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ABSTRACT

UNIQUE WELLS. A SURVEY OF NETWORK MODELING. (Under the direction
of DR. AIDONG LU)

Network modeling is a set of techniques for extracting various patterns of interest

from graphs. They can be used in many real-life analytic fields, such as sales and

marketing, journal reports, government and law enforcement, social networking sites,

and technical research. The papers in this survey contribute to advertising by user

interest, detecting organizations in social networks, groups of shared political policies,

etc.

This survey collects a number of network modeling papers from several research

fields: statistics, data mining, machine learning, and signal processing, and three

other related fields. We also summarize the papers based on the taxonomy and

provide examples based on their tasks. We expect that this survey will be used

to introduce complex network modeling techniques to the communities that are not

familiar with network modeling techniques, and provide quick reference to identify

suitable methods to different analysis tasks.
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CHAPTER 1: INTRODUCTION

Network modeling is a topic within graph mining, which is to extract patterns of

interest from graphs. This topic is meant to describe the underlying data and could be

used for tasks like classification or clustering. It is an approach for “mining” the data

from the graph structure representing it. However, real datasets are often massive,

complex, multi-attributed, and ordered by a time sequence. This leads to several

challenges for the graphical representations of the data, such as them appearing too

large, messy, and dense.

Researchers are constantly constructing new ways to make network model analysis

more efficient and less complex. As the development of networks continues to improve,

so do the approaches for its modeling and analysis. These studies build upon each

other, inspired by past accomplishes and adapting existing algorithms to improve

a certain task. This purpose of this survey is to provide guidance for researchers

of communities that are not familiar with network modeling techniques for better

ways to model graph data. The main contribution of this survey is a taxonomy that

categorizes and classifies a set of selected papers from four important research fields.

It is divided by task and organized by published conferences.

Section 2 of the thesis discusses the main tasks of graph mining divided into static

and dynamic network adaptations. Many of the papers involve and encompass each

other with tasks such as anomaly detection, community identification, the capture of
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node evolution, etc. The selected papers mostly share common groups of tasks for

each network, but the few unique ones will be described in an “Other” subsection.

Section 3 is where the compilation starts, beginning with static network analyses.

The discussion is broken up by similar tasks, and ended with the group of different

objectives per paper. The layout is similar in Section 4, under dynamic network

analyses. Finally, Section 5 contains the conclusion and talk of future works.



CHAPTER 2: CLASSIFICATION OF NETWORK MODELING TECHNIQUES

Network model analysis is all about being able to derive meaning from data rep-

resentations of a graph. Based on the data features, we mainly divide all the work

in this survey into two groups: static and dynamic networks. Static network models

focus on individual sets of data, while dynamic network models observe the change

of data over time. As networks have developed from mere static snapshots to how

they are now in, for example, social networks, there are more datasets available for

dynamic model analysis.

The selected papers have been further divided into the common main tasks: com-

munity & community evolution detection, anomaly detection, entity linking, event

and pattern detection, and other miscellaneous tasks. These tasks were reoccurring

themes in the research papers, and many handled identical or very similar datasets,

which showed showed the significance of the tasks to network modeling. Many of the

researches’ contributions are encompassing, as in their models and frameworks may

fulfill several tasks, but they have been grouped by which task they concentrate on.

In the following, we provide a list of important tasks.

Community Detection In complex networks, community detection or structure is

defined as, “the organization of vertices in clusters, with many edges joining

vertices of the same cluster and comparatively few edges joining vertices of dif-
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ferent clusters [For10].” Such communities should appear as components of the

overall graph. Under a computer science study, an example would be members

of an organization in a social network such as Facebook. In dynamic models,

the studies are concerned with detecting the evolution of communities.

Anomaly Detection Anomaly detection can be viewed a branch of event and pat-

tern detection, but focuses on data considered odd or wrong, such as fraud

[EH07], or even scanning shipments. This is particularly useful in scientific

fields such as biology where human physiology is often visualized. Following

that, detecting illness in the human body would be example an example of

anomaly detection.

Entity Linking “Many real-world domains are relational in nature, consisting of a

set of objects related to each other in complex ways [TfWAK03].” For the sake

of this survey, entity or actor linking uses relational data for finding groups and

the existence and connections between entities, latent or not. This is moreso

used among textual data, such as in [BC11]. Examples here would be in find-

ing research papers with linked citations, and Google searching with relevant

keywords.

Event Detection Event detection is useful in transportation networks, news net-

works, etc.. It is not necessarily a task like anomaly detection, but behavior

tracking. For example, an incident gaining traction and popularity and turning

into news. On Twitter, trending events have their own tab where users can

inform themselves of the incidents. Pattern detection is similar, but it focuses
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more on the regularities in data. In this survey, event and pattern detection

have been paired for synonymous brevity.

Others Though these few research papers do not neatly group into the other tasks,

they still relate and are important in this compilation. The other tasks in

the static networks collection involve improved models and frameworks as con-

tributions for signal processing and handling static big data. In the dynamic

networks collection, the other tasks involve improvements for spectral clustering

and solutions for its problems, reviewing statistical models for networks, and

the dynamic approach for analyzing big data.

2.1 Taxonomy

The constructed taxonomy shown in Table 1 lists the papers and which tasks they

fulfill. The table is ordered by their publications in conferences or journals focused on

networking, sociology, statistics, data mining, machine learning, and signal process-

ing. These fields contribute to network modeling either by methodology, approaches,

or analysis. Whatever the perspective might be, from several different research fields,

they are all trying to reach the same goal of understanding complex, real data. Much

like the tasks of each paper, some of the publications may be interdisciplinary. They

were organized and labeled to the best of my understanding.

2.2 Common Data

Table 2 lists the data that each paper experimented with, in alphabetical order of

data used. Some notes: DBLP is bibliography website for computer science infor-

mation. Enron short for Enron email is a dataset containing about 500,000 emails
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from senior employees of the old company. The “monks in a monastery” refers to a

collection of information taken at an American monastery. NIPS datasets are neural

information processing systems papers found in the website, Kaggle.
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Table 1: 33 selected papers about network and analysis organized by fields and
tasks. Field key: Red = Other (Networking, INFOCOM, Transportation); Yellow =
Sociology; Orange = Statistics; Green = Data Mining; Blue = Machine Learning;

Purple = Signal Processing.

Network Modeling
Paper Static Network Dynamic Network
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[DAM+14] * * *
[LCZ+08] * *
[PBL14] * * *
[HRT07] *
[HX07] *
[Sni11] * *
[AX08] *
[BC11] *

[CSZ+07] *
[KHRH09] * *
[RGNH13] * *
[SDB+16] * *
[STH+10] * *
[TLZN08] * * *
[TPS+08] * * * * * *
[XZYL08] * *

[YL15] *
[YML14] *
[FSX09] * * *
[GNC10] *
[HXA15] * *
[NXC+10] *
[YCZ+11] * *
[ABFX09] *

[CK03] * *
[HVG09] * *
[KL13] *
[OKI13] * *

[QVUARHS12] *
[SM14] * *

[SNF+13] *
[XI14] * *
[Xu14] *
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Table 2: Summary of data and models presented in the survey.

Data/Model
Paper Data Model
[Sni11] N/A Social net statistical models

[STH+10] DBLP Evo-NetClus
[FSX09] Enron dynamic MMB (dMMSB)
[OKI13] Enron Latent variable models & methods

[RGNH13] Enron Dynamic behavioral mixed-
membership model (DBMM)

[TLZN08] Enron & DBLP Evol. Multi-mode Cluster
[XI14] Enron Multi-layer extension of DSBM

[SNF+13] Image filters, brain graph signal processing tutorial
[QVUARHS12] IRVINE & METAFILTER Regression-based framework

[HXA15] MIT Reality Mining Multi-graph SBM
[HRT07] Monks in a monastery Latent position cluster model

[KHRH09] Monks in a monastery Latent cluster rand. effects model
[SM14] Nationwide temperatures Discrete signal process. paradigm

[CSZ+07] NEC blogs PCQ & PCM
[LCZ+08] NEC blogs FacetNet
[NXC+10] NEC blogs Incidence vector/matrix models
[XZYL08] News Groups DPChain & HDP-EVO

[KL13] NIPS & DBLP Dynamic Multi-group
Membership Graph Model

[ABFX09] Protein interactions Mixed Member. BM
[BC11] Protein interactions Block-LDA
[HX07] Senate proposals Exponential rand. graph (ERGM)
[PBL14] Social networks Descriptive Community Mining
[Xu14] Social networks stochastic block

transition model (SBTM)
[YCZ+11] Social networks Dynamic stochastic

blockmodel (DSBM)
[YL15] Social networks Ground-truth net

[YML14] Social networks CESNA
[HVG09] Swiss roll Spectral graph wavelet

transform (SGWT)
[CK03] Traffic network Spatial traffic analysis

[DAM+14] Traffic network Spectral graph wavelets analysis
[SDB+16] Traffic, genes, Wiki, blogs Sparse graph wavelet

transform (SWT)
[TPS+08] Traffic network Colibri
[AX08] Restaurant seating Temporal Dirichlet Process

Mixture (TDPM)
[GNC10] USPS benchmark Harmonic analysis framework



CHAPTER 3: STATIC NETWORKS

Many basic network models are static in nature, especially from earlier times of such

technical research. The analysis of static network models focus on certain network

statistics, say a snapshot at a certain time, in hopes to find the main components of

actual networks. Brief introductions of the each paper’s approaches for each task will

be provided before going into detail.

3.1 Community detection

Communities are groups of vertices that share common properties or play similar

roles [For10]. For examples, Tong et. al [TPS+08] approached community detection

by preserving the sparsity of large, sparse graphs, unlike preceding research. They

find an independent basis by removing linearly dependent attributes, which improves

space and time needed for computation.

Before the research of Bonchi et. al [PBL14], there was negligence towards infor-

mational descriptions beyond graph structure, which lead to the use of additional

information (user behavior, interests, etc.) and overlapping community detection.

They contributed explainable models with a new framework that pairs k possible

overlapping communities with their corresponding descriptions, with k as a given

number, using a fast-and-active algorithm.

Silva et. al [SDB+16] tried to solve the problem of computing wavelet trees that
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encode both the graph structure and the signal information. They created a powerful

framework for modeling complex data, with wavelet trees that produce fast decaying

coefficients to support a low-dimensional representation of graph signal.

Yang and Leskovec [YL15] studied community detection and identification through

ground-truths. They defined ground-truth communities using nodes that explicitly

state their group memberships in a set of 230 different networks.

In another study, they along with Julian McAuley [YML14] developed a model to

incorporate two major themes of community detection in complex networks: the de-

tection algorithms that focus on the network structure, and the clustering algorithms

consider node attributes.

Being able to detect and identify communities offers structure and knowledge of

organizations, such the organization of food groups. Some problems in this task

within network modeling involves model inefficiency, readability, and representation.

A visual summary of the data and experiments of each study can be found in Figure 1.

Tong et. al [TPS+08] proposed a Colibri methodology to do fast mining on large

graphs, both static and dynamic. Their main goal was to answer how to find com-

munities, anomalies, and detect patterns in large sparse graphs. For static graphs,

the Colibri-S iteratively finds a non-redundant basis to preserve the sparsity of large

graphs. The process is illustrated in Figure 1(a). The shaded columns are in the

initial sample, while dark shaded columns are linearly independent throughout the

process. The evaluation for Colibri used a network traffic dataset from the backbone

router of a class-B university network, with the data turned into a binary matrix. Pit

against similar algorithms, CUR [TfWAK03] and CMD [DKMM04], Colibri-S was
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(a) (b) (c)

(d) (e)

(f) (g)

(h)

Figure 1: Graphical representations and visuals used in each study for static
community detection. (a) Colibri-S process. (b) Iterations until convergence. (c)

Two graph wavelet bases of a signal with a cut of size 4. (d) Compression results of
the four datasets. (e) Clusters of community scoring correlations. (f) Average of

goodness metrics for LiveJournal communities. (g) Illustration of the CESNA model
(h) Network information from social network data.

proven to run significantly faster and more accurate.

Bonchi et. al [PBL14] proposed an algorithm that works with rich data on social
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sites to effectively detect benign communities. Community detection in this instance

means being able to find good communities that are associated with positive attributes

per user information. Models The DCM method, short for Descriptive Community

Mining, alternates between maximizing the community score and inducing a fitting

concise description. Starting with a set of candidate communities, the first algorithm

iterates through each one until convergence is found Here, attribute vectors are used to

make to make informed guesses about the best vertex to add to the initial candidates

with a distance function on the vertices attribute vectors to compute the distance to

all neighbours of a candidate vertex, then form a pair of the candidate vertex with its

nearest neighbor. The next algorithm, dubbed MAXIMUM COMMUNITY SCORE

(MCS), considers only the structure of the graph, instead of the attribute data. After

the algorithm constructs a list of all possible modifications, it chooses the one that

maximizes the change in community score, which becomes applied only if it improves

the score. Once the maximum score is found, the algorithm stops. Results The

algorithms were evaluated using three datasets from different social networks. Fig-

ure 1(b) shows that most candidate communities have converged to a stable state

after only two iterations, even though the maximum number of five iterations was

imposed to ensure a stopping point. The community hillclimber and description in-

duction method are robust, leading to stable solutions within a few iterations. The

MCS routine is quick, can easily perform on largescale graphs, but the scalability of

the description induction method depends much on the data at hand.

Silva et. al [SDB+16] studied the problem sparse graph wavelet transform (SWT),

which involves identifying a sequence of sparse graph cuts that leads to the minimum
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error in the reconstruction of a given graph signal. The challenge here was being able

to compute wavelet trees that encode both the graph structure and the signal infor-

mation for graph wavelet transforms. They introduced an algorithm for computing

SWT, via spectral graph theory. A fast graph wavelet transform (FSWT) was also

created, using techniques such as Chebyshev Polynomials and the Power method,

to improve the new algorithm’s computational efficiency. Models The relationship

between a wavelet tree and its graph structure is measured through using sparse cuts

(those with a small number of edges). Figure ?? shows two candidate wavelet trees

with a cut size of 4. The error of 1% of (a) in Figure 1(c) demonstrates a good

basis, which generates sparse transforms, which will maximize the amount of energy

from the signal that is conserved in a few coefficients. (b) gives a 22% error, which

is alternative basis. The evaluation for the algorithms for computing sparse wavelet

bases was applied using four datasets: Traffic (road networks from California), Hu-

man (gene network for Homo Sapiens), Wiki (sample of Wikipedia pages), and Blogs

(a network of blogs with political leaning). The results can be seen in Figure 1(d),

where the proposed approach (FSWT) outperforms the other two algorithms in most

settings.

Node groups with highly concentrated edges provide a challenge with being able

to identify communities of nodes, since there are many different definitions for a

community, intractability of algorithms, issues with evaluation, and the lack of a reli-

able, fixed standard ground-truth (information provided by direct observation). Yang

and Leskovec [YL15] proposed a method which allows to compare and quantitatively

evaluate how different structural definitions of network communities correspond to
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ground-truth communities. They considered over 200 datasets from social, collabo-

ration, and information networks with defined ground-truth communities. Models

Figure 1(e) shows clustered connections between scoring functions with correlation

≥ 0.6 (on the LiveJournal network). The scoring function is meant to characterize

the community likeness of a connectivity structure for a set of nodes, so nodes with

high scores can be considered to be parts of a community. They used four goodness

metrics for community detection: Separability captures the intuition that good com-

munities are well-separated from the rest of the network, i.e., they have relatively few

edges pointing from set S to the rest of the network. Density builds on intuition that

good communities are well connected. Cohesiveness shows the internal structure of

the community. The clustering coefficient is based on the premise that network

communities are manifestations of locally inhomogeneous distributions of edges, be-

cause pairs of nodes with common neighbors are more likely to be connected with

each other. Results Figure 1(f) shows the results by plotting the cumulative running

average of separability for LiveJournal ground-truth communities ranked by each of

the six community scoring functions. “U” represents the upper bound (plots the cu-

mulative running average of separability when ground-truth communities are ordered

by decreasing separability). Each definition of network communities is appropriate

for different networks. Conductance is the best scoring function for network contain-

ing well-separated and non-overlapping communities, and Triad Participation Ratio

defines the most appropriate notion of a community when the network contains dense,

heavily overlapping communities.

Network structure and the features and attributes of nodes are two possible sources
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of information when it comes to community detection. Yang et. al [YML14] developed

Communities from Edge Structure and Node Attributes (CESNA), an algorithm for

detecting overlapping communities in networks with node attributes that considers

both sources of information. CESNA uses statistics to model the interaction between

the network structure and the node attributes. It has a linear runtime (O(n)) in

the network size and is able to process networks of larger extent than similar ap-

proaches. This algorithm also finds relevant attributes from each community, which

helps with the interpretation of detected communities by relevance. Model Fig-

ure 1(g) is an illustration of the CESNA model. Xuk: k-th attribute of node u; Wk:

Logistic weight vector for attribute k; Quk: Probability that Xuk = 1; Fuc: Mem-

bership strength of node u to community c; Auv: Indicator for whether the nodes u

and v are connected; Puv: Probability that Auv = 1. The rectangles represent the

node attributes and the observed network adjacency matrix. The circles show la-

tent variables: community memberships F and logistic weights W . Results CESNA

was evaluated through social, information, and content-sharing network data from

Facebook, Google+, Twitter, Wikipedia (Philosophers), and Flickr. The datasets

contained network information and node attributes, summarized in Figure 1(h). Key

N : Number of nodes; E: Number of edges; C: Number of communities; K: Number

of node attributes; S: Average community size; A: Community memberships per

node.
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3.2 Anomaly detection

Anomaly detection is being able to find odd patterns, or outliers, in networks.

For example, outliers can be abnormal traffic patterns [CK03], vandal users [PBL14]

(in which the MCS returns negative values), etc. This task is useful in behavior

detection and especially important in areas like security. Defining what “normal”

behavior should be in relation to the data and ensuring security accuracy are a couple

of challenges in anomaly detection. For example, Crovella and Kolaczyk [CK03] and

Mohan et. al [DAM+14] used finding anomalies for tracking traffic congestion using

graph wavelets. Their approach is through using spatial dependencies and signals as

opposed to traditionally temporal methods.

Spatial traffic analysis is the comparison and analysis of traffic patterns across

multiple network links simultaneously, which can be used to find traffic patterns

within topologically localized sets of links of a network, which is especially useful

for traffic engineering. Crovella and Kolaczyk [CK03] approached the need of spatial

traffic analysis with graph wavelets that generalize the traditional wavelet transform,

namely the Haar and “Mexican hat” wavelets. This new framework can be applied to

data elements connected via an arbitrary graph topology, able to simplify information

and patterns in the data to treat network traffic data streams as a multivariate time

series on collections of links. Their approach experiments with measurements from

the Abilene network. Figure 2(a) shows two sets of wavelet coefficients for each

link in the network. The left hand bars show coefficients before the service outage

event, and the right hand bars show coefficients during the service outage event.
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(a)

(b) (c)

Figure 2: Graphical representations and visuals used in each study for anomaly
detection in static networks. (a) View of wavelet coefficients. (b) Comparison of

Haar and Mexican Hat Wavelets by the Atlanta-Houston Link. (c) Link-level graph
wavelet analysis of East Coast Parkway road network.

Results The regions around the Atlanta-Houston link were used to consider how

the choice of wavelet function ψ affects the properties of the transform. Figure 2(b)

shows that Haar wavelet is useful for precise distinctions between rings, while the

Mexican Hat wavelet is more gradual and better suited for finer study of the successive

neighborhoods of a particular node.

The research by Mohan et. al [DAM+14] focuses on the detection of anomalous

traffic events, like congestion. They analyze wavelet coefficients, generated by graph

wavelet operators applied to spatial signals, to extract information such as origin,

propagation, and the span of traffic congestion are inferred. They reviewed theoret-
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ical aspects of classical wavelet transform, such as weighted graph and graph signal,

graph laplacian, graph fourier transform, and spectral graph wavelet transform. They

apply the spectral graph wavelet analyses to road network data, consisting of several

expressways and downtown roads in Singapore. The subnetwork G1 contains road

segments from East Coast Parkway, while the subnetwork G2 contains road segments

from Central Expressway. Through link-level graph wavelet analysis, the life span

of events can be viewed in Figure 2(c), where anomalies of traffic A, B, and C are

distinguished in red from the usual commute. A and C indicate the start of the

morning and evening congestions respectively. B is another anomaly that occurred

approximately around noon.

3.3 Entity linking

Being able to accurately link entities is a challenge; for example, when “Paris,

France” is mentioned, it is not to be linked with the person, Paris Hilton. Some

more examples of entity linking, provided by Airoldi et. al [ABFX09]: scientific lit-

erature connecting by citation, the Web connects pages by links, and protein-protein

interactions. They developed models for relational data and accurate pairwise mea-

surements. Their models display interaction matrices based on the multiple roles that

objects exhibit in interaction with others, and the relationships between those roles.

Balasubramanyan and Cohen [BC11] expand on the previous model by jointly

modeling links and text about the entities that are linked.

Handcock et. al[HRT07] use two estimation methods in their proposed model to

make it efficiently represent transitivity, homophily by attributes, and clustering.
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 3: Graphical representations and visuals used in each study for static
network entity linking. (a) Graphical model of the mixed membership blockmodel.
(b) Protein-protein interaction evaluation of MMB versus related approaches. (c)

Inferred protein-protein interactions; Block-LDA vs. Sparse graph. (d) Enron
network and the de-noised retreived versions. (e) Monks’ links with the maximum

likelihood latent space positions. (f) Monks’ links monks with the Bayesian
estimation. (g) Monks in a monastery with the Latent Cluster Random Effects

Model.

Airoldi et. al [ABFX09] created a new class of variable models, called mixed

membership stochastic blockmodels (MMB), for improving the efficiency of pairwise

measurements. Stochastic blockmodels provide group structuring by fixing paired

measurements into groups and connecting those pairs of the groups, but limit each

unit to instantiate the connection patterns of a single group. Mixed membership
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structures associate each unit with several groups instead of just one, able to capture

multiple roles. Model Figure 3(a) represents MMB and its process for a graph

G = (N, Y ), with all the pairwise measurements Y (p, q) as an element of 0, 1 of

blockmodel B, a directed graph. In the figure, latent node distributions are drawn

from i for node i, where πi, g denotes the probability of node i belonging to group g.

The matrix of Bernoulli rates B(K×K) defines the probabilities of interactions with

different groups. The probability of having a connection from a node in group g to

a node in group h is represented by B(g, h). The indicator vector zp → q denotes

the specific block membership of node p when it connects to node q, while zp ← q

denotes the specific block membership of node q when it is connected from node p.

Result The MMB was evaluated using a yeast genome database of physical protein

interactions, by the Munich Institute of Protein Sequencing (MIPS), to summarize

and de-noise the complex connectivity patterns quantitatively. The performance is

shown in Figure 3(b). The results show that the MMB (light and dark blue lines)

successfully reduces the dimensionality of the data, while discovering information

about the multiple functionality of proteins (yellow diamonds) that can be used to

inform follow-up analyses.

Balasubramanyan and Cohen [BC11] approach the problem of latent group identi-

fication through pairwise measurements with the model Block-LDA, which combines

the mixed membership stochastic blockmodels [ABFX09] with topic models. It is

meant to improve entity-entity link modeling by jointly modeling links and text about

the entities that are linked. This model allows for information sharing between links

of entity pairs and text documents through dormant topics. Model and Result
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The model enables the sharing of information between both blocks through shared

latent topics. Using a dataset of protein interactions from MIPS, Figure 3(c) shows

a posterior likelihood comparison of protein-protein interaction matrices using the

sparse blockmodel and the proposed Block-LDA model. Figure 3(d) shows the Enron

dataset in (a) its original state, (b) the de-noised version using a sparse blockmodel,

and (c) the de-noised version from using the Block-LDA.

Handcock et. al [HRT07] proposed the latent position cluster model, where the

probability of a tie between two interacting units depends on the distance between

them. Model The cluster model represents network data through transitivity (the

chance a third node will be connected to other groups if that node relates to either

one of them), homophily (bonding with similar actors through relatable characteris-

tics), and clustering simultaneously, and does not require the number of clusters to

be known. They proposed two estimation methods for the model. The first computes

the maximum likelihood estimator of the (non-clustering) latent space model, and

then computes the maximum likelihood estimator for the mixture model applied to

the resulting estimated latent positions. Model and Result The data experimented

with was the “monks in a monastery” collection, labeled with T (Turks), L (Loyal

Opposition), O (Outcasts) and W (Waverers), and connected by right arrows (ties).

Figure 3(e) represents the maximum likelihood latent space positions from the first

stage of a proposed two-stage maximum likelihood method. This method first com-

putes the maximum likelihood estimator of the (non-clustering) latent space model,

and then computes the maximum likelihood estimator for the mixture model applied

to the resulting estimated latent positions. “We say that a monk has the social rela-
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tion of like to another monk if he ranked that monk in the top three monks for positive

affect in any of three interviews given over a 12-month period.” The second method is

fully Bayesian and uses Markov chain Monte Carlo sampling. It estimated the latent

positions and the clustering model simultaneously. The estimation is illustrated using

the monk data in Figure 3(f). The Bayesian estimate method appears to produce a

greater distinction between the groups than the previous two-stage estimate method.

Krivitsky et. al [KHRH09] sought to represent the same relations as [HRT07],

plus the heterogeneity of actors in social network data. Their model, the Latent

Cluster Random Effects Model, supports those four features through adding random

sending and receiving effects to the latent position cluster model of [HRT07]. Their

Bayesian approach estimates the latent positions, the clustering model, and the actor-

specific effects simultaneously. Using the MCMC algorithm, it iterates over the and

parameters shown and in turn updates the variables, and block-updates those which

are expected to be correlated. Results The Latent Cluster Random Effects Model

was evaluated using the isolated American monastery data, shown in Figure 3(g).

Panel (a) shows a similar performance to the model proposed in [HRT07], as a latent

cluster model without random effects. Notice the contrast of Monk 1 (red node) in

both graphs, seeming less than popular among the groups, due to the unbalanced

out-ties to in-ties of other members. Without receiver effects, he is pushed to the

edge of the L group. With receiver effects, the monk moves toward the center of the

Loyal Opposition group because of his out-ties, along with a small receiver effect to

compensate. The receiver effect absorbs his unpopularity and the model gives him a

more informative position in the social space.
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3.4 Event detection

Event detection in this survey is synonymous with pattern recognition. It was

exercised in [PBL14], where the community detection involves finding benign groups

thus examining patterns of behavior. [DAM+14] also incorporated this task within

the focus of finding traffic anomalies.

Hammond et. al [HVG09] provided a flexible model, able to be used for just about

any domain. Their approach uses the connectivity information encoded in the edge

weights of weighted graphs, not reliant on other attributes of the vertices (like their

positions), as other approaches would be.

Hammond et. al [HVG09] proposed a method to construct a spectral graph wavelet

transform (SGWT) of functions defined on the vertices of an arbitrary finite weighted

graph, for the task of pattern recognition. Model Figure 4(a) represents the scal-

ing function of the SGWT. “The scaling functions help ensure stable recovery of the

original signal f from the wavelet coefficients when the scale parameter t is sampled

at a discrete number of values tj.” Function key Scaling function h(λ) (blue curve),

wavelet generating kernels g(tjλ), and sum of squares G (black curve), for J = 5

scales, λmax = 10, K = 20. The Swiss roll dataset is used to demonstrate building

wavelets in a point cloud domain, shown in Figure 4(b). The spectral graph wavelets

at four different scales localized at the same location. (a) vertex at which wavelets

are centered (b) scaling function (c)-(f) wavelets, scales 1-4. σ = 0.1 was used for

computing the underlying weighted graph, and J = 4 scales with K = 20 for com-

puting the spectral graph wavelets. The figure shows how “spectral graph wavelets
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(a)

(b)

Figure 4: Graphical representations and visuals used in the study for event
detection and pattern recognition in a static network. (a) Scaling function of the

SGWT. (b) Spectral graph wavelets on Swiss Roll data.

can adapt to the underlying manifold structure of the data in an implicit way. The

support of the coarse scale wavelets diffuse locally along the manifold, and do not

’jump’ to the upper portion of the roll.”

3.5 Other tasks in a static network

The next papers for static networks do not fit into the other tasks, but they are

important extensions for high-dimensional data analysis to networks. For example,
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Gavish et. al [GNC10] introduced a harmonic analysis (a branch of mathematics used

for the representation of functions or signals as the superposition of basic waves)

approach for playing a bigger role in problems involving complex data encoded as

graphs or networks, processing data on graphs.

Shuman et. al [SNF+13] include the previous approach [GNC10] in their tutorial

overview of signal processing on graphs with high-dimensional data.

Sandryhaila and Moura [SM14] further used signal processing methods to develop

a method to analyze and process very large datasets, or Big Data. Their model is

appropriate for both static and dynamic networks.

Gavish et. al [GNC10] developed a harmonic analysis framework to apply to the

challenges of the analysis high dimensional data or data encoded as graphs or net-

works. Model A data adaptive Haar-like wavelet base was built for functions over

the dataset, illustrated in Figure 5(a). Result The dataset in the USPS benchmark

contained 1500 grey scale 16x16 images of the digits 0 to 9. The task was to dis-

tinguish the digits 2, 5 from the rest. Figure 5(b) shows that the Haar-like classifier

dominates the Laplacian Eigenfunction when labeled points are few and is comparable

when they are many.

Shuman et. al [SNF+13] offered a signal processing tutorial overview of the analysis

of data on graphs. In their study, applications common data processing tasks are

applied, such as filtering, denoising, inpainting, and compressing graph signals. They

address such challenges:

1. deciding how to construct a weighted graph that captures the geometric struc-
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(a) (b) (c)

(d)

(e)

(f) (g)

Figure 5: Graphical representations and visuals used in each study of various
unique tasks fulfilled for static networks. (a) Haar-like basis. (b) Results on the

USPS benchmark. (c) Importance of the underlying graph (d) Filtering an image
using Tikhonov regularization. (e) Diffusion operators and dilution. (f) Examples of
product graphs with various data. (g) Examples of graph signals on product graphs.
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ture of the underlying data domain, in cases where the graph is not directly

dictated by the application

2. incorporating the graph structure into localized transform methods

3. simultaneously, leveraging intuitions developed from years of signal processing

research on Euclidean domains

4. developing computationally efficient implementations of the localized trans-

forms to extract information from high-dimensional data on graphs and other

irregular data domains

First they went over different ways to encode graph structure and define graph spectral

domains. Figure 5(c) demonstrates how both the smoothness and the graph spectral

content of a graph signal depend on the underlying graph. The signal f is plotted on

three different unweighted graphs with the same set of vertices, but different edges.

The top row shows the signal in the vertex domains, and the bottom row shows the

signal in the respective graph spectral domains. The smoothness and graph spectral

content of the signal both depend on the underlying graph structure. Next, they

discussed different ways to generalize downsampling, filtering, dilation, and other

fundamental operations to the graph setting. In Figure 5(d), the bottom row of

images shows close-ups for detailed looks at the top row of images. Comparing the

results of the Gaussian and Graph-filtered filtering methods, the Gaussian filter also

smooths across the image edges, which sufficiently smooths the smoother areas of

the image. Then, they provided examples of graph transform designs. These designs

can be categorized into vertex domain designs and graph spectral domain designs.
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Figure 5(e) shows the application of different powers of the heat diffusion operator

can be interpreted as graph spectral filtering with a dilated kernel. The localized basis

functions at each resolution level are downsampled and then orthogonalized through

a variation of the Gram-Schmidt orthogonalization scheme.

Sandryhaila and Moura [SM14] used a paradigm based on discrete signal processing

on graphs (DSPG) to approach the challenge of analyzing and processing Big Data.

The implementation is based on parallelization and vectorization. Product graphs

offer versatile graph models to represent complex datasets. Models Figure 5(f) gives

three examples of product graphs. 5(f)-(a) shows digital images reside on rectangular

lattices that are Cartesian products of line graphs for rows and columns. 5(f)-(b) is

a dynamic example, to be described in Section 4. 5(f)-(c) is a social network with

three similar communities is approximated by a Cartesian product of the community

structure graph with the intercommunity communication graph. Results These three

graphs can also support graph signals, shown in Figure 5(g), which come from website

features (topic, view count, relevance) and social networks, where characteristics of

individuals (opinions, preferences, demographics) are connected. 5(g)-(a) is dynamic,

and will be described in Section 4. The test used a dataset containing daily tem-

perature measurements collected by 150 weather stations across the United States,

represented by Figure 5(g). 5(g)-(b) was constructed by connecting each sensor to 8

of its nearest neighbors with undirected edges with weights. It shows measurements

from a single day as well as the sensor network graph.



CHAPTER 4: DYNAMIC NETWORKS

In the language of networks, one way dynamics components can be translated is

into the birth and death of edges and nodes. For example, in an academic network,

say, a university, new nodes or students may be introduced at any time and old nodes

or graduates may drop out due to inactivity; links of friendships and alliances may

be even more brittle. Over time, there has been a shift of interest to dynamic graphs,

which reflects on the face that real-world networks are continuously going through

change.

4.1 Community evolution detection

In dynamic networks, the task of community detection concentrates on its evolution

through time. The main purpose is to find what behaviors within a network have

changed changed, which entities died or came to exist, etc. A visual summary of the

research papers of this task is presented in Figure 6

Lin et. al [LCZ+08] offered a unified process for analyzing communities and their

evolutions through their proposed model, which differs from the deviates from the

traditional two-step approach, wherein communities are first detected for each time

slice, and are then compared to determine correspondences.

Some of the papers propose new models that incorporate evolutionary community

detection into heterogeneous networks, which “involve more than one type of actors
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and multiple heterogeneous interactions between different types of actors [TLZN08].”

Tang et. al [TLZN08] presented a framework to find community evolution for dynamic

multi-mode networks where several different types of interaction may occur around

multiple heterogeneous nodes.

Similarly, Sun et. al [STH+10] studied the problem of evolutionary community

detection in heterogeneous networks and created a model to give structure to the

generation of multi-typed communities, or net clusters.

The main feature in the dynamic side of the sparse-preserving model from afore-

mentioned [TPS+08] is that it can support such temporal smoothness to quickly

while maintaining the sparseness of the low rank approximation.

Yang et. al [YCZ+11] implemented a Bayesian approach in their model to capture

uncertain parameter values, which made this proposal more robust to data noise than

the point estimation approach. An algorithm for the Bayesian inference improved it

to handle large sparse networks.

Lin et. al [LCZ+08] address the challenge of dynamic network community evolution

analysis with their novel framework, FacetNet. Using FacetNet, communities gener-

ate evolutions and are regularized by the temporal smoothness of evolutions. This

framework can discover communities that jointly maximize the fit to the observed

data and temporal evolution. The approach is from formulating the problem in

terms of non-negative matrix factorization, where communities and their evolutions

are factorized in a unified way. To regularize the community structure at a given

time, a cost function was introduced to measure the quality of community structure

at the time. The cost consists of a snapshot cost and a temporal cost: cost = α·CS
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(a) (b) (c)

(d) (e)

(f)

Figure 6: Graphical representations and visuals used in each study for dynamic
community evolution detection (Part 1). (a) Four communities in the NEC dataset.

(b) The Community Net of the NEC dataset. (c) The Evolution Net of the NEC
dataset. (d) Description of the Evolutionary Multi-mode Clustering alg.. (e) Enron
and DBLP data evaluated with the Evolutionary Multi-mode Clustering alg.. (f)

Graphical Model for Evo-NetClus.

+ (1 − α)·CT The snapshot cost CS measures how well a community structure fits

the observed interactions at a certain time. The temporal cost CT measures how

consistent the community structure is with respect to historic community structure,

at a time t − 1. The user sets the parameter α to control the level of emphasis on

each part of the total cost. They introduced two concepts to represent community
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(a)

(b) (c)

(d)

Figure 7: Graphical representations and visuals used in each study for dynamic
community evolution detection (Part 2). (a) Comparison of compactness between

Evo-NetClus and similar models. (b) Illustration of Colibri-D process. (c) Graphical
representation of the Dynamic Stochastic blockmodel (DSBM) (d) Performance of

DSBM against similar approaches.

structures and their evolutions: Community Net and Evolution Net. They use blog

data collected by an NEC in-house blog crawler to test the performance FacetNet. In

Figure 6(a), a graph was drawn of four communities from the thousands of entries.

Figures 6(b) and 6(c) show the Community and Evolution Nets, representing the

communities appropriately.

Identifying community evolution in dynamic multi-mode networks is a challenge
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as both actor membership and interactions evolve. Tang et. al [TLZN08] addressed

this challenge with the Evolutionary Multi-mode Clustering algorithm, which adopts

a spectral clustering framework, to identify community evolution in dynamic multi-

mode networks. Multi-mode networks could assist in making online marketing accu-

rate with limited user information, by employing the relationship between different

types of objects. Model Figure 6(d) describes the new model’s algorithm in which

Rt
ij: interaction between two modes of actors at t timestamp; Rij: the interaction

between two modes of actors; ki: number of latent communities; w
(i,j)
a : weights asso-

ciated with different interactions; w
(i)
b : the trade-off between the loss of interaction

approximation and temporal regularization; C(i,t): latent cluster membership; At
ij:

group interaction matrix. Here are Theorems 2 and 3 for reference: ”THEOREM

2. If C(i,t) are given, the optimal group inter-action matrix At
i,j can be calculated

as At
i,j = (C(i,t))T Rt

i,jC
(j,t),” and ”THEOREM 3. Given Cj,t and C(i,t±1), C(i,t) can

be computed as the top left singular vectors of the matrix P t
i concatenated by the

following matrices in column-wise: [{
√
w

(i,j)
a Rt

i,jC
(j,t)}i<j, {

√
w

(k,j)
a Rt

k,jC
(k,t)}k<i,

{
√
w

(i)
b C(i,t±1)}].” Results After proving that the proposed method would perform

better than other similar ones using synthetic data, they experimented with Enron

and DBLP data. Figure 6(e)-(a) shows Emails sent each month on Enron data, where

the heavy amount of emails shown over those two months give so much data that it

is not necessary to consider any temporal information, so the performance for them

isn’t as high as the other months. Figure 6(e)-(b) displays the number of papers,

active authors, venues, and terms in each year using DBLP data. The blocks of

Figure 6(e)-(c) show two examples of venue community that were extracted with the
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proposed method over the year 2004 in DLBP, and they associate appropriately with

the conference and journal topics.

Sun et. al [STH+10] studied the problem of multi-typed evolutionary community

detection in a heterogeneous network. They proposed a Dirichlet Process Mixture

Model-based generative model to model the community generations with a cluster-

ing of communities to explain the current and historical networks are automatically

detected. In a Mixture model it is typically difficult for people to specify the correct

cluster number. The Dirichlet Process Mixture (DPM) Model is a common way to

solve the problem, where the cluster number is considered as countable infinite. The

proposed model is an extension of the DPM Model: the Evo-NetClus, for evolution-

ary net-clusters. Model Figure 6(f) displays a graphical model for the Evo-NetClus

model. At each time t a DPM is built for the target objects (oi,t) in the network

Gt, and θi,t is a parameter of the cluster associated with (oi,t), following the distri-

bution of Gt. Ht is an expectation distribution of the Dirichlet distribution, and α

is the concentration parameter. Results Along with considering different types of

objects, the Evo-NetClus’s clustering results can carry historical information. The

algorithm experiments against with three other degenerated clustering models using

DBLP datasets, those fewer types of objects or not using historical priors, to compare

similarity compactness. The results are shown in Figure 7(a), where the proposed

Evo-NetClus model performed the best through considering both multiple types of

objects and historical impact information, in regards to providing a better similarity

feature.

Continuing on the Colibri study [TPS+08], Colibri-D is an updated Colibri-S algo-
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rithm for dynamic, time-evolving graphs. It is more accurate than the static version,

saving even more space and time in computations. Figure 7(b) displays the pro-

cess illustrations for the dynamic algorithm. Model and Result The space cost

for Colibri-D is not presented, as it has the same space cost as Colibri-S, so only

the running time performance for dynamic graphs was tested. It exceeded both the

competing algorithm and the proposed Colibri-S.

Yang et. al [YCZ+11] offered a dynamic stochastic blockmodel (SBM) for finding

communities and their evolution in a dynamic social network. The proposed DSBM

has two versions: 1) the online inference version progressively updates the proba-

bilistic model over time; 2) the offline inference version retrospectively learns the

probabilistic model with network data obtained at all time steps. This DSBM model

adopts the Bayesian approach, which computes the posterior distributions for un-

known parameters. This can predict community memberships and derive important

characteristics of communities, such as structures and evolution. Model Figure 7(c)

shows the graphical representation of the DSBM, where A is a transition matrix

meant to capture the dynamic evolution of communities; a pair of nodes i and j;

Zt: community memberships; wij: link weight. Results The performance of the

online and offline versions were compared to other methods for dynamic community

analysis, which can be viewed in Figure 7(d). The data was synthetic, containing

128 nodes that belong to 4 communities, with 32 nodes in each community. The

generated datasets with four different noise levels. As the charts show, the proposed

DSBM algorithms have better accuracy than the others for all datasets. Also, the

evolutionary algorithms (including [LCZ+08]’s FacetNet and [TLZN08]’s evolutionary
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spectral clustering algorithm) are more accurate than the static versions in most cases,

showing the advantages of the dynamic models in capturing community evolution in

dynamic social networks.

4.2 Anomaly detection

Using dynamic graphs, several new anomalies can be viewed over a temporal do-

main, such as tracking natural disasters, community activity, and economic downfalls.

Rossi et. al [RGNH13] create a model that outperforms the pre-existing dynamic

mixed-membership stochastic blockmodels [FSX09] in a scalable, descriptive model

that pays more attention to anomaly detection by capturing the roles of nodes and

how they evolve.

Han et. al [HXA15] also create a new model based on the stochastic blockmodel

(SBM) to be a foundation for application settings like dynamic and multi-layer net-

works.

Rossi et. al [RGNH13] proposed a dynamic behavioral mixed-membership model

(DBMM) for large networks, with the task of capturing the roles of nodes and how

they evolve. This DBMM identifies patterns and trends of nodes and network states

based on temporal behavior, predicts future structural changes, and detects unusual

temporal behavior transitions. It is possible to learn how the behavior of a network

changes over time, given a sequence of dynamic behaviors G = Gt : t = 1, ..., tmax.

Model For the purpose of categorization, this particular study will be concentrated

on anomaly detection, as they create an algorithm for network membership predic-

tion. “The anomaly score is the difference between the predicted network mixed-
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(a)

(b)

Figure 8: Graphical representations and visuals used in each study for anomaly
detection in dynamic networks. (a) Time-varying anomaly detection and evolution

from Enron. (b) Connection probability estimation of a business school.

memberships and the ground-truth mixed-memberships. Therefore, the score rep-

resents the divergence of that nodes transitions from the entire network.” Results

Figure 8(a) shows nodes that were anomalous for very short periods of time in an

Enron email network and their behavior over such time. Such anomalies would be im-
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possible to detect in a static network, as their brief existence would be overshadowed

by typical regular behavior.

Han et. al [HXA15] explored the multi-graph stochastic blockmodel for theoretical

analysis, which is a foundation for application settings, such as dynamic and multi-

layer networks. A multi-graph is a collection of networks over a common set of

nodes, often worked into dynamic networks of time-evolving edges like time-stamped

interactions between people, such as phone calls, text messages, and e-mails. The

challenge with multi-graphs is being able to “extract common information across

the layers of the multi-graph in a concise representation, yet be flexible enough to

allow differences across layers.” Model Implemented into the stochastic blockmodel,

the multi-graph SBM splits nodes into classes that define blocks in the multi-graph.

Among the consistency of two estimators for the multi-graph SBM (spectral clustering

and the maximum-likelihood estimate), a variational approximation to the maximum-

likelihood estimate (MLE) to work with large networks was proposed. At the time

of the study, the MLE was computationally unfit for large networks. Variational

approximation replaces the joint distribution with independent marginal distributions

to approximate the MLE. Results The multi-graph SBM was evaluated using the

MIT Reality Mining data set. It consists of 93 total students and staff at a business

school over the course of 40 weeks (the 2004-2005 school year) where the values were

represented by recorded cell phone proceedings. “Two communities were found: one

containing 26 Sloan business school students, and one containing 67 staff working in

the same building.” In Figure 8(b), the profile MLE was used to estimate connection

probabilities of the two communities. The over time varying probabilities proved the
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importance of the varying class connection probability assumption.

4.3 Entity linking

“Clustering is an important data mining task for exploration and visualization of

different data types like news stories, scientific publications, weblogs, etc. Due to the

evolving nature of these data, evolutionary clustering has recently emerged to cope

with the challenges of mining temporally smooth clusters over time” [AX08]. Entity

linking is similar to clustering in the sense that related attributes are being connected

for visual analysis. The figures of each study in entity linking has been compiled in

Figures 9 and 10.

Ahmed and Xing [AX08] brought up typical entity linking examples in the begin-

ning of their report. They introduced a framework for modeling complex longitudinal

data, which tracks the same sample at different points in time. Their approaches

differed from most other evolutionary clustering approaches so that their proposed

model would not become orthogonal and highly interdependent.

Fu et. al [FSX09] presented a model for entity linking in evolving networks builds

that was built on time the mixed-membership stochastic blockmodel [ABFX09].

Kim and Leskovec [KL13] created a model to handle evolutionary relational data.

Their approach considers interactions between groups of nodes that evolve with time

as well as single node arrival and departure dynamcis.

Hanneke et. al [HX07] presented a family of statistical models for social network

evolution to answer the need of entities linked by relations in social network analysis.

Oselio et. al [OKI13] created a model for the mining of connections in multi-layer
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networks. It uses techniques from Bayesian Model Averaging, so the layers of the

network become conditionally decoupled using a latent selection variable.

Xu and Hero [XI14] also extended the classic stochastic blockmodel (SBM) into

a dynamic setting to predict dynamic links and examine temporal dynamics in such

networks.

Xu [Xu14] proposed another dynamic SBM that allows the presence or absence of

edges to directly influence future edge probabilities while retaining the explicability

of the stochastic blockmodel.

Ahmed and Xing [AX08] introduced the temporal Dirichlet process mixture model

(TDPM) as a framework for modeling complex longitudinal data. The recurrent

Chinese restaurant process (RCRP) is used as a construction for the TDPM model.

Model The RCRP in Figure 9(a) is analogous to seating customers at tables in

a Chinese restaurant and operates in epochs, such as days. Results The TDPM

was tested on real data by building a simple non-parametric dynamic clustering-topic

model, and applying it to analyze the NIPS12 document collection. Figure 9(b) shows

topic durations (illustrating the births and deaths of various topics), the popularity of

certain topics within the document collection, and popular keywords of those topics

as they evolve over time(capturing topic evolutions).

Fu et. al [FSX09] tackled the issue of themes concerning the functions of actors

and their relations to each other being lost over a temporal process. As these themes

are dynamic, a dynamic mixed membership stochastic blockmodel (dMMSB) was

proposed. Model This model tracks across time for the evolving roles of the actors.

It dissects the evolving functional composition of the actors based on their dynamic
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(a) (b)

(c) (d)

(e)

(f) (g)

Figure 9: Graphical representations and visuals used in each study for dynamic
entity linking (Part 1). (a) Recurrent Chinese restaurant process as a construction

for the TDPM. (b) Results of the TDPM on the NIPS12 dataset. (c) Graphical
representation of the dynamic mixed membership stochastic blockmodel. (d)

Temporal changes in 150 mixed membership vectors for each actor. (e) The births
and deaths of groups; Link functional model. (f) Missing link prediction

performance for the Dynamic Multi-group Membership Graph Model. (g) Graphical
representation of 3-node statistics.
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(a)
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(e) (f)

(g) (h)

Figure 10: Graphical representations and visuals used in each study for dynamic
entity linking (Part 2). (a) Comparison of statistic values from real and sampled
networks. (b) Adjacency and Observed matrices. (c) Latent variables distributing
from adjacent to observed matrices. (d) Latent variables described as similarity

matrix and selection variable. (e) Combining the two layers of the Enron network
with a parameter α = 0.5. (f) Graphical representation of a temporal extension of

the SBM. (g) Temporal extension’s performance evaluation of mean-squared
tracking error and and class estimation accuracy. (h) Histograms of edge durations

in a Facebook dataset.
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interactions. Figure 9(c) shows a graphical representation of the proposed dMMSB,

where the dotted lines indicated a normal mixed membership stochastic blockmodel.

The dMMSB was used to study Enron email communication networks. Results Fig-

ure 9(d) displays each member’s role composition and the role compatibility matrix.

Role 1 (blue) is inactive. Role 2 (cyan) actors only send email to persons of the same

role, thus forming a cliqueand the same thing happens with Role 4 (orange). Those in

Role 5 send emails to people of either Role 5 or Role 3 (green), to form a large clique.

Role 3 corresponds to receivers and Role 5 corresponds to senders and receivers.

Kim and Leskovec [KL13] stated that an underlying problem in the analysis of

time-varying network data is being able to summarize the common structure and

dynamics of relations between the entities. A nonparametric multi-group membership

model was proposed for dynamic networks, the Dynamic Multi-group Membership

Graph Model. Model Figure 9(e) contains two components of the model: The birth

and death of groups in regards to the dynamics of the network structure, and the

connection between nodes memberships to groups and the links of the network. In

the link function model, Θk parameters are linked within entries of the link affinity

matrix between the combinations of members (z
(t)
i = 1) and nonmembers (z

(t)
i =

0). z
(t)
i denotes binary node group memberships, and probability is symbolized by

p
(t)
ij . The DMMG model was evaluated using three datasets for predicting missing

links. The NIPS co-authorships and DBLP co-authorships networks connect two

people if they appear on the same publication in the conferences. The INFOCOM

dataset represents the physical proximity interactions between 78 students at the

2006 INFOCOM conference. Results Figure 9(f) shows average evaluation scores for
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each model and dataset over 10 runs. The DMMG performs the best in all cases, in

comparison to the other three models’ baseline models.

For the purposes of scientific exploration, for flexible statistical models in social

network analysis, Hanneke et. al [HX07] proposed several flexible statistical models

for time-invariant networks. Each are represented as a single directed or undirected

graph using. The model most relevant in regards to flexibility is the Exponential Ran-

dom Graph Models (ERGM), as it offers interactivity through customized captures

of a wide range of signature connectivity patterns in the network. Users can specify

functions to represent sufficient statistics. [HX07] proposed a “model family” referred

to as a temporal ERGM, or TERGM. This family can model network evolution while

maintaining the flexibility of a fully general ERGM. Model The TERGM was tested

to model the network transitions by a dataset that comes from the United States

108th Senate, including n = 100 actors. Each time a proposal is made, a single Sena-

tor serves as the proposal’s sponsor, and there may be several cosponsors. The first

experiment assesses which statistics are important for modeling the network transi-

tions, and the second assesses the quality of fit of a model with a cross-validation

experiment. Nine statistics functions were used in total: Density, Stability, Reci-

procity, Transitivity, Reverse-Transitivity, Co-Supported, Co-Supporting, Popularity,

and Generosity. Figure 9(g) shows the level of support for the last six features. The

black arrows show support, and the red arrows indicate an edge at a certain time.

“Popularity says that if one [Senator] has a supporter, she or he is likely to have

another supporter.” Results Figure 10(a) presents the comparison of all 9 statistic

values between ground-truth and sampled networks, using the estimated TERGMs



45

from the first test, the cross-validation process. The blue lines display the observed

statistics (ground-truth), box plots for the sampled networks, and the green lines

show the 5- and 95-percentiles.

Oselio et. al [OKI13] developed latent variable models and methods for mining

multi-layer networks for connectivity patterns based on noisy data, in which there

may be several sources of connective information between user groups. Models The

general multi-layer graph 10(b) shows the observation matrices being affected by the

latent adjacency matrices. The hierarchical model 10(c) shows the latent variable

model set Y controlling distributions of the adjacency matrices and further to the

observation matrices. The posterior mixture model 10(d) introduced the similarity

matrix W and the selection variable Z as two independent latent variable models. Re-

sult Advancing on DSBM [XI14], a multi-layer extension was implemented for such

class membership estimation. This approach was practiced on the Enron email net-

work, with email communication networks between 150 senior employees. Two layers

were extracted from the dataset. One is the relational (extrinsic) information between

users, and the other represents behavioral (intrinsic) information. Figure 10(e) shows

the DSBM parameters for mixing parameters at α = 0.5.

Xu and Hero [XI14] sought to improve statistical models for analyzing data in the

form of networks, e.g. social networks. They presented a state-space model that

extends the typically static stochastic blockmodel to work for dynamic networks.

This model is fit in a near-optimal way using the Extended Kalman Filter (a nonlin-

ear estimate of the current mean and covariance). Model and Result This dynamic

advancement is a temporal extension of the stochastic blockmodel, graphed out by
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Figure 10(f), where the boxes represent observed quantities and the ovals represent

unobserved quantities. The performance of this model was compared to with a PSA

(probabilistic simulated annealing) algorithm, with the PSA performance used as a

baseline to compare with the EKF-based algorithm. The performance measurements

for the mean-squared tracking error and class estimation accuracy can be seen in

Figure 10(g), evaluated with Enron. The EKF significantly outperforms the SSBM

in both tracking and class estimation. The EKF performs slightly better than PSA

in tracking and slightly worse in class estimation, but with much less computation

time.

Xu [Xu14] proposed a new statistical model for dynamic networks, the stochastic

block transition model (SBTM), inspired by the stochastic blockmodel (SBM) and

his own past work with the dynamic stochastic blockmodel (DSBM) [XI14]. Model

In this new model, the presence or absence of an edge between two nodes at any

given time step directly influences the probability that such an edge would appear at

the next time step. This denotes the probability of forming new edges within blocks

and the probability of existing edges re-occurring within blocks. Result The SBTM

approach appears to be more accurate. Figure 10(h) is a comparison against the

HM-SBM algorithm, tested with a dataset in a dynamic social network of Facebook

wall posts. The SBTM appears to be a better fit for ordering observed adjacency

matrices, which makes it better for future interaction prediction.
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4.4 Event detection

Event detection is prevalent in dynamic models, as the time evolution offers an

order of relevance. A few examples of this are the news, or weather broadcasts, or

prompt phone alerts for messages.

As a majority of pre-existing spectral clustering algorithms were unable to incre-

mentally update the clustering results when a small change occurred in a dataset, Ning

et. al [NXC+10] presented an incremental approach in an algorithm that continuously

updates the eigenvalue system and generates instant cluster labels as the dataset

evolves. Their incremental approach of updating the eigenvalue system achieves ac-

curate results and does not demand a high computational cost.

Asuncion et. al [QVUARHS12] introduced a framework for modeling that incor-

porates time-dependent network statistics and time-varying regression coefficients.

They used ideas from survival and event history analysis to create the continuous-

time regression modeling framework for network event data.

Ning et. al [NXC+10] introduced the incidence vector/matrix to extend the stan-

dard spectral clustering for handling evolving data. It represents two kinds of dy-

namics in the same framework by incrementally updating the eigen-system: inser-

tion/deletion of data points and similarity change of existing data points. “An inci-

dence vector ri,j(w) is a column vector with only two nonzero elements: i-th element

equal to
√
w and j-th element

√
w, indicating data point i and j having a similarity w.

The length of the vector is equal to the number of considered data points,” and “An

incidence matrix R is a matrix whose columns are incidence vectors.” Models and
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(a) (b)

(c)

(d)

(e)

Figure 11: Graphical representations and visuals used in each study for event
detection in dynamic networks. (a) The second smallest eigenvalue changing over
two iterations. (b) Relative approximation error of the second smallest eigenvalue.
(c) Plotted time cost of each added link. (d) Estimated time-varying coefficients on

IRVINE data. (e) Estimated time-varying coefficients on METAFILTER data.

Results The proposed algorithm was tested using blog data collected by the NEC

laboratories American, using a blog crawler. Figure 11(a) shows that the eigenvalue

increases as more links are added, as the second smallest eigenvalue goes through two
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iterative changes. Figure 11(b) shows the relative approximation error of the same

eigenvalue, with the average relative error at 3.0% for one iteration and 0.59% for two

iterations. Figure 11(c) shows the plotted time cost of each added link compared to

a baseline. The computational cost for the baseline is much higher than that of the

proposed incremental approach.

Asuncion et. al [QVUARHS12] analyzed the structure and evolution of network

data. This is an extremely important task in fields such as biology and engineering.

The problem in this case is that there is relatively little work to date on continuous-

time models for large-scale longitudinal networks. Their solution involves a general

regression-based modeling framework for continuous-time network event data. The

methods for this framework are built up from past use of multiplicative and addi-

tive intensity functions that allow for the incorporation of arbitrary time-dependent

network statistics. Models The proposed framework is evaluated with the IRVINE

and METAFILTER datasets, shown in Figure 11(d) and 11(e). The IRVINE set is

longitudinal, obtained from UC Irvine’s social network. The METAFILTER data is

from a social community blog where users share links and discuss web content. The

time-varying coefficients are useful for interpreting network evolution. The coeffi-

cients of the IRVINE dataset seem to show two phases in the network’s evolution.

Result “In the first phase of network formation, the network grows at an accel-

erated rate. Positive coefficients for sender out-degree, reciprocity, and transitivity

in these plots imply that users with a high numbers of friends tend to make more

friends, tend to reciprocate their relations, and tend to make friends with their friends

friends, respectively. However, these coefficients decrease towards zero (the blue line)
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and enter a second phase where the network is structurally stable.” Meanwhile, the

METAFILTER coefficients continuously vary over time.

4.5 Other tasks in a dynamic network

These next papers focus less on the specific tasks discussed above and more on the

approaches, such as evolutionary temporal clustering, statistical models for networks,

and the handle and processing of big data.

Chi et. al [CSZ+07] contributed to evolutionary temporal clustering, fulfilling the

purpose of good clustering results that fit the current used data but also does not

deviate too heavily from recent history. They proposed two frameworks that incor-

porate temporal smoothness into their clustering, thus offering stable and consistent

clustering results that are not as sensitive to short-term noises, while are also adaptive

to long-term cluster drifts.

Snijders [Sni11] studied and shared statistical models for longitudinal social network

data. His research may be seen as a dynamic side to the study of Handcock et.

al [HRT07], where both research papers discussed representing network dependencies

such as homophily and transitivity.

Continuing from Sandryhaila and Moura [SM14] static approach of signal process-

ing methods to develop methods to analyze and process Big Data, I will move into

their dynamic adaptation in handling big data.

Xu et. al [XZYL08] developed two different models for the challenges of evolu-

tionary clustering. They are advancements in evolutionary clustering as both models

can automatically learn the number of clusters and the cluster structure at each time
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(a)

(b) (c)

(d) (e)

Figure 12: Graphical representations and visuals used in each study for various
unique tasks in dynamic networks. (a) Performance of the PCM on the NEC data.

(b) The DPChain Model. (c) The HDP-EVO Model. (d) NMI performance
comparison of the five algorithms. (e) Cluster number learning performance withe a

baseline.

during the evolution.

Chi et. al [CSZ+07] proposed two frameworks Preserving Cluster Quality (PCQ)
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and Preserving Cluster Membership (PCM) to incorporate temporal smoothness in

evolutionary spectral clustering. Model In the PCQ, the temporal cost is expressed

as how well the current partition clusters historic data. Example: Two partitions,

Zt and Z
′
t cluster the current data at a certain time equally well. To cluster historic

data at a time t-1, the clustering performance using partition Zt must be better than

using partition Z
′
t . In this case, partition Zt is preferred because it is more consistent

with historic data. The idea is translated into a k-means clustering problem. In the

PCM, the temporal cost is expressed as the difference between the current partition

and the historic partition. Example: Two partitions, Zt and Z
′
t , cluster current data

at time t equally well. When compared to the historic partition Zt−1, Zt is much

more similar to Zt−1 than Z
′
t is. Zt is preferred over Z

′
t because Zt is more consistent

with historic partition. Results In comparison of the two frameworks, PCQ aims

to maximize the trace of a matrix, and PCM is to be maximized. The real data

used in the experimental study was blog data that was collected by an NEC in-house

blog crawler. It contains 148,681 entry-to-entry links among 407 blogs throughout

63 weeks. In the cost experiment, two baselines were constructed for evaluation:

ACC and IND. ACC collects historic data before a certain time and uses the k-means

algorithm on the data. IND independently applies the k-means algorithm on the

data on that certain time and ignores the preceding data. Figure 12(a) displays the

experiment performances, where the evolutionary spectral clustering has the best

performance in all four measures. The PCM and PCQ models shared similar results.

Snijders [Sni11] studied statistical models for networks as outcome variables, with a

focus on models relevant for social networks. He first discusses network dependencies
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and how to represent them. Some of the major dependencies of social networks are

reciprocation of directed ties, homophily, transitivity of ties, degree differentials, and

hierarchies in directed networks. One approach for representing network dependen-

cies in statistical models is to incorporate network structure through covariates or

independent residuals. The second approach would be controlling certain aspects of

network dependencies while not explicitly modeling them. Conversely, the third ap-

proach is to explicitly model the dependencies between tie variables. Next, he treated

the main various types of statistical models for single, or cross-sectionally observed,

networks. There are Conditionally Uniform Models, which considers a set of statistics

to be controlled, then assumes that the distribution of networks is uniform, condi-

tional on these controlled statistics. Latent Space Models postulate the existence of

a space in which the nodes occupy latent positions, such that the tie indicators are

independent conditionally on these positions. Exponential Random Graph Models

are based on conditional independence assumptions between the observed tie vari-

ables. Finally, he discussed the three basic distinctions that can be made between

statistical models for network dynamics. 1) Ties may have the nature of changeable

states, like friendship. 2) There is a distinction between models where the changes

are being driven by the network itself or by a different, perhaps latent, entity. 3) The

time variable indexing the dynamic network may be discrete or continuous.

Sandryhaila and Moura [SM14] continued their framework for Big Data analysis

with the dynamic approach. Figure 5(f)-(b) is a dynamic example of the product

graph. Measurements of a sensor network were indexed by the strong product of the

sensor network graph with the time series graph. An application example of DSPG
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on product graphs was considered with data compression. The test uses a dataset

containing daily temperature measurements collected by 150 weather stations across

the United States. Figure 5(g)-(b) was constructed by connecting each sensor to 8

of its nearest neighbors with undirected edges with weights. It shows measurements

from a single day as well as the sensor network graph. The sensor network graph in

was used with N1 = 150 nodes and the time series graph in Figure 5(g)-(a) with N2

= 365 nodes.

In evolutionary clustering, both the items and clusters of the collection of data

are prone to changing over time, thus posing the challenge of evolutionary clustering

in comparison with the traditional clustering. Xu et. al [XZYL08] developed the

DPChain and HDP-EVO models as solutions. Models The DPChain was based

off the DPM model, short for the Dirichlet Process Mixture Chain. In addition to

being able to automatically learn the number of the clusters fro evolutionary data,

the cluster mixture proportion information is used to reflect a smooth cluster change

over the time. The model is illustrated in Figure 12(b). α denotes the concentration

parameter for a Dirichlet distribution; φt,k denotes the parameter of cluster k of the

data at time t; πt is the cluster mixture proportion vector at time t, and πt,k is the

weight of the corresponding cluster k at time t. The HDP-EVO, short for HDP

Evolutionary Clustering, explicitly capture the cluster correspondence between the

data collections of different times. The model is represented in Figure 12(c). λ is

the concentration parameter of the Dirichlet distribution of π; φk is the parameter

for a cluster with i.i.d. sampled from a distribution H. (Results) The datasets

were evaluated using a constructed dataset based on a subset of the 20 Newsgroups
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real data. The graph in Figure 12(d) shows the comparison of normalized mutual

information (NMI) performance between the proposed models with three other similar

methods (PCQ & PCM, [CSZ+07]), where the two exhibit better results. Figure 12(e)

further reports the performance on learning the cluster numbers at different times for

the two proposed models.



CHAPTER 5: CONCLUSION & FUTURE WORK

Network visualization is an everyday use, crucial for a significant number of fields

in science, marketing, security, etc., when it comes to pursuing more knowledge. I

summarized 33 published papers related to data mining, machine learning, and signal

processing, all under the topic of graph mining. This survey presents several different,

advanced approaches for modeling static and dynamic networks. Whether they de-

cide to follow one or become inspired to make their own advancements, this survey is

meant to provide guidance for researchers in the visualization community. The com-

pilation of these studies, old to new, shows how advancements have progressed and

will continue to. The models and frameworks presented in this thesis could be used

to develop much more powerful and efficient visualization systems for data analysis.

The fields reviewed here are continuously undergoing further development and im-

provements, and the models treated are being extended in various ways. Some of the

older papers, like [ABFX09] and [CSZ+07] have served the purpose of being a basis

or root for further research, like [LCZ+08] and [TLZN08], to build upon. In turn,

those papers have been even improved or expanded upon in later publications, such

as [STH+10] and [Xu14]. Each paper considers new directions that the study could

go into, which introduces more challenges to find solutions for. I will discuss a few

for some recent publications.

For example, while Yang et. al [YML14] created a model that incorporated the
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paramount features of the mixed membership stochastic blockmodel [ABFX09] and

the Block-LDA [BC11], they know several improvements can be made for their

CESNA model. Some future desires include being able to handle more attributes

and information, leading to easier interpretation for their community detection.

Some researchers envisioned their own work being improved by combining their

proposed models with others of related goals. [HXA15] considered applying differ-

ent approaches to their multi-graph stochastic block model, such as the state-space

model [XI14]. They suggested additional structures adaptability with additional

information, all in all increasing the temporal smoothness and accuracy of results.

Yang and Leskovec [YL15] were able to define ground-truth communities through

an intense study of 230 large networks, which was extremely beneficial as most real

networks did not provide a ground-truth. Upon this contribution, they suggested fu-

ture examination of how ground-truth communities are connected, further improving

approaches for community detection.



58

REFERENCES

[ABFX09] Edo M Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing.
Mixed membership stochastic blockmodels. In Advances in Neural
Information Processing Systems 21, pages 33–40. Curran Associates,
Inc., 2009.

[AX08] Amr Ahmed and Eric Xing. Dynamic non-parametric mixture mod-
els and the recurrent chinese restaurant process: with applications
to evolutionary clustering. In Proceedings of the 2008 SIAM Inter-
national Conference on Data Mining, pages 219–230, 2008.

[BC11] Ramnath Balasubramanyan and William W. Cohen. Block-lda:
Jointly modeling entity-annotated text and entity-entity links. In
Proceedings of the 2011 SIAM International Conference on Data
Mining, pages 450–461, 2011.

[CK03] Mark Crovella and E Kolaczyk. Graph wavelets for spatial traffic
analysis. In INFOCOM 2003 Twenty-Second Annual Joint Confer-
ence of the IEEE Computer and Communications, volume 3, pages
1848 – 1857 vol.3, 01 2003.

[CSZ+07] Yun Chi, Xiaodan Song, Dengyong Zhou, Koji Hino, and Belle L.
Tseng. Evolutionary spectral clustering by incorporating temporal
smoothness. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’07,
pages 153–162, New York, NY, USA, 2007. ACM.

[DAM+14] Menoth Mohan Dhanya, Muhammad Tayyab Asif, Nikola Mitrovic,
Justin Dauwels, and Patrick Jaillet. Wavelets on graphs with appli-
cation to transportation networks. 17th International IEEE Confer-
ence on Intelligent Transportation Systems (ITSC), pages 1707–1712,
2014.

[DKMM04] Petros Drineas, Ravi Kannan, Michael, and W. Mahoney. Fast monte
carlo algorithms for matrices iii: Computing a compressed approxi-
mate matrix decomposition. SIAM Journal on Computing, 36:2006,
2004.

[EH07] William Eberle and Lawrence Holder. Anomaly detection in data
represented as graphs. Intell. Data Anal., 11(6):663–689, December
2007.

[For10] Santo Fortunato. Community detection in graphs. Physics Reports,
486(3-5):75 – 174, 2010.



59

[FSX09] Wenjie Fu, Le Song, and Eric P. Xing. Dynamic mixed member-
ship blockmodel for evolving networks. In Proceedings of the 26th
Annual International Conference on Machine Learning, ICML ’09,
pages 329–336, New York, NY, USA, 2009. ACM.

[GNC10] Matan Gavish, Boaz Nadler, and Ronald R. Coifman. Multiscale
wavelets on trees, graphs and high dimensional data: Theory and
applications to semi supervised learning. In Proceedings of the 32nd
International Conference on Machine Learning, 2010.

[HRT07] Mark S. Handcock, Adrian E. Raftery, and Jeremy M. Tantrum.
Model-based clustering for social networks. Journal of the Royal
Statistical Society: Series A (Statistics in Society), 170(2):301–354,
2007.

[HVG09] David Hammond, Pierre Vandergheynst, and Rmi Gribonval.
Wavelets on graphs via spectral graph theory. In Applied and Com-
putational Harmonic Analysis, volume 30, pages 129–150, 12 2009.

[HX07] Steve Hanneke and Eric P. Xing. Discrete temporal models of social
networks. In Proceedings of the 2006 Conference on Statistical Net-
work Analysis, ICML’06, pages 115–125, Berlin, Heidelberg, 2007.
Springer-Verlag.

[HXA15] Qiuyi Han, Kevin S. Xu, and Edoardo M. Airoldi. Consistent es-
timation of dynamic and multi-layer block models. In Proceedings
of the 32nd International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, pages 1511–1520, 2015.

[KHRH09] Pavel N. Krivitsky, Mark S. Handcock, Adrian E. Raftery, and Pe-
ter D. Hoff. Representing degree distributions, clustering, and ho-
mophily in social networks with latent cluster random effects models.
Social networks, 31 3:204–213, 2009.

[KL13] Myunghwan Kim and Jure Leskovec. Nonparametric multi-group
membership model for dynamic networks. In C. J. C. Burges, L. Bot-
tou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 26, pages 1385–
1393. Curran Associates, Inc., 2013.

[LCZ+08] Yu-Ru Lin, Yun Chi, Shenghuo Zhu, Hari Sundaram, and Belle L.
Tseng. Facetnet: A framework for analyzing communities and their
evolutions in dynamic networks. In Proceedings of the 17th Interna-
tional Conference on World Wide Web, WWW ’08, pages 685–694,
New York, NY, USA, 2008. ACM.



60

[NXC+10] Huazhong Ning, Wei Xu, Yun Chi, Yihong Gong, and Thomas S.
Huang. Incremental spectral clustering by efficiently updating the
eigen-system. Pattern Recogn., 43(1):113–127, January 2010.

[OKI13] Brandon Oselio, Alex Kulesza, and Alfred O. Hero III. Multi-layer
graph analytics for dynamic social networks. CoRR, abs/1309.5124,
2013.

[PBL14] Simon Pool, Francesco Bonchi, and Matthijs van Leeuwen.
Description-driven community detection. ACM Transactions on In-
telligent Systems and Technology, 5(2):28:1–28:28, April 2014.

[QVUARHS12] Duy Q Vu, Arthur U Asuncion, David R Hunter, and Padhraic
Smyth. Continuous-time regression models for longitudinal networks.
In Proceedings of the 24th International Conference on Neural Infor-
mation Processing Systems, volume 24, 05 2012.

[RGNH13] Ryan A. Rossi, Brian Gallagher, Jennifer Neville, and Keith Hender-
son. Modeling dynamic behavior in large evolving graphs. In Pro-
ceedings of the Sixth ACM International Conference on Web Search
and Data Mining, WSDM ’13, pages 667–676, New York, NY, USA,
2013. ACM.

[SDB+16] Arlei Silva, Xuan-Hong Dang, Prithwish Basu, Ambuj K. Singh,
and Ananthram Swami. Graph wavelets via sparse cuts. CoRR,
abs/1602.03320, 2016.

[SM14] A. Sandryhaila and J. M. F. Moura. Big data analysis with sig-
nal processing on graphs: Representation and processing of massive
data sets with irregular structure. IEEE Signal Processing Magazine,
31(5):80–90, Sept 2014.

[SNF+13] David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega,
and Pierre Vandergheynst. The emerging field of signal processing
on graphs. IEEE Signal Process. Mag., 30(3):83–98, 2013.

[Sni11] Tom A.B. Snijders. Statistical models for social networks. Annual
Review of Sociology, 37(1):131–153, 2011.

[STH+10] Yizhou Sun, Jie Tang, Jiawei Han, Manish Gupta, and Bo Zhao.
Community evolution detection in dynamic heterogeneous informa-
tion networks. In Proceedings of the Eighth Workshop on Mining
and Learning with Graphs, MLG ’10, pages 137–146, New York, NY,
USA, 2010. ACM.

[TfWAK03] Ben Taskar, Ming fai Wong, Pieter Abbeel, and Daphne Koller. Link
prediction in relational data. In in Neural Information Processing
Systems, 2003.



61

[TLZN08] Lei Tang, Huan Liu, Jianping Zhang, and Zohreh Nazeri. Community
evolution in dynamic multi-mode networks. In Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’08, pages 677–685, New York, NY, USA,
2008. ACM.

[TPS+08] Hanghang Tong, Spiros Papadimitriou, Jimeng Sun, Philip S. Yu,
and Christos Faloutsos. Colibri: Fast mining of large static and
dynamic graphs. In Proceedings of the 14th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD
’08, pages 686–694, New York, NY, USA, 2008. ACM.

[XI14] Kevin S. Xu and Alfred O. Hero III. Dynamic stochastic blockmodels
for time-evolving social networks. CoRR, abs/1403.0921, 2014.

[Xu14] Kevin S. Xu. Stochastic block transition models for dynamic net-
works. CoRR, abs/1411.5404, 2014.

[XZYL08] T. Xu, Z. Zhang, P. S. Yu, and B. Long. Dirichlet process based evo-
lutionary clustering. In 2008 Eighth IEEE International Conference
on Data Mining, pages 648–657, Dec 2008.

[YCZ+11] Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, and Rong
Jin. Detecting communities and their evolutions in dynamic social
networks–a bayesian approach. Machine Learning, 82(2):157–189,
February 2011.

[YL15] Jaewon Yang and Jure Leskovec. Defining and evaluating network
communities based on ground-truth. Knowledge and Information
Systems, 42(1):181–213, January 2015.

[YML14] Jaewon Yang, Julian J. McAuley, and Jure Leskovec. Community
detection in networks with node attributes. CoRR, abs/1401.7267,
2014.


