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ABSTRACT

NIROJ GURUNG. Approaches for Oscillation Monitoring and Damping of Wind
Integrated Power Grid. (Under the direction of DR. SUKUMAR KAMALASADAN)

Wind energy has emerged as one of the major choice of sustainable energy especially

due to lower generation cost and push for alternative sources of clean energy. How-

ever, the technological difference in wind generation is certain to create changes in

dynamics of the power system that is mostly dominated by synchronous generators.

For example, the dynamic stability of the system can be affected by wind genera-

tors such as Doubly Fed Induction Generators (DFIG) due to reduced inertia, new

transmission lines, lower number of Power System Stabilizers (PSS) and so on. It is,

therefore, essential to carefully analyze the impact of growing wind penetration on

the stability of power system. This dissertation will focus specifically on the impact of

DFIG based wind generation on power system stability. The ability to rapidly control

the active and reactive power makes DFIG a dynamic source that can support the

grid during disturbances and thus, can be used to enhance the dynamic stability of

the system. In this research, first, modal analysis of DFIG integrated power grid is

investigated. Second, based on the modal analysis and signal selection, active and

reactive power PSS is designed. Then a power system oscillation damping controller

design for DFIG is investigated. Various approaches for power oscillation damping is

evaluated using local signals or remote signals. Moreover, to address the uncertainty

in power system model used in planning, a measurement based approach for estimat-

ing the proper power system model is designed. The modal analysis of the estimated

model can be used as an analytical tool to predict the performance of the system

in time-domain. Further, a control approach is designed and implemented using the

proposed identification on a small-scale and large-scale power grid.
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CHAPTER 1: INTRODUCTION

Growing concern for climate change and falling cost of wind energy generation

has intensified the growth of wind power generation in US and around the world in

last decade [1, 5]. According to the annual report released by Global Wind Energy

Council (GWEC), total cumulative wind capacity of the world stands at 539.58 GW

in 2017, 52.5 GW added in year 2017 alone [5]. China tops the list of countries with

largest amount of installed wind capacity with 188.2 GW and comes USA, Germany,

India and Spain. The total installed capacity of wind power in US was 89.07 GW

with addition of 7.0 GW by the end of year 2017 [2, 3, 5]. Total installed wind

power capacity has actually overtaken the total installed capacity of hydroelectric

power capacity which is consistent at around 79 GW in US. Figure 1.1 shows the

cumulative capacity, total annual and/or quarterly installation of wind capacity in

US from year 2001 to 2017 [2]. The US Department of Energy (DOE) released Wind

Vision: A New Era for Wind Power in the United States which shows wind energy

can supply the U.S. with 10 percent of the country’s electricity by 2020, 20 percent

by 2030 and 35 percent by 2050 [4]. States have set their target of providing certain

percentage of total end-use electricity via renewable sources by setting Renewable

Power Standard (RPS).

The wind turbine generators (WTGs) distributed across a large area forming a

wind farm, but the total output of the farm normally connects to the bulk power

system at a single substation, in a fashion similar to conventional central-station

generation [6]. There are many different generator types for wind-power applications

in use today. Variable speed wind turbines utilizing doubly fed induction generators

(DFIGs) are the most popular generation technology in the power industry. The
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Source: AWEA                   

Figure 1.1: Installed Wind Power Capacity in US.

DFIG is capable of operating near its optimal turbine efficiency over a wider range

of wind speeds through variable rotor speed operation(usually ≈ ±30% slip). This is

achieved through the application of a back-to-back converter that tightly controls the

rotor current and allows for asynchronous operation. Consequently, the power system

originally designed for conventional synchronous generation experiences change in

dynamics and operating characteristics. This necessitates the assessment of power

system stability under anticipated changes that the new generation topology will

bring, and take appropriate action if required.

System stability and dynamics evaluation can be carried out by observing the

behavior of the system when subjected to a disturbance. A stable power system

is one in which the system dominant with synchronous machines when perturbed,

will either return to their original state if there is no net change of power or will

acquire a new state without losing synchronism [7]. The perturbations can be of
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Figure 1.2: Installed Wind Power Capacity in the world.

several types and can lead to two major categories of rotor angle instabilities, namely,

transient instability and small signal instability. Usually, the small perturbation

causes a transient that is oscillatory in nature and if the system is stable, oscillations

will be damped. Large perturbations such as three phase short circuit faults, on the

other hand, may result in transients that instigate aperiodic angular separation of

the generator rotors.

1.1 Power System Stability

Power System Stability is defined as the ability of an electric power system, for

a given initial operating condition, to regain a state of operating equilibrium after

being subjected to a physical disturbance, with most system variables bounded so that

practically the entire system remains intact [28]. Power system is a highly nonlinear

system whose operating point is constantly changing. If subjected to a disturbance,

the stability of the system depends on the initial operating condition and the nature

of the disturbance. Power systems are subjected to a wide range of disturbances, both

small and large. Small disturbances in the form of load changes occur continually; the

system must be able to adjust to the changing conditions and operate satisfactorily.

It must also be able to survive numerous disturbances of a severe nature, such as a

short circuit on a transmission line or loss of a large generator. A large disturbance

may lead to structural changes due to the isolation of the faulted elements.
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If following a disturbance the power system is stable, it will reach a new equilibrium

state with the system integrity preserved. It means all generators and loads remain

connected through a single contiguous transmission system. However, some genera-

tors and loads may be disconnected by the isolation of faulted elements or intentional

tripping to preserve the continuity of operation of bulk of the system. Interconnected

systems, for certain severe disturbances, may also be intentionally split into two or

more "islands" to preserve as much of the generation and load as possible. The ac-

tions of automatic controls and possibly human operators will eventually restore the

system to normal state. On the other hand, if the system is unstable, it will result

in a run-away or run-down situation; for example, a progressive increase in angular

separation of generator rotors, or a progressive decrease in bus voltages. An unstable

system condition could lead to cascading outages and a shutdown of a major portion

of the power system.

Power system stability is the property of a power system that ensures the stable

operating equilibrium under normal conditions and restores an acceptable state of

equilibrium when the system is subjected to a disturbance [27]. The ability of the

network to cope with these disturbances and to restore the normal operating condition

is addressed by stability studies. In order to obtain satisfactory system operation,

synchronous machines that represents major portion of the electrical power generation

should remain in synchronism. One of the major factors governing the stability is the

dynamics of generator rotor angles and power-angle relationships [27].

In an interconnected system, the ability to restore equilibrium between electromag-

netic torque and mechanical torque is determined by the rotor angle stability of each

synchronous machine. With the increased number of wind farms in operation, which

are asynchronous in nature, the system experiences change in dynamic characteris-

tics. The characteristics associated with exploitation of wind energy and components

used for power conversion does contribute to change in system dynamics.
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Following a perturbation, the change in electromagnetic torque of the synchronous

machine can be explained by two torque components, namely, the synchronizing

torque component and the damping torque component. System stability depends

on the existence of both components of torque for each of the synchronous machines

[28]. Insufficient synchronizing torque results in non-oscillatory instability whereas

insufficient damping torque results in oscillatory instability. In order to simplify the

analysis of stability problems, the rotor angle stability is categorized into transient

stability and small signal stability.

1.1.1 Transient Stability

Transient stability is the ability of a power system to maintain synchronism when

subjected to a severe disturbance. Severe network disturbances include equipment

outages, load changes or faults that result in large excursion of generator rotor an-

gles. The resulting system response is influenced by the nonlinear power angle rela-

tionship. Transient stability depends on both the initial operating state of the system

and the severity of the disturbance. Instability is usually caused due to insufficient

synchronizing torque and results in aperiodic angular separation. The time frame of

interest in transient stability studies is usually 3-5 seconds following the disturbance.

The duration may extend up to 10-20 seconds for a very large system with dominant

inter-area swings [27].

In a synchronous machine, if during a network disturbance the electrical torque falls

below the mechanical torque, the rotor will accelerate causing the increase in rotor

speed and angular position of the rotor flux vector. Since the increase in rotor angle

results in an increase in the generator load torque, a mechanism exists to increase the

electrical torque so as to match the mechanical torque. In case of DFIGs, generator

load disturbances also give rise to variations in the speed and the position of the rotor.

However, due to the asynchronous operation involved, the position of the rotor flux

vector is not dependent on the physical position of the rotor and the synchronizing
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torque angle characteristic does not exist [48]. The transient stability of a system

with wind turbines also depends on factors such as fault conditions and network

parameters. Wind speed, however, is assumed to be constant in transient stability

simulations involving wind turbines. The mechanical power, on the other hand, is

not constant as it depends on wind speed as well as the generator speed [56].

1.1.2 Small Signal Stability

In large power systems, the small-signal stability problem can be either local or

global in nature. Power system oscillations are usually in the range between 0.1 and

2 Hz depending on the number of generators involved. Local oscillations lie in the

upper part of the range and consist of the oscillation of a single generator or a group

of generators against the rest of the system [27, 57]. Stability of these oscillations

depends on the strength of the transmission system as seen by the power plant,

generator excitation control systems and plant output. The accurate modeling of the

exciter and other supplementary controls such as power system stabilizer (PSS) is

essential for analyzing this type of problems.

In contrast inter area oscillations are in the lower part of the frequency range repre-

senting oscillations among the group of generators. Since an inter-area mode usually

involves a large portion of an interconnected system, an elaborate representation of

the full system is required to accurately study this phenomena. The most critical

controls affecting inter-area-modes are the excitation control systems. In certain sit-

uations, speed governor characteristics may also have an impact. System operating

conditions (load levels, major power transfers, etc) affect the characteristics of inter-

area modes, particularly their mode shapes and damping. Other controls such as

HVDC modulation and FACTS controllers could have a significant contribution to

the damping of inter-area modes. As such, DFIG based wind turbines consisting of

the power electronics converter imparts significant effect on the dynamic performance

of the system. The time frame of interest in small signal stability studies is of the or-
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der of 10-20 seconds following a disturbance [28]. The important point to note is that

the DFIGs are asynchronous machines but the machines inject power into the system

and as a result will affect the angular positions of all the other synchronous genera-

tors. In addition DFIGs do not contribute to the inertia of the system. Hence, the

synchronizing capability of the synchronous generators in the system will be affected.

This leads to a significant impact on the electromechanical modes of oscillation.

On the other hand, utilizing the fast active and reactive power control capabilities

of these wind generators can be utilized to increase the damping of the poorly damped

inter-area oscillatory modes. This requires proper design and tuning of supplementary

damping controller for active and/or reactive power control of DFIG.

1.2 Research Motivation

There are 4 main types of wind turbines based on generation technology used [43].

Type 1 and Type 2 WTGs are induction generators directly coupled to the grid, and

hence contribute in inertial response during grid disturbances. Type 3 and Type 4

WTGs are dominated by power converters which allow the operation of wind turbines

over a wider range of speed and control active and reactive power independently.

However, they do not provide any inertial response during grid disturbances due to

the power electronic converter which effectively decouples the grid and the machine

inertia.

Type 3 WTGs are doubly fed induction generators (DFIGs) with partially rated

(≈30%) power converter which provide controlled variable frequency voltage exci-

tation to the rotor winding. Power electronic converter provides the flexibility to

control active and reactive power independently while being partially rated. DFIG

is the most widely used WTG topology in current market, and will likely continue

to dominate the market in coming years. Meticulous analysis of grid dynamics under

high wind generation scenario is necessary to understand the impact on the grid, and

proper control methods should be developed to address any threat to the dynamic
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stability of the system.

1.2.1 Problem Statement

DFIGs are based on generation technology that is different from the conventional

synchronous generators. The grid dynamics is set to change as more and more wind

generators come online. Synchronous generators are directly coupled with the grid

and any change in grid is reflected in the dynamic performance of the synchronous

generators. Synchronous generators usually have high inertia time constant but are

lightly damped systems, and depends on the network to damp its rotor oscillation.

Moreover, during the grid disturbance causing frequency deviation, the inertia of these

generators respond automatically. Two types of torque are developed following any

network disturbance, the first type is called synchronizing torque and is in phase with

the rotor angle, and the second type is called damping torque which is in phase with

the rotor speed deviation. Lack of synchronizing torque leads to aperiodic instability

while lack of damping torque leads to oscillatory instability. The problem of low

synchronizing torque is greatly solved by employing automatic voltage regulators.

Lack of enough damping torque is the major issue related with power system rotor

angle stability. DFIGs do not provide inertial response during grid disturbances. The

turbine inertia is partially decoupled from the grid via power electronic converter.

DFIGs reduce the net inertia of the system as the penetration level increases, and

its impact on dynamic stability of the power system will likely become prominent.

DFIGs affect the dynamic stability of power system in various ways such as replacing

the synchronous generators, reducing the number of PSS, changing the power flow in

critical tie-lines, by addition new lines to meet power transmission requirement and

so on.

Grid code requirements have been implemented in various systems that require

voltage and var control, active power control, frequency control, fault ride through

capability, the capability of DFIG power management on damping power system os-
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cillation is still not fully utilized [8]. As the wind power technology matures and

penetration level increases, the system operator will require the wind turbine opera-

tors to provide dynamic support mechanism such as the inertial response and power

oscillation damping support. First, it is essential to carefully study the impact of

increasing amount of wind penetration on dynamic stability of the grid. According to

[50], wind generators themselves do not induce new frequency oscillations because of

the generation technology used in wind turbine. It has been suggested that DFIG can

improve the damping of power system oscillation[10, 50]. According to ref. [15, 17],

the DFIGs have good damping performance into a weak area of the grid. However,

ref [51] showed that the DFIGs can have both beneficial and deteriorating impact on

power system damping and sensitivity analysis of the modes with respect to inertia

will provide rigid indicator of the DFIG impacts. It has been shown in [20] that the

local and plant level control of wind farm influence damping. Ref. [18, 19, 20] put

an argument that in general large scale wind integration has no noticeable effect on

inter-area mode stability, however, the structural change that the wind generators

bring might lead to poor damping.

The impact of DFIG is dependent on various factors such as location of the gen-

eration resources, local control topology, and grid characteristics. Irrespective of the

negative or positive impacts of DFIGs, the need for wind generators to provide damp-

ing support to the low frequency electromechanical oscillations is imminent. This is

because of the anticipated increment in the penetration level of wind power capacity

as suggested by the current trend. It has been shown that the DFIG can improve

the damping of the power grid as the penetration level increases, and also proposed a

power system stabilizing control based on rotor flux magnitude and angle modulation

[48, 49]. According to ref. [15], DFIGs provide good damping performance in a weak

grid, compared to a conventional generator. A supplementary control strategy so

that inertial response of DFIG can be used to provide the frequency and oscillation
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damping support in [53]. The modes of response of the DFIG, as well as the stabil-

ity of the reactive power control loop, were analyzed in [17, 21]. The idea of power

oscillation damping support is essentially to use the advanced capability of DFIGs

to change active and reactive power generation. By providing appropriate signals

to DFIG controllers to modulate its active and reactive power, the improvement in

power system oscillation damping can be achieved [21]. However, such control may

result in deterioration of torsional and voltage dynamics of DFIG [21, 16].

1.2.2 Research Objectives

This research work has following objectives:

• To develop DFIG based wind turbine/generator models for small signal and

large signal transient stability study.

• To design an optimal control of variable speed wind turbine/generator such as

DFIG.

• To gain insight on small signal stability and transient stability of DFIG in-

tegrated power system under various scenarios such as replacing the existing

synchronous generators by DFIG based wind generation through eigenvalue

analysis and non-linear time domain simulation.

• To evaluate ability and efficacy of DFIG to damp grid oscillation via active and

reactive power management.

• To design local Power System Stabilizer for DFIG.

• To design optimal Wide Area Control (WAC) methodologies to damp the elec-

tromechanical oscillation in wind integrated bulk power systems.

1.2.3 Proposed Approach

Eigenvalue analysis is a very powerful technique applied to linear time invariant

(LTI) systems. It is a frequency domain analysis technique that provides an essential
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information about time domain behavior of the system. Power system is a highly

nonlinear system. However, for small signal perturbation, the properties of a power

system about its operating point can be approximately described by a linearized

model. Linearized model is a very useful to understand the power system dynamics

in small signal stability terms. Eigenvalue analysis provides the information such as

stability of the power system, the dynamic response to small perturbation dictated

by damping ratio and frequency of dominant modes, participation analysis of various

states/machines on power system modes of oscillation, controllability and observabil-

ity analysis for suitable control design and so on.

The non-linear models based on differential and algebraic equations (DAEs) that

describe the power system dynamics are required to test the controllers, and are

developed using MATLAB-Simulink modeling environment. The model initialization

is done based on power flow solution obtained by using available power flow solution

techniques such Newton-Raphson method, Gauss-Seidel methods etc. The model

initialized at a particular operating point is linearized using linearize function of

Simulink Control Design Toolbox. Simulink Control Design uses a block-by-block

approach to linearize models, instead of using full-model perturbation to obtain exact

linearization. The MATLAB’s linearization and eigenvalue analysis were validated

against commercial software tools designed for small signal stability analysis of power

system viz. PSS/e, DSATools, PowerFactory. The information obtained from the

assessment of eigenvalues and eigenvectors such as critical modes can be verified

in time-domain using non-linear simulation of models in MATLAB-Simulink. The

controllers are designed using MATLAB inbuilt functions such as lqi, lqg, kalman,

place, n4sid etc. The inbuilt functions of MATLAB optimization toolbox such as

fmincon are used to solve the non-linear optimization problems such as pole placement

control design using output feedback.
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1.3 Research Contribution

The contribution of this work can be summarized as following:

• Modal Analysis of DFIG : Detailed model of DFIG was developed that include

rotor and stator transients, and torsional dynamics of gearbox interfaced genera-

tor rotor and turbine, and control system. The detailed modal analysis provide

the insight on inherent modes of the DFIG in open loop form and in closed

loop form. This insight is useful for design of DFIG speed, voltage and current

control.

• Optimal Control Design for DFIG : The PI control used in DFIG has its limi-

tations during transients and parameter variation. A linear-quadratic-integral

commonly known as lqi control is designed for DFIG speed control, and current

control of RSC and GSC [37]. The controllers are based on state space models.

The simulation results showed that the lqi controller performance is superior

compared to PI controller.

• Small signal stability analysis of DFIG integrated power system models : The

increasing level of DFIG into a grid was simulated to study its impact on small

signal and transient stability of the grid. It was concluded that DFIG neither

creates an oscillatory mode with the grid nor participates in existing system

oscillatory modes. However, the system stability can be affected due to the

structural changes in the system resulting from rising penetration of DFIG

such as reduced system inertia, change in tie-line power flow and so on.

• PSS Design for DFIG : Thanks to the DFIG’s capability to modulate its ac-

tive and reactive power [39], DFIGs can be used to damp the power system

oscillation using local signals such as bus frequency, angular deviation or power

flow in neighboring transmission lines. The modal analysis and time domain
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analysis showed that DFIGs can damp the oscillation quickly by producing

active/reactive power in response to oscillation in feedback signals and also

enhance the transient stability of the system.

• Model based Wide Area Control of DFIG for Power System Oscillation Damp-

ing : The limited visibility of inter-area modes in local signals reduce the poten-

tial of using DFIG control for power oscillation damping. The advance in pha-

sor measurement technology has helped to realized wide area control of power

systems that facilitate use of global/remote signals at the expense of added

communication and data transfer cost. A linear-quadratic-gaussian (LQG) con-

troller based on wide area measurement signals was designed [38]. The approach

can be summarized as: a) linearization of power system mode, b) reduction of

power system model, c) computation of state feedback gain matrix using lqr, d)

Kalman filter/observer design using kalman. The simulation results showed that

the controller effectively damped the inter-area modes of modified IEEE 68-bus,

16-machine system, which are otherwise poorly damped despite the presence of

PSS in 12 out of 16 synchronous generators.

• System Identification Based Wide Area Control of DFIG for Power System Os-

cillation Damping : One of the challenges in power system planning is to obtain

an accurate model to replicate the actual power system dynamics. System iden-

tification technique based on measurement of input and output can provide a

reduced order model that carries information about actual system response in

interested range of frequency. A canonical variate analysis (CVA) was used in

this work to estimate subspace state space system model. The model is val-

idated against actual system frequency response and validation time domain

data-set. In next step, an optimal output feedback controller is obtained using

non-linear optimization [41]. The objective Lyapunov function can include the
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performance requirements such as damping of the critical inter-area modes in

the identified model. The controller was tested with actual non-linear power

system model and its efficacy and robustness against time-delay and operating

point uncertainty has been investigated in small and large scale power system

models.

1.4 Intellectual Merit and Broader Impact

The Intellectual Merit of the work is

1. This project provides a method to evaluate the impact of DFIG based WTG

in power grid stability. The approach allows the power grid operator to eval-

uate the affect of variations in DFIG power with respect to location, size, and

controllability.

2. This project provides a new method for controlling the DFIG that can stabilize

the power grid based on wide area signals. The proposed method can factor in

on the contributions of each wind generator based on DFIG size, controllability,

and location. This ensures the optimal selection and utilization of the available

resources for grid stability improvement.

3. The project also provides a new architecture that can identify the reduced order

state-space model of the power grid based on input and output measurement.

The main advantage of this approach is that signals for control can be selected

while in operation based on online controllability and observability monitoring;

it allows better for stabilization properties.

4. One of the drawbacks of the power system controller based on mathematical

approximation of the model is its lack of ability to track the power system

characteristics as the operation of the system changes. An online identification

based stabilizer design can track the characteristics of power grid with opera-

tional changes, and tune the controller based on the identified model.
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Broader Impact of the work is

1. The approach can be used to control other devices available for power system

control and stabilization such as energy storage devices, other renewable gen-

erators and also FACTS devices. Proper coordination can achieve the optimal

utilization of the available resources.

2. The system identification and control approach is generic, and can be used

readily in other control areas.

3. The approach allows higher penetration of renewables on the power grid without

compromising grid stability. This will eventually help us to reach the goal for

reliable and sustainable energy solutions.

4. The approach can provide economical value and grid security as the capabilities

of the existing devices are utilized in an optimal manner to ensure the reliable

operation of the grid.

1.5 Thesis Organization

The remainder of this dissertation is organized as follows. In chapter 2, the dy-

namic model of synchronous generator and doubly-fed induction generator and their

associated controls are presented. A new optimal control design for DFIG speed and

converter control based on linear-quadratic-integral (LQI) approach is presented in

chapter 2 as well. Modal analysis of DFIG and DFIG integrated power system is

presented in chapter 3 to elaborate the modes of DFIG and the impact of DFIG pen-

etration on electromechanical modes of the power system. Based on the conclusion

of this chapter that the DFIG can sometimes adversely impact the power system

oscillatory modes, design of power system stabilizer based on local signal selection

is presented in chapter 4. The limited ability of the local PSS to damp the inter-

area mode has been illustrated using IEEE 68-bus benchmark system. In chapter 5,
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wide area measurement based linear-quadratic-gaussian (LQG) control is designed for

DFIG that effectively damps the inter-area modes of oscillation. A new approach of

optimal power oscillation damping control design based on identification of reduced

order power system model is presented in chapter 6. Finally, the conclusions and the

future works are presented in chapter 7.



CHAPTER 2: POWER SYSTEM MODELING

The modern power grid is composed of conventional synchronous generators and

the controls associated with such generators such as excitation systems, PSS, FACTS

devices such as TCSC, SVC, transmission network, loads etc. Recently, there is

a surge of renewable power generators that are based on generation technology very

different to that of conventional generators. Wind and solar are the two major sources

that are rapidly growing into the modern power grid, and are certain to bring the

changes in dynamic and steady state characteristics of the system. This thesis will

focus on the impact of DFIG based wind generators on dynamic stability of the

system.

DFIG is the most popular wind power generation topology in the current market,

and will likely continue to dominate the new generation added in near future. DFIG is

based on a wound rotor induction generator with controlled rotor excitation to provide

independent control of active and reactive power. This results in decoupling the rotor

and turbine inertia from the grid. Synchronous generators are directly coupled with

the AC grid and hence, are the source of inertia to the grid in the sense that any

disturbance in the grid can be observed in the rotor speed and angle of the synchronous

generators. DFIGs remain indifferent to such scenarios unlike synchronous generators

unless special control system is designed to make use of its inertial mass. A detailed

model of DFIG is necessary to get the clearer picture of the impact of these newer

generation topology on the existing grid, and also to understand the capability of the

DFIGs to support the grid dynamics. The details on the dynamic models used to

represent synchronous generators and their associated control and DFIG and their

associated controls are discussed in the following sections.
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2.1 Synchronous Generator

A round rotor synchronous generator can be represented in synchronous d-q refer-

ence frame rotating with rotor speed wr with q-axis aligned along the rotor[27].

Stator voltage equations in p.u. can be written as:

vq = −raiq + ωrψd +
1

ωB
pψq (2.1)

vd = −raid − ωrψq +
1

ωB
pψd (2.2)

v0 = −rai0 +
1

ωB
pψ0 (2.3)

Where,

vq, vd and v0 denote stator voltage in q, d and 0-axes respectively,

iq, id and i0 denote stator current in q, d and 0-axes respectively,

ψq, ψd and ψ0 denote stator flux induced in q, d and 0-axes respectively,

ra denotes armature resistance,

ωr denotes rotor speed,

ωB denotes base speed, and

p denotes differential operator i.e. d/dt.

Similarly, rotor voltage equations in p.u. can be written as:

vfd = −rfdifd +
1

ωB
pψfd (2.4)

0 = −r1di1d +
1

ωB
pψ1d (2.5)

0 = −r1qi1q +
1

ωB
pψ1q (2.6)

0 = −r2qi2q +
1

ωB
pψ2q (2.7)

where,

vfd denotes rotor field voltage,
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rfd, r1d, r1q and r2q denote field and amortisseur resistance,

ifd, i1d, i1q and i2q denote field and amortisseur circuit currents, and

ψfd, ψ1d, ψ1q and ψ2q denote field and amortisseur flux linkages.

Stator flux linkage equations in p.u. can be written as:

ψd = −Ldid + Ladifd + Ladi1d (2.8)

ψq = −Lqiq + Laqi1q + Laqi2q (2.9)

ψ0 = −L0i0 (2.10)

where,

Lad and Laq denote mutual inductance between stator and rotor windings,

Ll denotes leakage inductance,

Ld = Lad + Ll, Lq = Laq + Ll and L0 represent stator inductance.

Rotor flux equations in p.u. can be written as:

ψfd = −Ladid + Lffdifd + Lf1di1d (2.11)

ψ1d = −Ladid + Lf1difd + L11di1d (2.12)

ψ1q = −Laqiq + L11qi1q + Laqi2q (2.13)

ψ2q = −Laqiq + Laqi1q + L22qi2q (2.14)

where,

Lffd = Lfd + Lf1d, L11d = L1d + Lf1d, L11q = L1q + Laq, L22q = L2q + Laq denote

inductance of rotor winding.

Electromagnetic torque (Te) produced by the generator in p.u. is given by:

Teg = ψdiq − ψqid (2.15)

A lumped-mass model of the turbine with inertia constnt ’Hg’ is used and the
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electomechanical dynamics of the turbine and generator can be expressed in p.u. as:

dδ

dt
= ωB(ωg − ωs) = ωB∆ωg (2.16)

2Hg
d∆ωg
dt

= Tm − Teg −Dg∆ωg (2.17)

Here, δ is the rotor angle in radians, Tm is the mechanical torque, Dg is the rotor

damping coefficient, ωg is the rotor angular velocity and ωs is the synchronous angular

velocity.

2.2 Exciter and Power System Stabilizer

The main function of the Automatic Voltage Regulator (AVR) is to regulate the

generator terminal voltage at the required set-point. According to equation (2.2),

(2.8), (2.11) and (2.11), the voltage vd can be controlled by controlling the field

current ifd. Thus, AVR controls the field voltage (vfd) to induce required ifd. There

are variety of AVR structure used in the large scale generators across North America

and around the world. We will use two types of AVRs for the excitation of the

generators. The first type is an IEEE standard DC exciter known as IEEE-DC4B.

The second type is standard static excite also known as IEEE-ST1A. A simplified

IEEE-ST1A structure with a voltage transducer modeled as a low pass filter with

time constant ’Tr’ and static gain ’KA’ is shown in Figure 2.1.

The differential equations governing the operations of IEEE-DC4B and IEEE-ST1A

are given by equation (2.18) and (2.19) respectively: beginalign

Efd = KA(Vref + Vpss − Vr)

where, efdmin ≤ Efd ≤ efdmax

Tr
dVr
dt

= Vt − Vr

(2.18)
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Tex
dEfd
dt

= Va − (KeEfd + EfdAexe
BexEfd),

where, efdmin ≤ Va ≤ efdmax

Tr
dVr
dt

= Vt − Vr

Tf
dVf
dt

= Efd − Vf

Ta
dVa
dt

= KaVPID − Va

where, efdmin/Ka ≤ VPID ≤ efdmax/Ka

VPID = (Vref + Vpss − Vr −
Kf

Tf
[Efd − Vf ])[Kp +

Ki

s
+

sKd

sTd + 1
]

(2.19)

Here, Efd is the field excitation voltage, Ke is the exciter gain, Texthe exciter time

constant, Tr is the input filter time constant, Vr is the input filter emf, Kf is the

stabilizer gain, Tf the stabilizer time constant, Vf the stabilizer emf, Aex and Bex are

the saturation constants, Ka the dc regulator gain, Ta is the regulator time constant,

Va is the regulator emf, Kp, Ki, Kd and Td are the PID-controller parameters, KA is

the static regulator gain, Vref is the reference voltage and Vpss is the output reference

voltage from the power system stabilizer (PSS).

Excitation systems with high gain and fast response times greatly aid transient

stability by increasing synchronizing torque, however, they can also deteriorate small

signal stability by inducing negative damping torque. PSS control is a supplementary

controller added on top of existing voltage regulator to provides a positive contribution

by damping generator rotor angle swings which usually lie in frequency range of 0.1

to 5Hz. PSSs are usually designed to damp the local oscillation even though they

are beneficial in aiding the damping of inter-area oscillation as well. Locally available

signals such as rotor speed or slip, terminal voltage of the generator, real power

or reactive power generated are used as feedback signals. The signals with high

observability of local mode are selected. A PSS with slip speed (∆wr) added as



22

 Δωr 

∑

Tw s 

1+ Tw s
KPSS

1+ T11 s 

1+ T12 s

1+ T21 s 

1+ T22 s

1 

1+ Tr s
KA

Vt
Efd

vpss
Voltage Transducer

PSS

Vref

+

+

-

AVR

Figure 2.1: AVR (ST1A) with PSS loop(PSS1A).

supplementary loop in AVR ’ST1A’ is shown in Figure 2.1. The dynamic equation of

PSS can be written as:

Vpss = KPSS
sTw

1 + sTw

1 + sT11
1 + sT12

1 + sT21
1 + sT22

∆wr (2.20)

Here, KPSS is the PSS gain, Tw is the washout time constant, Ti1 and Ti2 are the ith

stage lead and lag time constants, respectively[27].

2.3 Loads and Network Interface

The transient of the network is ignored. The algebraic network balance equations

are expressed in common reference frame. So the generator currents and voltages are

rotated by the phase angle δ as shown in following equation [65]:

Igi = IQi + jIDi = (Iqi + jIdi)e
jδi (2.21)

Vgi = VQi + jVDi = (Vqi + jVdi)e
jδi (2.22)

where, Igi and Vgi are the current and voltage of ith generator. The generators are

modeled as current injection source. Assuming that the current injection occurs at

the generator buses only, the current injection column vector I is given as Ij = Igi
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if the jth node is connected t the ith generator, and Ij = 0 if otherwise. The load

admittance matrix YL are taken as constant shunt impedances. The network shunt

admittance matrix YN is formed using the line admittance, and the augmented with

YL to give YAug = YN + YL, and thus, the column vector of bus voltages V is given

by:

V = (YAug)
−1I (2.23)

2.4 Doubly Fed Induction Generator (DFIG)

A doubly fed induction generator consists of a wind turbine, an induction generator

and a back-to-back converter. Wind turbine converts the kinetic energy of wind to
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Figure 2.2: Schematic of Doubly Fed Induction Generator.

mechanical energy and the generator converts this mechanical energy into electrical

energy. The shaft of the turbine is connected to a wound rotor induction generator
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via gearbox setup. The induction generator has a rotor excitation via AC/DC/AC

voltage source converter that is connected between three phase rotor winding and the

grid.The stator windings are connected directly to the grid. The schematic of grid

connected DFIG is shown in 2.2.
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Figure 2.3: Block diagram representation of Wind Turbine Generator and Control.

A dynamic representation of a wind turbine and generator control is shown in figure

2.3. It is composed of:

• Rotor aerodynamic system: This system represents the turbine aerodynamics

and computes the mechanical torque or power extracted from the wind, depend-

ing on the incoming wind speed, turbine rotor speed and blade pitch angle.

• Drive train system: It represents the mechanical system of the wind turbine,

composed of turbine rotor, shafts, gearbox and generator. The drive train model

computes the turbine and generator speeds by using the mechanical torque

extracted from the wind and the generator torque as input variables.

• Blade pitch angle control system: This system is responsible of controlling the

movement of the blade pitch angle.

• Electrical system: In the electrical system, the mechanical power is converted
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in electrical power and delivered to grid. It consists of the electrical generator

and power converters, if any, depending on the wind turbine concept.

• Wind turbine control system: This system models the wind turbine control in

order to achieve the operation desired (active power reference, reactive power

reference or terminal voltage reference).

2.4.1 Aerodynamic Model of Wind Turbine

The rotor aerodynamic model expresses the mechanical torque or power extracted

from the wind. It can be derived from the blade element momentum (BEM)method

[9]. This method is based on a separation of the blades into a number of sections

along the length of each blade. Each blade section is characterized by the blade

geometry, and the aerodynamic properties are given for each section from the hub to

the blade tip as functions of the local radius. The static forces on the blade element,

and consequently the corresponding shaft torque are calculated in this method for

a given wind speed, a given rotor speed and a given blade pitch angle. However,

modeling the rotor using BEM method has a number of drawbacks [10]:

• Instead of only one wind speed signal, an array of wind speed signals has to be

applied.

• Detailed information about the rotor geometry should be available.

• Computations become complicated and lengthy.

To solve these problems, a simplified model of the wind turbine rotor derived from the

disk actuator theory is normally used when the electrical behavior of the system is the

main point of interest. In the disk actuator theory, the mechanical power extracted

from the wind is calculated from an algebraic equation:

Pm =
ρ

2
Arv

3
wηCp(λ, β) (2.24)
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Figure 2.4: Variation of Cp with variation of λ and β.

where, Pm is the mechanical power extracted from the wind, ρ is the air density, Ar

is the area swept by the rotor blades, vw is the wind speed, η is the turbine efficiency

Cp is the power coefficient, λ is the tip speed ratio β is the blade pitch angle. The

tip speed ratio is calculated as:

λ = Kb
wr
Vw

(2.25)

where, Kb is equivalent wind turbine radius coefficient wr is the rotational speed of

the turbine Power coefficient Cp is computed as:

Cp = (
4

9
− β

60
)sin(

π

2
20

λ− 3

150− 3β
)− 2

β

1087
(λ− 3) (2.26)

Figure 2.4 shows the variation of Cp as a function of λ and β. The coefficient

of power decreases with increasing the pitch angle of the rotor blades and exhibits

maximum value for a specific value of tip speed ratio which is also called optimal tip

speed ratio λopt. This information is used in designing a pitch controller which controls

the pitch angle β to prevent the over-speeding of the turbine when the wind velocity

exceeds the rated speed or during grid disturbance where the generator cannot send

the power to the grid.
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Figure 2.5: Mechanical power vs rotor speed at different wind velocity.

Figure 2.5 shows a typical variation of mechanical power of wind turbine at different

turbine speed, and wind speed. The figure illustrates that the ability of a wind

turbine to operate in variable rotor speed (as a function of wind velocity) would enable

maximum aerodynamic efficiency of the turbine. Generally, a look-up table based on

turbine testing is provided such that reference turbine speed can be generated as a

function of wind velocity to ensure the turbine operates in maximum power point

within a certain permissible range of wind velocity.

2.4.1.1 Pitch Angle Control

The mechanical power output of the wind turbine can be changed by changing the

blade pitch angle because it directly varies the power coefficient of the wind turbine.

A reduction in the mechanical power of the rotor can be achieved by minimizing the

angle of attack above its critical value. Pitch angle control serves following purposes:

1. Optimizing the power output of the wind turbine, by maximizing the mechanical

power output for a given wind speed, this is generally applied for low and

moderate wind speeds below rated wind speed.

2. Preventing excess mechanical power output in strong winds above rated wind



28

speeds. This keeps a check on the mechanical power and keeps it below the

rated value in strong winds.

3. To prevent disconnected wind turbines from turning

An standard pitch controller is shown in Figure 2.6.
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Figure 2.6: Blade Pitch Angle Controller.

2.4.1.2 Maximum Power Point Control

It is desirable to derive maximum power possible from the wind turbine if the wind

speed is within its rated wind speed limit and keeping the power derived constant

at rated maximum power when the wind speed exceeds the rated speed. The pitch

angle controller maintains the optimum blade pitch angle to maximize the power

coefficient of the turbine for wind speed below rated wind speed. From figure 2, it is

evident that the maximum power extraction is possible if optimal tip speed ratio is

maintained, and the power would be a cubic function of wind speed. MPPT control of

wind turbine is based on look-up table which is usually provided by the wind turbine

developer. MPPT either provides power reference as a function of measured rotor

speed or vice-versa.



29

2.4.2 Drive Train Model

The drive train of a wind turbine is composed of the rotating masses and the

connecting shafts, including a possible gearbox. To represent the dynamic of the

wind turbine in power system transient analysis, several models of the drive train are

reported in literature.

Six rotating masses (three blades, hub, gearbox and generator) are considered in

the six-mass drive train model [12, 13]. Each rotor blade is modeled by a separate

inertia, elastically connected to the hub. In addition, hub, gearbox and generator

are represented by its inertia, which are considered to be elastically connected via

springs.

In the three-mass drive train model [12, 13], the three rotating masses are turbine,

gearbox and generator, elastically coupled each other. In this case, the turbine inertia

is calculated from the combined weight of three blades and hub, and the mutual-

damping between hub and blades is ignored.

However, these models are not commonly used for large power system simulation

studies because the model order is high. The models mostly used are the two-mass

model and the one-mass or lumped-mass model.

2.4.2.1 Lumped One Mass Model

If shafts are assumed to be very rigid and we are not interested in studying impact

on the grid than the wind turbine dynamics, the lumped single mass model of drive

train with inertia time constant Htot is used. In case of DFIG wind turbine, one mass

model can be acceptable as the turbine and grid dynamics are effectively decoupled

via power electronics converter. It can be written as:

2Htot
dwm
dt

= Tm − Te (2.27)
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where, Tm is the mechanical torque, Te is the electromagnetic torque produced by the

generator, wm is the mechanical rotor speed.

2.4.2.2 Two Mass Model

In the two-mass model, the inertia of the gearbox is neglected and only the trans-

formation ratio of the gearbox is included in the model when the wind turbine has

gearbox. Thus, the model is composed of two masses, turbine (three blades and hub)

represented by inertia constant Ht and generator represented by inertia constant Hg,

elastically connected via springs. The equations are:

2Ht
dwt
dt

= Tm − Tsh (2.28)

2Hg
dwr
dt

= Tsh − Te (2.29)

dθtw
dt

= (wt − wr)wB (2.30)

where wt and wr [p.u.] are the turbine and rotor speed and Tsh is the shaft torque

given by:

Tsh = Kdθtw +Dd
dθtw
dt

(2.31)

where Θtw [rad] is the shaft twist angle, Kd the shaft stiffness and Dd the damping

coefficient. After substitution of Tsh in and putting s = ws−wr, we get the drive-train

2 mass model as:

2Ht
dwt
dt

= Tm − (Kθtw +D(wt − (1− s))wB) (2.32)

−2Hg
ds

dt
= (Kdθtw +Dd(wt − (1− s)ws)wB)− Te (2.33)

dθtw
dt

= (wt − (1− s)ws)wB (2.34)

The two-mass model is usually preferred, because it represents more accurately

the dynamic of the wind turbine when the power converter is blocked during grid
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faults. Figure 2.7 compares the dynamic transients captured with single mass model

and two-mass model. The two-mass model accounts for the fact that turbine and
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Figure 2.7: Comparison of Lumped Single Mass and Two Mass Model.

generator may oscillate with respect to each other, and hence, is better representation

of wind turbine drive train model considering the weaker connection between rotor

and turbine shaft via gearbox. This can be seen in Figure 2.7 as rotor is oscillating

against the turbine during grid voltage sag from 0.1 to 0.5 sec.

2.4.3 Induction Generator Model

The voltage and flux linkage equation in per unit representing DFIG in d-qreference

frame rotating at synchronous speed we[p.u.] can be written as:

vqs = −rsiqs + wψds +
1

wB

dψqs
dt

(2.35)

vds = −rsids − weψqs +
1

wB

dψds
dt

(2.36)

vqr = rriqr + (we − wr)ψdr +
1

wB

dψqr
dt

(2.37)

vdr = rridr − (we − wr)ψqr +
1

wB

dψdr
dt

(2.38)
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ψqs = −Lssiqs + Lmiqr (2.39)

ψds = −Lssids + Lmidr (2.40)

ψqr = −Lmiqs + Lrriqr (2.41)

ψdr = −Lmids + Lrridr (2.42)

The above equations are based on our assumption of current coming out of the sta-

tor and current flowing into the rotor taken as positive. The electric torque generated

can be estimated by:

Te = Lm(iqsidr − idsiqr) (2.43)

Te = (ψqsids − ψdsiqs) (2.44)

Te = (ψqridr − ψdriqr) (2.45)

Te = (Lm/Lss)(ψqsidr − ψdsiqr) (2.46)

Te = (Lm/Lrr)(ψqrids − ψdriqs) (2.47)

2.4.3.1 Comparison of 2nd and 4th Order Induction Generator Transients

Figure 2.8 shows the difference while considering the stator dynamics vs ignoring

the stator dynamics. The supplied voltage dipped from 0.1 sec to 0.3 sec, and the re-

sult shows that the 4th order model is able to represent the faster stator flux dynamics

while 2nd order model ignores the sator flux dynamics.

2.4.4 Converter Model

The ac-dc-ac converter in the rotor circuit figure 2.2 is required to produce rotor

voltage at slip frequency. Modern design use two pulse-width modulated (PWM)

inverters connected back-to-back via a dc-link. This configuration allows bidirec-

tional power flows in the rotor circuit and hence operation at both sub- and super-

synchronous speed.
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Figure 2.8: Comparison transient of 2nd order (red) and 4th order (black) induction
generator model.

There are several ways to control the ac-dc-ac converter. Usually the control algo-

rithm of the converters are formulated in a synchronously rotating two-axis frame so

that decoupled control can be achieved for real and reactive power in each converter.

The control objectives of the RSC and GSC have to be coordinated so that the system

is stable. The RSC is controlled to extract the maximum wind power in subrated

region and track constant torque in rated region (the mechanical torque and speed

is controlled in this region by pitch angle control mechanism as explained earlier).

The GSC maintains the constant dc-link capacitor voltage. The reactive power can

be fed in or consumed by both RSC and GSC control. However, RSC control is

preferred which essentially controls the rotor excitation to produce desired value of

reactive power from the stator. The reactive power support via GSC requires the

rating of converter near the DFIG rating, which undermines the DFIG advantage of

being able to achieve active and reactive power control via partially rated converter.

The converters can be modeled as a controlled voltage or current sources.
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2.5 Conventional Vector Control of DFIG

Stator flux oriented vector control is implemented for rotor side converter control

and grid voltage vector oriented vector control is implemented for grid side converter

control.

2.5.1 Rotor Side Converter Control

The objective of rotor side converter (RSC) control is to make the active and

reactive power track their reference by controlling rotor excitation voltage. If the

arbitrary d-q reference frame is aligned and rotated synchronously along stator flux

vector, then following equation can be formulated by neglecting the effect of stator

resistance:

ψds = ψs, ψqs = 0 (2.48)

vqs ≈ vs vds ≈ 0 (2.49)

The stator active and reactive power can be written as:

Ps = vqsiqs, Qs = vqsids (2.50)

The stator current can be written in terms of rotor currents as:

iqs =
Lm
Lrr

iqr (2.51)

ids =
Lm
Lrr

iqr + ψds (2.52)

Thus, active and reactive power can be re-written as:

Ps = vqs
Lm
Lrr

iqr (2.53)

Qs = vqs
Lm
Lrr

iqr + vqsψds (2.54)
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The stator voltage vqs of grid connected DFIG can be assumed to be constant. Thus

from equation 2.53 and 2.54, it can be realized that the control of active and reactive

power can be achieved by controlling the rotor quadrature axis and direct axis current,

respectively.

The rotor voltage equations can be written as

vqr = rriqr + σLrr
d

dt
iqr + (we − wr)(σLrridr +

Lmψds
Lss

) (2.55)

vdr = rridr + σLrr
d

dt
idr − (we − wr)σLrriqr (2.56)

vqr = v′qr + (we − wr)(σLrridr +
Lmψds
Lss

) (2.57)

vdr = v′dr − (we − wr)σLrriqr (2.58)

where, v′qr = rriqr + σLrr
d
dt
iqr and v′dr = rridr + σLrr

d
dt
idr

Thus the reference v′qr and v′dr are obtained from quadrature and direct axis rotor

current control loop and the decoupling term as shown in equation (52) are added

to obtain the reference for vqr and vdr respectively. The control block diagrams are

∑ ∑
+

-

ωr iqr

iqr
∑

vqr

 wslip(ψdr)

∑ ∑
+

-

V

idr

idr

∑
vdr 

 wslip(ψqr )

Voltage Control

Speed Control

Rotor Current Control

PI PI

PIPI

-

+

+
+

+

+

-

-

V* *

*ωr* *

*

Figure 2.9: RSC control structure with outer loop for speed and voltage control, and
inner loop for direct and quadrature axis rotor current control.
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shown in the Figure 2.9:

The controller equations are given as:

dxip
dt

= −wr ref + wr (2.59)

dxiq
dt

= iqrref − iqr (2.60)

dxv
dt

= vsref − vs (2.61)

dxid
dt

= idrref − idriqrref = Kpw(−wr ref + wr) +Kiwxiw (2.62)

idrref = Kpv(vsref − vs) +Kivxiv (2.63)

vqr = Kpq(iqrref − iqr) +Kiqxiq + (wslip)ψdr (2.64)

vdr = Kpd(idrref − idr) +Kidxid − wslipψqr (2.65)

xiv, xiw, xiq and xid are the state variables associated with integral control gains Kiv,

Kiw, Kiq and Kid respectively. Kpv, Kpw, Kpq and Kpd are the proportional control

gains.

2.5.2 Grid Side Converter Control

Grid side converter (GSC) is a three-phase AC to DC converter connecting the

dc-link capacitor to the three phase ac grid. The main purpose of GSC is to maintain

the constant dc-link voltage irrespective of the power flowing rotor to the grid or

vice-versa. The dc-link voltage is thus controlled by controlling the active power

flowing from the grid to the rotor side converter or vice-versa. The GSC can also

be used to support the reactive power requirement of the grid, however, this would

require the higher rating of the power converter. The most widely used technique

of GSC control is to align the direct axis of two-axis d-q reference frame along the

grid voltage vector such that the active power and hence the dc-link voltage can be

controlled by controlling the direct-axis component of the current while the reactive

power can be controlled by controlling the quadrature-axis current. This is also called
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Figure 2.10: Grid side converter arrangement.

Voltage Oriented Vector Control. The schematic diagram of GSC is shown in Figure

2.10.

From Figure 2.10, the Kirchhoff’s voltage law gives:


va

vb

vc

 = R


ia

ib

ic

+ L
d

dt


ia

ib

ic

+


va1

vb1

vc1

 (2.66)

where L and R are tje line inductance and resistance, respectively. Using Park’s

transformation to transform the abc form of 2.66 into the dq reference frame rotating

at the grid frequency we, we get:

vd
vq

 = R

id
iq

+ L
d

dt

id
iq

+ Lwe

−iq
id

+

vd1
vq1

 (2.67)
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If q-axis is aligned along the voltage vector, vd = 0, so the (2.67) can be written as:

vd1
vq1

 = −R

id
iq

− L d
dt

id
iq

− Lwe
−iq
id

+

 0

vq

 (2.68)

Also, we can write

vd1
vq1

 = −R

id
iq

− L d
dt

id
iq

− Lwe
−iq
id

+

 0

vq

 (2.69)

vd1
vq1

 =

v′d
v′q

+

 Lweiq

−Lweid + vq

 (2.70)

where, v′d
v′q

 = −R

id
iq

− L d
dt

id
iq

 (2.71)

The active and reactive power flowing from GSC is

P
Q

 =

vqiq
vqid

 (2.72)

The DC-link voltage can be maintained constant by balancing the active power

flow between the grid and the rotor side converter. A PI controller driven by error in

DC-link voltage tracking, thus provides the set-point for q-axis current iqg. The error

of q-axis current tracking is provides the reference voltage set-point v′q. The error

in tracking reactive power (usually set at 0) is provides reference set-point for d-axis

current idg, and the error is d-axis current tracking is used to drive the set-point v′d.

The resulting control architecture for GSC is illustrated in Figure 2.11.
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Figure 2.11: PI based Vector Control of GSC.

2.6 Rotor Flux Magnitude and Angle Control

Rotor Flux Magnitude and Angle control (FMAC) was proposed by Anaya et al.

This technique is very similar to the traditional voltage excitation and power angle

control employed in synchronous generators. The decoupled control of reactive and

active power is achieved by controlling the magnitude and angle of rotor flux. The

stator dynamics are neglected and hence reduced order model of DFIG is obtained.

vqs = −rsiqs + weψds (2.73)

vds = −rsids − weψqs (2.74)

vqr = rriqr + wslipψdr +
d

dt
ψqr (2.75)

vdr = rridr − wslipψqr +
d

dt
ψdr (2.76)



40

δ 

δir

δ 

jX is

v 

is ir

λr

vr

d

q

vs

Figure 2.12: Vector Diagram representation of DFIG.

v mag 

PI PI

PI PI

vs

P

Pref

δ 

v magref 

δref

-
+

-
+

+
-

+
-

 vqr ref

 vdr refvs ref

vr mag ref 

δ r ref 

Polar 

to dq 

trans

Figure 2.13: Rotor Flux Magnitude and Angle Control of DFIG.

The equations can be modeled with voltage behind transient reactance as:
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dv′q
dt

= − 1

T ′0
[v′q − (Xs −X ′s)ids]− wslipv′d +

Lm
Lrr

vdr (2.77)

dv′d
dt

= − 1

T ′0
[v′d − (Xs −X ′s)iqs] + wslipv

′
q −

Lm
Lrr

vqr (2.78)

vds = −rsids −X ′siqs + v′d (2.79)

vqs = −rsiqs +X ′sids + v′q (2.80)

In vector form:

d~v′

dt
= − 1

T ′0
[~v′ − j(Xs −X ′s)~is]− jwslip~v′ − j

Lm
Lrr

~vr (2.81)

where ~v′ = v′d + jv′q, ~vr = vdr + jvqr, and ~is = ids + jiqs In steady state, d~v′

dt
= 0, so

that

0 = − 1

T ′0
[~v′ − j(Xs −X ′s)~is]− jwslip~v′ − j

Lm
Lrr

~vr (2.82)

Anaya et al then proposes that for normal operating values of wslip (when the DFIG

rotor speed is distinct from synchronous speed), the term having divider T ′0 is very

small compared with the final two terms , so that

wslip ~v’ =
Lm
Lrr

~vr (2.83)

and
Lm
Lrr
' 1 i.e. ~vr ≈ s~v’ (2.84)

Since the magnitude of the internal voltage varies only slightly, the magnitude of

the rotor voltage is proportional to the slip magnitude. Further, for subsynchronous

operation where slip wslip is positive, vr is approximately in phase with the internal

voltage vector v′, and for supersynchronous operation where wslip is negative, the two
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voltage vectors are approximately in anti-phase.

The angle δ in Figure 2.12 which defines the angle between the internal voltage vector

v′ and stator terminal voltage vs and also the angle between the rotor flux ψr and

stator flux ψs is determined by the power output of the generator. Thus, controlling

the position of the rotor flux with respect to stator flux enables the control of the

generator power output. This equivalent to controlling the position of internal voltage

v′ with respect to stator terminal voltage vs. The reference for rotor voltage |vr|and

angle δir obtained from rotor flux magnitude and angle control loop respectively. The

control strategy is illustrated in the schematic shown in Figure 2.13.

The control topology for rotor side converter control has been elaborately explained

in [23]. Aligning the direction of the q-axis of the synchronously rotating d-q reference

frame with the stator voltage, vds becomes zero and vqs is equal to the terminal

voltage value. The rotor-side converter controller aims to control the DFIG output

active power and reactive power for tracking the different input of the WT torque

and maintaining accurate relations between the terminal voltage and control setting,

and then, the active power and reactive power can be controlled independently by vqr

and vdr, respectively.

2.7 Optimal State Feedback Control of DFIG

Though PI based vector control is the most widely used DFIG control topology,

it often performs poorly in transient disturbance scenarios, is affected by parameter

variation and the tuning of individual control gains is a cumbersome task. Therefore,

a linear-quadratic-integral (LQI) optimal state feedback controller has been proposed.

It is a linear-quadratic-regulator (LQR) with state augmentation using integral action

to ensure the desired reference tracking while providing the optimal feedback gain pa-

rameters to minimize the quadratic cost function of control input and state variables.

LQI control is a more systematic method of designing control law for the optimal

performance of linear multi-variable system such as DFIG. First, state space model
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for current control of RSC and GSC are developed. State space model is developed

for rotor speed control. The control design procedure is described briefly.

2.7.1 State Space Model of RSC

In a stator flux oriented d-q reference frame, the quadrature axis rotor currents iqr

and direct axis rotor current idr are controlled by controlling the rotor voltages vqr

and vdr respectively. If the stator dynamics are neglected, i.e. d
dt
ψs = 0, the state

space model of RSC can be written as:

d

dt

iqr
idr

 =

− rr
σLrr

−wslip

wslip − rr
σLrr


iqr
idr

+
1

σLrr

vqr
vdr

+ wslip
Lm

σLssLrr
ψds (2.85)

where, σ = LssLrr−L2
m

LssLrr
. If wslip Lm

σLssLrr
ψds.

2.7.2 State Space Model of GSC

The mathematical state space model of GSC in a voltage oriented d-q reference

frame can be written as:

d

dt

id
iq

 =

−R
L

we

−we −R
L


id
iq

+
1

L

vd1
vq1

+
1

L
vd (2.86)

where, R and L are the resistance and reactance of filter in p.u. The reference signal

id ref is derived from dc-link voltage controller which is PI controller in this case.

However, state feedback control can be designed for de-link control as well. iq ref

is assumed to be zero as the GSC does not support any reactive power for voltage

control.

2.7.3 State Space Model of Mechanical Speed Control

The main purpose of DFIG speed control is to derive set-point for DFIG electric

torque/power/iqr. A lumped single mass model has been assumed and the controller
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has been tested in a two mass model system. In stator flux oriented d-q frame, the

electrical torque generated by the generator can be written as:

Te =
Lm
Lss

ψdsiqr (2.87)

Then, rotor-turbine mechanical dynamics can be represented by:

dwr
dt

=
Tm
2H
− 1

2H

Lm
Lss

ψdsiqr (2.88)

2.7.4 Linear Quadratic Integral (LQI) control

The novel state space model are type-0 servo system which do not involve integrator

in the dynamics of currents and speed. However, the integral action needs to be

incorporated in the system to ensure a zero steady-state error. This is achieved by

state augmentation by having the integrator in the feed forward path between the

error comparator and the plant. This will include additional states to the system.

The mathematical formulation of LQR based state feedback control with integral

action is detailed here.

2.7.4.1 Mathematical Formulation of Error Dynamics

The state space model of a general type-0 MIMO servo system utilizing integral

action, using state augmentation can be expressed mathematically as:

ẋ(t) = Ax(t) +Bu(t) (2.89)

y(t) = Cx(t) (2.90)

ζ(t) = r(t)− y(t) = r(t)− Cx(t) (2.91)

where,

x = (x1 x2... xn)T is the (n× 1) state vector
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y = (y1 y2... yp)
T is the (p× 1) output vector

u = (u1 u2... um) is the (m× 1) input vector

r = (r1 r2... rp) is the (p× 1) reference-input vector

ζ = (ζ1 ζ2... ζp) is the (p × 1) vector representing the integral of the tracking errors

(augmented states)

C is the output matrix

A linear state feedback and added states can be given as:

u(t) = −Kx(t) +KIζ(t) (2.92)

where, K is a (m × n) state feedback gain matrix and KI is a (m × p) integral

gain matrix. The state space dynamic model for the system obtained after the state

augmentation can be written in matrix form by combining 2.89 and 2.90 as:

ẋ(t)

˙ζ(t)

 =

 A 0

−C 0


x(t)

ζ(t)

+

B
0

u(t) +

0

I

 r(t) (2.93)

where, I is a (p× p) identity matrix. In steady state, 2.93 can be written as:

ẋ(∞)

˙ζ(∞)

 =

 A 0

−C 0


x(∞)

ζ(∞)

+

B
0

u(∞) +

0

I

 r(∞) (2.94)

Considering r(t) as a vector of step inputs, we have r(∞) = r(t) = r(constant) for

t > 0. Subtracting 2.94 from 2.93, the error dynamics can be obtained as:

 ẋ(t)− ẋ(∞)

(̇ζ)(t)− ˙ζ(∞)

 =

 A 0

−C 0


x(t)− x(∞)

ζ(t)− ζ(∞)

+

B
0

[u(t)− u(∞)

]
(2.95)
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Now, we define:

x(t)− x(∞) = xe(t) (2.96)

ζ(t)− ζ(∞) = ζe(t) (2.97)

u(t)− u(∞) = ue(t) (2.98)

Replacing these values in 2.95, following expression can be written:

ẋe(t)
˙ζe(t)

 =

 A 0

−C 0


xe(t)
ζe(t)

+

B
0

ue(t) (2.99)

If we define a ((n+m)× 1) order error vector as:

e(t) =

xe(t)
ζe(t)


then, equation 2.99 can be written as:

ė(t) = Āe(t) + B̄ue(t) (2.100)

where, Ā =

 A 0

−C 0

 and B̄ =

B
0

. From equation 2.92 and 2.100,

ue(t) = −Kxe(t) +KIζe(t) = −K̄e(t) (2.101)

where, K̄ =

[
K −KI

]
Thus, the closed loop error dynamics can be written as:

ė(t) = (Ā− B̄K̄)e(t) (2.102)

Thus, it becomes evident that the problem of designing a state feedback law to track

the reference values is transformed to a regulator design problem. The gain matrix

K̄ is to be designed such that error vector e(t) converges to zero at steady state.
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2.7.4.2 Linear Quadratic Regulator (LQR) design

The LQR approach provides a systematic way of computing the feedback gain-

matrix K for making MIMO error dynamics of (2.100) asymptotically stable. The

gain matrix K is computed by minimizing a quadratic performance index given [55]

as:

J =

∫ t=∞

t=0

(xTe (t)Qxe(t) + UT
e (t)Rue(t))dt (2.103)

where, Q and R are both positive-definite matrices. In (2.103), the second term in

right-hand side is accountable for the expenditure of energy of the control signals and

the first term is accountable for the energy of the plant states. The feedback law is

thus an optimal compromise between the control effort and the response speed, and

at the same time ensures the stable operation of the system.

The optimal gain matrix is obtained that minimizes the performance index (2.103)

is given as:

K̄ =

[
K −KI

]
= R−1B̄P (2.104)

where, P is a positive-definite matrix and is the solution of the following reduced-

matrix Ricatti equation:

ĀP + PĀ− PB̄R−1B̄P +Q = 0 (2.105)

From (2.101) and (2.104), the feedback control law for error dynamics of (2.100)

can be written as:

ue(t) = −R−1B̄Pe(t) = −R−1B̄P

xe(t)
ζe(t)

 (2.106)

This means, the optimal state feedback control law for the given system in (2.93) can
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be formulated as:

u(t) = −R−1B̄P

x(t)

ζ(t)

 (2.107)

Equation (2.107) gives the state feedback control law with the optimal gain matrix

and hence, drive the error matrix e(t) to zero and the system states track their

reference value in steady state.

2.7.5 LQI Control for RSC

Based on the state space model obtained for speed control of DFIG, optimal state

feedback gain is proposed with the optimal feedback gain matrix derived using equa-

tion (2.104) and the proposed control schematic is shown in Figure 2.14. The integral

gain Kisp ensure DFIG rotor speed wr tracks reference w∗r . The output of the con-

troller is i∗qr which is assumed to be equal to iqr which in turn controls the electric

torque Te or generated power P . Proposed optimal LQI control for RSC current

control is shown in Figure 2.14. The objective of the controller is that rotor currents

iqr and idr track the respective reference signals i∗qr and i∗dr. i∗qr is derived from speed

controller. i∗dr is derived either from voltage controller or reactive power controller

and is derived from a PI controller in this case.

2.7.6 LQI Control for GSC

The GSC controller maintains constant dc-link voltage irrespective of the power

flowing to or from the rotor via rotor side converter. The error in DC-link voltage

tracking drives the PI controller to derive the reference for the d-axis current in grid

voltage vector oriented d-q plane as shown in Figure 2.15. Similarly, the error in

reactive power set-point tracking drives a PI controller to derive the reference set-

point for q-axis current. The proposed LQI control for current control of GSC is

shown in Figure 2.15.
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Figure 2.14: State Feedback Control of RSC.
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2.8 Time Domain Simulation of LQI control vs PI Control

In order to test the performance of the proposed LQI controller, time domain

simulation results are presented. Step response of the proposed control architecture

for RSC, GSC and speed are observed first. Further, the performance of the proposed

architecture in the real-wind scenario is evaluated.

The reference signal i∗qr is changed in steps such that i∗qr = [0, 0.2, 0.3, 0.15] at

t = [0, 1, 2, 3.5](sec) .The reference i∗dr is also changed in steps such that i∗qr =

[0,−0.2,−0.3,−0.15] at t = [0, 1.5, 2.5, 4](sec) . The result is shown in Figure 2.16

which also shows the results with a standard PI-based vector control for compari-

son purpose. Better decoupled control (0.01 p.u change) and smaller ripple in rotor

current is evident from the result.

2.8.1 RSC Current Control Step Response

Figure 2.16: Comparison of LQI control vs PI Control for RSC current control.
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2.8.2 GSC Current Control Step Response

Time(s)

Figure 2.17: Comparison of LQI control vs PI Control for GSC current control.

Step change in d-axis current reference such that i∗dg = [0.5, 0.7]p.u. at time t =

[0.5, 2.5] sec. Step change in q-axis current reference such that i∗qg = [0.3, 0.15]p.u. at

time t = [2, 3.5] sec. The time domain simulation result with PI controller and LQI

controller are shown in figure 2.17. DC link voltage (at the top) shows better response

with the proposed lqi controller. It responds to change in d-axis current only with the

proposed lqi controller while it was disturbed by changing q-axis current as well with

PI controller. Better decoupling of q-axis and d-axis current present the superiority

of proposed controller in comparison to the commonly used PI based vector control

technique.

2.8.3 DFIG Speed Control Step Response

The proposed LQI speed controller was tested with step changes in wind speed

that resulted in step change of rotor speed reference wr ref . Figure 2.18 shows the

rotor speed with the LQI controller compared to variously tuned PI controllers. The

change in i∗qr and equivalently stator power Ps is also shown in Figure 2.18. LQI is

able to track the reference speed with zero overshoot and shorter settling time (≈4.07
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Figure 2.18: Comparison of LQI control vs PI Control for DFIG speed control.

Figure 2.19: DC link voltage with LQI control vs PI Control for DFIG speed control.

seconds) while PI struggled because of higher overshoot (22.20% for Kp=5, Ki=2)

and longer settling time (≈9.12 seconds). LQI controller provides much smoother

transition in DFIG power in speed step changes, which is also reflected in dc-link

voltage. DC-link voltage when LQI based speed control is used is compared to that

of PI based speed control in Figure 2.19.
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Figure 2.20: Wind profile used in the test study.

Figure 2.21: DFIG rotor speed wr and Stator Active Power Ps.

2.8.4 Real Wind Test

The proposed control architecture is tested in real wind pattern as shown in Figure

2.20. The rotor speed wr ref and stator power Ps" are shown in Figure 2.21. The

results show that the LQI controller can track the speed reference while maintaining

much smoother power profile (up to 0.3 p.u). The lower ramp-rate of the power deliv-

ered from wind turbine to the grid means reduced impact on voltage and frequency,
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Figure 2.22: GSC d-axis curretn id and DC link capacitor voltage.

and reduced regulation requirement for the grid operator, especially with increasing

penetration of wind power in the grid. The proposed control technique also maintains

the dc-link voltage closer to reference set-point as shown in Figure 2.22.

2.9 Summary

In this chapter, mathematical differential and algebraic equations representing a

round rotor synchronous generator was discussed. An standard static excited based on

thyristor and a power system stabilizer used to provide damping torque is presented

which will be used in our further test and study.

In this chapter, mathematical modeling of doubly fed induction generator and its

control has been discussed. An aerodynamic model which results in conversion of

kinetic energy of wind as a virtue of its velocity into mechanical torque than rotates

the turbine. The turbine mechanical torque is a function of wind speed, rotor speed,

and pitch angle. Though multi-mass model are usually required to study the actual

dynamics of a wind turbine, the model has been greatly simplified by using lumped

single mass model of drive train. Two mass model of drive train has been presented

which is used in most of the works of this dissertation. Two mass model treats
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mechanical drive train as two separate masses representing turbine and generator

separately, and hence, we can observe and study the torsional dynamics of generator

and turbine shaft. The induction generator can be represented by a set of voltage

and flux equations in d-q reference frame. Second order or fourth order can be used

to represent the induction generator depending upon whether stator dynamics need

to be studied in the model or not.

Back-to-back converter that provides variable frequency excitation to the rotor

winding forms the heart of the DFIG as it facilitates the independent control of

active and reactive power. It is composed of two voltage source converters, viz rotor

side converter and grid side converter. Rotor side converter allows the control of

active and reactive power by controlling the rotor voltage in stator flux oriented d-q

reference frame. Grid side converter allows the flow of power from rotor to grid or

grid to rotor by maintaining the constant dc-link voltage. Vector control is the widely

discussed control topology. An optimal linear quadratic integral controller for dfig

controller has been proposed and the results are presented, which show considerable

improvements over conventional vector control technique.



CHAPTER 3: MODAL ANALYSIS OF DFIG INTEGRATED POWER SYSTEM

This chapter presents the modal analysis of a grid connected DFIG in both open

loop mode and closed loop mode. Open loop mode refers to a DFIG that operates

without controlled rotor voltage i.e. the rotor voltage is set constant. Closed loop

mode refers to a DFIG with all the controllers taken into consideration, specifically

the controlled rotor excitation voltage to achieve active and reactive power control.

The DFIGs are integrated to the power grid models interfaced appropriately, and the

impact on the grid is assessed. Impact of DFIG on grid is focused on identifying the

positive or negative impacts that DFIG can have on slow electromechanical modes of

the power system.

3.1 Modal Analysis of DFIG connected to an Infinite Bus

Modal analysis of a DFIG connected to an infinite bus is discussed in this section.

By considering an infinite bus, we can assume the voltage and angle of infinite grid

to be constant irrespective of the active and reactive power flow from the DFIG.

DFIG drive train includes a turbine connected to the generator rotor via gearbox

mechanism, three-phase stator windings directly connected to the grid, and rotor

windings energized with controlled voltage through back-to-back converter. In power

system stability study, the high frequency switching dynamics of the converter are

ignored [34], and the converter is represented by an active power balance between RSC

and GSC. Depending on whether we consider stator dynamics or not and whether

one mass-lumped model or two-mass model is used to represent the drive train model,

different models can be defined. For a more detailed study of drive train oscillation

that usually exists in a DFIG due to the presence of gear-box interface between the
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turbine and the generator shaft, two mass representation of drive-train is preferred.

If we include the decoupled active and reactive power control of DFIG, the dynamics

of the system changes significantly which will be shown in following subsections.

3.1.1 Open Loop DFIG

In the absence converter control, DFIG acts like a squirrel cage induction generator

(SCIG). Two different models are considered as:

• Model A considers rotor and stator dynamics represented by equation (2.35)-

(2.38) and single mass lumped model of Drive train given by equation 2.27. It

is a 5th order model.

• Model B considers rotor and stator dynamics represented by equation (2.35)-

(2.38) and two mass model of Drive train given by equation (2.32)-(2.34). It is

an 8th order model.

Model A exhibits two oscillatory modes as seen from Table 3.1. First one is stator

mode because it has high participation of stator flux. It has oscillation frequency ≈

60 Hz, and damping ratio ≈ 0.09. The second mode is slower electro-mechanical

mode with oscillation frequency ≈ 4 Hz and damping ratio 0.59. Rotor flux ψqr and

mechanical speed wr show higher participation in this mode.

Table 3.1: Eigenvalues of Model A

Mode σ Freq.
[Hz]

Damping
(ζ)

Participating
States

Remark

λ1,2 -33.8 59.48 0.09 ψds,qs Stator Mode
λ3,4 -18.3 3.94 0.59 ψqr, wr Electromechanical

Mode
λ5 -37.1 0 1 ψdr

Model B exhibits three oscillatory mode as seen in Table 3.2. Stator mode

similar to Model A. Electromechanical mode of Model B has higher oscillatory

frequency ≈ 16 Hz because of the comparatively smaller generator inertia Hg = 0.5
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sec. This mode has damping ratio of 0.12. Another mechanical/torsional mode

appears due to gearbox interfaced generator shaft and turbine, which are represented

by two mass model. This mode has damping ratio of 0.37.

Table 3.2: Eigenvalues of Model B

Mode σ Freq.
[Hz]

Damping
(ζ)

Participating
States

Remark

λ1,2 -33.8 59.48 0.09 ψds,qs Stator Mode
λ3,4 -12.3 16.1 0.12 wr, ψqr, θtw Electromechanical

Mode
λ5,6 -7.45 2.95 0.37 wt,θtw, ψqr Torsional/Mechanical

Mode
λ7 -37.1 0 1 ψdr

In order to understand the sensitivity of the DFIG modes with respect to its var-

ious parameters, the locus of these modes are plotted on changing the mechanical

parameters of the turbine and generator viz. shaft stiffness Kd, damping coefficient

Dd, generator inertia Hg and turbine inertia Ht. Figure 3.1 shows the locus of DFIG

when Kd increases from 1 to 30 (p.u./rad). As the stiffness of the shaft increases,

the participation of turbine inertia in the electromechanical mode increases, and fre-

quency of oscillation decreases from ≈ 140 (rad/s) to ≈ 80 (rad/s), and the mode is

better damped. The frequency of mechanical torsional mode increases from 7.57 to

22.4 (rad/sec), and this mode is better damped, meaning the two masses are tightly

attached to each other.

Figure 3.1: DFIG Open Loop Modes w.r.t. Kd [1-30 (p.u./rad)].
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Figure 3.2 shows the locus of electromechanical and mechanical mode as damping

coefficient Dd increases from 0.001 to 0.1 (p.u. sec/rad). Higher damping coefficient

ensures better damping of torsional/mechanical mode, as well as electromechanical

mode.

Figure 3.2: DFIG Open Loop Modes w.r.t. Dd [0.001-0.1(p.u. sec/rad)].

Figure 3.3 shows the locus of DFIG modes as generator rotor inertia Hg increases

from 0.1 to 0.6 sec. The increasing mass of generator means decreasing frequency

of electromechanical mode. There is slight increase in frequency of mechanical and

slight drop in damping ratio as well.

Figure 3.3: DFIG Open Loop Modes w.r.t. Hg [0.1-0.6 (sec)].

Figure 3.4 shows the DFIG modes when turbine inertia is increased from 1 to 6

sec. Increasing the turbine inertia decreases the frequency of mechanical mode from
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32 (rad/s) to 12 (rad/s). The oscillation frequency of electromechanical mode drops

from 104 (rad/s) to 100 (rad/s).

Figure 3.4: DFIG Open Loop Modes w.r.t. Ht [1-6 (sec)].

Figure 3.5 shows the locus of DFIG modes when generator speed wr increases from

0.7 to 1.2 [p.u.]. The electromechanical mode oscillates with smaller frequency near

synchronous speed. The damping is relatively better in super-synchronous region.

The mechanical mode exhibits the oscillation frequency proportional to the magnitude

of slip. Max frequency is 49 (rad/sec) at wr=0.7 [p.u.]. The damping is highest at

slip ≈ ± 0.1.

Figure 3.5: DFIG Open Loop Modes w.r.t. wr [0.7-1.2 (p.u.)].

3.1.2 Closed Loop DFIG with Vector Control

In order to understand the dynamics of an actual DFIG, it is necessary to include

the speed/ active power and voltage/reactive power controller. In this section, modal
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analysis of closed loop DFIG considering the speed and voltage controller as shown in

Figure 2.9 is presented. 7th order open loop DFIG system with the speed and voltage

control makes an 11th order model of DFIG. We assess the eigenvalues of this system

in three distinctive operating regions of operation distinguished by the rotor speed.

• Subsynchronous mode: The rotor speed is below synchronous speed. Let

wr=0.7 p.u. and the mechanical torque Tm=0.5 p.u.

• Synchronous mode: The rotor speed is at synchrnous speed i.e. wr=1.0 p.u.

and the mechanical torque Tm=0.75 p.u.

• Supersynchronous mode: The rotor speed is at synchrnous speed i.e. wr=1.2

p.u. and the mechanical torque Tm=1.0 p.u.

The proportional and integral gains used in the base case are given in Table 3.3.

Table 3.3: PI controller gains

Proportional Integral
Speed Control 10 2
Voltage Control 5 10
iqr Control 0.01 4.0
idr Control 0.01 0.01

Eigenvalues and the states with higher participation are shown in Table 3.4-3.6.

In each modes of operation, a mode with frequency ≈ 59 Hz is present with high

participation of stator flux ψds,qs, and hence termed as stator mode. Another mode

with frequency≈ 10 Hz and high participation of shaft twist angle θtw, generator speed

wr and turbine speed wt is called torsional mode. It is well damped, and it depends

on shaft stiffness Kd and damping coefficient Dd. A highly mode with frequency ≈

30 Hz with high participation of rotor flux and speed controller is observed, and is

well damped under all operating conditions.

The sensitivity of the DFIG modes to different parameters like controller gains, grid

strength and operating speed should be addressed to understand DFIG dynamics
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Table 3.4: Eigenvalues of DFIG during at sub-synchronous mode

Eigenvalue σ Frequency
[Hz]

Damping ratio
(ζ)

Participating
States

λ1,2 -49 61.2 0.13 ψds,ψqs
λ3,4 -47.0 37.26 0.20 ψqr, xiq, ψdr, wr
λ5,6 -6.92 9.85 0.11 θtw,wr,wt
λ7 -75.0 0 1 ψdr,xiq,
λ8 -1.3 0 1 wt
λ9 -0.57 0 1 xid
λ10 -0.11 0 1 xiw
λ11 -0.069 0 1 xiv

Table 3.5: Eigenvalues of DFIG during at synchronous mode

Eigenvalue σ Frequency
[Hz]

Damping ratio
(ζ)

Participating
States

λ1,2 -45 63.39 0.11 ψds,ψqs
λ3,4 -43.0 28.9 0.20 ψqr, xiq, ψdr, wr
λ5,6 -6.7 9.44 0.11 θtw,wr,wt
λ7 -93.0 0 1 ψdr,xiq,
λ8 -1.3 0 1 wt
λ9 -0.63 0 1 xid
λ10 -0.11 0 1 xiw
λ11 -0.1 0 1 xiv

Table 3.6: Eigenvalues of DFIG during at super-synchronous mode

Eigenvalue σ Frequency
[Hz]

Damping ratio
(ζ)

Participating
States

λ1,2 -43 64.4 0.11 ψds,ψqs
λ3,4 -56.0 30.87 0.28 ψqr, xiq, wr, ψdr
λ5,6 -6.9 9.596 0.11 θtw,wr,wt
λ7 -70.0 0 1 ψdr,xiq,
λ8 -1.3 0 1 wt
λ9 -0.57 0 1 xid
λ10 -0.11 0 1 xiw
λ11 -0.069 0 1 xiv

under varying operating scenarios. We will look only at the oscillatory modes if

present and variation in its frequency and damping ratio by changing one parameter

at a time while keeping other parameters consistent with the base case. Here base case
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is defined by control gains given in Table 3.3, transmission line reactance xe=0.01 p.u.,

rotor speed wr=1.0 p.u. Frequency and damping ratio of stator mode and torsional

mode with respect to q-axis rotor current control proportional gain Kpq and integral

gain Kiq is shown in Figure 3.6. The damping of stator mode decreased when Kpq

is increased, though the effect gets saturated at Kpq ≈1. Increasing the value of Kpq

also reduced the damping ratio of torsional mode. The damping of both stator and

torsional mode decreased with increasing value of Kiq.

Figure 3.6: DFIG Modes w.r.t. iqr controller gains Kpq and Kiq.

Frequency and damping ratio of stator mode and torsional mode with respect to

d-axis rotor current control proportional gain Kpd and integral gain Kid is shown in

Figure 3.7. The damping of stator flux mode decreased when Kpd increased. Stator

flux has maximum damping at Kid ≈10, and tends to be lesser damped as Kid keeps

increasing. There is very insignificant effect on torsional mode.
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Figure 3.7: DFIG Modes w.r.t. idr controller gains Kpd and Kid.

Figure 3.8: DFIG Modes w.r.t. speed controller gain Kpw.

The impact of changing speed controller proportional gain Kpw is shown in Figure

3.8. Increasing Kpw provides improved damping of torsional oscillation and reduces

the frequency of oscillation; the stator flux mode experiences slight decrease in both

frequency and damping. At lower value ofKpw, an oscillatory speed controller mode is
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seen but disappears at values above 10. The integral gain of speed controller Kiw had

no effect on stator dynamics, and its impact on speed controller mode and torsional

mode is shown in Figure 3.9. Speed controller oscillatory mode appears when Kiw

is greater than 2, the damping reduces and frequency increases as Kiw is further

increased. Though the damping of torsional mode is seen to increase, the effect is

minimal.

Figure 3.9: DFIG Modes w.r.t. speed controller gain Kiw.

The stator flux oscillation seems to be damped better as the strength of the tie-line

decreases i.e. when value of line reactance xe increases. This is very distinct when

compared to an induction generator whose stator flux oscillation damping decreases.

This is shown in Figure 3.10. Rotor flux mode damping ratio is seen to reduce slightly.

Figure 3.10: DFIG Modes w.r.t. tie-line reactance xe between the infinite bus and
DFIG bus.
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Figure 3.11: DFIG Modes w.r.t. generator speed wr.

The sensitivity of DFIG modes with respect to the operating points is shown in

Figure 3.11. The stator flux oscillation is damped better at higher rotor speeds. The

torsional mode is damped best at synchronous speed with slight decrease in damping

as rotor speed deviates from synchronous speed. Rotor flux oscillatory mode is also

found at speeds other than the synchronous speed. Similarly, current controller modes

appear in speeds other than the synchronous speed.

3.2 Modal Analysis of DFIG Integrated Power System

In order to study the impact of increasing DFIG penetration on power system small

signal stability, a test system was selected as a representative power system model.

DFIGs do not participate in an electromechanical oscillation neither they create any

oscillatory modes of such kind. However, increasing penetration level of DFIGs can

affect the grid oscillation dynamics in various ways. In general, the structural change

in the power system that is caused by the DFIG affect the power system dynamics. For

example, DFIGs can replace the existing synchronous generators leading to reduced

system inertia, and DFIGs can affect the generators committed at a particular instant

which might lead to high power flow in critical tie-lines.
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3.2.1 Test System Used For the Study

11-bus, 4-machine test system [27] as shown in Figure 3.12 is used in this study. It

consists of two areas A1 and A2 and each area has a pair of equivalent synchronous

generators. The generators in bus 1,2,3 and 4 represented by SG1, SG2, SG3 and

SG4 are equipped with ’IEEE ST1A’ exciter. Only SG1 and SG3 are equipped with

rotor slip feedback based PSS. The slow dynamics of the governors are ignored, and

the mechanical torques to the generators are taken as constant inputs.

L7

C7 C9

L9

1 5 6 7 8 9 10 11 3

42

Area 1 Area 2

SG2

SG1

SG4

SG3

Figure 3.12: 11-bus, 4-machine Test System.

3.2.2 Supplementary Control of DFIG

A supplementary control loop based on the feedback from the point of common

coupling (PCC) frequency deviation is shown in Figure 3.13 which active power set-

point modulation signal to RSC controller. The objective of this control is to supply

electric torque to damp the oscillation observed in the power system frequency caused

by disturbance in the grid. The electrical behavior of the generator and converter

is that of a current regulated voltage source converter. The conventional aspects of

generator performance related to internal angle, excitation voltage and synchronism

are largely irrelevant [52]. Consequently, there is no considerable lag in the signal
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Figure 3.13: DFIG Control Augmented with Supplementary Control Loop.

through the converter. This rules out the need for the phase compensation block

while adjusting the DFIG excitation to improve the damping. The controller consists

of a proportional gain Kg and a washout filter with time constant Tw and produces

a supplementary q-axis rotor current signal isc which is added to q-axis rotor current

control loop. The gain is tuned to provide the maximum damping using root-locus

based method.

3.2.3 Test Cases

It has been found that the generation loading and the tie-line power flow are two of

the most dominant factors in power system stability. Two cases are developed for an-

alyzing the performance of DFIG integrated grid, and effectiveness of supplementary

control architecture discussed in section 3.2.2.
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3.2.3.1 Case 1

In case 1, the power flow from A1 to A2 is changed in step of 50MW from 400MW

to -400MW by adjusting the load L7 and L9 in two areas keeping the generation

constant as illustrated in Figure 3.14.. Negative power flow means that the direction

of power flow is reversed.

Following four sub-cases of case 1 are formulated to simulate the DFIG replacing

a synchronous generator:

1.1 Base Case: All four generators have automatic voltage regulator and only SG1

and SG3 are equipped with PSS.

1.2 A DFIG replaces SG4.

1.3 A DFIG replaces SG3.

1.4 A DFIG replaces SG3. Supplementary control loop is added to DFIG.

Inter-Area Power Flow (MW)

Figure 3.14: Case 1: Changing active load and constant generation.

3.2.3.2 Case 2

In case 2, power flow from A1 to A2 is changed in steps of 50 MW from 400MW to

-100MW by increasing the generation of SG3 and equally decreasing the generation

of SG1 and SG2 while keeping the loads unchanged. This is illustrated in Figure 3.15.

Following three sub-cases of case 2 are considered for analysis::
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Inter-Area Power Flow (MW)

Figure 3.15: Case 2: Constant active load and changing generation.

2.1 Base Case: All four generators have automatic voltage regulator and only SG1

and SG3 are equipped with PSS.

2.2 A DFIG replaces SG3.

2.3 A DFIG replaces SG3. Supplementary control loop is added to DFIG.

3.2.4 Modal Analysis

The DAEs (differential and algebraic equations) representing the power system is

linearized, thereby providing the state space matrices and eigenvalues for the lin-

earized system. Looking at the frequency, damping ratio and high participating

states, the electro-mechanical modes of the system can be distinguished. Generally,

local modes have frequency ranging from 1 Hz to few Hz, while inter-area modes

(IAM) are relatively slower with frequency ranging from 0.1 Hz to 0.7 Hz.

The test system chosen exhibits three distinct electromechanical modes character-

istic of modern bulk power systems. The modes of the system in case 1.1 are shown

in Table 3.7 and the mode shapes are shown in Figure 3.16.

Table 3.7: Electromechanical Modes of 11-bus, 4-machine System

Mode freq. (Hz) Damping (%) States Remark
−0.22± 3.90 0.62 5.77 ω3, ω4, ω1, ω2 Inter-Area Mode
−1.10± 7.83 1.24 13.92 ω3, ω4 Area 2 Mode
−1.10± 7.58 1.21 14.37 ω1, ω2 Area 1 Mode
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Figure 3.16: Mode shape of of generator rotor angles for case 1.1.
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Figure 3.17: Mode shape of of generator angles for case 1.2. The area 2 local mode
vanishes because DFIG does not oscillate against SG4.

The local modes are relatively well-damped while IAM is poorly damped due to

weak tie-line that connects the two areas. This section mainly focuses on IAM. The

frequency and damping are affected by the loading of the tie-line. The mode shape

in case 1.2 and 1.3 as shown in Figure 3.17 and 3.18 shows that the local mode of

area 2 vanishes meaning the DFIG do not oscillate with SG4. The inter-area mode

exists in which SG4 oscillate against the generators in area 1. The local mode in area

1 remains unchanged.

The locus of IAM for case 1.1, 1.2 and 1.3 are presented in Figure 3.19, 3.20 and
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Figure 3.18: Mode shape of of bus angles for case 1.3. The area 2 local mode vanishes
because DFIG does not oscillate against SG4.

3.21 respectively. In all cases, the damping and frequency show variation with varying

tie-line flow, with least damping when tie-line flow is 400MW from area A2 to area A1

and maximum frequency at around 0MW power flow. The damping ratio improved in

case 1.2 compared to case 1.1 i.e. substituting SG4 by DFIG improves IAM damping.

However, the damping of IAM is very poor in case 1.3 and becomes unstable as the

power flow from A2 to A1 approaches 400 MW as shown by the IAM moving from

left-half plane to the right-half plane.

Figure 3.19: Locus of IAM in Case 1.1.



73

Figure 3.20: Locus of IAM in Case 1.2.

Figure 3.21: Locus of IAM in Case 1.3.

3.2.5 Tuning gain of DFIG Supplementary Control

As the damping of IAM with DFIG replacing SG3 was worsened significantly, a

supplementary controller as discussed in section II is implemented in case 1.4. The

damping provided by this controller can be analyzed via modal analysis. The damping

of IAM depends on the operating condition of the system and the proportional gain

Kg. The washout filter time constant ’Tw’ was kept constant at 10 sec. A procedure

to tune the gain Kg based on root-locus method is used. The gain was tuned for

initial operating point where 400MW power is flowing from A1 to A2. The locus of

IAM as Kg is increased from 0 to 500 is shown in Figure 3.22 and IAM frequency and

damping are shown in Figure 3.23. Kg=100 was chosen as it provided the maximum

damping to the IAM. The locus of IAM as inter area power flow changed from 400MW
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to -400MW is shown in Figure 3.24. The addition of supplementary control was able

to improve the IAM damping much better than PSS equipped SG3. The damping of

IAM for case 1.1 to 1.4 can be summarized as shown in Figure 3.25.

Figure 3.22: Locus of IAM as Kg increases from 0 to 500.

Figure 3.23: Frequency and damping of IAM as Kg increases from 0 to 500.

Figure 3.24: Locus of IAM in Case 1.4.



75

Figure 3.25: Damping of IAM as inter-area power flow changes in Case 1.

Figure 3.26: Frequency of IAM as inter-area power flow changes in Case 1.

The locus of IAM for case 2.1 2.2 and 2.3 are shown in Figure 3.27, 3.28 and

3.29 respectively. In case 2.2, when SG3 is replaced by DFIG, the damping ratio

is significantly reduced and moves towards instability region as the generation of

DFIG is increased from 400MW to its nominal value of 900MW while inter-area flow

is changed from 400MW to -100MW. Addition of supplementary loop to the DFIG

power control was able to improve the damping of IAM much better than synchronous

generator even though it is more sensitive to the tie-line flow. The damping tends to

decrease as the generation from DFIG increases as it can be seen from Figure 3.30.
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Figure 3.27: Locus of IAM in Case 2.1.

Figure 3.28: Locus of IAM in Case 2.2.

Figure 3.29: Locus of IAM in Case 2.3.
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Figure 3.30: Damping of IAM as inter-area power flow changes in Case 2.

Figure 3.31: Frequency of IAM as inter-area power flow changes in Case 2.

3.2.6 Time-Domain Analysis

Time domain transient simulation is performed with non-linear model developed

using MATLAB/Simulink. The response of the test system for selected operating

point will be tested for four different sub-cases as discussed earlier. Small signal

perturbation is provided by giving short pulse change in reference voltage of the

synchronous generators. Large disturbance is created by three-phase fault in bus

8 for 0.2 second and eventually removing the fault. The mechanical power input of

synchronous generators as well as doubly fed induction generators have been assumed

to remain constant.
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3.2.6.1 Small Signal Stability Analysis

In the first test, reference voltage of generators SG2 and SG4 were increased by

0.1 p.u. from time t=0 sec to 0.1 sec and t=0.5 sec to 0.6 sec respectively. The

operating point for case 1.1 to 1.4 are selected such that 400MW flows from A1 to A2,

with generators SG1 through SG4 producing 700, 700, 720 and 700 MW respectively.

Load at bus 7 and 9 are 967 MW and 1767 MW respectively. Damping ratio obtained

from modal analysis is shown in Table 3.8.

Table 3.8: IAM Damping Factor

Case 1.1 Case 1.2 Case 1.3 Case 1.4
5.724 16.697 4.994 19.58
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Figure 3.32: Slip and torque of SG1 after perturbing Vref of SG2 and SG4.

The eigenvalue analysis shows that replacing SG4 with DFIG improves the damping
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of the inter-area mode. On the other hand, replacing SG3 deteriorates the inter-area

mode damping. The addition of supplementary controller improves the damping of

the inter-area mode. Rotor slip and electromagnetic torque of SG1 in four cases 1.1 to

1.4 subjected to disturbance is shown in Figure 3.32. The inter-area mode is clearly

visible and settles very slow in case 1.1, and is poorer in case 1.3. The oscillation

damps faster in case 1.2 and faster in case 1.3. DFIG torque and speed is presented

in Figure 3.33 which shows the participation of DFIG with supplementary control in

oscillation damping by injecting damping torque proportional to the change in PCC

frequency, which in turn affects the operating speed of the turbine. This indicates

that the impact of DFIG is network dependent and should be assessed in case-by-case

basis.

Time(s)

Time(s)

Figure 3.33: Torque and rotor speed of DFIG after perturbing Vref of SG2 and SG4.
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3.2.6.2 Transient Stability Analysis

In second test, three phase fault is applied at bus 8 for 0.2 sec and cleared naturally.

Electromagnetic torque, slip and terminal voltage of generator at bus 2 are presented

in Figure 3.34. The result is in agreement with the modal analysis result shown in

Table 3.8. The post-fault oscillation damps out faster in case 1.2 compared to case
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Figure 3.34: Voltage, slip and torque of SG2 following three-phase fault.

1.1 and 1.3, but case 1.4 shows the best damping characteristics. The damping was

poorest in case 1.3. It can be said that replacing SG4 by DFIG improves the damping
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even without any supplementary controller. Replacing SG3 by DFIG deteriorates

the damping and addition of supplementary damping controller achieves damping

characteristics much batter than base case.

3.3 Summary

This chapter presented the modal analysis of open loop and closed loop model of

DFIG, and sensitivity analysis of DFIG mode wrt to DFIG and controller param-

eters. In order to study the impact of DFIG penetration on small signal stability

of power system, modal analysis of DFIG integrated power grid model in different

scenarios was performed, and the results revealed that the penetration of DFIG can

sometimes improve the damping of power system electromechanical modes and dete-

riorate the damping of those modes at other times. Replacing synchronous generator

4 of the test system revealed improved damping of the inter-area mode, but replacing

the synchronous generator 3 deteriorated the inter-area mode damping. The IAM

became unstable as the power flowing from area 2 to area 1 increased to around 350

MW. It can be concluded that though DFIG do not inherently participate in the elec-

tromechanical mode, it can affect the dynamics of the system due to the structural

changes in the grid. The supplementary control of DFIG torque in response to the

grid frequency oscillation improved the damping to the electromechanical oscillation.

However, this comes at the cost of oscillation in the DFIG rotor which is proportional

to the supplementary controller gain Kg during grid disturbance. Non-linear time

domain simulation with small and large disturbance is presented to verify the results

obtained via modal analysis.



CHAPTER 4: SIGNAL SELECTION BASED DESIGN OF POWER SYSTEM

STABILIZER FOR DFIG

4.1 Introduction

Chapter 3 showed that DFIG can have positive and negative impact on dynamic

stability of the grid and should be considered on cas by case basis. Location of DFIG

is one of the important factors that influence the grid impact. But the location of the

wind generators is driven by the availability of the resources and other socio-economic

aspects. The rising level of DFIG penetration require oscillation damping capability

of DFIG. A lot of work has been done in the past in the area of power oscillation

damping control inclusive of FACTS devices and HVDC lines. Lately, the DFIGs

are seen as being capable of supporting the power system in damping the oscillation.

This chapter will explore the capability of DFIG to support power system oscillation

damping and design a damping controller for DFIG based generation.

The increasing amount of wind power generation essentially replaces the conven-

tional synchronous generators of the power system, thereby, reducing the total inertia

of the system. Reduced inertia of the system is expected to hamper the system re-

sponse during contingencies. It is clear that small signal as well as transient rotor

angle stability is be affected by the changing dynamics of the power grid. This chapter

focuses on the impact of increasing DFIG penetration and techniques to overcome the

stability issues using DFIG control. The technique of using modified Rotor Side Con-

verter (RSC) control and Grid Side Converter (GSC) control with a supplementary

control loop and their capability to damp the power system oscillation have been in-

vestigated using modal analysis and non-linear time-domain analysis. The results are

evaluated on Kundur two area four machine test system and IEEE 68-bus benchmark
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system.

The main contribution of this chapter are listed below:

• The selection of input and output signals are performed based on controllability

and observability analysis.

• The ability to incorporate RSC as well as GSC for oscillation damping are

analyzed.

• The PSS design and its impact is studied on small as well as larger scale power

system are analyzed.

• The limited observability of inter-area mode in local signal is shown to have

limited impact on damping inter-area modes in a large scale multi-area power

system with multiple inter-area modes.

4.2 DFIG Integrated Power Grid Model

A number of models can be found on the literature that represent power system

dynamic behavior. Power system study requires the test and analysis of any new

controller during small signal and large signal perturbation. The small signal pertur-

bation maintains the approximate linearity of the system around an operating point,

and are generally used to show the damping action of the controller when compared

to the open loop case. Such test should avoid the saturation of the controller output

and field voltage of the generators [29]. A power system model with following charac-

teristics are suitable for small signal stability analysis of power system and to design

damping controllers such as PSS in synchronous generators:

• A multi-machine system that displays local and inter-area modes. Intra-plant

modes can be present for better representation of practical system conditions.

At least one of the modes must be poorly damped in the absence of damping

controls.
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• A conventional method of damping control approach should be present in the

system that can provide satisfactory damping performance.

In this works, two different models are selected for control design and performance

assessment. A smaller scale power system model is used to validate the concept of

damping control is design. Then the control is tested on second model which repre-

sents a larger scale power system model that requires coordination among multiple

modes and multiple controllers.

4.2.1 Model 1

The first model is an 11-bus, 4-machine test system [27] modified as shown in

Figure 4.1 to include DFIG based wind generator. It consists of two areas A1 and

L7
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Figure 4.1: Two Area, 11 Bus System with DFIG connected alongside SG4 at bus 4.

A2 and each area has a pair of equivalent synchronous generators. There are four
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synchronous generators in bus 1, 2, 3 and 4 represented by SG1, SG2, SG3 and SG4.

The slow dynamics of the governors are ignored, and the mechanical torques to the

generators are assumed constant which is reasonable as our simulation run is only for

10 seconds. All the synchronous generators are equipped with IEEE standard ’IEEE

ST1A’ exciter as shown in Figure 2.1. There are two local modes corresponding to two

areas, and an inter-area mode. The local modes are damping is satisfactory, however,

the inter-area mode damping is not satisfactory and can become stable when tie-lines

are over-stressed. Appropriate design of PSS on all generators provide satisfactory

damping of all the modes.

An aggregated model DFIG based Wind Farm is connected at bus 4. One of the

premise of rising DFIG penetration is that the DFIGs can replace the synchronous

generators where PSS is installed. The impact of DFIG increasing penetration on

system stability on such system scenario has already been done in previous chapter.

In this section, the focus is on controller design and implementation on DFIG to

investigate the DFIG power oscillation damping capability, and identify the controller

impact on the system as well as the DFIG itself.

4.2.2 Model 2

The second model is IEEE 68-bus, 16-machine and 5-area power system depicted

in Figure 4.2. It is an approximate model of New England (NETS) and New York

(NYPS) interconnected network. Detailed description of the system and its char-

acteristics including machine, control and network parameters are available in [65].
The generators G1 to G8, and G10 to G12 have DC excitation systems (DC4B);

G9 has fast static excitation (ST1A), while the generators G13 to G16 have manual

excitation because they represent an area equivalents, and not the physical genera-

tors. This system has eigenvalues in the right half plane i.e. the system is unstable.

The eigenvalues are shifted to left half plane when PSS is installed on Generators

G1 through G12. However, there are three inter-area modes with high participation
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Figure 4.2: IEEE 68-bus, 5-area benchmark system.

which offer challenge of designing damping controller to damp the multiple inter-area

modes simultaneously. To simulate the penetration of wind generation, we assume

that DFIG based wind farm replaces 50% of the generation from G13. An aggregated

model of DFIG is used to represent the equivalent wind farm model.

4.3 Eigenvalue Analysis of Model 1

The modal analysis of the test system revealed that the system exhibits three

distinct modes of oscillation in the frequency range of 0.1 to 2.5Hz. Figure 4.3 shows

the mode shape of 4 synchronous generators in those three modes. The inter-area

mode, in which generators of area 1 oscillate against the generators of area 2, is

the critical mode because its unstable (ζ = −1.67%) and slower (f=0.65 Hz). Any

perturbation in the system would result in rising oscillation between two areas and
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Figure 4.3: Mode shape of electromechanical modes with conventional PVdq Control
in DFIG.

will ultimately result in separation of two areas due to relay operation. The damping

of such mode should be as high as possible to minimize large power swing in the tie-

line. Two intra-area/local modes are present in which the generators of a particular

area oscillate against on another. These are relatively better damped, though area 1

local mode damping is below 5%.

4.4 Need for Power System Stabilizers in DFIG

The damping of electromechanical modes are dependent on the system operating

condition such as generator loading, tie-line flow, exciter type etc. High gain static

exciters such as the ’ST1A’ greatly help in maintaining the transient stability or

first-swing stability which is directly related with the synchronizing torque produced

due to high speed operation of exciters. However, the damping torque is greatly

reduced resulting in a poorly damped oscillatory modes. The inter-area mode is the

most affected, and it becomes worst with increasing amount of power flow in the

tie-line that loosely connects the two areas. The inter-area mode becomes unstable

after the threshold limit of the tie-line flow is crossed. In other words, the small

signal stability is limiting the power transfer capability from the tie-line. In order to
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maintain the robustness and reliability of the system, the system operators such as

Transmission System Operators (TSOs) and Independent System Operators (ISOs)

determine the minimum amount of the damping that the system must have especially

for low frequency modes such as inter-area modes even during contingencies where

a critical element such as a transmission line or generators might be taken offline.

Thus, the capability of DFIG to damp the inter-area mode of oscillation will be

vital to maintain the critical damping limit of the system, and ensure the robust

and reliable performance of the system. The control techniques discussed in previous

section will be studied and their efficacy will be quantified in this section. For the

testing the control performance, an operating point in which DFIG penetration level

at bus 4 is 50% has been chosen. Such a scenario is reasonable and already a reality

in countries relying heavily on renewable generation. The DFIGs will be required to

provide power system stabilizing functionality in the future at such a high penetration

level.

4.5 PSS for DFIG

The PSS for DFIG can be incorporated using RSC control as well as GSC control

and are called RSCMod and GSCMod respectively. The capability of RSCMod and

GSCMod to damp inter-area and local area modes will be evaluated for three cases:

1. PVdq: Conventional Vector Control without supplementary control loop.

2. RSCMod: RSC controller modified by adding the supplementary control loop.

3. GSCMod: GSC controller modified by adding the supplementary control loop.

The following section discusses the modification of RSC control and GSC control

enhance power system oscillatory stability.
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4.5.1 Modified Rotor Side Converter Control

RSC controller is designed for provide active and reactive power independently.

In a stator flux-oriented d-q reference frame rotating at synchrnous speed, this is

achieved by control of q-axis rotor voltage (vqr) and d-axis rotor voltage (vdr). This

control topology is popularly termed as vector control. In order to provide power

oscillation damping support, a reference signal is generated to be added as supple-

mentary control loop on top of existing vector control of RSC. The references signal

generated is based on local or global measurement depending upong the damping

enhancement requirement. Local signals are usually sufficient for providing damp-

ing support provided that the oscillation are observable in the local signals. This

would omit the requirement of communication infrastructure that is necessary for

global measurement based control popularly termed as wide area control (WAC). A
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Figure 4.4: RSCMod: Modified RSC Vector Control Architecture.

frequency deviation feedback is has been used to design a supplementary damping

controller as shown in Figure 4.4. Other signals such as active power generation,



90

reactive power generation, voltage, power flow in tie-line can be used and the signal

selection should be based on observability and controllability analysis of the particu-

lar mode/modes of interest. The feedback loop consists of a gain ’Kg’ and a washout

filter with time constant ’Tw’ and produces a supplementary current reference for

RSC current controller during grid oscillation. The washout filter ensures that the

supplementary controller does not produce any control set-point during steady state

opeartion. The lead-lag compensator design has been neglected. It is a reasonable

assumption because of the fast bandwidth of RSC current controller and thus any

lag introduced by the controller at frequencies of grid oscillation is negligible. This

is true for local measurement only where the communication delay is also negligible.

This is not true for remote signals based control where control and communication

time delay is considerably higher, and proper tuning of lead-lag compensator might

be necessary. The supplementary controller produces the supplementary q-axis ro-

tor current (isc) i.e. by modulating q-axis rotor current (iqr), DFIG torque (Tdfig) is

produced to damp the targeted oscillatory mode/s.

Kg is tuned to provide the maximum damping to the dominant inter-area mode

using root-locus based method. The low frequency oscillation with the least damping

ratio is usually the most dominant mode in a system. The modified RSC controller

will be referred as RSCMod.

4.5.2 Modified Grid Side Converter Control

Voltage vector oriented control technique is employed to control GSC. It utilizes

quadrature axis current (iqg) to control the active power of GSC and hence, the DC-

Link Capacitor voltage. Similarly, direct axis current (idg) to control the reactive

power of GSC. A supplementary control loop based on frequency deviation feedback,

similar to modified RSC control, is designed and fed to q-axis current control loop as

shown in Figure 4.5. The supplementary control signal (iscg) provides the capability

to modulate the active power generated by GSC to damp the oscillation. This is
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Figure 4.5: GSCMod: Modified GSC Vector Control Architecture.

actually utilizing the energy stored in DC-link capacitor. The modified GSC controller

is referred as GSCMod.

4.6 Selection of Signals

As discussed earlier, the DFIG controllers are modified using feedback of locally

available measurement signals. The available input signals are the supplementary

signals for:

• iqr: By modulating q-axis rotor current, DFIG stator active power Ps is mod-

ulated.

• idr: By modulating d-axis rotor current, DFIG stator reactive power Qs is

modulated.

• iqg: By modulating q-axis GSC current, GSC active power Pg is modulated,

which affects DC-link capacitor voltage dynamics.

• idg: By modulating d-axis GSC current, GSC reactive power Qg is modulated.
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Similarly, the available output signals that can be used for feedback are:

• ∆f : Deviation in bus frequency.

• ∆δ: Deviation in bus phase angle.

• Vt: DFIG terminal voltage.

• Pdfig: DFIG active power injection.

• Qdfig: DFIG reactive power injection.

• ωr: DFIG rotor speed.

Controllability is a measure of the possibility of influencing the location of an

oscillation mode by state feedback. Observability is a measure of the visibility of

oscillation mode on a given output.The geometric measure of controllability gmc,k

and observability gmoj,k associated with mode k are given by

gmc(i,k) =
|bTi ψk|
||ψk||||bi||

(4.1)

gmo(j,k) =
|cjφk|
||φk||||cj||

(4.2)

where bi is the ith column of input matrix B and cj is the jth row of output matrix

C, ψk and φk are the right and left eigenvector corresponding to mode k, |x| and ||x||

are the modulus and Euclidean norm of x respectively.

The geometric measure of controllability and observability for electromechanical

modes of the Model 1 i.e. 4-machine, 11-bus system were computed and are shown in

Figure 4.6 and Table 4.1 and 4.2 respectively. The combination of input signal with

highest controllability and output signal with highest observability is chosen because

this would result in the least amount of control effort to shift the electromechanical

modes left, which results in faster damping of the modes in time domain. From

controllability analysis, it is easy to see that the control of active power of DFIG



93

via iqr modulation yields better results over control of reactive power of DFIG via

idr modulation. Thus, a supplementary controller is added on top of iqr controller.

Similarly, supplementary control of GSC active power via iqg modulation is selected.

Both inter-area mode and area 2 local mode have highest observability in ∆f , and is

thus selected as input signal for PSS used in RSC and GSC. The area 1 local mode

is not observable in any of the selected signals of DFIG since it is located in area 2.
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Figure 4.6: Geometric observability of electromechanical modes in available output
signals and Controllability of electromechanical modes from available DFIG control
inputs

Table 4.1: Controllability of Electromechanical Modes

Mode iqr idr iqg idg

Inter-Area Mode 0.0337 0.0048 0.0082 0.0010
Area 1 Local Mode 0.0005 0.0001 0.0001 0.0000
Area 2 Local Mode 0.0298 0.0121 0.0084 0.0030

Table 4.2: Observability of Electromechanical Modes

Mode ∆f ∆δ Vt Pdfig Qdfig ωr

Inter-Area Mode 0.1812 0.1315 0.0020 0 0.0008 0.002
Area 1 Local Mode 0.0059 0.0022 0.0013 0 0.0005 0
Area 2 Local Mode 0.5666 0.1035 0.0118 0.0001 0.0044 0.0006
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4.7 Simulation Results for Model 1

Results of eigenvalue analysis and time domain simulation of Model 1 are presented

in this section to compare the system response in base case against proposed PSS

incorporated in RSC Controller and GSC Controller.

4.7.1 Eigenvalue Analysis

The eigenvalues corresponding to inter-area and local oscillation modes of the sys-

tem for PVdq, RSCMod and GSCMod are shown in Figure 4.7, and summarized in

Table 4.3 and 4.4. RSCMod and GSCMod stabilized and increased the damping of

the inter-area mode, which was unstable for PVdq control. IAM has negative damp-

ing of -1.67% when DFIG does not have any damping controller. Figure 4.8 shows the

polar plot of right eigenvector of selected states for inter-area mode. The states that

were selected are the speed of four synchronous generators, DFIG turbine speed and

DC-link voltage. The polar plot of the right eigenvectors shows that the modes are

not observable in the DFIG turbine speed and DC-link capacitor voltage for PVdq

control. This also illustrates that the DFIGs do not participate in electromechanical

oscillation with the grid.
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Figure 4.7: Plot showing local and inter-area modes of Two-Area System
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Table 4.3: Impact of DFIG Control on Inter-Area Mode

Case 1 Case 2 Case 3

Eigenvalue 0.069±4.1243i -0.55599+3.4805i -0.40619±3.8774i

Damping Factor (%) -1.6728 15.7743 10.4188

Frequency (Hz) 0.65641 0.55394 0.61711

Dominant States
del3, spd3, del1, 

spd1

del4, del3, spd3, 

del1, spd1, wt_d

del3, spd3, del4, 

del1, spd1, Vdc

PVdq GSCModRSCMod

δ3 , ω3 , δ1 ,

 ω1 

δ4 , δ3 , ω3 , δ1 ,

 ω1 ,wtd 

 δ3 , ω3 , δ4 ,δ1 ,

 ω1 ,Vdc 

Table 4.4: Impact of DFIG Control on Area 2 Local Mode

Case 1 Case 2 Case 3

Eigenvalue -0.93±9.0621i -1.78±6.799i -2.43±9.7903i

Damping Factor (%) 10.2087 25.3277 24.1006

Frequency (Hz) 1.4423 1.0821 1.5582

Dominant States
del3, spd3, del1, 

spd1

del4, del3, spd3, 

del1, spd1, wt_d

del3, spd3, del4, 

del1, spd1, Vdc

δ3 , ω3 , δ4 , 

ω4 

δ3 , ω3 , δ4 , 

ω4 , wtd

δ3 , ω3 , δ4 , 

ω4 , Vdc

PVdq GSCModRSCMod

The modes become observable in DFIG turbine speed for RSCMod and in DC-link

voltage for GSCMod as shown in Figure 4.8.

RSCMod controller with the frequency deviation feedback elevated the damping

factor to 15.77%. The modulation of DFIG electromagnetic torque results in DFIG

turbine oscillation with the frequency equal to frequency of the oscillator mode/s

observable in the feedback signal. In this case, both area 2 local mode and inter-area

mode are observable in the chosen feedback signal, and hence will be observable in

the DFIG dynamics associated with electromechanical interaction between turbine

and generator. The increased participation of DFIG in inter-area mode is illustrated

by the observability of inter-area mode in wind turbine speed as shown in Figure 4.8.

Similar conclusion holds true for area 2 local mode as well.

Similarly, GSCMod resulted in Inter-area mode damping factor of 10.42%. The

participation of Dc-link capacitor can be verified by the observability of inter-area

mode in DC-link voltage Vdc as shown in bottom plot of Figure 4.8. Moreover, the
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Figure 4.8: Inter-area mode shape with PVdq, RSCMod and GSCMod corresponding
to Vdc, wtd, and generator speeds (spd1, spd2, spd3 and spd4).

modification of RSC and GSC resulted in rise of local area 2 mode damping factor

from 10.2% to 25.33% and 24.1% respectively.

4.7.2 Time Domain Analysis

The controllers are tested in Model 1 for two different types of perturbation:

Small Signal Perturbation: In order to simulate small signal perturbation of

the system, reference voltage of generators SG2 and SG3 are increased by 0.1 p.u.

for 0.5 sec at time t=0.5-1.0 sec. In order to observe the inter-area mode, the dif-

ference between rotor angle and speed of generators SG4 and SG1 were chosen. The

simulation was run for 10 seconds and the results are shown in Figure 4.9 and 4.10.

The result shows that the oscillation is damped faster with RSCMod or GSCMod in

DFIG.
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Figure 4.9: Difference between angular frequency of Generator SG4 and SG1

Figure 4.10: Angular separation of Generator SG4 and SG1

The system shows oscillatory instability in base case where DFIG is equipped with

PVdq. The damping performance of RSCMod is better compared to GSCMod which

affirms the results of eigenvalue analysis.

The inevitable drawback of the supplementary control loops added to RSC and GSC
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Figure 4.11: Impact on DFIG rotor speed with RSCMod and DC-link voltage due to
GSCMod

controller is that such controller affects the dynamics of DFIG turbine speed (wtd)

and DC-Link Voltage (Vdc) respectively. Figure 4.11 shows the resulting transient

behavior of wtd and Vdc during the simulation of above described small signal stability

test. This suggests that the compromise should be made between improvement of the

system dynamic performance and DFIG dynamics.

Large Signal Perturbation: To simulate large signal perturbation, 3phase-

ground fault was applied in Bus 9 and cleared naturally after 0.3 second. The terminal

voltage of bus 4 and difference between rotor angle of generator SG4 and SG1 are

shown in Figure 4.12. With PVdq control, the system becomes unstable in second

swing as the angular separation between generator SG4 and SG1 keep rising. The

two areas remain synchronized with RSCMod and GSCMod in DFIG. Eventually, the

oscillation damps and returns to stable operating point. The oscillations are damped

faster with RSCMod compared to GSCMod.
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Figure 4.12: Terminal Voltage of Bus 4 and Angular separation between Generator
SG4 and SG1 following 3 phase fault in bus 9.

4.8 Simulation Results for Model 2

In order to validate the scalability of the DFIG PSS, the simulation results of Model

2 are presented in this section.

4.8.1 Eigenvalue Analysis

There are four dominant inter-area modes as shown in Table 4.5. The DFIG con-

nected at bus 13 has PVdq control. The table shows the mode frequency in Hz,

damping in % and the participating generators with their mode shape. Mode shapes

are the polar plots of the eigenvectors of a mode corresponding to the desired states.

The mode shape can be used to determine the coherency of the generators in a par-

ticular mode. Matlab’s feather function is used to plot the mode shape. Figure 4.13

shows the mode shapes the inter-area modes which shows the eigenvectors of the all

the inter-area modes corresponding to slip of 16 synchronous generators.

There are 5 areas or groups of coherent generators and they are:

1. Area 1 which includes generators G1-G9,

2. Area 2 which includes generators G10-G13,



100

Table 4.5: Dominant Inter-Area Modes

Mode Freq (Hz) Damping (%) Participating Generators
1 0.39 17.92 G1-G13 & G16 against G14-G15
2 0.52 2.37 G1-G9, G14-G15 against G10-G13 & G16
3 0.72 6.37 G1-G9, G15-G16 against G10-G14
4 0.78 3.49 G1-G9, G14 & G16 against G10-G13 & G15
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Figure 4.13: Mode shape of inter-area modes.

3. Area 3 which includes generator G14,

4. Area 4 which includes generator G15, and
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5. Area 5 which includes generator G16.

Mode 1 is damped well after PSS is installed in generators G1-G12. Mode 2 involves

oscillation of Area 1, 3 and 4 against Area 2 and 5. The damping ratio of this mode

is 2.37% and is considered as a critical mode. Mode 3 represents oscillation of Area

1, 4 and 5 against Area 2 and 3. The damping ratio of this mode is 6.37% which is

still below 10%. Mode 4 represents oscillation of Area 1 ,3 and 5 against Area 2 and

4. It has damping ratio of 3.49 %, thus, it is not well damped mode. In order to

ensure oscillatory stability and reduce high magnitude power oscillation in tie-lines,

these inter-area modes should be damped sufficiently.

Table 4.6: Impact of DFIG PSS

PVdq RSCMod GSCMod
Mode f (Hz) ζ (%) f (Hz) ζ (%) f (Hz) ζ (%)
1 0.39 17.92 0.39 18.09 0.39 18.00
2 0.52 2.37 0.52 2.38 0.52 2.37
3 0.72 6.37 0.72 7.05 0.72 6.71
4 0.78 3.49 0.78 3.53 0.78 3.51

RSCMod and GSCMod will be implemented on DFIG to influence positive damping

on inter-area modes based on feedback of feedback of bus 13 slip frequency. The results

are presented in Table 4.6. The result shows that the PSS implemented in DFIG in

bus 13 via RSCMod and GSCMod have limited influence on inter-area modes of the

system. Mode 3 damping saw a rise in its damping ratio from 6.37% in PVdq to

7.05% in RSCMod and 6.71% in GSCMod. This is the mode in which generator

G13 has higher participation and is the most observable mode in frequency of bus

13. Figure 4.14 shows the eigenvalues of 68 bus system with PVdq, RSCMod and

GSCMod respectively.
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Figure 4.14: Eigenvalues of the system with PVdq (black), RSCMod (red) and GSC-
Mod (blue).

4.8.2 Time Domain Analysis

The non-linear simulation of Model 2 with PVdq, RSCMod and GSCMod was

performed to compare the dynamic response of the system in terms of small signal

and transient stability. The eigenvalue analysis showed that the mode 2 damping

improved, while other modes essentially remained unchanged with control of DFIG

in bus 13. Time-domain simulation will make it easy to visualize this improvement if

we can excite mode 2.

Based on the mode shape analysis, three plots are chosen to observe the three

dominant inter-area modes i.e. mode 2-4. Mode 1 is well damped and will not be

easy to distinguish in time domain. Three plots show:

1. Plot 1 (ω14 − ω16): This plot is selected to observe mode 2.

2. Plot 2 (ω13 − ω5): This plot is selected to observe mode 3.

3. Plot 3 (ω14 − ω15): This plot is selected to observe mode 4.
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Here, ωi represents the speed of ith generator in per unit. It should, however, be noted

that the signal will not show a single mode only, but a superposition of the modes,

and mode 2 might become most dominant because of its dominance considering its

lowest damping ratio and lowest frequency.

Similar to model 1, the system is subjected to two different categories of perturba-

tions:

Small Signal Perturbation: In this test, the reference voltage of generators G7,

G8, G10, G11 and 12 are increased by 0.1 p.u. from time t=0-5 seconds. The rotor slip

speed of generators G13 and G15 with respect to generator G16 are shown in Figure

4.15. The mode 2 was successfully excited, and the result shows the improvement in

Figure 4.15: Comparison of PVdq, RSCMod and GSCMod for small signal perturba-
tion of 68-bus system.



104

damping of mode 2 when RSCMod and GSCMod are implemented in DFIG, with

RSCMod yielding slightly better performance than GSCMod.

Large Signal Perturbation: The controllers are tested by applying 3ph fault at

different bus locations to excite the inter-area modes.

Case 1 - 3 phase-ground fault in bus 43 : In first test, 3phase to ground fault

is applied at bus 43 and cleared after 10 cycles. This fault is nearest to generator

G13. The plots as described earlier are shown in Figure 4.16. Plot 2 shows that the

mode 3 was excited. Prony analysis was used to analyze the frequency components in

the time-domain response. It can also be seen that the mode is damped faster with

PSS in DFIG. RSCMod provides faster damping performance than GSCMod. Mode

2 is clearly observable in plot 3. The controller has very little impact on mode 2.

It is hard to draw any conclusion regarding mode 4 from plot 1. However, transient

response is better with DFIG PSS.

Figure 4.16: Comparison of PVdq, RSCMod and GSCMod for Case 1.



105

Case 2 - 3 phase-ground fault in bus 50: In second test, 3phase to ground

fault is applied at bus 50 and cleared after 10 cycles. This fault is nearest to generator

G11. Plot 1-3 in Figure 4.17 shows mode 3 is not excited with enough energy. Mode

2 is dominant in all plots.

Figure 4.17: Comparison of PVdq, RSCMod and GSCMod for Case 2.

Case 3 - 3 phase-ground fault in bus 49: In third test, 3phase to ground fault

is applied at bus 49 and cleared after 10 cycles. This fault is nearest to generator G10.

Plot 1-3 in Figure 4.18 shows mode 3 is not excited, and mode 2 becomes dominant.
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Figure 4.18: Comparison of PVdq, RSCMod and GSCMod for Case 3.

Case 4 - 3 phase-ground fault in bus 41: In fourth test, 3phase to ground fault

is applied at bus 41 and cleared after 10 cycles. This fault is nearest to generator G10.

Plot 1-3 are shown in Figure 4.19. Plot 1 shows dominant mode 2, and the response

is very similar. Improvement in transient response is visible in plot 2 considering the

oscillation magnitude till time t≈ 12 seconds. Afterwards, mode 2 becomes dominant.

Plot 3 shows superimposed mode 2 and mode 4, and the response are very similar for

three cases.
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Figure 4.19: Comparison of PVdq, RSCMod and GSCMod for Case 4.

4.9 Summary

This chapter presented that the modification of existing DFIG control architecture

can damp power system oscillation. PSS design methodology for DFIG based on RSC

and GSC control are presented in this chapter. The local measurable signal signal

for feedback is slected based on observability analysis of all the relevant measurement

signals that are available locally, such as terminal voltage, frequency, active and

reactive power injection from generator and so on. Both RSC and GSC has ability

of modulating active or reactive power. The controllability analysis was used in this

work to select the best input signal. Eventually, active power modulation based
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RSCMod and GSCMod were formulated with slip frequency feedback. The controller

was tested and verified in model 1: two area system and showed that this control

technique enhanced the damping of inter-area as well as local mode. The similar

control topology was tested on larger scale model 2: 68-bus system. The inherent

issues of using local measurement feedback becomes evident due to lower observability

of the modes in the selected signal worsened by limited controllability using available

control inputs, suggesting requirement of wide area measurement based control to

damp the oscillation.



CHAPTER 5: LINEAR-QUADRATIC GAUSSIAN BASED OPTIMAL POWER

OSCILLATION DAMPING CONTROLLER DESIGN FOR DFIG

Chapter 4 demonstrated that DFIGs can damp the power system oscillation if

proper feedback controller is designed to modulate its active power. Two different

control methodologies were presented, the first method is to modulate DFIG torque

via RSC control called RSCMod, and the second method is to modulate GSC active

power via GSC control called GSCMod. The two controllers are only modulating

the active power of the generator. This chapter will elaborate on that concept by

developing an optimal control methodology for power system oscillation damping via

DFIG active power control as well as reactive power control. Moreover, wide area

signals are considered based on their higher observability of the modes.

The advance in technology means that it is now possible to design control based

on remote signals from wide area measurement system (WAMS). The most popular

industrial approach used in damping the power system oscillation has always been PSS

used in synchronous generators. However, these controllers are limited in effectiveness

mainly because of the following reasons [59, 60, 61, 71]:

• The PSS are designed based on linearized power system model around a nominal

operating point. This restricts the validity of the controller to neighborhood of

this point. But the power system is constantly changing due to load changes,

transmission network changes, generation changes and so on. The addition of

intermittent resources such as wind and solar adds to the volatility of the system

operating condition. Inaccurate approximation of the power system parameters,

and neglecting high frequency dynamics and other invalid assumptions only

scrutinize the efficacy of the control.
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• The local signals used in PSS do not guarantee the observability of the inter-area

modes. Without observability of the modes, the controller cannot effectively

provide any damping support, which might lead to system failure caused by

insufficient damping.

The availability of phasor measurement units (PMUs) deployed in various locations

provide the opportunity to utilize the remotely available signals with high observabil-

ity of inter-area modes to design inter-area oscillation damping controller. In the past,

the focus has been on designing wide area control for power system oscillation damp-

ing by addition of supplementary control signals from supervisory wide area controller

to local controllers in synchronous generators to aid the damping of inter-area modes

[59, 61, 62]. Recently, HVDCs and FACTS devices have been identified as effective

devices in damping inter-area modes. Approaches based on either local or remote

signals [63, 60, 66] are studied. Capability of using linear quadratic gaussian (LQG)

to damp the power system oscillation using centralized thyristor controlled series ca-

pacitor (TCSC) has been discussed in [64]. LQG is a modern state-space technique

for designing an optimal dynamic regulator by allowing a tradeoff between regulator

performance and control effort. The literature are still lacking on design and imple-

mentation of optimal power oscillation damping control for DFIGs that are based on

wide area measurement system. This chapter presents LQG based POD controller for

DFIG that provides the supplementary reference signals for DFIG active and reactive

power controller to enhance the damping of poorly damped inter-area modes. The

control methodology is implemented on DFIG integrated two-area, 11-bus system and

IEEE 68 bus benchmark system, and the performance is verified via modal analysis

and non-linear time domain simulation.

5.1 DFIG Integrated Power Grid Model

The power system models used in this study are same as described in this section.

The controller is first designed and tested on a smaller scale model and its scalability
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is shown by testing similar control on larger scale system.

5.1.1 Model 1

Widely used 11-bus and 2-area system [27] has been modified with addition of

441MW wind farm represented by an aggregated DFIG model on bus 6 as shown

in Figure 5.1. The load L9 and L7 are assumed to have increased to 2115MW and
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Figure 5.1: Two area system with one DFIG-based wind farm

1057MW respectively. All four synchronous generators G1-G4 are equipped with

fast acting static exciters (ST1A). DFIG is operating in speed and voltage control

mode. Suitable vector control topology are employed for rotor side converter and grid

side converter control. This system exhibit two local area modes, and one inter-area

mode. DFIG does not inherently participate in the electromechanical oscillation with

the grid, however, the modes are affected by the rising level of power output from

DFIG, and resulting network changes such as tie-line power flow changes.
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5.1.2 Model 2

IEE 68-bus, 16-machine and 5-area power system depicted in Figure 5.2 is the

larger scale model used in this study. It is an approximate model of New England

(NETS) and New York (NYPS) interconnected network. Detailed description of the

system and its characteristics including machine, control and network parameters are

available in [65].
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Figure 5.2: IEEE 68-bus 5-area benchmark system

The generators G1 to G8, and G10 to G12 have DC excitation systems (DC4B);

G9 has fast static excitation (ST1A), while the generators G13 to G16 have manual

excitation. Generators G1 through G12 are also equipped with a PSS that consists

of three lead lag compensators and a washout block in series. The rest of the gen-

erators are assumed to have no PSS. Moreover, we assume that DFIG based wind
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farm replaces 50% of the generation from G13 and is represented by an aggregated

equivalent wind farm model. Following test cases are considered in this study:

Feedback Signal Selection

First, it is necessary to assess the modal controllability with reference signals that

can modulate active and reactive power of DFIG, which are currently located in

bus 13. The modes which are highly controllable from DFIG will be targeted. The

feedback output signal selected should have high observability of the modes of interest.

Assessment of modal observability in the available signals provides the basis for output

feedback signal selection. The geometrical measure of controllability and observability

is computed similar to section 4.6. For simplicity, only the generator speed deviations

are considered as available signals for this study.

5.2 Power System Model Reduction

LQG control design produces a controller of order equal to that of the plant or

even higher with the incorporation of the extra weights. As such the control design

and implementation would be very complicated and time consuming. Model order

reduction significantly reduces the complexity of the control design. The reduced

model, however, should be a good approximate of the full order system, especially

at the frequency range for which the controller is designed [68]. Balanced truncation

method [69, 67] is used to compute a reduced-order approximation of the model by

neglecting the states that have relatively low effect on the overall model response.

State contributions are measured using Hankel singular values of G(jω) given by

square roots of the eigenvalues of product of their controllability grammian P and

observability grammian Q respectively [64]:

σi =
√
λi(PQ) (5.1)
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where λi(PQ) is the ith largest eigenvalue of (PQ) and P , Q are the solutions of the

following Lyapunov equalities:

PAT + AP +BBT = 0 (5.2)

QA+ ATQ+ CTC = 0 (5.3)

Here, A, B and C are state, input and output matrices.

5.3 LQG Based Control Design

The power system linearized model can be written in the following form:

ẋ = Ax+Bu+ Γw (5.4)

y = Cx+ v (5.5)

where x is n-dimensional state vector, u is m-dimensional input vector and y is q-

dimensional output vector. The plant is assumed to be strictly proper, linear, time-

invariant, controllable, and observable. Moreover, w and v are the process and sensor

noise inputs, respectively, assumed uncorrelated white Gaussian noise processes with

known covariance matrices W and V, respectively [70]. Configuration of LQG control

is shown in Figure 5.3.

The LQG control provides optimal control input u which minimizes the following

quadratic cost function:

J = lim
T→∞

1

T
E

∫ T

0

(zTQz + uTRu)dτ (5.6)

where z can represent either x or linear combination of the states. Matrices Q and

R are appropriately chosen weighting parameters such that QT = Q ≥ 0 and RT =

R ≥ 0. Usually, both are diagonal matrices. The reduced order system is used to

compute optimal state feedback control law given by:
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u = −Kcx (5.7)

where Kc = R−1BTPc and Pc is the unique symmetric semidefinite solution of the

algebraic Ricatti equation:

ATPc + PcA+Q− PcR−1BTPc = 0 (5.8)

subject to (A,B) being stabilizable, R > 0, Q ≥ 0 and (Q,A) has no unobservable

modes on the imaginary axis.

Measuring all the states of plants is infeasible, thus, an estimator (Kalman filter)

is employed to provide the required estimates of the states from available/measured

outputs. The structure of the Kalman filter is that of an ordinary state-estimator

with:

˙̂x = Ax̂+Bu+Kf (y − Cx̂) (5.9)
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Figure 5.4: Proposed LQG-POD Controller for DFIG

where Kf is the Kalman filter gain that minimizes Jf = E{[x − x̂]T [x − x̂]}, and is

given by:

Kf = PfC
TV −1 (5.10)

and Pf is the unique symmetric positive semidefinite solution of the following algebraic

Ricatti equation:

PfA
T + APf − PfCTV −1CPf + ΓWΓT = 0 (5.11)

subject to (C,A) being detectable, V > 0, W ≥ 0 and (A,ΓWΓT ) has no uncon-

trollable modes on the imaginary axis. Finally, the optimal control law in the LQG

formulation becomes:

u = −Kcx̂ (5.12)

The proposed Linear-Quadratic-Gaussian based Power Oscillation Damping Con-

troller (LQG-POD) is shown in Figure 5.4 which utilizes measured slip of pre-selected
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generators.

5.4 Model Order Reduction and Control Design

As discussed in earlier section, the power system models are reduced to include

only relevant dynamics under study. The reduced model is used to design a damping

control that will be tested in full scale system.

5.4.1 Model 1

The two input signals that will be used to damp the oscillation are:

1. Psc: Supplementary signal to DFIG active power controller

2. Vsc: Supplementary signal to DFIG voltage controller

The selected output signals are the slip speed of four synchronous generators i.e.

∆ω1, ∆ω2, ∆ω3, and ∆ω4.

0 5 10 15 20

State

0

0.05

0.1

0.15

0.2

0.25

S
ta

te
 E

n
er

g
y

Hankel Singular Values (State Contributions)

Figure 5.5: Hankel Singular Values corresponding to states of linearized model 1

The linearization of the model at the given operating point yields a linear model of

the system. The linear model is 59th order, with 2-inputs and 4-outputs. The Hankel
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Singular value of the linearized model is shown in Figure 5.5. The figure shows that

the contribution of 8 states are considerably higher and the state 9 on wards have

very low contribution in the input/output behavior.

Balanced reduction of the model as explained in earlier section is implemented.

The frequency response of full order (59) system is compared to reduced order system

model of order 5, 6, 8, 10 and 12 using bode-magnitude plot as shown in Figure 5.6.
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Figure 5.6: Model 1: Bode plot showing magnitude of slip of generator G2 and G3

from Vsc

It can be inferred from the figure that the reduced order model of order ≥ 8 produce

very good match with the full order system response in our desired frequency range of

0.1-2 Hz. The accuracy of 10th and 12th order models are similar, and the accuracy did

not increase for increasing model order above 12. This can be inferred from Hankel

Singular Value plot as well. Therefore, 10th order model was chosen for control design
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purpose. Using 10th order reduced model, a linear-quadratic regulator is designed. In

this work, the value of weighing matrices were chosen as:

Q = C ′red × Cred

R = 0.01× Im×m

where, Cred is the output matrix of reduced order model, and Im×m is the identity

matrix of order m, which is equal to the number of inputs. Kalman filter is designed

using equation (5.10). The state matrices Ared, Bred, Cred and Dred of the reduced

model is used to compute the Kalman gain. Thus, a Kalman filter is designed to

estimate the states of the reduced order model. This marks the end of control design

procedure.

5.4.2 Model 2

Model 2 has 181 states. It would be challenging to design a LQG controller with

that many states. Moreover, the designed controller would also increase the order

of the system with the controller itself is of order 181. Thus, balanced truncation

method discussed is used to reduce the model. The plot of Hankel Singular values

of the linearized model shown in Figure 5.7 shows that only 14 states have high

contribution in input/output behavior of this model. Frequency response plot in

Figure 5.8 shows compares the full-order model with reduced model or order 12, 16,

20, 25 and 30. The outputs shown in the figure are slip speed of generator G14 and

G16. And the input is the supplementary signal to reactive power controller of DFIG.

12th order model is not able to accurately replicate the frequency response of the

full-order model. This can be because of neglecting the states with higher energy.

The response of 16th order model is very accurate in lower frequency but cannot

capture the response well in frequency above 1Hz. The models of order 20, 25 and 30

are able to capture the frequency response of actual model with acceptable accuracy.
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Figure 5.7: Hankel Singular Values corresponding to states of linearized model 2.

However, the gain in accuracy from order 20 to order 25 and order 30 is negligible.

In order to design controller for damping inter-area modes, the frequency range of

interest is usually 0.1 to 1 Hz. Thus, model order of 16 was found to be sufficient for

control design purpose.

The supplementary reference signals in active power and reactive power controller

of DFIG are the inputs i.e. two inputs. The slip speed of generators 5, 13, 14, 15

and 16 are considered as the available output signals i.e. 5 outputs. The selection of

these generator speeds were made based on the observability analysis of four dominant

inter-area modes. Those four modes are retained in the reduced order model as shown

in Table 5.1. The states of the reduced system with highest participation are also

shown. Mode 3 and mode 4 are well damped with damping greater than 10%. Mode

1 (0.52 Hz, 3%) and mode 2 (0.78 Hz, 4%) have damping below 5%. So in this control

design, these two modes are targeted. The right eigenvector plotted for modes 1 and

2 are shown in Figure 5.9. The plot indicates higher observability of mode 1 and 2

in states x5,x2,x1 and higher observability of mode 2 in x4,x2,x1. This information

will be useful in tuning the weights for LQG control design.
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Figure 5.8: Model 2: Bode plot showing magnitude of slip of generator G14 and G16
from DFIG reactive power modulation

Figure 5.9: Polar plot of right eigenvector corresponding to mode 1 (left) and mode
2 (right) (red - x1, green - x2, dark blue - x4, purple - x5)

The reduced order model is used to design LQG controller. This means there

is no direct systematic way for choosing the weighting matrices, thus, participation
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Table 5.1: Dominant Inter-area Modes

Mode Frequency Damping States with High
No. (Hz) (%) Participation
1 0.52 3 x5,x2,x1

2 0.78 4 x4,x2,x1

3 0.74 11 x9, x6, x13

4 1.17 15 x9, x10

factor analysis is used to achieve the design specifications. An initial guess for the

state-weighting matrix was chosen via a participation factor analysis by setting higher

weightage to the high participating states (as shown in Table 5.1). Based on partic-

ipation and right eigenvector plot in Figure 5.9, higher weight was given to states

x4,x5,x2,x1.

Figure 5.10: Damping of Mode 1 and 2 wrt weight of states x1 to x10

To tune the weights better, sensitivity of damping of the modes with respect to

the weightage of each of these states and inputs was performed. The variation of
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damping of modes 1 and 2 by changing the weightage of a state from 1-300 keeping

other weights at unity, are shown in Figure 5.10. Increasing the weightage of states

x1 and x2 improves the damping of both modes 1 and 2. Mode 1 damping improved

for increasing weight of states x5, but this would decrease the damping of mode 2.

Similarly, mode 2 damping improved for increasing weight of states x4, but this would

decrease the damping of mode 1. These modes were found less sensitive to the weight

of other states. For the given scenario, the damping of modes were more sensitive to

the weight of input1 i.e. P modulation. However, it is also important to consider that

the gains computed should not have extreme values that would result in undesirable

impact on DFIG and system during large transient events. Thus, maximum gain

magnitude was set not to exceed 20. After several iterations, the following state and

input weightage matrices were chosen to produce the optimal results. Final diagonal

elements of the Q matrix are: (500 500 10 20 100 10 10 10 10 10 10 10 10 10 10 10 )

The active power modulation had higher controllability than reactive power mod-

ulation. Thus, higher weightage was assigned to active power modulation to reduce

excessive modulation of active power. The digonal elements of R matrix are: (0.5

0.2)

The resulting feedback gain matrix is:

Kc = [-19.9 15.6 3.9 -12.2 17.4 -7.2 -6.2 -0.4 17.0 -7.5 0.9 -1.3 -2.7 -1.0 -2.9 -1.1;

12.2 -11.6 0.6 9.0 -12.9 -0.3 8.0 7.2 -12.9 9.7 -6.6 1.9 0.4 0.2 0.1 0.9 ]

The modes of the system with and without the proposed LQG controller are shown

in Figure 5.11 and Table 5.2. The damping of mode 1 increased to 12% and that of

mode 2 increased to 7%. The greater improvement in damping of mode 1 can be

justified via controllability analysis which reveal higher controllability of mode 1 with

DFIG active and reactive power compared to mode 2. The damping of other modes

were not hampered. In fact, the damping of mode 3 increased from 11% to 15%.



124

Figure 5.11: System Poles with and without LQG-POD

Table 5.2: system modes with and without the proposed controller

Mode Frequency Damping (%)

No. (Hz) without control with control
1 0.52 3 12
2 0.78 4 7
3 0.74 11 15
4 1.17 15 15

5.5 Time Domain Simulation

Time domain simulation is performed to confirm the results of small signal stability

analysis. Both model 1 and 2 are subjected to disturbances that are commonly

prevalent in power system to test the performance of the damping control.

5.5.1 Model 1

To analyze the effectiveness of the LQG based power oscillation damping controller

for DFIG referred as ’LQG-POD’, 4 different systems are formulated as listed below:

System A- No PSS + No LQG-POD: None of the generator PSS are online. DFIG

is equipped with basic speed and voltage control.

System B- No PSS + LQG-POD: None of the generator PSS are online. DFIG is

equipped with LQG-POD.
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System C- PSS (G1) + No LQG-POD: PSS is installed in generator G1. DFIG does

not have LQG-POD.

System D- PSS (G1) + LQG-POD: PSS is installed in generator G1. DFIG is

equipped with LQG-POD.

Following test cases are considered to perturb the system and analyse the response

of the system:

Case 1 - Small Signal Perturbation Test: The reference voltage of generators 2

is increased by 0.1 p.u. from time t=0-0.1 seconds. The reference voltage of generators

3 is increased by 0.1 p.u. from time t=0.5-0.55 seconds. This will excite inter-area

mode as well as local area modes of both areas.
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Figure 5.12: Non-linear time domain simulation of System A-B during test Case 1
(top) and Case 2 (bottom).
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Case 2 - Large Signal Perturbation Test: 3-phase line to ground fault is

applied on bus 8 for 3 cycles and cleared naturally. This will mostly excite inter-area

mode.

The results of the simulation of the 4 systems are shown in Figure 5.12.

The difference in rotor speed/frequency of generator 3 and 1 was selected to ob-

serve the inter-area mode of the system based on their mode-shape analysis. From

the comparison of system A and system B simulation under small and large signal

perturbation, we can see the inter-area mode is damped much faster when LQG-POD

is employed in DFIG. Similarly, comparison of system C and system D shows that

the inter-area mode is damped much faster when LQG-POD is online. Also, it can be

inferred that the LQG-POD coordinates well with existing generator PSS (in G1) to

enhance the damping of the inter-area mode. The ability of the proposed LQG-POD

is highly observable in case of large signal perturbation in which only inter-area mode

is excited. In order to demonstrate the impact of LQG-POD on DFIG dynamics,
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System D (solid black) during test Case 2.
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terminal voltage and rotor speed of DFIG of system C and system D during test case

2 are shown in Figure 5.13. The oscillation in the feedback signal is introduced in

the voltage and speed of DFIG in system D. The oscillation of DFIG speed noticed

in system C is due to the poorly damped inter-area oscillation.

5.5.2 Model 2

The performance of the proposed controller was tested with time domain simulation

of nonlinear full order system subjected to small signal and large signal disturbance.

Two systems are considered for simulation:

System 2A - No LQG-POD: The generators G1-G12 are equipped with PSS. But

DFIG does not have the proposed LQG-POD.

System 2B - with LQG-POD: LQG-POD is employed in DFIG connected at bus

13. The generators are assumed to have their PSS online.

To show the benefit of the LQG-POD in DFIG to damp the inter-area modes, two

test cases are formulated to represent two types of perturbations used to perturb the

system.

Case 1 - Small Signal Perturbation: To simulate the system response to small

signal perturbation, pulse signal of magnitude 0.1 p.u. and length of 0.25 seconds are

applied at reference voltage of generator G9 at time t=0.5 seconds. The simulation

results showing torque and slip of generator G15 with respect to generator G16 are

shown in Figure 5.14. Significant improvement in system damping can be observed

when the proposed controller is employed in modulating active and reactive power of

DFIG. Poorly damped inter-area mode 2 with frequency ≈0.5 Hz is distinctly visible

when the DFIG LQG-POD is not implemented. However, this mode damps much

faster when LQG-POD is implemented.
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Figure 5.14: Generator G15 torque (top) and rotor slip w.r.t. swing generator G16
for small signal perturbation.

Case 2 - Large Signal Perturbation: Large disturbance is simulated by apply-

ing a three-phase bus fault at bus 9 at t=0.1 sec and naturally cleared after 0.1 second

keeping the system topology intact. The results for two cases are shown in Figure

5.15. Poorly damped mode is visible in the system without controller and takes a

long time to settle. The LQG-POD controller employed in DFIG was able to improve

the damping of the mode as seen in Figure 5.15 and the settles a lot quicker. Thus,

the DFIG POD controller was capable of supporting the damping of the inter-area

modes which were poorly damped otherwise. This of course comes with the cost that

active and reactive power of the DFIG are affected (Figure 5.16), especially during

larger disturbance. The limiter can be employed to limit the impact on DFIG during

large fault scenarios.
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Figure 5.15: System response to bus 49 3phase-line-ground fault with and without
LQG-POD.
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Figure 5.16: DFIG response to system oscillation during large disturbance

5.6 Summary

This chapter presented LQG based POD control technique for DFIG which im-

proves the damping of low frequency power oscillation via modulation of active and

reactive power. LQG technique is used to obtain the optimal state feedback that

ensures stability and strikes a balance between input energy cost and controller per-

formance. Balanced truncation is used to obtain the reduced order system. It sim-

plifies the control design process. Kalman filter is used to estimate the states of the

reduced system, and the estimated states are used for feedback. The performance

of the proposed technique was verified via eigen analysis and non-linear time do-

main simulation. Simulation of the systems under both small signal and large signal

perturbations showed effectiveness of the controller to damp the oscillation. The ef-

fectiveness of the control is higher when the inter-area modes with poor damping have

higher controllability from DFIG active and reactive power modulation.



CHAPTER 6: SYSTEM IDENTIFICATION BASED OPTIMAL POWER

OSCILLATION DAMPING CONTROL DESIGN FOR DFIG

Chapter 5 presented a LQG-POD for DFIG based on wide area measurement of

power system. LQG is a standard state feedback control methodology for control of

MIMO-systems with limited output measurement i.e. full states cannot be measured.

This necessitates a state observer such as Kalman filter which estimate the states of

the systems from available output signals provided that the control designer has a

knowledge of state space model of the system and knowledge of input disturbance and

output measurement noise. Moreover, this is a model based approach, meaning that

the model is based on mathematical approximation of the power system model and the

concern remains due to uncertainties caused by approximation and modeling error.

It is not a trivial task to determine the uncertainty boundary of the system model.

Therefore, measurement based approach are now being used to estimate the lower

order model of the system. The efforts of building a measurement-based model are

much less than those required for a model-based approach [74]. Various methods have

been discussed in the literature to estimate the mode damping, frequency and mode-

shape related to dominant inter-area modes of the system such as n4sid [72, 73], RLS

[74, 75]. However, estimating the model and subsequent control design has not been

addressed yet in the literature. Ref. [76] proposed an ARMAX model identification

technique to identify the reduced order model and showed its applicability for control

design, but does not show the validity of a control designed using such model.

In this chapter, a new method to damp the power system oscillation using measure-

ment based identification of power system model has been proposed and evaluated.

This method, a robust subspace identification algorithm evolved from Canonical vari-
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ate analysis (CVA) [80], is used to identify the reduced order model of the large power

system. This is a black-box modeling approach without having any priori knowledge

of the system being estimated, except the system order. The system order is estimated

using Akaike Information Criterion (AIC) [77]. The identified state space model is

first validated, and used to design optimal output feedback controller for DFIG ac-

tive and reactive power modulation to damp the power grid oscillation. The main

advantage of this proposed technique is that the feedback controller can be optimized

online whenever the new model estimate is available. The proposed method has been

found to successfully damp the targeted modes of oscillation. This eliminates the

poor performance of a controller designed based on particular operating point.

The major contributions of this work are:

• A novel wide-area controller that can dynamically control based on the changing

operating points of the grid.

• A method that avoids detail modeling of the power grid for controller design pur-

pose.

• The proposed method can be used to improve oscillatory stability as well as tran-

sient rotor angle stability of the power grid.

• The controller is robust against uncertainty such as time delay due to communica-

tion and control latency.

6.1 DFIG Integrated Power Grid Modeling

The proposed controller will be employed in DFIG integrated power system. Two

different test systems are considered to test the efficacy of controller. First system is

for the proof of concept verification and the second system is to show the scalability

of the controller on a larger power grid model.

The two different benchmark systems are modified to include DFIGs. In the base

case scenario, the DFIGs will be equipped with standard VC without any proposed
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supplementary power oscillation damping control (POD). The performance improve-

ment of the system with proposed POD in DFIGs will be compared with the base

case. The two power grid models used are described briefly.

6.1.1 Model 1
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Figure 6.1: Two area system with one DFIG-based wind farm

Widely used 11-bus and 2-area system [27] has been modified with addition of

441MW wind farm represented by an aggregated DFIG model on bus 6 as shown

in Figure 6.1. The load L9 and L7 are assumed to have increased to 2115MW and

1057MW respectively. All four synchronous generators G1-G4 are equipped with fast

acting static exciters (ST1A). DFIG is operating in speed and voltage control mode.

Suitable vector control topology are employed for rotor side converter and grid side

converter control. This system exhibit two local area modes in which generators

of each area oscillate against each other, and a low frequency inter-area mode in

which generators of area 1 oscillate against the generators in area 2. DFIG does not

inherently participate in the electromechanical oscillation with the grid, however, the
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modes are affected by the rising level of power output from DFIG.

6.1.2 Model 2
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Figure 6.2: IEEE 68-bus and 5-area benchmark system including 3 DFIG-based wind
farms

IEEE 68-bus and 5-area power system is modified to include 3 large wind farms

as shown in Figure 6.2. It is an approximate model of New England (NETS) and

New York (NYPS) interconnected network. Detailed description of the system and

its characteristics including machine, control and network parameters are available

in [54]. The generators G1 to G8, and G10 to G12 have DC excitation systems

(DC4B); G9 has fast static excitation (ST1A), while the generators G13 to G16 have

manual excitation. Generators G1 through G12 are also equipped with PSS (PSS1A).

An aggregated model of DFIG-based wind farms are connected at bus 30 , 42 and



135

51 producing 500 MW, 1700 and 1000 MW respectively. The DFIGs are operating

in speed and reactive power control mode. For this particular operating point, the

generators are assumed to be operating at synchronous speed i.e. 1 p.u. To keep the

generation from the existing synchronous generators at their respective values, the

loads (marked red in Figure 6.2) are increased. The active power loads in bus 18, 33,

36, 41 and 42 were increased from their original value to 34.7 MW, 6.12 MW, 8.02

MW, 25 MW and 16.5 MW respectively. The reactive power references are generated

from the load flow solution. The reactive power generated from the DFIGs at bus 30,

42 and 51 are -54 MVar, 230 MVar, and 270 MVar respectively.

6.2 Proposed Power Oscillation Damping Controller

The objective of designing a POD controller is to ensure that at least minimum

level of damping is available during the steady-state condition after a major event

such as fault or loss of critical line occur. This strategy ensures that a properly

designed damping controller can enable increased power transfer limit of the critical

lines in the system by enabling wider range of operation.

The architecture of the proposed POD controller for DFIG is shown in Figure 6.3.

The controller is essentially an output feedback controller. The contribution of this

research is in tuning the feedback gain matrix online/offline based on power system

model identification. The proposed technique relies on two major blocks viz. system

identification and optimization. The subspace state space system identification using

modified canonical variate analysis (CVA) algorithm [80] is implemented to estimate

a black box model of reduced order power system from a block of input and output

measurement. The optimization block uses sequential quadratic programming (SQP)

to tune the output feedback gain Ky so that the damping of the targeted inter-area

modes of CVA estimated state space model is maximized. Then the optimized output

feedback gain Ky is used in the actual system to damp the oscillation.

The supplementary reference set-point for active power (Psc), and voltage (Vsc) or
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Figure 6.3: Online System Identification based Optimal Output Feedback Controller
Architecture

reactive power (Qsc) are the obvious choice for system inputs. First, it is necessary

to assess the modal controllability with these inputs. The modes where DFIG shows

higher controllability should be targeted. The feedback output signal selected should

have high observability of the modes of interest. Thus, analysis of modal observability

in the available signals is performed and the signals are prioritized accordingly. For

convenience, only the generator speed deviations are considered as available signals

for this study. Next subsections discuss each blocks in Figure 6.3. The selection of

appropriate window size and model order will be discussed as well.

6.2.1 CVA State Space Identification

The subspace state space system identification based on Canonical Variate Analysis

(CVA) was introduced in [80]. The computations involve a batch or time interval of
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data for system identification. The batch nature of the algorithm has several major

advantages over procedures that identify models using time recursive updating. In

particular, there is no start up and the results are essentially exact in moderately

small sample sizes. The Akaike information criterion (AIC) gives a precise determi-

nation of state order [77]. The AIC also permits precise comparison of models fitted

using different time intervals to perform rigorous tests of hypotheses concerning the

stationarity of the process, the optimal choice of data length for tracking time varying

processes, and the presence of an abrupt change in the processes such as a system

failure or state disturbance. The CVA method is fundamentally an approach to mod-

eling, filtering, and control of a process by successive approximation of the memory or

states of the process, i.e. by successively determining functions of the past that have

the most information for prediction of the future. The CVA approach determines a

general state space model such that the state corresponds to the Markov state of the

process. The procedure involves:

• Determination of the canonical states of the process. The canonical sates are

orthogonal and have property than an optimal state for a reduced order model

of order r is obtained by selecting the first r canonical states.

• The state equations are computed by simple regression using the canonical

states.

• The optimal state order can be determined by use of the Akaike information

criterion (AIC).

The CVA method determines the canonical states first and the state space models

are determined simply by regression. This is in contrast to other methods that deter-

mine a model of the system, and then obtain estimates of the states by deriving the

corresponding Kalman filter. Most of the statistically efficient computational meth-

ods involve the use of an autoregressive moving average (ARMA) representation and
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parameter optimization using an approximate maximum likelihood estimation (MLE)

procedure. The MLE method involves an iterative search in the parameter space and

has no ’a priori’ bound on the required computation or convergence. In addition,

the ARMA parameterization can be illconditioned particularly in the multivariable

case. By contrast, the CVA computation involves primarily a singular value decom-

position (SVD) which is one of the most numerically stable computational procedures

available. The state space representation obtained is always well conditioned even for

the multivariable case. As a result, the CVA method is ideally suited for automatic

implementation of system identification on microprocessors including the automatic

selection of the model state order.

The derivation is as follows. Consider a generic discrete state space model of a

process as:

x(t+ 1) = Ax(t) +Bu(t) +Ke(t) (6.1)

y(t) = Cx(t) +Du(t) + e(t) (6.2)

where A, B, C, and D are state-space matrices. K is the disturbance matrix. u(t) is

the input, y(t) is the output, x(t) is the vector of nx states and e(t) is the disturbance.

The measured input and output data are used to form past and future vectors which

are subsequently used to compute sample covariance matrices. For any specified point,

t, in this sequence, the past l-measurements of the output and input are assembled

into a past vector, p(t). Similarly, the measurements at the point t and a specified

number of additional points are assembled into the future vector, f(t), as shown in

(6.3). The number of measurements used in the past and the future vectors can be

different and can be selected automatically using Akaike Information Criteria (AIC).
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p(t) =



y(t− 1)

y(t− 2)

...

y(t− l)

u(t− 1)

u(t− 2)

...

u(t− l)



, f(t) =



y(t+ l − 1)

y(t+ l − 2)

...

y(t)


(6.3)

Covariance matrices are computed as

Σpf =
1

N − 2l − 1

N−L+1∑
t=l+1

p(t)fT (t) (6.4)

Σpp =
1

N − 2l − 1

N−L+1∑
t=l+1

p(t)pT (t) (6.5)

Σff =
1

N − 2l − 1

N−L+1∑
t=l+1

f(t)fT (t) (6.6)

where

Σpf is the covariance matrix of the past and the future vector,

Σpp is the covariance matrix of the past vector with the past vector, and

Σpf is the covariance matrix of future vector with the future vector.

Matrix D is formed whose elements are the correlation coefficients between the

elements of the past and future vectors as

D = Σ
− 1

2
pp Σpfθ

− 1
2 (6.7)

where θ is an arbitrary weighting matrix. θ is chosen as Σff . A singular value
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decomposition of D matrix then yields

D = USV T (6.8)

such that

UTU = V TV = I (6.9)

S = diag(s1 ≥ s2 ≥, ..., sn) (6.10)

where U , and V are matrices of left and right singular vector, and S is a diagonal

matrix of singular values.

The desired linear combination of the past and future vectors can be expressed as

c(t) = Jp(t) = UTΣ−1pp p(t) (6.11)

d(t) = Lf(t) = V TΣ
−1/2
ff f(t) (6.12)

and the covariance between the transformed past and future vectors is a diagonal

matrix with the upper left element having the largest value and each succeeding

element being equal to or less then the prior element.

ΣcdT = ΣJpfTLT = S (6.13)

The order of the plant is determined by selecting the order, k, that minimizes the

Akaike Information Criteria [77]. Subsequently, the first k rows of the J matrix are

used to compute the state vector and the state space matrices. The AIC is expressed

as twice the sum of the log likelihood function and the number of the free parameters.

AIC(k) = −2
N−l+1∑
t=l+1

lnp(yt|mt, ut, θk) + 2pk (6.14)
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The number of free parameters pk is expressed as a function of the number of sensors,

n, the number of controls, m, and the plant order, k.

pk = 2kn+
n(n+ 1)

2
+ km+ nm (6.15)

Equation (6.14) can be reduced to the following form

AIC(k) = (N − 2l + 1)[n(1 + ln2π) + ln[Σεε]] + 2pk (6.16)

where the error covariance matrix is given by

Σεε =
1

N − 2l + 1

N−l+1∑
t=l+1

(y(t)− ŷ(t))(y(t)− ŷ(t))T (6.17)

The error is the difference between the measured sensor response vector y(t) at

time t, and the predicted sensor response vector ŷ(t) using the measured data at time

t − 1 and earlier. The predicted value of y is expressed as a function of the past

vector. Since the past vector contains measured data at time t − 1 and earlier, the

equation expresses the predicted value of y one step ahead of the measured data.

ŷ(t) = Hx()t = ΣyxΣ
−1
xxx(t) = ΣyxΣ

−1
xxJkp(t) (6.18)

Since the predicted sensor vector, ŷ(t), is a function of the plant order, the error

covariance matrix can be computed for all possible values of k and hence the AIC

can be computed for all values of k. The values of k that minimizes the AIC is the

selected order of the identified plant.
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The state space matrices are computed from the measured covariance matrices as:

A B

C D

 =

JkΣp(t+1)p(t)J
T
k JkΣp(t+1)u(t)

Σy(t)p(t)J
T
k Σy(t)u(t)


JkΣp(t)p(t)J

T
k JkΣp(t)u(t)

Σu(t)p(t)J
T
k Σu(t)u(t)


−1 (6.19)

6.2.2 Optimal Output Feedback Controller

The design of optimal output feedback controller is discussed in this section.

6.2.2.1 Output Feedback Controller

The linearized state space model of a power system can be written as:

∆ẋ = A∆x+B∆u (6.20)

∆y = C∆x+D∆u (6.21)

where, A, B, C and D are state space matrices, x, y and u are the state, output and

input vector respectively.

The discrete model obtained by CVA in the form of equation (6.1) and (6.2) can

be transformed to continuous form of equation (6.20) and (6.21). The modes of the

system are given by the eigenvalues of state matrix A. To ensure reliable and robust

operation of grid, all the modes should be located in the left half of plane and their

damping ratio should be grater than a certain threshold as determined by the system

operator. An output feedback controller can be designed to enhance the damping of

the modes.

The output feedback can be expressed as:

u = −Ky∆y (6.22)
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where, Ky is output feedback gain matrix. Then, the equation (6.20) becomes:

∆ẋ = [A−BKyC]∆x

∆ẋ = Ã∆x

(6.23)

where, Ã is the closed loop state matrix, and the eigenvalues of Ã are the modes of

the closed loop system.

Objective Cost Function: To increase the damping of least damped electrome-

chanical modes, following objective function can be formulated as:

J1 =
ncr∑
i=1

Q(i)|ζth(i)− ζ(i)| (6.24)

where ncr is total number of critically damped inter-area modes, Q is the weightage

vector such thatQ(i) correspond to penalize the ith mode, ζth is the vector of threshold

damping ratio determined by the power system operator and ζ(i) is the damping

ratio of ith critically damped mode. |x| represent the absolute value of x. Absolute

is necessary to ensure that damping criteria is satisfied and the generators are not

excessively used.

If it is desired that the use of certain input say active power ‘Psc’ be penalized more

than the use of terminal voltage ‘Vsc’, the cost function can be modified as:

J2 =
ncr∑
i=1

Q(i)|ζth(i)− ζ(i)|+
nu∑
j=1

R(j)

ny∑
k=1

|Ky(j, k)| (6.25)

where nu and ny are the number of inputs and outputs, Ky(j, k) is the feedback gain

from kth output to the jth input, R is the input weightage vector such that R(j)

penalizes the use of jth input. This is also useful when there are more than one

generators which can contribute in oscillation damping purpose. Vector R can be
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manipulated to flexibly distribute the control effort among the available generators.

The controllability analysis can be helpful in determining the appropriate vector

R. For example, from control point of view, it is desirable to utilize the generator

which has the highest controllability of the modes of the system that requires damping

improvement. So, setting very small value to the element of vector R corresponding

to that particular generator provides higher utilization of that generator. Similarly,

setting higher value to the generators with lower controllability will ensure lower

utilization of those generator.

Again, if the oscillation in certain output needs to be penalized more than others,

the cost function can be modified as:

J3 =
ncr∑
i=1

Q(i)|ζth(i)− ζ(i)|+
nu∑
j=1

ny∑
k=1

R(j, k)|Ky(j, k)| (6.26)

where R(j, k) penalizes the gain between jth input and kth output.

By minimizing this cost function, the gain matrix Ky is computed that maximizes

the damping of the least damped or critical modes under following constraints:

Kmin
y (i, j) ≤ Ky(i, j) ≤ Kmax

y (i, j) (6.27)

where,

Kmin
y (i, j) is the minimum gain from jth output to ith input and

Kmax
y (i, j) is the maximum gain from jth output to ith input. Thus, the problem

is a nonlinear constrained optimization and we will choose a reliable and matured

method, sequential quadratic programming to solve this optimization problem.

6.2.2.2 Sequential Quadratic Programming (SQP)

SQP is one of the most successful methods for the numerical solution of constrained

nonlinear optimization problems. It relies on a profound theoretical foundation and
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provides powerful algorithmic tools for the solution of large-scale technologically rel-

evant problems. The SQP methodology can be applied to nonlinear optimization

problems (NLP) of the form [84]

Min f(x)

subject to:

h(x) = 0, and g(x) ≤ 0

(6.28)

The Lagrangian of this problem can be written as,

L(x, λ, µ) = f(x) + λh(x) + µTg(x) (6.29)

where λ and µ are are vectors of multipliers. SQP is an iterative procedure which

models the problem for a given iterate xk by a quadratic programming sub-problem,

solves that quadratic programming sub-problem, and then uses the solution to con-

struct a new iterate xk+1.

The sub-problem can be constructed by linearizing the constraints of around xk,

and it can be written as,

Min ∇f(xk)(x− xk) +
1

2
(x− xk)THf(xk)(x− xk)

subject to

h(xk) +∇h(xk)(x− xk) = 0

g(xk) +∇g(xk)(x− xk) ≤ 0

(6.30)

We need to update the estimates of the multipliers, and define the corresponding

search directions, and then choose a step size and define the next iterate.
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6.3 Model Identification and Validation

The CVA algorithm for subspace state space model identification was tested and

validated in Model 1 and then in Model 2.

6.3.1 Model 1

The two inputs that can be used to perturb the system are dfig active power

reference (Psc), and dfig stator voltage reference (Vsc). Zero mean gaussian white

noise of sampling frequency 10 Hz were used as input signal for perturbing Psc and Vsc.

The controllability of local and inter-area modes via DFIG power and voltage control

is shown in Figure 6.4. The output signals are slip frequency (∆ωr) of generators G1

Figure 6.4: Controllability of modes via DFIG

through G4 which exhibit high observability of inter-area mode. The observability of

the local and inter-area modes in frequency of 11 buses are shown in Figure 6.5. In

this particular test, the simulation was run for 50 seconds. The data measurement

sampling time was 0.1 seconds. This is equivalent to 10 Hz which is greater than the

5 times the local area mode frequency (1.12 Hz). Total of 500 data points are stored

for each input and output.
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Figure 6.5: Observability of Modes in bus frequency

6.3.1.1 Analysis of Fitting Accuracy
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Figure 6.6: Fitting accuracy plotted as a function of order (n) of the estimated model
and time span (in seconds) of data used for estimation

The fitting accuracy is the measure of how well the model estimate matches the

actual measured output response. The fitting accuracy is expressed as:

Fit(%) = (1− |y − ŷ|
|y − y|)

× 100 (6.31)
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Fitting accuracy of CVA identifier in estimating output response is plotted as discrete

function of order(n) of estimated model and the window size (ws) in seconds in Figure

6.6. 1 second correspond to 10 data samples. The plot shows fitting accuracy of four

output signals i.e. slip of 4 synchronous generators, in z-axis, Order (n) of estimated

model in x-axis and Window size along y-axis. The accuracy improves with increase

in n and ws. The achieved accuracy gain for increasing the order of estimation after

n = 14 is very small.

6.3.1.2 Analysis of Computation Time

Figure 6.7: Computation time vs order of estimated size plotted for varying data
window size (from 20 to 40 seconds)

The computation time required for state space model identification depends upon

the value of n and ws, and the computation power of the processor used. For the

selected no. of inputs and outputs, Figure 6.7 shows the comparative analysis for

computation time (tel) against n for different ws. tel appears to be proportional to

both n and ws.
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6.3.1.3 Selection of Order and Window Size

It should be noted that the increasing fitting accuracy always does not guarantee

good model estimate because of overfitting. For example, the fitting accuracy for

slip of generator G3 for model order 8, 13 and 16 using 30 seconds of measured

input and output data are shown in Figure 6.8. The fitting accuracy for order 8

Δ
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3
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p
.u

.)

Time(s)

Actual

Figure 6.8: Comparison of Actual Output (slip of generator G3 ∆w3) and CVA
Estimated Output using 8th, 13th and 16th Order Identification.

Δ
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p
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Time(s)
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Figure 6.9: Validation of Estimated Model response against actual model response
(Slip frequency of generator G3 ).
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is 85.75% compared to order 16 fitting accuracy of 96.95%. The models are then

validated against 20 seconds of measured input and output response which are not

used in estimation as shown in Figure 6.9. The validation result shows the three

different model fit the actual output data with very comparable accuracy. This infers

that the lower 8th order model successfully captured the dominant dynamics of the

actual model as shown in Table 6.1. This statement can be further validated via bode

response of the three estimated models against the actual model response as shown

in Figure 6.10 where magnitude response of identified models of order 8, 13 and 16

are compared with actual system model.

Δ
ω

3
 (

p
.u

.)

Time(s)

Actual

Figure 6.10: Bode Magnitude plot showing response of slip of generator G1 (upper)
and G3 (lower) from supplementary active power Psc and supplementary voltage Vsc
of DFIG.

Table 6.1: Modes of Actual, Reduced and Identified Model

Mode Actual Reduced (n=12) Estimated (CVA,n=8)
No. f (Hz) ζ(%) f (Hz) ζ(%) f (Hz) ζ(%)

1 0.56 6.34 0.56 6.34 0.56 6.37
2 1.18 8.12 1.17 7.98 1.18 8.15
3 1.19 8.38 N/A N/A N/A N/A
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Table 6.1 shows the estimated modes and the modes of actual full order model

and 8th order reduced model. The inter-area mode and the area 1 local mode were

retained by the reduced order model as well as CVA identified model with comparable

accuracy. The reason behind the inability to retain area 2 local mode can be touted

to the low residue in transfer function between the input perturbation at bus 6 DFIG

to the measured output signals of area 2 i.e. slip of generators G3 and G4.

6.3.2 Model 2

The observability of the modes can be estimated by looking at the natural mode-

shape of the inter-area modes. This system has four inter-area modes two of which

are poorly damped. The slip frequency of generators G5, G13, G14, G15 and G16 are

selected as the representative output signals because of the high observability of the

inter-area modes which are of interest during power oscillation damping controller

design [76]. The natural mode shape of slip frequency of 16 generators are shown

in Figure 6.11. Similarly, the geometric controllability of the modes via available

Figure 6.11: Natural Mode shape of inter-area modes corresponding to slip frequency
of 16 generators

control inputs i.e. supplementary control loop for active and reactive power of DFIGs

located at bus 30, 42 and 51, were computed to measure the controllability of the

modes. The controllability of two least damped inter-area modes i.e. Mode 2 and
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mode 4 are shown in Figure 6.12. The input signals that are perturbed with random

Figure 6.12: Controllability of Mode 2 and Mode 4 via active and reactive power
modulation of DFIGs at bus 30, 42 and 51.

Gaussian white noise with zero mean are the active and reactive power reference of

DFIGs in bus 30 , 42 and 51. In this test, the simulation was run for 70 seconds and

the input and output data were collected every 0.1 seconds.

6.3.2.1 Analysis of Fitting Accuracy

Figure 6.13: Fitting accuracy plotted as a function of order (n) of the estimated model
and time span (in seconds) of data used for estimation
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The fitting accuracy of slip speed of generator G3, G13, G14 and G15 is shown in

Figure 6.13 for varying order of estimated model (n) from 8 to 25 and window size

from 40 seconds to 50 seconds. The fitting accuracy increases with increase in n of

estimated model, but the improvement is fairly minimal after n = 14. On the other

hand, the fitting accuracy is fairly same for window size of 40 seconds to 50 seconds.

6.3.2.2 Analysis of Computation Time
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Figure 6.14: Computation time vs order of estimated size plotted for varying data
window size (from 30 to 50 seconds)

The computation time required for state space model identification depends upon

the value of n and ws, and the computation power of the processor used. For the

selected no. of inputs and outputs, Figure 6.14 shows the comparative analysis for

computation time (tel) against n for different ws. tel appears to be proportional to

both n and ws.

6.3.2.3 Selection of Order and Window Size

First 40 seconds of the data sample are used to estimate the plant model and the

remaining 30 seconds data sample are used to validate the identified model. The
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output response of the estimated model of order n = 12, 14 and 16 with fitting

accuracy ≈ 62%, 8.% and 84% respectively are shown in Figure 6.15. The identified
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Figure 6.15: Actual and Estimated Output Response for n = 12, 14 and 16. (slip
speed of generators G14 at the top and G15 at the bottom)

models are validated with validation data set in Figure 6.16. The 12th order model

captured the dominant inter-area modes, however, the fitting accuracy is ≈ 60%. The

estimation accuracy of 14th and 16th order model are very similar at ≈ 85%. The

improvement in estimation accuracy is minimal for n ≥ 16. The bode magnitude

plot in Figure 6.17 shows the close match between the frequency response of 16th

order CVA identified model with actual linearized full order model specifically at

the frequency range of the system’s inter-area modes. Increasing the order of the

identified system to 20 did not yield any significant improvement. Thus, the order n
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Figure 6.16: Validation of Identified Power System Model against Actual System
Response. (slip speed of generators G14 at the top and G15 at the bottom)

= 16 is chosen for our study to test the performance of proposed controller.

Table 6.2: Inter-area Modes of Actual and Estimated Model

Mode Actual Estimated (CVA, n=16)

No. f(Hz) ζ(%) f(Hz) ζ(%)

1 0.35 28.33 0.36 25.07

2 0.51 1.86 0.52 1.84

3 0.61 7.87 0.61 6.63

4 0.75 3.75 0.75 3.65
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Figure 6.17: Frequency Response of Identified Model with n = 12, 14, 16, and 20
compared with Actual Model. The outputs are slip speed of generator G5 and G15
and input is supplementary power controller reference of DFIG at bus 51.

The 16th order estimated model successfully identified the four dominant inter-area

modes of the system including their frequency and damping ratio as shown in Table

6.2. The window size was chosen at ws = 40 second because the improvement for

increasing window size was found to be fairly minimal.

6.4 Simulation Results

Based on identified models of suitable order, output feedback gain matrix is op-

timized using SQP algorithm as discussed in section 6.2.2. The optimized feedback

gain is implemented in actual system and the results are presented in this section.

6.4.1 Model 1

Two different approaches for optimal oscillation damping control (OODC) design

are presented in this section for Model 1. First approach does not penalize the use of

certain input over the others. The second approach creates a scenario for penalizing
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the use of certain input over the another so that the input with lower cost is highly

utilized during control.

6.4.1.1 First Approach

First, we present the effectiveness of the design methodology on two-area system

by control design using cost function as given by 6.24. This does not penalize the

inputs. This gives the best possible gain matrix to achieve the desired damping ratio

of the inter-area modes. Note that only inter-area mode is targeted for this control

design. Since our test system has one inter-area mode, we set the cost function as:

J1
1 = |10− ζiam|

J2
1 = |15− ζiam|

Here, J1
1 tries to make the inter-area mode damping to 10% and J2

1 tries to make the

inter-area mode damping to 15%. The gain matrices are computed by solving the

optimization problem using MATLAB Optimization Toolbox. The convergence of a

solution of J1
1 and J2

1 are shown in left plot of Figure 6.18. The eigenvalues of the

system without controller and with controller based on cost function J1
1 and J2

1 are

shown in right plot of Figure 6.18. The computed gain matrices are:

Figure 6.18: Convergence of SQP optimization and trajectory of modes of the system.
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K1
1 =

 3.6409 5.5225 −3.1522 −2.2989

−5.3634 −9.2326 9.8545 7.8258


K2

1 =

 7.2576 7.9286 −6.6406 −5.0942

−9.1434 −11.4947 12.9123 10.7049


The eigenvalue plot in Figure 6.18 shows that both local area and inter-area mode

damping were improved by implementing the proposed controller. The controller with

J2
1 provides better damping of inter-area mode compared to controller with J1

1 . Time

domain simulation is performed to validate this.

The system was subjected to different faults to test the controller performance.

Two of the selected fault scenarios and the results are presented.

Figure 6.19: Comparison of open loop and closed loop response with J1
1 and J2

1 during
10 cycles fault naturally cleared 3L-G fault in bus 8 (Fault 1).
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Fault 1: A 3phase line to ground fault is applied on bus 8 for 66 ms and cleared

naturally to excite the inter-area mode of oscillation between area 1 and area 2.

To illustrate the performance of OODC first approach which considers two different

objective functions J1
1 and J2

1 yielded gain matrices K1
1 and K2

1 , the results are shown

in Figure 6.19.

The difference between angle of bus 3 and bus 1 was selected to observe the inter-

area mode. Terminal voltage and electro-magnetic torque of DFIG in p.u. are also

shown to illustrate the control action and its impact on DFIG. System is unstable

when no OODC is implemented in DFIG. The proposed controller with J1
1 and J2

1

damped the post-fault oscillation. J2
1 damps the oscillation faster than J1

1 .

Figure 6.20: Comparison of open loop and closed loop response with J1
1 and J2

1 during
200 ms naturally cleared 3L-G fault in bus 8 (Fault 2).

Fault 2: A 3phase line to ground fault is applied on bus 9 for 200 ms and cleared
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naturally to excite the inter-area mode of oscillation between area 1 and area 2. This

example is useful to analyze the control performance and the system response during

saturation. It should be noted that the OODC output is limited within ± 0.1 p.u.

for Psc and ± 0.03 p.u. for Vsc.

Figure 6.20 shows the performance of OODC first approach. Due to the nature

of this transient resulting in high magnitude oscillation in measured outputs, the

outputs of OODC are saturated. While the open-loop system is unstable as can be

seen from increasing separation between the angles of bus 3 and bus 1, the system is

transient stable when proposed OODC is implemented. Despite the saturation, the

oscillation is damped and damping is better with J2
1 than J1

1 .

6.4.1.2 Second Approach

In this design approach, the cost function defined in equation 6.25 is first used to

compute the gain matrix. Since our test system has one inter-area mode, we set the

cost function as:

J1
2 = |10− ζiam|+

2∑
j=1

R1
4∑

k=1

|Ky(j, k)|

J2
2 = |10− ζiam|+

2∑
j=1

R2
4∑

k=1

|Ky(j, k)|

where

R1 =

0.1

0

, R2 =

 0

0.1


Here, J1

2 penalizes use of Psc more via R1. This can be used in scenarios where

the torsional dynamics of DFIG are poorly damped or vulnerable to oscillation, and

modulation of active power can excite those oscillations. On the other hand, J2
2

penalizes use of Vsc more. This is true in certain scenarios where tight control of
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terminal voltage is required. The target damping ratio is 10% in both cases.

The computed gain matrix are shown below:

K1
2 =

 0.0000 −0.0003 −0.0002 −0.0000

−11.0547 −8.9156 13.0435 9.1024


K2

2 =

18.4797 18.5048 −21.0276 −17.0862

0.0027 −0.0012 0.0020 0.0011


In order to validate the control performance and system response with the con-

troller, different faults scenarios were considered. The results are presented for the

two fault scenarios that were discussed in First Approach.

Figure 6.21: Comparison of open loop and closed loop response with J1
2 and J2

2 during
10 cycles fault naturally cleared 3L-G fault in bus 8 (Fault 1).
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Figure 6.21 shows the performance of OODC second approach which considers two

objective functions as J1
2 and J2

2 and yields gain matrices K1
2 and K2

2 . Again, the

post-fault system oscillation is damped with the OODC. Since J1
2 penalized the use of

Psc, only Vsc is modulated for damping purpose. Oscillation in Te of DFIG is due to

the voltage oscillation introduced by OODC, and not because of OODC modulating

Psc. On the other hand, J2
2 penalizes the use of Vsc, and OODC only modulates Psc.

The objective of damping the inter-area oscillation has been fulfilled in both cases.

Figure 6.22 shows the response of OODC second approach during Fault 2. The

system has been stabilized post-fault with both J1
2 and J2

2 . The OODC saturation is

observed in Vsc and Te when gains K1
2 and K2

2 are used respectively. The pulse in Te

is observed in OODC J1
2 due to changes in DFIG voltage.

Figure 6.22: Comparison of open loop and closed loop response with J1
2 and J2

2 during
200 ms naturally cleared 3L-G fault in bus 8 (Fault 2).
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This approach infers that the by manipulation of active power or reactive power

or both, the damping criteria can be successfully achieved. This approach provides

the flexibility to assign oscillation damping effort to active power and reactive power

controller by merely changing the input vector R in the cost function given by 6.25.

6.4.2 Model 2

Similar to Model 1, two different approaches for control design will be discussed in

this section. The first approach only includes the damping criteria, and penalizes all

the control inputs equally. The second approach creates a penalty based approach

which penalizes different generators (DFIGs) with different cost to demonstrate the

flexibility of meeting the damping criteria by utilizing the generators with cheapest

cost.

6.4.2.1 First Approach

This approach is similar to the first approach described for Model 1. The cost

function given by 6.24 is used. Since there are three modes with damping less than

10%, the number of of critical modes ncr = 3 and the cost function is represented as:

J1 =
3∑
i=1

|10− ζ(i)|

The eigenvalues of the system with and without the OODC with cost function J1

is shown in Figure 6.23. The plot shows that all the inter-area modes have damping

of at least 10% as shown by the 10% damping line.

Non-linear time domain simulation of the system with 10 cycle 3ph-ground fault

applied at bus 49 is performed to analyze the the controller performance in improving

the damping of the dominant inter-area modes. The results are shown in Figure 6.24.

The result shows that that the oscillation is damped faster with proposed controller

implemented on DFIGs located at bus 30, 42 and 51. In order to validate that

the expected damping of 10% is achieved, the time domain data was analyzed using
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Figure 6.23: Eigenvalues of the system with and without OODC.

’Prony ’ method as shown in Table 6.3. The damping of the modes estimated by prony

Table 6.3: Prony Analysis of 68-bus system

Without Control With Control
Frequency (Hz) Damping (%) Frequency (Hz) Damping (%)

0.51 2.41 0.51 9.68
0.75 4.19 0.61 9.85

are very close to 10% which verifies that the controller was successful in achieving the

desired damping performance. The output active and reactive power of DFIG at bus

51 are shown in Figure 6.25. The oscillation in active power seen in the case of no

controller is due to the inherent oscillation in the system which are poorly damped.

The contribution of reactive power seems much higher compared to active power.
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Figure 6.24: The difference between bus 14 and bus 16 frequency with and without
the controller following 3phase-ground fault in bus49.

Figure 6.25: Output active and reactive power of DFIG at bus 51 with and without
the controller.
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6.4.2.2 Second Approach

In this approach, cost function given by 6.25 is used to show the controller flexibility

in the sense that the similar damping performance can be achieved in different cost

scenarios. The input weightage vector R is varied as given below:

R1 =

[
0 0 0 0 0 0

]T
, R2 =

[
1 0 1 1 0 1

]T
, R3 =

[
1 1 0 1 1 0

]T

where, first three elements correspond to the active power modulation of DFIGs at

bus 30, 42 and 51 respectively and last three elements correspond to the reactive

power modulation of DFIGs at bus 30, 42 and 51 respectively. Correspondingly,

Figure 6.26: Eigenvalues of the open loop and closed loop systems

three cost functions are formulated and represented respectively as J1
2 , J2

2 and J3
2 .

The solution of the non-linear optimization using sequential quadratic programming
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yield three different output feedback gain matrices K1
2 , K2

2 and K3
2 respectively.

The eigenvalues of the closed loop system with gain matrices K1
2 , K2

2 and K3
2 are

plotted against the eigenvalues of the open loop system in Figure 6.26. The figure

shows that the minimum damping criteria of 10% has been successfully achieved by

each of the three gain matrices. The black dashed line represents the 10% damping.

Non-linear time domain simulation of the system with 10 cycle 3ph-ground fault

applied at bus 49 is performed to analyze the the controller performance in improving

the damping of the dominant inter-area modes. The difference between angular fre-

quency of bus 14 and bus 16, and difference between angular frequency of bus 13 and

bus 5 were monitored to observe the inter-area oscillation as shown in Figure 6.27.

Figure 6.27: Comparison of system response to 3ph-ground fault applied at bus 49.
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The system response infers that the oscillations are well damped in all three cases.

However, the damping is comparatively better with J1
2 and J3

2 over J2
2 . More impor-

tant would be analyze the contribution of three DFIGs connected at bus 30, 42 and

51 which are shown in Figure 6.28. When the objective function does not include

Figure 6.28: Active and Reactive power output of DFIGs at bus 30, 42 and 51 corre-
sponding to feedback gains K1

2 , K2
2 and K3

2 following 3ph-ground fault at bus 49.

the cost of input i.e. J1
2 , the gains are assigned optimally to achieve the damping

requirement. It is worth noting that the two generators located at bus 42 and 51 are

contributing higher in damping the oscillation owing to their higher controllability of

the modes 2 and 4. The DFIG at bus 30 has the least contribution. On the other

hand, J1
2 penalized the use of DFIGs at bus 30 and 51, forcing higher contribution

of DFIG at bus 42, which can be inferred from the higher modulation of its active

and reactive power. The contribution of other two generators are negligible in this



169

case. Similarly, J3
2 penalized the use of DFIGs at bus 30 and 42 forcing maximum

contribution from DFIG at bus 51.

The results show that this approach can be used to flexibly assign damping con-

tribution among available generators based upon their capability, location, and con-

trollability.

6.5 Summary

In this chapter, the design of optimal output feedback control design for modulation

of active and reactive power/voltage of dfig has been presented. The optimization of

the feedback gain is obtained by sequential quadratic programming (SQP). The feed-

back gain matrix optimization is based on state space identification of power system

model using canonical variate analysis (CVA). CVA estimates the state space model of

the system from uniformly sampled input and output measurement. The controllers

are tested in DFIG integrated 11-bus, 2-area system and 68-bus, 5-area system. Fol-

lowing conclusion can be drawn based on the results and analysis presented in this

chapter:

• The damping of the targeted inter-area modes can be enhanced via dfig active

and reactive power modulation using proposed optimal output feedback control.

• The controller can be designed based on identification state space model. Since

it is not easy to obtain accurate model of the system, the proposed CVA algo-

rithm for state space model identification can be used to obtain a reduced order

model of the power grid. The model can be used to design the controller as pre-

sented in this chapter. The identified model was successfully validated against

the actual model via validation data set, frequency response and modal anal-

ysis. This technique can be used to track the accurate estimate of the system

when the system operating point changes.

• The sequential quadratic programming can be used to obtain the optimal gain
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matrix that maximizes the damping of targeted modes without violating the

specified constraints.

• Flexible distribution of oscillation damping effort among available generators

location and controllability can be achieved using the approaches discussed in

this chapter.



CHAPTER 7: CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

In this work, the dynamic model of DFIG, which includes electrical transients of

the generator and mechanical dynamics of the rotor/turbine, was first developed to

study small signal stability of DFIG, and the DFIG behavior with the controller was

distinguished from the open loop case. Modal analysis was used to formulate an-

alytical interpretation of the results and were verified with non-linear time domain

simulation. The sensitivity of the DFIG’s oscillatory modes with respect to the tur-

bine and machine parameters was studied to understand and identify the key modes

of interest. The sensitivity analysis of the DFIG closed loop modes with respect to

controller parameters provided an insight on choosing the appropriate controller gains

to meet the performance requirements. Later, the DFIG model is incorporated into

the power system models such as 11-bus system and 68-bus systems to simulate the

penetration of DFIG based wind generation on the power grid. The participation

factor analysis, observability analysis, and time domain analysis of DFIG integrated

power system model showed that DFIGs do not introduce new electromechanical

mode into the system. DFIG acts as dynamic power source, thanks to the converters

with rapid active and reactive power control capability. The electromechanical modes

of the system are, however, affected by increasing DFIG penetration in many ways

such as replacing synchronous generators, reducing number of PSS, changing power

flow in tie-lines, reducing system inertia and so on.

The growing level of renewable resources such as wind and solar that are usu-

ally interfaced with the grid using voltage source converters (VSC) ultimately leads

to reduction of system inertia. Moreover, the power system dynamics are affected
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by these resources, and sometimes drive the system towards instability. The Trans-

mission System Operators (TSO)s/ and Independent System Operators (ISO)s will

eventually require DFIG based wind farms and other renewable generators to sup-

port the damping of system oscillation. The advantage of these resources over the

conventional generators is their ability to control active and reactive power rapidly.

In this work, two types of approach have been used to design control for damping

the oscillation in the grid. First approach is decentralized approach based on local

measurement and are termed as PSS of DFIG analogous to PSS of generators. The

advantage of this approach is that it is robust, reliable and do not require wide area

communication between remote generators/equipment or control center. DFIG of-

fers ability to control stator active and reactive power using RSC, and GSC control.

This can be used to manipulate active and reactive power injection from GSC side.

The concept of geometric modal observability and controllability was used to select

the best available output and input pair. The signals such as bus frequency, angle

or power injected in neighboring transmission lines show better visibility of those

modes, and thus are the potential local signals that can be used for PSS design.

While active power control can provide damping torque directly, the reactive power

can also influence the production of damping torque and thus can be utilized to damp

the electromechanical oscillation. The modulation of active power of DFIG affects

the torsional dynamics of the wind turbine and generator rotor shaft, while reactive

power modulation affects the voltage of the line. Modal controllability analysis and

non-linear time domain analysis can aid in selection of the best control signal.

The major disadvantage of the decentralized approach is the limited observability of

inter-area modes in the local measurement signals. This has been demonstrated in 68-

bus system where DFIG PSS at bus 13 had limited impact on inter-area modes. The

recent advancement in PMUs has resulted in realization of wide area control of power

system. In this work, wide area signal are used to control active and reactive power



173

of available DFIGs. Control of DFIG based on Linear-Quadratic Gaussian technique

was developed and its efficacy in enhancing oscillatory stability of the power system

was shown using modal analysis and non-linear time domain simulation in small scale

as well as larger scale power system model. LQG is a linear quadratic regulator (LQR)

implemented with a state observer (Kalman Filter). The state observer is required

because measuring all the states of a system as big and complex as modern power

grid is not practically possible. Reduced order model of the power system is used to

design a Kalman filter. The model reduction allows reduction in computation burden

while maintaining the accurate representation of power system relevant dynamics.

It is up to the control designer to select the most appropriate weights to the states

and inputs to obtain optimal LQ-gain. Assigning larger weight to a particular state

means penalizing more for oscillation of that state, while larger weight to a particular

input means assigning higher cost of utilizing the particular input. In this work, the

initial state and input weights were assigned based on participation factor analysis

i.e. by giving higher penalty to the states with higher participation in the modes

of interest. Then the weights are tuned to achieve the maximum damping to the

selected modes without deteriorating the damping of other modes. The direction of

weights i.e. either to decrease or increase the weight is based on sensitivity analysis

of damping of modes with respect to weights of the state. Using this technique, a

set of weights is obtained that meets the design requirements. The controller was

tested for robustness by randomly varying the operating point of the system. The

advantage of LQG based control using wide area signals over local PSS design for

DFIG is evident when tested on 68-bus system. LQG control successfully damped

the two critical inter-area modes of the system that was otherwise unaffected by PSS

design approach. The stability of the closed loop system, however, is only guaranteed

if the observer is stable and the plant can be stabilized with the LQR. Thus, the

robustness has been an issue with LQG control. Another drawback of this method is
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the lack of direct relationship between the weight matrices and the damping of the

oscillatory modes.

One of the challenges in power system control design is the difficulty to obtain a

detailed and accurate model of the power system. Usually the power system models

used today are approximate models marred with modeling error and uncertainty. One

approach that is gaining popularity lately is to estimate the reduced order model of

the system based on measurement of input and output of a dynamically perturbed

system. In this work, canonical variate analysis (CVA) algorithm is used, which pro-

vides the subspace state space model from block measurement of inputs and outputs

of the system. The criteria and methodology for selection of inputs and outputs has

been discussed. The accuracy of the estimated model frequency response has been

shown using bode plot. The estimated model is validated using validation data set

that was not used during the estimation of the model. Finally, the output feedback

gain matrix is computed using non-linear optimization technique. The main objective

of the power system damping controller is to shift the dominant eigenvalues towards

the left half plane to ensure that the system is stable and the oscillations are damped

faster. Thus, designing an output feedback based oscillation damping controller for

power system was formulated as a nonlinear optimization problem with existing sys-

tem constraints such as feedback gain limits. This approach was used to design an

optimal output feedback gain matrix that would enhance the damping of the system.

The controller performance and robustness against time delay and system operating

point changes have been validated. The main advantage of this technique is that the

system identification can track the changing operating point of the system, and the

optimization algorithm can utilize the identified system model to compute new gain

matrix that maximizes the damping of the least damped inter-area modes. Moreover,

it does not require the construction of state observer to estimate the states as direct

output feedback approach is used. Thus, it provides a direct methodology to achieve
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the system damping requirement.

7.2 Future Works

The current work focused solely on the power oscillation damping capability of

DFIG and design of oscillation damping control architecture that can be used with

DFIGs. Similar control technique can be applied to other forms of distributed en-

ergy resources such as solar photovoltaics, battery energy storage system etc. which

have fast response capability of controlling active and/or reactive power injection.

These techniques are applicable to other power electronic devices such as FACTS and

HVDCs. However, detailed study is necessary to study their individual potential and

constraints considering their impact on system dynamics and machine itself. The

present work can also be extended to design of coordinated wide area power system

control considering existing synchronous generators, and all other forms of control-

lable devices available such as wind, solar, storage, FACTS, HVDC etc. The coordi-

nated approach would provide better response to the system disturbance. Moreover,

demonstration of the control in real-time simulation environment can be performed.



APPENDIX A: SMALL SIGNAL STABILITY

Small signal stability is defined as the ability of the power system to maintain

synchronism when subjected to small disturbances [27]. The disturbance is regarded

as small if the equations describing the system response can be linearized for the

purpose of analysis. The small signal stability problem normally occurs due to insuf-

ficient damping torque which results in rotor oscillations of increasing amplitude [27].

The following general equations can be used to describe the dynamics of the power

system,

ẋ = h(x, u, t) (A.1)

y = g(x, u, t) (A.2)

For small signal stability analysis, the nonlinear equations of the dynamic power

system are first linearized around a specific operating point. The resulting set of linear

differential equations describes the dynamic behavior of the power system subject to

a small disturbance around this operating point. The linearized equation is of the

form,

∆ẋi =
∂hi
∂x1

∆x1 + ...+
∂hi
∂xn

∆xn +
∂hi
∂u1

∆u1 + ...+
∂hi
∂ur

∆ur (A.3)

∆ẏj =
∂gj
∂x1

∆x1 + ...+
∂gj
∂xn

∆xn +
∂gj
∂u1

∆u1 + ...+
∂gj
∂ur

∆ur (A.4)
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where, n is the order of the system and r is the number of inputs. The linearized

equation can be written in the form,

∆ẋ = A∆x + B∆u (A.5)

∆y = C∆x + D∆u (A.6)

where, A, B, C and D are known as state or plant matrix, input matrix, output

matrix and feed forward matrix respectively.

A =


∂f1
∂x1

... ∂f1
∂xn

... ... ...

∂fn
∂x1

... ∂fn
∂xn

 , B =


∂f1
∂u1

... ∂f1
∂ur

... ... ...

∂fn
∂u1

... ∂fn
∂ur

 (A.7)

C =


∂g1
∂x1

... ∂g1
∂xn

... ... ...

∂gn
∂x1

... ∂gn
∂xn

 , D =


∂g1
∂u1

... ∂g1
∂ur

... ... ...

∂gn
∂u1

... ∂gn
∂ur

 (A.8)

The state matrix A carries a lot of significant information about the dynamics of

the system during small disturbance and thus characterize the stability of the system

[27]. The change in design and operating condition of the power system is reflected

in the eigenvalues of the system state matrix. The time dependent characteristic of

a mode corresponding to an eigenvalue λ is given by e−λt. A real positive eigenvalue

determines an exponentially increasing behavior while a negative real eigenvalue rep-

resents a decaying mode. A complex eigenvalue with positive real part results in an

increasing oscillatory behavior and one with a negative real part results in damped

oscillation. The real component of the eigenvalue gives the damping and the imag-

inary component gives the frequency of oscillation. The frequency of oscillation (f)
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and damping ratio (ζ) of a complex eigenvalue (λ = σ + jω) can be represented as:

f =
ω

2π
(A.9)

ζ = − σ√
σ2 + ω2

(A.10)

The damping ratio gives the rate of decay of the amplitude of the oscillation. Eigenval-

ues of the state matrix A and the associated right eigenvector (φ) and left eigenvector

(ψ) are defined as:

Aφ = φλ (A.11)

ψA = λψ (A.12)

φψ = I i.e. ψ = φ−1 (A.13)

The component of the right eigenvector gives the mode shape, that is, the relative

activity of the state variables when a particular mode is excited. For example, the

degree of activity of the state variable xj in the ith mode is given by φji of right

eigenvector φi. The jth element of the left eigenvector psii weighs the contribution of

this activity to the ith mode. The participation factor of the jth state variable (xj)

in the ith mode is defined as the product of the jth component of the right and left

eigenvectors corresponding to the ith mode:

pji = φjiψij (A.14)

While designing output feedback supplementary controller such as power system

stabilizer in synchronous generators or damping controllers in FACTS, it is very useful

to analyze modal controllability, observability and residue of transfer function. If
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Λ = diag(λ1, λ2, ..., λn), we get

ψAφ = Λ (A.15)

Using Laplace Transform, A.5 can be written as:

Y (s) = Cφ(sI − A)−1ψBU(s) +DU(s) (A.16)
Yj(s)

Ui(s)
= Gij(s) = D +

n∑
k=1

Rk

s− λk
(A.17)

Rk is the residue of the transfer function of the eigenvalue λk. The residue is de-

termined as a product of modal controllability gramian mc and modal observability

gramian mo such that:

mc = ψB

mo = Cφ and

Rk = CjφkψkBi

Participation factor analysis, controllability and observability gramian, and transfer

function residue analysis are frequently used in designing control system of linear time

invariant systems.
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