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ABSTRACT 

 

 

RITA BAGWE. Effect of cadmium and seasonality on critical temperatures on aerobic 

metabolism in eastern oysters, Crassostrea virginica Gmelin 1791. 

(Under the direction of DR. INNA SOKOLOVA) 

 

Cadmium (Cd) and elevated temperatures are common stressors in estuarine and 

coastal environments affecting intertidal mollusks such as oysters. Cd and elevated 

temperature can raise the metabolic demands of oysters due to the increase cost of 

detoxification and damage repair and induce tissue-wide hypoxemia. According to the 

concept of the oxygen- and capacity-limited thermal tolerance (OCLTT), this is expected 

to lead to the shift of the critical temperature (Tc) of aerobic metabolism (indicated by the 

onset of partial anaerobiosis) restricting the thermal tolerance limits of the organism. We 

tested this hypothesis by determining the onset of anaerobic metabolism, changes in the 

cellular energy budget and the extent of oxidative damage during acute temperature rise 

(from 20°C to 36°C) in eastern oysters Crassostrea virginica under control conditions 

and after prolonged Cd exposure (50 µg Cd l
-1

 for 30 days). In summer and winter control 

oysters, levels of anaerobic end products increased at 28°C and 24°C, respectively, 

indicating an earlier onset of tissue hypoxemia in winter-acclimated oysters. Cd exposure 

shifted Tc to lower levels in summer oysters (from 28 to 24°C)  oysters Tc was 24°C in 

summer However, in winter there was no temperature-induced accumulation of anaerobic 

end products in Cd-exposed oysters suggesting that the effect of Cd exposure on Tc 

varies between the seasons and/or that the studied range of temperatures was insufficient 

to detect Tc in the winter Cd-exposed group. Acute warming had no negative effects on 

tissue and cellular energy status of oysters in summer or winter but led to an increase of 

oxidative damage to proteins in winter control oysters. This suggests that oysters are well 
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adapted to acute temperature fluctuations in the intertidal zone and maintain energy 

balance despite the limitations of aerobic metabolism and partial transition to 

anaerobiosis. 
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CHAPTER 1: INTRODUCTION 

 
 

1.1   Physiological responses and adaptations of aquatic animals to environmental  

        temperature:   

Temperature is an important abiotic factor that affects the physical environment 

as well as all life processes in an organism (5). Temperature can directly affect the 

physical environment of an organism due to physico-chemical changes such as a decrease 

in the solubility of the gases including oxygen and increase in solubility of inorganic salts 

and other substances (6). Increasing temperature also decreases the viscosity of the fluids 

and reduces pH due to increasing auto-dissociation of water (6). Changes in temperature 

from 0°C to 100°C cause phase transition of the water from solid state ice through liquid 

phase of water and finally to gaseous state of water vapor (6). Many of these temperature-

associated changes affecting the physical environment elicit an adaptive physiological 

response in aquatic organisms (6). Temperature can also directly affect the structure and 

function of macromolecular structures of the cell (such as lipids and proteins) and the 

rates of biochemical reactions (6).  

Most aquatic organisms (including invertebrates and fish) are ectotherms and 

poikilotherms
1
 and thus are unable to maintain a constant body temperature that is

                                                 
1
Ectotherms are the organisms that predominantly regulate their body temperature using external heat 

sources (6). Ectothermic thermoregulation is rarely efficient enough to maintain a constant body 

temperature; therefore, most ectotherms are also poikilotherms – i.e. organisms whose body temperature 

changes with the changing environmental temperature.  
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different from the environmental termperature (6).  Therefore, changes in environmental 

termperature directly affect the rates of all physiological and biochemical processes in 

these organisms and have strong implications for their fitness and survival (6). 

Depending on the habitat, aquatic ectotherms have adapted to withstand different degrees 

of fluctuation in environmental temperature (6). While some stenotherms from thermally 

stable environments such as Arctic and Antarctic waters can tolerate only a few degrees 

change in environmental temperature, eurythermal ectotherms (such as intertidal 

invertebrates, freshwater fish and terrestrial vertebrates and invertebrates from temperate 

zones) can adjust to a wide range of temperatures spanning over 20-40°C (6). Regardless 

of the breadth of their thermal niche, all ectothermic poikilotherms must be able to adjust 

their cellular processes to maintain the normal physiological function, grow survive and 

reproduce within the typical range of the environmental temperatures (2). This is 

especially critical for the organisms with low motility that cannot escape unfavorable 

temperature conditions and have to rely on their physiological and biochemical tolerance 

mechanisms to survive the thermal change in situ (6). Due to the all-encompassing nature 

of the temperature effects on animal physiology, temperature adaptations and acclimatory 

adjustments involve changes in all key cellular structures – from membranes and 

organelles to individual enzymes and small molecular weight molecules that create the 

biochemical mechanisms involved in the temperature adaptations of ectotherms.          

Adjustments of the structure and composition of cellular membrane (including the 

plasma membrane and the organelle membranes) play a key role in adaptation and 

acclimation to environmental temperature (6). Phospholipids form the bulk of the cell and 

organelle membranes, and a change in the temperature is immediately reflected in 
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changes in the viscosity and phase order of the membranes, which may in turn affect the 

enzymes, transporters and channels embedded in the membrane (6). Low temperatures 

decrease the conformational flexibility of the membranes, whereas high temperatures 

increase the flexibility, resulting in excessively rigid or fluid membranes and eventually 

membrane disruption that can lead to cell dysfunction or death (3, 6). In living cells 

however, such changes are avoided by a series of adaptive mechanisms called 

homeoviscous adaptations (HVA) that maintain optimal membrane viscosity and phase 

order (6-7). This is achieved by adjustment in the fatty acyl chain composition (especially 

the proportion of polyunsaturated to saturated fatty acid chains) and/or changes in 

cholesterol concentration (3, 6-7). Typically, cold-acclimated or –adapted animals have a 

higher proportion of unsaturated fatty acid chains in their membranes that helps to 

maintain the overall membrane fluidity at low temperatures (6).  A group of enzymes 

called desaturases plays a key role in this adaptive mechanism by introducing a double 

bond between 9-10 carbon positions from the carboxy terminal in fatty acids like stearic 

or palmitic acid in response to decreasing temperature (8). HVA during increasing 

temperature results in the opposite changes in the membrane composition, i.e. an increase 

in the proportion of saturated fatty acid tails in the membrane phospholipids.  HVA also 

can involve changes in the cholesterol content of the membrane; cholesterol tends to 

increase the membrane order and its concentration in the membrane decreases in the cold 

and increases in the warm-acclimated or adapted organisms (6). 

Extremely high temperatures can also result in the denaturation of proteins in 

animals. In order to counteract this, animals have evolved protective proteins known as 
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heat shock proteins (HSPs), which are molecular chaperones in the cell (6, 9). HSPs are 

classified based on their molecular weight and broadly divided into two categories of 

large (HSP60, HSP70, HSP90, HSP100) and small HSPs (HSP10, HSP27) (3, 6, 8). 

Their structure and function are highly conserved among eukaryotes from yeast to 

mammals. HSPs are either constitutive (helping in the proper protein folding during the 

de novo protein synthesis or protein transport) or can be induced by stressors that cause 

denaturation of existing proteins (9). The primary stress-induced HSPs are HSP70 family 

and small HSPs (2-3, 6). Generally, stressors such as elevated temperatures, UV, 

hypoxia, hyperoxia, pH change, exposure to heavy metals, toxins and free radical can 

damage the tertiary protein structure resulting in partially unfolded proteins(6). Such 

improperly folded proteins can bind to each other forming aggregates or to other cellular 

components impairing their function. HSPs minimize the aggregation of these unfolded 

proteins, facilitate repair and refolding and limit their interactions by binding to the 

exposed part of unfolded proteins (6, 9). The proteins that are severely damaged and 

beyond repair are targeted by HSPs for ubiquitination and proteolytic degradation (9). 

Notably, heat shock response is energetically very expensive because HSPs synthesis as 

well as their chaperoning functions require ATP (9).  

Temperature also directly affects the enzyme activity and thus, the rates of the 

biochemical reactions in the cell. Two commonly used indices to evaluate effect of 

temperature on biochemical processes are activation energy (Ea) and the Q10 temperature 

coefficient (6). Activation energy is the amount of energy needed to cross the energy 

barrier of a chemical reaction so that the reaction can proceed (6). An increase in 

temperature increases the kinetic energy of molecules and thereby increases the 
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proportion of the molecules in the reactant mixture which have sufficient energy to 

overcome the activation energy threshold resulting in increased rate of biochemical 

reactions (6-7). High activation energy of an enzyme means that its catalyzed reaction is 

highly temperature sensitive, whereas low activation energies are characteristic of the 

enzymatic reactions that experience less change in the rate with changing temperature(6). 

The Q10 coefficient is used to express the degree of the temperature dependence of a 

reaction and equals to the –fold change  in the reaction rate for every 10°C rise in the 

temperature; thus, if Q10=2, the rate of a reaction doubles for every 10°C increase in 

temperature, triples if Q10=3 (6). For most biochemical and physiological reactions like 

enzymatic activity and rates of respiration, Q10 is around 2-3 within the normal 

physiological range of temperatures, and temperature increase accelerates almost all 

biochemical and physiological processes (6). However, beyond this normal thermal limit, 

Q10 value may fall below 1 at high temperature indicating damage to the biochemical 

molecules involved in the processes and potentially leading to drastic reduction or 

complete abolition of the chemical reactions (6). Due to this thermal sensitivity of 

enzymatic reactions, cold adaptation and acclimation in aquatic ectotherms often involve 

an increase in enzyme concentration and/or expression of more catalytically efficient 

isoforms to compensate for the reduced enzyme activity at low temperatures(6). While 

the above-described adaptations are effective in maintaining the membrane order and the 

proper protein function in ectotherms experiencing moderate temperature fluctuations, 

extremely low temperatures present an additional major challenge due to the necessity to 

prevent and/or tolerate freezing at sub-zero temperatures (6). Animals evolved to do so 

by exhibiting either freeze tolerance or freeze avoidance strategies (6). Freeze-tolerant 
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animals have evolved ice nucleating agents (INAs) and cryoprotectants to survive 

subzero temperatures (6). INAs allow ice crystals to be formed slowly and confine the 

crystals to the extracellular fluids (6). This is achieved by encouraging formation of ice 

crystals in the extracellular fluid using hydrophilic ice nucleating proteins while keeping 

intracellular water highly ordered due to its adherence to macromolecules (6). The high 

molecular order of intracellular water prevents ice formation. Cells of the freeze-tolerant 

organisms can also be protected from ice injury by colligative or non-colligative 

cryoprotectants(6). Colligative cryoprotectants like polyhydric alcohols, sugars, sorbitol 

and ribitol are present in high concentrations to raise osmotic concentrations of body 

fluids thereby limiting the formation of extra and intracellular ice (6). Non-colligative 

cryoprotectants like trehalose and proline are membrane protectants present in lower 

concentrations which bind in place of water and prevent long-term damage to the 

membrane (6, 8). 

Freeze-intolerant animals adapted to low temperatures avoid freezing of intra- and 

extracellular fluids owing to a phenomenon called supercooling and by having specific 

antifreezes(6). Supercooling allows the fluids to be cooled down below the freezing point 

of the surrounding water without being frozen;  this is achieved by high concentrations of 

antifreezes such as glycerol, sugars, and polyols in the blood and intracellular fluids to 

lower the supercooling point (6). Some cold-adapted freeze-intolerant organisms such as 

polar marine fishes also have antifreeze peptides (AFP) and antifreeze glycopeptides 

(AFGP) which suppress the freezing point of the body fluids below their melting point, a 

phenomenon called “thermal hysteresis” (6). These antifreeze molecules act by 
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preventing the new water molecules to be added between to the edge of an ice crystal and 

thereby inhibiting the crystal growth (6).  

 1.2   Energy homeostasis in temperature adaptation and stress tolerance: 

  1.2.1   An overview of ATP-generating pathways in animals: 

Energy homeostasis plays a key role in tolerance and adaptation to a variety of 

environmental stressors including temperature (9). For survival of the organisms and their 

populations, the energy demands must be met with sufficient energy supplies to maintain 

cellular order and with sufficient net energy gain to invest in somatic growth and 

reproduction (9). Organisms are thermodynamically open systems relying on external 

energy sources to meet their energy requirements; in case of animals, that energy comes 

in the form of organic food compounds assimilated from external sources [9].  

In animals, the energy is stored in three major forms including: (a) high energy 

phosphate compounds, (b) transmembrane proton gradients and (c) metabolic substrates 

including high energy phosphates such as phosphagens (10-11). All three forms are 

interconnected and energy is conserved in the cell in the form of ATP as these substrates 

are catabolized or the proton gradient is dissipated during mitochondrial oxidative 

phosphorylation (11). The chemical energy obtained from the food can be conserved in 

the form of ATP by aerobic or anaerobic metabolism. Excess energy gets stored in the 

form of lipids and carbohydrates, and these compounds also serve as buffers against the 

inevitable fluctuations of the food availability and intake (9). In most free-living 

eukaryotes under normal physiological conditions, oxidative phosphorylation taking 

place in mitochondria produces the majority of the ATP used as an energy source for 

ATP-demanding cellular reactions (10-11). In aerobic metabolism, ATP is produced via 
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mitochondrial oxidative phosphorylation supplied by the energy-rich substrates from 

glycolysis, citric acid cycle, oxidation of amino acids or β-oxidation of fatty acids(6). It 

requires a continuous supply of oxygen via ventilation and distribution of oxygen to cells, 

tissues and organs to drive the oxygen-dependent oxidation of the organic carbon to H2O 

and CO2 (6, 12). In contrast, anaerobic metabolism involves O2-independent catabolism 

of substrates. The turnover of ATP varies significantly in both these processes. Anaerobic 

fermentation of glucose to lactate results in a net gain of 2 ATP molecules as compared to 

36 ATP molecules produced per glucose molecule in aerobic oxidative 

phosphorylation(8).  

The simplest and the most rapid pathway of anaerobic ATP generation are via the 

phosphagens (6). A phosphagen is a reserve energy compound found in animal tissues 

that contains energy in the form of a high-energy phosphate bond. During situations when 

rapid ATP flux is required (e.g. during exercise), the high energy phosphate group can be 

enzymatically transferred from phosphagens onto ADP, thereby generating ATP in a 

rapid one-step reaction (6). Phosphagens are then again replenished during recovery 

when excess ATP is available. Most animal phosphagens are phosphorylated derivatives 

of guanidinium compounds and their concentration is up to 10 times higher than that of 

ATP in metabolically active tissues such as brain and muscle (6, 10). The vertebrate 

phosphagen is creatine phosphate while in invertebrates a variety of phosphagens are 

found including creatine phosphate, arginine phosphate, lombricine phosphate and 

tauromycine phosphates (6, 10, 13). Each phosphagen type is substrate specific and has 

its associated kinase enzyme (e.g. creatine kinase, arginine kinase, etc.) that catalyzes the 

conversion of ADP to ATP (6, 10, 13). Phosphagen stores can be used under both aerobic 
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and anaerobic conditions as a buffering system for ATP (6, 10). In addition to immediate 

provision of necessary ATP for cellular functioning during rapid ATP flux, phosphagens 

also regulate inorganic phosphate levels, and are involved in proton buffering and in the 

regulation of glycogenolysis (6, 10).   

Glycolysis is another anaerobic pathway of ATP generation that is ancient and 

highly conserved in all eukaryotes. Glycolysis is an enzymatically catalyzed 10-step 

reaction involving substrate-level phosphorylation of ADP (6, 8). It can be broadly 

divided into two stages. At the first stage involving the first five reactions, one molecule 

of hexose (glucose) is converted into two molecules of triose (glyceraldehydes-3-

phosphate). It is the energy investment stage where glucose is phosphorylated and 

cleaved into trioses consuming 2 ATP (6, 12). In the second stage involving the last five 

reactions, two molecules of glyceraldehyde-3-phosphate are converted to pyruvate 

generating 4 ATP. Therefore, the overall net gain of ATP in glycolysis is 2 ATP per 

molecule of glucose (6, 12).  Oxidation of glucose in glycolysis also yields two reduced 

co-enzymes, nicotine amide adenine dinucleotide (NADH) (12). Under aerobic 

conditions, NADH can be transported through the mitochondrial membrane by the a 

shuttle system and serve as an electron donor in the electron transport system (ETS) 

generating the proton gradient used for the formation of ATP from ADP (6, 12). Under 

anaerobic conditions, NAD
+
 is regenerated from NADH by a terminal dehydrogenase 

such as lactate dehydrogenase in vertebrates (12). 

The terminal dehydrogenase in the reaction that involves conversion of pyruvate 

and regeneration of NAD
+
 varies across different taxonomic groups of animals. In 

vertebrates and some invertebrates such as arthropods or freshwater mollusks, pyruvate is 
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anaerobically reduced to lactate by lactate dehydrogenase.(6)  In other organisms, 

pyruvate can be converted to alternative end products such as ethanol (e.g. in carp and 

goldfish), the imino acid derivatives called opines (including alanopine, tauropine, 

nopaline, strombine, lysopine and octopine in many marine mollusks) or short-chain 

organic acids (such as succinate, acetate or propionate in many hypoxia-tolerant 

invertebrates) (6, 14). With the exception of the opines, these alternative anaerobic 

pathways yield more ATP per unit glucose compared to the lactate pathway, and/or result 

in less toxic or more easily excretable end products reflecting an adaptation to survive 

prolonged hypoxia or anoxia (6) . 

Aerobic oxidative phosphorylation is evolutionarily the newest acquisition among 

the energy conserving pathways. Oxidative phosphorylation occurs only in the 

mitochondria of eukaryotes and can be fueled by different substrates including 

carbohydrates, fatty acids or amino acids. Under aerobic conditions, pyruvate derived 

from glycolytic breakdown of carbohydrates is completely oxidized to carbon dioxide. 

Pyruvate is first decarboxylated and converted to acetyl-coenzyme A (acetyl-coA), which 

is the substrate for entry into the mitochondrial matrix-associated Krebs cycle (6, 12). 

Acetyl-coA is reduced in the Krebs cycle with the concomitant generation of guanine 

triphosphate (GTP), NADH and FADH2 equivalents. NADH and FADH2 are then 

reoxidized to NAD
+
 and FADH

+
, respectively, in the electron transport system (ETS) 

present on the inner mitochondrial membrane (IMM) (6). The ETS has four enzyme 

complexes which participate in the transfer of electrons, and in that process H
+
 ions are 

expelled across the IMM from the matrix into the inter membrane space creating a proton 

gradient and electrical potential across the IMM(6). The free energy stored in this 
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electrochemical gradient (also known as the proton motive force) is used for the synthesis 

of ATP from ADP and Pi through proton-pumping ATP synthase or F1Fo-ATPase (6). 

Carbohydrates and fats are the most common energy yielding substrates for oxidative 

phosphorylation under the normal conditions in animals. Aerobic oxidation of 

carbohydrates yields 36 ATPs, 6 CO2 and 4 H2O molecules for each glucose molecule 

oxidized (12). Fats provide the highest ATP yield of all energy substrates yielding 

multiple acetyl-CoA molecules in the process of β-oxidation of the fatty acid backbone, 

that are then fed into the Krebs cycle (6, 15). Each round of β-oxidation produces one 

molecule each of NADH, FADH2 and acetyl Co-A and reduces the length of the fatty 

acid chain by two carbons; the process is repeated until the fatty acid chain is completely 

oxidized. Acetyl Co-A is then oxidized in mitochondria via the Krebs cycle and 

mitochondrial ETS, while NADH and FADH2 are directly fed to the ETS and fuel 

oxidative phosphorylation to yield ATP (12). Thus, oxidation of the palmitic acid (a 16 

carbon fatty acid) involves 7 rounds of β-oxidation resulting in a total of 129 ATP mole
-1

 

compared to 36 moles ATP per mole glucose (12).  

Proteins are rarely used for metabolic fuel and whenever they are, they are 

metabolized to amino acids that are ultimately fed into the Krebs cycle. Amino acids are 

fed into the metabolic pathways according to their number of carbon atoms (6). All three-

carbon (C3) amino acids are utilized during gluconeogenesis and ultimately degraded to 

pyruvate. The C4 & C5 amino acids are fed into Krebs cycle via glutamate and α-

ketoglutarate. Oxidation of proteins yields different amounts of ATP depending on the 

amino acids. For example, oxidation of proline, glutamate and alanine yields 30, 27 and 

15 mole ATP mole
-1

 respectively (8). While the metabolic end products of complete 
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oxidation of carbohydrates and fats are CO2 and H2O, oxidation of protein results in 

additional nitrogenous end products in form of urea (commonly found in fishes, 

amphibians and mammals), ammonia (commonly found in aquatic animals) or uric acid 

(reptiles, birds and insects) (6, 8). The nitrogenous wastes must be excreted from the 

organism in an energy-dependent manner, thus further reducing the net energy gain from 

the oxidation of amino acids. 

 1.2.2   Basal metabolic rate: 

Basal metabolic rate (BMR) of an organism - also called a cost of survival or 

basal maintenance cost - is an important concept in bioenergetics. BMR is a measure of 

the lowest amount of energy required for sustaining metabolic processes and maintaining 

thermodynamic non-equilibrium state of living (11). BMR or SMR does not include the 

costs of growing, feeding, processing food, thermoregulation, or physical activity (11).                    

Basal costs of metabolism can be measured as basal or standard metabolic rates 

(BMR or SMR in endotherms and ectotherms, respectively) either directly as heat 

production or indirectly by measuring oxygen consumption by a whole organism under a 

set of basal or standard conditions (8). In endotherms, BMR is determined at a normal 

body temperature in the thermoneutral zone, while in ectotherms SMR is measured at a 

specific temperature that can vary depending on the acclimation conditions (11). To 

measure BMR, an endotherm should be in an adult stage of development, in post-

absorptive stage (overnight fasting), normothermic, unstressed in any other way and at 

rest (in supine position but fully awake) (8). In ectotherms, SMR determination is less 

standardized and varies among species. Typically, it is determined as the oxygen 

consumption or heat production by a resting organism in a post-absorptive state measured 
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at the temperature at which it was acclimated. In some active organisms such as fish, 

SMR is obtained by extrapolation of the activity-dependent metabolic rates to zero 

activity levels (6).  

In mammals, 70% of oxygen consumed in BMR is used for mitochondrial ATP 

production. Of this aerobically produced ATP, 20–25% is used for protein synthesis, 20–

25% for maintenance of transmembrane Na
+
 gradients, 5% for Ca

2+
 gradient, 7% for 

gluconeogenesis, 2.5% for ureogenesis, 5% for actinomyosin ATPase and the remainder 

of the 70% is used for nucleic acid synthesis and substrate cycling (11, 16). Of the 30% 

of oxygen consumption that is not used for ATP synthesis, 5-10% is used for non-

mitochondrial oxygen consumption (e.g. by cytosolic oxygenases) and the remaining 20-

25% - for counteracting the mitochondrial proton leak (8, 11, 17). In hepatocytes of 

ectothermic vertebrates (crocodiles) ATP turnover was responsible for 13-50% of oxygen 

consumption, while proton leak and non-mitochondrial respiration accounted for  10-30% 

and 30-65% of respiration, respectively (18). In the marine ectothermic oyster, C. 

virginica mitochondrial proton leak, non-mitochondrial respiration and protein synthesis 

represents 22-38%, 12-31% and 7-23% of the total energy cost (19).  

In most organisms, energy allocations to support BMR (and thus survival) are 

prioritized over the allocations to other fitness-related aspects of the energy budget such 

as growth, activity or reproduction (6). Due to the inherently limited energy assimilation 

aerobic capacity of any organism, increases in BMR (e.g. due to the environmental stress) 

lead to trade-offs in energy allocation to growth, reproduction or activity, which in turn 

can negatively affect an organism’s fitness. These trade-offs play an important role in 
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setting the physiological limits of stress tolerance (including thermal tolerance) of aquatic 

ectotherms and will be discussed in the next section (see 1.2.3). 

 1.3   The role of aerobic scope in determining the thermal tolerance limits of 

         aquatic ectotherms:  

 The energy balance of an organism can be summarized by the following equations: 

                    C = P + R + F + U,      [1] 

                 where     C = A + F.     [2] 

In equations [1] and [2], C is the energy from the consumed food in the form of 

carbohydrates, lipids or proteins, P = production or the amount of energy incorporated 

into various tissues, reproductive products and reserve energy storages; R represents 

respiration which is the amount of metabolic heat lost; F is the energy eliminated from 

the body via feces; U is the energy excreted from the body as end products of nitrogen 

metabolism (such as urea, ammonia or uric acid) and A is the energy assimilated in the 

body (7, 9, 20). Balance of energy gained from the environment (C) against the energy 

lost via various metabolic processes (R, F & U) is important for the survival of an 

organism (9). All the terms in the equations [1] and [2] are calculated per unit time and 

reflect the fact that the net energy balance of an organism depends not only on the 

amount of food available but also on its rate of acquisition and metabolic conversions that 

channel the energy flux to different processes (9). 

At the whole-organism level, the energy obtained by the uptake of food and 

oxygen is assimilated into the ATP pool (via the aerobic and anaerobic metabolic 

pathways described below) from which it is used for maintenance, growth and 

reproduction (14). Under the optimal conditions, organisms maintain their energy budget 

in such a way that there is an excess amount of energy and metabolic capacity left after 
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meeting the basal energy needs of the organism (i.e. the costs of maintenance of cellular 

homeostasis and basal systemic activities such as ventilation, circulation and excretion) 

(9). This excess metabolic capacity is called aerobic scope and is directly linked to the 

amount of energy that an organism can invest in fitness-related functions such as growth 

and reproduction, and/or store in the form of energy-rich substrates such as fats and 

glycogen that can serve as buffers during the periods of high energy demand (14).  

Aerobic scope scope varies with the changing environmental temperature (9, 21) 

and determines the width of the thermal tolerance window in aquatic organisms.  The 

relationship between the aerobic scope and thermal tolerance was summarized in a 

physiological model of oxygen and capacity limited thermal tolerance (OCLTT) in 

aquatic ectotherms proposed by Pörtner later modified by Sokolova et al. (Fig.1) (2-3, 9). 

According to this concept, environmental temperature range can be subdivided into the 

optimal, pejus, pessimum and lethal ranges, each associated with a distinctive change in 

the aerobic scope and the resulting change in physiological and ecological performance 

of an organism. At the optimal environmental temperatures (i.e. in the non-stressful 

situation) the aerobic scope is maximum and the energy balance is positive, with a 

considerable amount of energy available to invest into growth, reproduction and other 

fitness-related functions. This is the preferred body temperature (Tpref) by most of the 

organisms and very close to the optimal performances of many of the physiological 

processes (Fig.1) (6). The range of the environmental temperatures that are close to the 

preferred body temperatures and where the performance of an organism is 100-80% of 

the maximum, is known as the optimal thermal performance window. 
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  As the temperature deviates from the optimum range, the aerobic scope of an 

organism diminishes but remains positive. This temperature range is known as the 

“pejus” range (pejus = getting worse). Transition temperatures from the optimum to the 

pejus range are designated Tp1 and Tp11 (in the lower and higher temperature range, 

respectively) (Fig.1). In the pejus range, the cost of the basal maintenance is elevated (as 

reflected in the higher standard or basal metabolic rate, SMR or BMR) (2-3, 7). 

Organisms employ various strategies at the cellular, physiological and behavioral levels 

to deal with the moderate stress in the pejus range (9). At cellular levels DNA and protein 

repair machinery are switched on to control the damage set by moderate stress. Moderate 

stress also induces cell cycle arrest and cells switch on cell damage control mechanisms 

(9). Acceleration of ventilation to increase oxygen uptake and stimulation of feeding is 

seen as a compensatory mechanism to overcome stress. Some animals will try to escape 

or avoid stressful situations. Such adaptations to stressful situations are energetically 

expensive and requires diversion of part of energy to machineries involved in cellular 

maintenance and repairs from energy allocated to growth and reproduction (Fig.1) (9, 

21). In this situation energy homeostasis is achieved by cutting into the energy budget 

allotted to other processes (growth, development, reproduction and energy reserves) (21). 

These trade-offs in energy budget ensures the survival of the organism by allocating 

maximum energy for maintaining BMR or SMR (2-3, 9, 14).  As the temperature further 

deviates from the organismal optimum and pejus ranges, the aerobic scope decreases 

along with a progressive increase of the ATP demand to meet the cost of BMR. 
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  FIGURE 1: Oxygen-and capacity-limited thermal tolerance model in ectotherms. In aquatic 

ectotherms organismal, physiological and cellular functions are dependent on environmental 

temperatures. Tolerance to environmental temperature is largely dependent on organism’s ability to 

maintain aerobic scope. At optimal temperature animals have maximum aerobic scope and energy to 

invest in BMR/SMR, individual growth and reproduction. Any deviation from optimal temperatures to 

higher or lower temperature results in upper or lower pejus temperatures Tp, where the aerobic scope 

decreases. At and beyond Tp there is increase in loss of performance, decline in individual growth and 

population abundance. Organism makes changes in oxygen delivery system and mitochondrial densities 

to shift the threshold of Tp.  Further increase or decrease in temperature results in upper or lower critical 

temperatures Tc. At Tc there is severe decrease in aerobic scope and the organism switches on anaerobic 

metabolism in order to supplement the energy requirement to maintain BMR/SMR. Beyond Tc cellular 

and molecular stress follows loss of aerobic scope. It is manifested as an increase in levels of oxidative 

stress, activation of the heat shock response, induction of antioxidants and cellular repair machinery. 

Further change results is denaturation temperature Td, which causes thermal stress, denaturation of 

proteins and offers only time limited survival(1-3).  
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At certain threshold temperatures, known as the critical temperatures (Tc), 

aerobic scope of an organism disappears and all available aerobic capacity is devoted to 

the basal maintenance (Fig.1). Typically, the organism also engages partial anaerobiosis 

to compensate for the insufficient aerobic ATP production. At high Tc, the disappearance 

of the aerobic scope is due to the increased oxygen demand causing insufficient 

oxygenation of the body fluids, whereas at low Tc the effect is due to decreased 

anaerobic mitochondrial capacities rather than ventilation or circulation (2, 7, 22-24). 

Severely diminished aerobic scope and transition to partial anaerobiosis indicates 

transition into the “pessimum” or thermal survival range (2-3, 9, 14). In this range, the 

organism often switches from compensation to conservation mode of energy metabolism 

characterized by metabolic rate depression to conserve the energy and to divert it to 

maintain the BMR (2, 7, 22, 24-25). This allows animals a time limited survival ranging 

from few days to several months. However, to ensure normal performance and eventual 

recovery, the environmental temperature must return back to at least pejus or optimum 

range (Fig.1). 

Extreme environmental temperatures beyond the pessimum range can be lethal to 

an organism even during short term (minutes to hours) exposures and are called the lethal 

range (with Ll and Lll being the lower and higher lethal temperatures) (Fig.1). Upper 

lethal temperature results in denaturation of macromolecules, especially thermolabile 

proteins, and increases the fluidity of the cell membranes (26). Lower temperatures result 

in low rates of biochemical processes, freezing of intracellular water and rigidity of cell 

membranes (3, 9, 14, 26). In this range the energy balance is negative, and the organism’s 
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short-term survival depends on emergency protective mechanisms (such as HSPs and 

antioxidants) (Fig.1). 

The change of aerobic scope and adjustments of the aerobic metabolism in 

response to changes in environmental temperatures set the thermal tolerance limits in 

aquatic ectotherms such as fish, crustaceans, annelids and mollusks (9). In these 

organisms the onset of partial anaerobiosis at the pessimum range is indicated by the 

accumulation of the anaerobic cytosolic end products (lactate or alanine) and/or 

mitochondrial anaerobic end products like acetate, succinate and propionate (9). The 

transition to anaerobiosis in these organisms is not due to damage to neuronal or 

mitochondrial capacities but due to limitations in the capacity of oxygen uptake and 

transport mechanisms [9]. It is more prominent in aquatic ectotherms due to lower 

oxygen content and slower diffusion of oxygen in water as compared to air (9). Other 

factors involved in the temperature-induced metabolic disturbance involves temperature-

induced changes in the membrane fluidity which affects the metabolic regulation, 

seasonal differences in mitochondrial properties and density and temperature-dependent 

transport capacity of respiratory pigments, which can contribute to organism’s transition 

to partial anaerobiosis (9). The optimal thermal performance window, thermal tolerance 

range and thermal survival zone may vary between species, populations from different 

latitudes, different life stages and organisms of different body sizes (Fig.1) and can be 

shifted by the acclimation (2, 6). However, the degree of plasticity of the thermal 

tolerance window is limited, and a temperature rise (e.g. such as is predicted by the 

global climate change scenarios by the IPCC (Intergovernmental panel on climatic 
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change), 2007 can lead to the shifts in the thermal tolerance windows that push organisms 

to their eco-physiological limits (24). 

It is worth noting that the thermal tolerance windows of aquatic ectotherms can be 

strongly affected by environmental factors that reduced the aerobic scope due to an 

increase of the basal maintenance costs, reduction of the aerobic metabolic capacity, or 

both [9]. Pollutants are among the major factors that can change metabolism and energy 

allocation in aquatic organisms [9]. Thus, presence of xenobiotics (chemical substances 

that are foreign to an organism) including toxic metals increases the energy requirements 

for the basal maintenance as the organism has to allocate additional energy to detoxify 

the pollutant and/or to repair the damage caused by it (27). Toxic metals such as  Cd, Zn 

and Cu can affect cellular processes such as ion homeostasis, protein stability and 

mitochondrial efficiency leading to an increased amount energy which has to be diverted 

for maintenance, detoxification and compensation for the impaired oxygen supply (7, 28). 

Moreover, toxic metals including Cd can also directly interfere with aerobic metabolism 

due to their negative effects on mitochondrial function (7). These effects may be not be 

detrimental to the organism as long as the energy supply from food and oxygen supply 

via ventilation and circulation are sufficient, and cellular processes can provide sufficient 

ATP to maintain the elevated basal metabolism (28). However, metal-induced increase in 

basal maintenance costs are likely to have a negative effect on the aerobic scope of 

aquatic organisms (i.e. the amount of energy and aerobic capacity that can be used on 

fitness-related functions such as growth and reproduction) and thus can narrow the 

thermal tolerance window (9). Although the negative effects of toxic metals on thermal 

tolerance and specifically on the critical temperatures indicating transition into the 
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pessimum temperature range has been predicted by the modified OCLTT theory (2-3, 9), 

this prediction has not been experimentally tested in marine ectotherms. Therefore, a goal 

of this research was to determine whether exposure to environmentally relevant 

concentration of a common metal pollutant, Cd, affects Tc in a model marine ectotherm 

(the eastern oyster C. virginica), and whether these effects are modified by seasonal 

acclimatization to different thermal regimes.  

1.4   Metal pollution and its effect on aquatic organisms: 

 1.4.1   Characteristics of metals as pollutants in aquatic environments:  

Trace metals including cadmium (Cd) are among the common persistent 

pollutants in estuarine and coastal ecosystems, and their presence affects the biodiversity 

in these habitats due to the negative effects of metals on fitness and survival of the 

organisms (9, 14). Metals bioaccumulate in  marine organisms including mollusks and 

can be transferred to the higher levels of the food chain ultimately reaching the top-level 

consumers (29). For some metals (such as mercury), biomagnification can also occur 

along the food chain enhancing the toxic effects. In the environment, metals are 

distributed based on their chemical nature, medium available for their dissolution and 

availability of binding sites (30).  

Exposure of aquatic organisms to metals can occur through digestion of 

contaminated food or sediments, through the direct uptake of the waterborne metals, or 

through combination of both pathways depending upon the distribution and 

bioavailability of metals in different components of an ecosystem (30). Metal present in 

water can react with different organic and inorganic substances forming complexes  

which can be taken up by an organism and later transferred to the higher levels in the 
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food webs (30). Response of the organisms to metal pollution depends upon 1) the nature 

of metal (essential or non-essential), 2) the concentration, 3) the exposure time (acute, 

chronic), 4) physiological state of organism, and 5) possible synergistic combination with 

the other stressors in the environment such as temperature, dissolved organic matter, 

salinity and others (14).  

Aquatic organisms are protected from the harmful effects of the environmental 

metals by physical barriers such as skin or cell membranes. However, metals can gain 

entry into the organism through permeable epithelia of the organs that specialize on the 

uptake of essential nutrients, minerals, ion and gas exchange such as gills and gut (30). In 

these tissues, cell membranes serve as the ultimate physical protective barrier for 

hydrophilic substances (such as many dissolved metals) (30). Excessive mucus 

production in gills can also limit the uptake of metals; however, it comes at a cost of  the 

reduced efficiency of oxygen uptake (7). Both essential and non-essential trace metals 

can be taken up into the tissues, and their uptake requires transporters to ferry them 

across the membrane and into the intracellular compartment of the cell (30-31). Metals 

gain entry into the cell via specialized transport proteins, carriers, channels or pores that 

are found embedded in the gill and gut cell membrane and are specialized for uptake of 

specific essential metals (30). For example, Cd gains entry into the organism via Ca
2+

 

transporters due to its resemblance of the hydrated ionic radius and charge to Ca
2+

 ions 

(30).  

All metals have the potential to become toxic at high concentrations, and 

therefore, it is crucial for an organism to control levels of free metals in the body (30). 

Essential metals such as zinc (Zn) and copper (Cu) are required as an essential 
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component of many enzymes. For essential metals, low concentrations can result in 

deficiency or pathology, while excessive accumulation above the optimal levels results in 

toxicity and has to be eliminated from the body(30). In contrast, non-essential metals like 

cadmium, lead or mercury have no known biological function in animals and are toxic at 

very low levels (30). Depending upon the physiology of an organism, trace metal may be 

excreted or stored in the tissues. The non-excreted, accumulated metals can be divided 

into two groups: 1) metals that are biologically and metabolically active and can be used 

for essential metabolic purposes and/or in extreme cases can cause toxic effects on 

biomolecules; 2) metals that have been detoxified by permanent or temporary binding to 

a site from which escape is limited (30-31). Toxicity of essential and non-essential metals 

primarily depends upon the concentration of the biologically and metabolically active 

metal in the cells and tissues. 

 1.4.2   Environmental sources of cadmium and mechanisms of its toxicity: 

Cadmium (Cd) is a non-essential, persistent, highly toxic trace metal found in 

estuaries and coastal areas. Since industrial development its accumulation in the 

environment is due to its wide use in manufacturing of paints, inks, plastic stabilizers, 

nickel-cadmium batteries, pigments and alloys (27, 32-33). Cd also accumulates in the 

environment due to the gradual process of soil erosion, heavy metal mining, abrasion of 

rocks and soils, forest fires and volcanic eruptions (32-34). Anthropogenic sources are 

contributing three to ten times more Cd in the environment compared to the natural 

processes such as volcanic activity or leaching from Cd-rich soils (33). Cd is of high 

environmental concern because it affects various physiological functions in aquatic 

organisms. Cd is predominantly present in sea water as an uncharged CdCl2 complex at a 
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trace level but readily bioaccumulates in marine invertebrates especially in mollusks, 

where it may reach toxic concentrations (35-36). Cd can be taken up by an organism 

directly from water or through contaminated food (7, 36). The free metal ion form of Cd 

(Cd
2+

) is the most bioavailable for the aquatic species. Toxicity of Cd depends upon 

environmental factors such as salinity, water hardness, chelating agents (EDTA) and high 

organic contents (36). Thus, Cd uptake from water is dependent on the presence of other 

divalent metal ions such as calcium or magnesium which compete with Cd
2+

 for the 

uptake sites (36). On the other hands, some hydrophobic complexes of Cd (e.g. with 

xanthates and dithiocarbamates) can act as metal carriers across biological membranes 

and lead to an increased uptake of Cd (36). Environmental temperatures also increase Cd 

uptake due to the elevated solubility of Cd compounds and higher concentrations of free, 

bioavailable Cd
2+ 

ions (7).  

In marine mollusks such as oysters, Cd is predominantly taken up directly from 

water and less than 1% is obtained through food (phytoplankton) (36). Marine organisms 

including mollusks typically contain higher Cd concentrations as compared to their 

freshwater and terrestrial counterparts (36). Gills are the main site for the uptake of the 

water-borne metals in aquatic organisms (29). Thus, in a freshwater bivalve, Pyganodon 

grandis gills contribute to nearly 50% of the total Cd burden in followed by the mantle, 

the digestive glands and the foot (37). Similarly, in marine bivalves Mytilus edulis, 

Mercenaria mercenaria and C.virginica, Cd uptake occurs mainly via gills (29). Cd may 

enter the gills by passive diffusion or by facilitated diffusion through calcium channels 

(29, 36). Further transport of Cd into blood possibly involves Na+ / Ca
2+

 exchange 
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mechanism, where Cd
2+

 replaces Ca
2+

 (36). Metal uptake can be also occur in the 

digestive tract by endocytosis (29).  

Cd has no known biological function in animals and thus is toxic in trace amounts  

(35). The Agency for Toxic Substances and Diseases Registry (ATSDR) lists Cd among 

the top seven of the 275 most hazardous substances found in the environment (38). Cd 

has also been classified as a Category 1 carcinogen in humans by the International 

Agency for Research on Cancer (IARC) (32). Once accumulated, Cd persists for a long 

time due to its long biological half-life (e.g. 15-30 years in humans) (33, 39). In marine 

bivalves Cd mostly accumulates in the soft tissues (25).  

Cd is a class II B metal that has high affinity to nitrogen and sulfur groups (29). It 

shares common toxic mechanisms and elicits the same protective response as other class 

B and borderline metals such as lead, mercury and copper (32).  In the cell, Cd 

accumulates in the cytoplasm, lysosomes and mitochondria where it can cause injury to 

membranes, proteins and DNA (35). Cd has several mechanisms of toxicity including 

substitution of essential metals, interference with calcium signaling and uptake, 

impairment of  DNA repair and induction of oxidative stress (32). Cd inhibits the 

functioning of proteins by binding to the sulphydryl (thiol) groups of amino acids like 

cysteine and glutathione (32). Cd can also exert toxicity via replacement of essential 

cations (Zn
2+

 and Cu
2+

) which serve as cofactors in a number of enzymes (32). Zinc and 

Cd have the same oxidation state of +2 and when ionized are almost of the same size(32). 

Cd can replace zinc in enzymes and the proteins that contain Zn finger motifs and are 

implicated in the maintenance of genomic stability, DNA repairs and DNA damage 

signaling (32). Substitution of Zn for Cd in these proteins interferes with their essential 
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functions(32). Cd also interacts with other metalloproteins in the cell including those 

containing iron, calcium, copper and zinc, substituting the essential metals in their active 

centers and influencing enzymes in the metabolic pathways (32).  

Cd impairs cellular metabolism due to the direct negative effects on mitochondrial 

function (25, 37). Mitochondria accumulate high levels of Cd and are key intracellular 

targets for the Cd toxicity (25, 35). Cd is transported into mitochondria by a Ca
2+ 

uniporter mechanism (40). In oysters, mitochondria can accumulate up to 250-300 ng Cd 

mg
-1

 proteins in gills during 3 weeks of exposure to 25 µg L
-1 

(35). Cd has strong 

inhibitory effects on mitochondrial functions, aerobic metabolism, cellular energy budget  

and functional collapse of mitochondria leading to apoptosis (25).  In vivo concentrations 

of Cd as low as 10
-7

 – 10
-6

 M result in uncoupling and impaired ability to produce ATP 

leading to disturbances in the mitochondrial bioenergetics and ultimately cell death (35). 

Cd exposure also leads to inhibition of electron transport chain and ATP synthesis in 

mitochondria (41). At extreme concentrations, Cd can leads to the collapse of 

mitochondrial membrane potential, mitochondrial swelling and loss of pre-accumulated 

calcium (34). Notably, intrinsic sensitivity to mitochondria to the negative effects of Cd 

strongly increases with increasing temperatures. Thus, the apparent inhibition constant 

for Cd (i.e., the concentration of Cd required to inhibit 50% of mitochondrial respiration) 

is reduced by two orders of magnitude when the temperature increases from 15°C to 

35°C in oysters (7).  

Cd toxicity is also associated with oxidative stress, which is a major hallmark of 

Cd exposure in the cell (32-33). Cd  binds to the inner membranes of mitochondria and 

disturbs the integrity of mitochondrial membranes and enhances lipid peroxidation (34). 
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Cd toxicity to mitochondria results in ROS production due to the inhibition of complex II 

& III of the ETS (7, 25, 34, 41). Cd exposure results in accumulation of semi-

ubiquinones at the Q0 site of complex III. Semi-ubiquinones are responsible for transfer 

of one electron to molecular oxygen resulting in ROS and thus oxidative stress (34). Cd is 

also involved in the release of iron from the biological molecules which in turn enhances 

oxidative stress (33, 42). ROS affects the mitochondrial ETS, membrane potential, 

mutation in MtDNA, free radical attack on membrane phospholipid causing lipid 

peroxidation and activates events leading to apoptosis (34).  

 Cd also affects the cell by interfering with the cell cycle progression, 

differentiation, proliferation, DNA replication and repair system and apoptotic pathways 

(32). It is not directly genotoxic as it cannot bind to the DNA directly or stably interact 

with DNA (32). Cd affects the genome stability indirectly via production of ROS, by 

inhibiting the DNA repair systems, causing single stranded breaks in DNA (SSB), 

chromosomal abberation and depleting the activity of cellular antioxidants (32-33, 41).  

In addition to the direct toxic effects of Cd, this metal can also have indirect 

negative effects on the organism’s fitness due to the increased basal maintenance costs 

and reduced aerobic scope in Cd-exposed organisms (19). Increased BMR and reduced 

aerobic scope are caused by Cd-induced increase in the rates of proton leak that lower 

mitochondrial efficiency, reduced ATP yield, elevated energy costs for metal 

detoxification and damage repair due to upregulation of metallothioneins, HSP, 

metabolism, antioxidants and maintenance of ion homeostasis that divert energy from 

fitness-related functions such as growth and reproduction (33, 41, 43).    
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1.4.3   Detoxification and defense mechanisms against cadmium-induced                    

           injury: 

Physiological and cellular defense mechanisms involved in detoxification of Cd 

can be divided into three groups: 1) elimination mechanisms excreting Cd from the cells; 

2) binding mechanisms that remove Cd from the free ion pool thereby reducing its 

toxicity; 3) general stress protection mechanisms that deal with the consequences of Cd-

induced cellular damage (32-33, 44). These cellular protection systems are very efficient 

in reducing metal toxicity, but their capacity is limited, and high metal accumulation can 

overwhelm them resulting in the destabilization of lysosomal membranes and interaction 

of free metal ions with proteins and DNA [36]. 

Elimination and binding mechanisms are the first line of defense against Cd 

toxicity (45).  Multixenobiotic resistance proteins (MXR) and metallothioneins (MTs) 

play an important role in Cd elimination and binding respectively. MXRs belong to the 

superfamily of ATP-binding cassette (ABC) transporters (45). MXR can bind to and 

efflux a wide variety of structurally and functionally diverse substrates against the 

gradient of concentration using energy of ATP (45-46). Their role in the cell is to prevent 

the entry of xenobiotics and remove those that have entered so that the damage to cell is 

minimal (45). MXRs are pumps are mostly involved in the transport of organic pollutants 

but can also remove trace metals like Cd and Hg bound to organic ligands such as 

glutathione (47).  

Binding to metallothioneins (MTs) is a key detoxification mechanism for Cd and 

other toxic metals (7). MTs are non-enzymatic cytosolic proteins with low molecular 

weight (typically 6-10 kDa) that regulate homeostasis of essential metals such as copper 

and zinc, and bind to toxic metals such as Cd and mercury (33, 39, 44, 48-49). MTs 
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contain multiple cysteine residues, but no aromatic amino acids (50). Thiol groups of 

cysteines on MTs serve as the binding sites for class B metals including Cd (30, 33, 44). 

Metallothioneins (MT) reduce availability of free Cd in the cytoplasm by removing it 

from the biologically active pool and protecting sensitive target molecules (33, 39, 44). 

MTs also serve as free radical scavengers (33, 39, 44, 48-49). Recent studies show that 

MTs may also be involved in transfer of metal ions from the cytosol to lysosomes, and 

from there to insoluble metal-containing granules aiding in metal elimination (35). 

Exposure of cells and tissues to Cd causes upregulation of genes involved in MT protein 

synthesis resulting in an adaptive response of the cell to Cd toxicity (30, 33).  

Heat shock proteins (HSPs) are the second line of cellular defense against the 

toxic effects of Cd and other trace metals.  HSPs can be induced by a number of factors 

such as heat, hypoxia, heavy metals, oxygen radicals, radiation and osmotic changes.  

Protein denaturation or any type of protein damage serves as trigger for induction and 

upregulation of HSPs (33). HSPs act as molecular chaperones assisting in the correct 

folding of misfolded proteins with exposed hydrophobic and/or promoting selective 

degradation of misfolded or denatured proteins (51-52). HSPs assist to repair and protect 

cellular proteins from stress induced damage and to minimize protein aggregation (52-

53). Several members are also expressed in unstressed cells where they act as a  

molecular chaperone to assist in protein maturation (53). Induction of HSPs in response 

to Cd is largely due to denaturation and oxidation of proteins (32). HSPs are broadly 

divided into five families based on their molecular weights, amino acid sequence 

homologies and functions: HSP 100, HSP90, HSP 70, HSP 60 and the small HSP family 

(51, 53). Among these, HSP70 is the most abundant family that includes both stress 
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inducible and constitutively expressed proteins (52-53). HSP70 is most highly conserved 

and the first to be induced by a variety of stressors including Cd (51). HSP90 and HSP70 

induction by Cd and other stressors have been reported in mollusks including Mytilus 

edulis, Mytilus galloprovinciallis, Crassostrea gigas and Crassostrea angulata  (53-54).  

Glutathione (GSH) is another ubiquitous molecule that functions as an antioxidant 

and is essential for detoxification of metals including Cd (33, 55-56).  GSH is the reduced 

form whereas glutathione disulphide (GSSG) is the oxidized form (32). GSSG is formed 

by joining of two molecules of GSH in an oxidation reaction of –SH group of cysteine 

resulting in formation of disulphide bridge between cysteine residues (4). In marine 

invertebrates levels of GSH and ratio of GSH/GSSG have been used as a biomarker of 

heavy metal stress (32, 55). Reduction in the levels of GSH on exposure to Cd is due to 

conjugation reaction of metals to GSH that detoxifies the metals but reduces the total 

amount of GSH available (55-56). Cytoplasmic Cd can also bind to GSH forming 

bisglutathionato-Cd-complexes (Cd-GS2) that are removed from the cytosol to lesser 

sensitive compartments of the cell (34).  

Antioxidant protection mechanisms also play a key role in preventing Cd-induced 

cellular injury. Because determination of the effects of Cd and temperature stress on 

oxidative damage is a focus of my dissertation research, below I discuss the mechanisms 

and markers of oxidative damage, as well as antioxidant defense mechanisms in details. 

 1.5   Oxidative stress and its effect on biomolecules: 

 1.5.1   Causes of oxidative stress: 

Cd and temperature stress are known to cause oxidative damage in a variety of 

organisms including mollusks. Oxidative stress is an imbalance between the production 
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of oxidants and an organism’s ability to detoxify the reactive intermediates by 

antioxidants (4, 57-59).  Chemically any substance that can accept an electron or readily 

transfer an oxygen atom is known as an oxidizing agent or an oxidant(4). In contrast, any 

chemical that loses an electron or accepts a hydrogen atom is referred to as a reducing 

agent (4). Reactive oxygen and nitrogen species (ROS and RNS) that are generated in the 

process of cellular metabolism and/or in response to metal toxicity are strong oxidizing 

agents and are often referred to as pro-oxidants, while biological molecules that 

neutralize these pro-oxidants by reducing them are called antioxidants (4). Oxidants can 

Oxidants be further classified into radicals and non-radicals (4) (Table 1).  Compounds 

capable of independent existence and containing at least one unpaired electron in their 

orbit are termed radicals (4, 60). This includes compounds such as biradical (O2
••
), 

superoxide anion radical (O2
•–

), hydroxyl radical (OH
•
), peroxyl (ROO

•
), alkoxyl radical 

(RO
•
)  and nitric oxide (NO

•
) (4). Radicals are highly reactive due to their ability to 

accept or donate electrons to attain stable electronic configuration. Non-radical 

substances such as one form of singlet oxygen (
1
O2), hydrogen peroxide (H2O2), 

hypochlorous acid (HClO), ozone (O3), aldehydes (HCOR), and peroxynitrite (ONOOH) 

can also act as oxidants (4). Various exogenous and endogenous sources can lead to 

formation ROS and RNS in the cell (4). Exogenous sources include gamma and UV 

radiation, ultrasound, drugs, pollutants, xenobiotics and toxins, whereas endogenous 

sources include mitochondria, cytochrome P450 metabolism, peroxisomes and 

inflammatory cell activation (4, 60).  

Mitochondria is a major organelle responsible for ROS production (4). Reduction 

of oxygen to water to form ATP takes place via electron transport system (ETS), 
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increasing chances of formation of mitochondrial ROS at complexes I and III (4, 32-33, 

61). Superoxide is the main radical produced by mitochondria and it is generated by the 

incomplete reduction of molecular oxygen in the mitochondrial ETS (62). The 

dismutation of superoxide radicals results in production of H2O2, which can cause 

damage to the cell even at a relatively low concentrations (4). 

TABLE 1. Classification of most important oxidants in biological systems [modified after 

Kohen and Nyska(4)]. 

 

The reactivity of the OH
•
 radical is the highest; it is short lived and has a strong 

affinity towards other molecules (4). Under normal physiological conditions superoxide 

and nitric oxide radicals react forming peroxynitrite, which can cause effects similar to 

OH
•
, oxidizing the sulfhydryl groups and causing damage to biological structures (4). 

Most ROS and RNS are short lived and they react quickly with other molecules(4). For 

example, highly reactive species like OH
• 
causes damage at the site where it is produced 

and if there are no susceptible sites in the vicinity the effects are not seen (4). In cases of 

Classification of cellular oxidants 

Oxygen and nitrogen radicals Oxygen and nitrogen non-radicals 

Oxygen (bi-radical) (O2
••
) 

Superoxide anion (O2
•–

) 

Hydroxyl (OH
•
), 

Peroxyl (ROO
•
) 

Alkoxyl (RO
•
) 

Nitric acid (NO
•
) 

Singlet oxygen (
1
O2) 

Hydrogen peroxide (H2O2) 

Hypochlorous acid (HClO) 

Ozone (O3) 

Aldehydes (HCOR) 

Peroxynitrite (ONOOH) 
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radicals like superoxide and non-radicals like HClO, the longer half-lives allows them 

time to diffuse and reach long-distance sensitive sites to cause oxidative damage (4). For 

example, superoxide radicals that are produced in mitochondrial membrane typically 

diffuse into the mitochondrial matrix and can react with mitochondrial proteins and lipids 

as well as the transition metals bound to the mitochondrial genome (4).  

Free metals in the cytoplasm can enhance oxidative stress due to ROS or RNS. 

Most transition metals contain unpaired electrons and can convert a relatively stable 

oxidants into powerful radicals (4). Metals like copper and especially iron participate in 

Fenton reaction and metal-mediated Haber-Weiss reactions (4) (Figures 2 & 3). 

Typically, metals that are bound to the surface of macromolecules like proteins and DNA 

participate in these reactions whereas metals which are deep within the proteins (e.g. in a 

catalytic site or in cytochromes) are not available for these reactions (4). To participate in 

the Fenton reaction, iron which is present in cell in the form of ferric ions (Fe
+3

) have to 

be reduced to ferrous ions (Fe
+2

) (Figure 3) (4). This reduction can be achieved by 

superoxide radicals leading to continuous production of highly toxic hydroxyl radical via 

Haber–Weiss reaction (Figure 4) (4). It is estimated that around 1-3% of the 

mitochondrial oxygen consumption in mammals is converted to ROS, while in 

invertebrates, this percentage can reach 10-30% (63-64).  

 

 

 

 

FIGURE 2:  Fenton reaction. Iron participate in Fenton reaction where ferric ions (Fe+3) are  

reduced to ferrous ions (Fe+2) by hydrogen peroxide leading to production of highly toxic 

hydroxyl radicals (4). 
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1.4.2 Effects of oxidative stress on biomolecules: 

1.5.2 

 1.5.2   Effects of oxidative stress on biomolecules: 

Biological targets of ROS/ RNS include both organic and inorganic molecules in 

the cell including DNA, proteins, lipids, amino acids, sugars and metals (4, 58-59). 

Protein oxidation is a covalent modification of proteins by ROS or secondary byproducts 

of oxidative stress (58). Oxidative attack on proteins results in site-specific amino acid 

damage, fragmentation, denaturation and damage to their tertiary structure, loss of 

enzymatic activity due to oxidation of iron-sulfur centers, altered electrical charge and 

aggregation of cross-linked products (58). Oxidation of amino acids such as histidine, 

lysine, proline, arginine and serine results in formation of carbonyl groups (aldehydes and 

ketones) (4, 58, 65). Concentration of the carbonyl groups in cellular proteins serves as a 

general marker for the oxidative damage to proteins (58). Most of the assays for detection 

of carbonyl group use dinitriphenylhydrazine (DNPH), which leads to formation of a 

stable dinitrophenyl hydrazone products, which can be spectrophotometrically analyzed 

at 370nm (4, 58). Indirect oxidative modification of amino acyl side chains of protein can 

also occur through its interactions with oxidatively modified lipids, amino acids, sugars 

and glutathione (58). For example, end products of lipid peroxidation such as 4-

FIGURE 3: Haber-Weiss reaction. It is a metal mediated reaction in which ferric ions are 

reduced by superoxide radicals to ferrous ions. Ferrous ions then react with H2O2 formed due 

to enzymatic dismutation to superoxide radicals to yield OH
.
 via Fenton type reaction. The 

sum of equation 1 & 2 results in Haber-Weiss reaction. Thus the interaction of superoxide 

radical and H2O2 leads to production of hydroxyl radicals (4). 
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hydroxynonenal (4-HNE) and malondialdehyde (MDA) can bind with amino acids 

resulting in formation of aldehyde moieties on amino acids (58). 

Membrane lipids are also among the key targets for ROS and RNS in the cell due 

to the presence of high concentrations of unsaturated fatty acids (4). ROS and RNS can 

induce a chain reaction in which one molecule of free radicals can oxidize many 

molecules of lipids (32, 44). It may cause modification of lipid composition, cross linking 

and polymerization of membrane components (32). These changes can in turn cause 

disturbance to membrane organization, structure, integrity, permeability and functionality 

(66). Lipid peroxidation products are also carcinogenic and mutagenic. If oxidation of the 

membrane lipids occurs in mitochondria, it can lead to impaired enzymatic activity and 

ATP production (32).  

Lipid peroxidation takes place in three steps: initiation, propagation and 

termination (4). Initiation involves an attack of ROS on double bonded methylene group 

of lipids extracting a hydrogen atom and weakening the bond between carbon and 

hydrogen (4). In order to stabilize, fatty acid radical rearranges its molecular structure to 

forms conjugated dienes (4). In presence of oxygen, fatty acid radical (ROO
•
) will form 

during the propagation stage (4). These radicals are in turn capable of extracting 

hydrogen atom from the neighboring fatty acid molecule leading to a chain reaction(4). 

Single initiation event can lead to peroxidation of all the unsaturated lipids in the 

membrane (4). Finally, the termination can take place when ROO
•
 reacts with another 

radical or antioxidants (4). The degraded products of lipid peroxidation are aldehydes 

such as malondialdehyde (MDA) (4, 32, 67).  MDA is among the first lipid peroxidation 

products and it is widely used as an indicator of oxidative stress (4). 
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ROS/RNS can also lead to DNA damage including modification of DNA bases, 

DNA strand breaks, extraction of hydrogen from deoxyribose sugars, loss of purines, 

DNA-protein cross linkage and damage to DNA repair mechanisms (4, 44, 65). Of all the 

ROS, hydroxyl radicals cause most damage to DNA by attacking the C-8 position of 

guanine leading to formation of 8-hydroxydeoxyguanosine (8-OHdG) (4). Transition 

metals like iron that catalyze the production of OH
• 
via Haber-Weiss reaction, have high 

binding affinity to DNA and in the presence of ROS can cause extensive damage to DNA 

leading to double strand breaks (4). 

1.5.3   Antioxidant defense system: 

To prevent the interaction between the radicals and biologically important 

molecules, antioxidants are usually present at the sites where these radicals are produced 

(4). Cells have evolved multiple mechanisms for protection against ROS and RNS 

including enzymatic and non-enzymatic antioxidants (9).  

Enzymatic antioxidants involve superoxide dismutase (SOD), catalase and 

glutathione peroxidases (GSH peroxidases) (Figure 4) (59).  SOD is present in different 

locations in the cells as a metalloprotein bound to different metals like copper, zinc, 

manganese and iron. SOD enhances dismutation of superoxide radicals to hydrogen 

peroxide (H2O2), which is further removed by the activity of enzyme catalase and 

glutathione peroxidase (4, 9, 65). Catalases can effectively remove H2O2 present at high 

concentrations by converting two molecules of H2O2 to produce an oxygen molecule and 

two molecules of water (4). In contrast, glutathione peroxidases (GPx) have high affinity 

for H2O2 and can remove it even at low concentrations (4). Compared to catalases, GPx 
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activity is an expensive process as it consumes two molecules of glutathione (GSH) for 

removal of one molecule of H2O2 (4).  

 

 

 

 

Non-enzymatic antioxidants are classified as hydrophilic and lipophilic based on 

their solubility (4). Hydrophilic non-enzymatic antioxidants include vitamin C (ascorbic 

acid), glutathione, lipoic acid and uric acid, and lipophilic antioxidants include Vitamin E 

(tocopherol), β-carotenoids (vitamin A precursor) and ubiquinol (Co-e-Q)  (4, 44, 59). 

Some small molecules such as melatonin can also act as a scavenger for a variety of pro-

oxidants (4, 9, 33, 65). Glutathione is a low molecular weight tripeptide and an important 

non-enzymatic antioxidant in the cell (4). GSH can scavenge ROS like OH
•
, ROO

•
, RO

•
 

and HClO and prevents copper from participating in Haber-Weiss reactions by acting as a 

chelating agent (4, 32). GSH also acts as a cofactor for enzyme GSH peroxidases and  

donates necessary electrons for the decomposition of H2O2 (4, 32). In the process of 

antioxidant action, GSH is typically oxidized to glutathione (GSSG) and has to be 

FIGURE 4: Antioxidant enzymes in mitochondria. SOD is capable of spontaneous 

dismutation of superoxide radicals to H2O2 (equation 1),  which can be further be removed 

by catalases to produce an oxygen molecule (equation 2). In contrast to catalase, GSH 

peroxidases possesses high affinity to H2O2  and oxidize glutathione, GSSG. GSSG is further 

reduced to GSH reeducates by reduced NADH reductase (equation 3) (4).  
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regenerated by GSH reductase in a NADPH-dependent reaction (4, 57). Ratio of GSH/ 

GSSG is often used as an indicator of oxidative stress in the cell (4, 9, 44, 65).  

 1.6   Eastern oysters (Crassostrea virginica) as a model to study metabolic  

                    effects of Cd: 

The eastern oyster, Crassostrea virginica is a common eurythermal bivalve 

inhabiting estuarine ecosystems along the east coast of North America from Gulf of St. 

Lawrence to the Gulf of Mexico (68). Oysters are both a “colonizer” and an “ecosystem 

engineer” species and an important indicator of estuarine ecosystem health [69]. They 

have high fecundity rates and can colonize new niches opened by changes in the physical 

environment (69). They then modify their physical environment to make it suitable for 

the long term survival. Oysters qualify as an “ecosystem engineers” because of their reef 

building capabilities. Oyster reefs provide shelter to more than 300 species (69). Their 

filter feeding helps in cleaning of water by filtering out the phytoplankton and suspended 

particles from the water, and supports higher-level consumers by converting microalgae 

and detritus to animal biomass [69]. Oysters are an important link in the food chain and 

are prey to numerous animals including birds, sea stars, whelks, crabs and humans [69]. 

In recent years, over-harvesting, loss of habitat, decline in the water quality, increase in 

anthropogenic pollution, global warming, and increased incidence of disease have led to a 

drastic reduction in oyster populations and the health of the estuarine ecosystems in 

which they reside (70). Approximately 91% of oyster population has declined due to 

massive destruction of oyster reefs by dredging, eutrophication and disease (71). Oyster 

production now predominantly depends upon aquaculture (71). 

Oysters are facultative anaerobes and can transition between aerobic and 

anaerobic metabolism depending on the environmental conditions such as oxygen 
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availability or temperature. When oxygen supply from ventilation and circulation is 

sufficient to fully support the mitochondrial function, oysters predominantly depend on 

aerobically produced ATP (23). However, if oxygen supply becomes limited (due to the 

environmental hypoxia or tissue hypoxemia caused by a mismatch between oxygen 

demand and supply), oysters transition to partial or full anaerobiosis (23). Oysters can 

produce ATP via a variety of anaerobic mechanisms including glycolysis and hydrolysis 

of high energy phosphates such as phospho-L-arginine (PLA).  PLA is used in a one-step 

energy conversion reaction catalyzed by arginine kinase to rapidly replenish ATP during 

the short-term bursts in ATP demand, such as exercise (8). In contrast, during the long-

term hypoxia or hypoxemia, oysters depend on anaerobic catabolism of carbohydrates 

and amino acids such as aspartate (72-75). The anaerobic glycolysis of oysters yields 

alternative end products such as L-alanine and opines in the cytosol while succinate, 

acetate and propionate are produced in the mitochondria (74, 76). The mitochondrial 

pathways producing succinate, acetate and propionate yield more ATP per unit glucose 

metabolized and are more compatible with the long-term energy and acid-base 

homeostasis compared with lactate or opines (72-75). Thus, production of succinate 

yields 4.7 ATP molecules per glycosyl unit, while propionate yields 6.4 ATP per glycosyl 

unit compared with 3 molecules of ATP per glycosyl unit produced in the lactate 

pathway. However, even the most efficient anaerobic pathways yield considerably less 

ATP production compared to aerobic pathways (38 ATP molecules per glycosyl unit), 

and partial or complete anaerobiosis cannot support survival of an organism for a long 

period of time (8). Onset of partial anaerobiosis indicated by accumulation of anaerobic 

end products such as L-alanine, acetate, succinate or propionate is therefore an indicator 
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of a  transition to the pessimum physiological range and time-limited survival (Figure 1) 

(77). In the case of the environmental temperature, accumulation of anaerobic end 

products indicates Tc and transition from the pejus to the pessimum temperature range in 

oysters (Figure 1). 

Oysters are exposed to multiple environmental stressors in their habitats including 

fluctuating temperatures during diurnal and tidal cycles, seasonal temperature changes, 

variation in food and oxygen availability, salinity and pollutants (including Cd) (23). 

Oysters are ectothermic organisms, and their body temperature changes with the 

environmental temperature (23). Like all intertidal organisms, oysters can experience 

rapid changes in body temperatures as large as 10-20°C during low summer tides and 

even greater temperature shifts during seasonal cooling and warming (19, 41). Oysters 

also are often exposed to trace metals including Cd in polluted estuaries and have ability 

to strongly accumulate Cd up to 0.4-40 µg
-1

 dry weight in natural populations and up to 

300-400 µg
-1

 dry weight during acute exposures to waterborne Cd (35). This makes 

eastern oysters a useful model for the study of interactive effects of Cd and temperature 

(41).   

Cd strongly affects metabolic function and energy balance in C. Virginia [9]. Cd 

has a direct effect on the aerobic capacity of oysters due to its negative impacts on oyster 

mitochondria including decreased in phosphorylation efficiency, elevated proton leak and 

uncoupling and thus impaired ATP production (43). Cd exposure also can inhibit  

anaerobic metabolic pathways in oysters suggesting global impairment of energy 

metabolism (14). It is known to result in  cellular energy deficiency and oxidative stress 

and at higher concentrations of Cd can cause collapse of mitochondrial functioning 
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leading to apoptosis (25). Cd exposure in oysters also results in the elevated standard 

metabolic rate (SMR) reflecting higher costs of basal maintenance due to the increased 

rates of proton leak, elevated costs of metal detoxification due to upregulation of 

metallothioneins, HSP, antioxidants, and maintenance of ion homeostasis (43). These 

data strongly suggest that exposure to Cd results in the reduced aerobic scope and 

therefore is likely to sensitize oysters to temperature stress by narrowing their thermal 

tolerance window [9]. Earlier studies support this hypothesis showing that concomitant 

exposure to Cd and elevated disrupts balance between energy demand and energy supply 

and results in physiological stress and high mortality of oysters (63). However, up to date 

there have been no studies to directly test the effects of Cd exposure on the thermal 

tolerance window on marine ectotherms and determine whether Cd exposure reduces 

thermal tolerance by shifting the threshold critical temperatures (Tc). My dissertation 

research aim to close this gap by determining whether exposure to environmentally 

relevant concentrations of Cd shifts the upper Tc of oysters to lower values thereby 

narrowing the thermal tolerance window of these organisms, and whether the effects of 

Cd on thermal tolerance are modified by seasonal acclimatization to different thermal 

regimes. This study will provide important insights into the physiological mechanisms of 

tolerance to temperature and Cd stress in marine bivalves and the potential implications 

of temperature stress (such as expected in the case of the global climate change and/or 

seasonal thermal fluctuations) for performance and survival of oyster populations in 

polluted estuaries. 
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1.7   Aims and hypotheses of the study:  

The overall goal of this project was to determine the effects of Cd exposure and 

seasonal acclimatization on the thermal tolerance window determined by the crtitical 

temperatures of aerobic metabolism (Tc) in a model marine ectotherm, the eastern oyster 

Crassostrea virginica. To achieve this goal, I have tested the following hypotheses: 

1) Exposure of oysters to Cd and/or cold acclimatization in winter will result in a 

shift of the upper critical temperatures of aerobic metabolism to lower values as 

determined by the earlier accumulation of anaerobic end products and/or impaired  

cellular energy status. 

2) Transition to anaerobiosis at elevated temperature will be associated with 

elevated oxidative damage reflecting mitochondrial dysfunction at elevated temperatures, 

and this oxidative damage may be enhanced by Cd exposure.  

3) Oysters collected in winter season will show higher oxidative damage in 

response to acute temperature stress and/or Cd exposure as compared to their warm-

acclimatized summer counterparts. 

These hypotheses were tested in three Research Aims:  Research aim 1: To 

determine effects of Cd exposure and season on Tc in oysters as determined by 

accumulation of anaerobic end products (as an early markers of Tc). 

Research aim 2: To determine the effects of seasonality and Cd exposure on the cellular 

energy status of oysters (as a late marker of transition into the pessimum range). 

Research aim 3: To determine the effects of seasonality and Cd exposure on oxidative 

stress during acute temperature rise in oysters.



 

CHAPTER 2:  MATERIALS AND METHODS 

 

 

 2.1   Experimental design: 

Adult North Carolina oysters were purchased from J & B Aquafood (Jacksonville, 

NC) and shipped to UNC Charlotte within 24 hours of collection. Summer and winter 

oysters were collected in May and December, respectively, and the exposures were 

conducted separately in each season using the same experimental design. After a 

preliminary acclimation period of 7 days at 20°C, the oysters were randomly divided into 

two groups and were exposed to either clean artificial seawater (ASW; control group) or 

ASW with 50 µg L
-1

 of Cd (Cd-exposed group) at 20 °C for a period of 30 days. For the 

Cd-exposed group, ASW in tanks was supplemented with 50 µg L
- 1 

Cd added as CdCl2. 

Cd was replenished twice a week to maintain the concentration of 50 µg L
-1

. Water was 

changed in the control and Cd-exposed tanks weekly. Salinity was maintained at 30+2 

ppt in all exposures. Oysters were fed ad libitum on alternate days with DT’s Live Marine 

Phytoplankton (Premium Reef Blend) according to the manufacturer’s recommendation.  

After the 30-day acclimation period, oysters were transferred into two 120 L tanks each 

containing ASW (20°C, 30 ppt salinity) with the same concentration of Cd as during the 

acclimation (0 and 50 µg L
-1 

for control and Cd-exposed oysters, respectively). 

Temperature in the tanks was controlled by heating rods and a circulating water bath. 

Oysters were allowed to acclimate in the tanks for 24 h at 20°C, after which a subsample 

(8-16 oysters) was collected. The temperature was then increased by 4
o
C at a rate of 1

o
C



44 

 

per hour, and once the target temperature (24
o
C) was reached, the oysters were kept at it 

for 48 h. This time is sufficient to reduce the acute effects of rapid temperature change 

but not sufficient for full thermal acclimation (Sokolova, personal communication). After 

48 h of exposure, another subsample of 8-16 oysters was collected, and the temperature 

was again increased by 4
o
C as described above. As a result of this stepwise warming 

procedure, subsamples of oysters were collected at 20°C, 24°C, 28°C, 32°C and 36°C. 

All experimental oysters experienced gradual warming starting from 20°C with a 48 h of 

exposure after every 4°C temperature increment until their target temperature of 

collection was reached. Water was changed in experimental tanks every 48 h using clean 

or Cd-supplemented water equilibrated to the same temperature as the current exposure 

temperature in experimental tanks. During every water change, Cd was added to the tank 

with Cd-exposed oysters to avoid Cd depletion and maintain Cd concentration at 50µg L
-

1
. Throughout the 30-day acclimation and experimental exposures, the average measured 

Cd concentration in Cd-exposed tanks was 45.6 µg Cd L
-1

, while Cd levels in the control 

tanks were below the detection limits of the method used (<0.5 µg Cd L
-1

). 

Immediately following the collection, experimental oysters were dissected and 

their gills, hepatopancreas, muscle and mantle tissues were shock frozen in liquid 

nitrogen (19, 78). All tissues were stored in liquid nitrogen until further analyses.  

2.2   Tissue metabolite determination: 

Tissue metabolite concentrations were measured in deproteinized perchloric acid 

(PCA) extracts of oyster tissues. For extraction, 200-300 mg of tissues was ground to a 

fine powder in mortar and pestle under the liquid nitrogen. Tissue powder was mixed 

with 1.5 ml of ice cold 0.6 M perchloric acid (PCA) containing 150 mM EDTA to 
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maximize ATP extraction. The extracts were sonicated for 20 s at the maximum power 

(10 W), and centrifuged for 2 minutes at 10,000 x g at 4ºC to remove precipitated 

proteins. The extract was neutralized by adjusting the pH to a range of 7-7.5 with 5 M 

potassium hydroxide (KOH) and 5 M hydrochloric acid (HCl). Samples were centrifuged 

to remove precipitated potassium perchloride at 10,000 x g for 5 minutes at 4ºC. 

Supernatant was collected and stored at -80ºC till further analyses (25, 77, 79).  

Concentration of metabolites (L-alanine, acetate, succinate, adenylates, 

phosphagen/aphosphagen, glycogen and glucose) in oyster tissues were measured in 

neutralized PCA extracts spectrophotometrically using enzymatic assays described 

elsewhere (77, 80-81). Briefly, the assay conditions were as follows: 

L-alanine:  80 mM Tris buffer, pH 7.6,  7 mM 2-oxoglutarate, 0.24 mM NADH 

and 260 U ml
-1

 of lactate dehydrogenase, 10,000 U ml
-1

 alanine amino-transferase 

(glutamate pyruvate transaminase); absorbance (340 nm) was measured at the start and 

after  30 min of the reaction (25, 77); 

 Acetate:  100 mM triethaloamine (TRA) buffer  pH 7.6, 0.2 M magnesium 

chloride, 18 mM NADH, 91 mM ATP, 150mM PEP phosphoenolpyruvate (PEP), 5 U 

ml
-1

 of pyruvate kinase (PK), 5 U ml
-1

 lactate dehydrogenase (LDH) each, 50 U ml
-1

 of  

acetate kinase (AK); absorbance (340 nm) was measured at the start and after  40 min of 

the reaction (25, 77); 

 ATP: 38.5 mM  triethanolamine hydrochloride (TEA) buffer pH 7.6,  0.04 mM 

NADP, 7 mM MgCl2.6H2O, 0.462 U ml
-1

 glucose-6-phosphate dehydrogenase, 50 mM 

glucose, 1.8 U ml
-1

 hexokinase; absorbance (340 nm) was measured at the start and after  

30 min of the reaction (77); 
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ADP and AMP: 58 mM TEA buffer pH 7.6, 3 mM phosphoenolpyruvate (PEP), 

0.09 mM NADH,   24 U ml
-1

 lactate dehydrogenase (LDH), 18 U ml
-1

 pyruvate kinase ( 

PK), 16 U ml
-1 

myokinase (MK); absorbance was measured at 340 nm; 

L-arginine: 170 mM glycilglycin pH 7.6, 13 mM Mgcl2.6H2O, 6.5 mM pyruvate, 

0.26 mM ADP, 0.79 mM NADH, 1 U ml
-1

 octopine dehydrogenase; absorbance (340 nm) 

was measured at the start and after  30 min of the reaction (25, 77); 

D-glucose: 38.5 mM TRA buffer, pH 7.6, 0.04 mM NADP, 7 mM MgCl2*6H2O, 

0.462 U ml
-1

 glucose-6-phosphate dehydrogenase, 1.8 U ml
-1

 hexokinase (7).   

For determination of phospho-L-arginine (PLA) levels, PLA in the sample was 

subjected to acid hydrolysis yielding L-arginine. L-arginine was determined as described 

above and PLA levels were calculated as a difference in L-arginine contents of the 

sample before and after the acid hydrolysis (25, 77, 82). Glycogen concentration was 

measured in PCA extracts after enzymatic hydrolysis of glycogen to D-glucose by 

glucoamylase ((83)) and determined by the difference in the D-glucose levels in the 

tissue extract before and after glucoamylase treatment. Succinate was measured in PCA 

extracts using succinic acid kit (Boehringer Mannheim, R-Biopharm kit Darmstadt, 

Germany) according to the manufacturer’s instructions (25, 77). Concentrations of 

glycogen were expressed in mg g
-1

 wet tissue mass, and all other metabolites  – as µmol 

g
-1

 wet tissue mass.  

2.3   Lipid and protein analysis: 

Tissue lipid content was measured using a standard method of chloroform 

extraction (84-85). Oyster tissues (~50-100 mg of wet mass) were homogenized in 

chloroform/methanol mixture (2:1 v:v) using tissue to chlorophorm/methanol ratio of 
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1:20 (w:v). Samples were sonicated for 1 min (output 69 W, Sonicator 3000, Misonix, 

Farmingdale, NY, USA), vortexed and centrifuged for 5 min at 13,000 x g. The 

supernatant was transferred into a new tube and the chloroform/methanol extraction was 

repeated on the tissue pellet. The supernatants of two extractions were pooled, mixed 

with water (25% of the total volume of supernatant), and centrifuged for 5 min at 13,000 

x g. The lower phase (chloroform) was transferred to a pre-weighed tube and evaporated 

to determine the mass of the extracted lipids.  

For protein determination, 100-200 mg of oyster tissues were homogenized in ice-

cold homogenization
 
buffer (100 mM Tris, pH 7.4, 100 mM

 
NaCl, 1 mM EDTA, 1 mM 

EGTA, 1% Triton-X100) using hand-held Kontes Duall tissue grinders (Fisher Scientific, 

Suwanee, GA, USA). Homogenates were sonicated 3×10 s (output 69 W, Sonicator 3000, 

Misonix, Farmingdale, NY, USA) to ensure complete release of the proteins, with 

cooling on ice (1 min) between sonications. Homogenates were centrifuged for 10 min at 

20,000 x g and 4°C, and supernatants were used for protein determination. Protein
 

content was measured using the Biuret protein assay.
 
Concentrations of lipids and 

proteins were expressed in mg g
-1

 wet tissue mass.  

2.4   Oxidative stress markers: 

Tissue levels of malondialdehyde (MDA) were determined by thiobarbituric acid 

assay (TBARS) (86-87). Briefly, tissues powdered under liquid nitrogen were 

homogenized in 4 volumes of 50 mM potassium phosphate buffer (pH 7.0 at 20°C), 

sonicated for 3 to 5 seconds (output 7, Sonic Dismembrator Model 100, Fisher Scientific, 

Suwanee, GA) and centrifuged for 5 min at 13 000 x g and 4°C. Sample supernatants as 

well as blanks and MDA standards of known concentrations were mixed with 0.375 % 
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thiobarbituric acid (TBA) and 2% butylated hydroxytoluene (BHT) in the following ratio: 

1:14:0.14, heated for 15 min at 100°C and again centrifuged (13 000 g, 5 min, room 

temperature). The formation of a pink chromagen by reaction between MDA and TBA 

was measured spectrophotometrically at 532 nm. Tissue levels of MDA were expressed 

in µmol g
-1

 wet mass.  

Protein carbonyl groups were measured spectrophotometrically as described 

elsewhere (88). Tissues were ground under liquid nitrogen and homogenized in the buffer 

containing 50 mM HEPES, 125 mM KCl, 1.1 EDTA and 0.6 mM MgSO4 (pH 7.4) and 

protease inhibitors [leupeptin (0.5 µg mL
-1

), pepstatin (0.7 µg mL
-1

), 

phenylmethylsulfonyl fluoride (40 µg mL
-1

) and aprotinin (0.5 µg mL
-1

)]. Samples were 

centrifuged at 100,000 × g for 15 min, supernatant was collected and incubated at room 

temperature with 10 mM 2,4-dinitrophenylhydrazine (DNP) in 2 M HCl. The blanks were 

incubated with HCl without DNP. After incubation, proteins were precipitated by adding 

100% TCA and centrifuged at 11,000 × g for 10 min. The pellet was collected, washed 

with ethanol ethylacetate (1:1) and resuspended in 6 M guanidine hydrochloride in 20 

mM in KH2PO4 (pH 2.5) until dissolved. The absorbance was measured at 360 nm on a 

spectrophotometer (Cary 50, Varian) using guanidine HCl solution as reference. The 

amount of carbonyls was estimated as a difference in absorbance between samples and 

blanks using a molar extinction coefficient of carbonyls  = 22000 cm 
–1

 * M
-1

. Amount 

of carbonyls was expressed per mg total protein measured in the same samples using 

Bradford method. 
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2.5   Tissue Cd concentrations: 

Mantle samples (~1-2mg dry weight) were freeze dried and digested in Teflon 

bottles with 52.5% nitric acid (trace metal grade; Fisher scientific, Suwanee, GA,USA) 

using 3-5 cycles of microwave heating (20-30s) with between cycle cooling on ice for 10-

12 minutes until tissues were fully digested. Cd concentrations were determined in the 

tissue digests with an atomic absorption spectrophotometer (Perkin-Elmer AAnalyst 800, 

Shelton, CT, USA) equipped with graphite furnace and Zeeman background correction.   

Water samples from experimental tanks were acidified with nitric acid (1% final 

concentration), and Cd levels measured by AAS. The detection limit of this method was 

0.5-1 µg Cd L
-1

 sample or 2.5-5 x 10
-3

 µg Cd g
-1

 wet tissue weight.   

2.6   Derived indices: 

The energy state of organisms is assessed by the individual concentration of all 

three phosphoadenylate nucleotides (ATP, ADP & AMP), a total concentration of 

adenylates (TANP), adenylate energy charge (AEC) and the proportion of phosphagen in 

the total phosphagen/aphoshagen pool (RPLA) (89). Adenylate energy charge (AEC) was 

calculated using the formula: 

 AEC = ([ATP] + 0.5 [ADP]) / ([ATP] + [ADP] + [AMP]) 

Total adenylate nucleotide pool was calculated as a sum of the concentrations of 

the respective adenylates: 

 TANP = [ATP] + [ADP] + [AMP] 

The relative amount of phosphagen (RPLA) in the total phosphagen/aphosphagen 

pool was calculated as follows: 

RPLA = [PLA] / ([PLA] + [L-arginine]) 
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Where [PLA] and [L-Arginine] are tissue concentrations of phospho-L-arginine  

(phosphagen) and L-arginine (aphosphagen), respectively, measured in µmol g
-1

 wet 

mass (90). 

2.7   Statistical Analyses:  

Statistical analysis was performed using generalized linear model (GLM) analysis 

of variance (ANOVA) after testing for normality of the data and homogeneity of variance 

and was followed by post hoc procedures (Fisher’s Least Significant Difference test for 

unequal N). To determine the effects of temperature, Cd exposure and season on tissue 

metabolite concentrations, adenylate and phosphagen/aphosphagen levels as well as 

energy-related parameters (TANP, AEC and RPLA), three-way ANOVAs were used with 

‘Temperature’ and ‘Cd exposure’ as fixed factors, and “Season’ as a random factor. To 

determine the effects of temperature, Cd exposure, season and tissue source on glycogen, 

glucose, lipid and protein concentrations, four-way ANOVAs were used with 

‘Temperature’, ‘Tissue’ and ‘Cd exposure’ as fixed factors, and “Season’ as a random 

factor. All models included the main factor effects and all factor interactions. Factor 

effects and differences between the means were considered significant if the probability 

of a Type I error was less than 0.05 (P≤ 0.05). Data are presented as percentages or 

means ± S.E.M. (Standard error of the mean) unless indicated otherwise. Statistical 

Analysis Software (SAS 9.2) (SAS Institute, Cary, NC, USA) was used for the statistical 

analyses, and graphs were constructed using Prism GraphPad  software (GraphPad 

Software, Inc., La Jolla, CA).



 

CHAPTER 3: RESULTS 

 

 

 3.1   Cd concentrations in oyster tissues: 

Cd exposure resulted in a significant accumulation of Cd in the mantle tissue of 

oysters (Fig. 5). Accumulated Cd burdens were higher in winter Cd-exposed oysters 

compared to their summer counterparts (P<0.05) but were not significantly affected by 

the acute temperature rise (Fig. 5). 
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FIGURE 5:  Total accumulation of Cd in mantle tissue in control (Ctr) and Cd-exposed 

(Cd) eastern oysters, C.virginica during summer (A) and winter (B) seasons. Daggers 

show the values that differ between control and Cd-exposed oysters (P<0.05). Summer: n 

= 8-12; winter n = 8 except the control oysters at 36°C where n = 3. 
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3.2   Anaerobic end product accumulation: 

Concentrations of anaerobic end products (L-alanine, acetate and succinate) were 

differentially affected by the studied factors (exposure to Cd, acute temperature rise and 

seasons) (Table 1). The effects of season were significant for all studied anaerobic end 

porducts whereas the effects of other factors and their interactions were different for L-

alanine, succinate and acetate (Table 1).  

  L-alanine levels in gill tissues of oysters were significantly affected by Cd 

exposure and season, as well as by the interactions of the exposure temperature and 

season and the three factor interactions between temperature, season and Cd exposure 

(Table 1). At the acclimation temperature (20°C), control oysters had lower L-alanine 

levels in winter than in summer (P<0.05), whereas in their Cd-exposed counterparts L-

alanine levels were similarly high in summer and in winter (Fig. 6).  Acute exposure to 

elevated temperatures resulted in a significant increase of L-alanine levels in gills of 

control and Cd-exposed oysters (Fig.6A). However, the pattern of the temperature 

response was different in oysters collected in different seasons, as well as in control and 

Cd-exposed oysters. In control oysters collected in summer, significant L-alanine 

accumulation occurred at 28°C and above, while in their Cd-exposed counterparts L-

alanine levels were elevated at 24°C and above (Fig. 6A). In winter, L-alanine levels in 

gills of control oysters increased at 24°C and above, although this trend was statistically 

significant only at 24 and 32°C (Fig.6B). In Cd-exposed oysters collected in winter, L-

alanine levels were elevated at the acclimation temperature (20°C) and did not change in 

response to the acute temperature rise except for a slight transient decrease at 28°C 

(Fig.6B).   
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Acetate levels in oyster gills were significantly affected by studied factors (Cd 

exposure, temperature and season) and their interactions (Table 1). At the acclimation 

temperature (20°C), tissue acetate levels were similar in summer and winter and in 

control and Cd-exposed oysters (P<0.05; Fig.7). Acute temperature rise induced 

significant acetate accumulation in control oysters in winter (at 24°C and above)  but not 

in summer (Fig. 7A & B).  In Cd-exposed oysters, elevated temperatures did not lead to 

acetate accumulation in winter or summer (Fig. 7A & B).  

Succinate levels in oyster gills were significantly affected by the season but not 

by temperature or Cd exposure (Table 1). Tissue levels of succinate were higher in 

summer compared to winter in control and Cd-exposed oysters at the acclimation 

temperature (20°C). No significant succinate accumulation was found in response to 

elevated temperatures in control or Cd-exposed oysters (Fig. 7 C & D).  
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FIGURE 6: Accumulation of L-alanine (an end product of cytosolic anaerobiosis) in gills 

of control (Ctr) and Cd-exposed (Cd) oysters C.virginica during summer (A) and winter 

(B) seasons. Asterisks indicate values significantly different from the respective groups 

of control or Cd-exposed oysters at 20°C (P<0.05). Daggers show the values that differ 

between control and Cd-exposed oysters at the same temperature (P<0.05). Summer: n = 

9-13; winter: n = 6-8 except at 36°C where n = 2. 
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FIGURE 7: Accumulation of acetate (A & B) and succinate (C &D) (mitochondrial 

anaerobic end products) in gills of control (Ctr) and Cd-exposed (Cd) oyster, C.virginica 

during summer and winter seasons. Asterisks indicate values significantly different from 

the respective groups of control and Cd-exposed oysters at 20°C (P<0.05). Daggers show 

the values that differ between control and Cd-exposed oysters ((P<0.05). Summer: n= 9-

13; winter: n = 6-8 except at 36°C where n=2. 
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 3.3   Cellular energy status: 

  3.3.1   Adenylates: 

ATP concentrations in the gills of C.virginica were significantly affected by the 

season as well as interactions between Cd exposure and season (Table 2). At the 

acclimation temperature (20°C), the steady-state ATP levels were similar in control and 

Cd-exposed oysters in winter and summer (P>0.05). Acute temperature rise did not lead 

to a depletion of tissue ATP levels (Fig. 8). In fact, tissue ATP levels were slightly 

elevated at 28°C and 36°C in the gills of summer-acclimatized control oysters (Fig. 8A). 

No temperature-induced change in tissue ATP levels were found in Cd-exposed oysters 

in summer, or in control and Cd-exposed oysters in winter (Fig. 8).  

Season and interaction of season and temperature significantly affected ADP 

levels in oyster tissues (Table 2). At the acclimation temperature of 20°C, tissue ADP 

levels were notably higher in winter than in summer oysters albeit the difference was 

only significant in Cd-exposed oysters (P<0.05). Acute temperature rise had no effect on 

tissue levels of ADP in oysters, except for slight but significant decline at 28°C and 36°C 

in summer control oysters (Fig 8C).  

 Tissue AMP levels of oysters were significantly affected by the factors ‘Season’ 

and ‘Temperature’ (Table 2). Similar to ADP, tissue AMP levels were notably higher in 

winter than in summer oysters at 20°C, and this difference was significant in control and 

Cd-exposed groups (P<0.05). Acute temperature rise had no effect on tissue levels of 

ADP in winter oysters, but induced a significant decline in AMP levels in summer in Cd-

exposed oysters at 24°C and above, and in control oysters – at 36°C (Fig. 8).  
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FIGURE 8: Effects of acute warming on the levels of adenylates (ATP, ADP & AMP) in 

the gills of eastern oysters, C.virginica. ATP (A & B), ADP (C & D) and AMP (E & F) 

in gills of control (Ctr) and Cd-exposed (Cd) during summer and winter seasons. 

Asterisks indicate values significantly different from the respective groups of control and 

Cd-exposed oysters at 20°C (P<0.05). Daggers show the values that differ between 

control and Cd-exposed oysters (P<0.05). Summer: n = 9-13; winter: n = 6-8 except at 

36°C where n = 2. 
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  3.3.2   Adenylate energy-related indices:  

Energy-related indices (AEC, TANP & ADP/ATP ratio) in gill tissue of oysters 

were calculated to assess the cellular energy status of the oysters exposed to Cd and 

temperature stress in summer and winter seasons. Adenylate energy charge (AEC) was 

significantly affected by season, temperature and interaction of season and Cd exposure 

(Table 3). Winter control and Cd-exposed oysters had higher AEC than their summer 

counterparts when compared at the acclimation temperature of 20°C (P<0.05). AEC 

tended to increase slightly during the acute temperature rise, likely reflecting a decline in 

ADP and AMP levels, and this increase was significant  in summer and winter control 

oysters at 36°C and in summer Cd-exposed oysters at 24°C and above (Fig. 9A & B).  

The total levels of adenylates (TANP) in oyster gills were significantly affected 

by the season but not temperature of Cd exposure (Table 4). TANP was significantly 

higher in summer than in winter in control and Cd-exposed groups at the acclimation 

temperature of 20°C (P<0.05) and remained stable during the acute temperature rise 

except the summer control oysters where a slight but significant decline was seen at 28°C 

and above (Fig. 9 C & D).  

ADP/ATP ratio was significantly affected by the interaction among the factors 

‘Season’ x ‘Temperature’ and ‘Season’ x ‘Cd exposure’ (Table 3). Acute temperature rise 

had no effect on ADP/ATP ratios in any of the experimental groups (Fig. 9E & F).  
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FIGURE 9: Effect of of acute warming on the energy related indices including AEC (A 

& B),  total adenylates (C & D) and ADP/ATP ratio (E & F) in the gills of control (Ctr) 

and Cd-exposed (Cd) oyster, C.virginica during summer and winter seasons. Asterisks 

indicate values that are significantly different from the respective groups of control and 

Cd-exposed oysters at 20°C (P<0.05). Daggers show the values that differ between 

control and Cd-exposed oysters at the same temperature (P<0.05). Summer: n = 7-16, 

winter: n = 3-8 except at 36°C where n = 2. 
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  3.3.3   Phosphagens: 

PLA levels were significantly affected by the season and the interaction of season 

and Cd exposure (Table 4). PLA levels were considerably higher in winter oysters 

compared to their summer counterparts (P<0.05 at the acclimation temperature of 20°C). 

Acute temperature rise had no effect on the tissue PLA levels in any of the experimental 

groups (Fig. 10A & B). In contrast, L-arginine levels were significantly affected by Cd 

exposure, season and the interactions ‘Cd exposure’ x ‘Season’ and ‘Cd exposure’ x 

‘Temperature’ (Table 4). L-arginine levels were similar in winter and summer oysters at 

the acclimation temperature (P>0.05). In summer, L-arginine tended to accumulate with 

increasing temperatures but this trend was only significant in control oysters at 28°C and 

above (Fig. 10C). No temperature-induced changes in tissue L-arginine  content were 

seen in winter acclimatized oysters (Fig. 10D).  

The total amount of phosphagen and aphosphagen ([PLA] + [L-Arginine]) was 

considerably higher in winter oysters compared to their summer counterparts and did not 

change in response to the acute temperature rise (Table 5, Fig. 11). The relative 

proportion of phosphagen in the total phosphagen/aphosphagen pool (RPLA) was also 

significantly higher in the winter oysters compared to the summer-acclimatized ones 

(P<0.05). In winter, acute temperature rise had no effect on RPLA (Fig. 11). In summer, 

acute warming led to a decrease in RPLA in control oysters but not in their Cd-exposed 

counterparts (Fig. 11). 
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FIGURE 10: Effect of of acute warming on the levels of phospho-L-arginine (PLA) (A & 

B) and L-arginine (C & D) in the gills of control (Ctr) and Cd-exposed (Cd) eastern 

oysters, C.virginica during summer (A & C) and winter (B & D) seasons. Asterisks 

indicate values that are significantly different from the respective groups of control and 

Cd-exposed oysters at 20°C (P<0.05). Daggers show the values that differ between 

control and Cd-exposed oysters at the same temperatures (P<0.05). Summer: n = 7-8; 

winter: n = 4-8. 
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FIGURE 11: Effect of of acute warming on the total levels of phosphagen/aphosphagen 

(A & B) and RPLA (C & D) in the gills of control (Ctr) and Cd-exposed (Cd) eastern 

oysters, C.virginica during summer (A & C) and winter (B & D) seasons. Asterisks 

indicate values significantly different from the respective groups of control and Cd-

exposed oysters at 20°C (P<0.05). Daggers show the values that differ between control 

and Cd-exposed oysters at the same temperatures (P<0.05). Summer: n = 7-8; winter: n = 

4-8. 
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3.4   Tissue energy stores: 

3.4.1   Glycogen and glucose: 

Glycogen and free glucose levels were measured in different oyster tissues (gills, 

hepatopancreas and muscle) at three selected temperature points 20, 28 & 36°C .  Factors 

‘Season’, ‘Tissue’ and their interaction significantly affected glycogen levels in oysters 

(Table 6). Overall, tissue glycogen stores were the highest in the gill compared to other 

tissues in summer oysters (P<0.05) but not in their winter counterparts. Acute 

temperature rise had no effect on tissue glycogen stores in gills of winter or summer 

oysters (Fig. 12A & B) (P>0.05). In hepatopancreas, there was a significant transient 

increase in the glycogen stores at 28⁰C in control and Cd-exposed oysters in summer 

(P<0.05). This increase was not seen in winter oysters where glycogen content of the 

hepatopancreas remained stable at all studied temperatures (Fig 12C & D). In the muscle, 

acute temperature rise did not affect the glycogen levels except a small but significant 

decrease in winter-acclimatized control oysters at 36°C (P<0.05) (Fig. 12E & F).  

Tissue glucose levels in oysters were significantly affected by the factors ‘Cd 

exposure’, ‘Tissue’ and the interaction between temperature, Cd exposure and season 

(Table 7). Tissue glucose content was generally low (<1 μmol g
-1

 wet mass) and tended 

to be higher in Cd-exposed oysters compared to their control counterparts in the muscle 

and hepatopancreas but not in the gills. Acute temperature rise did not affect tissue levels 

of free glucose in any of the experimental groups (Fig. 13).  
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FIGURE 12:  Effects of acute warming on glycogen stores in gills (A & B), 

hepatopancreas (C & D) and muscle (E & F) of control (Ctr) and Cd-exposed (Cd) 

eastern oysters, C.virginica during summer and winter seasons. Asterisks indicate values 

significantly different from the respective groups of control or Cd-exposed oysters at 

20°C (P<0.05). Daggers show the values that differ between control and Cd-exposed 

oysters at the same temperatures (P<0.05). Summer: n = 3 -14 except hepatopancreas at 

36°C where n = 2; winter n = 3-8 except gills at 36°C where n = 1.  
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FIGURE 13:  Effects of acute warming on free glucose levels in gills (A & B), 

hepatopancreas (C & D) and muscle (E & F) at the experimental temperatures in the gills 

of control (Ctr) and Cd-exposed (Cd) eastern oysters, C.virginica during summer and 

winter  seasons.  Asterisks indicate values significantly different from the respective 

groups of control and Cd-exposed oysters at 20⁰C (P<0.05). Daggers show the values that 

differ between control and Cd-exposed oysters (P<0.05). Summer: n = 3 -15; winter n = 

3-8 except gills at 36°C where n = 1.  
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  3.4.2   Lipids: 

Lipid levels in oyster tissues were significantly affected by the tissue type, season and 

interactions between tissue and season, and tissue and experimental temperature (Table 

8). At the acclimation temperature (20°C) tissue lipid levels were similar in control and 

Cd-exposed oysters in summer and in winter (P>0.05) (Fig. 14). However, the response 

to the acute temperature rise differed between the winter and summer oysters (Fig. 14). In 

summer, acute warming led to an increase in tissue lipid content of control and Cd-

exposed oysters which peaked at the intermediate temperature (28°C) (Fig. 14). In winter, 

temperature had no effect on the tissue lipid content (Fig. 14). 

3.4.3   Proteins: 

Protein content of oyster tissues was significantly affected by the tissue type, 

experimental temperature and interactions between season and experimental temperature 

(Table 9).  Overall, tissue protein levels were similar in control and Cd-exposed oysters 

in summer and in winter when determined at the acclimation temperature (20°C) 

(P>0.05) (Fig. 15). Similar to lipids, protein content in tissues of summer oysters showed 

a transient increase at 28°C, while in their tissue counterparts acute warming had no 

effect on the protein content except for an increase at 36°C found only in hepatopancreas 

of Cd-exposed winter oysters (Fig. 15). 
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FIGURE 14:  Temperature-induced changes in lipid stores in gills (A & B) and muscle 

(C & D) of control (Ctr) and Cd-exposed (Cd) eastern oysters, C.virginica in summer and 

winter seasons. Asterisks indicate values that are significantly different from the 

respective groups at 20°C (P<0.05). Daggers show the values that differ between control 

and Cd-exposed oysters at the same temperature (P<0.05). Summer: n = 7-8; winter n = 

3-8 except at 36°C where n = 1.  
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FIGURE 15: Temperature-induced changes in protein content in gills (A & B) and HP (C 

& D) in control (Ctr) and Cd-exposed (Cd) eastern oysters, C.virginica during summer 

and winter seasons. Asterisks indicate values that are significantly different from the 

respective groups at 20°C (P<0.05). Daggers show the values that differ between control 

and Cd-exposed oysters at the same temperature (P<0.05). Summer n = 6-9; winter n = 3-

8  except at 36°C where n = 1.  
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3.5   Oxidative stress: 

The two studied markers of oxidative damage (protein carbonyls and MDA) 

showed different responses to acute temperature stress and Cd exposure in oysters. MDA 

levels in oyster mantle were significantly affected by Cd exposure and season, and their 

interactions, but not the experimental temperature (Table 10). In contrast, carbonyl 

content of the mantle tissue was affected by season and experimental temperature and 

their interactions, but not by Cd exposure (Table 10).  Overall, the levels of the oxidative 

stress biomarkers were higher in winter oysters compared to their summer counterparts 

(Fig. 16). Acute temperature rise did not affect tissue MDA content of oysters regardless 

of the season or Cd exposure (Fig. 16). In contrast, mantle carbonyl content increased 

with increasing temperatures in winter oysters; this increase was significant at 28°C and 

above in control oysters and at 36°C in the Cd-exposed group (Fig. 16). In summer, acute 

temperature rise did not affect the tissue carbonyl content in control or Cd-exposed 

oysters (Fig. 16).  
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FIGURE 16:  Effect of Cd exposure and acute temperature rise on the levels of protein 

carbonyls (A & B) and malondialdehyde (C & D) in the mantle in control (Ctr) and Cd-

exposed (Cd) eastern oysters, C.virginica during summer and winter seasons. Asterisks 

indicate values that are significantly different from the respective groups at 20⁰C 

(P<0.05). Daggers show the values that differ between control and Cd-exposed oysters at 

the same temperature (P<0.05). Summer: n = 8-12; winter: n = 8 except the control 

oysters at 36⁰C where n = 3. 

 



 

CHAPTER 4: DISCUSSION 

 

 

 4.1   Effects of Cd exposure and seasonality on the critical temperatures of             

                    aerobic metabolism in oysters: 

According to the concept of oxygen and capacity-limited thermal tolerance, acute 

temperature rise leads to the reduction of the aerobic scope in aquatic ectotherms and 

eventually its loss beyond the lower and upper Tc (90-94). Critical temperatures of 

aerobic scope (Tc) in aquatic ectotherms including oysters can be determined by the 

transition to partial anaerobiosis and resultant accumulation of anaerobic end products. 

In invertebrates and fish, the  temperature-induced anaerobiosis occurs even in fully 

aerated water and indicates a time limited survival at and beyond Tc (24). Notably, 

oxygen limitation sets in prior to functional failure of  the mitochondria which develops 

beyond the Tc (24). Earlier studies showed that mitochondrial enzymes and isolated 

mitochondria of oysters and other bivalves have high thermal tolerance and can function 

at temperatures high temperatures well beyond Tc (90, 95). This indicates that 

mitochondrial dysfunction is not a likely explanation for the onset of anaerobiosis at Tc. 

In contrast, the functional limitations of the oxygen uptake and delivery systems coincide 

with Tc and transition to the pessiumum range of environmental temperatures. Thus, in a 

marine worm Sipunculus nudus a decrease in ventilatory performance and oxygen tension 

(PO2) in coelomic fluid occurred before anaerobiosis sets in (24). Similarly, in the spider 

crab Maja squintado a decrease in ventilatory, circulatory and PO2 levels preceded the 
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onset of anaerobiosis at Tc (24). Therefore, the onset of anaerobiosis at Tc is likely due to 

the insufficient capacity of the ventilatory and circulatory systems to deliver oxygen to 

the tissues.  

  In the present study, we found accumulation of the cytosolic anaerobic end 

product (L-alanine) and mitochondrial anaerobic end products (acetate and succinate) in 

the gills of oysters (C.virginica) indicative of the temperature-induced transition to 

anaerobiosis. In the summer control oysters, L-alanine was the first anaerobic end 

product to accumulate at the temperature of 28°C and beyond indicating the Tc is close to 

28°C in this group. This is consistent with the earlier studies in mollusks that showed that 

cytosolic L-alanine is an early anaerobic end product and the onset of the mitochondrial 

anaerobiosis follows at the latter stages (77, 96). L-alanine accumulation indicates that 

cytosolic anaerobic pathways become engaged in ATP production at temperatures of 

28°C and higher in summer control oysters. No accumulation of mitochondrial anaerobic 

end products (succinate and acetate) was seen at any of the experimental temperatures in 

control oysters in summer suggesting that the mitochondrial anaerobiosis was very low or 

absent. Earlier studies have shown that C.virginica has an optimal range of aerobic scope 

between 20°C and 24°C, and 28°C represents a stressful temperature that may be close to 

the pessimum range (23). At 28°C and above, oysters enter the “no scope for growth” 

area as they do not deposit shell material and are  not capable of withstanding sublethal 

Cd stress (23). There is a concomitant decrease in mitochondrial density at 28°C 

suggesting a decrease in aerobic capacity of oysters (23, 63). These findings agree with 

the critical temperatures of 28°C found in the present study and indicate that C. virginica 
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may be unable to survive in the environments where summer temperatures exceed 28°C 

for a prolonged period of time. 

Winter acclimatization resulted in a shift of Tc to the lower values as indicated by 

an earlier onset of anaerobiosis at 24°C in winter control oysters compared to 28°C in 

their summer counterparts. Notably, in winter control oysters both L-alanine and acetate 

accumulated at the temperatures of 24°C and above. Acetate accumulation indicates that 

in winter, acute temperature rise leads to an onset of mitochondrial anaerobiosis in 

addition to engaging of the cytosolic anaerobic pathways. Overall, our data show that 

aerobic metabolism of winter season acclimatized control oysters is more sensitive to 

warming than their summer counterparts and winter acclimatized oysters reach Tc at 

lower temperatures. 

A downward shift of Tc in winter oysters is consistent with the previously 

described downward shifts in Tc in cold-acclimated or cold-adapted ectotherms. Thus, in 

a marine lugworm Arenicola marina the Tc shifts to lower temperatures and the thermal 

tolerance window narrows in winter compared to summer, in parallel with an increase in 

mitochondrial densities in winter worms (91). Both low and high Tc values were lower in 

a cold adapted, sub-Arctic population of A. marina from the White Sea compared to their 

temperate North Sea counterparts (91). Similarly, the upper Tc were considerably higher 

in the eelpout from the temperate North Sea compared to the Antarctic ( 23°C and 9°C, 

respectively) (97). In an intertidal gastropod Littorina saxatilis, Tc shifts were also 

induced by the acclimation temperatures; the Tc for warm acclimated (13°C) L. saxatilis 

were 28°C and 32°C for the  snails from North Sea and White Sea populations, 

respectively, while in their cold acclimated (4°C) counterparts the Tc shifted to 18°C and 
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28°C, respectively (90). Notably, Littorina saxatilis from the North Sea and White Sea 

populations had different Tc even at the same acclimation temperature indicating long-

lasting (possibly genetic) differences in metabolic physiology.  

It is worth noting that in our present study both summer and winter oysters were 

acclimated in the laboratory at 20°C for 3-4 weeks prior to the determination of Tc which 

is considered sufficient for full thermal acclimation of these organisms (Sokolova, 

personal communication). Despite the similar acclimation temperatures, upper Tc was 

lower in winter oysters compared to their summer counterparts. This suggests some 

seasonal differences in physiology of oysters that can affect their aerobic scope (such as 

differences in the reproductive status or mitochondrial capacity) are not fully overcome 

by the prolonged thermal acclimation. Lower Tc in winter oysters may be due to the 

persistent differences in the mitochondrial density and capacity despite the prolonged 

acclimation at the same temperature. Earlier studies have shown that seasonal variation 

has a strong effect on the mitochondrial densities and functions in C.virginica (24, 98). In 

summer the oyster gills have reduced mitochondrial densities as compared to their winter 

counterparts (98). Increased mitochondrial density in winter increases the aerobic 

capacity and compensates for lower enzymatic rates and slower rates of oxygen diffusion 

in winter but it is also accompanied by an increase in the amount of energy spent to 

prevent proton leakage (98). This elevated energy demand to counteract the 

mitochondrial proton leak can lower the upper Tc (24). In contrast, in summer, a 

reduction in the mitochondrial density leads to reduction in baseline oxygen demand, 

thereby allowing the upper critical and pejus temperature to shift to higher values (24).  

Future studies are needed to determine whether these differences in the mitochondrial 
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density between summer and winter oysters are sustained during the long-term laboratory 

acclimation. However, differences in the concentrations of PLA, adenylates, glycogen 

and lipid content between winter and summer oysters found in this study are consistent 

with the hypothesis that seasonal differences in energy metabolism persist despite the 

similar thermal acclimation regime. 

Cd exposure affected Tc in oysters although these effects were different in 

summer and winter. Cd exposure in summer oysters led to a downward shift of Tc to 

24°C as shown by the significant accumulation of L-alanine. Notably, similar to the 

control summer oysters, there was no accumulation of acetate or succinate during the 

acute warming in Cd-exposed oysters indicating that mitochondrial anaerobic pathways 

are not involved at Tc in summer. The downward shift of Tc in Cd-exposed oysters in 

summer is consistent with an earlier onset of temperature-induced tissue hypoxemia in 

Cd-exposed oysters (23) and indicates that Cd can sensitize oysters to acute temperature 

rise during the summer months causing a decrease in the thermal tolerance and the 

aerobic scope. In winter Cd-exposed oysters Tc could not be determined based on 

accumulation of the anaerobic end products. The inability of winter Cd-exposed oysters 

to switch over to anaerobiosis may be indicative that some key anaerobic pathways are 

inhibited by Cd (77). However, this hypothesis is contradicted by our finding that in 

summer, Cd-exposed oysters transition to partial anaerobiosis at the temperatures of 24°C 

and above. Alternatively, the absence of temperature-induced accumulation of anaerobic 

end products in Cd-exposed oysters in winter may indicate that in the winter Cd-exposed 

oysters Tc may be reached earlier (at or below 20°C) than the experimental temperatures 
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of this study. This is consistent with the elevated levels of L-alanine and acetate in winter 

Cd-exposed oysters at the acclimation temperature (20°C).  

A downward shift of Tc in Cd-exposed oysters found in summer indicates that Cd 

exposure reduces the aerobic scope of oysters. This may be due to the metal-induced 

increase in the basal cost of maintenance, impaired oxygen supply to the tissues, 

interference of Cd with the mitochondrial function or combination of these factors (7, 28, 

78, 99). Earlier studies also showed that oysters exposed to Cd have elevated standard 

metabolic rate (SMR) due to increase in the cost of energy spent on the synthesis of 

protective proteins such as HSPs, MT and antioxidants (7, 78, 100-101).  Cd exposure 

and elevated temperatures also resulted in elevated energy (oxygen) demand and 

increased ventilating activity in oysters (23, 102). Despite the high ventilation activity, 

increasing temperatures led to a progressive decrease in hemolymph PO2 in Cd-exposed 

oyster at 24°C and 28°C compared to their control counterparts (78). Cd exposure did not 

affect heart rate in oysters in the temperature range between 20 and 28°C suggesting that 

oysters cannot compensate for elevated oxygen demand by upregulating the cardiac 

function (78). Notably, the cardiac hemolymph flow in the atrium of the heart was 

affected in control and Cd-exposed oysters at 28°C suggesting that elevated temperature 

result in impaired circulation (78).  

These data indicate the impairment of ventilatory and/or circulatory system of 

oysters by Cd, especially at elevated temperatures, and are consistent with earlier studies 

in aquatic ectotherms that show high sensitivity of ventilatory and circulatory systems to 

Cd. Gills are particularly sensitive to waterborne Cd because of their larger surface area 

to facilitate gas and ion exchange and is also a major site of metal uptake in aquatic 
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animals (78, 98). Moreover, gills can be slow in producing protective proteins such as 

MT and thus Cd exposure can result in a greater cellular  damage to the gills compared to 

other tissues (78). Thus, in crabs, Callinectes similis exposure to Cd resulted in decrease 

in the percentage of oxygen extraction and lower efficiency of O2 uptake at the 

respiratory surfaces (103). Cd exposure also suppressed the oxygen carrying capacity of 

hemolymph in dogwhelks, Nucella lapillus (104).  

Metal-induced onset of partial anaerobiosis has also been documented in other 

aquatic ectotherms. In a carp, Cyprinus carpio exposure to sublethal and lethal Cd led to 

the onset of partial anaerobiosis as indicated by the upregulation of lactate dehydrogenase 

and accumulation of anaerobic end products (pyruvate and lactate) (105). At lethal Cd 

levels transition to anaerobiosis was due to the gill damage whereas at sublethal Cd 

levels, limited aerobic capacity and elevated energy demands due to cellular 

detoxification and repairs contributed to the onset of anaerobiosis (105). In crabs Scylla 

serrata, Cd exposure resulted in onset of partial anaerobiosis indicated by lactate 

accumulation which was proposed to reflect the impairment of mitochondrial enzymes 

(105-106). Similar transition to partial anaerobiosis  in response to metal exposure was 

seen in yellow perch Perca flavescens and tilapia Oreochromis mossambicus (107-108). 

Exposure to Cd or chromium (Cr) in marine prawn Macrobrachium rosenbergii and in 

stonefly nymph Clioperla clio reduced the CTmax (critical thermal maximum of the 

onset of the neural damage) and decreased O2 concentrations indicating disruption of 

energy metabolism (109-110). Similar decrease in CTmax was seen in coho salmon 

Oncorhynchus kisutch and steelhead trout Salmo gairdneri on exposure to Ni and in 

muskellunge fry Esox masquinongy on exposure to arsenic (7, 111). These data are 
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consistent with our finding of an earlier onset of temperature-induced anaerobiosis and 

the narrowed window of thermal tolerance in Cd-exposed oysters found in summer. 

 4.2   Bioenergetics status in oysters during acute temperature rise and Cd  

                    exposure:                      

Tissue levels of adenylates and phosphagens, energy stores (lipids and glycogen) 

and energy-related indices such as AEC provide important indications of the energy 

levels in an organism and the potential stress-induced disturbance of energy balance. 

Adenylate energy charge (AEC) is a common parameter used to assess the effect of 

environmental perturbation on the physiological status of an organism and to measure the 

stress-induced energy deficiency (89, 112-113). It can vary from 0 to 1 and correlates 

with the potential energy available for the cell metabolism (112).  

 In our present study, acute temperature rise did not reduce tissue levels of high 

energy phosphates (ATP and PLA), adenylate energy charge (AEC) or ADP/ATP ratio in 

the gills of summer control oysters despite their transition to partial anaerobiosis at and 

above 28°C. There was decline in ADP and AMP levels at elevated temperatures (at and 

above 28°C and 32°C for ADP and AMP, respectively), as well as a decrease in the total 

adenylate concentrations suggesting that cellular energy status (including AEC and 

ADP/ATP ratios) was maintained by the breakdown of ADP by nucleoside-diphosphate 

kinases and by AMP deamination. PLA levels also remained unchanged even though 

there was a transient increase in the levels of free L-arginine. In winter control oysters 

there were no changes in tissue adenylate concentrations or energy related indices (TANP 

& ADP/ATP ratio), although there was increase in AEC at the extreme temperature of 

36°C. Given that oysters cannot survive at this temperature for a long period of time, an 

increase in AEC is unlikely to indicate an improved energy status but most likely reflects 
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a mismatch between the rates of ATP consuming and producing reactions during extreme 

thermal stress. A similar mechanism likely explains an increased in AEC and ATP levels 

in Cd-exposed summer oysters beyond their critical temperatures (at 28°C and above). 

Overall, in all experimental groups of oysters the steady-state ATP levels and energy 

status (indicated by AEC and ATP/ADP ratios) were sustained during the acute 

temperature stress by aerobic metabolism and anaerobic glycolysis without a significant 

contribution from PLA breakdown.  Notably, phosphagen reserves were considerably 

lower in summer Cd-exposed oysters compared to their winter counterparts suggesting 

that these animals potentially have a lower ability to rapidly respond to elevated energy 

demands, e.g. during reproduction in summer .  

In aquatic organisms, AEC value is maintained during moderate environmental 

perturbations but can vary with the season, life stage, activity level and exposure to the  

stressful conditions such as metal pollution, decreased salinity, anoxia, hypoxia or 

starvation (89, 112). Seasonal variations in AEC and TANP have been reported in 

various invertebrate species (113-114). AEC is also known to vary with the reproductive 

status and season (115). However, AEC is not sensitive to low levels of stress, and some 

studies suggest that tissue  ATP levels may be a better indicator of stress-induced shift of 

the cellular energy status (113). In some aquatic organisms, the AEC levels remain 

constant despite the significant changes in the levels of adenylates, phosphagens, glucose 

and glycogen (114). Thus, exposure of the blue mussels Mytilus edulis and the sea bass 

Dicentrarchus labrax to sublethal Cd levels did not affect AEC but led to a significant 

change in the levels of ATP and total adenylates (112). In glass shrimp, Palaeomonetes 

paludosis Cd exposure (0.4, 10 & 30µg l
-1

) led to a significant decrease in ATP and 
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TANP after an initial rise in the adenylate concentrations on 32 days exposure (113). In 

contrast, in some freshwater crustaceans and mollusks (a crayfish, Procambarus acutus 

acutus, the papershell clam Anodonta imbecillis and the Asian clam, Corbicula fluminea), 

Cd exposures led to significant changes in tissue levels of adenylates and a decrease in 

AEC levels (89). This suggests that different organisms can use different strategies to 

defend cellular energy status and demonstrate different susceptibility to the stress-

induced shits in adenylate concentrations. However, regardless of whether AEC or ATP 

concentrations are used as a marker, our data suggest that Cd exposure and acute 

temperature stress result in the minimal shifts of the of cellular energy status in oysters C. 

virginica under the conditions of this study.  

 Glycogen and lipid concentrations reflect the amount of metabolic reserves in 

tissues of marine ectotherms that can be diminished during stress and/or periods of 

elevated energy demand such as spawning and gametogenesis (112). Earlier studies in 

C.virginica showed that long-term combined exposure to elevated temperatures and Cd 

resulted in a significant depletion of tissue glycogen stores, whereas each of these 

stressors alone had no effect (7). Exposure to Cd, Cr and/or tributylin (TBT) in fishes 

(sea bass Dicentrarchus labrax and rainbow trout Oncorhynchus mykiss), gastropods 

(dogwhelk Nucella lapillus) and crustaceans (Scylla serrata, Tigriopus japonicus and 

Daphnia magna) resulted in depletion of tissue glycogen and/or lipid reserves (106, 112, 

116-117). Mobilization of glycogen in Cd-exposed organisms likely reflects activation of 

glycogen phosphorylase kinase by Cd (112). In a marine clam, Ruditapes decussates Cd 

exposure also led to the depletion of tissue energy stores, starting with glycogen followed 

by lipoproteins and lastly proteins (118). In contrast, in our present study there was no 
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decrease in glycogen or lipid stores in control or Cd-exposed oysters in response to acute 

temperature rise; in fact in summer oysters there was a transient significant increase in 

glycogen and lipid levels at 28°C in hepatopancreas and/or gill tissues.  The discrepancy 

between our findings and earlier published research may be due to the moderate Cd 

concentrations and short-term temperature stress used in the present work which may 

have been insufficient to induce strong energy deficiency in oysters.  

 Overall, our data suggest that ATP turnover was sustained by aerobic metabolism 

and partial anaerobiosis during acute temperature rise in both the control and Cd-exposed 

oysters. There was no decrease in the levels of ATP or PLA breakdown indicating their 

negligible contributions to maintain ATP turnover. Tissue energy stores were maintained 

or even temporarily increased indicating that metabolic adjustments were effective in 

protecting energy status of oysters during acute temperature stress regardless of the 

season or Cd exposure.  

 4.3   Oxidative stress in oysters as a late marker of transition to the pessimum 

                    range:   

Stressors such as Cd and elevated temperature can lead to a imbalance between 

the ROS production and removal due to the excessive ROS generation in mitochondria, 

inhibition of cellular antioxidant defenses or both (7). This can result in oxidative damage 

to macromolecular structures such as nucleic acids, lipids and proteins. Effects of 

individual stressors including trace metals and temperature stress in causing oxidative 

damage have been extensively studied in aquatic ectotherms including mollusks (14, 119-

121); however, the combined effects of these two stressors on oxidative damage in 

oysters is not fully understood. 
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Our study show that oxidative damage in response to the combined Cd stress and 

acute warming depends on the seasonal acclimatization in oysters. Acute temperature rise 

did not cause oxidative stress in summer control oysters as indicated by the stable levels 

of protein carbonyls and MDA in the mantle tissues. In contrast, in winter oysters acute 

warming led to oxidative damage to proteins reflected in the accumulation of carbonyl 

content of the mantle tissues with increasing temperatures. No MDA accumulation was 

found indicating that lipid peroxidation was not enhanced at elevated temperatures. These 

results agree with the previously published data that show elevated oxidative stress in 

heat-exposed marine invertebrates and the higher susceptibility of cold-acclimated or 

cold-acclimatized organisms to oxidative damage (122). Thus, in a lugworm A. marina 

sudden warming exacerbates the ROS formation, and the rate of ROS generation and its 

thermal sensitivity is influenced by seasonal temperature fluctuations (123). Studies in 

oysters also have shown that oxidative stress in mitochondrial aconitase (a Krebs cycle 

enzyme often used as an oxidative stress marker) was more pronounced at elevated 

temperature of 30°C compared to 20°C (63). In the blue mussels Mytilus edulis 

antioxidative enzyme activities decrease in winter making the organism more susceptible 

to ROS-induced damage  (124).  

Metals such as Cd are also strong inducers of oxidative stress (125). In marine 

bivalves, Cd causes oxidative cellular damage by interfering with the antioxidant defense 

system, inducing lipid peroxidation and ultimately leading to apoptosis (126-127). 

Notably, environmental temperature can modify the pro-oxidant effects of Cd. Thus, in 

oysters C. virginica Cd exposure of isolated mitochondria did not lead to a damage to 

aconitase at 20°C suggesting that mitochondrial antioxidants offer adequate protection 
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against Cd-induced ROS damage at this temperature (63). In contrast, at 30°C antioxidant 

defense system was incapable of coping with Cd-induced ROS and considerable damage 

occurred to aconitase enzyme (63). These findings suggest that at elevated temperatures 

Cd-induced ROS increases in oysters and can overwhelm the antioxidant defenses (63) 

and stress the importance of considering temperatures when assessing the metal toxicity 

in marine ectotherms.  

Absence of the temperature-induced accumulation of carbonyls or MDA in Cd-

exposed oysters found in the present study contrasts with the earlier findings in 

C.virginica. Previous studies show that Cd-exposed oysters can accumulate high levels of 

lipid peroxidation products when acclimated at elevated temperatures (28°C) (23, 41). It 

is worth noting that the earlier studies on the combined effects of temperature and Cd on 

oxidative stress in oysters used long-term exposure regimes (3-7 weeks) at elevated 

temperature and Cd, in contrast to the present study where oysters were exposed to acute 

short-term warming. Interestingly, carbonyl accumulation induced by the acute warming 

in the present study was lower in Cd-exposed oysters compared to their control 

counterparts in winter. Moderate exposures to metals (including Cd) can upregulate 

cellular defense mechanisms in oysters including antioxidants and heat-shock proteins 

(119, 128) possibly offering cross-protection against the elevated ROS production during 

the acute, short term warming in Cd-exposed oysters (128). Overall, our studies suggest 

that acute temperature rise does not elicit major oxidative stress in oysters, and Cd 

exposure may partially antagonize the effects of acute warming on redox balance. 
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4.4   Conclusions and perspectives: 

To the best of our knowledge, the present study provides the first experimental 

evidence that exposure to environmentally realistic Cd concentrations affects the thermal 

tolerance window in a model marine ectotherm, the eastern oyster C. virginica, by 

inducing a downward shift of the upper Tc values (Fig. 17). This shift was clearly 

pronounced in summer oysters but was not detected in the winter, possibly due to the 

overall downward shift of Tc in winter oysters pushing the thermal tolerance envelope 

close to the lowest temperatures tested in this study. Cd-induced shift in Tc likely reflects 

the reduction of the aerobic scope of oysters due to the elevated energy demand and 

insufficient oxygen supply by ventilation and circulation systems. Despite the onset of 

partial anaerobiosis at and beyond the Tc, oysters were capable of maintaining their tissue 

energy stores and cellular energy balance likely reflecting the effective metabolic 

adaptations to acute heat stress in this intertidal species. Similarly, the temperature-

induced oxidative damage was minimal and only detected in winter oysters indicating 

that these organisms are well protected against the temperature-induced increase in ROS 

generation at least during the warmer season when an acute heat stress is most likely. A 

decrease in thermal tolerance in Cd-exposed oysters may have implications for survival 

of oyster populations in polluted estuaries during the acute heat stress such as observed in 

the intertidal zone during the summer low tides and/or during the chronic exposure to 

elevated temperatures such as can be expected during the global climate change in oyster 

populations of the southeastern United States that live close to the geographical 

distribution limit of this species.    



86 

Future studies should focus on the understanding of the effects of multiple 

stressors including pollutants that affect energy demand, oxygen supply and/or 

mitochondrial capacity on the thermal tolerance windows of marine ectotherms under the 

environmentally realistic exposure scenarios. Such studies are important from the 

viewpoint of the fundamental thermal physiology in order to test the applicability of 

OCLTT hypothesis for predicting the stressor interactions and factors affecting the 

physiological limits of thermal tolerance in aquatic ectotherms (7). Studies focusing on 

the interactive effects of pollutants  and long-term acclimation or adaptation to different 

temperature regimes and placing the thermal tolerance limits in the context of the 

environmentally realistic long-term exposure scenarios would be required to complement 

the studies of the effects of the acute temperature rise These studies can be used for 

developing quantitative physiological models to predict the effects of pollutant–

temperature interactions in marine ectotherms and to facilitate the ecological risk 

assessment of ectotherm populations facing the global climate change in polluted 

environments (7).  
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FIGURE 17: Summary of the seasonal and Cd-induced effects on the thermal tolerance 

window of C. virginica. Green and blue boxes represent the optimal and pejus ranges of 

the environmental temperatures, while orange and purple boxes represent the pessimum 

range where the time-limited survival only is possible. Red block arrows indicate the 

critical temperatures of aerobic metabolism (Tc). The question mark in the block arrow 

indicates that Tc could not be reliably determined in this study for Cd-exposed winter 

oysters.
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APPENDIX A: ANOVA TABLES 

 

 

TABLE 1:      ANOVA: Effects of Cd exposure, season and temperature exposure      101 

on concentrations of the end products of cytosolic (L-alanine)  

and mitochondrial (acetate and succinate) anaerobiosis in the 

gills of the eastern oysters C.virginica 

 

TABLE 2:   ANOVA: Effect of Cd exposure, season and temperatures and their      102   

     interactions on the levels of adenylates (ATP, ADP and AMP) 

     in the gills of the eastern oyster C.virginica 

 

TABLE 3:   ANOVA: Effect of Cd exposure, season and temperatures and their      103   

            interactions on the levels of adenylates energy related indices  

            (AEC, total adenylates and ADP–ATP ratio) in the gills of the 

            eastern oyster, C.virginica 

  

TABLE 4:   ANOVA: Effect of Cd exposure, season and temperatures and their      104  

            interactions on the levels of phosphagens in the gills of the  

           eastern oyster, C.virginica 

 

TABLE 5:   ANOVA: Effect of Cd exposure, season and temperatures and their      105  

           interactions on the levels of PLA +L-arginine & R-PLA in  the 

           gills of the eastern oyster C.virginica 

 

TABLE 6:   ANOVA: Effect of Cd exposure, season, tissue and temperatures          106 

                       and their interactions on the levels of glycogen 

 

TABLE 7:  ANOVA: Effect of Cd exposure, season, tissue, temperatures               107 

                       and their interactions on the levels of glucose 

 

TABLE 8:  ANOVA: Effect of Cd exposure, season, tissue and temperatures          108 

                       and their interactions on the levels of lipids 

 

TABLE 9:  ANOVA: Effect of Cd exposure, season, tissue and temperatures          109 

                       and their interactions on the levels of proteins 

 

TABLE 10:  ANOVA: Effect of Cd exposure, season and temperatures and              110  

                       their interactions on the levels of oxidative damage in  

                       mantle tissue 

 

TABLE 11:  ANOVA: Accumulation of Cd in mantle tissue in summer and             111           

                       winter seasons 
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