filter. Dynamic occupancy grid maps are used

to integrate the dynamic changes. The sensor model implemented is independent of

shape and type of the dynamic object. A standard SLAM approach is applied to

generate the initial map. Maximal translation error and maximal angle error are the

two parameters used to evaluate the quality of localization.

The system is also evaluated with the distance filter and scan matching disabled.

In this case, the map is updated in every iteration step which leads to divergence

of the map. This problem can be overcome if each particle updates and maintains

its own map which increases the load and usage of CPU and memory. The map-

ping results for the system were evaluated by comparing with the ground truth map.

Table 2.1 compares the error obtained by implementing Adaptive Monte Carlo local-

ization (AMCL) (from ROS package), AMCLDF (AMCL with Distance Filter), DL

which (method described in this paper), and DLsimple (DL with distance filter and

scan matching disabled). The results in Table 2.1 are for a production hall (104cm x

52cm). The first two methods do not update the map while the next two update the

map at run time.

10

Table 2.1: Comparison of Static and Dynamic Methods from [13]

Method Error (m) Error (degree) Success

Mean Variance Mean Variance

AMCL 1.791 3.868 10.212 21.245 0/10

AMCLDF 0.138 0.051 0.638 0.523 10/10

DLsimple 0.415 0.756 1.184 1.570 7/10

DL 0.126 0.059 0.687 0.629 10/10

2.3.2 Server-Agent Architecture

The work presented by Dorr et al. [14] uses sensor information from the mobile

robots and other stationary sensors to maintain up to date dynamic occupancy grid

maps of the changing environment. The transition probabilities are defined as,

po|fc = p(ct = occ|ct−1 = free) pf |oc = p(ct = free|ct−1 = occ)

And the transition matrix is as follows,

Ac = 1− pf |oc pf |oc

po|fc 1− po|fc

Where ct = occ and ct = free are two finite states of the hidden Markov model

(HMM). In this implementation, there are three possible outcomes for HMM cells z

εhit, miss, no-obs and the observation parameters p(z|c=free) and p(z|c=occ) only

depend on sensor characteristics.

The Rao-Blackwellized particle filter [15] is used along with a server-agent archi-

tecture. In the proposed architecture, the changes in the environment are sent by an

agent to the server and the server updates the global map. The mobile robot or differ-

ent stationary sensors are the agents and the server contains the dynamic occupancy

grid map. Each agent has an agent handler which integrates the changes received from

11

an agent into the global map and provides the agent with the required data from the

updated map. To detect dynamic changes in the environment and simultaneously

localize, a long-term SLAM algorithm is deployed using Rao-Blackwellised Particle

Filter (RBPF) on the agent side. The localization accuracy, total path lengths and

travel times of the robot are evaluated.

Figure 2.1: Proposed architecture of cooperative SLAM system based on [14]

2.3.3 RFID Tags and Dynamic Bayesian Network

Robot localization and mapping in semi-dynamic environments is carried out with

the help of RFID tags with unique identification code attached to semi-dynamic

objects [16]. This work also proposes SLAM-SD which consists of a framework of

(DBN) and Rao-Blackwellised Particle Filter. In the prediction of a particle, the

transition probability from time t-1 to time t is as follows:

D̃
(i)
t ← P (D̃

(i)
t |D

(i)
t−1)

X̃
(i)
t ← P (X̃

(i)
t |X

(i)
t−1)

D̃
(i)
t and X̃

(i)
t are the predicted particle state given by the transition probability

P (D̃
(i)
t |D

(i)
t−1) and P (X̃

(i)
t |X

(i)
t−1). Xt and Dt are the robot pose and the semi-dynamic

12

object pose at time t.

The particle is evaluated based on weight as follows:

ω
(i)
t αP (Zt, Ut|D(i)

t , X
(i)
t)

= P (It|D(i)
t)× P (Lt|D(i)

t)× P (Lt|, X(i)
t)

Where Ut indicates the odometry data, Zt is the sensor data, It indicates existence

of RFID tag, Lt indicates the range scan data.

The particle is resampled in the update step and the effectiveness of the particle is

evaluated based on the following,

Neff = 1/ΣN
i=1(ω

(i))2

The map M (1)
t is generated using P (M

(1)
t |Xt(i), Z1:t) probability for each particle

and time is incremented for the next iteration.

Figure 2.2: Dynamic Bayesian Network (DBN) model of SLAM-SD from [16]

The RFID tags convey the 3D geometrical information and relative coordinate

between the object and the RFID tag of the semi-dynamic object. The experiments

are conducted in a room environment where the location of the cabinets is changed,

and in a long corridor environment where the doors and dust boxes change states.

13

2.3.4 Modified Particle Filter

A modified particle filter is proposed by Vidal et al. [17] for simultaneous local-

ization and mapping in dynamic environments with the use of only static landmarks.

The work proposed in the paper uses FastSLAM [8] implementation with the removal

of mobile and/or similar landmarks. The SURF algorithm is used to extract feature

points to compute the descriptors consisting of the orientation and neighborhood of

that pixel. The outliers (moving landmarks) are identified based on the difference

between the correlation of the position of the landmarks. The matrix D stores these

Euclidean distances as defined below,

0, if pos(m,i) = pos(m,j) ∀m, 0 ≤ i ≤ N, 0 ≤ j ≤ N

Di,j =

CM
i - CM

j , if ∃m|pos(m, i) 6= pos(m, j)

Where pos is the position of the landmark m, N is the number of landmarks and

CM
t is the landmarks positions correlation matrix at time t.

The outlier filter ignores an observation if it belongs to the set of mobile landmarks.

The modified particle filter considers the set of static landmarks to estimate the pose

of the robot. The Trajectory Planner is used to build a 2D map of the environment

and detect obstacles with the help of laser sensor and odometry. The Ant Colony

Optimization algorithm is used to plan the trajectory of the robot. The modified

particle filter resamples a new set of particles at each estimate of the pose. The

weighted average of the positions by their respective beliefs of the particles decide the

estimate of the pose of the robot.

2.4 GraphSLAM-based Approach

2.4.1 Use of Static Point Weighting

The work presented in [18] proposes a static weighting method which downweighs

the dynamic edge points from the incoming frame. Static point weighting is used to

14

indicate the likelihood of foreground edge points (extracted from the incoming frame)

being part of the static environment. The depth edge points are matched between

consecutive frames by geometric and intensity distances. Static weights are computed

for every keyframe (Nth incoming frame) and intensity assisted iterative closest point

(IAICP) is used to transform from the keyframe to the current frame.

Figure 2.3: Visual odometry system implemented in [18]

The effect of dynamic objects is reduced by combining the static weights during

transformation and the static weights are then computed based on the estimated mo-

tion. Pose graph SLAM was used to address the problem of drifting of the robot pose.

For loop closure, the proposed method checks for three conditions. First condition is

to check geometric proximity of the new keyframe with ten randomly selected previ-

ous keyframes (Pr). Second condition is that there should be 30% or more common

visible part in the two frames, and third condition is forward backward consistency

check by registering the two frames twice (Pr as source frame and then as target

15

frame) using IAICP. The proposed system is evaluated on TUM RGB-D dataset.

2.4.2 Long-Term Mapping

The use of Dynamic Pose Graph (DPG) SLAM [19] for localization and mapping

is proposed in the work of Walcott-Bryant et al. This work aims at maintaining a

precise map of the gradually changing (low-dynamic) environment over a long period

of time. Changes in the environment are detected by comparing laser scans from

various time instances. Table 2.2 compares the ground truth error for DPG-SLAM

(reduces DPG size in every iteration) and DPG-SLAM-NR (does not reduce the DPG

size in every iteration) over 20 passes through the room and traveling 1km.

Table 2.2: Comparison of Error for CSAIL Reading Room [19]

Algorithm Error (cm)

DPG-SLAM-NR 3.9-13.4

DPG-SLAM 3.4-13.3

2.4.3 Use of Moving Landmarks

Due to moving landmarks, the localization and mapping of the mobile robot re-

sults in inaccurate localization of the robot and inaccurate maps. To minimize the

effect of moving landmarks, the work of Xiang et al. [20] proposes a model based

on Expectation Maximization which uses the mobility of landmarks in the Graph

SLAM process. Some moving landmarks are treated as outliers if the mobility is not

within the confines of a measurement function described as an augmented Gaussian

distribution as follows,

P (zk|xik, ljk, wjk)αexp(−wjkµ̃
T
k Σ−1k µ̃k),

µ̃k = vk(hk(xik, ljk)− zk)

Where wjk is the likelihood of the landmark ljk being static, zk is the measurement

16

at time k, vk is the scaling factor of each landmark representing whether the landmark

is an inlier.

2.5 Visual SLAM-based Approach

2.5.1 Visual SLAM and Dense Scene Flow Approach

The work of Alcantarilla et al. [21] focuses on improving the visual SLAM [22]

algorithm by means of dense scene flow representation of the environment to detect

moving objects for visually impaired users. The visual SLAM system uses a stereo

camera for visual odometry [23] and utilizes a hierarchical structure and motion re-

finement with Bundle Adjustment [24]. Harris corner detector [25] is used to detect

features between consecutive frames. The Mahalanobis distance of the 3D motion

vector is used to identify moving points. With the help of the residual motion like-

lihoods for every pixel in the current image, a moving object mask is created. The

proposed method was tested with visually impaired users in crowded environments

with pedestrians and cars (indoor and outdoor environments).

Table 2.3: Comparison of the Distance Covered [21]

Method Experiment 1

Error

Experiment 2

Error

Ground Truth (m) 647.00 447.00

Visual SLAM

Estimated tra-

jectory (m)

moving object

detection

646.07 (0.93) 449.79 (2.79)

without

moving object

detection

641.37 (5.63) 451.54 (4.54)

Table 2.3 compares the ground truth of the total path for two experiments with

17

the estimated trajectory length obtained from Visual SLAM. The error for estimated

length of visual SLAM with detection of moving objects is about 1 m for the ex-

periment 1 conducted at Atocha railway station and it is almost 3 m for the second

experiment 2 conducted at Alcala de Henares.

2.5.2 Visual SLAM and Exclusion of Dynamic Features

The proposed method called ICGM2.5 [26] excludes dynamic features to create

a map of indoor and outdoor environments. The external sensor used is a hand-

held monocular camera. The method proposed in this paper is an improvement on

an approach proposed by Kayanuma et al. called ICGM2.0 (Incremental Center of

Gravity Matching) [27] which is based on an approach proposed by Hua et al. called

Incremental Center of Gravity Matching (ICGM) [28]. In the method proposed in

this paper, the centroid is calculated after reducing the dynamic features. Also, the

center of gravity is calculated based on the features which have a shorter matching

distance. The system is evaluated based on the error rate obtained by dividing the

difference between the start and end points by the length of the whole visual odometry

for ICGM2.5[26], ICGM2.0 [27], ICGM [28], PIRF [29], and Libviso2 [30] as shown

in Table 2.4.

Table 2.4: Indoor Experimental Results based on [26]

Method Error rate (%) Time (s)

ICGM2.5[26] 0.46 1.22

ICGM2.0[27] 2.13 1.19

ICGM[28] 2.75 1.20

PIRF[29] 2.43 1.25

Libviso[30] 5.76 1.16

18

2.6 Other Methods

2.6.1 Use of Path Planning Algorithms

The absolute localization of the mobile robot is carried out with the help of 2D-

codes on the ceiling and a USB camera [31]. The ROS package hector-slam was

used to build 2D occupancy grid map. Adaptive Monte Carlo localization(AMCL)

algorithm was used for tracking the pose of a robot against a known map. The robot

generates an optimal path from the starting point to the destination based on the

established global map. The system uses the A* algorithm and DWA algorithm to

generate a new path to avoid obstacles.

Another method proposed by Maurovic et al. [32] for localization and path planning

in dynamic environments (with moving obstacles) is based on the D* algorithm with

negative edge weights.

2.6.2 Use of Segmentation

The work of Runz and Agapito [33] introduces a new technique to cope with mov-

ing objects in the environment. The proposed method segments the scene into back-

ground and foreground objects using either motion or semantic cues. The grouping

strategies are motion segmentation and object instance segmentation. These identify

static objects and objects due to their motion. The system maintains active models

with objects that are currently visible in the live frame and inactive models with

objects that were visible in the previous frames. For each frame the 6DOF rigid pose

of an active model is tracked and the entire frame is segmented based on motion

segmentation and multi class image segmentation. Motion segmentation associates

a pixel with a rigid motion model. If the connected region has adequate amount of

outliers, a new model is added to the list. Multi class image segmentation is based

on classifying each pixel based on deep learning approach. The fusion step involves

using the 6DOF pose to update the active model.

19

Figure 2.4: Overview of the method proposed in [33]

2.6.3 Real-time 3D Data-based Obstacle Avoidance

The work of Dirk Holz et al. [34] presents a method to scan the environment to

obtain continuous real-time 3D data, implement obstacle avoidance and perform on-

line SLAM. This method uses 6DOF pose representation. The implementation in this

paper uses KURT3D robot platform and IAIS 3D laser scanner. The Area of Interest

(AOI) is defined with the help of theta (pitch). The 3D information is maintained in

2D with the help of 2D obstacle maps (for obstacle avoidance) and 2D structure maps

(for robot self-localization). The mapping procedure involves transformation to keep

the map in alignment with odometry, removing obsolete points so that the dynamic

changes can be maintained in the map, and replacing the previously saved points by

the current (latest) laser scan data. The obstacle avoidance is implemented with the

help of three commands: steer (robot directed towards maximally free space), brake

(stop the robot when an obstacle is detected), turn (turns the robot and steers it out

of dead ends).

2.6.4 Use of Navigation Function

The proposed method by Iizuka et al. [35] uses Extended Kalman Filter Simulta-

neous Localization and Mapping along with Laser Range Finder (LRF) for mapping

20

and navigation in a dynamic environment. A Navigation function which is a type of

Artificial Potential Field (APF) [36] is used to generate orbits to avoid obstacles. The

proposed method was tested in a simulated environment. The Navigation function

ensures whether a safe distance was maintained between the robot and the obstacle

in a dynamic environment. The results in the paper indicate that in the simulated

environment, the point mass robot reached the goal point without colliding with the

moving obstacles.

2.6.5 FPGA-based Approach

A hardware efficient design implemented on FPGA (Spartan 6) for multiple robots

to reach the goal point in the presence of static and dynamic obstacles in indoor

environments is proposed by Chinnaaiah et al. [37]. This work presents an algorithm

for path planning and behavioral control between two robots. The robots communi-

cate with the help of RF transceivers. An IR beacon sensor acts as the goal point

and the leader robot plans the path to be traversed by both the robots. The leader

robot senses the obstacles with the help of an ultrasonic sensor and conveys this in-

formation to the follower. The obstacle avoidance module evaluates the object and

dynamic obstacles are avoided by a 32-bit counter. The proposed algorithm computes

the shortest path for multi robot system and uses an FPGA as a control module. Both

of these factors lead to low power consumption.

2.7 Inference from the Survey

The above sections describe various methods for mobile robot localization and

mapping with obstacle detection and avoidance in dynamic indoor environments.

This chapter gives an overview of a wide range of methods but the scope of this

topic being so vast, there are numerous methods which can achieve similar outcomes.

The different methods are evaluated in terms of a wide variety of parameters and a

concrete comparison can be presented if they are implemented under the same set of

21

conditions. The continuous improvement of the existing methods and development

of new ways to deal with the issues arising in dynamic indoor environments has led

to better results. Since many problems in mobile robot localization and mapping in

dynamic indoor environments do not have a robust solution, there is a great deal of

scope for further research and development in this field.

CHAPTER 3: IMPLEMENTATION

3.1 Introduction to Path Planning

Path planning has played a key role in the movement and navigation of robots.

Path planning algorithms require a map of the environment. Localization of the

robot is not taken into consideration by the path planning algorithms. The primary

purpose of path planning algorithms is to find the optimal path from the start point

to the goal point. This optimal or best path is decided on various factors. These

path planning algorithms compute the shortest path between the start point and the

goal point. Most of times there are multiple ways to reach the goal point. These

algorithms evaluate the cost or steps to reach the goal point. Based on the cost

to move from one position to the next, the particular movement is selected. The

use of cost for selecting the step to be taken is explained in the next few sections.

Some specialized path planning algorithms focus on developing an optimal path in

accordance to specific conditions. For example, some paths need to be optimal around

turns. So the best path would contain the least number of turns. If this means taking

a longer route to reach the goal point, that would be considered valid since the

number of turns is optimal. So, in this case, the number of turns acts as the deciding

parameter for selecting the optimal path.

3.2 Map Representations

To implement any path planning algorithm, there has to be a map representation of

the environment. Maps can be expressed in metric or topological terms. The metric

maps have fixed coordinates for objects in the map and the distances are calculated

based on the distance between the coordinates of the two points. In a topological

23

map, the places in the map are stored with respect to the distance between them.

This creates a graph of the connected nodes and the distances between the nodes.

Another type of map representation is with the help of occupancy grids. Occupancy

grid maps consist of discretized squares (cells) of fixed resolution. These squares are

classified as either occupied or free. Occupied regions denote the presence of obstacles

in the occupancy grid. Probabilistic occupancy grids consist of a probability for each

cell that they contain an obstacle. Requirement of large memory for storage of these

occupancy grid maps is a drawback. As the size of the map increases, so does the

computational time to traverse the map and find the shortest path in the map.

Figure 3.1: Figure (a) is an example of an occupancy grid map and figure (b) is a
topological map [38, 39]

3.3 Types of Path Planning Algorithms

Path planning algorithms have been widely used in different domains. In the net-

working domain, they are used to find the optimal route for a data packet. In robotic

applications they are used to find the optimal route to the goal point.

3.3.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is one of the simplest and earliest algorithms to be developed

for path planning. In this algorithm, the shortest path is computed by connecting

nodes which have a minimum distance from the given set of nodes. Each connected

node v or u has a weight w(u,v) associated with it. Each graph consists of vertices

or nodes and weighted edges connecting two nodes. An array of the distance of each

24

node from the initial vertex s is maintained. This array dist(s) is initialized to infinity

indicating that none of the nodes have been visited and all of them are at infinite

distance from the initial vertex. The self-distance is initialized to zero. All the nodes

in the graph are store in a queue Q. An empty set S is initialized to store the visited

nodes. The algorithm works as follows:

• While the queue Q is not empty, a node v is popped fromQ which is not already

present in the set of visited nodes S and which has the smallest distance dist(v).

In the first run, the initial vertex s will be chosen since the distance of this node

has been initialized to zero.

• Add node v to the set S to indicate that this node has been visited.

• Update the distance values of the nodes adjacent to the current node v. For

each adjacent node u do the following:

– If dist(v) + w(u,v) < dist(u), there is a new minimum distance for

node u and this new minimum distance is updated.

– If the condition in the previous statement is not true then there is no

update for node u.

These steps are repeated until Q is empty. Now all the nodes have been visited

and the array dist consists of the shortest path from the initial vertex v.

An example of the Dijkstra’s algorithm can be seen from Figure 3.2, 3.3, 3.4 and

3.5. The starting node is A and the goal node is B. In the beginning, the distance

to all the nodes is initialized to infinity as seen in Figure 3.2. In the next step, the

distances to the neighbors of A are computed and these nodes are then added to the

set of visited nodes. This is shown in Figure 3.3. The node with the least distance is

selected in the next step and neighbors of that node are visited as shown in Figure

3.4. Figure 3.5 shows the final graph where all the nodes have been visited and the

25

final path from node A to B is selected based on the minimum distances to each node.

Figure 3.2: Step 1 of Dijkstra’s Algorithm [40]

Figure 3.3: Step 2 of Dijkstra’s Algorithm [40]

26

Figure 3.4: Step 3 of Dijkstra’s Algorithm [40]

Figure 3.5: Final graph of Dijkstra’s Algorithm [40]

One major disadvantage of this algorithm is that it does a blind search resulting in

high computation time. It explores every adjacent node to find the minimum distance

and hence for large graphs, the time taken to traverse the entire graph is also very

high. Another disadvantage is that this algorithm cannot handle negative weights.

27

3.3.2 A* Algorithm

A* algorithm is an extension of Dijkstra’s algorithm. It uses heuristic search to

find the shortest path in less number of computations (as compared to Dijkstra’s

algorithm). This algorithm is tailored to explore paths only in the direction of the

goal point. This is achieved by adopting a heuristic search. Breadth-First Search and

Dijkstra’s algorithm expand or explore in all directions. This means that paths to

all locations from the start point will be available by using Breadth-First Search and

Dijkstra’s algorithm. But in the case of A* algorithm, only the paths that will lead

to the goal point are explored.

A heuristic search approach for A* calculates the estimated distance to the goal and

uses this parameter to expand in the directions which have the minimum distances

with respect to the goal point. Higher priority is given to the nodes that have a lower

estimated distance to the goal. So, the actual distance to the node is calculated (same

as Dijkstra’s algorithm) and in addition to that, the estimated distance to the goal is

calculated. The estimated distance to the goal can be the Euclidean distance or the

Manhattan distance between the current point and the goal point. This estimated

distance to the goal point eliminates the nodes which do not expand in the direction

of the goal point.

The A* algorithm works as follows:

• Initialize two lists OPEN and CLOSE. The start node is put in the OPEN

list.

• While theOPEN list is not empty, calculate the total cost of movement denoted

by f(n) where n is the current node. This is computed as a sum of the actual

distance to the current node g(n) and the estimated distance to the goal node

from the current node h(n). It is given by the following formula:

f(n) = g(n) + h(n)

28

• Find the node q with the least f(n) value.

• Pop the current node q from the OPEN list.

• Generate the neighbors of the node q and set their parent node as q.

• For each successor of the selected node q,

– check if the successor node s is the goal node. If it is the goal node then

stop the search.

– Compute the g(s), h(s), and f(s) values for the successor node s

g(s) = g(q) + distance between successor node s and current node q

h(s) = h(q) + distance between the goal node to the successor node s

f(s) = g(s) + h(s)

– Check if there is a node with the same position as the successor node s in

the OPEN list which has a lower value of f(n) than the successor node.

If this condition is true then skip this successor node.

– Check if there is a node with the same position as the successor node s

in the CLOSED list which has a lower value of f(n) than the successor

node. If this condition is true, skip this successor node. If this condition

is not true then add the node to the OPEN list.

• Push the current node q onto the CLOSED list.

The value of h(n) (heuristic function) can be calculated in two ways:

• Exact heuristics: This can be done by pre-calculating the distance of each pair

of cells. If there are obstacles in-between a pair of cells, then the distance will

be different from the Euclidean distance. If there are no obstacles, then the

Euclidean distance would be the distance between those two cells. This is a

time consuming process. Also, the distance would be stored and the memory

requirement would increase.

29

• Approximate Heuristics: This can generally be done in three different ways:

1. Manhattan Distance: This the the sum of the absolute values of the differ-

ence between the x and y co-ordinates of goal node and the current node

respectively. It can be expressed as follows:

h = abs(current_node(x)− goal_node(x))

+ abs(current_node(y)− goal_node(y))

Manhattan distance is used when the robot can move in only four directions

(up, down, left, right).

2. Diagonal Distance: This is the maximum of the absolute values of the

difference between the x and y co-ordinates of goal node and the current

node respectively. It can be expressed as follows:

h = max(abs(current_node(x)− goal_node(x)),

abs(current_node(y)− goal_node(y)))

Diagonal distance is used when the robot can move in 8 directions (diag-

onal, vertical and horizontal).

3. Euclidean Distance: This is the distance between the current node and the

goal node using the distance formula. It can be expressed as follows:

h = sqrt((current_node(x)− goal_node(x)2)

+ (current_node(y)− goal_node(y))2)

Euclidean distance is used when the robot can move in any direction.

30

Figure 3.6: A* Algorithm on a grid map [41]

The A* algorithm can be explained with the help of Figure 3.6. The node in green

is the start node, node in blue is the goal node and the nodes in red give the shortest

path. The costs to all the nodes can be seen in the grid map. The cell with least cost

to move and the shortest estimated distance to the goal is selected. The diagonal

distance is used to estimate the distance to the goal node from the current node.

Even though two or more cells have the same cost of movement, the next node to be

selected is the one which has the least estimated distance to the goal node.

3.4 Introduction to Robot Operating System

This section gives a brief introduction to the Robot Operating System (ROS). It

is a framework consisting of various libraries and in-built tools developed to aid and

support the development of complex algorithms for robots.[42] ROS offers support

to various robotic platforms. ROS has different versions like hydro, indigo, kinetic

and many more. There are tutorials on how to create and build a ROS package. In

ROS, an executable which is connected to the ROS network is called a node. There

are different topics running on the ROS network. These topics publish their data

in the form of ROS messages and receive data in the form of ROS messages. ROS

nodes can publish messages to these topics or subscribe to receive messages from these

31

topics. There is a ROS Master which monitors the flow of messages form the different

topics on the ROS network. There are tutorials on how to write ROS publishers and

subscribers. These tutorials are generalized and would work on the robotic platforms

supported by ROS.

There are specialized ROS tutorials for the TurtleBot. The ROS TurtleBot tutorials

for different versions of ROS explain how to install and use the ROS packages on the

TurtleBot. The indigo TurtleBot supports Trusty version of Ubuntu. The network

is configured so that the remote PC can ssh to the TurtleBot PC. Rest of the setup

consists of setting up the environment variables correctly on the remote PC as well as

the TurtleBot PC. The IP address of the master node and the host node is specified

in the .bashrc file for both the systems. The turtlebot_3D_SENSOR environment

variable is set to kinect in the .bashrc file. Both the systems are configured to use

the same ROS master node. There are various packages which are developed for map

building and navigation of the TurtleBot. It also has a rviz_launchers package which

is used to visualize the robot on the PC screen. The Kobuki base and 3D sensor

camera (Kinect) are connected to the laptop.

ROS Gazebo simulator consists of a world which is a collection of different models,

light and global parameters.[43] Each model is made up of links and joints. The

hierarchy in Gazebo can be explained as follows:

• World

– Scene

– Physics

– Model

∗ Link

· Collision

· Visual

32

· Sensor

· Plugin

∗ Plugin

– Plugin

– Light

Gazebo enables rapid prototyping and testing algorithms for robotics applications.

Indoor as well as outdoor scenes can be created for testing purposes.

3.5 System Configuration

3.5.1 TurtleBot2 Specifications

The analysis phase of this thesis included the implementation of three path planning

algorithms. These algorithms were implemented on TurtleBot2 (Figure 3.7). It is a

low-cost robot kit with open-source software [44].

Figure 3.7: TurtleBot2 [44]

The TurtleBot2 hardware includes:

• Kobuki Base

• Asus Xion Pro Live

33

• Netbook (ROS Compatible)

• Kinect Mounting Hardware

• TurtleBot Structure

• TurtleBot Module Plate with 1 inch Spacing Hole Pattern

The software development environment includes:

• An SDK for the TurtleBot

• A development environment for the desktop

• Libraries for visualization, planning, and perception, control and error handling.

• Demo applications

The TurtleBot PC has Linux Trusty and ROS indigo running on it.

The Kinect sensor [45] on the TurtleBot (Figure 3.8).

Figure 3.8: Kinect Camera [45]

34

3.5.2 Assumptions

Following assumptions have been made for the implementation part of this thesis:

• The algorithm assumes that the robot maintains perfect odometry and does not

take into consideration the co-ordinates of the robot.

• The map of the environment was built prior to the implementation.

• The starting point and the goal point of the robot are estimated by looking at

the map.

• The length of any moving obstacle in the environment is not known in advance.

This length of the object is assumed to be 1m. The width of the obstacle is

also unknown. This width is set according to the sensor input. This is further

discussed in Section 3.6.3.

• The height of the obstacle is assumed to be greater than or equal to the height

of the sensor.

• The minimum distance that the robot has to maintain from obstacles (moving

or static) is referred as the threshold and is set to 0.8 meters. This distance

is selected by taking into consideration the minimum distance that the robot

can percieve which is 0.44999 for the sensor installed on the TurtleBot and the

distance it should maintain from obstacles.

3.6 Implementation

This section explains in detail the algorithms that have been implemented on the

TurtleBot as well as ROS Gazebo.

3.6.1 Gmapping and AMCL

In the ROS TurtleBot tutorials, map creation of the environment and autonomous

navigation in that map is explained. To start the master node, ’roscore’ command

35

was executed. To start the functionalities of ROS, the bringup file was launched by

the following command:

roslaunch turtlebot_bringup minimal.launch

This command initialized the sensors and started the Kobuki base.

To create the map, the gmapping package was used. This is a laser based SLAM

method. Following command was run on the ROS master node:

roslaunch turtlebot_navigation gmapping_demo.launch

The TurtleBot was then moved around with the help of a keyboard using the

following command:

roslaunch turtlebot_teleop keyboard_teleop.launch

To visualize the movement of the robot and the simultaneous map creation, the

RVIZ package was launched using the following command:

roslaunch turtlebot_rviz_launchers view_navigation.launch

After the TurtleBot had mapped the entire area of the required map, the map as

seen in the RVIZ GUI was saved using the following command:

rosrun map_server map_saver -f path_to_the_folder/name_of_the_file

The map was stored in the form of an image with the file format as PGM. Another

file containing the information regarding the map was also created by the map_server

node. This file (YAML format) consisted of the path to the image file of the map

(.pgm file), resolution of the map in meters per pixel, origin of the map, and occupied

and free threshold in the map.

After the map was created, the TurtleBot was able to navigate to any point in the

map by running the navigation stack and localization with AMCL. The navigation and

AMCL localization is included in the turtlebot_navigation ROS package. Following

command was used to export the map that was created using the slam_gmapping

package:

export turtlebot_MAP_FILE=path_to_the_folder/name_of_the_file.yaml

36

The navigation demo launch file was run to localize the robot using the following

command:

roslaunch turtlebot_navigation amcl_demo.launch

The RVIZ GUI was launched to visualize the robot and the map. The start point

and the goal point was decided by looking at this visualization in RVIZ. Following

command launched the RVIZ GUI:

roslaunch turtlebot_rviz_launchers view_navigation.launch –screen

The same procedure was used in ROS Gazebo using the following commands:

roslaunch turtlebot_gazebo turtlebot_world.launch

world_file:=path_to_the_world_file.world

This command launched the specified world in Gazebo.

roslaunch turtlebot_gazebo gmapping_demo.launch

This command started the map building process.

The RVIZ GUI was launched using the same command as described for the Turtle-

Bot. The map was saved using the map_server as described earlier.

The navigation in this map is same as described for the TurtleBot and launched

using the following command:

roslaunch turtlebot_gazebo amcl_demo.launch

map_file:=path_to_the_folder/name_of_the_file.yaml

The initial position and orientation of the robot was estimated by looking at the

map and clicking the 2D Pose Estimate button and pointing the arrow in the direction

of the orientation of the TurtleBot. This localized the TurtleBot in the map. The goal

point was selected by clicking on the 2D Nav Goal and selecting a point on the map

with the arrow pointing in the direction of the desired orientation of the TurtleBot.

The robot was able to reach the goal point. But it failed to do so if the path or the

goal was blocked.

The built-in path planner for the navigation stack in ROS consists of a base local

37

planner and a global planner. The base local planner consists of the Trajectory

Rollout and Dynamic Window Approach(DWA). It consists of a cost map and a

controller to issue velocity commands to the mobile base. A grid map is created

around the robot and the velocities of traversing to the different locations in the grid

are calculated based on a value function of the grid map. Trajectory Rollout samples

from the set of achievable velocities over the entire forward simulation period given

the acceleration limits of the robot, while DWA samples from the set of achievable

velocities for just one simulation step given the acceleration limits of the robot. The

global planner package is responsible for creating a path to the goal point. It consists

of Dijkstra’s algorithm, A* algorithm and NavFn algorithm implementations. But

the planned path does not consider sudden obstacles. The move base package is used

to combine the data from the base local planner and global planner to move towards

the goal point. The rotate recovery package tries to rotate the robot by 360◦and clear

space. But this rotate recovery behavior is not guaranteed and the robot may hit the

obstacle. This is further seen in Chapter 4.

To overcome the problem of dynamic obstacles, the robot must be able to sense

the presence of obstacles as it is moved. After sensing the obstacle, the robot has to

re-plan the path. The next section explains how this is achieved with the help of the

optimised path planner algorithm.

3.6.2 A* algorithm

As discussed in the Section 3.3.2, A* algorithm is the most widely used path plan-

ning algorithm. The implementation of A* follows the tutorial given in [46].

Input to A* was a grid (map of the environment), start point and goal point. The

start point and the goal point were decided by looking at the map and estimating

the position and orientation of the TurtleBot. The map was built prior to running

the A* algorithm. The current map gets published on the /map ROS topic when

the gmapping node runs. Hence the map was obtained as a 1D array of data from

38

the /map ROS topic. This data from the ROS topic was first stored in a bag file.

The bag file data was difficult to parse so it was then converted to a csv file. The

/map ROS topic also publishes the height and width of the map, the origin of the

map, resolution of the map in meters/pixels and the data array containing the actual

occupancy grid map.

The next step was to parse the csv file to read the map and convert it into a 2D

array and an image. This 2D array is the grid map for the A* algorithm. The map

comprises of three values: 0, 100, and -1 indicate free space, occupied, and unknown

respectively. In the image, white pixels are free space, black pixels are occupied and

gray pixels are unknown. The known (static) obstacles in the map are considered as

walls in the grid that is given as input to the A* function. The A* algorithm plans a

path which avoids these obstacles or walls. For the ease of avoiding these obstacles,

all the obstacles were expanded by 2 pixels on each side. This created a buffer or

avoidance region around the obstacles.

The image of the map created was used in selecting the start point and the goal

point. The start point and goal point were selected by clicking on the image of the

map consecutively. First mouse click was the start point and the second mouse click

was the goal point. These were the inputs to the A* function. In the A* function,

the shortest path was computed as explained in Section 3.3.2.

For implementation on the TurtleBot, there should be directions associated with

the co-ordinates. The robot can move in four directions: up, down, left, right. The

directions that were assigned to each point in the final path were based on the des-

tination. That means, if the goal point had co-ordinates (4,3) and the point just

before the goal point was (3,3), then the direction associated with the point (3,3)

was ’down’ because the robot had to move down to reach the goal point of (4,3). In

the same way, all the points in the final path were assigned a direction based on the

point in the final path which succeeded the current point. The initial direction was

39

an input from the user. A priority queue was implemented for storing the visited

nodes. This priority queue had the location from the grid and a priority associated

with the location.

The algorithm that was implemented does not consider the robot co-ordinate sys-

tem and assumes perfect odometry as mentioned in Section 3.5. To consider the

actual co-ordinates of the TurtleBot, the real-world co-ordinates would need to be

transformed into the robot co-ordinate system and then subsequently transform all

the points of the map into the robot co-ordinate system. This is the future scope of

the thesis and will be discussed in Chapter 5.

For the TurtleBot to move, velocity messages need to be published. Velocity com-

mands are of two types: linear velocity and angular velocity. These velocity messages

are published on the ’cmd_vel_mux/input/navi’ Twist topic. The linear and angular

velocities can be in x, y or z direction. In this implementation, linear velocity in x di-

rection (forward velocity) and angular velocity in z direction (turn velocity) has been

used. When the robot has to move forward, linear velocity is set to 0.2 m/s and and

angular velocity is made zero. While turning, the angular velocity is made positive

or negative as required by the angle for the turn (clockwise or anti-clockwise). The

TurtleBot can turn by 90 degrees in this implementation because the TurtleBot can

only move in four directions (up, down, left, right).

This algorithm has the ability to avoid static obstacles (like walls) which are already

present in the map. The A* algorithm avoids the locations (cells) in the map that

have been marked as occupied. But it fails in the presence of dynamic obstacles.

If the obstacle is not present in the map, the path will be planned irrespective of

the presence of the obstacle. For example, if a cardboard box of height equal to or

greater than the height of the kinect sensor on the TurtleBot is placed in the path

of the TurtleBot, it would collide into the box. To overcome this, the optimized

path planner algorithm was developed and implemented on the TurtleBot. This path

40

planner algorithm is further explained in Section 3.6.3.

3.6.3 Optimized Path Planner Algorithm

The A* algorithm that was implemented on the TurtleBot did not have the ability

to detect and avoid obstacles. The A* algorithm is not optimized for turns either.

The path planner implemented in this work is optimized for turns. It takes the least

number of turns. Turning a robot introduces noise and the turning is not always

accurate. Hence the path planner turns a minimum number of times. The obstacles

considered for the purposes of this thesis must have minimum height equal to the

height of the kinect sensor installed on the TurtleBot. The other feature of these

obstacles is that they are moving obstacles. The obstacles may or may not possess

a velocity of their own. Most of the algorithms that were reviewed in the literature

survey dealt with a specific set of obstacles. But the nature of obstacles in indoor

environments is not fixed. The work in this thesis addresses this problem and tries

to overcome this drawback. Obstacles can be in the form of chairs, tables, cardboard

boxes which can be moved from one place to another. Obstacles can also be humans

moving around in that space.

In order to deal with a wide variety of obstacles, the robot needs to continuously

sense the environment and based on the feedback from the sensed data, re-plan its

path. For example, if a box is suddenly placed in the path of the robot (assuming the

box satisfies the height criteria mentioned in Section 3.5), the robot has to re-plan its

path around the obstacle. To do so, it needs to alter the already existing map and

indicate that there is an obstacle at the location of the box. Now if the same box is

removed and the sensor is still pointed in the direction of the box (and in the range

of the previously placed box), the map should again be updated indicating that there

is free space at that location. Now the robot does not need to take an alternative

path and hence the path needs to be re-planned again. The re-planning of the path

has to be based on the sensor input data and needs to be a continuously improving

41

process. If the robot re-plans the path once around the obstacle, it should be able

to sense if the obstacle is removed from its path and that it does not need to take a

detour around the obstacle. Hence, the process of re-planning the path depends on

the following two factors:

• When an obstacle is detected in front of the robot at a distance less than or

equal to a fixed threshold.

• When a previously detected obstacle is no longer present in the path of the

robot.

The modified path planner algorithm plans the path in the same way as explained

in Section 3.6.2. As the robot starts moving towards the goal point, the messages

published on the /scan ’LaserScan’ topic are monitored. A subscriber node is created

which subscribes to these messages. The threshold for an object to be classified as an

obstacle is set at 0.8 meters. This means that if the readings for the scan ranges from

the sensor are 0.8 meters or less than that then there is an obstacle present in front

of the robot and the robot needs to take a different path to reach the goal point, that

is, path needs to be re-planned. If the robot is going to turn in the next step, this

obstacle does not matter as it may not be in the path. So the path re-planning takes

place if the previous condition of the minimum threshold is met and if the robot’s

next step is in the direction of the sensed obstacle.

As explained earlier, when an obstacle is detected, the map is altered to indicate

that there is an obstacle in front of the robot which is 0.8 meters away. This part

of the map is made 100 as it denotes occupied space. Since the dimensions of the

obstacle are unknown, it sets the width of the obstacle as the cells from the starting

point of the obstacle to the end point of the obstacle to 100. If the width of the

obstacle is greater than the angular range of the sensor, then all the cells in the

angular range at a distance of 0.8 meters will be set to 100. If the width of the

42

obstacle is lesser that the angular range of the sensor, then only those cells are set to

100 which lie in the region between the start point of the obstacle to the end point

of the obstacle. There is no way of knowing length of the obstacle either. So for this

implementation the length is set to 1 meters. This is an assumption of the length of

the obstacle as mentioned in Section 3.5. If the obstacle has a length greater than

1 meters, it would again re-plan the path as it would detect the same object as an

obstacle again. So it would be an iterative process. These assumptions have to be

made because there should be a minimum distance equal to the threshold that has

to be maintained between the obstacle and the robot.

After the new map with the obstacle is created, the path planner algorithm is used

again to re-plan the path. But for this call to the path planner algorithm function,

the grid input is only from the current position of the TurtleBot to the goal point of

the TurtleBot with a minimum threshold distance on either sides of the TurtleBot.

So the grid that the path planner receives is relatively smaller as compared to the

first run. This reduces the time for computing the new path. If the shortest path

is found, then the TurtleBot starts moving towards the goal point as prescribed by

the new path which avoids the obstacle in front of it. If no path is found, the grid

is expanded by one cell in all directions and the path planner algorithm function is

called again. This process repeats itself until the grid expands to the maximum size,

that is, the original size of the map. If a path is still not found, then the grid is set

to the original static grid and the path is re-planned based on the original grid.

To take care of obstacles which appear or disappear in the surroundings (in the

range of the sensor), the message received from the ’/scan’ topic is compared to the

data in the map. If the sensor input detects an obstacle 3 meters away and at an angle

of 10 degrees, the current grid map is checked at that cell to see if the map indicates

free or occupied. If the map indicates that it is free, this is updated to occupied. So

the map is continuously is updated as the TurtleBot moves towards the goal point.

43

The map is updated only in the range of the sensor. If there is any movement which

is not in the angular or the distance range of the sensor, it is not detected and it is

not updated in the map.

This optimized path planner algorithm is able to detect obstacles and avoid the

obstacles to reach the goal point. In the case where the goal point is blocked or the

algorithm is unable to reach the goal point, it would reach the nearest point to the

goal point and keep on polling the data from the sensor to find a path to the goal

point.

CHAPTER 4: RESULTS

In this chapter, the results obtained from implementing the algorithms explained

in Section 3.6 have been evaluated. The algorithms have been implemented on ROS

Gazebo simulator and TurtleBot.

4.1 Navigation on ROS Gazebo using Gmapping and AMCL

4.1.1 Output from the Built-in Path Planner

A world was built in Gazebo using the Building Editor. The static world is shown

in Figure 4.1. It consists of one dumpster, two cabinets and three bookshelves. The

TurtleBot starts by default at (0,0,0). This world is built in comparison to the ECE

lab at UNCC.

The map of this static world was built using the gmapping node as explained

in Section 3.6.1 which can be seen in Figure 4.2. This map was used for navigation

using the AMCL localization and navigation stack. The world was modified by adding

objects to the world, this can be seen in Figure 4.3 where new objects have been added

to the world. These objects include solid cube, solid cylinder, cardboard boxes, and a

TurtleBot. These serve as obstacles in the map. Since these obstacles are not present

in the previous map, they are not considered while planning the path. For the in-built

path planner in the navigation stack, if the new obstacle is in the range and the vision

of the sensor, then the path planner is able to navigate around that object.

45

Figure 4.1: Static World

Figure 4.2: Map from Gmapping

The map and the world look as shown in Figure 4.4 before the navigation begins.

The first step for navigation is to select the start point and the goal point. The start

46

Figure 4.3: New Static World

point is selected by the 2D pose estimate button. This indicates the current position

and orientation of the TurtleBot in the map. The goal point is selected by the 2D

Nav Goal button. The orientations of both the points are indicated by the direction

of the arrow. The selection of start point can be seen in Figure 4.5 and selection of

goal point can be seen from Figure 4.6.

The path that is planned can be seen in Figure 4.7.

47

Figure 4.4: Map and World Prior to Navigation

48

Figure 4.5: Start point in the map

Figure 4.6: Goal point in the map

49

Figure 4.7: Planned trajectory for the TurtleBot

Figure 4.8 shows the trajectory of the TurtleBot as it goes from the start point to

the goal point. TurtleBot reaches the goal point as shown in Figure 4.9 and 4.10.

50

Figure 4.8: Mid-path trajectory for the TurtleBot

Figure 4.9: TurtleBot reaches the goal point

51

Figure 4.10: Messages on the terminal

4.1.2 Limitations of Built-in Path Planner

Section 4.1.1 shows the implementation when the navigation is a success. As men-

tioned in Section 3.6.1, the in-built planner fails when a sudden obstacle is placed in

front of the robot. This means that the sensor on the robot must see the obstacle

before it plans the path. If the robot sees the obstacle before path planning, it is

able to avoid the obstacle. But this is not true for all the obstacles in the map. The

sensor is not able to perceive objects or obstacles (previously not present in the map)

if they are outside the range or the vision of the sensor.

Figure 4.11 and 4.12 show the presence of an obstacle in the planned path of

the TurtleBot. Figure 4.13 show the output on the terminal which indicates that

the path is being re-planned around the obstacle. The TurtleBot collides with the

obstacle and then tries to re-plan the path. Figure 4.14 and 4.15 show that a path

cannot be produced and the re-planning process is aborted.

52

Figure 4.11: Obstacle In Map

Figure 4.12: Obstacle In Map

53

Figure 4.13: Output on the terminal when the TurtleBot collides with an object and
tries to re-plan the path

Figure 4.14: Output on the terminal after the built-in planner tries to re-plan the
path and fails to reach the goal point

54

Figure 4.15: Output on the terminal indicating that there is collision with an object in
the world. Map and world displaying the collision of the TurtleBot with the cylindrical
object

4.2 Navigation on ROS Gazebo using A* Algorithm

The path planner algorithm runs when there are no additional obstacles in the

map. It runs the basic A* path planner as described in Section 3.6.2. The robot is

able to reach the goal point as long as the path to the goal point is not blocked. This

algorithm does not take any readings from the sensor into account before planning

the path. The difference between the built-in path planner and the A* algorithm is

that the built-in planner considers the obstacles in the range and vision of the robot

before planning the path. Whereas the A* algorithm considers only the obstacles

which are in the static map to plan the path.

55

4.3 Navigation on ROS Gazebo using the Optimized Path Planner Algorithm

4.3.1 Output from the Optimized Path Planner Algorithm

In the optimised path planner algorithm the input from the sensor is continuously

monitored to detect obstacles in the path of the TurtleBot. Obstacles are detected

if they are at a minimum threshold distance (0.8 meters) from the TurtleBot as

explained in Section 3.6.3. AMCL is used for localizing the TurtleBot. The imple-

mentation of this algorithm can be seen from Figure 4.16, 4.17, 4.18, 4.19, and 4.20.

The robot is able to reach the goal point by avoiding the moving obstacle.

In Figure 4.16, the world and the map can be seen before the path is planned. In

Figure 4.17, the robot has already started moving along the planned path. The solid

cylindrical object is moved. This object is not in the exact path of the robot but

it is in the range and vision of the robot. Hence the TurtleBot has to re-plan the

path because the object is in the range and vision of the TurtleBot and the TurtleBot

will not be able to avoid the obstacle if it continues on the current path. The path

is updated and the robot starts moving along the new (updated) path. The solid

cylidrical object is again detected as an obstacle as shown in Figure 4.18. The path is

re-planned again to avoid this obstacle (Figure 4.19). The TurtleBot is able to reach

the goal point while maintaining a minimum threshold distance between the robot

and the obstacle as shown in Figure 4.20.

56

Figure 4.16: Map and World Prior to Navigation

Figure 4.17: Solid cylinder is moved from its location which is detected as an obstacle
in the path of the TurtleBot

57

Figure 4.18: Solid cylinder moved again and detected again as an obstacle in the path
of the TurtleBot

Figure 4.19: TurtleBot is able to find a path around the obstacle

58

Figure 4.20: Goal point reached after re-planning the path

4.3.2 Limitations of the Optimized Path Planner Algorithm

As mentioned in Section 3.5.2, the obstacles have to be in the range and vision

(distance and angular range) of the sensor installed on the TurtleBot. If the obstacle

is not in the range and vision of the sensor on the TurtleBot, the algorithm fails

to re-plan the path. This is demonstrated by placing a small table in the world as

shown in Figure 4.21. This table has one leg in the center of the table and the height

of the table top from the ground level is equal to the height of the TurtleBot. The

sensor is unable to perceive the table top but it can detect the leg of the table as

an obstacle. This results in the TurtleBot hitting the table top and unable to move

forward because the sensor readings do not indicate an obstacle. The edge of the

wall is detected as an obstacle (Figure 4.22) but the table top is not detected as an

obstacle. This can be seen from Figure 4.23, 4.24, 4.25 and 4.26.

59

Figure 4.21: Map and World Prior to Navigation

60

Figure 4.22: Edge of the wall detected as an obstacle by the sensor

61

Figure 4.23: Leg of the table detected as an obstacle by the sensor

62

Figure 4.24: Unable to detect table top as an obstacle

63

Figure 4.25: Unable to re-plan the path as the sensor does not detect the table top
as an obstacle

64

Figure 4.26: Unable to reach the goal point on account of the obstacle which cannot
be perceived by the sensor

65

4.4 Navigation on TurtleBot using the Optimized Path Planner Algorithm

The path planning with obstacle avoidance on the TurtleBot works similar to the

Gazebo simulations. The map that has been used is the UNCC ECE lab. AMCL is

used for localizing the TurtleBot. This map is seen in Figure 4.27. This map is built

using gmapping. The start position on the map is selected by the 2D Pose Estimate

button and clicking on the map. This is shown in Figure 4.28. The starting position

of the TurtleBot is shown in Figure 4.29. After giving the start point and the end

point, the path is planned and then the TurtleBot starts moving according to the

planned path. The TurtleBot turns 90◦and starts moving forward as shown in Figure

4.30. When the obstacle is below the threshold value, it is detected as an obstacle.

Then the path is updated and the TurtleBot turns to move away from the obstacle

(Figure 4.31). The obstacle is detected again because it is still in the range and vision

of the sensor and the path is updated again (Figure 4.32). It turns again to avoid the

obstacle as shown in Figure 4.33. After this, there are no other obstacles in the path

and hence the TurtleBot is able to reach the goal point (Figure 4.34).

66

Figure 4.27: Map of the UNCC ECE lab

Figure 4.28: Start point selection

67

Figure 4.29: Start position for the TurtleBot

68

Figure 4.30: TurtleBot starts moving on the planned path

69

Figure 4.31: Obstacle is detected in the path of the TurtleBot and it turns to avoid
the obstacle

70

Figure 4.32: TurtleBot starts moving on the new path and detects the obstacle again

71

Figure 4.33: TurtleBot turns again to avoid the obstacle

72

Figure 4.34: TurtleBot reaches the goal position

73

4.5 Comparison of Different Path Planner Algorithms

The time required to re-plan the path is compared for different methods. For

comparison purposes, the Reinforcement Learning (RL) algorithm is also implemented

and the time taken to re-plan the path in the same grid using optimized path planner

and RL algorithm is compared. RL is a self learning algorithm and hence the time

taken to find the shortest path is more as compared to the time taken by Astar

algorithm or the optimized path planner algorithm. In one instance, RL takes 105.29

seconds and the optimized path planner takes 0.178 seconds to re-plan the path in

the presence of obstacles. The path found from the RL algorithm is the shortest path

and it is different that the path found by the optimized path planner. The path found

by the RL algorithm will be similar to the path found by the Astar algorithm while

optimized path planner will find a path which would take the minimum number of

turns.

CHAPTER 5: CONCLUSIONS AND FUTURE SCOPE

This section summarizes the work done as part of this thesis. The review phase

of this thesis involved the study of different methods for localization and mapping

in dynamic indoor environments. After reviewing this work, the drawbacks of the

existing methods were evaluated. Some of the methods had objects which were known

prior to the system. These included the use of RFID tags and use of special markers to

identify and classify the objects in the environment. This meant that once the RFID

tag was read or the marker was identified, the location of the object would be updated

based on the new observation, so the objects in the dynamic environment were known

to the system. If any unknown objects were placed in the environment, they would

not be detected by the system. This was one of the drawbacks observed from the

already existing algorithms. Another drawback observed from the existing method

was that the objects had movement in fixed directions or that the environment was

semi dynamic. In this case the high dynamic objects would not be detected and hence

the robot would not be able to reach the goal point efficiently. In one of the methods

only the landmarks were moving and the localization was affected. But this method

did not consider other moving objects and focused on localization of the robot in the

presence of moving obstacles. Another method used distance filter and scan matching

technique and focused on the map building in dynamic environments. Even though

there were some limitations, all the methods that were surveyed were able to localize

the robot and map the surroundings in the presence of moving obstacles.

There was need for combining these methods with a path planner which would

detect the obstacles in the trajectory and would efficiently re-plan the path. In

order to do so, various path planning algorithms, like Dijkstra’s algorithm and A*

75

algorithm, were studied and implemented. Reinforcement learning was also studied

and implemented on a small (14 by 14 cells) grid. RL was later implemented on

for re-planning the path in the presence of obstacles. The optimized path planner

was implemented and the results obtained from the implementation were as shown

in Chapter 4. The implementation phase was a process of continuous improvement

over the prior results. The first step of implementation only dealt with the path

planning in the map. The second step was detection of obstacles. The third step

was to interpret the sensor readings and use them for obstacle avoidance. Using this

path planner along with SLAM would make the system very close to an autonomous

system. The results obtained by implementing various algorithms were compared in

Section 4.5.

Due to the wide variety of obstacles that a robot can encounter, there is scope for

further research and improvement in this area. One of the improvements can be the

use of multiple sensors and integration of the data from all these sensors to improve

the path planning process. For example, if there is another sensor whose range and

vision is from the ground plane to the height of the existing sensor, objects which are

less than the height of the sensors would be easily detected. This would significantly

improve the performance since one of the constraints of this implementation is that

the objects must have a minimum height equal to or greater than the height of the

sensor installed on the robot. As shown in Section 4.3.2, this problem can be overcome

by installing a sensor which would scan the surroundings from the ground plane to a

threshold height above the robot. Another area of improvement can be the integration

of the velocity controller used in the ROS base local planner package. The velocity

would then depend on the distance to the nearest detected obstacle. The velocity

would be modulated based on the obstacle. The current algorithm only considers

movement in four directions which can be improved to consider movement in any

direction or angle. Since the use of robots for indoor applications is ever increasing,

76

there is great deal of scope for research and development in this area and future scope

for improving the work carried out in this thesis.

77

REFERENCES

[1] A. A. Panchpor, S. Shue, and J. M. Conrad, “A survey of methods for mobile
robot localization and mapping in dynamic indoor environments,” in Signal Pro-
cessing And Communication Engineering Systems (SPACES), 2018 Conference
on, pp. 138–144, IEEE, 2018.

[2] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part
I,” IEEE robotics & automation magazine, vol. 13, no. 2, pp. 99–110, 2006.

[3] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping
(SLAM): Part II,” IEEE Robotics & Automation Magazine, vol. 13, no. 3,
pp. 108–117, 2006.

[4] S. L. Shue, Utilization of wireless signal strength for mobile robot localization in
indoor environments. PhD thesis, The University of North Carolina at Charlotte,
2017.

[5] D. F. Wolf and G. S. Sukhatme, “Towards mapping dynamic environments,” in
In Proceedings of the International Conference on Advanced Robotics (ICAR),
pp. 594–600, 2003.

[6] A. Elfes, “Sonar-based real-world mapping and navigation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 3, pp. 249–265, 1987.

[7] M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba,
“A solution to the simultaneous localization and map building (SLAM) problem,”
IEEE Transactions on robotics and automation, vol. 17, no. 3, pp. 229–241, 2001.

[8] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “FastSLAM: A factored
solution to the simultaneous localization and mapping problem,” AAAI/IAAI,
vol. 593598, 2002.

[9] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press, 2005.

[10] W. D. Smart and L. P. Kaelbling, “Effective reinforcement learning for mobile
robots,” in Robotics and Automation, 2002. Proceedings. ICRA’02. IEEE Inter-
national Conference on, vol. 4, pp. 3404–3410, IEEE, 2002.

[11] N. Arana-Daniel, R. Rosales-Ochoa, and C. López-Franco, “Reinforced-SLAM
for path planing and mapping in dynamic environments,” in Electrical Engineer-
ing Computing Science and Automatic Control (CCE), 2011 8th International
Conference on, pp. 1–6, IEEE, 2011.

[12] E. Guevara-Reyes, A. Y. Alanis, N. Arana-Daniel, and C. Lopez-Franco, “In-
tegration of an inverse optimal control system with reinforced-SLAM for path
planning and mapping in dynamic environments,” in Power, Electronics and
Computing (ROPEC), 2013 IEEE International Autumn Meeting on, pp. 1–6,
IEEE, 2013.

78

[13] D. Sun, F. Geißer, and B. Nebel, “Towards effective localization in dynamic
environments,” in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ In-
ternational Conference on, pp. 4517–4523, IEEE, 2016.

[14] S. Dörr, P. Barsch, M. Gruhler, and F. G. Lopez, “Cooperative longterm SLAM
for navigating mobile robots in industrial applications,” in Multisensor Fusion
and Integration for Intelligent Systems (MFI), 2016 IEEE International Confer-
ence on, pp. 297–303, IEEE, 2016.

[15] A. Doucet, N. De Freitas, K. Murphy, and S. Russell, “Rao-blackwellised particle
filtering for dynamic bayesian networks,” in Proceedings of the Sixteenth confer-
ence on Uncertainty in artificial intelligence, pp. 176–183, Morgan Kaufmann
Publishers Inc., 2000.

[16] H. Zhou and S. Sakane, “Localizing objects during robot SLAM in semi-
dynamic environments,” in Advanced Intelligent Mechatronics, 2008. AIM 2008.
IEEE/ASME International Conference on, pp. 595–601, IEEE, 2008.

[17] F. S. Vidal, A. d. O. P. Barcelos, and P. F. F. Rosa, “SLAM solution based
on particle filter with outliers filtering in dynamic environments,” in Industrial
Electronics (ISIE), 2015 IEEE 24th International Symposium on, pp. 644–649,
IEEE, 2015.

[18] S. Li and D. Lee, “RGB-D SLAM in dynamic environments using static point
weighting,” IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2263–2270,
2017.

[19] A. Walcott-Bryant, M. Kaess, H. Johannsson, and J. J. Leonard, “Dynamic
pose graph SLAM: Long-term mapping in low dynamic environments,” in In-
telligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on, pp. 1871–1878, IEEE, 2012.

[20] L. Xiang, Z. Ren, M. Ni, and O. C. Jenkins, “Robust graph SLAM in dynamic en-
vironments with moving landmarks,” in Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on, pp. 2543–2549, IEEE, 2015.

[21] P. F. Alcantarilla, J. J. Yebes, J. Almazán, and L. M. Bergasa, “On combining
visual SLAM and dense scene flow to increase the robustness of localization and
mapping in dynamic environments,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on, pp. 1290–1297, IEEE, 2012.

[22] N. Karlsson, E. Di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and
M. E. Munich, “The vSLAM algorithm for robust localization and mapping,”
in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, pp. 24–29, IEEE, 2005.

[23] M. Kaess, K. Ni, and F. Dellaert, “Flow separation for fast and robust stereo
odometry,” in Robotics and Automation, 2009. ICRA’09. IEEE International
Conference on, pp. 3539–3544, IEEE, 2009.

79

[24] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, “Bundle
adjustment-a modern synthesis,” in International workshop on vision algorithms,
pp. 298–372, Springer, 1999.

[25] C. Harris and M. Stephens, “A combined corner and edge detector.,” in Alvey
vision conference, vol. 15, pp. 10–5244, Citeseer, 1988.

[26] T. Terashima and O. Hasegawa, “A visual-SLAM for first person vision and
mobile robots,” in Machine Vision Applications (MVA), 2017 Fifteenth IAPR
International Conference on, pp. 73–76, IEEE, 2017.

[27] T. Katsunuma, O. Hasegawa, et al., “Simultaneous localization and mapping by
hand-held monocular camera in a crowd,” Research Report Computer Vision and
Image Media (CVIM), vol. 2016, no. 9, pp. 1–8, 2016.

[28] G. Hua and O. Hasegawa, “A robust visual-feature-extraction method for simul-
taneous localization and mapping in public outdoor environment,” Journal of
Advanced Computational Intelligence and Intelligent Informatics, vol. 19, no. 1,
pp. 11–22, 2015.

[29] A. Kawewong, S. Tangruamsub, and O. Hasegawa, “Position-invariant robust
features for long-term recognition of dynamic outdoor scenes,” IEICE TRANS-
ACTIONS on Information and Systems, vol. 93, no. 9, pp. 2587–2601, 2010.

[30] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3D reconstruction in
real-time,” in Intelligent Vehicles Symposium (IV), 2011 IEEE, pp. 963–968,
Ieee, 2011.

[31] J. Xiong, Y. Liu, X. Ye, L. Han, H. Qian, and Y. Xu, “A hybrid lidar-based
indoor navigation system enhanced by ceiling visual codes for mobile robots,” in
Robotics and Biomimetics (ROBIO), 2016 IEEE International Conference on,
pp. 1715–1720, IEEE, 2016.

[32] I. Maurović, M. Seder, K. Lenac, and I. Petrović, “Path planning for active SLAM
based on the D* algorithm with negative edge weights,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 2017.

[33] M. Rünz and L. Agapito, “Co-fusion: Real-time segmentation, tracking and fu-
sion of multiple objects,” in Robotics and Automation (ICRA), 2017 IEEE In-
ternational Conference on, pp. 4471–4478, IEEE, 2017.

[34] D. Holz, C. Lorken, and H. Surmann, “Continuous 3d sensing for navigation and
SLAM in cluttered and dynamic environments,” in Information Fusion, 2008
11th International Conference on, pp. 1–7, IEEE, 2008.

[35] S. Iizuka, T. Nakamura, and S. Suzuki, “Robot navigation in dynamic envi-
ronment using navigation function APF with SLAM,” in Mecatronics (MECA-
TRONICS), 2014 10th France-Japan/8th Europe-Asia Congress on, pp. 89–92,
IEEE, 2014.

80

[36] L.-F. Lee, Decentralized motion planning within an artificial potential framework
(APF) for cooperative payload transport by multi-robot collectives. PhD thesis,
State University of New York at Buffalo, 2005.

[37] M. Chinnaaiah, S. Ambati, M. Yaddla, J. Sravanthi, and D. Sanjay, “FPGA
based robots hardware efficient scheme for real time indoor environment with
behavioural control,” in Innovations in Information, Embedded and Communi-
cation Systems (ICIIECS), 2015 International Conference on, pp. 1–5, IEEE,
2015.

[38] L. Murphy, T. Morris, U. Fabrizi, M. Warren, M. Milford, B. Upcroft, M. Bosse,
and P. Corke, “Experimental comparison of odometry approaches,” in Experi-
mental Robotics, pp. 877–890, Springer, 2013.

[39] M. Milford and G. Wyeth, “Hybrid robot control and SLAM for persistent naviga-
tion and mapping,” Robotics and Autonomous Systems, vol. 58, no. 9, pp. 1096–
1104, 2010.

[40] T. Abiy, H. Pang, and J. Khim, “Dijkstra’s shortest path algorithm.” https:
//brilliant.org/wiki/dijkstras-short-path-finder/. Apr 28, 2016.

[41] dbenzhuser, “Pathfinding a star.” https://upload.wikimedia.org/
wikipedia/commons/f/f4/Pathfinding_A_Star.svg. Jan 4, 2017.

[42] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “Ros: an open-source Robot Operating System,” in ICRA workshop
on open source software, vol. 3, p. 5, Kobe, Japan, 2009.

[43] Willow Garage, “Gazebo tutorials.” http://gazebosim.
org/assets/gazebo_tutorial_willow_garage_oct19_
2012-5b3ad9beba88508592d271a76c034a6a.pdf. October 19, 2012.

[44] Willow Garage, “Turtlebot,” http: // turtlebot. com , pp. 11–25, 2011.

[45] G. EDU, “Setting up 3D sensor for the TurtleBot.” http://edu.gaitech.hk/_
images/kinect_camera.jpg. Aug 26, 2016.

[46] A. Patel, “Introduction to A*.” https://www.redblobgames.com/
pathfinding/a-star/introduction.html. May 26, 2014.

