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ABSTRACT

YAWO H. AMENGONU. Geometric methods for control of nonholonomic
mechanical systems with applications to the control moment gyroscope and wheeled

mobile robots. (Under the direction of DR.YOGENDRA P. KAKAD)

The advantage of geometric dynamics analysis over the classical analysis method

is that geometric method is independent of the choice of coordinates. The work, pre-

sented here, applies differential geometry for analysis and control of underactuated

dynamical systems which include mobile robots, aircraft systems, underwater vehicles,

satellites and many more systems. In the first part we will model a class of wheeled

mobile robots and for which geometric method is applied to trajectory tracking. In

the second part of the dissertation, geometric method is applied to the control mo-

ment gyroscope mounted on an inverted pendulum. The control moment gyroscope

inverted pendulum is originally modeled at Embry-Riddle Aeronautic University by

Dr. Douglas Isenberg. Stability analysis and control law design is proposed. The first

solution proposed uses collocated partial feedback linearization and then the dynam-

ics are transformed into strict feedback form, a form suitable to apply backstepping

method. This work appears in the Springer series Advances in Intelligent Systems

and Computing [6]. The application of collocated partial feedback linearization due

to Mark Spong, makes it easy to transform the system into a cascade of a linear and

a nonlinear subsystems. Peaking phenomenon is an issue which is inherently present

in interconnected subsystems; the manifestation of this phenomenon is sometimes

observed as finite time escape. Finite time escape can excite unstable modes in the

nonlinear subsystem. Peaking phenomenon is studied and a solution is proposed.
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CHAPTER 1: INTRODUCTION

This dissertation is about geometric control of a certain class of mechanical sys-

tems, the Control Moment Gyroscope (CMG) inverted pendulum and wheeled mobile

robots. CMGs are mostly used on space exploration mission systems such as space-

crafts, satellites, telescopes, international space station to perform maneuvers. Many

of them employ more than three CMGs for attitude control. The swift Gamma Ray

Burst explorer, for example, employs six wheels to quickly relay location of gamma

ray burst to ground stations so that ground stations can observe afterglow. NASA

has recently put out call for proposals for High Torque, Low Jitter Reaction Wheels

or Control Moment Gyros for its small satellites in the range of 5-100 Kg size range.

The need to fully study and understand these actuation systems is necessary. For

example in the case of failure of one more of the reaction wheels, would the system

still be controllable and stabilizable. This dissertation is concerned with the study

of a similar CMG platform with only one momentum wheel which can simulate an

actuator failure. The system is mounted on a pendulum and the physical model is at

Embry-Riddle Aeronautic University in Arizona. Application of this system could be

used for stabilization of ships, underwater vehicles and wheeled mobile robots. The

dissertation will first consider modeling and stabilization of wheeled mobile robots

in the first part and then in the second part we will study stability and control of

the Control Moment Gyroscope inverted pendulum. Geometric mechanics have intro-

duced new tools which have led to better understanding of the structures of dynamical

systems especially in mechanical systems. These structures are often times rather dif-

ficult to understand using the classical analysis methodologies. Great insights into

dynamical systems analysis and control were gained while applying geometric theory
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[18], [19], [25], [42], [62]. Geometric methods applied to mechanical systems provide

robust control algorithms and stronger background theory to analyze where the clas-

sical nonlinear systems theory may fail. It was pointed out in the early 1970’s by

Brockett [15],[43] that there are many physical systems in engineering and physics

that cannot be treated by the classical control theory because the state space (the

configuration space) is not a vector space. For example the state space of a rigid

body whose attitude is controlled relative to some fixed set of axes is the tangent

bundle of SO(3) which is the group of orthogonal matrices with determinant equals

to unity. This research is mainly about mechanical systems with fewer inputs than

the degrees of freedom. Such systems are sometimes characterized by nonintegrable

dynamic relations. Research that has been done for systems with nonintegrable rela-

tions were mainly about system with nonholonomic kinematics. In chapter I, we will

present a summary of the dissertation and an overview of some of the main results

obtained in the analysis of systems with both nonintegrable kinematic and dynamics

relations. The section on mathematical background concludes Chapter I. Note that

the mathematical background section is added for completeness of the dissertation.

The mathematical background on geometric mechanics is extracted from an excellent

source; Foundation of mechanics in which, the theory is based on point set topology

[1]. Another outstanding textbook is Introduction to Mechanics and Symmetry which

applies symmetry to reduce mechanical system dynamics [58]. The dissertation is a

comprehensive compilation of the research performed as doctoral candidate at the

University of North Carolina at Charlotte under the supervision of Prof. Yogendra

P. Kakad. The research has yielded several publications and this document is more

comprehensive.

1.1 Overview of the Dissertation

The main focus of this dissertation is to apply geometric perspective to stability

analysis and control of mechanical systems with fewer inputs than degrees of freedom.
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While many analysis techniques were presented for these kind of systems in the past,

the control law design for certain underactuated dynamical systems remains an open

research problem in most cases. The background material presented in the next

section of this chapter is applied in the analysis and control design of systems. The

equations of motion of rigid-body and multi-body dynamics are often modeled as a

second order linear or nonlinear differential equations. A unifying modeling technique

in most cases is to describe the equations of motion in terms of general coordinates and

their time derivatives where the generalized velocities are considered to be elements of

the tangent space to the configuration manifold, and the generalized forces are taken

to be elements of the cotangent or dual space to the tangent space. When the systems

under consideration have constraints (holonomic or nonholonomics), the tangent space

and the cotangent space do not have a natural metric since the generalized coordinates

or the constraints can be expressed as a combination of translational and rotational

components hence, the dynamical model formulation depends on the metric selected;

in other words the formulation is not invariant. Several researchers have explored

different methods in formulating the dynamics in the presence of constraints. One

of the most popular methods is the quasivelocities technique. Quasivelocities are

obtained by exploiting the factorization of the mass matrix, which is a positive define

matrix, to obtain a linear combination of the generalized velocities and the generalized

coordinates. A survey can be found in [2], [34]. It turns out that the Euclidean norm

of the quasivelocities vector is proportional to the square root of the kinetic energy

of the system [33], [37], [48], [70]. Quasivelocities technique such as Maggi’s and

Bolzmann-Hammel methods were applied to model the dynamics of a differential

mobile robot and the classical method to model a car-like mobile robots as shown

in chapter II. The control methodology proposed exploits dynamics extension in the

first case to design a trajectory tracking control law because the system lacks relative

degree with respect to the proposed output. The design is mainly performed to
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show that when the system does not have a well defined relative degree, a dynamic

extension can be performed to obtain a relative degree. The advantage of Maggi’s

method is that in the presence of nonholonomic constraints, as it is in the case of

wheeled mobile robot, Lagrange multipliers are used to incorporate the constraints in

the differential equations that model the dynamics. Doing so, increases the number of

variables that one has to solve in order to obtain the equations of motion. But at the

end, the Lagrange multipliers are eliminated since they are not needed in the resulting

equations. However, Maggi’s formulation eliminates the Lagrange multipliers in the

beginning and therefore the number of variables is reduced. The work presented in

Chapter II appears in the proceedings of the International Conference on CADCAM,

Robotics and Factories of the Future 2014, Amengonu and Kakad [4, 5]. Dynamics

modeling section of the work we published in Amengonu and Kakad [3] is given the

this Chapter as well.

In Chapter III, dynamics and control of the CMG inverted pendulum are presented.

Here, the configuration variable are separated into shape and external variables. We

use the fact that the external variables define a group action on the configuration

manifold and the kinetic energy is symmetric with respect to the external variables.

The symmetry of the kinetic energy with respect to external variables was exploited to

transform the system into Byrnes-Isidori normal form [36]. One step further is taken

to transform the system into two interconnected subsystems: one linear and the other

nonlinear which results from the application of collocated partial feedback lineariza-

tion introduced by Mark Spong [79, 81]. A backstepping control law is proposed in

formulating this research problem. In the backstepping procedure, the variable used

as a virtual input to the nonlinear subsystem is computed using implicit function

theorem and saturation function. Saturation function method and saturation stabi-

lization techniques are given in [85], [89], [93]. Peaking is a phenomenon inherently

present in interconnected subsystems. Peaking phenomenon is also studied for the



5

resultant interconnected subsystems.

1.2 Mathematical Background and Literature Review

The mathematical background needed for the work proposed here can be found

mostly in Foundation of Mechanics [1] and some introductory textbooks in differential

geometry for example differential geometry by Boothby [14], and by DoCarmo [26].

For the work to be self contained, we summarize some of definitions and notations

that we will be using extensively in the course of the work.

1.2.1 Topological Space

A topological space is a set M together with a collection O of subsets called open

sets such that

(T1) ∅ ∈ O;

(T2) If U1, U2 ∈ O, then U1 ∩ U2 ∈ O;

(T3) The union of any collection of open sets is also open.

A basis B for the topology is a collection of open sets such that every open set of

M is a union of elements of B. The topology is called second countable if it has a

countable basis.

A topological space is called Hausdorff if and only if each two distinct points have

disjoint neighborhoods. This notion is very important because it will help in studying

trajectory convergence and distance between neighboring points. Before defining the

abstracts objects that are essential to our study, let us make some notations which

are largely drawn from [84]. Rn = [(a1, . . . , an), ai ∈ R] is the product of ordered

n-tuples of real numbers. Let ξi, i = 1, . . . , n a natural coordinate (slot) functions

define as ξi : Rn → R by ξi(a1, . . . , an) = ai. An open set U of Rn is a set such

that for every point u ∈ U , there is δ > 0 such that (u − δ, u + δ) ⊂ U . Thus the

distance between two points a = (a1, . . . , an) and b = (b1, . . . , bn) in Rn is given by
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d(a, b) =
√∑n

i=1(ai − bi)2 using the standard metric topology induced by the natural

metric function d on Rn. A map f from an open subset U of Rn into R is called Cr

on U if f possesses continuous partial derivatives on U of all orders ≤ r. So f defined

from Rn into Rk, k ≥ 1 is Cr if each of its slot functions f i = ξi ◦ f, i = 1, . . . , k is Cr

on U .

1.2.2 Manifold

Roughly speaking, a manifold M of dimension n is a space that looks locally as

an n-dimensional Euclidean space. For example a sphere in R3 is defined by S2 =

{(x, y, z) ∈ R3, x2 + y2 + z2 = 1}. S2 is not a part of the Euclidean space R2 but

the immediate neighborhood of a point on the sphere can be described by a two

coordinates system which can be identified with R2.

An n-manifold M is Hausdorff space with a countable basis is locally homeomorphic

to n-dimensional Euclidean space Rn. Since there is a one-to-one mapping from

subsets of M to Rn, we are allowed to specify each point on M by a vector of n real

numbers which is called the coordinates of the corresponding point.

Let U be a neighborhood of a point p on M . Let V be an open subset of Rn and

suppose a mapping ϕ from U into V . Then we can write: ϕ(p) = [x1(p), . . . , xn(p)],

xi = ξi ◦ ϕ(p). These are the coordinates function of p. Each xi(p) may be viewed

as a function p → xi(p), i = 1 . . . n which maps a point p to its ith coordinate. The

mapping ϕ is called differentiable if its coordinates xi(p), i = 1 . . . n are differentiable.

Let M be a Hausdorff topological space. An open coordinate chart on M is a pair

(U,ϕ) where U is a open subset of M and ϕ is a homeomorphism. (ϕ and ϕ−1) are

continuous functions of U into an open subset of Rn.

Let M be a Hausdorff space. A differential structure on M of dimension n is a

collection of open charts (Uα, ϕα)α∈A on M where ϕα(Uα) is an open subset of Rn

such that the following conditions are satisfied:
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(M1) M=
⋃
α∈A

Uα;

(M2) For each pair α, β ∈ A the mapping ϕβ ◦ ϕ−1
α is a differential mapping of

ϕα(Uα ∩ Uβ) onto ϕβ(Uα ∩ Uβ).

Note that for an analytic structure of dimension n, in (M2) differentiable is replaced

by analytic. This is a very important notion used very often in geometric control

theory.

1.2.3 Tangent Space

The tangent space at a point p of a manifold is a collection of all tangent vectors

at p; in other words, it is the collection of all derivatives at p. The tangent space

at a point is a vector space. This is also a very important notion because locally

on a smooth manifold, we can apply multilinear algebra. As we have seen above,

at every point on a n-dimensional manifold, we can find a local coordinates chart

(x1, x2, . . . , xn). The collection of the tangent spaces at p ∈ M form a space that is

denoted by tangent bundle TM =
⋃
p∈M

TpM . The dimension is 2n and the elements are

(p, v), v is a tangent vector. A vector field is a smooth map defined form the manifold

M to TM . This mapping is used to represent ordinary differential equations on the

manifold M. Let I be a subinterval of R and c : I →M a map defined form I to M .

The curve c(t) with t ∈ I is an integral curve of a vector field X if

dc(t)

dt
= X(c(t))

We say that the vector field X is complete if it is defined for all t ∈ R i.e.I = R.

1.2.4 Flow of Vector Fields

The flow of a vector field X, φX : R ×M → M , (t, p) 7→ ΦX(t, p) form a group

with respect to composition of mappings (one-parameter subgroup). If the vector

field is said to be not complete for example if t ≥ 0 then the flow is a one-parameter
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semigroup; in other words it is not defined for all t ∈ R but for only positive time.

1.2.5 Meaning of Lie Bracket

Consider two complete vector fields X, Y in the set X(M) of vector fields defined

on M and let us consider the associated flows ΦX ,ΦY . The Lie bracket is the second

order term of the expansion of the flow composition Φ−Ys ◦Φ−Xt ◦ΦY
s ◦ΦX

t . To justify

this, let us flow along the vector field X for a short period of time say ε. We know

from above that the derivative of the integral curve c(t) is given by

ċ(t) = X(c(t))

c̈(t) =
∂X

∂c
X(c(t)) (1.1)

Without loss of generality, if we assume c(0) = p0 ∈ M , a local solution for a small

time ε from c(0) = p0 ∈M is c(ε). The Taylor series expansion is given by

c(ε) = ΦX
ε (c(0))

= c(0) + εċ(0) +
ε2

2
c̈(0) +O(ε3)

= p0 + εX(p0) +
ε2

2

∂X

∂c
X|p0 +O(ε3) (1.2)

let us flow along the vector field Y for another short period of time ε. This is given

by

c(2ε) = φYε ◦ φXε (c(0))

= φYε (p0 + εX(p0) +
ε2

2

∂X

∂c
X|p0 +O(ε3))

= p0 + εX(p0) +
ε2

2

∂X

∂c
X|p0 + εY (p0 + εX(p0)) +

ε2

2

∂Y

∂c
Y |p0 +O(ε3)(1.3)
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But since the vector fields are assumed complete, we can flow along −X and −Y .

The flow along X in the opposite direction i.e.−X is given by

c(3ε) = Φ−Xε ◦ ΦY
ε ◦ ΦX

ε (p0)

= Φ−Xε (c(2ε)) = c(2ε)− εX(c(2ε))− ε2

2

∂X

∂c
ċ

= p0 + ε(X(p0) + Y (p0)) + ε2
(

1

2

∂X

∂c
X(p0) +

∂Y

∂c
X(p0) +

1

2

∂Y

∂c
Y (p0)

)
− εX(p0)− ε2

(
∂X

∂c
X(p0) +

∂X

∂c
Y (p0)

)
+
ε2

2

∂X

∂c
X(p0)

= p0 + εY (p0) + ε2
(
∂Y

∂c
X(p0) +

1

2

∂Y

∂c
Y (p0)− ∂X

∂c
Y (p0)

)
+O(ε3) (1.4)

and flowing along −Y we have

c(4ε) = Φ−Yε ◦ Φ−Xε ◦ ΦY
ε ◦ ΦX

ε (p0)

= p0 + εY (p0) + ε2
(
∂Y

∂c
X(p0) +

1

2

∂Y

∂c
Y (p0)− ∂X

∂c
Y (p0)

)
− εY (p0)− ε2∂Y

∂c
Y (p0) +

ε2

2

∂Y

∂c
Y (p0) +O(ε3)

= p0 + ε2
(
∂Y

∂c
X − ∂X

∂c
Y

)
+O(ε3)

= p0 + ε2[X, Y ] +O(ε3) (1.5)

Thus the Lie bracket [X, Y ] = ∂Y
∂c
X − ∂X

∂c
Y is an infinitesimal motion (actually of

order ε2) that results from flowing along the vector fields X and Y as specified above.

This means that after a reparametrization, the tangent vector at zero to the curve

t → α(t) is proportional to [X,Y]. This fact will become the corner stone while

studying controllability properties of nonlinear systems. A detail account and proof

are given for example in Spivak [78]. If the Lie bracket is evaluated to be zero then

X and Y commute. Let us state a proposition on convergence of linear combination

of vector fields [39].

Proposition: Suppose we are given two vector fields X and Y defined on U , and let
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p ∈ U . Let λ1 and λ2 be real constants. Define the following local diffeomorphism of

U

ηt = ΦX
λ1t
◦ ΦY

λ2t
, ψt = ΦX

−t ◦ ΦY
−t ◦ ΦX

t ◦ ΦY
t . (1.6)

Then the families of curves shown

αk(t) = ηt/k ◦ · · · ◦ ηt/k, k − times

βk(t) = ψt/k ◦ · · · ◦ ψt/k, k2 − times (1.7)

converge to the trajectories of the vector fields λ1X + λ2Y and [X,Y], respectively.

More precisely, we have the convergence βk(t) → Φλ1X+λ2Y
t and βk(t) → Φ

[X,Y ]

t2 as

k →∞. A version of this proposition is given in [1], Corollary 2.1.27.

1.2.6 Properties of Lie Brackets

Let f , g and h three smooth vector fields defined on Rn and α, β smooth functions

from Rn to R. The Lie brackets satisfies the following properties.

1. skew-symmetry:

[f, g] = −[g, f ] (1.8)

2. Jacobi identity:

[f, [g, h]] + [h, [f, g]] + [g, [h, f ]] = 0 (1.9)

3. chain rule:

[αf, βg] = αβ[f, g] + α(Lfβ)g − β(Lgα)f, (1.10)
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where Lfα and Lgβ are the Lie derivatives of the functions α, β along the vector

fields f and g respectively.

1.2.7 Lie Algebra

A vector space V (over R) is a Lie algebra if there exist a bilinear operation from

[ , ] V × V → V , [ , ] is the operation satisfying the skew-symmetry and Jacobi

identities enumerated above.

1.2.8 Distribution

A distribution is a map ∆ on M assigning to p ∈ M a linear subspace of TpM :

∆(p) ⊂ Tp(M). The distribution ∆ is smooth if it is spanned at each point p by a set

of smooth vector fields X1, . . . , Xm ∈ X(M).

∆(p) = span{X1(p), . . . , Xm(p)} ⊂ TpRn (1.11)

The distribution ∆ is regular if its dimension is constant everywhere on the manifold

M . ∆ is said to be involutive if the Lie bracket of any pair of vector fields defined

at a point in ∆ is a vector field in ∆. We say that ∆ is closed under bracketing.

Frobenuis theorem is a consequence of this. Which basically says that a regular

distribution is integrable if and only if it is involutive. This theorem is fundamental

to geometric theory of control. In fact one could say that it is to control theory what

the Caushy-Lipschitz existence theorem for ordinary differential equation is to the

theory of autonomous model found in analytical mechanics, electrical theory etc [16].

A constant dimension k distribution ∆ is said to be integrable, if for every point

p ∈ Rn, there is a set of smooth functions hi : Rn → R, i = 1, . . . , n− k such that the

row vector ∂hi
∂p

are linearly independent at p and for every vector field f in ∆

Lfhi =
∂hi
∂p

f(p) = 0 i = 1, . . . , n− k. (1.12)
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The hypersurfaces defined by the level sets

{p : h1(p) = c1, . . . , hn−k(p) = cn−k}

are called integral manifolds for the distribution. An immersed submanifold S is an

integral manifold of an involutive manifold ∆ if the tangent space Tp(S) at every point

of S coincides with the distribution ∆ at the point p. Thus ∆ is integrable if there

exists an integral manifold. The involutive closure ∆ of ∆ is the closure of ∆ under

bracketing. ∆ is the smallest distribution that contains ∆ such that if X, Y ∈ ∆

then [X, Y ] ∈ ∆. The notion of distribution and codistribution is a key concept in

geometric control. Everything is almost done around it.

1.2.9 Orbit of Points on a Manifold

An orbit of a point p on a manifold M under the set D of vector fields is the set

of all points reached starting from p by flowing along the integral curves in either

forward and backward in time in all possible sequences. Let us define an integral

curve for a vector field X as curve c : [0, T ] 7→M such that ċ(t) = X(c(t)), c(0) = p.

The flow of X was also defined as ΦX
t = Φ(t, x) = c(t). Here we slightly change

notation of the flow. We write the flow of X as expX(t, x) = etX(x) = c(t). It is just

a notation that is easier to manipulate. Let X1, . . . , Xk be vector fields of D. A point

p on the manifold M is sent to a point obtained by flowing a short period of time tk

along the vector field Xk, and then for time tk−1 along Xk−1 and so on down to X1

for time t1 defines a subgroup of M generated by elements of the form

et1X1 ◦ · · · ◦ etkXk(p), t1, . . . , tk ∈ R, k ∈ N. (1.13)

Each group transformation is a diffeomorphism where it is defined [69]. For a family of

vector fields, a subgroup of the diffeomorphism group ofM generated by the elements
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of the form given in (1.13) is denoted by Diff(D). The orbit through a point p on M

is denoted by

Orb(p,D) = {ζ(p)| ζ ∈ Diff(D)}. (1.14)

But since in control system analysis, time is counted to be positive, the orbit in this

case is restricted to positive time and denoted by

Orb+(p,D) = {ζ(p)| ζ ∈ Diff+(D)}. (1.15)

where Diff+(D) is the semi-group generated by

et1X1 ◦ · · · ◦ etkXk(p), t1, . . . , tk ≥ 0,
m∑
k=1

tk = T X1, . . . , Xk ∈ D, k ∈ N. (1.16)

From (1.5), if ε = T
4
we have

c(T ) = p+
T 2

16
[X, Y ] + h.o.t (1.17)

where h.o.t are higher order terms.

1.3 Lagrangian Mechanics

Let V be a finite dimensional vector space over R and V ∗ the dual space to V . V ∗

is the set of all linear maps form V to R. Since V is finite dimensional there always

exists a basis and therefore there always exists an inner product on V which is a metric

that is bilinear, symmetric and positive definite. An inner product thus defines a map

from V × V to R. With respect to some basis chosen in V , the inner product can

be defined as g(v, w) = vTAw, where A is a symmetric positive definite matrix. It

is always possible to define the sum of two vector spaces V and W at a point as the

set of pairs (v, w) with v, w elements of V and W respectively. Operations such as
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addition and multiplication by a scalar α are defined component-wise as:

(v, w) + (v′, w′) = (v + v′, w + w′)

α(v, w) = (αv, αw) (1.18)

If we consider two n-dimensional vector spaces V and W with bases A = {a1, . . . , an}

and B = {b1, . . . , bn} then A ∪B is a basis of V ⊕W .

It is sometimes convenient to manipulate vectors fields together with their covector

fields which is extremely useful in control algorithm design. For a vector space V ; the

dual space V ∗ is defined as the set of linear maps V → F , where F is the base field R

or C. Naturally, V ∗ is isomorphic to V . We will mostly be concerned with the case

F = R. If e1, . . . , en is a basis of V and e1, . . . , en is a basis of V ∗ then we have:

〈ei, ej〉=


1 if i = j

0 if i 6= j

A Riemannian manifold (M, g) consists of a smooth manifold C∞ −manifold M

and an Euclidean inner product gp defined on each tangent spaces TpM of M . So

for any two smooth vector fields X,Y , the inner product gp(X(p), Y (p)) is a smooth

function of p. Whenever we have a finite dimensional vector space V with an inner

product defined on it, we can construct a Riemannian manifold by defining

g : V × V → R

((p, v), (p, w)) 7→ g((p, v), (p, w)) = v · w (1.19)

Let Q be the configuration manifold of a dynamical system of dimension n. We

assume that Q is smooth. We write TQ the tangent bundle (the set of all possible

velocities on this configurations) and (q, v) ∈ TqQ is a point in the bundle; v is a

tangent vector at q. The cotangent bundle T ∗Q of Q is defined as the dual of TQ.
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We define a Riemannian metric on a Q as a smooth function that associates to each

tangent space TqQ at a point q an inner product noted by 〈〈, 〉〉q. We define the kinetic

energy K of the system is an inner product from TqQ → R with metric M(q), the

inertia matrix (a symmetric positive definite matrix ) of the system defined on Q. A

mechanical system on Q is described by the Lagrangian L, which is the kinetic energy

K : TqQ→ R minus the potential energy V (q). K is defined by

K(q̇, q) =
1

2
q̇TM(q)q̇ (1.20)

The Lagrangian is then defined as L : TQ→ R by

L(q, v) =
1

2
vTM(q)v − V (q). (1.21)

In the presence of external forces F : TQ → T ∗Q, the equations of motion for a

Lagrangian system are given by

n∑
i=1

(
d

dt

∂L

∂q̇
− ∂L

∂q

)
δqi =

n∑
i=1

Fi(q, v)δqi δq ∈ TqQ (1.22)

Equation (1.22) can be found in any classical mechanics book for example [29] [64].

By substituting equation (1.21) in (1.22) we obtain the following equation in terms

of the inertia matrix M(q) given by

M(q)q̈ + C(q, q̇)q̇ +
∂V

∂q
= F, (1.23)

where F is a column n−components vector of element in R and C(q, q̇) is the coriolis

and centrifugal matrix given by

Cij(q, q̇) =
(
∂Mi,j

∂qk
+

∂Mi,k

∂qj
− ∂Mk,j

∂qi

)
q̇k
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The assumption that was made during this derivation is that the sum of work done

internally by the constraints forces is equal zero. A total account can also be found

for example in [61], [72].

In geometric control, the notion of symmetry plays an important role in the de-

velopment of control algorithms. Sometimes Lie group theory is essential. There are

some good references for example [1], [58] and [69].

Definition: A group (G,*) is a set G with a binary operation

∗ : G×G→ G,

and a unit e ∈ G, possessing the following properties:

1. Unital: for g ∈ G, we have g ∗ e = e ∗ g = g

2. Associative: for g1, g2, g3 ∈ G, (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3)

3. Inverses: for g∈ G, there exists g−1 ∈ G so that g ∗ g−1 = g−1 ∗ g = e.

Let G be a Lie group, the essential feature of Lie theory is that for any Lie group

G one can associate a Lie algebra g, a vector space equipped with [ , ], a bilinear

product is called Lie bracket. The bridge between a Lie algebra g and its Lie group

G is the exponential map exp : X ∈ g → exp(X) =
∑∞

k=0
Xk

k!
∈ G. Lie groups

appear mostly as matrix groups. A very good source is Application of Lie groups to

Differential Equations by Olver [69]. Let γ : [t1, t2]→M a curve on the configuration

manifold Q and γ̇(t) is the tangent vector to γ at a point q on Q. The trajectories

are the solutions of the variational equations δI[γ] = 0. I[γ] is the functional defined

as [10],[59]

I[γ] =

∫ t2

t1

L(q, q̇)dt (1.24)
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where γ(t1) and γ(t2) are fixed endpoints. These well-known variational equations

are equivalent to the Euler-Lagrange equations

dqi

dt
= vi

d

dt

∂L

∂vi
− ∂L

∂q
= 0 (1.25)

I[γ] =

∫ 1

0

L(q, q̇)dt =

∫ 1

0

γ̃∗(L)dt. (1.26)

Note the parametrization of the segment [t1, t2].

The curve t→ γ̃(t) is the lift of γ(t) on Q to the tangent space TQ. In the same spirit

we can lift a group action from a manifold to a tangent bundle to that manifold.

Let G be a Lie group and g its associated Lie algebra as we can always do. Let

us define a left group action of G on the configuration manifold Q by Φg : Q → Q

and Φg∗ : TQ → TQ the lifted action of G on TQ and ξQ : Q → TQ infinitesimal

generator defined by

ξQ(q) =
d

ds
Φeξs|s=0 ξ ∈ g (1.27)

In order words for ξ ∈ g, we can write ξQ(q), a vector field on Q for the correspond-

ing infinitesimal generator which is obtained by differentiating the flow Φexp(tξ) with

respect to time at t = 0 [11] [59]. g is the Lie algebra of the Lie group defined above.

The orbit of a point q on the configuration manifold under the action of G is denoted

by Orb(q) and TqOrb(q) the tangent to group orbit through q, which is given by the

set of infinitesimal generators at q is given by

TqOrb(q) = {ξQ(q)| ξ ∈ g} (1.28)
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Assuming that the group action of G on Q is free i.e. the maps Φ : G × Q → Q,

Φ(g, q) = gq has no fixed point and the maps are proper i.e. inverse image of compact

sets are compact. Bloch et.al defined the quotient space Ξ = Q/G as the space whose

points are the group orbits, and the quotient space is called shape space. With the

assumption made about free action and proper, the shape space is a smooth manifold

and the projection map π : Q→ Q/G is a smooth map. The projection is surjective

otherwise the quotient space is not possible. The surjective derivative Tqπ is the

infinitesimal generators of the group action at the point q. The Lagrangian L is said

to be invariant under the group G action when

L(Φg(q),Φg∗(v)) = L(q, v), ∀g ∈ G (1.29)

In classical mechanics, symmetry is defined as invariance of the Lagrangian under

a group action. This implies (via Noether’s theorem) the existence of conserved

quantities. This conservation law is expressed as

d

dt
〈∂L
∂q̇
, ξQ〉 = 0 ξ ∈ g (1.30)

For the general momentum pj = ∂L
∂q̇j

, be a conserved quantity, the corresponding

torque τj and ∂V
∂qj

must vanish. Let us explain what (1.30) basically means. The

Lagrangian is defined on the tangent space TQ of the configuration manifold of Q so

the generalized momentum p = ∂L
∂q̇

is defined on cotangent space T ∗Q which is the

dual space of the tangent bundle TQ. Naturally we know that if V is any vector space

and F : V 7→ R, a smooth real-valued function, then the gradient ∂F
∂v

at any point of

V is an element of the dual space V ∗ consisting of all continuous linear functions on

V . By definition we have [69]

〈∂F (v)
∂v

, w〉 = lim
t→0

F (v+tw)−F (v)
t
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So applying this naturally to the momentum map we have

〈∂L
∂q̇
, ξQ〉 = µ = constant ξ ∈ g, (1.31)

which is a constant because of conservation and its derivative must vanish. The

invariance of the Lagrangian under a group action is a technique used in [11],[59] to

reduce a high dimensional mechanical system to a lower order for analysis. This is a

powerful method of reduction of dynamical systems. This is done by constructing the

shape space by taking the quotient of the configuration space of a mechanical system

by the symmetry group. The reduction method is treated in [58]. In the analysis

of underactuated mechanical systems which is applied to the CMG, we will use the

symmetry of the kinetic energy with respect to external variables. The notion of

shape variables and external variables are also defined in the study of multi-body and

interconnected mechanical systems in [49],[50],[51],[54].

1.4 Underactuated Systems

Tracking problem for robot manipulators has been studied extensively since the

early 1980’s. The contributions [7, 75, 92], where asymptotic, exponential and adap-

tive tracking made their way into standard control system texbooks such as [64, 67]

and reference therein. Analysis and control of fully actuated dynamical system have

received a tremendous amount of attention. In the past two decades, geometric

methods applied for tracking control of these systems were considered [20]. When the

number of configuration variables is greater than the number of inputs, the system is

called underactuated. Such systems are for example satellites, car-like mobile robots.

Mechanical systems are sometimes also subject to constraints. Constraints are of all

types. Here we are concerned with kinematic and dynamics constraints. Oftentimes,

the kinematic constraints cannot be integrated to obtain configuration variables. Sys-

tems subject to these nonintegrable constraints are called nonholonomic systems. In
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the 1990’s, studies were limited primarily to systems with nonintegrable kinematic

constraints ; for example [13, 47]. There are many cases where nonintegrable dynamic

relations arise. The control problem of such systems were open problems until a solu-

tion to their controllability and stability was proposed in [71] where the authors use

the collocated partial feedback linearization proposed by Spong [81]. In the section

that follows, we will lay the ground to study controllability of nonlinear systems.

1.5 Controllability of Nonlinear Systems

The most common problems considered in the design of control systems are the

controllability,observability and stabilization and have been extensively studied. A

control system consists of 4-tuple (M,C, f,U) where

(a) M is a smooth manifold, which is the state space of the system

(b) C is a set called the control space

(c) f is a mapping which assigns to x ∈M , u ∈ C, a tangent vector f(x,u) to M at

x,

(d) U is a class of functions defined on [0, T] which is the time interval. The

elements of U are called admissible controllers.

More details are given in [87]. If a function u : [0, T ]→ C is an admissible controller,

if a trajectory of the system corresponding to u is an absolutely continuous curve

t→ x(t) , 0 ≤ t ≤ T such that

dx

dt
(t) = f(x(t), u(t)) (1.32)

for almost every t ∈ [0, T ]. And if t → x(t) is a trajectory corresponding to the

controller u, with x(0) = x0, x(T ) = x1, then we say that u steers x0 into x1. If there

exists some controller u which steers x0 to x1 then we say that x1 is reachable from
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x0. R(x0) is the set of all points in M reachable from x0. The system (M,C, f,U) is

completely controllable if R(x0) = M .

In order to make general controllability statements, we will make the following as-

sumptions [87]:

(A) The class U of admissible controllers contains the class U0 of all piecewise con-

stant C-valued functions on intervals of the form [0, T]. If u is an admissible

controller defined on [0, T], and if 0 < t < T, then the function v defined on

[0, T − t0] by v(t) = u(t + t0) is also an admissible controller.

We also assume that the function f is regular in the sense that equation (1.32) have

solutions at least when the controller u is constant or piecewise constant. If the

function f is real analytic, we have the following:

(B) M is a real analytic manifold and, for each u ∈ C, the map x ∈ f(x, u) is a real

analytic vector field on M .

It is also possible that trajectories corresponding to an arbitrary controllers can be

approximated by trajectories corresponding to piecewise controllers. Therefore the

following is also true

(C) If t→ x(t), 0 ≤ t ≤ T is a trajectory corresponding to an admissible controller

u, then there is a sequence {xn} of curves, defined on [0, T], such that xn(0) =

x(0) , that each {xn}, is a trajectory corresponding to a piecewise constant

controller {un}, and that xn(t)→ x(t) as n→∞ uniformly, for 0 ≤ t ≤ T .

The following theorem results from assumptions made above

Theorem: Let Σ1 = (M,C, f,U) be a control system that satisfies hypotheses (A),

(B), (C) above. Let Σ2 = (M,C, f,U0), i.e., Σ2 is the same as Σ1 , except for the

fact that the class U of controllers is replaced by the class U0 of piecewise constant

C-valued functions. Then Σ1 is completely controllable if and only it Σ2 is com-

pletely controllable. For proof of this theorem please refer to [87]. Let us redefine the
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reachable set R(z) from z as the set of all states that can be reached starting from z

using all possible piecewise constant controllers. If T > 0 is specified and time can be

arbitrary small, then we have small-time controllability. If the states are constrained

to be closed to an equilibrium point, one talks about local controllability at that equi-

librium point (xe, ue) ∈ M × C. In this case we have f(xe, ue) = 0. So if time T is

small for local controllability, we will speak about small-time local controllability. The

problem of stabilization can roughly be defined as follows. Let us consider the sys-

tem in equation(1.32) and let us assume zero (0,0) is an equilibrium point (f(0,0)=0).

The problem of stabilization is to find a feedback control law x→ u(x) such that the

equilibrium point 0 is asymptotically stable for the closed loop system ẋ = f(x, u(x)).

1.5.1 State and Output Feedback

There are many situations where all states are not available for feedback so state

feedback cannot be performed; in this case a fraction of the states are available for

measurement. However, in this case, one can possibly recover the observable states

by observing the output. We denote the measured states by z = h(x) and call it

the output of the system. In this case only output feedback is allowed. Roughly

speaking a control system is observable if all its states can be recovered by applying

some suitable controls and only by looking at the output for a period of time.

In the early 1960’s, Kalman and others studied controllability and observability of

linear systems. A tremendous amount of work has been done in that area since then.

Controllability and observability of linear system are now a matured subject. The

study of these concepts for the nonlinear analog systems started in the early 1970’s.

For linear systems, controllability implies stabilization which is not necessarily the

case for nonlinear systems. However, for nonlinear systems, the global version does

not hold. This was proved in 1979 by Hector Sussmann [87] who gave an example of a

nonlinear system which is globally controllable but fails to be globally asymptotically
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stabilized by means of continuous stationary feedback laws. In 1983, Brockett [17]

showed that the local version fails to hold even for analytic control systems. The first

theorem in latter paper is given below.

Theorem:[17] Let ẋ = f(x, u) be given with f(x0, 0) = 0 and f(.,.) continuously

differentiable in a neighborhood of (x0, 0). A necessary condition for existence of a

continuously differentiable control law which makes (x0, 0) asymptotically stable is

that:

(i) the linearized system should have no uncontrollable modes associated with

eigenvalues whose real parts are positive.

(ii) there exists a neighborhood N of (x0, 0) such that for each ξ ∈ N there exists

a control uξ(.) defined on [0,∞) such that this control steers the solution of

ẋ = f(x, uξ) from x = ξ at t=0 to x = x0 at t =∞.

(iii) the image of the mapping γ : (x, u) → f(x, u) contains some neighborhood of

zero.

The last condition states that there exists δ > 0 such that ∀ |ζ| ≤ δ, there exist

x, u such that f(x, u) = ζ. Intuitively this means that no energy should need to

be pumped into the system when it reaches the equilibrium point. Because of the

importance of this theorem, we will elaborate a little bit on the conditions and even

give some examples. Before considering asymptotic stabilization by a time-invariant

control law, one has to check that this stabilization is even possible and that at what

conditions. For the first condition in the theorem, it is well known from Lyapunov’s

method that an equilibrium point is unstable if ∂f/∂x at that equilibrium point has

any eigenvalue with real part which is positive. However, it is worth mentioning

that if the first condition is not satisfied, only feedbacks that have continuous partial

derivatives and which vanish at the equilibrium point can be excluded. If the lin-

earized control system ẋ = Ax + Bu is controllable, then we say that ẋ = f(x, u) is
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Small Time Locally Controllable (STLC) at (xe, ue). The system ẋ = f(x, u) is small

time locally controllable (STLC) at zero if starting from zero at t = 0 and using an

arbitrary small control, one can reach in an arbitrary small time a neighborhood of

zero [23]. STLC is of interest to control theory researchers for a few reasons given by

Hector Sussmann in [86]. The condition (ii) in theorem 1.5.1 is obviously necessary

if one assumes f and u continuous. It was proven by Roger Nussbaum in [77] and J.

Zabczyk in [94] that condition (iii) is also necessary if f and u are only continuous

provided that (i) is satisfied. Consider the following example [8];

ẋ = (2x1 − x2)u

ẋ2 = x1u+ x2 (1.33)

The input matrix of the linearized model at the equilibrium point is zero (x, u) =

(0, 0). So for each K we have

A+BK = A =

 0 0

0 1

 (1.34)

which has a positive eigenvalue. Nevertheless the system can be asymptotically sta-

bilized by a constant u = u0 < −2. Kawski [44] has shown that even when the first

condition does not hold, one cannot exclude the existence of continuous stabilizing

feedbacks. We spent time on the first condition because we will rely on it for the study

of controllability and stabilization of the CMG in the upright equilibrium position.

The third condition is a topological condition. Please refer to [8] for more details and

examples. Another necessary topological condition for continuous feedback stabiliza-

tion of nonlinear control system is given by Coron in [23]. Coron’s main results show

that instead of considering time-invariant control law x → u(x), it is better to con-

sider time-varying feedback laws (x, t) → u(x, t) which are periodic with respect to
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time and this condition is given for driftless control affine systems. An affine control

system is given by

ẋ = f(x, u) =
i=m∑
i=1

uifi(x). (1.35)

the following theorem

Theorem:[24] Assume that

{g(x); g ∈ Lie{f1, . . . , fm}} = Rn, ∀y ∈ Rn\{0} (1.36)

Then, for every T>0, there exists u in C∞(Rn × R,Rm) such that

u(0, t) = 0,∀t ∈ R, (1.37)

u(x, t+ T ) = u(x, t),∀y ∈ Rn,∀t ∈ R, (1.38)

and 0 is globally asymptotically stable for the closed-loop system

ẋ = f(x, u(x, t)) =
i=m∑
i=1

uifi(x). (1.39)

The equation(1.36) is the global controllability of the driftless control system which

is Chow’s theorem [22]. This condition is also a necessary condition for small-time

locally controlability at the equilibrium.



CHAPTER 2: MODELING AND CONTROL OF WHEELED MOBILE ROBOTS

In this chapter we will provide techniques used to model the mechanical systems

considered here. When a mechanical system is subject to constraints, additional

variables are introduced in the equation of motion to enforce the constraints. The in-

troduction of new variables complicate further the differential equation. Quasivelocity

method is used to reduce the number of variables introduce in the presence of con-

straints. Quasivelocities modeling techniques are used to model a class of dynamical

system considered in this chapter.

2.1 Quasivelocities Modeling Techniques

Often-times, the motion of a mechanical system is subject to restrictions in its

configuration space. Sometimes, the constraints are imposed on the velocity . It

often happens that the kinematic constraints cannot be written as time derivatives

of some functions of the generalized coordinates. Mechanical systems with such con-

straints are called nonholonomic mechanical systems. There is an extensive litera-

ture on techniques to derive equations of motion of nonholonomic systems. Because

of the nonintegrability, the constraints cannot be imposed on both the curves in

the configuration space and the variational curves. The use of the fundamental La-

grange’s techniques introduce additional variables to account for the constraints and

thus increases the dimension of equations to solve. Quasivelocity techniques such

as Maggi’s equation and Boltzmann-Hamel’s equation eliminate Lagrange multipliers

from the beginning as opposed to fundamental Lagrange method where it is required

to solve for the configuration variables and the multipliers as functions of time. Thus

quasivelocity techniques produce fewer dynamical equations of motion [30]. Using
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Boltzmann-Hamel’s method, the kinetic energy is formulated for the unconstrained

system first and then the kinetic energy is rewritten as a function of configuration

variables and quasivelocities. Quasivelocity methods are the generalization of the La-

grangian and the Hamiltonian systems where only position constraints are allowed.

While using quasivelocity techniques, it is preferable to select the free quasiveloci-

ties as simple as possible and at the same time assure that they span the constraint

distribution as there is no set procedure for the selection. For a system of n gen-

eralized coordinates, and m nonholonomic constraints, m < n, one first defines the

m quasivelocities µj , j = 1, . . . ,m such that they span the constraint distribution.

The constraints then reduce to µj = 0, and one is left to solve for the n −m inde-

pendent quasivelocities in addition to the n integrable kinematic relations to produce

the motion curve. It thus requires a total of 2n−m differential equations compared

to 2n+m equations using the classical Lagrange’s equations [30]. For nonholonomic

mechanical systems, Boltzmann-Hamel’s equations are generalized to a form suited

for kinematic optimal control for kinematically actuated systems. The development of

the Boltzmann-Hamel optimal control equations can be thought of as a generalization

of the Euler-Poincaré method [60]. As stated above, because of nonintegrability of the

constraint distribution, it is necessary to redefine the velocity along the variational

curves and this is called extended velocity [65], [66].

2.1.1 Maggi’s Equation of Motion

Consider the diagram of the Differential Wheeled Mobile Robot (DWMR) depicted

in figure 2.1. There are three bodies involved; the platform of the robot and the

wheels. There are four degrees-of-freedom associated with the DWMR. The coordi-

nates (xp, yp) of the midpoint of the axle, the heading angle φ, the mobile robot’s

right wheel’s rotation through θr, and the robot’s left wheel’s rotation through an-

gle θl. A vector of generalized coordinates for the mobile robot is thus given by

γ = [xp, yp, φ, θr, θl]
T , where the subscript T stands for transpose. Using Koenig’s
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theorem, the kinetic energy is written as in (2.1). Here, it is convenient to select the

midpoint P of the axle of the mobile robot as the reference point.

C

P

x

y

X

Y

φ

d

b

Figure 2.1: Diagram of a differential mobile robot.
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3∑
i=1

miv
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i +

1

2

3∑
i=1

ωiIiωi +
3∑
i=1

mivi.ρ̇i. (2.1)

where vi is the velocity of the reference point of the ith body, ρi is the position of the

center of mass of the ith body relative to P expressed in a translating frame placed at

P , and ωi is the angular velocity of the body measured in the body’s coordinate frame.

The rotation matrix ITB which transforms body coordinates to inertial coordinates

is given by

ITB =


cos(φ) − sin(φ) 0

sin(φ) cos(φ) 0

0 0 1

 . (2.2)
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The coordinates of the left wheel WL and right wheel WR expressed in the inertial

frame are given respectively by

IWL =


cos(φ) − sin(φ) xp

sin(φ) cos(φ) yp

0 0 1




0

b

1

 =


xp − b sin(φ)

yp + b cos(φ)

1

 . (2.3)

IWR =


cos(φ) − sin(φ) xp

sin(φ) cos(φ) yp

0 0 1




0

−b

1

 =


xp + b sin(φ)

yp − b cos(φ)

1

 . (2.4)

The velocity of the left and right wheels are computed respectively and are given by

IẆL =


ẋp − bφ̇ cos(φ)

ẏp − bφ̇ sin(φ)

0

 . (2.5)

IẆR =


ẋp + bφ̇ cos(φ)

ẏp + bφ̇ sin(φ)

0

 . (2.6)

To find the kinematic constraint equations, the velocities in equations (2.5) and

(2.6)are transformed back to the body coordinate frame by multiplying equations

(2.5) and (2.6) by the transpose of ITB. They are given by

BẆR =


ẋp cos(φ) + ẏp sin(φ) + bφ̇

−ẋp sin(φ) + ẏp cos(φ)

0

 . (2.7)
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BẆL =


ẋp cos(φ) + ẏp sin(φ)− bφ̇

−ẋp sin(φ) + ẏp cos(φ)

0

 . (2.8)

The constraints of rolling without slipping implies that the velocity of a wheel is

equal to the angular velocity of the wheel about its axis multiplied by the radius of

the wheel and the side velocities of the wheels must equal zero. In other words the

velocity of the wheels expressed in the body coordinates frame must be given by

ẋp cos(φ) + ẏp sin(φ)− bφ̇ = rθ̇l

ẋp cos(φ) + ẏp sin(φ) + bφ̇ = rθ̇r

−ẋp sin(φ) + ẏp cos(φ) = 0. (2.9)

The constraints can be written in matrix vector form as (Pfaffian constraints with

q = [xp, yp, φ, θr, θl]
T )

A(q)q̇ = 0

From the constraints equation, we see that q̇ is in the null space of A(q). q̇ can be

written as a linear combination vector fields which span the null space of A(q). To

find vector fields which span the null, one usually uses reduced row echelon form

and compute linearly independent vector fields. The vector fields obtained can be

arranged as columns of S(q) so that we can write

q̇ = S(q)v (2.10)

where v is a set of independent velocity variables. With insight into the system to

control, the velocity variables are chosen as control input. In the present case, the

inputs are chosen as the driven velocity v1 = vx, the forward velocity, and the steering
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velocity v2 = φ̇. It is shown that two of the three constraints are nonholonomic and

one is holonomic because taking the difference between the first two equation(2.9),

one can integrate the resulting equation to get a function of configuration space

variables. By transforming the constraints matrix A into a reduced row echelon form

we can deduce two vector fields that span the space orthogonal to the space spanned

by the constraints. The computation of these vector fields will be done later in the

manuscript too and will be integrated into dynamics to design a robust control law.

The kinetic energy of the mobile robot using eq.(2.1) is given by

T =
1

2
(mc + 2mw)v2

p +
1

2
Iφ̇2 +

1

2
Iwθ̇

2
r +

1

2
Iwθ̇

2
l −mcdφ̇(−ẋp sin(φ) + ẏp cos(φ)).

(2.11)

where I = Ic + 2Im + 2mwb
2 +mcd

2, and mc, mw are the masses of the platform and

the mass of the wheels respectively.

2.2 Dynamics of the Differential Wheeled Mobile Robot

In general, the dynamical equations of motion of a mobile robot with n generalized

coordinates γ = [γ1 . . . γn]T subject to m constraints can be written as shown in (2.12)

by applying Euler-Lagrange’s equation

H(γ)γ̈ +D(γ, γ̇) +G(γ) = B(γ)τ − AT (γ)λ (2.12)

The description of each component can be found in any classical dynamics textbook.

In the case considered here the gravitational vectors are equal to zero. The equation

of motion of the DWMR can be written as

H
(
γ
)
γ̈ +D

(
γ, γ̇
)

= Bτ. (2.13)
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d

dt

(
∂T

∂γ̇i

)
−
(
∂T

∂γi

)
= Qi +

n∑
j=n−m+1

λiψji (i = 1 . . . n). (2.14)

In general, there is no set procedure on selecting quasivelocities. For a mechanical

system of n generalized coordinates with m nonholonomic constraints, n quasive-

locities are selected such that m of them span the constraint space, and (n-m) are

independent quasivelocities. During the selection, one keeps in mind that the matrix

Ψ obtained as in (2.15) is invertible with an inverse Φ.

u = Ψγ̇ (2.15)

where u = [u1 . . . un]T , is a quasivelocity vector. Equation (2.15) can be rewritten as

uj =
n∑
i=1

ψji(γ)γ̇i (j = 1 . . . n−m) (2.16)

uj =
n∑
i=1

ψji(γ)γ̇i = 0 (j = n−m+ 1 . . . n), (2.17)

and

γ̇i =
n−m∑
j=1

φij(γ)uj (i = 1 . . . n). (2.18)

Note that these equations do not explicitly involve time otherwise there must be

additional terms.

Using equation(2.17), virtual displacements are given as

δθj =
n∑
i=1

ψji(γ)δγi (j = 1 . . . n−m) or

δγi =
n−m∑
j=1

φij(γ)δθj (i = 1 . . . n). (2.19)
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The first (n-m) δj are selected independently. Using Lagrange’s principle of virtual

displacement we have

n∑
i=1

[
d

dt

(
∂T

∂γ̇i

)
−
(
∂T

∂γi

)
−Qi

]
δγi = 0 (2.20)

with T (γ, γ̇), the unconstrained kinetic energy defined above. After substituting for

the virtual displacement as defined in (2.19), we have

n−m∑
j=1

n∑
i=1

[
d

dt

(
∂T

∂γ̇i

)
−
(
∂T

∂γi

)
−Qi

]
φij(γ)δθj = 0. (2.21)

Using the fact that the first (n-m) δθj are independent, the coefficients of (3.74) must

equal zero and we have

n∑
i=1

[
d

dt

(
∂T

∂γ̇i

)
−
(
∂T

∂γi

)]
φij(γ) =

n∑
i=1

Qiφij(γ) (j = 1 . . . n−m) (2.22)

The resulting equation (2.22) is Maggi’s equation. Let us explicitly define quasive-

locities as

u1 = ẋp cos(φ) + ẏp sin(φ)

u2 = φ̇ (2.23)

u3 = −ẋp sin(φ) + ẏp cos(φ)

u4 = ẋp cos(φ) + ẏp sin(φ) + bφ̇− rθ̇r

u5 = ẋp cos(φ) + ẏp sin(φ)− bφ̇− rθ̇l.
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Φ =



cos(φ) 0 − sin(φ) 0 0

sin(φ) 0 cos(φ) 0 0

0 1 0 0 0

1
r

b
r

0 −1
r

0

1
r

−1
r

0 0 −1
r


. (2.24)

Applying (2.22) to the unconstrained kinetic energy and using the first and second

columns of Φ, we have

m cos(φ)ẍp +m sin(φ)ÿp +mcdφ̇
2 +

Iw
r
θ̈r +

Iw
r
θ̈l =

τr
r

+
τl
r

mcd cos(φ)ẍp −mcd sin(φ)ẍp +
Iwb

r
θ̈r −

Iwb

r
θ̈l =

bτr
r
− bτl

r
. (2.25)

The time derivative of the constraint equations together with (2.25) form the second-

order differential equations of motion of the differential mobile robot and is given

by

H
(
γ
)
γ̈ +D

(
γ, γ̇
)

= Bτ. (2.26)

where

H
(
γ
)

=



m cos(φ) m sin(φ) 0 Iw/r Iw/r

mcd sin(φ) −mcd cos(φ) I Iwb/r −Iwb/r

− sin(φ) cos(φ) 0 0 0

cos(φ) sin(φ) b −r 0

cos(φ) sin(φ) −b 0 −r


, (2.27)
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D
(
γ, γ̇
)

= −



−mcdφ̇
2

0

ẋpφ̇ cos(φ) + ẏpφ̇ sin(φ)

ẋpφ̇ sin(φ)− ẏpφ̇ cos(φ)

ẋpφ̇ sin(φ)− ẏpφ̇ cos(φ)


. (2.28)

and

B =



1/r 1/r

b/r −b/r

0 0

0 0

0 0


. (2.29)

Let us define the state vector q = [xp, yp, φ, θr, θl, ẋp, ẏp, φ̇, θ̇r, θ̇l]
T by choosing the

state space variables qi, 1 ≤ i ≤ 10 as

 qi = γi for 1 ≤ i ≤ 5

qi = γ̇i−5 for 6 ≤ i ≤ 10

The system of dynamical equations can be expressed in the form

q̇ = f(q) + g1(q)τ1 + g2(q)τ2. (2.30)
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More explicitly

q̇ =



q6

q7

q8

q9

q10

f6(q3, q6, q7, q8)

f7(q3, q6, q7, q8)

f8(q3, q6, q7, q8)

f9(q3, q6, q7, q8)

f10(q3, q6, q7, q8)



+



0 0

0 0

0 0

0 0

0 0

g61(q3) g61(q3)

g71(q3) g71(q3)

g81(q3) −g81(q3)

A B

B A



 τ1

τ2

 . (2.31)

The variables shown in the matrices above will be given explicitly in the appendix.

2.2.1 Control System Design

By taking the difference between the first and second equations of (2.48), we have

φ̇ =
r

2b

(
θ̇r − θ̇l

)
. (2.32)

Taking time derivative of (2.32), the resulting equation is equal to row 8 of (2.31).

From this , we can solve for τ1 which is given by

τ1 =
r

2bg81

(
θ̇r − θ̇l

)
. (2.33)
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Upon substitution in (2.31) and noticing that the substitution does not affect the

upper half of the equation in (2.31), the lower half of (2.31) is given by



1 0 0 −g6K g6K

0 1 0 −g7K g7K

0 0 1 − r
2b

r
2b

0 0 0 1− g91K g91K

0 0 0 −g10K 1 + g10K





q̇6

q̇7

q̇8

q̇9

q̇10


=



f6 − g61f8
g81

f7 − g71f8
g81

0

f9 − g91f8
g81

f10 − g10f8
g81


+



2g61

g71

0

g91 + g92

g10 + g11


τ2 ,

(2.34)

where K = r
2bg81

. g81 is a constant so the division by it is well defined. The first

half of (2.31) together with (2.34) give a system of "single input". Upon computing

the control law for τ2 one can compute τ1 and φ̈ explicitly.

The control law derived in the rest of the dissertation involves the two inputs system

shown in (2.31) using dynamic extension.

2.3 Tracking Control Design of the Two Inputs System

The dynamics of the mobile robot are formulated in the state space representation

as dynamics of a standard nonlinear system as

q̇ = f(q) +G(q)u (2.35)

Immediate calculations show that rank{g1, g2} = 2 i.e. the vectors g1, g2 are linearly

independent. The distribution G={g1, g2} is also involutive because simple calcula-

tions show that rank [g1, g2, [g1, g2]]=2 for all q. where [g1, g2] is the Lie bracket of g1

and g2 defined by

[g1, g2] =
∂g2

∂q
g1 −

∂g1

∂q
g2 (2.36)

Thus by Frobenius’ Theorem, we deduce the existence of 8 real-valued functions

that span the space orthogonal to the space spanned by {g1, g2}. However, it is not
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always very easy to find these functions because it involves solving partial differential

equations. It is well known that systems with at least one nonholonomic constraints

are not input-state linearizable [21] and since the system cannot be made asymp-

totically stable by a smooth feedback [12], we seek feedback control which achieves

input-output stability. A natural choice of outputs are the coordinates of the refer-

ence point P figure 2.1 which defines a position of the mobile robot in the plane. The

output vector is defined as

y =

 h1

h2

 =

 q1

q2

 (2.37)

With respect to these outputs, the system does not have a relative degree because

immediate calculations show that

Lgh =

 0 0

0 0

 (2.38)

and

A(q) = LgLfh(q) =

 g61(q3) g61(q3)

g71(q3) g71(q3)

 (2.39)

which has rank 1 for all q. We apply the dynamic extension algorithm. Relative degree

r={4,3} is achieved after two iterations of Dynamic Extension Algorithm when the

following compensator is cascaded with the system. (Refer for example to [36, 46] for

Dynamic Extension).

τ1 =
1

g61(q3)

(
−f6(q) + η

)
− v2

η̇ = ζ

ζ̇ = v1

τ2 = v2 (2.40)
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2.4 Simulations of the DWMR Trajectory Tracking

A simulation is developed to demonstrate the effectiveness of the control law de-

signed above. As subsequent figures demonstrate, the tracking control which takes

the dynamics based on previous analytical development of the mobile robot into ac-

count perform good tracking. One should also note that the control law is valid for

g16(q3) 6= 0, i.e.,q3 6= π
2
(2k + 1), where k is an integer.
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Figure 2.2: xp and the desired
trajectory.
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Figure 2.3: yp and the desired
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Figure 2.4: Circular path.
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Figure 2.5: Straight line path.

2.5 Kinematic Model of Nonholonomic Robot without Pneumatic Wheels

We start by deriving the kinematic model of a car-like mobile robot shown in

figure2.6. Let us select a set of inertially fixed reference frame denoted by {I,X, Y },

a body fixed attached to the center of gravity of the robot is {C,Xc, Yc} and θ is
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Figure 2.6: car-like Mobile Robot.

the orientation of the frame with respect to the inertial frame and φ is the steering

angle of the front wheels and the robot is a rear wheel drive robot. The position

of the robot is determined by the generalized coordinates q = [xc, yc, θ, φ]T . Let

us number the wheels from left to right and front to rear. The parameters of the

robot are defined as follow: l1 : distance from C to the midpoint of the front axle; l2 :

distance front the C to the midpoint of the real axle; l half the length of front and rear

axle and w1, w2, w3, w4 are the front left, front right, rear left, and rear right wheels

respectively. So in the body frame, w1 = [l1, l, 1]T , w2 = [l1,−l, 1]T , w3 = [−l2, l, 1]T ,

w1 = [−l2,−l, 1]T . The homogeneous transformation of the inertial frame {I,X, Y },

relative to the body frame {C,Xc, Yc} is

IRC =


cos(θ) − sin(θ) xc

sin(θ) cos(θ) yc

0 0 1

 . (2.41)

The wheels are considered as rigid bodies in their own right. Let us locally attach

reference frames to their center in order to derive kinematic constraints. As shown in

figure (2.6) the axes attached to the front wheels rotate by φ1 , φ2 and the relation

between them with φ is given later in the text. The homogeneous transformations of

the wheels local frames relative to reference frame attached to the center of gravity
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{C,Xc, Yc} are given by

CR1 =


cos(φ1) − sin(φ1) l1

sin(φ1) cos(φ1) l

0 0 1

 CR3 =


1 0 −l2

0 1 l

0 0 1



CR2 =


cos(φ2) − sin(φ2) l1

sin(φ2) cos(φ2) −l

0 0 1

 CR4 =


1 0 −l2

0 1 −l

0 0 1

 . (2.42)

The constraints of rolling without slipping implies that the velocity of a wheel is

equal to the angular velocity of the wheel about its axis multiplied by the radius of

the wheel. Then velocities of the wheels in terms of the frames attached to them are

obtained. Expressing w1 (wi, i = 1, . . . , 4 is the position of wheel i expressed in the

frame attached to the center of mass of the robot) in the inertial frame, we have

Iw1 =I RCw1


l1 cos(θ)− l sin(θ) + xc

l1 sin(θ) + l cos(θ) + yc

1

 . (2.43)

The velocity of wheel w1 is the time derivative of (2.43), and when transformed back

in the frame attached to wheel w1, we have

1ẇ1 =


cos(θ + φ1)ẋc − l cos(φ1)θ̇ + l1 sin(φ1)θ̇ + sin(θ + φ1)ẏc

− sin(θ + φ1)ẋc + l sin(φ1)θ̇ + l1 cos(φ1)θ̇ + cos(θ + φ1)ẏc

0

 . (2.44)
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Similarly, for the remaining wheels we have

2ẇ2 =


cos(θ + φ2)ẋc − l cos(φ2)θ̇ + l1 sin(φ2)θ̇ + sin(θ + φ2)ẏc

− sin(θ + φ2)ẋc + l sin(φ2)θ̇ + l1 cos(φ2)θ̇ + cos(θ + φ2)ẏc

0

 (2.45)

3ẇ3 =


cos(θ)ẋc − lθ̇ + sin(θ)ẏc

− sin(θ)ẋc − l2θ̇ + cos(θ)ẏc

0

 (2.46)

and

4ẇ4 =


cos(θ)ẋc + lθ̇ + sin(θ)ẏc

− sin(θ)ẋc − l2θ̇ + cos(θ)ẏc

0

 (2.47)

The condition of the wheels rolling without slipping is that in the reference frame

attached to the wheels the x-component will be equal to the angular velocity of the

wheel about its axle multiplied by the radius of the wheel. We then have the following

equations

cos(θ + φ1)ẋc − l cos(φ1)θ̇ + l1 sin(φ1)θ̇ + sin(θ + φ1)ẏc = rΩ̇1

cos(θ + φ2)ẋc − l cos(φ2)θ̇ + l1 sin(φ2)θ̇ + sin(θ + φ2)ẏc = rΩ̇2

cos(θ)ẋc − lθ̇ + sin(θ)ẏc = rΩ̇3

cos(θ)ẋc − lθ̇ + sin(θ)ẏc = rΩ̇4. (2.48)

We note that the last two equations of (2.48) can be combined to one equation by

taking the difference of them. The resulting equation is given by

θ̇ =
r

2l

(
Ω̇3 − Ω̇4

)
(2.49)
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Equation (2.49) can be integrated and gives

θ =
r

2l
(Ω3 − Ω4) ; (2.50)

Since (2.49) is integrated to obtain a generalized coordinate it is a holonomic con-

straint. We then have three constraints equations one holonomic (2.50) and two

nonholonomic which are the first two equations of (2.48).

The condition that wheels do not have lateral motion means that the y-components

of the above velocities are zero, we have

− sin(θ + φ1)ẋc + l sin(φ1)θ̇ + l1 cos(φ1)θ̇ + cos(θ + φ1)ẏc = 0

− sin(θ + φ2)ẋc + l sin(φ2)θ̇ + l1 cos(φ2)θ̇ + cos(θ + φ2)ẏc = 0

− sin(θ)ẋc − l2θ̇ + cos(θ)ẏc = 0 (2.51)

The components of the velocity of the center of mass of the robot can be written as

ẋc = vx cos(θ)− vy sin(θ)

ẏc = vx sin(θ) + vy cos(θ) (2.52)

and replacing (2.52) in (2.51) and noticing that

tan(φ1) =
l1 + l2

(l1 + l2)− l tan(φ)
tan(φ)

tan(φ2) =
l1 + l2

(l1 + l2) + l tan(φ)
tan(φ) (2.53)

As we performed in the previous chapter, the constraints can be written in matrix

vector form as

A(q)q̇ = 0
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It is possible to find a basis of vector fields that span the null space of A such that

we can express the generalized velocities as

q̇ = S(q)v (2.54)

where v is a set of independent velocity variables. For this particular case, the inputs

are chosen as the forward velocity v1 = vx, and the steering velocity v2 = φ̇. We have



ẋc

ẏc

θ̇

φ̇


=



cos(θ)− l2
l1+l2

sin(θ) tan(φ) 0

sin(θ) + l2
l1+l2

sin(θ) tan(φ) 0

tan(φ)
l1+l2

0

0 1


 v1

v2

 .

So we are able to express q̇ = g1(q)v1 + g2(q)v2. g1(q) and g2(q) are columns of S(q).

A kinematic control is design and integrated into the dynamics Amengonu and Kakad

[3].



CHAPTER 3: MODELING AND CONTROL OF CMG INVERTED PENDULUM

3.1 Application of Implicit Function Method and Saturation Function

There are perhaps only a few simple systems that are better than the inverted pen-

dulum at demonstrating the ability to accomplish a seemingly difficult task through

the use of feedback control. It is therefore no surprise that the inverted pendulum

has been extensively utilized as a prototype system for both the study and practical

demonstration of many types of controllers. Inverted pendulum systems are often

attached to a cart or rotating arm that in which case the angle of the pendulum is

controlled via the coupling between the translational motion of the pendulum’s pivot

point and its angle, a consequence of the conservation of momentum. An interesting

variation on this problem is the momentum wheel inverted pendulum [79],[80],[82]. In

this case, the pendulum’s pivot point is inertially fixed and actuation is accomplished

via the controlled rotation of a massive disk attached to the pendulum about an axis

parallel to the pendulum’s pivot axis. Here, a similar configuration is utilized, how-

ever, the massive rotating disk is allowed to also rotate about an axis that is parallel

to the length of the pendulum. Such a mechanism forms a simple Control Moment

Gyroscope (CMG) which can be utilized to provide a torque on the pendulum. The

dynamics of the control moment gyroscope are first presented. The equations of mo-

tion are derived from the Euler-Lagrange formulation. From these equations, some

statements can be made concerning the control requirements. These are addressed in

the subsequent discussion. A stabilizing controller for the pendulum is then examined

later.

Consider the diagram of the control moment gyroscope inverted pendulum that

is depicted in figure 3.1. There are three bodies in this system, body 1, body 2,
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and body 3. There are also three degrees-of-freedom associated with the pendulum’s

rotation through angle θ1, the CMG’s rotation through angle θ2, and the CMG disk’s

rotation through angle θ3. A vector of generalized coordinates for this system is thus,

γ = [θ1, θ2, θ3]T, the subscript T stands for the transpose. The system dynamics are

easily obtained from Hamilton’s principle via the Euler-Lagrange equation. However,

this requires an expression for the total system kinetic energy and potential energy.

The total kinetic energy is obtained as the sum of the kinetic energies of each of the

bodies comprising the system,

K =
3∑

B=1

KB , (3.1)

where

KB =
1

2
mB

IṘT
B

IṘB + IṘT
B

IṪBΓB +
1

2
BωB

TJB
BωB . (3.2)

The potential energy of the system is obtained as

U =
3∑

B=1

UB , (3.3)

where

UB = g
(
mB

IRB + ITBΓB

)
|z . (3.4)

In both of these expressions, mB is the mass of the body, ΓB is the vector of first-

mass moments of the body measured in the body’s frame, JB is the inertial matrix

of the body measured in the body’s frame, ITB is the rotation from body coordinates

to inertial coordinates, BωB is the angular velocity of body measured in the body’s

frame, IRB is the position of the body’s frame measured in the inertial frame, and g

is the gravitational acceleration.

Formulating the Lagrangian as L = K−U and applying the Euler-Lagrange equa-
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Figure 3.1: Control Moment Inverted Pendulum.

tion results in a system of second-order differential equations of the form

H
(
γ
)
γ̈ +D

(
γ, γ̇
)

+G
(
γ
)

= τ , (3.5)

where the components of the symmetric positive-definite system mass matrix, H
(
γ
)
,

are

H1,1 = a+ b sin(θ2)2

H1,2 = H2,1 = c cos(θ2)

H1,3 = H3,1 = J3xx cos(θ2)

H2,2 = d

H2,3 = H3,2 = 0

H3,3 = J3xx . (3.6)

The components of the vector of the generalized Coriolis and Centripetal forces,
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D
(
γ, γ̇
)
, are

D1 = 2bθ̇1θ̇2 cos(θ2) sin(θ2) + J3xxθ̇2θ̇3 sin(θ2)− cθ̇2
2

sin(θ2)

D2 = −bθ̇1
2

cos(θ2) sin(θ2) + J3xxθ̇1θ̇3 sin(θ2)

D3 = −J3xxθ̇1θ̇2 sin(θ2) . (3.7)

The components of the vector of generalized gravitational forces, G
(
γ
)
, are

G1 = Ag sin(θ1) +Bg cos(θ1) sin(θ2)

G2 = Bg sin(θ1) cos(θ2)

G3 = 0 , (3.8)

where

a = J1xx + J2xx + J3xx + d1
2m3

b = J3yy − J3xx + d2
3m3

c = d1d3m3

d = m3d
2
3 + J2zz + J3yy

A = d1m2 − Γ1z + d1m3

B = d3m3 . (3.9)

In (3.6)-(3.8), d1 is the distance along the z-axis of frame 1 from the origin of frame 1

to the origin of frame 2, d2 is the distance along the x-axis of frame 1 from the origin

of frame 1 to the origin of frame 2, and d3 is the distance from the origin of frame 2

to the origin of frame 3.
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3.2 Analysis and Control of the CMG’s Reduced Dynamics

The input τ is a vector of external generalized forces, τ = [0, τ2, τ3]T. The system

is therefore under-actuated. The torque τ3 is utilized to maintain a constant θ̇3, thus

only τ2 is available for the control of θ2.

Assuming a control has been applied to regulate θ̇3 about a set point such that

θ̈3 = 0, the equations of motion are approximated as

H1,1(θ2)θ̈1 +H1,2(θ2)θ̈2 +D1

(
θ, θ̇
)

+G1 (θ) = 0

H2,1(θ2)θ̈1 +H2,2(θ2)θ̈2 +D2

(
θ, θ̇
)

+G2 (θ) = τ2 . (3.10)

3.3 Jacobian Based Linearization for the Reduced Dynamics of the CMG

The equations of motion of rigid bodies are mostly converted from second order to

first order differential equations. These equations are linearized about an operating

point. The Jacobian model obtained is an exact representation of the nonlinear

model only at that point. Using smoothness of the vector fields and continuity of

the system trajectory at the point about which the linearization is performed, one

can usually find a small neighborhood of the operating point where the linearized

model is still valid. This approximation destroys important geometric information

such as Centrifugal and Coriolis components sometimes used to improve the global

behavior of the closed loop system. Since the goal in this part of the design is to

design separately swing up and balance control, we will first approximate the system

at the equilibrium point and if the approximation is stabilizable to that equilibrium

point, then a small neighborhood of the operating point can be found where the

nonlinear system can be stabilized by linear feedback. Let (x0, u0) ∈ R4 × R denote

the equilibrium point of the reduced dynamics of the CMG. The linearization about

(x0, u0) is given by

ż = Az +Bv, (3.11)
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where

z = x− x0 v = u− u0

A = ∂
∂x

(f(x) + g(x)u) |(x0,u0) b = g(x0)

where we define x , [θ1, θ2, θ̇1, θ̇2]T , and

f(x) ,


θ̇1

θ̇2

−H−1(D +G)

 and g(x) ,



0

0

−H−1

 0

1




The linearized model is completely controllable if and only if

det[B AB A2B . . . A3B] 6= 0
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Figure 3.2: Controllability matrix determinant.

The controllability of the pendulum upright depends very much on the speed of the

wheel. A plot of the determinant controllability matrix with respect to θ2 and angular

velocity of the wheel is shown in figure3.2
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In the neighborhood of the unstable equilibrium point θ1 = π, θ2 = 0, θ̇1 = θ̇2 = 0,

the linearized model is given by

A =



0 0 1 0

0 0 0 1

AgJ311−Bgc
J311a−c2

BgJ311
J311a−c2 0 0

Bga−Acg
J311a−c2

−Bgc
J311a−c2 0 0


B =



0

0

−c
J311a−c2

a
J311a−c2


. (3.12)

3.3.1 Transfer Function Representation

The transfer function between θ1(s) and the input V (s) using (3.17) is given as

H1(s) =
θ1(s)

V (s)
=

−as2 + Ag

(c2 − J311a)s4 + (AJ311g − 2Bcg)s2 +B2g2
(3.13)

and the transfer function between θ2 and θ1 is given by

H2(s) =
θ2(s)

θ1(s)
=

cs2 −Bg
−as2 + Ag

(3.14)

The inertia coupling between the first and the second link can explain the presence of

the right half plane zero in the transfer function between the internal torque exerted

by the second link and the angle of the first link. Numerical analysis shows that the

system is open loop unstable (when the actual values of the parameters of the CMG

are replaced in the transfer function equations above).

3.3.2 Feedback Linearization

Feedback linearization is the process of transforming a nonlinear system into a

simpler form which in a sense is a linear system. A nonlinear system written as

ẋ = f(x, u) or (3.15)

ẋ = f(x) + g(x)u, (3.16)
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into a linear system

ż = Az +Bv, (3.17)

via a diffeomorphism

(z, v) = (Φ(x),Ψ(x, u)),

which is called feedback transformation. A question is at what condition(s) is it

possible to find the change of coordinates z = Φ(x) and a control law u = α(x)+β(x)v

for which the linear dynamics

ż = Az +Bv,

can be found for the second equation in equation(3.16) for example. An insight can

be gained by considering a single input linear control system of the form

ẋ = Ax+ bu, (3.18)

where x ∈ Rn and u ∈ R. Let us assume that the linear system of equation(3.18) is

controllable i.e.

rank
(
b, Ab, . . . , An−1b

)
= n.

Assume that we can find a row vector C orthogonal to the first n− 1 columns of the

controllability matrix

C = [b, Ab, . . . , An−2b, An−1b]. (3.19)
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We then have

cb = cAb = · · · = cAn−2b = 0 and cAn−1b = d 6= 0.

We can introduce the linear coordinates

z1 = h = cx

z2 = cAx

...

zn = cAn−1x. (3.20)

We have

ż1 = cẋ = cAx+ cbu = z2

ż2 = cAẋ = cA2x+ cAbu = z3

...

żn−1 = cAn−2ẋ = cAn−1x+ cAn−2bu = zn

żn = cAn−1ẋ = cAnx+ cAn−1bu =
n∑
i=1

aizi + du (3.21)

where ai ∈ R. We can introduce a new control variable

v =
n∑
i=1

aizi + du

So calculating the control v in the new state space, and then pulling the control back

to the original space, we can control the system. The above transformation showed
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that any single input controllable system can be brought to n-fold integrator

ż1 = z2, ż2 = z3, . . . , żn−1 = zn, żn = v.

Coming back to our earlier question, when is similar transformation possible for a

single input nonlinear system of the form

ẋ = f(x) + g(x)u. (3.22)

Given a point x0 in the state space, if it is possible to find a feedback control

u = α(x) + β(x)v, (3.23)

defined in the neighborhood of the point x0 and a coordinates transformation z = Φ(x)

defined in the same neighborhood, the closed loop system is given by

ẋ = f(x) + g(x)α(x) + g(x)β(x)v. (3.24)

In the coordinates z = Φ(x), the system is transformed into a linear and controllable

system

z = Az +Bv,

with

[
∂Φ

∂x
(f(x) + g(x)α(x))

]
x=Φ−1(z)

= Az[
∂Φ

∂x
(g(x)β(x)

]
x=Φ−1(z)

= B (3.25)



55

For the single input system we consider here, sometimes it is not any easy task to find

the feedback control given in equation(3.23). The process of obtaining the control law

above is the state space exact linearization problem; and it is possible for the single

input case if and only if there exists in the neighborhood of x0 a real-valued function

h(x) such that

Lgh(x) = LgLfh(x) = · · · = LgL
n−2
f h(x) = 0 ∀x near x0 (3.26)

LgL
n−1
f h(x) = d(x) 6= 0, (3.27)

where d(x) is a smooth function. This basically means the relative degree is equal n,

the dimension of the state space. If around the point x0, the functions h, Lfh, . . . , Ln−1
f h

are independent in the neighborhood of x0, then in a neighborhood U of x0 the map

z1 = h

z2 = Lfh

...

zn = Ln−1
f h. (3.28)

defines a local coordinates system (z1, z2, . . . , zn)T . The dynamics are then trans-

formed into

ż1 = Lfh+ uLgh = z2

...

żn−1 = Ln−2
f h+ uLgL

n−1h = zn

żn = Lnfh+ uLgL
n−1
f h = Lnfh+ ud(x). (3.29)
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As we have done for linear case we introduce a new control variable

v = Lnfh+ ud(x),

a transformation in the control space which bring the nonlinear system into a linear

system

ż1 = z2, ż2 = z3, . . . , żn−1 = zn, żn = v.

The exact feedback linearization above was obtained under two assumptions. First

we assume that h exist and Lgh(x) = LgLfh(x) = · · · = LgL
n−2
f h(x) = 0 and second

the functions h, Lfh, . . . , Ln−1
f h are independent in the neighborhood of x0. In the

first assumption, let us consider the first two elements Lgh(x) = LgLfh(x) = 0. Since

Lgh(x) = 0 we can rewrite it as LfLgh(x) = 0 so then we can write this equality

LfLgh(x)− LgLfh(x) = 0

Using the Lie bracket notation we have

LfLgh(x)− LgLfh(x) = L[f,g]h(x) = 0

This is a first order partial differential equation. So the first assumption is n− 1 first

order partial differential equations written as

Lgh(x) = Ladfgh(x) = · · · = Ladn−2
f gh(x) = 0

here we introduce the notation

adfg = [f, g] and inductively adkfg = [f, adk−1
f g].
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The existence of the function h(x) is a consequence of Frobenius theorem. The con-

ditions under which a general nonlinear system can be converted in linear system

were formulated by in [35],[38] independently. A necessary condition for the above

system of partial differential equations to admit a nontrivial solution is that the Lie

bracket w = [adjfg, ad
k
fg], 0 ≤ j, k ≤ n − 2 belong to the vector space generated by

{adifg 0 ≤ i ≤ n − 2}. This condition is to say that the distribution spanned by

{adifg 0 ≤ i ≤ n − 2} is involutive. The theorem below summarize the conditions

under which one can find a local coordinates transformation and a feedback control so

that the nonlinear system(3.22) can be transformed in a linear controllable system.

Theorem: [35],[36],[38] There exists a local change of coordinates z = Φ(x) and a

feedback of the form u = α(x) + β(x)v, where β(x) 6= 0, transform the nonlinear

system 3.22 defined in a neighborhood U of a point x0 into the linear controllable

system

ż = Az +Bv

if and only if the 3.22 satisfies in the neighborhood of x0:

(C1) g(x),adfg(x), . . . , adn−1
f g(x) are linearly independent

(C2) the distribution D={ g(x),adfg(x), . . . , adn−2
f g(x)} is involutive in the neighbor-

hood of x0 and (n-1)-dimensional around x0.

The condition (C1) is the controllability test that agrees with linearization. The

second condition (C2) implies that since the state space is n-dimensional and the

distribution D is n − 1-dimensional and involutive, then we can find a real valued

function h : Rn → R defined in the neighborhood of x0 such that its differential dh

spans the codistribution of D. In other words we have

dh(x)[g(x), adfg(x), . . . , adn−2
f g(x)] = 0. (3.30)
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The above conditions implies that the solutions of the n first order partial differential

equations  Lwh = 0 w defined above

Ladqfgh = 0 if 0 ≤ q ≤ n− 2,

h are constant. The real-valued functions h which are the solutions of these partial

differential equations, maps a neighborhood of x0 into a constant value a ∈ R. The in-

verse image h−1(a) in an (n-1)-dimensional space which are the leaves. Equation(3.30)

indicates that the gradient of h is orthogonal to the leaves. In feedback linearization

h is used to define the required change of coordinates. For the single input system

considered, the change of coordinates is given by (3.28). When an exact linearization

is performed, we do not need to operate around an equilibrium point. We need to stay

around an equilibrium point when we perform an approximation of the system such as

Jacobian linearization. A trajectory tracking is possible because we performed an ex-

act linearization of the system. So in the neighborhood of a point where the feedback

linearization equations are satisfied, it is possible to achieve exponential trajectory

tracking.

3.3.2.1 Exact Feedback Linearization of the Reduced Dynamics of the CMG

Let us consider the reduced dynamics of the CMG (3.10) rewritten as

ẋ = f(x) + g(x)u,
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where

f(x) ,


θ̇1

θ̇2

−H−1(D +G)

 and g(x) ,



0

0

−H−1

 0

1




(3.31)

Symbolic toolbox in MatLab was used to check the rank of matrix

D=[g(x), adfg(x), ad2
fg(x), ad3

fg(x)] which is essentially condition (C1). In MatLab

the rank of this matrix is 4.

Next we check the involutivility of the distribution

∆ = {g, adfg, ad2
fg} (3.32)

in other words we must verify that the vector fields

[g, adfg] [g, ad2
fg] [adfg, ad

2
fg]

lie in the distribution ∆. Symbolic calculations show that [g, adfg] [g, ad2
fg] lie in

∆ but [adfg, ad
2
fg] does not. The distribution ∆ is not involutive, hence the reduced

dynamics of the CMG is not input/state linearizable.

3.3.2.2 Input/Output Linearization of the Reduced Dynamics of the CMG

We have seen in the previous section that the CMG is not exactly linearizable by

state feedback. An output function can be selected and will be used to perform the

linearization. An issue associated with this method is that of introducing unstable

internal dynamics called zero dynamics. Since we do not have an ouput that is

predefined, we can defined an output such that the system is input/output linearizable

and has stable zero dynamics. However, finding an output such that the resulting
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linearized system has stable dynamics is not an easy process. θ1 and θ2 are already

excluded because when the Jacobian linearization was performed above we have zeros

of the transfer functions on the right hand s-plane. To proceed we will design an

output function in order to achieve stable zero dynamics. This effect is also present

in the nonlinear system. In this section the goal is to construct an output function

which is used to construct vector fields closed to the original vector fields but which

satisfy the exact linearization conditions and then a controller will be designed and

apply to the actual CMG system. We will follow the method developed primarily

in [32]. Since the conditions of exact feedback linearization are not satisfied, we can

still use the method to generate vector fields f and g that approximate the actual

vector fields f and g of the CMG. The idea is that the approximate vector fields

f + gu should agree to the first order with the original system when evaluated at the

equilibrium point. Thus the relative degree of the approximate system should be the

same as the relative degree of the linearization.

3.3.2.3 Approximation Thechnique Overview [32][63]

Let us consider the nonlinear single input system

ẋ = f(x) + g(x)u

y(x) = h(x) (3.33)

By proceeding as before, we will take successive derivative of the output until the

input appears explicitly. We have

ẏ = Lfh(x),

ÿ = L2
fh(x),

...

yr = Lrfh(x) + LgL
r−1
f h(x)u (3.34)
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3.3.3 Collocated Partial Feedback Linearization

Many researchers, in the past, have considered the analysis and control design of

underactuated mechanical systems. One of the complexities of these systems is that

often they are not fully feedback linearizable. In this work we will partially linearize

the system using a change of control which transforms it into a strict feedback form[52]

and then into a normal form which is a special case of the famous Byrnes-Isidori

normal form [36]. This form is suitable for the backstepping procedure. However,

after applying this change of control, the new control appears in both the linear and

nonlinear subsystems. Another change of variable renders the analysis and design less

complicated because the control appears only in the linear subsystem. The global

change of control is proposed in [81] as

τ2 = α (θ)u+ β
(
θ, θ̇
)

θ̈2 = u . (3.35)

Equation (3.35) is obtained by solving for θ̈1 in the first equation in (3.10) and then

replace it in the second equation. Applying this technique, (3.10) is partially linearized

and we have

α(θ2) =

(
H2,2(θ2)− H1,2(θ2)H2,1(θ2)

H1,1(θ2)

)
β(θ, θ̇) = D2(θ) +G2(θ)− H1,2(θ2)

H1,1(θ2)
(D1(θ) +G1(θ)) .

The reduced system (3.10) may be written as

θ̈1 = − 1

H1,1(θ2)
(D1(θ, θ̇) +G1(θ))− 1

H1,1(θ2)
H1,2(θ)u

θ̈2 = u . (3.36)
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In general, this change of control is invertible because det (H(θ)) is not zero because

H(θ) is a positive definite matrix. In (3.10), H1,1(θ2) is positive for all values of θ2.

Denoting p = θ̇, (3.36) can be expressed as

θ̇1 = p1

ṗ1 = f(θ, p) + g(θ)u

θ̇2 = p2

ṗ2 = u . (3.37)

In (3.37), it is shown that the control input u appears in both the (θ1,p1) and (θ2,p2)

subsystems. It is interesting to note that the inertia matrix depends only on the

actuated variable. The variables that appear in the inertia matrix are called shape

variables. The configuration variables that do not appear in the inertia matrix are

called external variables.

3.3.4 Shape Variable and Kinetic Symmetry

The fact that the Lagrangian has a kinematic symmetry with respect to external

variable i.e ∂K(θ,θ̇)
∂θj

= 0, j = 1, 3, and the normalized momentum conjugate to θ1,

ν1 = H1,1(θ2)−1 ∂L

∂θ̇1

= θ̇1 +H1,1(θ2)−1H1,2(θ2)θ̇2 (3.38)

is integrable. This defines an interesting group action in the configuration manifold.

This action is defined in a more general way in [68].

Let

ψ(θ2) =

∫ θ2

0

H1,2(s)

H1,1(s)
ds ,
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we note that the one-form dψ(θ2) = H1,2(θ2)

H1,1(θ2)
d(θ2) is exact and the above fact is ex-

ploited to perform a global change of coordinates as

z1 = θ1 + ψ(θ2)

z2 = H1,1(θ2)θ̇1 +H1,2(θ2)θ̇2 =
∂L

∂θ̇1

. (3.39)

The above global change of variables transform the dynamics of the reduced system

into a strict feedback form as

ż1 =
z2

H1,1(θ2)

ż2 = g1(z1 − ψ(θ2), θ2)

θ̇2 = p2

ṗ2 = u , (3.40)

where

g1(z1 − ψ(θ2), θ2) =
d

dt

∂L

∂θ̇1

=
∂L

∂θ1

= −∂U
∂θ1

,

due to kinetic symmetry with respect to θ1, ∂K∂θ1 = 0. We also note that this change

of variables is possible because H1,1(θ2) is strictly positive for all values of θ2 and by

multiplying (3.38) by H1,1(θ2) and setting y1 = z1 and y2 = H1,1
−1(θ2)z2, one obtains
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a special case of the normal form [36] with double integrators as shown in (3.41)

ẏ1 = y2

ẏ2 = f(y, ζ1, ζ2)

ζ̇1 = ζ2

ζ̇2 = u . (3.41)

Clearly, the control input appears only in the actuated subsystem. This decouples the

two subsystems with respect to the control input u. If a globally stabilizing smooth

state feedback exists for (z1, z2)-subsystem in (3.40) then a globally stabilizing state

feedback can be found for (θ1, θ2)-subsystem using backstepping procedure [52]. In

this case, θ2 is considered as virtual input connecting both subsystems.

3.4 Controller Design Using Backstepping

Inertia-wheel pendulum is a planar inverted pendulum with a revolving wheel at

the end that was first introduced in [83]. Due to the fact all the Christoffel Symbols

associated with the inertia matrix vanish and the inertia matrix is constant, the

dynamics and control of the inertia-wheel pendulum is a particular case of the design

procedure outlined in this paper.

Let us first consider the stabilization of the nonlinear (z1, z2)-subsystem

ż1 = H1,1(θ2)−1z2

ż2 = g1(z1 − ψ(θ2), θ2) , (3.42)

where

ψ(θ2) =
c√
ab

arctan

(
b sin(θ2)√

ab

)
, (3.43)
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with θ2 ∈ (−π
2
, π

2
). Clearly, the subsystem (3.42) is non-affine in the virtual control

input θ2. The stabilization of (3.42) can be achieved using the following assumption.

Consider the above nonlinear system non-affine in control θ2 in (3.42). If the following

condition

g1(z1, θ2) =
∂L

∂θ1

(3.44)

is a smooth function with g1(0, 0) = 0, H1,1(θ2) > 0 for all values of θ2, zero is

not a critical value for g1(z1, θ2) and ∂g1(z1,θ2)
∂θ2

6= 0, on the manifold M = ker(g1) =

{(z1, θ2) ∈ R2 : g1(z1, θ2) = 0} and g1(z1, θ2) has an isolated root α(z1) such that

g1(z1, α(z1)) = 0, so there exists a continuously differentiable state feedback law in

the following form θ2 = α(z1) − σ(z1, z2) that globally asymptotically stabilizes the

origin of (3.42) (σ(.) is a sigmoidal function. Refer to [68] for proof).

g1(z1, θ2) = Ag sin(z1 − ψ(θ2)) +Bg cos(z1 − ψ(θ2)) sin(θ2) = 0

∂g1(z1, θ2)

∂θ2

= −AgH1,2(θ2)

H1,1(θ2)
cos(z1 − ψ(θ2)) +Bg

H1,2(θ2)

H1,1(θ2)
sin(z1 − ψ(θ2) sin(θ2)

+Bg cos(z1 − ψ(θ2)) cos(θ2) . (3.45)

Solving the first line in (3.45) is equivalent to first solving for θ1 in Ag sin(θ1) +

Bg cos(θ1) sin(θ2) = 0 which gives

θ1 = − arctan

(
B sin(θ2)

A

)
, (3.46)

and substituting it in the first line of (3.39) we have

z1 =
c√
ab

arctan

(
b sin(θ2)√

ab

)
− arctan

(
B sin(θ2)

A

)
, (3.47)
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with θ2 ∈ (−π
2
, π

2
). In our work, we numerically invert (3.47) and find θ2 as a function

of z1 . From here a state feedback control law stated in the assumption above can be

found to stabilize the (z1, z2)-subsystem to the origin (0, 0) as

θ2 = K1(z1, z2) = α(z1)− σ(c1z1 + c2z2) . (3.48)

3.4.1 Backstepping Control Design

Let us define a control Lyapunov fuction V (z1, z2, η1) and η1 = θ2 −K1(z1, z2) as

V (η1) =
1

2
η1

2

V̇ (η1) = η̇1η1 , (3.49)

where

V̇ (η1) = η̇1η1

η̇1 = −c3η1

p2 − K̇1(z1, z2) = −c3(θ2 −K1(z1, z2))

or

p2 = K2(z1, z2, θ2),

or

p2 = K2(z1, z2, θ2) = −c3(θ2 −K1(z1, z2)) + K̇1(z1, z2),
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where c3 > 0. Next we define

η2 = p2 −K2(z1, z2, θ2)

V (z1, z2, η1, η2) =
1

2
η1

2 +
1

2
η2

2

V̇ (z1, z2, η1, η2) = −c3η1
2 + η̇2η2

η̇2 = −c4η2

u− K̇2(z1, z2, θ2) = −c4 (p2 −K2(z1, z2, θ2)) ,

or

u = K3(z1, z2, θ2, p2) = −c4 (p2 −K2(z1, z2, θ2)) + K̇2(z1, z2, θ2) , (3.50)

where c4 > 0.

With θ̇3 regulated about a setpoint such that θ̈3 = 0, the overall system can be

controlled using τ2 which is available for the control of θ2.

Table 3.1: Simulation parameters.

a b c d J311 A B c1 c2 c3 c4

2694.6 6.7728 75.5573 7.3916 6.8707 879.6338 22.9022 1 0 10 8

3.4.2 Simulations

The simulation results for the overall dynamics of the Control Moment Gyroscope

are shown in figure3.3. An oscillation was noticed around the equilibrium point. To

overcome this issue, a nonlinear damping was added. The CMG parameters used for

simulation are shown in the table(3.1). From the analysis above, the overall system

is an interconnection of two subsystems. Peaking is a phenomenon that is serious

issue encountered very often when designing a stabilizing control law for the overall

systems. The analysis of peaking phenomenon is considered in the sequel.
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Figure 3.3: Simulation result with initial conditions [−π
3
, 0, 0, 0], where p1 = θ̇1, p2 =

θ̇2.

Figure 3.4: Analysis of z1(θ2) and ∂g1(z1,θ2)
∂θ2

.
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3.5 High-gain Observer and Stabilizing Controller for the Composite System

In the section above, the dynamics of the Control Moment Inverted Pendulum

CMG was transformed into a partially linear composite system. A smooth dynamic

state feedback was designed using a constructive method to stabilize the pendulum. In

this section, we take advantage of the decomposition of the dynamics into a partially

linear composite system to successfully stabilize the pendulum. The stabilization of

the linear subsystem is first designed. Since the states of the linear subsystem are

inputs to the nonlinear subsystem, we ensure that the linear variables which enter

the nonlinear subsystem do not peak to prevent the nonlinear subsystem which is

zero input asymptotically stable to escape to infinity in finite time. The problem of

stabilization of a partially linear composite system by means of state feedback is con-

sidered. There is a large body of literature on control of cascade systems for example

in [90], a nonlinear small gain theorem which provides a formalism to analyze and

design control law for systems that contain saturation was proposed. Global stability

of partially linear composite systems is also considered by the work presented in [73].

The linear subsystem of the CMG is controllable and the nonlinear subsystem receives

its inputs from the states of the linear subsystem. With zero input, the equilibrium of

the nonlinear subsystem is globally asymptotically stable. It may seem that since the

zero input equilibrium of the nonlinear part is globally asymptotically stable, when

the states of the linear subsystem are driven to zero at very fast exponential rate, the

controller must stabilize the whole cascade system. However, it is seen in high-gain

feedback design that some of the states peak to very large values before they rapidly

decay to zero. The rich literature on perturbation of nonlinear systems indicates that

they can be destabilized by exponentially decaying inputs. It is proposed in [31], [88]

to restrict the nonlinear subsystem by a linear growth condition and then apply total

stability theorems. In the design, a control law is first designed to stabilize the linear

subsystem of the CMG. The design utilizes linear state feedback from its own states
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only. A high-gain linear observer is implemented to estimate the rest of the states

from measurement and to produce eigenvalues with very negative real parts. To sta-

bilize the overall system, the control law from the first part is modified as globally

bounded function of the states estimates such that it saturates during peaking period.

The linear subsystem is given by

ζ̇1 = ζ2

ζ̇2 = u , (3.51)

Inspired by [45, 27], let us find a control u(t) = Fζ(t) such that the real parts of

the eigenvalues of the closed-loop system are strictly negative. There is a tradeoff

between the transient response and the control effort. The approach to this tradeoff

is the design of u(t) that minimizes the performance index

J =

∫ ∞
0

[
ζ(t)TQζ(t) + u(t)TRu(t)

]
dt (3.52)

where Q = MTM , R is symmetric and positive definite, (A,B) is stabilizable and

(A,M) is detectable. The controller is obtained by solving the Algebraic Riccati

Equation

PA+ ATP +Q− PBR−1BP = 0, (3.53)

where P is a symmetric positive semidefinite solution and the control law is given by

u(t) = −R−1BTPζ. (3.54)

For the linear subsystem, let us select Q as to solve for P in equation(3.53)

Q =

 1 0

0 0

 , R = ρ. (3.55)
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Solving (3.53) for P defined as

P =

 p11 p12

p12 p22

 ,
we have p11 =

√
2ρ

1
4 , p12 = ρ

1
2 , and p22 =

√
2ρ

3
4 . The eigenvalues of the closed-loop

system are λ1,2 = ρ−
1
4√
2

(−1 ± j) which depend on ρ which we will vary to find the

values that meet our design requirements.

The proposed observer is given by

˙̂
ζ1 = ζ̂2 +

3

α
(z − ζ̂1)

˙̂
ζ2 = u+

2

α2
(z − ζ̂1), (3.56)

where z = ζ1 is the measured output. The observer eigenvalues are assigned at − 1
α

and − 2
α
. The overall closed-loop eigenvalues are λ1,2 = ρ−

1
4√
2

(−1 ± j), λ3 = − 1
α
and

λ4 = − 2
α
. Using the principle of separation, one can judiciously select the value of ρ

and α to meet the observer-based controller requirements and assign the closed-loop

eigenvalues properly and keep in mind that in the presence of noise, there is a lower

bound on the selection of the value α which affects the selection of the value of ρ also.

The design of the linear feedback control law u = Fζ, with the eigenvalues of the

closed-loop system A+BF assigned to the left of a values -a help us guarantee that

the trajectories resulting from the closed-loop linear system ζ̇ = (A + BF )ζ will

satisfy ‖ζ(t)‖ ≤ K‖ζ(0)‖e−at for all valid initial conditions ζ(0) and all t ≥ 0. The

number a can be made arbitrary large, however K depends on F. The resulting

peaking phenomenon comes from the fact that one cannot make a arbitrary large

i.e. α designed above arbitrary small without making K large as well. The authors

in [88] demonstrate that if the nonlinear subsystem is bounded input bounded state

(BIBS) and zero input stable ZIS then the nonlinear subsystem is bounded input
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bounded state stable BIBSS. This theorem will help us design inputs to the nonlinear

subsystem that have appropriate exponential decay. The values of the feedback gain

were selected during simulation.

3.6 Simulations

With the controller designed above, we have

P (A+BF ) + (A+BF )TP = −Q ≤ 0, (3.57)

with F = −R−1BTP , and Q = MTM . We selected

Q =

 1

0

[ 1 0

]
thus M =

[
1 0

]

It is easily found that (A,B) is controllable (rank(A,B)=2 ) and (Q
1
2 , AF ) is detectable,

where AF = A + BF . A composite Lyapunov function for the whole system can be

chosen as

W (y, ζ) = V (y) + ζTPζ (3.58)
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where V (y) can be chosen to be a saturation function.

The nonlinear subsystem is explicitly given by

f(y2, y1, ζ1) =

 y2H
−1
1,1 (ζ1)

Ag sin(y1 − ψ(ζ1)) +Bg cos(y1 − ψ(ζ1)

 (3.59)

where the explicit expression of ψ(ζ1) is given in (3.43) which is driven to zero as

shown in figure(3.6). This suggests that ζ enters the nonlinear subsystem with very

small magnitude and further analysis shows that

‖f(t, y, ζ)− f(t, y, 0)‖ ≤ L‖ζ‖, L ≥ 0 (3.60)

The overall control law stabilize the composite system at (θ1 = π, θ2 = 0)

3.7 Contraction Theory

Contract theory developed for nonlinear analysis may be viewed as a generaliza-

tion of linear eigenvalue analysis. Stability analysis is very important in order to

successfully design controllers for a dynamical systems and many techniques are now

available to tackle this key aspect in dynamical systems analysis and control. Partic-

ularly for nonlinear time-varying systems, Lyapunov theory has become a control tool

for stability analysis and control design. Lyapunov theory is mostly applied when one

considers the stability analysis at an equilibrium of the state space see for example

Khalil [46], Isidori et.al [76], Marino and Tomei [57], Vidyasagar [91], Nijmeijer and

Van der Schaft, Arjan [67]. A novel method for stability analysis emerged in the late

1990’s which is also based on the analysis of convergence of system trajectories to

one another in the state space [55]. The method does not required explicit knowl-

edge of a specific attractor. Instead it extensively uses virtual displacements. Virtual

displacement was originally introduced by Lagrange [53] and its standard notation is

δx. The so-called virtual dynamics are introduced by computing the first variation.
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Let us consider a time-varying dynamical system given by

ẋ = f(x, t), (3.61)

virtual dynamics are given by

δẋ = δf =
∂f

∂x
δx. (3.62)

3.7.1 Differential Dynamics and Contraction

Contraction analysis is presented in [55] and was first developed in the context of

observers. Here, we will give a brief overview. For the dynamics represented in (3.61),

if there exists a nonsigular transformation matrix Θ(x, t), such that we can perform

the change of variables given by

δz = Θ(x, t)δx, (3.63)

the virtual dynamics can be written as

δẋ = Θ̇(x, t)δx+ Θδẋ =

(
Θ̇ + Θ

∂f

∂x

)
δx

δż =

(
Θ̇ + Θ

∂f

∂x

)
Θ−1δz (3.64)

Let M(x, t) = Θ(x, t)TΘ(x, t), a uniformly positive definite metric.

δzT δz = δxTΘ(x, t)TΘ(x, t)δx

d

dt
(δzT δz) = 2δzT δż = δẋTMδx+ δxTMδx+ δxTMδẋ

= δxT
(
∂fT

∂x
M + Ṁ +M

∂f

∂x

)
δx

2δxΘ(x, t)TFΘ(x, t)δx = δxT
(
∂fT

∂x
M + Ṁ +M

∂f

∂x

)
δx (3.65)
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where F =
(

Θ̇ + Θ∂f
∂x

)
Θ−1 so that if there exists βM > 0, we have F ≤ −βMI in a

region then

(
∂fT

∂x
M + Ṁ +M

∂f

∂x

)
≤ −2βMM (3.66)

is verified in that region. The following theorem then follows

Theorem: (Theorem 2 in [55]) Given the equation ẋ = f(x, t), any trajectory, which

starts in a ball of constant radius with respect to the metric M(x, t), centered at a

given trajectory and contained at all times in a contraction region with respect to

M(x, t), remains in that ball and converges exponentially to that trajectories. The

proof of this theorem is given in the same reference given above. It is shown that this

theorem is not only sufficient but also necessary as stated in the theorem below.

Theorem: If the system which equations are ẋ = f(x, t) is exponentially convergent,

i.e. its virtual displacements verify the following inequality

δxT δx ≤ kδxT0 δx0e
−βt

(where δx0 = δx(0) and k and β are positive constants), then it is also contracting with

respect to a uniformly positive definite and initially upper bounded metric M(x, t)

Contraction theory was used as a flow-oriented approach to stability analysis in [41]

where virtual and actual systems methodology was used to compare Lyapunov theory

and contraction theory. A unified view of both controllers and observers convergence

analysis by adopting an observer perspective which is related to dual observers by

Brash and is summarized in Luenberger [56]. Suppose S2 is the given system and S1 is

a system that we construct to control S2. It is shown by Luenberger that the system

S2 tends to follow S1 and hence S1 can be considered as governing the behavior of S2.

Using the above theory, controller stability analysis using contraction theory could

be sketched as follows [41]
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• write the "target" system equation (ẋs = f(xs, t)),

• write the controller equation in implicit form,

• define the virtual system whose particular solutions of actual systems are the

target system and the controller,

• analyze the virtual dynamics of the virtual system to conclude to contraction

behavior.

Vectorial backstepping will be used to design a controller to stabilize the CMG at

it unstable equilibrium (π, 0, ) and the contraction theory summarized above will be

used to study the stability analysis of the controller and the contraction behavior of

system.

3.7.2 Application of Contraction to the CMG

Consider the reduced dynamics of the control moment gyroscope as shown below

q̇ = v (3.67)

H(q)v + C(q, q̇)v +G(q) = Bτ, (3.68)

where the dynamics are underactuated; B = [0, 1], H(q)>0. The controller design

methodology is similar to that in [9], [74]. First we design a PID control law and

use contraction theory in the sequel to study stability and convergence of the system

and the controller. Most of the time PID controllers are designed to drive the joint

velocity error to zeros. However, it does not guarantee that steady-state position

errors are eliminated as well. The steady-state position errors can be eliminated by

requiring them to lie on a sliding surface.

s = ˙̃q + Λq̃ = 0,
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Figure 3.8: PID Control of the CMG.

where Λ is a constant matrix whose eigenvalues lie strictly in the left-hand side of the

s-plane and s is a sliding surface. Let qd(t) be the desired trajectory. We then have

the following equations.

q̇r = q̇d − Λq̃

q̈r = q̈d − Λ ˙̃q

s = ˙̃qr = q̇ − q̇r = ˙̃q + Λq̃

Let us consider a control Lyapunov function

V =
1

2

(
sTH(q)s+ q̃TKq q̃

)
, (3.69)
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where Kq is a positive definite symmetric matrix and V > 0. Taking the time deriva-

tive of the control Lyapunov function (3.69), we have

V̇ = sT
(
τ −H(q)v̇r − C(q, v)vr −G(q)− C(q, v)s+

1

2
Ḣ(q)s+Kq q̃

)
︸ ︷︷ ︸

−KDS

−q̃TKqΛq̃

(3.70)

with vr = q̇d − Λq̃ and v̇r = q̈ − Λ ˙̃q. In essence we have

V̇ = −
(
sTKDs+ q̃TKqΛq̃

)︸ ︷︷ ︸
≥0

≤ 0,

where the control law is then given by

τ = H(q)v̇r + C(q, v)vr +G(q) + C(q, v)s− 1

2
Ḣ(q)s−Kq q̃ −KDs. (3.71)

KD is a symmetric positive definite matrix. Without loosing sight that the system is

underactuated, we solve for q̇2 in the first row of τ since it is zero and then replace

it in the second to account for the fact that the dynamics are underactuated. We

are successfully able to stabilize to CMG in the upright position. Let the equilibrium

manifold be M = {(q, q̇) : q1, q̇1, q̇2 = 0}.

The error vectors of the links are plotted and shown in figure(3.9). The bound-

edness of q and q̇ can be shown as follow. The definition s = ˙̃q + Λq̃ = 0, s can be

viewed as an input to a stable differential equation in q̃, thus the initial conditions

are bounded, and when s is bounded then q̃ is bounded so is ˙̃q and therefore q and

q̇ are also bounded. So then when s → 0 as t → 0 then q̃ and ˙̃q also tend to zero as

t approaches infinity. Since V̇ (t) is negative or zero and V (t) is bounded below by

zero, V (t) converges to a constant as t→ 0.
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Figure 3.9: Error of link1 and link2.

3.8 Convergence Analysis of Feedback System

The term C(q, v)− 1
2
Ḣ(q) is zero so the control law is given by

τ = H(q)v̇r + C(q, v)vr +G(q)−Kq q̃ −KDs (3.72)

Kq and KD are constant Hurwitz matrices. The sliding surface was defined as s =

v − vd + Λ(q − qd), and vr = qd − Λ(q − qd), the control law is rewritten as

H(q)v̇d + C(q, q̇)q̇d +G(q) = τ + [C(q, q̇)Λ +KDΛ +Kq]q̃ + [H(q)Λ +KD](v − vd)

(3.73)
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We can deduce the following virtual system equation using the bullet points above in

the summary and comparing (3.73) to the CMG dynamics (3.68)

H(qs)v̇ + C(qs, q̇s)q̇ +G(qs) = τ + [C(qs, q̇s)Λ +KDΛ +Kq](qs − q)

+ [H(qs)Λ +KD](vs − v) (3.74)

where qs, vs are the states and the velocities of the actual system respectively and q

and v are the states and velocities of the virtual system. It was noted in [55] that for

observer convergence one has simply to ensure that the solutions of the actual system

are particular solutions of the virtual system. The virtual dynamics are given by

H(qs)δv̇ + C(qs, q̇s)δq̇ = −[(C(qs, q̇s) +KD)Λ +Kq]δq

−[H(qs)Λ +KD]δv (3.75)

The generalized Jacobian dynamics is given by

 I 0

0 H


 δq̇

δv̇

 =

 −Λ I

−H−1Kq −H−1(C +KD)


 δq

δv


after introducing the transformation

 δq̇

δv̇

 =

 I 0

Λ I


 δq

δv


From the design of the controller above, if we introduce the mapping

M =

 Kq 0

0 H
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we have

d

dt


 δq

δs


T  Kq 0

0 H


 δq

δs


 = −2

 δq

δs


T  KqΛ 0

0 H


 δq

δs


which less than or equal to zero. This confirms the contraction behavior of the virtual

system defined in equation (3.75).



CHAPTER 4: CONCLUSIONS AND RECOMMENDATIONS

We have considered the modeling of the dynamics of a differential mobile robot and

the derivation of a nonlinear control law to track a predefined trajectory. Maggi’s

method, a quasivelocity technique was used to derive the dynamics. This method

eliminates the Lagrange multipliers used to enforce the nonholonomic constraints

from the start as most of the time one is not interested in the Lagrange multipliers.

It thus reduce the number of the variables and the number of equations to solve.

Feedback linearization is the technique employed to derive a trajectory control law

for the wheeled mobile robot. It is well known that one of the key points to start feed-

back linearization is the selection of the output vector. Often, some state variable are

not available for measurement and the choice is limited. With respect to the output

vector selected in this dissertation, there is no well defined relative degree. Dynamic

extension is then used to obtain a relative degree vector relative to each component

of the output vector. Computer simulations are then added to demonstrate the ef-

fectiveness of the control law implemented for this class of wheeled mobile robots.

We consider also the dynamics analysis and control of the control moment gyroscope

inverted pendulum. The CMG is an underactuated system and has kinematic sym-

metry with respect of some of its space configuration variables. The system is first

partial feedback linearized. Then, we use the kinematic symmetry of the system to

perform a global change of coordinates which transforms the original system into a

lower order nonlinear subsystem plus a chain of double integrators. The backstepping

procedure is used to stabilize the cascade systems and the original system is stabilized

at one of its unstable equilibrium points. The design ensures that the states of the

linear subsystem which enter the nonlinear subsystem do not peak as it may cause
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some of the states of the nonlinear subsystem to be unstable. The overall control law

is a globally bounded function of the states estimates such that it saturates during

peaking period. Contraction theory which does not necessarily required a basin of at-

traction as opposed to Lyapunov theory is also used to study the stability of the CMG

feedback system where vectorial backstepping is used to design a PID stabilization

control law. Overall we study stability and control of underactuated systems which

are classified as nonholonomic systems. The stability and control techniques can be

applied to stabilize systems such as chips, underwater vehicles in case of actuator

failures.
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