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ABSTRACT 

 

 

BHAVISH GOKUL GOLLA. Routing line personnel for restoration of disrupted power 

distribution network (Under the direction of Dr. CHURLZU LIM) 

 

 

Natural disasters such as storms, floods, earthquakes cause a great deal of damage to 

human lives and properties, and this damage is aggravated by disruptions to some critical 

infrastructures, such as transport system, electricity and water supplies. The primary impact 

of natural disasters on power systems would be severe power outages. When the period of 

power outage is prolonged the suffering of the customers becomes far more worsened. 

Consequently, it is desired to restore power distribution systems promptly. In this thesis, 

we are concerned with a so-called repair crew scheduling problem that minimizes the total 

restoration time by adequately scheduling repair personnel. 

Given information about fault locations and estimated repair times along with travel 

time data between locations, we investigate mathematical optimization models, 

specifically two mixed-integer programming (MIP) models. The first MIP model is 

formulated in analogy to the identical multiple machine scheduling problem, while the 

second model is proposed in an effort to reduce solution times. Noting that the repair crew 

scheduling problem is NP-hard, a heuristic method is also proposed. A numerical study 

was conducted to compare computational performances of the aforementioned exact 

models and the heuristic method. The computational results revealed that the second MIP 

model is promising when time allows. It is also observed that the heuristic method can be 

practically implemented under time pressure. Based on this observation, we propose an 

implementation plan that combines the second MIP and the heuristic method in a dynamic 

circumstance. 
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CHAPTER 1: INTRODUCTION 

Natural disasters such as storms, floods and earthquakes can cause a great deal of damage 

to human lives and properties, and such damages can be far worsened when essential 

infrastructures such as transport system, electricity, and water supply are disrupted for a 

prolonged period. According to the report prepared by the Executive Office of the President 

in 2013, weather-related power outages costed an annual average of $18 billon-$33 billion 

to the US economy, during the period 2003-2012. In 2008, the year in which Hurricane Ike 

occurred, the cost estimates ranged from $40 billion to $75 billion. In the year of Hurricane 

Sandy, 2012, the cost was estimated to be between $27 billion-$52 billion. These cost 

estimates were initially collected by major electric companies using customer surveys and 

later annually compiled by Sullivan [1] based on value-of-service (VOS) data. These 

annual estimates are then used to calculate a range of the inflation-adjusted average annual 

costs [2]. As the damage is significantly exacerbated overtime, shortening restoration time 

can play a critical role to effectively reduce the damage costs. Depending on the severity 

of the storm and resulting impairment, power outages can last a few hours or extend to 

periods of several days. This in turn can have real economic effects, as power outages can 

impact businesses (primarily through lost orders and damage to perishable goods and 

inventories), and manufacturers (mainly through downtime and lost production, or 

equipment damage) [3]. Table 1 shows the costs per outage per customer used in the Tobit 

regression equation to estimate the total cost of power interruptions to U.S. electricity 

customers [4]. 
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Table 1: Estimated Cost-per-Outage-per-Customer for the U.S. (costs shown in U.S, 2002) 

Duration Residential Commercial Industrial 

0 sec $2.18 $605 $1,893 

1 hour $2.70 $886 $3,253 

Sustained Interruption $2.99 $1,067 $4,227 

 

Table 2 displays the costs per customer per outage presented in 2014 [5]. 

Table 2: Cost-per-Outage-per-Customer (2014) 

 Residential Commercial Industrial 

Cost per customer $23 $4,257 $35,757 

 

This thesis is concerned with minimizing the time to restore infrastructure after a major 

storm event via mathematical optimization, called mixed integer programming (MIP). In 

particular, this thesis considers power distribution system that needs to be repaired after 

disruption caused by natural disasters or malicious attacks by terrorists. However, it should 

be noted that the approach investigated in this thesis can be also applied to restore other 

types of damaged infrastructure systems. 

1.1. Problem Overview 

When a power distribution system is severely damaged, a number of faulty components of 

the system need to be repaired. For example, Duke Energy, a utility company that supplies 

electricity in most part of North and South Carolina States, had to restore power for more 

than a million customers who lost power due to Hurricane Matthew in September 2016 [6]. 

Resources to repair damages include repair agents and various types of repair vehicles. 

Given a limited amount of resources, the optimization problem in this thesis is to minimize 

the time to repair all faults, which are scattered in a wide geographical region. Hence, the 
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solution is in a form of scheduling available repair crews while estimates of repair times 

and travel times are under consideration. 

1.2. Approach 

In order to find a scheduling solution, two exact MIP models and one heuristic method 

have been investigated in this thesis. The first MIP model was adapted from [7], while the 

second alternative MIP model is proposed in this thesis. The third method was proposed in 

consideration of NP-hardness of the problem and the need for a real-time decision making 

environment. 

To compare the efficacy of the three considered methods, a numerical study was conducted 

on two sets of test problems. The first set of test problems were generated as relatively 

small scale in order to ascertain the performance of two exact methods and the difference 

in solution quality between the exact method and the heuristic approach. The second set of 

test problems were generated based on the scenario similar to the past damage data resulted 

from severe storm incidences, and used to test three methods under realistic scenarios. 

1.3. Organization of thesis 

This thesis is organized as follows. Chapter 2 provides reviews on studies relevant to the 

repair crew scheduling. In Chapter 3, three aforementioned solution methods will be 

described in detail. A numerical study and its results are presented in Chapter 4, dynamic 

implementation of the problem offered in Chapter 5, which is followed by conclusion in 

Chapter 6, where the thesis is summarized, and potential future research directions are 

outlined.
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CHAPTER 2: LITERATURE REVIEW 

Although there are some studies related to the system restoration after major outage events, 

most literature is focused on the estimation of restoration time. For example, Liu et al [8] 

introduced so-called accelerated failure time (AFT) models to estimate the duration of each 

probable storm-caused electric power outage. These outage durations were then used to 

estimate restoration times. AFT falls into the category of survival analysis model (i.e., 

statistical analysis specifically for time-to-event data, in this case, time until an outage is 

restored, or outage duration). This model was applied to hurricane and ice storm events for 

three major electric power companies on the East Coast of United States. By means of a 

large dataset that includes the companies’ experiences in six hurricanes and eight ice 

storms, AFT models were fitted and used to forecast the duration of each probable outage 

in a storm. Restoration curves were then estimated for each county in the companies’ 

service areas by aggregating those estimated outage durations and accounting for variable 

outage start times. This technique can be applied as a storm approaches, before damage 

assessments are available from the field, thus helping to better inform customers and the 

public of expected post-storm power restoration times. Results of model applications 

suggest they have promising predictive ability. 

When a high impact low frequency (HILF) event occurs, it is a complicated process to deal 

with the power restoration tasks once the event has moved out of the region. In order to 

optimize the post-earthquake restoration of the electric power system, Xu et al [9] 

developed a stochastic integer program to determine how to schedule inspection, damage 

assessment, and repair tasks. The objective of the optimization is to minimize the average 

time duration of customers being without power. While this restoration model is adapted 
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from the way that the Los Angeles Department of Water and Power (LADWP) restoration 

process currently works, this optimization model can be used to determine if different 

inspection, damage assessment, and repair schedules would improve the restoration 

process. The models assume that all generation stations will be on immediately after an 

earthquake, that load balance is never a constraint during the restoration, and that the 

household-based estimate of number of customers is accurate. The study focuses only on 

the performance of restoration processes with different inspection, damage assessment, and 

repair schedules. It does not consider the possibility of optimizing the amount of repair 

material stored for use in a post-earthquake restoration situation. Despite these limitations, 

the results suggest that the optimization modelling approach presented could potentially be 

used to achieve some improvements in post-earthquake restoration.  

Observing that the scheduling problem considered in this thesis resembles the sequence-

dependent vehicle routing problem, this chapter provides reviews on the literature relevant 

to the vehicle routing problem, including the traveling salesman problem, vehicle routing 

problem, multi-depot multiple traveling salesman problem and multiple machine 

scheduling problem. 

2.1. Traveling Salesman Problem 

The traveling salesman problem (TSP) is one of challenging optimization problems, and 

can be considered as the foundation to many other techniques driven on solving complex 

optimization problems, such as transportation, network flow, vehicle routing, crew 

scheduling, etc. TSP refers to a salesman, traveling to a given number of cities, visiting 

each one of the cities once starting from his city and returning to the same home city, with 

an objective to minimize the total cost of the trip. TSP is an NP-hard optimization problem 
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and has its applications in various fields, (e.g., drilling of printed circuit boards [11], 

overhauling gas turbine engines [12], the order-picking problem in warehouses [13], and 

vehicle routing problem [14]). 

One particular extension of TSP is called multiple traveling salesman problem (mTSP), 

where multiple salesmen travel from the same home city. Applications of mTSP are mostly 

in routing and scheduling problems, which include, printing press scheduling problem [15, 

16], school bus routing problem [17], crew scheduling problem [18, 19, 20], interview 

scheduling problem [21, 22], and mission planning problem [23, 24, 25]. 

Dantzig, Fulkerson and Johnson [26] are credited to the first formulation of the TSP as an 

integer program in 1954. Since then, there have been numerous mathematical formulations 

of TSP and mTSP. Some notable studies include MIP formulations for the mTSP, for both 

symmetrical and asymmetrical cost structures [27], tree based formulation and three-index 

based formulations [28], comparison of eight distinct formulations of the TSP as an integer 

program [29] and survey of different integer programming formulations of the TSP [30]. 

2.2. Vehicle Routing Problem (VRP) 

The vehicle routing problem can be described as follows. Consider a depot with one or 

more vehicles, and set of n customers. The objective is to find minimum cost routes for 

this fleet of vehicles to serve n customers in a timely manner. Demand of each customer 

must be supplied exactly once, by only one vehicle. It is assumed that the demand of any 

customer does not exceed the vehicle capacity. The total distance of any given route cannot 

exceed a pre-specified bound. The solution will be answering the question of “which 

vehicle travels to which customer(s) and in what order?”. When the number of vehicles in 

the above-mentioned problem is one, the capacity of the vehicle is infinity, and the distance 
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is unbounded, this problem reduces to TSP. One of the earliest studies considered the 

routing of a fleet of gasoline delivery trucks between a bulk terminal and several service 

stations supplied by the terminal and proposed a VRP model [32]. 

There are quite a few variants in the VRP. When only the capacity of vehicles is 

constrained, the problem becomes Capacitated VRP (CVRP). When customers must be 

served within predefined time windows, without violating the capacities of vehicles and 

total trip time, the problem is called VRP with Time Window (VRPTW). 

Dynamic vehicle routing problem (DVRP), also referred to as on-line vehicle routing 

problem, has taken its prominence recently due to the advancement in information and 

communication technologies that allow information to be obtained and processed in real-

time. In DVRP, some of the predetermined visits are known in advance before the driver 

starts his/her working day, but as the day progresses, new orders arrive and the system has 

to incorporate them into an evolving schedule. There is an underlying assumption that the 

crew dispatcher and the driver have an on-going interaction throughout the day. The 

dispatcher can periodically communicate to the drivers about the new visits assigned to 

them. In this way, each driver always has knowledge about the next customers assigned to 

him/her [33]. 

2.3. Multi-Depot Multiple Traveling Salesman Problem 

The multi-depot multiple traveling salesman problem (MDMTSP) is another variant of the 

TSP that is closely related to the problem considered in this thesis and deserves more 

attention. In MDMTSP, more than one salesman travels to a given set of cities, starting 

from a set of depots, with multiple salesman at each depot. Each city must be visited exactly 
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once by only one salesman. MDMTSP can be categorized into a fixed destination version 

and a non-fixed destination version. In the fixed destination version, all salesmen return to 

the same depot from which they started. In the non-fixed destination version, all salesmen 

need not return to the same depot from which they started, but the number of salesmen 

starting and ending at that particular depot should remain the same [34]. The objective of 

the MDMTSP is to minimize the total cost of the routes, where the cost can be measured 

in terms of cost, distance, or time. 

The problem has some real applications and is closely related to other important multi-

depot routing problems, e.g., the multi-depot vehicle routing problem [36] and the location 

routing problem [37]. There are other applications as in the motion planning of a set of 

unmanned aerial vehicles [38, 39, 40, 41] and the routing of service technicians where the 

technicians are leaving from multiple depots [42]. 

2.4. Multiple Machine Scheduling 

Repair crew scheduling problem also resembles multiple machine scheduling by 

considering crews as machines and repairs as jobs. Multi-machine scheduling (MMS) can 

be defined as the action of assigning a number of jobs to a number of performing machines 

such that certain performance demands like time or cost effectiveness are fulfilled. 

Consider a set of jobs that must be run and a set of machines available to execute the jobs. 

Jobs may be classified into groups of similar job types. Each machine can run only one job 

type at a time, and each machine may have some unique characteristics, such as production 

rate. Each job has a due date, on which production should have been completed, and certain 

jobs may be restricted to a subset of the available machines. When a machine changes from 
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one job type to another, there may be some setup time which depends on the similarity of 

the job types. Machine characteristics may also command batch size preferences if, for 

example, very small batches result in higher defect rates. When the machines are not 

located in the same facility, the cost of transporting the product to its destination is 

machine-dependent, which implies a job-machine assignment cost. 

Several related problems have been broadly studied in the literature [45]. Scheduling jobs 

on a single machine to minimize (weighted) tardiness is studied in [46, 47, 48, 49, 50]. The 

extension to multiple machines is considered in [51, 52, 53]. Scheduling subject to 

sequence dependent setup times is considered in [54] for single machine; in [55, 56] for 

parallel identical machines. Du and Leung [57] proved that minimizing the total tardiness 

on one machine is NP-hard. Further complexity results on machine scheduling problems 

can be found in [58]. 
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CHAPTER 3: MODEL DESCRIPTION 

This chapter presents two MIP models to represent the repair crew scheduling problem. 

The first MIP model is a straight-forward adaptation of Guinet [7], while the second one is 

a new MIP model proposed in this thesis. In addition to these exact models, a heuristic 

solution method is proposed in consideration of NP-hardness of the problem and the need 

for a dynamic decision making environment. 

3.1. Adaptation of Job Scheduling with Sequence-Dependent Setup Time 

The repair crew scheduling problem can be considered as a job scheduling problem, where 

each job corresponds to repairing a fault and machines are repair crews. It is assumed that 

crew teams have identical resources. Travel times of repair crew depend on the locations 

of faults that are repaired consecutively. Regarding travel times as setup times, therefore, 

the problem becomes a job scheduling problem with sequence-dependent setup times on 

identical machines. With these similarities between repair crew scheduling and job 

scheduling with sequence-dependent setup time, the MIP model from machine scheduling 

[4] has been adapted in repair crew scheduling and altered slightly to incorporate multiple 

starting depots. 

To present the first MIP model, the following notation will be used 

3.1.1. Problem parameters 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑎𝑖𝑟𝑠 (𝑓𝑎𝑢𝑙𝑡𝑠) 

𝐾 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑟𝑒𝑤𝑠 

𝐿 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑒𝑛𝑡𝑒𝑟𝑠 
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𝐾(𝑙) = 𝑠𝑒𝑡 𝑜𝑓 𝑐𝑟𝑒𝑤 𝑖𝑛𝑑𝑖𝑐𝑒 𝑖𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑒𝑛𝑡𝑒𝑟 𝑙 

𝑝𝑖 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑟𝑒𝑝𝑎𝑖𝑟 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑓𝑎𝑢𝑙𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 

𝑇𝑖𝑗 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 𝑖 𝑡𝑜 𝑗 

𝑇𝑙𝑖 = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑒𝑛𝑡𝑒𝑟 𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑎𝑢𝑙𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 

𝑀 = 𝑎 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 (≫ 1) 

3.1.2. Variables 

𝑥𝑖𝑗𝑘 = 1 𝑖𝑓 𝑡ℎ𝑒 𝑓𝑎𝑢𝑙𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑙𝑦 𝑎𝑓𝑡𝑒𝑟 𝑓𝑎𝑢𝑙𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑏𝑦     

              𝑐𝑟𝑒𝑤 𝑘; 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑥0𝑗𝑘 = 1 𝑖𝑓 𝑡ℎ𝑒 𝑓𝑎𝑢𝑙𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑟𝑒𝑝𝑎𝑖𝑟 𝑗𝑜𝑏 𝑡𝑜 𝑏𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑏𝑦 𝑐𝑟𝑒𝑤 𝑘; 

              0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑥𝑖0𝑘 = 1 𝑖𝑓 𝑡ℎ𝑒 𝑓𝑎𝑢𝑙𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 𝑟𝑒𝑝𝑎𝑖𝑟 𝑗𝑜𝑏 𝑜𝑓 𝑐𝑟𝑒𝑤 𝑘;  

              0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑎𝑖 = 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑟𝑒𝑝𝑎𝑖𝑟 𝑎𝑡 𝑓𝑎𝑢𝑙𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 

𝑅 = 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 

 

With above notation, the problem can be written as follows: 

Minimize 𝑅                                                                                                                                      (1) 
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subject to 

∑ ∑ 𝑥𝑖𝑗𝑘 = 1                                   ∀𝑗 = 1, .  .  . , 𝑁                                                                 (2)

𝐾

𝑘=1

𝑁

𝑖=0
𝑖≠𝑗

 

∑ 𝑥𝑖ℎ𝑘 − ∑ 𝑥ℎ𝑗𝑘 = 0                     ∀ℎ = 1, .  .  . , 𝑁,      ∀𝑘 = 1, .  .  . , 𝐾                              (3)

𝑁

𝑗=0
𝑗≠ℎ

𝑁

𝑖=0
𝑖≠ℎ

 

∑ 𝑥0𝑗𝑘 ≤ 1                                         ∀𝑘 = 1, .  .  . , 𝐾                                                                 (4)

𝑁

𝑗=0

 

𝑎𝑗 ≥ 𝑎𝑖 +  𝑇𝑖𝑗 +  𝑝𝑗 +  (∑ 𝑥𝑖𝑗𝑘 − 1)

𝐾

𝑘=1

) × 𝑀 

                                                                ∀𝑖 = 1, .  .  . , 𝑁,   ∀𝑗 = 1, .  .  . , 𝑁,   𝑗 ≠ 𝑖                      (5) 

𝑎𝑗 ≥ 𝑇𝑙𝑗 + 𝑝𝑗 +  ( ∑ 𝑥0𝑗𝑘 − 1)

𝐾

𝑘∈𝐾(𝑙)

) × 𝑀 

                                                                ∀𝑗 = 1, .  .  . , 𝑁,   ∀𝑙 = 1, .  .  . , 𝐿                                    (6) 

𝑅 ≥ 𝑎𝑖                                                   ∀𝑖 = 1, .  .  . , 𝑁                                                                  (7) 

𝑥𝑖𝑗𝑘  ∈ {0,1}                                         ∀𝑖 = 1, .  .  . , 𝑁,   ∀𝑗 = 1, .  .  . , 𝑁,   ∀𝑘 = 1, .  .  . , 𝐾 

𝑎𝑖 ≥ 0                                                   ∀𝑖 = 1, .  .  . , 𝑁                                                           (8) 

𝑎0 = 0                                                   ∀𝑙 = 1, .  .  . , 𝐿                                                            (9) 
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The objective function (1) is a single variable 𝑅, which will represent the makespan of job 

scheduling problem (or total restoration time in our application). A set of constraints are 

listed in (2) to (9) which must be satisfied while minimizing the objective function. Each 

fault is repaired by one crew and only once, which is ensured by constraint (2). Constraint 

(3) ensures that once crew 𝑘 repairs fault ℎ, it leaves for another fault location on return to 

an operation center. Constraint (4) is enforced to avoid assigning a crew to multiple faults 

initially. Constraints (5) and (6) impose the lower bound on completion time at each fault 

location, which depends on the processing time, travel time, completion time of the 

previous repair and the order of repairs assigned to the crew. Constraint (7) sets the lower 

bound on the maximum completion time, which must be greater than or equal to 

completion time at each fault location 𝑖. Completion time at each fault location is greater 

than or equal to zero as in constraint (8) and constraint (9) initializes completion time at 

operations center as 0. 

3.2. Proposed MIP Model 

This model was proposed in this thesis to help improve the solution effort of the repair 

crew scheduling problem when compared to the first MIP model. 

In addition to the previously introduced notation, the following notation will be used to 

present the proposed model. 

3.2.1. Variables 

𝑎𝑖𝑗𝑘 = 1 𝑖𝑓 𝑡ℎ𝑒 𝑓𝑎𝑢𝑙𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑟𝑒𝑝𝑎𝑖𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑓𝑎𝑢𝑙𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 (𝑛𝑜𝑡  

            𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑖𝑙𝑦 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒) 𝑏𝑦 𝑐𝑟𝑒𝑤 𝑘;  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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𝑥𝑖𝑘 = 1 𝑖𝑓 𝑡ℎ𝑒 𝑓𝑎𝑢𝑙𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑐𝑟𝑒𝑤 𝑘; 

             0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑦𝑖𝑘 = 𝑟𝑒𝑝𝑎𝑖𝑟 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑎𝑡 𝑓𝑎𝑢𝑙𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 𝑏𝑦 𝑐𝑟𝑒𝑤 𝑘 

𝐶𝑘 = 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑛 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑐𝑟𝑒𝑤 𝑘 

Other parameters are defined under the first MIP formulation. 

 

The proposed formulation can be written as follows: 

Minimize 𝑅                                                                                                                                    (10) 

subject to 

∑ 𝑥𝑖𝑘 = 1                                                        ∀𝑖 = 1, . . . , 𝑁                                                    (11)

𝐾

𝑘=1

 

𝑦𝑖𝑘 ≥ 𝑇𝑙𝑖 − (1 − 𝑥𝑖𝑘) × 𝑀                            ∀𝑖 = 1, . . . , 𝑁,   ∀𝑙 = 1, . . . , 𝐿,   ∀𝑘 ∈ 𝑘(𝑙)  (12) 

𝑦𝑖𝑘 + 𝑝𝑖 + 𝑇𝑖𝑗 ≤ 𝑦𝑗𝑘 + (1 − 𝑎𝑖𝑗𝑘) × 𝑀     ∀𝑖, 𝑗 = 1, . . . , 𝑁,   𝑖 ≠ 𝑗,   ∀𝑘 ∈ 𝑘(𝑙)              (13) 

𝑎𝑖𝑗𝑘 ≤ 𝑥𝑖𝑘                                                         ∀𝑖, 𝑗 = 1, . . . , 𝑁,   𝑖 ≠ 𝑗,   ∀𝑘 = 1, . . . , 𝐾       (14) 

𝑎𝑖𝑗𝑘 ≤ 𝑥𝑗𝑘                                                          ∀𝑖, 𝑗 = 1, . . . , 𝑁,   𝑖 ≠ 𝑗,   ∀𝑘 = 1, . . . , 𝐾       (15) 

𝑎𝑖𝑗𝑘 + 𝑎𝑗𝑖𝑘 ≥ 𝑥𝑖𝑘 + 𝑥𝑗𝑘 − 1                          ∀𝑖, 𝑗 = 1, . . . , 𝑁,   𝑖 ≠ 𝑗,   ∀𝑘 = 1, . . . , 𝐾       (16) 

𝐶𝑘 ≥ 𝑦𝑖𝑘 + 𝑝𝑖                                                    ∀𝑖 = 1, . . . , 𝑁,   ∀𝑘 = 1, . . . , 𝐾                       (17) 

𝑅 ≥ 𝐶𝑘                                                                           ∀𝑘 = 1, . . . , 𝐾                                                   (18) 
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𝑅 ≥ 0                                                                                                                                              (19) 

𝐶𝑘 ≥ 0                                                                 ∀𝑘 = 1, . . . , 𝐾                                                  (20) 

𝑦𝑖𝑘 ≥ 0                                                                ∀𝑖 = 1, . . . , 𝑁,   ∀𝑘 = 1, . . . , 𝐾                     (21) 

The objective function (10) minimizes 𝑅, which results in the total restoration time. An 

objective value will be returned with the minimum time by when all the repairs can be 

completed by the crews. No fault location can be visited more than once. Each repair is to 

be processed by one crew and only once, which is ensured by constraint (11). Constraints 

(12) and (13) ensure that repair can be started after considering travel time to that location 

and, if not traveled from operation center, completion time of previous fault. Constraints 

(14) (15) (16) specify that faults 𝑖 and 𝑗 can be repaired by crew 𝑘 only when they are 

assigned to same crew 𝑘. Constraint (17) enforces a lower bound on the cycle time of 

crew 𝑘. Constraint (18) terms the restoration time constraint. 

 

3.3. Heuristic Method 

The repair crew scheduling is NP-hard, and it will be difficult to find an optimal solution 

within a reasonable amount of time when the problem size is increased. Hence, a heuristic 

method is proposed to cope with NP-hardness of the problem. This heuristic method is 

adapted from [59], which is concerned with job scheduling on identical machines without 

setup times. The proposed heuristic is described in what follows. 

Heuristic method: 
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Initialization step – For each fault location 𝑖, compute adjusted processing times; 

                                    𝑝𝑖 = 𝑝𝑖 + ( ∑ 𝑇𝑗𝑖 + ∑ 𝑇𝑙𝑖

𝐿

𝑙=1

𝑁

𝑗=1,𝑗≠𝑖

) /(𝑁 − 1 + 𝐿) 

Step 1 – Sort 𝑝𝑖 in the descending order. 

Step 2 – Assign the fault with longest 𝑝𝑖  to crew 1, second longest to crew 2 and so on                                          

until all crews are assigned. 

Step 3 – The fault with the next longest 𝑝𝑖 is assigned to the crew that finishes its repairs 

first. Repeat this until all faults are assigned 

For illustration, consider the following example. There are three crews, T1, T2 and T3 and 

10 faults with sorted 𝑝𝑖{100, 90, 45, 20, 18, 15, 13, 12, 11, 10} 

Step 2 gives: 

T1: 100, T2: 90, T3: 45 

Then, for next 7 faults, search for the crew that completed assigned repairs so far. In this 

example, T3 is next. 

T1: 100, T2: 90, T3: 45+20 

Next, to assign the fault with the adjusted processing time 18, search for the crew with 

minimum cycle time. That is, T3 (with 45+20=65) is next again. 

T1: 100, T2: 90, T3: 45+20+18 
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In the same manner, subsequent assignments are: 

T1: 100, T2: 90, T3: 45+20+18+15 

Next, 

T1: 100, T2: 90+13, T3: 45+20+18+15 

Next, 

T1: 100, T2: 90+13, T3: 45+20+18+15+12 

Next, 

T1: 100+11, T2: 90+13, T3: 45+20+18+15+12 

Finally,  

T1: 100+11 = 111, T2: 90+13+10 = 113, T3: 45+20+18+15+12 = 110 

The resulting adjusted makespan for this problem using this heuristic will be 113. 
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CHAPTER 4: NUMERICAL STUDY 

This chapter presents a numerical study conducted on two sets of scenarios to investigate 

the numerical performance of optimization methods presented in the previous chapter. For 

the comparative study of the above listed three solution methods, we have generated 20 

small-sized scenarios and 20 relatively large-sized scenarios. Each small-sized scenario 

consists of 12 fault locations and four crew teams originated from three operation centers, 

while a large-sized scenario involves 56 fault locations and 17 crew teams from the same 

three operation centers. Large-sized scenarios were first generated to reflect a HILF event 

that has actually occurred in the past. Then, the small-sized scenarios were generated by 

scaling down these realistic scenarios. The way these scenarios were developed will be 

discussed in the following two sections. 

4.1. Generation of Large-Sized Test Scenarios 

In order to develop realistic fault scenarios, severe storm days in the past have been 

examined first. From a utility company, a set of fault data for 1,368 days during the period 

from April 2010 – July 2014 was obtained. It consists of a total of 65,635 faults that have 

occurred in the West Carolinas. The number of faults per day is displayed in Figure 1. 
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Table 3: Number of days for ranges of daily faults 

 

Bin 

Range of Number of Faults 

0-99 100-199 200-799 800 and above 

2010(Apr-Dec) 215 11 0 0 

2011 282 27 10 2 

2012 307 13 0 0 

2013 311 9 1 0 

2014(Jan-Jul) 171 9 0 0 

Frequency 1286 69 11 2 

Among 1,368 days, there have been 1,286 days with 0-99 faults per day, 69 days with 100-

199 faults per day, 11 days with 200-799 faults per day, and two days with more than 800 

faults per day (see Table 3). 

Note that there are two particular HILF events in 2011, which are specifically April 5th 

with a total of 847 faults and May 11th with 928 faults. In order to develop a realistic 

scenario for the Repair Crew Scheduling problem, the storm day of April 5th in 2011 was 

considered. On this particular day, a total of 270 circuits were involved with faults. Weather 
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Figure 1: Number of faults per day from April 2010 to July 2014 



 

 

 

 

20 

 

information between April 3rd - 5th and the impact of this HILF event was traced back [60] 

and are summarized below. 

• April 3rd – 255 large hail reports, 75 damaging wind reports with wind gusts up to 

80 mph hit parts of Kansas and Missouri. 

• April 4th – 46 tornado reports, 90 reports of large hail, 1,318 damaging wind reports 

and 1,476 storm reports with wind gusts up to 90 mph. 

• Nearly one million residents suffered from electricity loss (260,000 in the 

Carolinas). 

• April 5th – Wind gusts of nearly 70 mph hit parts of North Carolina and a few other 

states which led to additional downed trees, power outages and damaged homes. 

When faults occur, operation centers of the utility are primarily responsible for repairs. 

Figure 2 displays the distribution of operation centers in the Carolinas. 

 

Figure 2: Operations centers of the utility company in the Carolinas 
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With additional information about substations provided by the utility company, it was 

attempted to re-create fault scenarios that have similar scales as the actual HILF event that 

occurred on April 5th, 2011 in and around the Greater Charlotte area. 

In consequence, a total of 56 faults were generated using uniformly distributed random 

variates around eight substations in the Greater Charlotte area. In particular, based on the 

substation information (coordinates) provided by the utility company, fault location 

coordinates have been randomly generated [61] within a few miles radius of each 

substation. Considering the substation location as a center point, if there are less than five 

faults at that substation, faults have been generated within a 6-mile radius of the substation. 

And if five or more faults are involved with a substation, faults have been generated within 

10-mile radius of the substation. In addition, there are three operation centers that are 

responsible for the restoration of faults in the Greater Charlotte area, namely, Little Rock, 

Newell and Matthews. Figure 3 displays locations of 56 randomly generated faults (colored 

in red and categorized based on their processing times) for one instance of the large-sized 

scenarios. Locations of three operation centers are colored in green.  

 
Figure 3: Locations of 56 faults and three operation centers (case of large-sized scenario 1) 
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Table 4: Estimated repair times at each fault location in minutes (case of large-sized scenario 1) 

Fault 

location 

Estimated 

Repair 

Time 

Fault 

location 

Estimated 

Repair 

Time 

Fault 

location 

Estimated 

Repair 

Time 

1 340 20 1102 39 1212 

2 461 21 838 40 1047 

3 2272 22 807 41 856 

4 2523 23 250 42 1218 

5 679 24 249 43 1176 

6 636 25 694 44 1070 

7 994 26 812 45 863 

8 924 27 712 46 930 

9 1361 28 771 47 3365 

10 1378 29 890 48 3387 

11 1756 30 920 49 458 

12 1530 31 1483 50 411 

13 1579 32 1492 51 394 

14 1456 33 2635 52 356 

15 260 34 2364 53 581 

16 200 35 2343 54 661 

17 418 36 2531 55 1244 

18 215 37 678 56 1351 

19 967 38 579   

 
 

Tables 4 and 5 display the estimated repair times and travel times between locations, 

respectively, for scenario 1 of the large-sized scenarios. The estimated repair times were 

randomly generated based on the actual outage duration data of April 5th 2011. Due to a 

space limit, an example of only 10 fault locations are displayed in Table 5, where L, N and 

M represent the three operation centers, Little Rock, Newell and Matthews, respectively 

(complete estimated travel times can be found from Appendix 1). To generate travel times, 

the distance (in miles) between fault locations is calculated using Manhattan distance, i.e., 

𝑙1 - norm, between two coordinates, and then the travel times are computed using the 

distance and the speed of repair trucks, where the speed is set as 31.9 mph [62]. In [62], a 
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Python package, CitySpeed, is used to gather statistics on the efficiency and complexity of 

road networks using online mapping services. This can be used to create maps showing 

how fast you can drive around a particular city. 

Table 5: Estimated travel times from operation centers to fault locations and between fault locations 

in minutes (for a sample of 10 fault locations in the case of large-sized scenario 1) 

Locations L N M 1 2 3 4 5 6 7 8 9 10 

L  29 42 17 15 26 25 15 28 26 37 17 4 

N 29  27 47 44 23 33 35 2 26 22 13 27 

M 42 27  43 29 16 16 26 25 15 17 40 37 

1 17 47 43  14 27 26 16 45 27 43 34 19 

2 15 44 29 14  20 13 8 42 18 40 31 17 

3 26 23 16 27 20  10 12 22 2 19 24 22 

4 25 33 16 26 13 10  10 32 7 29 24 21 

5 15 35 26 16 8 12 10  34 11 32 23 11 

6 28 2 25 45 42 22 32 34  24 20 15 26 

7 26 26 15 27 18 2 7 11 24  22 25 22 

8 37 22 17 43 40 19 29 32 20 22  35 33 

9 17 13 40 34 31 24 24 23 15 25 35  15 

10 4 27 37 19 17 22 21 11 26 22 33 15  

 

The number of repair trucks at each operation center have been allotted as follows:  

7 bucket trucks at Little Rock Operation Center 

6 bucket trucks at Newell Operation Center 

4 bucket trucks at Matthews Operation Center 

It should be noted that this problem assumes that only bucket trucks of the utility company 

are utilized. This can be called as Aggregate Scheduling (or Aggregate Planning), where 

we aggregate the different types of trucks to a single representative unit, which can perform 

all the actions. In production, design and other fields, this concept helps in developing 

techniques for aggregating units of production, and determining suitable production levels 
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based on predicted demand for aggregate units [63]. The purpose of this is to be able to 

develop a top-down plan for the entire problem, where bucket truck denotes a single 

representative repair unit which performs repairs of representative fault types. 

4.2. Generation of Small-Sized Test Scenarios 

Due to the NP-hardness of the problem, the exact methods may not be practical when the 

size of the problem becomes large. Small-sized scenarios were also generated in order to 

examine whether the exact MIP formulations provide optimal solutions within a reasonable 

amount of time, and whether the heuristic method provides quality solutions. For this set 

of scenarios, a total of 12 faults were randomly generated in the Greater Charlotte area 

covering eight substations in each scenario. Figure 4 displays the 12 randomly generated 

faults (colored in red and categorized based on their processing times) for one of small-

sized scenarios and the operation centers colored in green. 

 

  

Figure 4: Locations of 12 faults and three operation centers (case of small-sized scenario 1) 
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Table 6: Estimated repair times at each fault location in minutes (case of small-sized scenario 1) 

 

 

 

 
 

 

 

 
 

 

 
 
 

 

Table 7: Estimated travel times from operation centers to fault locations and between fault locations 

in minutes (case of small-sized scenario 1) 

Locations L N M 1 2 3 4 5 6 7 8 9 10 11 12 

L 
 

29 42 18 27 18 26 16 27 46 44 35 37 46 39 

N 29 
 

27 47 28 23 25 19 8 61 58 42 52 75 68 

M 42 27 
 

32 15 24 15 25 35 88 85 69 79 54 48 

1 18 47 32 
 

19 24 22 28 45 56 53 53 52 28 21 

2 27 28 15 19 
 

9 3 11 26 73 70 55 64 47 41 

3 18 23 24 24 9 
 

9 4 21 64 61 45 55 52 45 

4 26 25 15 22 3 9 
 

10 23 73 70 54 63 50 43 

5 16 19 25 28 11 4 10 
 

17 62 60 44 53 56 49 

6 27 8 35 45 26 21 23 17 
 

53 50 34 44 73 66 

7 46 61 88 56 73 64 73 62 53 
 

9 39 38 59 58 

8 44 58 85 53 70 61 70 60 50 9 
 

30 29 56 56 

9 35 42 69 53 55 45 54 44 34 39 30 
 

9 81 74 

10 37 52 79 52 64 55 63 53 44 38 29 9 
 

79 73 

11 46 75 54 28 47 52 50 56 73 59 56 81 79  6 

12 39 68 48 21 41 45 43 49 66 58 56 74 73 6  

 

Tables 6 and 7 display an example of the estimated repair times for faults and travel times 

between locations, respectively. The data set corresponds to the scenario 1 of small-sized 

Fault location Estimated Repair Time 

1 375 

2 2403 

3 1075 

4 1340 

5 326 

6 934 

7 1258 

8 1563 

9 1118 

10 1390 

11 585 

12 810 
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scenarios. As before, L, N and M represent the three operation centers, Little Rock, Newell 

and Matthews, respectively in Table 7. Similar to the generation of large-sized scenarios, 

estimated travel times have been calculated based on the distances between locations and 

vehicle speed of 31.9 mph. 

The number of repair trucks for the small-sized scenarios were set as follows: 

2 bucket trucks at Little Rock Operation Center 

1 bucket truck at Newell Operation Center 

1 bucket truck at Matthews Operation Center 

4.3. Results of Numerical Study 

This section provides and compares the results of all the three solution methods 

implemented for solving both small-sized and large-sized scenarios. The MIP models have 

been coded in GAMS [64] and solved by the IBM ILOG CPLEX solver [65] using the 

NEOS server [66, 67]. In the reported results, EXACT1, EXACT2, and HEURISTIC refer 

to the first MIP model, proposed MIP model, and heuristic method, respectively. 
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4.3.1.  Results – small-sized scenarios 

Table 8: Restoration times for small-sized scenarios 

   Restoration times (minutes) Optimality percentage gap 

Scenarios EXACT1 EXACT2 HEURISTIC (
𝐻𝐸𝑈𝑅𝐼𝑆𝑇𝐼𝐶 − 𝐸𝑋𝐴𝐶𝑇2

𝐸𝑋𝐴𝐶𝑇2
) × 100 

Scenario 1 3345 3329 3496 5.02 

Scenario 2 3337 3337 3626 8.66 

Scenario 3 3361 3361 3587 6.72 

Scenario 4 3072 3072 3269 6.41 

Scenario 5 3352 3340 3641 9.01 

Scenario 6 3401 3390 3632 7.14 

Scenario 7 3939 3939 4072 3.38 

Scenario 8 3772 3768 4005 6.29 

Scenario 9 3356 3356 3582 6.73 

Scenario 10 3390 3390 3685 8.7 

Scenario 11 3611 3599 3777 4.95 

Scenario 12 3102 3102 3455 11.38 

Scenario 13 4037 4037 4165 3.17 

Scenario 14 3533 3529 3832 8.59 

Scenario 15 3336 3336 3502 4.98 

Scenario 16 3800 3789 3982 5.09 

Scenario 17 3112 3112 3360 7.97 

Scenario 18 2939 2931 3196 9.04 

Scenario 19 2978 2978 3218 8.06 

Scenario 20 3367 3367 3575 6.18 

Table 8 provides the restoration times obtained from all three methods for small-sized 

scenarios. 

GAMS has a default 1000 seconds resource limit, which was employed in this study. 

Consequently, the models taking more than 1000 seconds have not necessarily returned the 

optimal solution. In that case, it provides the best solution until that point of execution. 
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Table 9: Execution times for small-sized scenarios 

 Execution time (seconds) 

Scenarios EXACT1 EXACT2 HEURISTIC 

Scenario 1  

 

 

 

 

 

 

 

 

>1000 

4.536  

 

 

 

 

 

 

 

 

<1 

Scenario 2 3.05 

Scenario 3 5.459 

Scenario 4 7.712 

Scenario 5 10.304 

Scenario 6 10.167 

Scenario 7 15.027 

Scenario 8 7.699 

Scenario 9 11.793 

Scenario 10 5.08 

Scenario 11 5.649 

Scenario 12 42.346 

Scenario 13 15.797 

Scenario 14 3.346 

Scenario 15 5.669 

Scenario 16 30.486 

Scenario 17 7.42 

Scenario 18 13.033 

Scenario 19 25.679 

Scenario 20 2.745 

 

Observe that EXACT2, i.e., the proposed MIP model, provided optimal solutions within 

the time limit for all 20 small-sized scenarios. However, EXACT1 was not terminated 

within the time limit for all scenarios. Table 8 displays restoration times obtained from 

three methods. From the table, one can observe that best solutions reported from EXACT1 

were indeed optimal for 12 scenarios, while it provided non-optimal solutions for eight 

scenarios (scenarios 1, 5, 6, 8, 11, 14, 16, 18). 

The average solution time of EXACT2 was 11.649 seconds and ranged from 2.745 to 

42.346 seconds as reported in Table 9. The heuristic method took less than a second, 
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because of the simplicity of its implementation. Optimality percentage gap that is defined 

as (
𝐻𝐸𝑈𝑅𝐼𝑆𝑇𝐼𝐶−𝐸𝑋𝐴𝐶𝑇2

𝐸𝑋𝐴𝐶𝑇2
) × 100 is reported in the last column of Table 8. The average 

optimality gap was 6.87% and ranged from 3.17% to 11.38%. 

4.3.2.  Results – large-sized scenarios 

Table 10: Restoration times for large-sized scenarios 

 Restoration times (minutes) 

Scenarios EXACT1 EXACT2 HEURISTIC 

Scenario 1 9122 4010 4115 

Scenario 2 9062 4534 4132 

Scenario 3 8795 3983 4070 

Scenario 4 8199 4052 3986 

Scenario 5 8151 3989 4020 

Scenario 6 8719 4023 4043 

Scenario 7 6842 4699 4074 

Scenario 8 7660 4234 4106 

Scenario 9 7960 4056 4100 

Scenario 10 8518 3870 4017 

Scenario 11 8718 4046 4073 

Scenario 12 8314 4206 4049 

Scenario 13 8252 4101 4007 

Scenario 14 8460 4595 4091 

Scenario 15 7872 4262 4054 

Scenario 16 8970 3970 4022 

Scenario 17 8248 3898 4028 

Scenario 18 8501 4289 4019 

Scenario 19 6951 4008 4032 

Scenario 20 6266 3999 4093 

Table 10 provides the restoration times obtained from all three methods for large-sized 

scenarios, with the best of solutions being highlighted for each scenario. 

Both EXACT1 and EXACT2 have taken more than 1000 seconds for all the 20 large-sized 

scenarios. Due to their termination rule after 1000 seconds, the best solutions until that 
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point of execution are reported. EXACT2, i.e., the proposed MIP model, consistently 

outperformed EXACT1 for the large-sized scenarios. Of all the three methods, the 

HEURISTIC method attained shortest restoration times for nine of the 20 scenarios, while 

EXACT2 provided best solutions for the other 11 scenarios. 

Table 11: Optimality gap for large-sized scenarios 

Optimality percentage gap 

(
𝐸𝑋𝐴𝐶𝑇1 − 𝑏𝑒𝑠𝑡 𝑜𝑓 𝐸𝑋𝐴𝐶𝑇2 𝑎𝑛𝑑 𝐻𝐸𝑈𝑅𝐼𝑆𝑇𝐼𝐶

𝑏𝑒𝑠𝑡 𝑜𝑓 𝐸𝑋𝐴𝐶𝑇2 𝑎𝑛𝑑 𝐻𝐸𝑈𝑅𝐼𝑆𝑇𝐼𝐶
) × 100 

127.48 

119.31 

120.81 

105.69 

104.34 

116.73 

67.94 

86.56 

96.25 

120.1 

115.47 

105.33 

105.94 

106.8 

94.18 

125.94 

111.59 

111.52 

73.43 

56.69 

In order to measure the relative performance of EXACT1 compared to the other methods, 

optimality percentage gap, that is defined as (
𝐸𝑋𝐴𝐶𝑇1−𝑏𝑒𝑠𝑡 𝑜𝑓 𝐸𝑋𝐴𝐶𝑇2 𝑎𝑛𝑑 𝐻𝐸𝑈𝑅𝐼𝑆𝑇𝐼𝐶

𝑏𝑒𝑠𝑡 𝑜𝑓 𝐸𝑋𝐴𝐶𝑇2 𝑎𝑛𝑑 𝐻𝐸𝑈𝑅𝐼𝑆𝑇𝐼𝐶
) × 100 is 

calculated for the large-sized scenarios and presented in Table 11. Here, best of EXACT2 

and HEURISTIC indicates the best solution between both methods for that particular 
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scenario. On average, EXACT1 resulted in 103.6% more restoration time than the best of 

the other two methods. 

As far as the comparison of EXACT2 and HEURISTIC is concerned, the average 

optimality gap for the 11 scenarios for which EXACT2 performed better, was 1.75% and 

the average optimality gap for the nine scenarios where HEURISTIC performed better was 

6.69%. 
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CHAPTER 5: DYNAMIC IMPLEMENTATION OF REPAIR CREW 

SCHEDULING 

 

In the previous chapters, we have compared three optimization methods for scheduling 

repair crews based on estimated repair times and travel times. During a restoration process 

such estimated repair times will be provided by damage assessors after inspecting faults in 

affected areas. Once a repair crew team visits a fault location, these estimates may be 

changed or updated to reflect the current status of the fault repair progress. As we have 

seen from the numerical results in Chapter 4, EXACT2 can provide optimal scheduling 

solutions when time allows, while the heuristic method can quickly furnish an 

approximated solution under time pressure. With this observation, we propose a dynamic 

scheduling procedure in this chapter for practical implementation of optimization methods 

discussed. The main idea is to use the EXACT2 model for an initial scheduling and 

HEURISTIC is subsequently employed to reflect changes made in repair time estimates in 

real time. In this dynamic implementation, we assume that the schedule is periodically 

updated based upon new estimates at that time. Furthermore, it is reasonable to assume that 

no preemption is allowed. That is, when the schedule is updated, repair jobs that are being 

performed must be completed without interruption. 

5.1. Dynamic Repair Crew Scheduling 

This section presents the step by step procedure that is proposed for dynamic 

implementation. Suppose that the schedule update is performed every T time units. 

Step 1: Input initial estimates of repair times for each fault and travel times for each pair 

of fault locations. Solve EXACT2 to obtain the initial crew schedule. 

Step 2: Deploy repair crews according to the current schedule. 
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Step 3: Collect updated estimates for next time period T. 

Step 4: Apply Modified HEURISTIC to revise the repair crew schedule. 

Step 5: Return to Step 2. 

 

 

 

 

 

 

 

  
No 

Yes 

Input initial estimates given by damage assessor of 

repair times for each fault and travel times for each 

pair of fault locations. Solve EXACT2 to obtain the 
initial crew schedule 

 

Deploy crew teams following the initial 
schedule 

Is the system 

restored? 

Stop 

Check for current status of the crew 
teams after time period T 

 

Update estimates of 

the repairs given by 

crew teams after 
inspection 

 

Apply Modified HEURISTIC to 
get the new schedules 

Update schedules accordingly 

Figure 5: Proposed procedure for dynamic implementation of repair crew scheduling 
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Note that the proposed dynamic repair crew scheduling employs Modified HEURISTIC in 

Step 4. The following notation will be used to present this algorithm. 

𝑁 = Total number of faults to be restored 

𝐾 = Number of crew teams 

𝐶𝑡 = Set of faults restored by time 𝑡 

𝑁𝑡 = Set of faults to be restored at time 𝑡 i.e., (𝑁 − 𝐶𝑡) 

𝑁0
𝑡 = Set of faults being restored at time 𝑡 

𝑈𝑡 = 𝑁𝑡 −  𝑁0
𝑡 

𝑃̅𝑖
𝑡 = Adjusted processing time of fault 𝑖 for 𝑖 ∈ 𝑈𝑡 

𝑅𝑘
𝑡  = Estimated residual repair time of the fault that crew 𝑘 currently performs at time 𝑡. 

𝐶𝑘
𝑡 = Estimated completion time of crew 𝑘 

Using these notations, Modified HEURSTIC can be formally described as follows. 

Step 0: Initialize 𝐶𝑘
𝑡 = 𝑡 + 𝑅𝑘

𝑡  

Step 1: If 𝑈𝑡 is empty, stop. Otherwise, find 𝑘∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛 {𝐶𝑘
𝑡 ∶ 𝑘 ∈ 𝐾} and 𝑖∗ = 

𝑎𝑟𝑔 𝑚𝑎𝑥 {𝑃̅𝑖
𝑡 ∶ 𝑖 ∈ 𝑈𝑡} 

Step 2: Assign fault 𝑖∗ to crew 𝑘∗. Update 𝐶𝑘∗
𝑡  = 𝐶𝑘∗

𝑡 + 𝑃̅𝑖∗ 
𝑡  and 𝑈𝑡 = 𝑈𝑡 − {𝑖∗} 

Step 3: Return to Step 1. 
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5.2. Illustration of Dynamic Repair Crew Scheduling 

To illustrate the aforementioned dynamic repair crew scheduling, consider the input data 

of scenario 1 of the large-sized scenarios. Initial estimated repair times for 56 fault 

locations are 

Table 12: Initial estimates for 56 fault locations 

1 340 20 1102 39 1212 

2 461 21 838 40 1047 

3 2272 22 807 41 856 

4 2523 23 250 42 1218 

5 679 24 249 43 1176 

6 636 25 694 44 1070 

7 994 26 812 45 863 

8 924 27 712 46 930 

9 1361 28 771 47 3365 

10 1378 29 890 48 3387 

11 1756 30 920 49 458 

12 1530 31 1483 50 411 

13 1579 32 1492 51 394 

14 1456 33 2635 52 356 

15 260 34 2364 53 581 

16 200 35 2343 54 661 

17 418 36 2531 55 1244 

18 215 37 678 56 1351 

19 967 38 579   
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After solving EXACT2, the initial schedule is obtained as in Figure 6. 

 

 

Consider T = 120 minutes and suppose that 120 minutes elapsed, i.e., t=120 at which 

updated estimates are available. For instance, crew team K3 had an estimated time of 215 

K1 

 

K2 
 

K3 

 
K4 

 

K5 
 

K6 

 

K7 
 

K8 

 
K9 

 

K10 
 

K11 

 

K12 
 

K13 

 
K14 

 

K15 

 
K16 

 

K17 

 

4 (2523) 

7 (994) 

18 

(215) 

46 (930) 

11 (1756) 

29 (890) 

36 (2531) 

6 (636) 

8 (924) 

2 (461) 

14 (1456) 

19 (967) 

47 (3365) 

35 (2343) 

33 (2635) 

1 (340) 

43 (1176) 

5 (679) 52 (356) 

13 (1579) 55 (1244) 

48 (3387) 

54 (661) 26 (812) 9 (1361) 

56 (1351) 22 (807) 

10 (1378) 24 
(249) 42 (1218) 

51 (394) 45 (863) 

34 (2364) 15 

(260) 
17 (418) 

38 (579) 49 (458) 30 (920) 40 (1047) 

21 (838) 16 

(200) 
3 (2272) 

32 (1492) 53 (581) 

23 

(250) 44 (1070) 50 (411) 39 (1212) 

28 (771) 27 (712) 

20 (1102) 

37 (678) 25 (694) 

12 (1530) 41 (856) 

31 (1483) 

Figure 6: Initial crew schedules provided by EXACT2 (with associated fault numbers, and 

estimated repair times in parenthesis) 
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minutes for its initial repair (18) has now completed it in 55 minutes and is currently 

working at the next fault location according to the initial schedule. 

Figure 7 displays the updated repair times at t=120 along with old estimates. 

 

- Initial estimates

- Updated estimates

K1 
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K6 

 
K7 

 

K8 
 

K9 

 

K10 
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K13 

 
K14 

 

K15 
 

K16 

 
K17 

 

120 minutes 

4 (2106) 

7 (1044) 

48 (3150) 

11 (1982) 

29 (790) 

36 (2248) 

6 (740) 

8 (1127) 

43 (960) 

33 (2904) 

35 (2183) 

47 (3215) 

14 (1274) 

19 (1259) 

1 (251) 

2 (620) 

46 (705) 

18 
(55) 

Figure 7: Status of crew teams after initial 120 minutes (with associated fault numbers, and 
estimated repair times in parenthesis) 



 

 

 

 

38 

 

Now, to obtain the schedule via Modified HEURISTIC for the remaining faults, adjusted 

repair times are calculated as in HEURISTIC described In Chapter 3 by adding the average 

of travel times for each fault location to the updated estimated repair times. The next set of 

schedules for crew teams, along with the order they were assigned, is presented below 
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11 (1982) 
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12 (1530) 
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9 (1361) 

 
47 (3215) 

 

33 (2904) 

 

20 (1102) 

 
35 (2183) 

 

34 (2364) 

 
32 (1492) 

 

43 (960) 
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(55) 

1 (251) 

- Repairs that are completed or being completed

- Repairs to be processed next, obtained from Modified HEURISTIC

1 

13 

4 

12 

6 

15 

8 

5 

3 

11 

10 

14 

2 

7 

9 

Figure 8: Next set of schedules obtained from Modified HEURISTIC at t=120 (with associated 

fault numbers, and estimated repair times in parenthesis) 
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The resulting schedule obtained from Modified HEURISTIC is displayed in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the same manner, the estimates are updated after every time period T until all faults are 

restored.
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Figure 9: Updated schedule obtained from Modified HEURISTIC at t=120 (with associated fault 

numbers, and estimated repair times in parenthesis) 
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CHAPTER 6: CONCLUSION AND FUTURE STUDY 

This chapter presents the conclusion of this thesis and potential future research possibilities 

that can be implemented in this field of study. 

6.1. Conclusion 

During and after any high impact low frequency (HILF) event, human lives and properties 

can be devastated to a considerable extent, and they can be far worsened when essential 

infrastructures such as transport system, electricity, and water supply are disrupted for a 

prolonged period. Repair crew scheduling aims to minimize the time to restore power after 

any HILF event via mathematical optimization techniques and heuristic method. To solve 

this problem, we have implemented three solution methods, which consist of two mixed-

integer programming (MIP) models and a heuristic method. The first MIP model was 

adapted from a solution method for a job-scheduling problem that resembles the crew 

scheduling problem considered in this thesis. The second model was developed in an effort 

to improve the computational performance of the first model. In addition, a heuristic 

method has also been considered to compare the efficiency of results between different 

models. A real-life storm day of April 5th 2011 has been considered in this thesis along 

with the data provided by the utility company. All the three methods have been solved for 

the small-sized and large-sized scenarios and the results have been compared to analyze 

the performance. 

For the small-sized scenarios, EXACT2, i.e., the proposed MIP model, provided optimal 

solutions within the time limit for all 20 scenarios. EXACT1 reported optimal solutions for 

12 scenarios, however, it has exceeded the time limit of 1000 seconds while executing 

those scenarios. And for the large-sized scenarios, HEURISTIC method yielded optimal 
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solutions for nine scenarios while EXACT2 delivered optimal solutions for 11 scenarios. 

Looking at the results extracted, one can observe that EXACT2 has performed better for 

both small-sized and large-sized scenarios. And, in case of the large-sized scenarios, even 

though the EXACT2 has provided best solutions for 11 of them, it has taken more than 

1000 seconds for all of their execution. And for those 11 scenarios, the heuristic method 

has an average optimality gap of 1.75%, but for the nine scenarios where the heuristic 

method executed better, EXACT2 has an average optimality gap of 6.69%. 

Considering the facts that heuristic method has taken minimal execution time and that this 

thesis is primarily focused on the extreme events, it is concluded that the HEURISTIC 

method can be practically utilized under the large-scale HILF events. However, it should 

be noted that EXACT2 will provide an optimal solution when time permitted and has a 

great potential to outperform HEURISTIC as advanced computational power emerges as 

well as state-of-the-art MIP formulations become available. In addition to this, we have 

proposed the dynamic implementation in Chapter 5, which provides a solution strategy in 

case of storm events and is a combination of EXACT2 and HEURISTIC methods. As the 

restoration process begins once the storm has passed away, EXACT2 can be solved 

beforehand to provide the initial crew schedules. After updating the repair times for each 

time period T, HEURISTIC can be quickly solved to obtain the next set of schedules. 

6.2. Future Study 

Further studies in Repair Crew Scheduling problem include the implementation of various 

kinds of trucks available at the utility company. This thesis assumed only bucket trucks 

and that all the repair equipment will be present in this truck. Repair Crew Scheduling can 
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be made more realistic by analyzing the trucks and utilizing them based on the type of 

repair that is to be restored. Another topic that can be worked upon in the future would be 

prioritizing the faults and restoring them first, based on their significance. This 

prioritization helps in restoring power to critical facilities such as hospitals, police and fire 

stations, etc. Prioritization and including the different types of repair trucks can make this 

problem complete, to help the utility companies in restoring the power outages during 

HILF events. 
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APPENDIX A: TRAVEL TIME 

Travel times for scenario 1 of the large-sized scenarios:

 

L N M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
L 29 42 17 15 26 25 15 28 26 37 17 4 17 6 22 20 23 26 22 5 19 42 36 26 35 32 56 60 62 32 54 35 63 51 32 59 72 32 28 51 46 29 51 51 25 47 46 53 19 52 69 52 48 17 66 37 60 39
N 29 27 47 44 23 33 35 2 26 22 13 27 46 29 51 10 6 3 8 27 10 12 10 4 50 47 71 74 77 47 69 49 78 65 47 74 87 47 43 66 22 35 28 66 40 62 28 68 28 66 98 82 77 46 95 65 89 68
M 42 27 43 29 16 16 26 25 15 17 40 37 26 36 31 37 25 28 35 36 37 39 27 29 77 73 98 101 104 74 96 76 105 92 74 100 113 73 70 93 49 62 55 93 67 89 55 95 55 93 78 61 57 39 74 45 68 50
1 17 47 43 14 27 26 16 45 27 43 34 19 17 18 20 38 41 44 40 20 37 59 53 43 34 31 55 59 61 31 53 34 62 50 31 58 71 45 43 59 64 47 69 50 29 48 64 61 37 57 52 35 31 3 48 38 42 21
2 15 44 29 14 20 13 8 42 18 40 31 17 4 15 8 35 38 41 37 17 34 56 50 40 48 44 69 72 75 45 67 47 76 63 45 71 84 44 41 64 61 44 66 64 38 60 61 66 34 64 55 38 34 10 51 24 45 24
3 26 23 16 27 20 10 12 22 2 19 24 22 23 20 28 21 18 20 19 20 21 36 30 20 61 58 82 85 88 58 80 60 89 76 58 84 98 57 54 77 41 46 46 77 51 73 41 79 39 77 75 58 54 23 71 42 66 45
4 25 33 16 26 13 10 10 32 7 29 24 21 13 20 18 24 27 30 26 20 23 45 40 30 61 57 81 85 88 58 80 60 88 76 57 84 97 57 54 76 50 46 55 76 51 73 50 78 39 77 65 49 44 23 62 32 56 35
5 15 35 26 16 8 12 10 34 11 32 23 11 11 9 16 27 30 33 29 10 26 48 42 32 50 47 71 75 78 48 70 50 78 66 47 74 87 47 44 66 53 36 58 66 41 63 53 68 29 67 63 46 42 13 59 30 54 32
6 28 2 25 45 42 22 32 34 24 20 15 26 45 28 50 12 5 3 10 25 12 14 8 4 52 49 73 76 79 49 71 51 80 67 49 75 89 48 45 68 24 37 30 68 42 64 30 70 30 68 97 80 76 44 94 64 88 67
7 26 26 15 27 18 2 7 11 24 22 25 22 21 20 26 22 20 23 19 21 21 38 32 22 61 58 82 86 89 58 80 61 89 77 58 85 98 58 55 77 43 47 48 77 51 74 43 79 39 78 73 56 52 24 69 40 63 42
8 37 22 17 43 40 19 29 32 20 22 35 33 42 31 47 32 20 23 30 31 32 34 12 24 72 69 93 96 99 69 91 71 100 88 69 96 109 69 65 88 44 57 50 88 62 84 50 90 50 88 94 78 73 42 91 62 85 64
9 17 13 40 34 31 24 24 23 15 25 35 15 34 16 39 4 15 12 6 14 3 25 23 11 37 33 58 61 64 34 56 36 65 52 34 60 73 33 30 53 30 22 35 53 27 49 30 55 15 53 86 69 65 33 82 53 77 55

10 4 27 37 19 17 22 21 11 26 22 33 15 19 2 24 18 21 24 20 1 17 40 34 24 39 36 60 64 66 36 58 39 67 55 36 63 76 36 32 55 44 27 49 55 29 51 44 57 17 56 71 54 50 19 68 38 62 41
11 17 46 26 17 4 23 13 11 45 21 42 34 19 17 5 37 40 43 39 20 36 59 53 43 51 48 72 76 78 48 70 51 79 67 48 75 88 48 44 67 64 46 69 67 41 63 63 69 37 68 52 35 31 14 48 21 43 25
12 6 29 36 18 15 20 20 9 28 20 31 16 2 17 22 20 23 26 22 2 19 41 36 25 41 38 62 65 68 38 60 40 69 57 38 65 78 38 34 57 46 29 51 57 31 53 46 59 19 57 69 53 48 17 66 37 60 39
13 22 51 31 20 8 28 18 16 50 26 47 39 24 5 22 42 45 48 44 25 41 64 58 48 54 51 75 79 81 51 73 54 82 70 51 78 91 51 47 70 69 51 73 70 44 66 68 72 42 71 47 30 26 17 44 18 38 28
14 20 10 37 38 35 21 24 27 12 22 32 4 18 37 20 42 12 9 2 18 1 21 20 8 40 36 61 64 67 37 59 39 68 55 37 63 76 36 33 56 26 25 31 56 30 52 26 58 18 56 89 73 68 37 86 57 80 59
15 23 6 25 41 38 18 27 30 5 20 20 15 21 40 23 45 12 3 10 21 12 18 13 4 52 48 72 76 79 49 71 51 79 67 48 75 88 48 45 67 23 37 30 67 42 64 29 69 30 68 92 76 71 40 89 60 83 62
16 26 3 28 44 41 20 30 33 3 23 23 12 24 43 26 48 9 3 7 24 9 15 11 1 49 45 70 73 76 46 68 48 77 64 46 72 85 45 42 65 21 34 27 65 39 61 27 67 27 65 95 79 74 43 92 63 86 65
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18 5 27 36 20 17 20 20 10 25 21 31 14 1 20 2 25 18 21 24 20 17 39 33 23 41 37 61 65 68 38 60 40 68 56 37 64 77 37 34 56 44 27 49 57 31 53 44 58 19 57 72 55 50 19 68 39 62 41
19 19 10 37 37 34 21 23 26 12 21 32 3 17 36 19 41 1 12 9 3 17 22 20 8 40 37 61 64 67 37 59 39 68 56 37 64 77 37 33 56 27 25 32 56 30 52 27 58 18 56 88 72 67 36 85 56 79 58
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32 51 65 92 50 63 76 76 66 67 77 88 52 55 67 57 70 55 67 64 58 56 56 53 76 63 16 19 5 20 12 18 27 16 31 19 8 21 20 22 34 44 30 44 13 25 24 39 37 37 32 76 74 68 53 73 87 67 46
33 32 47 74 31 45 58 57 47 49 58 69 34 36 48 38 51 37 48 46 39 37 37 48 57 45 21 4 24 28 30 11 22 12 31 19 27 40 34 32 48 53 36 58 26 18 38 53 51 26 46 62 56 49 34 59 69 53 32
34 59 74 100 58 71 84 84 74 75 85 96 60 63 75 65 78 63 75 72 66 64 64 61 84 71 24 27 3 26 4 27 33 24 37 8 27 15 27 30 28 52 38 46 8 34 18 46 31 46 26 82 82 76 61 80 96 74 52
35 72 87 113 71 84 98 97 87 89 98 109 73 76 88 78 91 76 88 85 79 77 77 74 97 85 37 40 16 12 13 40 18 37 21 21 40 15 40 44 44 65 51 59 22 47 33 59 46 59 41 73 95 89 74 93 109 87 63
36 32 47 73 45 44 57 57 47 48 58 69 33 36 48 38 51 36 48 45 39 37 37 34 57 44 13 38 24 40 31 23 47 22 51 20 34 27 40 3 19 25 11 24 19 16 16 19 21 19 20 96 80 75 44 93 69 87 66
37 28 43 70 43 41 54 54 44 45 55 65 30 32 44 34 47 33 45 42 35 34 33 31 53 41 11 36 28 38 34 21 45 20 49 22 32 30 44 3 23 21 8 26 23 14 19 21 25 15 23 94 78 73 42 91 65 85 64
38 51 66 93 59 64 77 76 66 68 77 88 53 55 67 57 70 56 67 65 58 56 56 53 76 64 27 53 30 55 30 37 61 36 65 34 48 28 44 19 23 44 31 38 22 30 11 38 2 38 2 111 94 90 58 107 88 101 80
39 46 22 49 64 61 41 50 53 24 43 44 30 44 64 46 69 26 23 21 24 44 27 9 32 21 33 58 49 60 55 42 66 41 70 44 53 52 65 25 21 44 17 6 44 35 40 6 46 27 45 116 99 95 63 112 83 106 85
40 29 35 62 47 44 46 46 36 37 47 57 22 27 46 29 51 25 37 34 27 27 25 23 45 33 15 40 36 42 42 25 49 24 53 30 36 38 51 11 8 31 17 22 31 18 27 17 33 10 31 98 82 77 46 95 66 89 68
41 51 28 55 69 66 46 55 58 30 48 50 35 49 69 51 73 31 30 27 29 49 32 16 38 26 37 62 43 64 49 47 71 46 75 44 58 46 59 24 26 38 6 22 38 40 34 5 40 32 38 120 104 99 68 117 88 111 90
42 51 66 93 50 64 77 76 66 68 77 88 53 55 67 57 70 56 67 65 58 57 56 53 76 64 16 31 8 33 11 19 39 17 43 13 26 8 22 19 23 22 44 31 38 26 11 38 24 38 20 89 75 68 53 85 88 79 58
43 25 40 67 29 38 51 51 41 42 51 62 27 29 41 31 44 30 42 39 32 31 30 30 50 38 10 22 31 34 37 7 31 9 38 25 18 34 47 16 14 30 35 18 40 26 22 35 33 12 28 80 64 59 28 77 62 71 50
44 47 62 89 48 60 73 73 63 64 74 84 49 51 63 53 66 52 64 61 54 53 52 50 72 60 17 42 20 44 20 26 51 25 55 24 38 18 33 16 19 11 40 27 34 11 22 34 13 34 8 100 83 79 49 97 84 91 70
45 46 28 55 64 61 41 50 53 30 43 50 30 44 63 46 68 26 29 27 24 44 27 15 38 26 32 57 43 59 49 42 66 41 70 39 53 46 59 19 21 38 6 17 5 38 35 34 40 27 39 115 99 94 63 112 83 106 85
46 53 68 95 61 66 79 78 68 70 79 90 55 57 69 59 72 58 69 67 60 58 58 55 78 66 30 55 32 57 33 39 64 38 68 37 51 31 46 21 25 2 46 33 40 24 33 13 40 40 5 113 96 92 60 110 90 104 83
47 19 28 55 37 34 39 39 29 30 39 50 15 17 37 19 42 18 30 27 20 19 18 22 38 26 22 31 43 46 49 19 41 21 50 37 26 46 59 19 15 38 27 10 32 38 12 34 27 40 38 89 72 68 36 85 56 79 58
48 52 66 93 57 64 77 77 67 68 78 88 53 56 68 57 71 56 68 65 58 57 56 54 77 64 25 50 28 52 28 35 59 34 63 32 46 26 41 20 23 2 45 31 38 20 28 8 39 5 38 108 92 87 56 105 88 99 78
49 69 98 78 52 55 75 65 63 97 73 94 86 71 52 69 47 89 92 95 91 72 88 111 105 95 83 58 81 61 80 74 55 75 64 76 62 82 73 96 94 111 116 98 120 89 80 100 115 113 89 108 23 21 53 21 36 14 30
50 52 82 61 35 38 58 49 46 80 56 78 69 54 35 53 30 73 76 79 75 55 72 94 88 78 66 55 79 83 86 57 78 58 87 74 56 82 95 80 78 94 99 82 104 75 64 83 99 96 72 92 23 7 36 13 16 9 32
51 48 77 57 31 34 54 44 42 76 52 73 65 50 31 48 26 68 71 74 70 50 67 90 84 74 62 49 73 76 79 53 71 54 80 68 49 76 89 75 73 90 95 77 99 68 59 79 94 92 68 87 21 7 32 18 20 12 25
52 17 46 39 3 10 23 23 13 44 24 42 33 19 14 17 17 37 40 43 39 19 36 58 52 42 37 34 58 62 65 34 56 37 65 53 34 61 74 44 42 58 63 46 68 53 28 49 63 60 36 56 53 36 32 49 35 43 22
53 66 95 74 48 51 71 62 59 94 69 91 82 68 48 66 44 86 89 92 88 68 85 107 102 91 80 55 78 81 84 70 76 71 85 73 59 80 93 93 91 107 112 95 117 85 77 97 112 110 85 105 21 13 18 49 29 7 30
54 37 65 45 38 24 42 32 30 64 40 62 53 38 21 37 18 57 60 63 59 39 56 78 72 62 72 69 93 96 99 69 91 71 100 87 69 96 109 69 65 88 83 66 88 88 62 84 83 90 56 88 36 16 20 35 29 24 45
55 60 89 68 42 45 66 56 54 88 63 85 77 62 43 60 38 80 83 86 82 62 79 101 96 86 74 49 71 74 77 65 69 66 78 67 53 74 87 87 85 101 106 89 111 79 71 91 106 104 79 99 14 9 12 43 7 24 23
56 39 68 50 21 24 45 35 32 67 42 64 55 41 25 39 28 59 62 65 61 41 58 80 75 64 53 28 50 51 54 44 46 44 54 46 32 52 63 66 64 80 85 68 90 58 50 70 85 83 58 78 30 32 25 22 30 45 23
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