
CITATION RECOMMENDATION ON GRAPH

by

Haofeng Jia

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial ful�llment of the requirements
for the degree of Doctor of Philosophy in

Computer Science

Charlotte

2018

Approved by:

Dr. Erik Saule

Dr. Wlodek Zadrozny

Dr. Samira Shaikh

Dr. Xi Niu

ii

c©2018
Haofeng Jia

ALL RIGHTS RESERVED

iii

ABSTRACT

HAOFENG JIA. Citation Recommendation on Graph. (Under the direction of DR.
ERIK SAULE)

As science advances, the academic community has published millions of research

papers. Researchers devote time and e�ort to search relevant manuscripts when

writing a paper or simply to keep up with current research. In this dissertation,

we consider the problem of citation recommendation on graph. Our analysis shows

the degrees of cited papers in the subgraph induced by the citations of a paper,

called projection graph, follow a power law distribution. Existing popular methods

are only good at �nding the long tail papers, the ones that are highly connected to

others. In other words, the majority of cited papers are loosely connected in the

projection graph but they are not going to be found by existing methods. To address

this problem, a family of random walk based algorithms combining author, venue

and keyword information is proposed to interpret the citation behavior behind those

loosely connected papers. We further explore neural node embedding in graph for

citation recommendation and the proposed task speci�c sampling strategy turns out

to be much robuster than classic methods when hidden ratio changes. In particular,

with the aim of improving the quality of meta data, we also present a keyphrase

extraction algorithm from scienti�c articles by addressing overgeneration error and it

outperforms state-of-the-art approaches.

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Dr. Erik Saule, without whom

my Ph.D and this dissertation would not have been possible. I am very fortunate to

work with him. He is always available to provide me support and help. And I have

gained a lot of valuable knowledge and bene�ted tremendously from his insightful

advices, ideas and criticism during my Ph.D study.

I also want to express my gratitude to my dissertation committee members-Dr.

Wlodek Zadrozny, Dr. Samira Shaikh and Dr. Xi Niu, for their time and consistent

support.

Furthermore, I am so grateful to UNC Charlotte for providing the Graduate As-

sistant Support Funding and the faculties and sta�s who help me in both academic

and life.

I am very thankful to my colleagues and all my friends for their useful discussions,

advices and bringing me a colorful life in past �ve years.

Finally, I would like to thank my family and my wife for their unconditional support

and encouragement. Their love gives me all the strength.

v

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES x

LIST OF ABBREVIATIONS xi

CHAPTER 1: INTRODUCTION 1

1.1. Background 1

1.2. Contribution 4

1.3. Organization 5

CHAPTER 2: Literature Review 6

2.1. Citation Recommendation 6

2.2. Keyphrase Extraction 9

2.3. Representation Learning on Graph 12

CHAPTER 3: ACADEMIC DATA MATCHING AND CLEANING 14

3.1. Introduction 14

3.2. Data Sources 14

3.2.1. Microsoft Academic Graph 15

3.2.2. DBLP 15

3.2.3. CiteSeerX 16

3.3. Data Matching From Multiple Sources 17

3.3.1. Paper Matching 17

3.3.2. Metadata Preprocessing 19

3.4. Results 20

vi

CHAPTER 4: KEYPHRASE EXTRACTION FROM SCIENTIFIC
ARTICLES

21

4.1. Introduction 21

4.2. Unsupervised Keyphrase Extraction 23

4.3. Addressing Overgeneration Error 24

4.4. Experiment 27

4.4.1. Dataset and Experiment Settings 27

4.4.2. Results and Discussion 29

4.5. Conclusion 33

CHAPTER 5: PITFALLS OF CITATION RECOMMENDATION ON
GRAPH

35

5.1. Introduction 35

5.2. Algorithms 35

5.2.1. CoCitation 35

5.2.2. CoCoupling 36

5.2.3. PaperRank 36

5.2.4. Collaborative Filtering 36

5.3. Experiment 37

5.3.1. Experimental Setup 37

5.3.2. Results 37

5.4. Pitfalls behind the performance 38

5.5. Conclusion 39

vii

CHAPTER 6: ALGORITHMS USING METADATA 41

6.1. Introduction 41

6.2. MetaPath 42

6.3. LOGAVK 45

6.4. Biased Random Walk on Citation Graph and Metadata 46

6.5. Experiment 47

6.5.1. General performance 47

6.5.2. Performance by proj-degree. 48

6.6. On the usefulness of di�erent algorithms 50

6.6.1. Di�erence between methods 50

6.6.2. Peeking into the Future 54

6.6.3. Implications for a practical system? 58

6.7. Fast C+X Recommendation 59

6.8. Conclusion 61

CHAPTER 7: REPRESENTATION LEARNING FOR CITATION REC-
OMMENDATION ON GRAPH

63

7.1. Introduction 63

7.2. Learning Framework 64

7.3. Context Sampling Strategies 65

7.3.1. Random Walk Stream 65

7.3.2. Co-Citation Context 69

7.4. Ranking Strategies 70

7.4.1. Embedding Based Ranking 71

viii

7.4.2. Model Based Ranking 72

7.5. Experiment 72

7.5.1. Experimental Setup 72

7.5.2. Results 73

7.5.3. Parameter sensitivity 75

7.6. Discussion 77

7.6.1. Robustness on Hidden Ratio 77

7.6.2. Usefulness on Result Organization 78

7.7. Conclusion 80

CHAPTER 8: CONCLUSION 82

REFERENCES 86

ix

LIST OF FIGURES

FIGURE 3.1: Degree distribution in MAG 16

FIGURE 4.1: Keyphrase Extraction Schemes 24

FIGURE 4.2: Performance Comparison 30

FIGURE 5.1: Projection Graph 38

FIGURE 5.2: Recall by proj-degree (top 10) 39

FIGURE 5.3: Distribution of proj-degree (degree in the citation projection
graph) of hidden papers.

40

FIGURE 6.1: Meta path examples: Paper-Author-Paper 44

FIGURE 6.2: Performance Comparison for low degree 49

FIGURE 6.3: Rank of hidden papers for δ = 0 (high correlation) 52

FIGURE 6.4: Rank of hidden papers for δ = 0 (low correlation) 53

FIGURE 6.5: Relevance 56

FIGURE 6.6: Runtime on 100 instance queries 60

FIGURE 7.1: Learning Framework 64

FIGURE 7.2: Context Construction 69

FIGURE 7.3: Performance Comparison for Di�erent Sampling Strategies 74

FIGURE 7.4: Parameter Sensitivity 76

FIGURE 7.5: Robustness 78

x

LIST OF TABLES

TABLE 3.1: Basic statistics of MAG 15

TABLE 3.2: Basic statistics of Citation Graph 15

TABLE 3.3: Basic statistics of DBLP 17

TABLE 3.4: Venue Matching 19

TABLE 3.5: Data Statistics 20

TABLE 4.1: Overgeneration Errors 22

TABLE 4.2: Predicted Keyphrases Comparison 32

TABLE 5.1: Global Performance 37

TABLE 6.1: Global Performance 47

TABLE 6.2: Performance by proj-degree: Recall@10 48

TABLE 6.3: Di�erences between the top-10 sets (δ ≤ 2) 50

TABLE 6.4: Upper bound for δ = 0 57

TABLE 6.5: Upper bound for δ ≤ 4 57

TABLE 6.6: Performance for fast recommendation 60

xi

LIST OF ABBREVIATIONS

C+A A random walk approach on Citation graph and Authorship

C+K A random walk approach on Citation graph and Keywords

C+V A random walk approach on Citation graph and Venues

C+X C+A, C+V or C+K

CBF Abbreviation for Content Based Filtering

CF Abbreviation for Collaborative Filtering

MAG Abbreviation for Microsoft Academic Graph

PR Abbreviation for PaperRank

Proj-degree Degree in the projection graph

RW Abbreviation for Random walk

CHAPTER 1: INTRODUCTION

1.1 Background

Scientists around the world have published tens of millions of research papers, and

the number of new papers has been increasing with time. For example, according to

DBLP [1], computer scientists published 3 times more papers in 2010 than in 2000.

At the same time, literature search became an essential task performed daily by t-

housands of researcher around the world. Finding relevant research works from the

gigantic number of published articles has become a nontrivial problem.

Currently, many researchers rely on manual methods, such as keyword search via

Google Scholar 1 or Mendeley 2, to discover new research works. The mechanism

for keywords based recommendation is ranking documents in the corpus based on

their relevance to the query keywords. However, keyword based searches might not

be satisfying for two reasons: �rstly, the vocabulary gap between the query and the

relevant document might results in poor performance; secondly, a simple string of

keywords might not be enough to convey the information needs of researchers. There

are many instances where such a keyword query is either over broad, returning many

articles that are loosely relevant to what the researcher actual need, or too narrow,

�ltering many potentially relevant articles out or returning nothing at all [2].

To alleviate the aforementioned problems, the research community has paid a lot

of attention to citation recommendation beyond the keywords. In general, there are

two types of citation recommendation problems corresponding to di�erent scenarios:

query manuscript based citation recommendation and seed papers based citation

1https://scholar.google.com/
2https://www.mendeley.com/

2

recommendation.

many research works proposed citation recommendation algorithms which use a

manuscript instead of a set of keywords as query [3, 4, 5, 6, 7]. For example, context-

aware citation recommendation is designed to recommend relevant papers for place-

holders in the query manuscript based on local contexts [4, 5]. Query manuscript

based citation recommendation is de�ned as follow:

De�nition 1 Query Manuscript Based Citation Recommendation. Let d be

a document, and D be a document corpus. In a document d, a context c is a bag of

words. The global context is the title and abstract of d. The local context is the text

surrounding a citation or placeholder. If document d1 cites document d2, the local

context of this citation is called an out-link context with respect to d1 and an in-link

context with respect to d2.

A user need to submit either a manuscript (i.e., a global context and a set of out-

link local contexts) or a few sentences (i.e., an out-link local context) as the query.

There are two types of citation recommendation tasks, which happen in di�erent

application scenarios.

Global Recommendation. Given a query manuscript d without a bibliography, a

global recommendation is a ranked list of citations in a corpus D that are recom-

mended as candidates for the bibliography of d. Note that di�erent citation contexts

in d may express di�erent information needs. The bibliography candidates provided

by a global recommendation should collectively satisfy the citation information needs

of all out-link local contexts in the query manuscript d.

Local Recommendation. Given an out-link local context c with respect to d, a local

recommendation is a ranked list of citations in a corpus D that are recommended as

candidates for the placeholder associated with c.

Manuscript based citation recommendation is great to help with the writing pro-

cess. However, There are many scenarios where manuscript based methods are not

3

applicable. For example, a junior researcher who has read several papers wants to

check more relevant papers before any kind of manuscript is �eshed out. So we

consider seed papers based citation recommendation. Formally,

De�nition 2 Seed Papers Based Citation Recommendation. Let G = (V,E)

be the citation graph, with n papers V = {v1, . . . , vn}. In G, each edge e ∈ E repre-

sents a citation relationship between two papers. Given a set of seed papers S ⊆ V ,

return a list of papers ranked by relevance to the ones in S.

Seed papers based recommendation does not rely on the text information of corpus,

although one can use text to enhance the recommendation. So it can also be used for

various scenarios: a user wants to read more based on what she has read or a user

wants to check whether is there an obvious missing citations when writing a paper.

According to the de�nition, this task relies on the academic citation graph. Al-

though academic data mining attracts more attentions recently, citation recommen-

dation on graph is still a nontrivial task and di�erent from other recommendation on

graph tasks, such as friend recommendation on social graph. The limited number of

reference papers and idiosyncratic citation behaviours make this task hard to predict.

Researchers have devoted e�orts on citation recommendation based on a set of seed

papers [8, 9, 10, 11, 12, 13]. Most approaches rely on the citation graph to recommend

relevant papers, such as collaborative �ltering [8] and random walk framework [10].

The di�erent approaches to recommending academic papers have been extensively

surveyed by [14].

In this dissertation, we focus on the problem of citation recommendation based on

a set of seed papers on the citation graph. We show that classic methods perform

reasonably well, but have an inherent bias. Because they base their decision on

citation patterns, they tend to only �nd papers that have many links to the known

references, which are a set of papers that are obvious. Unfortunately, our analysis

4

shows less than half of the references of a paper are connected to more than two other

references. This causes the algorithms to ignore loosely connected papers despite

being half of the references in practice.

We consider to use metadata information, such as authorship and keyword infor-

mation, to identify the non-obvious connections between papers. Our experiments

show that the proposed methods can improve the quality of the recommendation and

provide a di�erent perspective on the queries.

Furthermore, we also explore the usefulness of representation learning on graph

for citation recommendation and propose a task-speci�c node sampling strategy for

context construction. It turns out the proposed strategy performs robustly for ci-

tation recommendation when hidden ratio changes, while the performance of classic

approaches drops a lot when the hidden ratio goes large.

1.2 Contribution

To summarize, the contributions of our work are as follows, which will be elaborated

in each chapter:

• Build a citation graph with clean meta data by merging di�erent data sources

that have complementary advantages.

• Propose a method to extract key phrases from scienti�c documents that can

overcome the overgeneration error, which is one of major errors most key phrase

extraction approaches su�er from.

• Revealed the bias behind the performance of classic citation recommendation

approaches: they are quite good at �nding hidden papers that are highly con-

nected in the citation projection graph. But these methods achieve poor per-

formance on loosely connected ones.

• Propose a random walk based approach that use both citation graph and meta

data for citation recommendation. The proposed approach outperforms exist-

5

ing approaches at �nding loosely connected or disconnected hidden papers in

projection graph.

• Propose a local approximation algorithm for PaperRank and C+X, which es-

sentially is a tradeo� between the upper bound of recall and the e�ciency. Our

local method is 15x faster and the quality of recommendation is still competitive

comparing with original methods.

• Propose a task-speci�c sampling strategy for node embedding in citation graph.

The proposed sampling strategy outperforms the widely-used random walks

based sampling strategy on citation recommendation task and turns out to be a

robust approach for citation recommendation when hidden ratio changes, while

the performance of PR and CF drops a lot when the hidden ratio goes large.

1.3 Organization

The rest of this dissertation is organized as follows: we introduce related work in

section 2 and we present academic data matching from di�erent sources in Chapter 3.

In order to obtain representative words or phrases from limited text, Chapter 4 focuses

on keyphrase extraction problem from scienti�c articles. In Chapter 5, we present the

popular citation recommendation approaches and reveal the bias behind their perfor-

mance. Then we propose to use meta data to improve the citation recommendation

task and discuss fast recommendation on local graph in Chapter 6. in Chapter. 7 we

explore the representation learning for papers on citation graph. Finally, Chapter 8

concludes the dissertation.

CHAPTER 2: Literature Review

2.1 Citation Recommendation

In this section, we discuss related work in citation recommendation problem. Seed

papers based citation recommendation. Given a "basket" of citations, McNee et al.

[8] explore the use of Collaborative Filtering (CF) [15, 16] to recommend papers that

would be suitable additional references for a target research paper. They create a

ratings matrix where citing papers correspond to users and citations correspond to

items. The experiments show CF could generate high quality recommendations. As a

follow-up, Torres et al. [9] describe and test di�erent techniques for combining Collab-

orative Filtering and Content-Based Filtering. A user study shows many of CF-CBF

hybrid recommender algorithms can generate research paper recommendations that

users were happy to receive. However, o�ine experiments show those hybrid algo-

rithms did not perform well. In their opinion, the sequential nature of these hybrid

algorithms: the second module is only able to make recommendations seeded by the

results of the �rst module. To address this problem, Ekstrand et al. [17] propose to

fuse the two steps by running a CF and a CBF recommender in parallel and blending

the resulting ranked lists. The �rst items on the combined recommendation list are

those items which appeared on both lists, ordered by the sum of their ranks. Surpris-

ingly, Collaborative Filtering outperforms all hybrid algorithms in their experiments.

Gori et al. [10] devised a random walk based method, to recommend papers ac-

cording to a small set of user selected relevant articles. Küçüktunç et al. designed a

personalized paper recommendation service, called theAdvisor1 [12, 18], which allows

a user to specify her search toward recent developments or traditional papers using a

1http://theadvisor.osu.edu/

7

direction-aware random walk with restart algorithm [19]. The recommended papers

returned by theAdvisor are diversi�ed by parameterized relaxed local maxima [20].

Küçüktunç et al. proposed sparse matrix ordering and partitioning techniques to

accelerate citation such recommendation algorithms [21].

Caragea et al. [11] addressed the problem of citation recommendation using singu-

lar value decomposition on the adjacency matrix associated with the citation graph to

construct a latent semantic space: a lower-dimensional space where correlated papers

can be easily identi�ed. Their experiments on Citeseer show this approach achieves

signi�cant success compared with Collaborative Filtering methods. Wang et al. [22]

proposes to include textual information to build an topic model of the papers and

adds an additional latent variable to distinguish between the focus of a paper and the

context of the paper.

A typical related paper search scenario is that a user starts with a seed of one

or more papers, by reading the available text and searching related cited references.

So�a is a system that automates this recursive process [23].

The approach proposed by [2] returns a set of relevant articles by optimizing a

function based on a �ne-grained notion of in�uence between documents; and also

claim that, for paper recommendation, de�ning a query as a small set of known-to-

be-relevant papers is better than a string of keywords.

Manuscript based citation recommendation. Content-based �ltering is one of the

most widely researched recommendation strategy [24, 25, 26, 27, 28, 29, 30]. In

the research paper recommendation community, CBF is the predominant class. CBF

scores candidate paper based on the their content similarities to the input manuscript.

Typically, plain words are used as features [31, 32, 33, 17, 34, 35], although n-grams,

topics and concepts have also been explored for recommending research papers [36,

37, 38, 39, 40, 41, 42].

Stohman et al. [3] examined the e�ectiveness of various text-based and citation-

8

based features on citation recommendation, they �nd that neither text-based nor

citation-based features performed very well in isolation, while text similarity alone

achieves a surprisingly poor performance at this task. He et al. [4] considered the

problem of recommending citations for placeholder in query manuscripts and a pro-

posed non-parametric probabilistic model to measure the relevance between a citation

context and a candidate citation. To reduce the burden on users, [5] proposed di�erent

models for automatically �nding citation contexts in an unlabeled query manuscript.

Citation recommendation from heterogeneous network mining perspective has also

attracted attentions. Besides papers, metadata such as authors or keywords are

also considered as entities in the graph schema. Two entities can be connected via

di�erent paths, called meta-paths, which usually carry di�erent semantic meanings.

Many work build discriminative models for citation prediction and recommendation

based on meta-paths [43, 44, 45, 46].

Recently, Bhagavatula et al. [47] propose to �nd a set of candidate papers based

on the text by a neural classi�er, then rerank the papers in the candidate set. Gupta

et al. try to combine the representation of text and graph for manuscript citation

recommendation [48].

The vocabulary used in the citation context and in the content of papers are usually

quite di�erent. To address this problem, some works propose to use translation model,

which can bridge the gap between two heterogeneous languages [6, 7]. Based on

previous work [4, 5, 7], Huang et al. built a citation recommendation system called

RefSeer2 [49] which perform both topic-based global recommendations and citation-

context-based local recommendations.

Based on the hypothesis that an author's published works constitute a clean sig-

nal of the latent interests of a researcher, [50] examined the e�ect of modeling a

researcher's past works in recommending papers. Speci�cally, they �rst construct

2http://refseer.ist.psu.edu/

9

a user pro�le based on her/his recent works, then rank candidate papers according

to the content similarity between the candidate and the user pro�le. Furthermore,

in order to achieve a better representation of candidate paper, [51] exploit potential

citation papers through the use of collaborative �ltering.

2.2 Keyphrase Extraction

In this section, we introduce the related work in keyphrase extraction from un-

structured text. In general, keyphrase extraction techniques can be classi�ed into two

groups: supervised learning approaches and unsupervised ranking approaches [52].

Traditionally, supervised approaches recast the keyphrase extraction task as a bi-

nary classi�cation problem. Given a set of annotated documents, the goal is to train

a classi�er to determine whether a candidate phrase is a key phrase. Various features

and classi�cation algorithms give rise to di�erent models.

Although di�erent learning algorithms have been employed to train the classi�-

er, such as Naive Bayes [53], decision tree [54][55], logistic regression [56][57] and

SVM [58][59], most e�orts of research on supervised keyphrase extraction are made

on feature selection, which turns out to have more signi�cant impact on performance.

Textual features like term frequency and inverse document frequency play an im-

portant role for supervised keyphrase extraction. Frank et al. [53] developed a system

using Naive Bayes as the classi�er, named KEA , which is based on text features.

Later work explore other textual features to perform consistently well for web pages

and scienti�c articles [56][57][60][61] [62][59][63].

Many studies [55][64] suggest linguistic knowledge is helpful. For example, Hulth et

al. [65] claim that part-of-speech sequences of keyphrases are similar. Acronym [66][57]

and su�x sequence [66][57] are also used to capture the propensity of English to use

certain Latin derivational morphology for technical keyphrases.

External Knowledge Features are also explored by previous work. Medelyan et

al. [62] extend KEA by features extracted from Wikipedia. Similarly, GRISP [67][59],

10

a large scale terminological database for technical and scienti�c domains, and query

logs [56][68] are also used to gain better performance on web pages.

In particular, some types of documents have explicit structures. For instance, a

scienti�c paper has various sections. Given this fact, some work try to design features

that encode the structural information and improvements have been shown on data

set consisting of scienti�c articles [66][57][59] or web pages [56].

Recently, Caragea et al. [69][70] point out that, citation context structure infor-

mation have the potential to improve keyphrase extraction. As we know, scienti�c

papers are highly inter-connected in citation networks, where papers cite or are cited

by other papers in appropriate context [71]. CeKE [69] combines textual features

from the target paper, as well as features extracted from the citation networks to

extraction keyphrases from scienti�c artilces.

Besides supervised approaches, there is also an unsupervised line of research on au-

tomatic keyphrase extraction. Intuitively, the keyphrase extraction task is looking for

phrases that are important. Therefore, various methods are proposed to score words,

which are later aggregated to obtain scores for phrases. Statistical measures [72] have

been shown to work well in practice.

Graph-based ranking is now becoming more and more popular for keyphrase ex-

traction task. The idea behind graph-based methods is to construct a graph that

represents the text and encodes the relationship between words in a meaningful way.

Typically, words appearing in the text will be taken as nodes, and edges represent

semantic relationships between words. Then, the keyphrase extraction task is trans-

ferred into a graph ranking problem based on the importance of nodes. The impor-

tance of a word is determined by its relatedness to others. In other words, a word

is important if it is related to a lot of words or some words that are important.

Each edge can be deemed as a vote from one node to another. After convergence,

graph-based methods select top ranked nodes as keywords.

11

The basic graph-based method is TextRank [73]. An unweighted text graph is con-

structed where nodes represent words and edges indicate two words co-occur within a

certain window size in the text. Now the goal is to extract the keywords on this undi-

rected word graph. So PageRank [74] is employed here to compute a score for each

word indicating how important it is. After convergence, the T% top scored words

are extracted as keywords. Finally, adjacent keywords are collapsed and output as a

keyphrase.

SingleRank [75] expands TextRank by constructing a weighted graph rather than a

unweighted graph for each document. In this work, a weight is assigned to each edge

according to the number of times the corresponding words co-occur within a window

size. SingleRank prefers the window size of 10, while TextRank uses 2. After scoring

words in the same way as TextRank, all noun phrases are taken into consideration

and each phrase is scored by summing up the scores of words it contains. Based on

SingleRank, Wan et al. [75] also make e�orts to improve the performance by exploring

textual-similar neighborhood documents. Inspired by TextRank, Boudin [76] explores

various centrality measures, such as degree, closeness and betweenness, for keyphrase

extraction task.

Recently, the idea of k-core degeneracy [77][78] is also applied in the word graph

for keyphrase extraction [79]. Compared with those approaches solely based on cen-

trality, k-core degeneracy takes better into account proximity between key words and

variability in the number of extracted keywords through the selection of more cohesive

subsets of nodes.

Along with the rise of deep learning, the distributed word representations [80][81],

also called word embedding, are becoming popular. Wang et al. [82] propose a graph-

based ranking approach that uses word embedding vectors as the background knowl-

edge. The key contribution of this approach is the proposed weighting scheme, which

is referred as word attraction score. Moreover, positional preference has been shown

12

its potential for keyphrase extraction systems [83][84].

Existing approaches typically score individual words, and then aggregate words to

obtain scores for phrases. This framework su�ers from overgeneration error because all

phrases that contain highly scored words are very likely to be returned as keyphrases.

In the Chapter 4, we propose a method which tries to capture essential properties of

keyphrases. Our approach is designed to alleviate the issue of overgeneration error.

2.3 Representation Learning on Graph

In this dissertation, we also explore the node embedding for citation recommenda-

tion task. This work is credited to recent development on language model [85, 80, 81,

86] and graph embedding [87, 88, 89, 90, 91, 92, 93, 94, 95]. On one hand, in the lan-

guage model, each word is represented by a vector which is concatenated or averaged

with other word vectors in a context, and the resulting vector is used to predict other

words in the context. For example, the neural network language model proposed by

Bengio et al. [85] uses the concatenation of several previous word vectors to form the

input of a neural network, and tries to predict the next word. The outcome is that

after the model is trained, the word vectors are mapped into a vector space such that

semantically similar words have similar vector representations.

On the other hand, The problem of graph embedding is related to two tradition-

al research problems, i.e., graph analysis and representation learning. Particularly,

graph embedding aims to represent a graph as low dimensional vectors while the

graph structures are preserved. Graph analysis aims to mine useful information from

graph data. And representation learning obtains data representations that make

it easier to extract useful information when building classi�ers or other predictors.

Graph embedding lies in the overlap of the two problems and focuses on learning

the low-dimensional representations. Recently, deep learning (unsupervised feature

learning) techniques, which have proven successful in natural language processing,

has been introduced for graph analysis. For example, DeepWalk [87] learns social

13

representations of a graph's vertices, by modeling a stream of short random walks.

Social representations are latent features of the vertices that capture neighborhood

similarity and community membership. These latent representations encode social

relations in a continuous vector space with a relatively small number of dimensions.

Recent advancements in representation learning methods have proven to be e�ective

in modeling distributed representations in di�erent modalities like images, languages,

speech, graphs etc. The distributed representations obtained using such techniques

in turn can be used to calculate similarities.

CHAPTER 3: ACADEMIC DATA MATCHING AND CLEANING

3.1 Introduction

In this chapter, we introduce existing data sources, and show that they have com-

plementary advantages and disadvantages. So as to obtain an academic citation graph

with clean meta data, we propose to merge Microsoft Academic Graph, DBLP and

CiteSeerX.

3.2 Data Sources

Our target is to build a large, clean and comprehensive academic data set, which

mainly includes the citation graph, paper metadata and text information. To this

end, we merge Microsoft Academic Graph (MAG)1 [96], CiteSeerX2 and DBLP3 [1]

datasets for their complementary advantages and derive a corpus of Computer Science

papers.

On one hand, Microsoft Academic Graph contains abundant information from var-

ious disciplines but it is fairly noisy: some important attributes are missing or wrong.

In contrast, the records in DBLP are much more reliable although it does not contain

citation information. So we �rst merge MAG and DBLP records through DOI and

titles to get an academic citation graph (within the scope of Computer Science) with

rather clean metadata.

On the other hand, CiteSeerX dataset indexes 2 million papers and provides full-

texts in PDF format which neither MAG or DBLP contains. We merge CiteSeerX

and DBLP records through titles and re�ne the result with the published date.

1https://www.microsoft.com/en-us/research/project/microsoft-academic-graph/
2http://citeseerx.ist.psu.edu/
3http://dblp.uni-trier.de/xml/

15

We �rst look over MAG, CiteSeerX and DBLP data set respectively, then paper

matching strategies from di�erent data sources are introduced.

3.2.1 Microsoft Academic Graph

The Microsoft Academic Graph (MAG) is essentially a heterogenous graph com-

prised of di�erent types of entities that model the scholarly activities: paper, author,

venue, institution, �eld of study and event(conference instance, e.g. WWW2015).

And the multi-type relationships between those entities are also provided. Table 3.1

shows the total number of papers and citations.

Table 3.1: Basic statistics of MAG

Attribute Number
Papers 126,909,021
Citations 528,682,289

Although there are round 12.7 million papers in MAG data, more than half of them

do not have a citing or cited relationship with others, which means they are isolated

nodes in the citation graph. Table 3.1 shows the actual statistics of the citation graph

from MAG.

Table 3.2: Basic statistics of Citation Graph

Attribute Number
Citations 528,682,289

Citing Papers 30,058,322
Cited Papers 37,261,072

Papers in Graph 46,742,304

3.2.2 DBLP

The DBLP computer science bibliography is the on-line reference for bibliographic

information on major computer science publications. The DBLP XML contains 8

di�erent types of records:

(1) Article:An article from a journal or magazine.

16

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06

co
u
n
t

degree

references
citations

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06

co
u
n
t

degree

references-cumulative
citations-cumulative

Figure 3.1: Degree distribution in MAG

(2) Inproceedings:A paper in a conference or workshop proceedings.

(3) Proceedings:The proceedings volume of a conference or workshop.

(4) Book:An authored monograph or an edited collection of articles.

(5) Incollection:A part or chapter in a monograph.

(6) Phdthesis:A PhD thesis.

(7) Mastersthesis:A Master's thesis.

(8) WWW:A web page.

3.2.3 CiteSeerX

CiteSeerX datase [97, 98] indexes 2,356,568 papers including rich metadata, e.g.

title, abstracts, authors, venues etc. According to [97], after removing multiple ver-

sions of a paper, there are around 1.9 million unique papers. Beyond the metadata,

17

Table 3.3: Basic statistics of DBLP

Attribute Number
All Items 5,136,756

Inproceedings 1,821,094
Proceedings 30,840

Article 1,480,561
Incollection 38,971
Phdthesis 13,634
Book 12,635

Mastersthesis 9
WWW 1,742,766

we can also access the PDF �le for each paper in CiteSeerX. However, the metadata

is pretty noisy because it is extracted by automated techniques.

3.3 Data Matching From Multiple Sources

On one hand, Microsoft academic graph contains abundant information from var-

ious disciplines but it is kind of noisy. For instance, some important attributes, like

venue, are missing or even wrong for many paper records in MAG. On the other

hand, although the scope of DBLP dataset is not as broad as MAG, the records of

DBLP are much cleaner than MAG. However, DBLP just contains the metadata of

its records, we still need the graph information from MAG.

Here we are trying to match DBLP records to MAG records so that we can get an

academic graph (within the scope of CS) with rather clean metadata.

3.3.1 Paper Matching

3.3.1.1 Paper Matching Using DOI

Digital Object Identi�er (DOI) is a persistent identi�er used to uniquely identify

objects, standardized by the International Organization for Standardization. DOI

usually takes the form of a sequence of digital numbers, for instance "11.2230/192".

The most intuitive way to match the academic documents from di�erent sources is

using these unique identi�er. However, DOI is not always available for every paper.

18

For example, more than 40% items of DBLP dataset do not have the DOI, the ratio

is 70% for MAG and CiteSeerX records are indexed using their internal ID and just

a few of them have public DOI.

3.3.1.2 Paper Matching using Titles

There are many other attributes besides DOI that can be used for matching dataset-

s. Mapping titles seems to be an e�ective way, since each paper is expected to have

an unique title. However, the quality of metadata will have an signi�cant impact on

the matching results.

In order to obtain a relatively clean results, we use strict title matching as a com-

plementary way to DOI matching. And it turns out the strict title matching is

helpful. According to our experiments, 1,450,315 records are matched through strict

title matching between MAG and DBLP and 544,307 of them could not be matched

with DOI.

Finally, we obtain 2,035,246 paper records associated with citation relationships

and metadata by matching MAG and DBLP using DOI and titles, and bring 374,999

of them with full text by matching DBLP and CiteSeerX using titles.

For strict title matching, a minor di�erence between two titles will result in a

mismatch. In other words, there might be false positive cases considering the noise or

di�erent format of titles in di�erent data sources. So we also introduce our exploration

for soft title matching methods.

3.3.1.3 Exploration for Soft Title Matching

The �rst soft title matching is on word level. We compare the all the words con-

tained by two titles from di�erent data source and the following scoring strategy is

used:

CommonRatio(s1, s2) =
NumOfCommonWords(s1, s2)

max(numOfWords(s1), numOfWords(s2))

19

Then a minimum threshold of Common Ratio score is set to determine whether two

titles are taken as a matched pair.

Another soft title matching is on character level. We compute the edit distance

between two titles and the following scoring strategy is used:

EditRatio(s1, s2) =
edit_distance(s1, s2)

min(Length(s1), Length(s2))

Then a maximum threshold of Edit Ratio score is set to determine whether two titles

are taken as a matched pair.

Although soft title matching strategies are more noise tolerant compared with strict

title matching, they could bring false negative errors when di�erent papers have sim-

ilar titles. Moreover, soft title matching strategies are usually expensive to compute.

Therefore, we use strict matching strategy in practice for accuracy and e�ciency.

3.3.2 Metadata Preprocessing

To address the problem of inconsistency of venue names between DBLP and MAG.

We conduct a venue matching experiment between those two dataset by using DOI.

The result shows venue names in DBLP sometimes are more speci�c than MAG, for

instance, The international European Conference on Parallel and Distributed Com-

puting is named as 'Euro-par' in MAG, but there are 'Euro-par (1)' and 'Euro-par

(2)' in DBLP. Moreover, MAG does not distinguish the workshops from the main

conference, while the DBLP does.

Table 3.4: Venue Matching

Attribute Number
MAG venues 2811
DBLP venues 5245
Matching links 8935

20

Table 3.5: Data Statistics

Attribute Number
Papers 2,035,246
Citations 12,439,090

Papers with text 374,999
Keywords 195,989
P-K Edges 14,779,751
Authors 1,208,641

P-A Edges 5,977,884
Venues 9,777

P-V Edges 2,035,246

3.4 Results

Finally, we get 2,781,660 DBLP-MAGmatches and 502,562 DBLP-CiteSeerX match-

es. After deduplication, we obtain 2,035,246 paper records associated with citation

relationships and metadata. DBLP using DOI and titles

This data set gives us for each paper the name of the authors, the venue of publi-

cation, the title of the paper, full text (for about a �fth of the papers), and citation

information. The statistics of this dataset is given in Table 3.5. In particular, for

papers without full text, we simply use non-stop words from titles as keywords, and

for papers with full text, we propose a key phrase extraction methods in Chapter 4.

CHAPTER 4: KEYPHRASE EXTRACTION FROM SCIENTIFIC ARTICLES

4.1 Introduction

In order to improve the quality of meta data, in this chapter, we investigate the

problem of keyphrase extraction from scienti�c articles and propose a unsupervised

approach addressing the overgeneration error [99].

Keyphrases are the words and phrases that provide a brief and precise description

for a document. Automatically extracting keyphrases from a text document is a

fundamental but hard problem which can bene�t many tasks, such as document

summarization, categorization, searching, indexing, and clustering.

This problem was traditionally solved by supervised methods that convert the

problem to a binary classi�cation problem, where a classi�er will be trained to identify

whether a phrase is a keyphrase or not. For such supervised methods, a lot of high-

quality training data are required in order to reach a good performance. Although

di�erent learning algorithms have been employed to train the classi�er, such as Naive

Bayes [53], decision tree [54][55], logistic regression [56][57] and SVM [58][59], most

e�orts of research on supervised keyphrase extraction are made on feature selection,

which turns out to have more signi�cant impact on performance.

In the line of unsupervised research, despite the robust performance of TF-IDF,

graph-based methods attract more attention. These methods construct a word graph

from each document, such that nodes correspond to words and edges correspond to

semantic relationships between words. Then words are scored according to graph

centrality measures like PageRank. Finally the phrases consisting of top ranked

words are returned as keyphrases. Recent work has incorporated the positions of a

word's occurrence into graph-based model and propose a position biased unsupervised

22

Table 4.1: Overgeneration Errors

Top k SingleRank

1 original k-partite graph
2 k-partite graph
3 hidden structures
4 various structures
5 local cluster structures
6 global cluster structures
7 relation summary network
8 general model

approach [84].

Even though there is a vast literature on the automatic keyphrase extraction prob-

lem, state-of-the-art methods, would they be supervised or not, do not achieve satis-

fying performance.

Recent work has shown that most errors made by state-of-the-art keyphrase ex-

traction systems are due to overgeneration [100] [101]. According to Hasan et al. [52],

overgeneration errors contribute to 28%−37% of the overall error. Overgeneration

errors occur when a system erroneously outputs other candidates as keyphrases be-

cause they contain the highly scored word. Current keyphrase extraction systems

typically assign scores to words �rstly, and rank candidate phrases according to teh

sum of weights of their component words. Therefore, this kind of mechanism tends

to su�er from overgeneration errors. Table 4.1 shows an example of top 8 predicted

keyphrases generated by SingleRank [75], a typical unsupervised keyphrase extraction

method. The golden keyphrases (manually assigned by the authors) are marked in

bold. Since the words "graph", "k-partite" and "structure" receive high scores, thus

every candidate phrase that contains these words tends to be ranked as a keyphrase.

As we can see, there are many top ranked keyphrases actually have the same or very

similar semantics. These overgeneration errors signi�cantly decrease the precision.

In order to alleviate this problem, we look for a way to allow us to directly operates

on phrases instead of their component words. Before doing any operation, a system

23

should �rstly generate a list of quality candidate phrases from each document, where

a quality phrase means a continuous sequence of words with coherent semantics.

Therefore, two questions come to us: What kinds of properties make a sequence

of words into a quality phrase? Then what kinds of properties make a phrase into a

keyphrase? In this work, we explore these properties and propose KeyPhraser, which

generates candidate phrases and ranks them by taking each phrase as one semantic

unit. Through experiments carried on two datasets, we show that our approach

improves the performances signi�cantly on various metrics.

In this section 4.2, we start with the traditional framework for unsupervised keyphrase

extraction systems. Then we introduce KeyPhraser, a fully unsupervised keyphrase

extraction approach that directly operates on phrases.

4.2 Unsupervised Keyphrase Extraction

A classic unsupervised keyphrase extraction system typically contains three steps:

• The �rst step is to generate a list of candidate word that have potential to be

keywords. Typically, words with certain part-of-speech tags such as adjectives

and nouns are considered. An alternative way is simply �ltering out stop words

from the documents

• The second step is actually ranking or scoring candidate words, which are gen-

erated from last step. This is the core step and various ranking algorithms are

proposed.

• The �nal step is called keyphrase formation, where the candidate words are

used to form keyphrases through certain aggregation function like sum.

As we can see from Fig. 4.1a, current unsupervised keyphrase extraction systems

typically assign scores to words �rstly, and then form keyphrases according to the

sum of weights of their component words. A phrase that contain a highly scored

24

word are very likely to returned as a keyphrase. Therefore, current methods tends to

su�er from overgeneration errors.

4.3 Addressing Overgeneration Error

Candidate word
selection

Keyphrase
formation

Candidate word
scoring

Suffering overgeneration error

(a) Classic Scheme

Candidate phrase
selection

Keyphrase
ranking

(b) Keyphraser Scheme

Figure 4.1: Keyphrase Extraction Schemes

In order to alleviate the overgeneration problem, we look for a scheme to directly

operate on phrases instead of their component words (Fig. 4.1b). In other words,

our method should be capable of extracting phrases from the text and then selecting

keyphrases from these candidate phrases based on reasonable measures.

Therefore, the following questions come to us:

• What kinds of properties make a group of words into a phrase?

• What kinds of properties make a phrase into a keyphrase?

• What is special for scienti�c documents?

To capture these properties, we de�ne four metrics in this section: concordance,

popularity, informativeness and positional preference.

Let's start with the �rst question, which corresponds the candidate phrase selection

part in Fig. 4.1b. Before doing any operation, a system should �rstly generate a list of

quality candidate phrases from each document, where a quality phrase means a small

25

group of words that appear contiguously in the text and serve as a whole semantic

unit in certain context. In practice, extracting phrases from document turns out to

be a nontrivial problem.

Concordance is also called phraseness, which measures the likelihood that a se-

quence of words can be considered as a phrase. Several de�nitions that quantify the

discrepancy between the probability of their true collocation and the presumed col-

location under independence assumption are used to capture concordance, such as

pointwise mutual information [102] and Dice coe�cient [82].

However, in order to achieve a reasonable concordance score, PMI and Dice coe�-

cient require that the corpus of English text is large enough.

In the context of keyphrase extraction, part-of-speech tag is widely used to measure

concordance. Typically, words tagged as adjectives or nouns are selected, then a

continuous sequence of candidate words is considered as a phrase:

Conc(s) =


1 if s = [adj]∗[noun]+

0 otherwise

We use this scheme in KeyPhraser to extract phrases from documents because of

two reasons. First, publicly available datasets for keyphrase extraction task typically

contain hundreds of documents, which can not guarantee a good performance for PMI

or Dice e�cient; most existing keyphrase extraction algorithms extract candidate

word by part-of-speech tags, therefore, we choose to be consistent with these works.

Now given a list of candidate phrases, we need to identify keyphrases out of them.

This is called keyphrase ranking in Fig. 4.1b. To this end, we need to �gure out the

properties that make a phrase into a keyphrase.

Popularity is the �rst property coming to mind. As we know, keyphrases are

those phrases that provide a brief and precise description for the given document. So

they should occur with su�cient frequency in the given document. Intuitively, term

26

frequency is a good criteria to measure the popularity of a phrase. We use a sublinear

variant of term frequency in KeyPhraser, which is:

Pop(s, d) = log(f(s, d) + 1)

where f(s, d) denotes the frequency of a phrase s ∈ P in the document d.

Informativeness For a given document, some candidate phrases tends to be less

informative or unrelated to the main topics, even though they appear frequently. Gen-

erally speaking, these phrases are likely to be functional phrases in English. Therefore,

it is di�cult to measure informativeness only based on the information of the current

document.

Inverse document frequency is a traditional information retrieval measure of how

much information a word provides in order to retrieve a small subset of documents

from a corpus. The IDF of a phrase is usually calculated as the average IDF scores

of the words it contains. Here we take a phrase as an unit and customise the inverse

document frequency for phrases:

Info(s) = log
|C|

|d ∈ D : s ∈ d|

where C means the whole corpus, and D means the documents that contain candi-

date phrase s.

Positional PreferenceWhere a phrase occurs in the document is also essential to

the keyphrase extraction problem, especially for scienti�c papers. Intuitively, given

a scienti�c document, keyphrases tends to appear not only frequently but also early.

For instance, titles of scienti�c articles are very likely to contain keyphrases.

Previous work has shown the power of positional information of words [83][84].

Here we de�ne the positional preference of each phrase by considering all occurrence

27

positions in the document:

Pos(s, d) = log(
∑

each s in d

|d|
op(s, d) + 1

)

where op(v, d) denotes an occurrence position of phrase v in document d. An alter-

native way only takes the �rst occurrence position of a phrase into consideration.

Pos(s, d) = log
|d|

fop(s, d) + 1

where fop(v, d) denotes the �rst occurrence position of phrase v in document d.

Finally, In order to build a keyphrase extraction system based on above measures,

one can aggregate them in multiple ways. Statistical method like TF-IDF has been

proven to be a strong and robust baseline according to many previous work despite

the simplicity of aggregation function. Therefore, we also use product to aggregate

above measures.

Keyphraser(s, d) = Conc(s)Pop(s, d)Info(s)Pos(s, d)

Here we explore two di�erent versions of KeyPhraser: KeyPhraser-full which use all

occurrence positions and KeyPhraser-fp which only use the position of �rst occur-

rence.

4.4 Experiment

In this section, we conduct experiments on real datasets to demonstrate the e�ec-

tiveness and e�ciency of our proposed approach to the task of keyphrase extraction.

4.4.1 Dataset and Experiment Settings

In order to evaluate the performance of our method, we conducted experiments

on two public datasets, which were made available by Gollapalli and Caragea1. The

1https://www.cse.unt.edu/~ccaragea/keyphrases.html

28

datasets consist of research papers from two top-tier conferences: World Wide Web

(WWW) and Knowledge Discovery and Data Mining (KDD). All titles and abstracts

are used for keyphrase extraction, and the author assigned keyphrases are used as

ground truth for evaluation.

In speci�c, the KDD dataset contains 755 papers and the WWW dataset consists

of 1331 papers. (The KDD dataset actually contains 834 papers, but 79 of them do

not have corresponding ground truth �les. Similar for WWW.) The average numbers

of ground truth keyphrases for each paper in these two datasets are 3.8 and 4.6

respectively. The average number of words in each ground truth keyphrase is 1.8

for the KDD dataset and 1.9 for the WWW dataset. There are few ground truth

keyphrase consisting of more than 4 words. Therefore, we set 4-grams as the threshold

for candidate phrases for all method used in the experiments.

In our experiments, we use average precision, recall and F1-score as performance

metrics, since they are widely used in keyphrase extraction task. To demonstrate the

e�ectiveness of the proposed approach, we compared it with popular baselines and

state-of-the-art algorithms: TF-IDF, TextRank, SingleRank and PositionRank.

For most keyphrase extraction approaches, the number of phrases as output are

typically determined by users. Here we examine the top k performance of our method,

where k is set with the range from 1 to 8. The range is determined by the follow-

ing three reasons: Firstly, the average number of ground truth keyphrases of the

datasets is around 4; Secondly, overgeneration error results in lower precision, which

means this type of error occurs more frequently for small k; Finally, in practice, a

keyphrase extraction system is not expected to generate plenty of phrases, otherwise

the generated keyphrases will be less usefull.

Please note that TextRank is kind of special, as it requires a ratio (of top-ranked

words) instead of a speci�c k as input. For fair comparison, we use corresponding

ratio for each k, so that TextRank will generate almost the same number of phrases

29

as others.

Window size is a typical parameter of graph-based keyphrase extraction methods,

such as PositionRank and SingleRank. While this parameter seems to have a great

impact on the built word graph, previous work has shown that graph-based methods

are not really sensitive to it. To be consistent with other work, we set window size of

10 for PositionRank and SingleRank, and window size of 2 for TextRank.

Some previous work use Porter Stemmer to reduce both predicted and ground

truth keyphrases to a base form. In this way, the number of miss-matched pairs of

keyphrases due to the gap in lexical form will be decreased. However, Porter Stemmer

is inappropriate under some circumstances. For instance, "clusterings" and "clusters"

usually don't share the same meaning in computer science context. In our experi-

ments, we only use simple ad-hoc processing to match keyphrases in singular/plural

form.

4.4.2 Results and Discussion

Fig. 4.2 shows the performance of our method comparing with TF-IDF, TextRank,

SingleRank and PositionRank. As can be seen from the �gures, KeyPhraser signi�-

cantly outperforms other approaches on both datasets.

The major improvements on F1-scores come from the substantial improvements

on precision, especially for small k. This is because current methods typically rank

a candidate phrase by aggregate scores of words it contains. On the contrary, our

method directly operates on phrases, which turns out to be e�ective to alleviate the

overgeneration issue.

In particular, for the KDD dataset, state-of-the-art method achieves 9% on preci-

sion when k equals 1, while KeyPhraser achieves 23% for the same k, which means

the improvement by our approach at this point is as high as 155%. For example,

KeyPhraser achieves F1-scores of 14.3% and 14.1% for k equals 3 and 5 respectively

on the same dataset, as comparison, the best state-of-the-art method, PositionRank,

30

1 2 3 4 5 6 7 8

Top K

6

8

10

12

14

16

18

20

22

24

P
re

ci
si

o
n
(%

)

KeyPhraser-full

KeyPhraser-fp

TF-IDF

TextRank

SingleRank

PositionRank

1 2 3 4 5 6 7 8

Top K

5

10

15

20

25

P
re

ci
si

o
n
(%

)

KeyPhraser-full

KeyPhraser-fp

TF-IDF

TextRank

SingleRank

PositionRank

1 2 3 4 5 6 7 8

Top K

2

4

6

8

10

12

14

16

18

20

R
e
ca

ll(
%

)

KeyPhraser-full

KeyPhraser-fp

TF-IDF

TextRank

SingleRank

PositionRank

1 2 3 4 5 6 7 8

Top K

0

5

10

15

20

R
e
ca

ll(
%

)

KeyPhraser-full

KeyPhraser-fp

TF-IDF

TextRank

SingleRank

PositionRank

1 2 3 4 5 6 7 8

Top K

2

4

6

8

10

12

14

16

F1
-S

co
re

(%
)

KeyPhraser-full

KeyPhraser-fp

TF-IDF

TextRank

SingleRank

PositionRank

(a) On KDD Dataset

1 2 3 4 5 6 7 8

Top K

2

4

6

8

10

12

14

16

F1
-S

co
re

(%
)

KeyPhraser-full

KeyPhraser-fp

TF-IDF

TextRank

SingleRank

PositionRank

(b) On WWW Dataset

Figure 4.2: Performance Comparison

31

achieves F1-scores 10.1% and 11.8% for corresponding k.

Generally speaking, our method tends to �nd the "correct" keyphrases much "faster"

than others. We can easily conclude that based on a preliminary analysis of recall

and precision curves:

• First of all, if you look at the recall curves of all methods, a obvious �nding is

that they tends to converge when k is large enough. This is true because each

method in the plot has employed part-of-speech tags to generate candidate

phrases or words, which means the pool where the keyphrases are selected from

is pretty much the same. In other words, these methods share the same upper

bound of recall. (One can learn more about upper bound of recall from [103])

• Now look at the precision curves. For small k, KeyPhraser outperforms other

methods by a substantial improvement. This is due to the fact that overgener-

ation error occurs more frequently when k is small. Along with the number of

output getting larger, the di�erence between returned keyphrases by di�erence

methods becomes less signi�cant, which is re�ected in the plots.

For real systems, performance improvement for small k is much more useful. Be-

cause a document usually contains a few keyphrases. A keyphrase extraction method

that generates a bunch of phrases to obtain a good performance is not helpful in

practice.

Table 4.2 shows result of top 8 predicted keyphrases by di�erent methods for a

instance paper from the KDD dataset, where the ground truth keyphrases are marked

in bold. As we can see, compared with existing methods (upper part of the Table 4.2),

our methods (lower part of the Table 4.2) alleviate the overgenration errors and

obtains a higher precision. In other words, our methods tend to �nd ground truth

keyphrases faster.

Beside the cheerful performance on e�ectiveness, KeyPhraser remains a linear time

32

Table 4.2: Predicted Keyphrases Comparison

k SingleRank PositionRank
1 original k-partite graph original k-partite graph
2 k-partite graph k-partite graph
3 hidden structures various structures
4 various structures hidden structures
5 local cluster structures local cluster structures
6 global cluster structures global cluster structures
7 relation summary network unsupervised learning
8 general model relation summary network
k KeyPhraser-fp KeyPhraser-full
1 unsupervised learning k-partite graph
2 k-partite graph hidden structures
3 hidden structures unsupervised learning
4 data objects relation summary network
5 multiple types clustering approaches
6 relation summary network data objects
7 general model multiple types
8 local cluster structures connections

complexity to the corpus size. The e�ciency is due to the simplicity of the aggregation

function of measures. In speci�c, on the KDD dataset, KeyPhraser is 3x faster than

graph-based methods and 2x faster on the WWW dataset.

Error Analysis. Hasan et al. [52] classify all errors of keyphrase extraction sys-

tems into four categories: overgeneration error, infrequency error, redundant error and

evaluation error. essentially, redundant error and evaluation error are kind of similar

as they both stem from two phrases being semantically equivalent. Overgeneration

error comes from generating multiple phrases that contain a popular word without the

phrase making much sense. While infrequency error come from a keyphrase appearing

only once or twice in the entire document. Since the methods we are investigating

do not dig in the semantics of the extracted phrases we believe that overgeneration,

redundant and evaluation error are not usefully di�erent and we classify the errors in

the typical two category.

The �rst type of system errors is False Negative Error, this error happens when a

33

gold phrase is not returned as a keyphrase. Infrequency error is a typical false positive

error. Existing method are likely to miss it due to the di�culty to detect such an

infrequent phrase. To recall these infrequent phrases, we may have to accept lower

precision.

The other type of system errors is False Positive Error which happens when candi-

date phrases are incorrectly returned as keyphrases. Overgeneration error is a typical

false negative error and certainly the most common one when manually looking at

the automatically extracted key phrases.

4.5 Conclusion

In this chapter, we presented KeyPhraser, an unsupervised keyphrase extraction

approach for scienti�c papers addressing overgeneration error. To this end, we look

for a way to allow us directly operates on phrases instead of their component words.

KeyPhraser takes each phrase as one semantic unit. Firstly candidate phrases are

generated by concordance measure, and then they are scored by three other mea-

sures to determine whether a phrase is a keyphrase or not. Despite the simplicity of

the mechanism, experiments carried on two datasets demonstrate KeyPhraser is an

e�ective and e�cient approach to keyphrase extraction.

For real systems, performance improvement for small k is much more useful. Be-

cause a document usually contains a few keyphrases. A keyphrase extraction method

that generates a bunch of phrases to obtain a good performance is not helpful in

practice. On the contrary, our method tends to �nd the "correct" keyphrases much

"faster" than others. When k is small, KeyPhraser outperforms other methods by

a substantial improvement. This is due to the fact that overgeneration error occurs

more frequently for small k.

In future, various concordance, informativeness and positional measures should be

explored. For example, how to �nd a way to incorporate more positional information

rather than just the position of �rst occurrence. And �nding other e�ective aggrega-

34

tion functions of phrase measures seems promising. Moreover, it would be interesting

to explore more phrase based approaches. For instance, we wonder how to build a

phrase graph in a reasonable way and how is it compared with word graph.

CHAPTER 5: PITFALLS OF CITATION RECOMMENDATION ON GRAPH

5.1 Introduction

In chapter 3 and chapter 4, we introduced our academic graph data merged from

MAG, DBLP and CiteSeerX. In order to obtain representative phrases from limited

text, we proposed KeyPhraser aiming to extract key phrases from scienti�c articles.

Given the academic graph data, there are several algorithms proposed to solve the

citation recommendation problem, such as collaborative �ltering and PaperRank. In

this chapter, we �rstly introduce these algorithms and then reveal the bias behind

their performance: they are only able to �nd highly connected papers in the projec-

tion graph of pseudo-query paper, while most papers in the projection graph have

a low degree. In other words, a plenty of hidden papers are not �ndable by classic

algorithms.

5.2 Algorithms

First of all, we introduce classic approaches for citation recommendation based on

seed papers:

5.2.1 CoCitation

CoCitation [104] The number of cocitations is often used to measure the relevance

between two papers. In the citation recommendation scenario, cocitation ranks a

candidate paper according to the sum of the times it was cocited with papers in the

seed set.

R(x) =
∑
s∈S

∑
v for s,x∈Cit(v) 1

36

5.2.2 CoCoupling

CoCoupling [104] CoCoupling is a complementary metric of cocitation. It counts

the number of times that two papers cite a same paper. Here, we use cocoupling to

measure the relevance between the candidate paper and seed papers according to the

following formula:

R(x) =
∑
s∈S

∑
v for s,x∈Ref(v) 1

5.2.3 PaperRank

PaperRank [10] (PR) PaperRank is a biased random walk proposed to recommend

papers based on citation graph. In particular, the restarts from any paper will be

distributed to only the seed papers. PR assumes a random walker in paper v continues

to a neighbor with a damping factor d, and with probability (1− d) it restarts at one

of the seed papers in S. The edges are followed proportionally to the weight of that

edge wji which is often set to 1, but can be set to the number of time i is referenced

by j.

R(vi) = (1− d)
1

S
+ d×

∑
vj∈Adj(vi)

wji∑
vk∈Adj(vj)wjk

R(vj)

5.2.4 Collaborative Filtering

Collaborative Filtering [15, 16] (CF) has been proven to be an e�ective idea for

most recommendation problems [8, 9, 105, 106, 107, 108, 109, 110]. For citation

recommendation, a ratings matrix is built using the adjacent matrix of citation graph,

where citing papers correspond to users and citations correspond to items. A pseudo

target paper that cites all seed papers is added to the matrix. CF computes the k

neighborhoods that are top k similar papers to the target paper. Then each citation

in neighbors is summed up with the count weighted by the similarity score.

37

Table 5.1: Global Performance

Method Recall@10 Recall@20 Recall@50
PaperRank 0.234413 0.326096 0.471510

CF 0.191736 0.266961 0.391736
CoCitation 0.192626 0.267617 0.392197
CoCoupling 0.055778 0.088216 0.146737

5.3 Experiment

5.3.1 Experimental Setup

In order to simulate the typical scenario where a researcher is writing a paper and

tries to �nd some more references, we design the random-hide experiment. First of

all, a query paper q with 20 to 200 references and published between 2005 to 2010 is

randomly (uniformly) selected from the dataset. We then remove the query paper q

and all papers published after q from the citation graph to simulate the time when the

query paper was being written. Instead of using hide-one strategy [8, 9], we randomly

hide 10% of the references as hidden set. This set of hidden paper is used as ground

truth to recommend. The remaining (18 and 180 depending on q) papers are used as

the set of seed papers.

Finally, to evaluate the e�ectiveness of recommendation algorithm, we use recall@k,

the ratio of hidden papers appearing in top k of the recommended list.

5.3.2 Results

Table 5.1 shows the results of popular methods on average recall for 2,500 inde-

pendent randomly selected queries. PaperRank outperforms other methods by at

least 20% on di�erent k. In particular, collaborative �ltering and CoCitation achieve

almost the same performance, this is not surprising since the spirit behind them is

the same: similar papers should have similar reference list. CoCoupling seems not

working well for citation recommendation on graph.

We call these scores global performance, as we will analyze the common features of

38

Citing paper

G
P

Figure 5.1: Projection Graph

the hidden papers found by those methods to reveal the bias behind the algorithms.

5.4 Pitfalls behind the performance

To analyze the performance of the algorithms, we investigate the local structure of

the citation graph. The citation projection graph of a paper p is the graph induced

by the papers cited by p [111]. For a query paper, it is the graph where the vertex set

is composed of the seed papers and the hidden papers, and the edge set is composed

of the citations between these vertices. The citation projection graph focuses on the

cited papers and the relationships among them; it is known to help understanding

the local pattern in the citation graph [111].

We investigated the relations between various properties of the projection graph

and whether hidden papers were found or not. We identi�ed that the degree of

the hidden papers in the projection graph, we call proj-degree, is a good indicator

of whether the hidden paper will be discovered or not. We computed the average

recall@10 scores on hidden papers grouped by proj-degree and reported these numbers

in Figure 5.2. Popular graph based methods are quite good at �nding hidden papers

39

0 5 10 15 20

Degree

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

PR
CF
CoCitation
CoCoupling

Figure 5.2: Recall by proj-degree (top 10)

that are highly connected in the citation projection graph. But these methods achieve

poor performance on loosely connected ones. Unfortunately, over 50% of the hidden

papers have a proj-degree of 2 or less. The distribution of proj-degree is shown in

Figure 5.3.

5.5 Conclusion

In this chapter, we introduced classic algorithms and random-hide experiments

shows PaperRank is the best of them while CoCouping is the worst on global perfor-

mance.

Then we revealed that the degree of the hidden papers in the projection graph is a

good indicator of whether the hidden paper will be discovered or not. And we found

classic methods are quite good at �nding hidden papers that are highly connected

in the citation projection graph. But these methods achieve poor performance on

loosely connected ones.

40

0 5 10 15 20

Degree

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
e
la

ti
v
e
 F

re
q
u
e
n
cy

Figure 5.3: Distribution of proj-degree (degree in the citation projection graph) of
hidden papers.

CHAPTER 6: ALGORITHMS USING METADATA

6.1 Introduction

The analysis of the last chapter shows that popular methods are good at �nding

papers that are highly connected in citation projection graph. But they perform

poorly on papers that are not well connected in the citation projection graph despite

they are the majority. Therefore, we focus our analysis on loosely connected papers.

The key question is why do authors cites these papers? According to [111], some

papers create random reference across various �elds. This might sound reasonable to

explain the fact that these reference are loosely connected in the citation projection

graph. However, as Figure 5.3 shows, about 50% of cited papers have one or no link

to others. Therefore, we believe they must share some common patterns or features

with others cocited papers that are not apparent in the citation graph. We expect

other features such as authors, venue, or keywords, convey helpful information.

A preliminary analysis of the metadata of loosely connected papers shows that

about 46% of the papers connected to two of the seeds or less share at least one com-

mon author with at least one of the seed papers. 60% of the loosely connected papers

appeared in the venue of one of the seed paper. And 95% of the loosely connected

paper shared at least one keyword with one of the seed paper. This indicates that the

citations are not random citations; but authors chose to cite them for reasons that

are not clearly explained by the citation graph only.

In this chapter, we explore di�erent approaches that use metadata for citation

recommendation. We �rstly de�ne a group of paper ranking schemes based on meta

path in the bibliographic network. Then we propose random walk based methods

to examine the ability of metadata for identifying loosely connected papers. Besides

42

the global performance of the random-hide experiment, we also design the second

experiment to evaluate the ability to recommend papers with a particular degree in

the citation projection graph.

Then we investigate how similar the sets recommended by the algorithms are for

loosely connected papers, since looking at recall numbers only gives a single perspec-

tive on the usefulness of the methods. Moreover, we explore di�erent aspects of the

quality of recommended sets and discuss the usefulness for real systems. Finally, we

provide a fast scheme for random walk based citation recommendation using local

graph.

6.2 MetaPath

Recently, similarity search among the same type of entities in heterogeneous net-

works has attracted more attention. Intuitively, two entities are similar if they are

linked by many paths in the network. However, most existing similarity measures

are de�ned for homogeneous networks. Therefore, meta path-based similarity was

proposed [112].

A meta path is a path de�ned on the heterogeneous network schema, and is denoted

in the form of O1 →R1 O2 →R2 ... →Rl Ol+1, which de�nes a composite relation R

between type O1 and Ol+1.

In a heterogeneous network, two entities can be connected via di�erent meta paths.

For example, in bibliographic network, two authors can be connected via "author-

paper-author"path, "author-paper-venue-paper-author" path, and so on. Di�erent

meta paths usually carry di�erent semantic meanings.

For citation recommendation problem, we are looking for papers that are relevant

to the seed papers. To measure the relevance between a pair of papers, 5 basic meta

paths are de�ned:

• Paper − Author − Paper(PAP): Two papers may be relevant if they share a

author

43

• Paper−V enue−Paper(PV P): Two paper may be relevant if they are published

at the same venue.

• Paper−Keyword−Paper(PKP): Two paper may be relevant if they share a

keyword.

• Paper → Paper ← Paper(PCiP): Two paper may be relevant if they share a

citation.

• Paper ← Paper → Paper(PCoP): Two paper may be relevant if they are cited

by the same paper.

Given a paper-to-paper meta path, several similarity measures can be de�ned ac-

cording to the path instances between them following the meta path. A straightfor-

ward measure will be:

PathCount Measure: Given a meta path P and a pair of papers x and y, the

similarity between them is de�ned as:

PathCount(x, y,P) = |{px→y : px→y ∈ P}|

Essentially, PathCount is the number of path instances p between x and y. This

kind of similarity always favor entities with large degrees. Therefore, Sun et al.[112]

propose a new meta path based similarity measure, called PathSim, which tries to

capture the subtlety of peer similarity:

PathSim Measure: Given a symmetric meta path P , the similarity between two

entities of the same type x and y is:

PathSim(x, y,P) =
2× |{px→y : px→y ∈ P}|

|{px→x : px→x ∈ P}|+ |{py→y : py→y ∈ P}|

where px→y is a path instance between x and y. px→x is that between x and x, and

py→y is that between y and y.

44

P
2 P

2

G
2

A
2 A

2
A
1 A

5
A
3 A

4

A
1

P
1 P

1

G
1

Figure 6.1: Meta path examples: Paper-Author-Paper

The intuition behind PathSim is that two similar peer entities should not only be

strongly connected, but also share comparable visibility, where the visibility is de�ned

as the number of path instances. between themselves.

Figure 6.1 shows two examples induced from the bibliographic network. In G1,

both P1 and P2 are written by the same two authors, while in G2, P1 also shares two

common authors with P2 but P1 and P2 have 3 and 4 authors in total respectively. The

PathCount(P1, P2, PAP) scores between P1 and P2 in G1 and G2 are the same since

there are 2 PAP paths for both examples. However, the PathSim(P1, P2, PAP) scores

are di�erent: forG1, PathSim(P1, P2, PAP) = 2×2
2+2

= 1 and forG2, PathSim(P1, P2, PAP) =

2×2
3+4

= 0.57.

Based on above similarity measures, the relevance between a candidate paper x

and seed papers can be denoted as:

Score(x, Seed,P) =
∑

s∈Seeds

Score(x, y,P)

|{s : s ∈ Seeds}|

45

where Score function is either PathCount or PathSim.

Now we have 5 di�erent paper-to-paper meta paths and 2 meta path-based mea-

sures. Theoretically, there will be 5 × 2 ways to rank the candidate papers. In

particular, PathCountPCiP is essentially the CoCoupling method and the same for

PathCountPCoP and the CoCitation method. Besides, as a paper-to-venue is al-

ways a one-to-one pair, PathCountPV P and PathCSimPV P will be the same thing.

Therefore, we have 7 meta path based ranking methods, namely: PathCountPAP ,

PathCountPKP and PathSimPAP , PathSimPV P , PathSimPKP , PathSimPCiP and

PathSimPCoP .

6.3 LOGAVK

In order to compute the similarity between one paper to a set of other papers,

we build attribute graphs for author, venue and keyword respectively. Let us take

author as example, we �rst de�ne an undirected weighted graph of authors where an

edge represents the number of papers two authors have written together. Then we

normalize the adjacent matrix of this graph as MAA, where A is the set of authors.

Once the graph is constructed, we can measure the similarity between a candidate

author and the authors of seed papers by random walk as follows:

RA =


αMAARA + (1− α) 1

S
For authors of seed papers

αMAARA otherwise

The keyword graph MKK and venue graph MV V are constructed and the similarity

score RV and RK are computed in the same way. LogAVK recommends the loosely

connected papers according to the summation of the similarity scores of authors,

venue and keywords with corresponding seed papers.

ScoreLogAV K = logRA + logRV + logRK

46

6.4 Biased Random Walk on Citation Graph and Metadata

Aiming to combine the citation information and metadata information, we build

bipartite graphs with two kinds of nodes: papers and metadata. A random walk

algorithm passes information back and forth between the papers and the metadata.

Taking the paper-author graph as an example, the vector of paper scores is denoted

by RP and the vector of author scores is denoted by RA. The scores of authors is

computed by:

RA = MAPRP

which means an author score is collected from the papers she published. Some of

the paper scores are transferred between papers within the citation graph:

RP
1 = MPPRP

And a paper also collects scores from its authors:

RP
2 = MPARA

A paper in the seed set S also receives scores by random jumping from others.

RP
3 =

1

S

The �nal score of a paper is the weighted sum of above parts.

RP
A =


αRP

1 + βRP
2 + (1− α− β)RP

3 for seed papers

αRP
1 + βRP

2 otherwise

where α (β. resp.) is the fraction of the rank following a citation edge (an author

47

Table 6.1: Global Performance

Method Recall@10 Recall@20 Recall@50
PaperRank 0.234413 0.326096 0.471510

CF 0.191736 0.266961 0.391736
C+A 0.230617 0.318206 0.463204
C+V 0.230531 0.323125 0.461898
C+K 0.231308 0.315485 0.461507

LogAVK 0.053934 0.084001 0.129175
PathCount_PAP 0.053291 0.079318 0.125437
PathCount_PKP 0.031268 0.050866 0.083506
PathSim_PAP 0.053374 0.079897 0.125602
PathSim_PVP 0.003057 0.005231 0.010377
PathSim_PKP 0.031662 0.051366 0.098917
PathSim_PCiP 0.061189 0.095165 0.158142
PathSim_PCoP 0.192168 0.269849 0.396291

edge, resp.). In the experiments, we set α = .65, β = .2.

We will refer to any method that combines the citation information and a meta-

data in this manner as C+X. In particular, C+A will denote combining citation and

authorship; C+K will denote combining citation and keyword; and C+V will denote

combining citation and venue.

6.5 Experiment

6.5.1 General performance

We evaluate the general e�ectiveness of the recommendation algorithms using

recall@k, the ratio of hidden papers appearing in top k of the recommended list.

Table 6.1 shows the results of popular methods and the methods on average recall for

2,500 independent queries.

The results show that the C+Xmethods do not perform quite as well as PaperRank;

while the performance of logAVK is lower than that of PaperRank by a factor of about

4.

It seems methods that merely rely on metadata are not working well for citation

recommendation task. Nevertheless, we can still conclude some interesting �ndings

48

Table 6.2: Performance by proj-degree: Recall@10

Method δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5
Cocitation 0.10465 0.20760 0.46879 0.73310 0.88773 0.94630
Cocoupling 0.01723 0.03577 0.11962 0.25298 0.46489 0.64429
Co. Filtering 0.09914 0.20051 0.47150 0.73821 0.89120 0.94630
PaperRank 0.12172 0.20284 0.50463 0.76831 0.91358 0.96979
C+A 0.11193 0.20719 0.51515 0.76490 0.91319 0.97147
C+V 0.11544 0.18023 0.49932 0.76661 0.92168 0.97147
C+K 0.14160 0.17829 0.50260 0.76008 0.91242 0.97147
logAVK 0.02394 0.10287 0.30427 0.55820 0.80671 0.91778
PathSim_PCoP 0.10488 0.20875 0.47083 0.73461 0.88218 0.94630

from those methods: Author path and keyword path are more useful than venue

path; Pathsim tends to be a better meta path measure comparing with PathCount.

In the following sections, we keep the best performed meta path, PathSim_PCoP,

for further study.

6.5.2 Performance by proj-degree.

In order to evaluate the ability to recommend papers with a particular degree in

the citation projection graphs, we design the second experiment. We de�ne recall@k

for δ = ∆ as the ratio of hidden papers with proj-degree d to seeds papers appearing

in top k of the recommended list, where only the papers with proj-degree ∆ to seeds

papers are considered as candidates1. The results are shown in Table 6.2.

For particular values of proj-degree, the combined methods (C+X) outperform

current methods. One can easily see that most methods perform well on high proj-

degrees. Indeed, there are few vertices that are very connected with the seed papers.

So any reasonable algorithm will �nd most of them. It is on lower proj-degrees (0, 1,

and 2) that the algorithms start �nding less than 50% of the hidden papers.

Figure 6.2 shows the evolution of the recall when the number of returned papers

varies for three de�nitions of low proj-degree (δ = 0, δ ≤ 1, δ ≤ 2). The perfor-

1We call it property proj-degree for simplicity. Indeed the method would need to know which are
the hidden paper to do the �ltering on proj-degree. We mean degree to the seed, which di�ers from
the real proj-degree by the number of connections to the unknown hidden.

49

10 15 20 25 30 35 40 45 50
top K

0.0

0.1

0.2

0.3

0.4

0.5

R
e
ca

ll

PR
C+A
C+V
C+K
CF

AVK
CoCit
CoCoup
PathSim_PCoP

(a) δ = 0

10 15 20 25 30 35 40 45 50
top K

0.0

0.1

0.2

0.3

0.4

0.5

R
e
ca

ll

(b) δ ≤ 1

10 15 20 25 30 35 40 45 50
top K

0.0

0.1

0.2

0.3

0.4

0.5

R
e
ca

ll

(c) δ ≤ 2

Figure 6.2: Performance Comparison for low degree

mance of the algorithms for δ ≤ 1 and δ ≤ 2 are similar: all graph based methods

perform about the same (except cocoupling). logAVK performs signi�cantly worse.

For completely disconnect papers (δ = 0), the graph based algorithms exhibit more

di�erence. And in particular, C+K performs better than all other tested algorithms,

besting PaperRank by .02. This indicates that metadata help �nding loosely con-

nected paper.

50

Table 6.3: Di�erences between the top-10 sets (δ ≤ 2)

CoCit CoCoup CF PR C+A C+V C+K logAVK PathSim_PCoP
CoCit 408 393 45 245 284 289 293 389 10
CoCoup 62 77 60 57 64 66 65 75 62
CF 33 379 396 229 268 274 278 378 35
PR 253 396 249 416 83 79 84 396 254
C+A 259 370 255 50 383 58 62 362 260
C+V 253 361 250 35 47 372 17 356 253
C+K 256 359 253 39 50 16 371 356 256

logAVK 94 111 95 93 92 97 98 113 94
PathSim_PCoP 13 396 50 249 288 292 296 392 411

6.6 On the usefulness of di�erent algorithms

6.6.1 Di�erence between methods

Looking at recall numbers gives a single perspective on the usefulness of the meth-

ods. Recall numbers tell us how the algorithms perform on some particular test.

While informative to pick a single �best� algorithm, a user wants to explore a dataset

and see it through di�erent lenses.

Table 6.3 allows us to understand how similar the sets recommended by the algo-

rithms are for loosely connected papers. The diagonal shows the number of hidden

papers that were found in the top-10 by a particular algorithm, while an o� diagonal

entries shows the number of paper found by the algorithm of the row and that were

not found by the algorithm on the column. For instance, Cocitation recommended

correctly 408 papers but only 393 of those were not correctly identi�ed by CoCoupling.

This table allows us to understand that PaperRank, C+A, C+K, and C+V essen-

tially identify almost the same papers. Indeed each set is composed of about 400

papers, but the di�erence between these sets is smaller than 100 papers and often

smaller than 50 papers. Similarly, Cocitation and Collaborative Filtering both �nd

about 400 papers, but only about 40 of these papers are actually di�erent.

The similarity between these sets is explained by Figure 6.3 that shows a scatter

plot of the ranks of hidden papers in the di�erent algorithms. Besides Cocitation

and PathSim_PCoP, Collaborative Filtering and Cocitation are also highly correlat-

51

ed in terms of the rank of hidden papers. This is not particularly surprising provided

Collaborative Filtering and Cocitation are using the same principles with a di�er-

ent weighting function. In other words, Collaborative Filtering and Cocitation are

essentially redundant algorithms.

The relations of C+X with PaperRank are somewhat di�erent. There are de�nitely

a strong correlations between these methods, but some papers see a large di�erence in

ranks between the two methods. For instance, two hidden papers were ranked around

1-millionth by PaperRank but was ranked top-10 by C+A. Note also that only few

hidden paper see their rank being signi�cantly degraded by the addition of an other

features (few papers are in the top left corner). This indicates that the algorithms

are mostly redundant, but they are using di�erent richer features. As such a better

way of using these features could certainly be designed.

Figure 6.4 shows the correlation of ranks between the remaining algorithms. C+A,

C+V, C+K, Cocitation and PathSim_PCoP are not included because of their high

correlation with either PaperRank or CF.

The rank comparison of Collaborative Filtering and Cocoupling reveals an inter-

esting structure. Notice that there are some hidden papers with highly correlated

with ranks over 105. Digging manually in the data show that these hidden papers

are not cocited with a seed paper nor are they cociting a common paper with a seed

paper. Obviously these papers can not be found by either method. This phenomena

explains the denser region of that scatter plots with rank over 105 for Collaborative

Filtering and CoCoupling.

Collaborative Filtering and PaperRank show some correlation on the papers of rank

less than 104, though the papers that are not cocited with a seed paper are essentially

randomly ordered by Collaborative Filtering.

Cocoupling does not appear to be an interesting algorithm in our test. Indeed,

Cocoupling mostly worsens the rank of hidden papers compared to PaperRank (the

52

100 101 102 103 104 105 106 107

CF

100

101

102

103

104

105

106

107

C
o
C

it
a
ti

o
n

(a) CF vs Cocitation

100 101 102 103 104 105 106 107

PR

100

101

102

103

104

105

106

107

C
+

A

(b) PR vs C+A

100 101 102 103 104 105 106 107

PR

100

101

102

103

104

105

106

107

C
+

V

(c) PR vs C+V

100 101 102 103 104 105 106 107

PR

100

101

102

103

104

105

106

107

C
+

K

(d) PR vs C+K

100 101 102 103 104 105 106 107

Cocitation

100

101

102

103

104

105

106

107

P
a
th

S
im

_P
C

o
P

(e) Cocitation vs PathSim_PCoP

Figure 6.3: Rank of hidden papers for δ = 0 (high correlation)

53

100 101 102 103 104 105 106 107

CF

100

101

102

103

104

105

106

107

P
R

100 101 102 103 104 105 106 107

CF

100

101

102

103

104

105

106

107

A
V

K

100 101 102 103 104 105 106 107

CF

100

101

102

103

104

105

106

107

C
o
C

o
u
p
lin

g

100 101 102 103 104 105 106 107

PR

100

101

102

103

104

105

106

107

A
V

K

100 101 102 103 104 105 106 107

PR

100

101

102

103

104

105

106

107

C
o
C

o
u
p
lin

g

100 101 102 103 104 105 106 107

AVK

100

101

102

103

104

105

106

107

C
o
C

o
u
p
lin

g

Figure 6.4: Rank of hidden papers for δ = 0 (low correlation)

54

hidden papers are mostly located in the upper left region).

The logAVK method does not correlate with any other method, nor does it seem to

mostly worsen the performance of the paper nor improve them compared to another

method. logAVK does provide a completely di�erent perspective on the data than

the other algorithms. This is not particularly surprising since it is the only method

that does not consider the citation information.

6.6.2 Peeking into the Future

The current way of estimating the quality of a paper relies on identifying the papers

that were hidden from the list of references of a particular paper. That experiment

assumes that the author of each paper is a data point in the ground truth. But

authors are imperfect and may not have known some papers. Rather than using a

single paper to evaluate the quality of a recommendation, we suggest to use all the

future publications.

To quantify the relevance of a recommendation, we de�ne three metrics to explore

di�erent aspects of the problem.

Relevance-r For each pair of papers < i, j >, where i is a recommended paper and

j is a seed paper, we de�ne co-cited probability as:

PrCo(i, j) =
|Ci,j|
|Ci|

where Ci,j denotes papers citing both i and j in the future and Ci denotes papers

citing i in the future. Then, the relevance of a recommended paper to the seed papers

is:

Relevance(i) =

∑
j∈S PrCo(i, j)

|S|

Now we can evaluate the quality of a citation recommendation algorithm by the

55

average relevance for top K results:

Relevance@K =

∑
i∈topK Relevance(i)

K

Relevance-rb The relevance-r between a recommended paper and seed papers could

be biased by a few frequently co-cited pairs. To address this problem, we propose

a binary version of co-cited probability that just consider about whether there is a

paper citing both i and j in the future.

PrCo(i, j) =


1 ∃Ci,j in the future

0 otherwise

Relevance-rbd Note that we are actually interested not only in making good rec-

ommendation, but also in making links between papers that were not previously

seen as relevant. This version of Relevance only considers the cocitation of a seed-

recommended pairs that were not previously cocited.

PrCo(i, j) =


1 ∃Ci,j in the future and not in the past

0 otherwise

We computed the three relevance metrics on the same instances of the problem we

run before. We report the results of that experiment in Figure 6.5.

Not surprisingly, the relevance decreases when the number of returned papers in-

creases. But the relevance does not decrease as fast as one could expect. For instance

on δ = 0, the relevance-r of algorithm C+V decreases from .013 to .011 when k goes

from 10 to 50. It means that 1.3% of the future citation to the top-10 papers recom-

mended by C+V were in papers that also cited a seed paper; while the relevance-r of

top-50 was 1.1%. In other words, the 50th paper recommended by C+V is not much

56

10 15 20 25 30 35 40 45 50
top K

0.005

0.010

0.015

0.020

0.025

0.030

0.035

R
e
le

v
a
n
ce

-r

PR
C+A
C+V
C+K
CF

AVK
CoCit
CoCoup
PathSim_PCoP

(a) δ = 0

10 15 20 25 30 35 40 45 50
top K

0.005

0.010

0.015

0.020

0.025

0.030

0.035

R
e
le

v
a
n
ce

-r

(b) δ ≤ 4

10 15 20 25 30 35 40 45 50
top K

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
e
le

v
a
n
ce

-r
b

(c) δ = 0

10 15 20 25 30 35 40 45 50
top K

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
R

e
le

v
a
n
ce

-r
b

(d) δ ≤ 4

10 15 20 25 30 35 40 45 50
top K

0.04

0.06

0.08

0.10

0.12

0.14

R
e
le

v
a
n
ce

-r
b
d

(e) δ = 0

10 15 20 25 30 35 40 45 50
top K

0.04

0.06

0.08

0.10

0.12

0.14

R
e
le

v
a
n
ce

-r
b
d

(f) δ ≤ 4

Figure 6.5: Relevance

57

more irrelevant than the 10th.

We also �nd current cocitations is a good predictor of future cocitation: The Col-

laborative Filtering, PathSim_PCoP and Cocitation algorithm perform usually best

on the relevance-r and relevance-rb metrics. Though when looking at relevance-rbd

that removes the citations that were already known in the present, Collaborative

Filtering, PathSim_PCoP and Cocitation no longer are the better algorithms. Pa-

perRank is the algorithm that �nd the most relevant relations that were not known

before.

It is also interesting to see that over 20% of the recommended-seed pairs for Paper-

Rank will be cited in the future and half of these pairs were not known at the time.

This suggests that the algorithms we test are actually much more helpful in practice

than simple recall tests suggest. The logAVK method also performs interestingly.

About 6% of the recommended-seed pairs will be cited in the future (at top-10) and

most of them have not been cited before (5% at top-10).

Table 6.4: Upper bound for δ = 0

Metric top-10 top-20 top-30 top-40 top-50
Relevance_r 0.286093 0.205920 0.170241 0.148972 0.134334
Relevance_rb 0.880969 0.702677 0.590164 0.520564 0.473333
Relevance_rbd 0.778027 0.605512 0.505168 0.443790 0.402499

Table 6.5: Upper bound for δ ≤ 4

Metric top-10 top-20 top-30 top-40 top-50
Relevance_r 0.368085 0.272176 0.225938 0.197591 0.178001
Relevance_rb 0.998309 0.975889 0.879426 0.787065 0.717206
Relevance_rbd 0.868585 0.768658 0.674373 0.600422 0.545786

We computed upper bounds on the relevance metrics to quantify how good the

di�erent algorithms are. Indeed, we can use the knowledge of the future to easily

compute for each query the relevance of each paper and greedily pick the k papers

of highest relevance. We report the upper bound on best relevance for δ = 0 in

58

Table 6.4 and for δ ≤ 4 in Table 6.5. The upper bounds are much higher than the

relevance of the algorithms: a factor of 10 on relevance-r, 4 on relevance-rb, and 5 on

relevance-rbd. This indicates that there is a signi�cant room for improvement in our

paper recommendation tasks: there are better set of papers that will be cocited with

the seed papers than the methods are recommending.

6.6.3 Implications for a practical system?

We evaluated many algorithms, namely PaperRank, Collaborative Filtering, Coci-

tation, Cocoupling, C+A, C+V, C+K, PathSim_PCoP and LogAVK. The evaluation

was performed across di�erent tests, metrics, and by looking at di�erent slices of the

solution space. We present here a summary of the discussion with a focus on selecting

algorithms for inclusion in a practical system.

Cocitation, PathSim_PCoP and Collaborative Filtering are variations of the same

algorithm and their performance are hard to distinguish. (See correlation in Figure 6.3

and the di�erence in recommendation in Table 6.3). There is no point in including

both algorithms in a system: we will pick Collaborative Filtering.

Cocoupling is often one of the worst algorithm and is essentially worse than Paper-

Rank. (See correlation plot in Figure 6.4). As such, we do not believe it makes sense

to include Cocoupling if any variants of PaperRank were to be included.

The C+V, C+A, C+K algorithms are somewhat correlated to PaperRank but

they exhibit improvement for many cases (see Figure 6.3). C+K has the highest

recall on the δ = 0 study case (see Figure 6.2), and C+A and C+K showed the

highest relevance-r in the δ ≤ 4 case (see Figure 6.5). We believe one of these meth-

ods should be included in practice, but more work in integrating metadata in the

recommendation is necessary.

The logAVK algorithm provides a much lower recall than the other algorithm (See

Figure 6.2 for example). However, we believe it could be of some interest to discover

loosely connected papers. Indeed, it returns papers that are very di�erent from the

59

other methods (See Table 6.3) while having a relevance that is within a factor of 2

or 3 of the other algorithms (see Figure 6.5 for δ = 0). We believe that LogAVK

could provide a view of the problem that is complementary to the one provided by

the citation based methods.

6.7 Fast C+X Recommendation

For a practical citation recommendation system, the e�ciency of underlying rec-

ommendation algorithm is also important. The running time of random walk based

methods typically depends on the size of input graph and thus tends to be more ex-

pensive. While some other method like collaborative �ltering essentially computes the

weighted co-citation relationships and thus does not need to take the global graph into

account. Our previous work [113] has shown that LocRank, which is a local version

of PaperRank, is as e�ective as PaperRank while being much faster than PaperRank

and CF. Here we will explore the local methods for C+X.

We de�ne a local induced subgraph of a query q: Gq = (Vq, Eq), where Vq contains

all nodes in S and any node which is a neighbor of at least one seed paper:

Vq = S ∪ Sn

where Sn denotes

Sn =
⋃
s∈S
{v : v ∈ Adj(s)}

Eq remains all citation relationships between nodes in Vq. In other words, Gq is

the subgraph induced by the distance 1 neighborhood of the seed papers. Then, we

extend Gq to a heterogeneous graph Gq by adding metadata information of Vq, local

C+X computes a random walk on Gq.

In our experiments, all codes are written in C++ and the graphs are represented in

Compressed Row Storage format for compact storage. The codes are compiled with

g++ 4.8.2 with option -O3. The codes are run on 1 core of an Intel(R) Xeon CPU

60

Table 6.6: Performance for fast recommendation

Method Sec/query Recall@10 Recall@20 Recall@50
C+A 3.82 0.230617 0.318206 0.463204
C+V 3.59 0.230531 0.323125 0.461898
C+K 3.91 0.231308 0.315485 0.461507

C+A_Local 0.24 0.229565 0.308260 0.448141
C+V_Local 0.22 0.215549 0.296508 0.436924
C+K_Local 0.25 0.221331 0.303953 0.446463

0 20 40 60 80 100

Query

0

1

2

3

4

5

6

7

R
u
n
 T

im
e
(S

e
c)

C+A

C+A_Local

Figure 6.6: Runtime on 100 instance queries

61

E-5-2623 @ 3.00GHz processor.

As we can see from the Table 6.6, the column Sec/query shows the average runtime

per query for each method. In general, local C+X is 15x faster than original methods.

It is not surprising because the runtime of local methods only depends on the size of

local induced graph, while original ones are global ranking methods; Moreover, a local

induced graph tends to have a smaller diameter, which means local C+X can reach

the convergence within less iterations. In Figure 6.6, we take C+A as example and

show the runtime for 100 randomly sampled independent queries. Note that since we

remove the query paper q and all papers published after q from the citation graph

to simulate the time when the query paper was being written, the size of the global

graph is di�erent for queries with di�erent publication date.

Besides the much better e�ciency of local C+X methods, the quality of recom-

mendation is still competitive comparing with original methods. Essentially, local

methods are tradeo�s between the upper bound of recall and the e�ciency. It turns

out that they have equivalent abilities to �nd hidden papers as global methods, which

demonstrates that many �ndable hidden papers are actually neighbors of seed papers.

6.8 Conclusion

In this chapter, we explored di�erent approaches that use metadata for citation

recommendation. First of all, we de�ned 7 meta path based ranking method, where a

meta path is a path de�ned on the heterogeneous network schema. Then we aggregat-

ed the random walks on attribute graphs for author, venue and keyword as LOGAVK

and proposed random walk based algorithm combining the citation information and

metadata information.

The general random-hide experiments show that these methods do not have ad-

vantages on global recall scores. So we designed the proj-degree experiment in order

to evaluate the ability to recommend papers with a particular degree in the cita-

tion projection graph. This experiment shows most methods perform well on high

62

proj-degrees. And for particular values of proj-degree, the combined methods (C+X)

outperform current methods. In particular, for completely disconnect papers (δ = 0),

these algorithms exhibit more di�erence. And in particular, C+K performs better

than all other tested algorithms, outperforming PaperRank by .02.

Since looking at recall numbers only gives a single perspective on the usefulness of

the methods, we investigated how similar the sets recommended by the algorithms are

for loosely connected papers. The results shows PaperRank, C+A, C+K, and C+V

have high correlation in terms of the rank of hidden papers, although the relations of

C+X with PaperRank are somewhat di�erent. Not surprisingly, collaborative �ltering

and cocitation are also highly correlated and interestingly the LOGAVK does not

correlate with any other method.

For further understanding these algorithms, we explored di�erent aspects of the

quality of recommended papers and discuss the usefulness for real systems. We found

current cocitations is a good predictor of future cocitation and random walk based

methods is good to �nd the relevant relations that were not known before. For

instance, 20% of the recommended-seed pairs for PaperRank will be cited in the

future and half of these pairs were not known at the time.

Finally, we demonstrated a local approximation algorithm for PaperRank and

C+X, which essentially is a tradeo� between the upper bound of recall and the ef-

�ciency. Our local method is 15x faster and the quality of recommendation is still

competitive comparing with original methods.

CHAPTER 7: REPRESENTATION LEARNING FOR CITATION

RECOMMENDATION ON GRAPH

7.1 Introduction

As representation learning techniques achieve amazing success in many �elds, such

as computer vision [114, 115, 116, 117], speech processing [118, 119, 120, 121] and

natural language processing [122, 123, 85, 80, 81], graph embedding attracts more

and more attention to solve various problems on graph. It converts the graph data

into a low dimensional space in which the graph structural information and graph

properties are maximumly preserved.

In this chapter, we explore the node embedding on graph for the citation recom-

mendation task. This work is credited to recent development on language model and

graph embedding. In the context of word embedding, the notion of neighborhood can

be de�ned using a sliding window over consecutive words. While in the context of

graph embedding, nodes are not linearly structured, so before moving to the embed-

ding model phase, we need a strategy to sample nodes sequences like the sentences

in natural language then feed them to the model. This sampling process is called

context/neighborhood construction from graph.

It turns out that the way to de�ne neighborhood is critical and can signi�cant-

ly a�ect the performance. Streams of short random walks is becoming a popular

way to build the neighborhood. In this chapter, we also introduce a strategy using

co-citation based sampling. The experimental results show the proposed sampling

strategy outperforms the random walks based sampling strategy on citation recom-

mendation task.

Since there are a number of parameter involved in the graph embedding process, we

64

... ...

Paper

Paper
Matrix

Concatenate

Softmax

Paper Paper Paper

Figure 7.1: Learning Framework

also examine the parameter sensitivity in this chapter. Then we show that graph em-

bedding is a robust approach for citation recommendation when hidden ratio changes

compared with classic methods and when the size of seed paper set is small, co-

citation sampling based embedding is a better choice. Finally we discuss how learned

vectors help the result organization in citation recommendation.

7.2 Learning Framework

In this section, we introduce the framework to learn representation vectors for

papers from the citation graph.

Every paper is mapped to a unique vector, represented by a column in a matrix

P . The column is indexed by their unique ID in our data set. The concatenation or

sum of the vectors is then used as features for prediction of the citation papers.

More formally, given a set of seed papers p1, p2, p3, ..., pT , the objective of the

65

paper vector model is to maximize the average log probability:

1

T

T−k∑
t=k

log p(pt|pt−k, ..., pt+k)

The prediction task is typically done via a multi-class classi�er, such as softmax.

There, we have:

p(pt|pt−k, ..., pt+k) =
eypt∑
i eyi

Each of yi is un-normalized log-probability for each output paper i, computed as

y = b+ Uh(pt−k, ..., pt+k;P)

where U , b are the softmax parameters. h is constructed by a concatenation or average

of paper vectors extracted from P .

The neural network based paper vectors are usually trained using stochastic gradi-

ent descent where the gradient is obtained via backpropagation. This type of models

is commonly known as neural language models [122].

7.3 Context Sampling Strategies

In the context of word embedding, the notion of neighborhood can be de�ned us-

ing a sliding window over consecutive words, because of the linear nature of nature

language text. However, papers in a citation graph are not linearly structured. There-

fore, we propose di�erent strategies to de�ne the notion of a neighborhood of a source

paper.

7.3.1 Random Walk Stream

Generating streams of short random walks is a popular way to linearize the node

relationships in graph. Random walks have been used as a similarity measure for

a variety of problems in content recommendation and community detection. They

are also the foundation of a class of output sensitive algorithms which use them

66

to compute local community structure information in time sublinear to the size of

the input graph. Recent work has shown the ability of random walk to learn social

representations of vertices in social graphs.

Formally, we denote a random walk rooted at node vi as Wvi . It is a stochastic

process with random variables W 1
vi
,W 2

vi
,...,W t

vi
such that W k+1

vi
is a node chosen uni-

formly at random from the immediate adjacent neighbors of node vk in the graph.

We start the random walk generation with the �xed walk length at each node respec-

tively. And in order to obtain robust embedding, we repeat the above process for a

number of times.

As we shown in Algorithm 1, The outer loop iterates n times, each iteration is

making a pass over the graph and sample one walk stream per node during this pass.

For the inner loop, all nodes of the graph are traversed and a random walk stream

with length t is sampled at each node. The sampling process starting with node v is

descried in Algorithm 2.

ALGORITHM 1: Random Walks Generation Process

for iter = 1 to n do

Shu�e(V);

foreach v ∈ V do

RWS =RandomWalkSampling(G, v, t);

Append RWS to walks;

end

end

return walks

67

ALGORITHM 2: RandomWalkSampling(G, v, t)

Initialize walk to [v];

for iter = 1 to t do

cur = walk.back();

nxt = PickNeighborOf(cur);

Append nxt to walk;

end

return walk
The object of the model is to estimate the likelihood of observing vertex vi given

all the previous vertices visited so far in the random walk.

Pr(vi|(v1, v2, ..., vi−1))

A stream of short random walks can capture the local structure information and this

model is easy to parallelize. Several random walkers in di�erent threads, processes,

or machines can simultaneously explore di�erent parts of the same graph.

Above random walk sampling strategy uniformly pick a neighbor at random. A

variety is trying to interpolate between breadth �rst search and depth �rst search.

The breadth �rst and depth �rst sampling represent two extreme scenarios in terms

of the search space. In Breadth �rst sampling (BFS), the neighborhood is restricted

to nodes which are immediate neighbors of the source. On the contrary, in Depth �rst

sampling (DFS), the neighborhood consists of nodes sequentially sampled at increas-

ing distances from the source node. The intuition behind this two sampling schemes

is that they can capture two kinds of node similarities: homophily and structural

equivalence. Under the homophily hypothesis [124, 125] nodes that are highly inter-

connected and belong to similar network clusters or communities should be embedded

closely together. While under the structural equivalence hypothesis [126] nodes that

have similar structural roles in networks should be embedded closely together.

68

In order to allow us to account for the graph structure and guide our search pro-

cedure to explore di�erent types of network neighborhoods and interpolate between

breadth �rst sampling and depth �rst sampling. A search bias α is introduced.

A second order random walk is guided with two parameters p and q. Let use assume

a random walk that just traversed from node t to node v and now resides at node v.

The next step of the walk is decided on the transition probabilities:

πvx = αpq(t, x)× wvx

. where wvx is the edge weight from node v and x and

αpq(t, x) =



1
p

ifdtx = 0

1 ifdtx = 1

1
q

ifdtx = 2

In our task, citation graph is unweighted (wvx = 1), so we only care about the

search bias α. Parameter p controls the likelihood of immediately revisiting a node

in the walk. Setting it to a high value ensures that we are less likely to sample an

already visited node in the following two steps. This strategy encourages moderate

exploration and avoids 2-hop redundancy in sampling. On the other hand, if p is low,

it would lead the walk to backtrack a step and this would keep the walk local close

to the starting node.

Parameter q allows the search to di�erentiate between inward and outward nodes.

If q > 1, the random walk is biased towards nodes close to node t. Such walks obtain

a local view of the underlying graph with respect to the start node in the walk and

approximate BFS behavior in the sense that our samples comprise of nodes within a

small locality. In contrast, if q < 1, the walk is more inclined to visit nodes which are

further away from the node t.

69

Citing paper A

Citing paper B

Target paper P

. . .

Co-Citation Context of P

Co-Citation Context of P

Figure 7.2: Context Construction

In particular, DeepWalk is a special case of Node2vec, where parameter p = 1 and

q = 1. In the experiment part, we will investigate the performance of random walk

based graph embedding on citation recommendation task under various parameter

settings.

7.3.2 Co-Citation Context

Random walk based sampling strategies can encode homophily and structural simi-

larities in some extent. However, for a speci�c task where we want to sample sequences

that capture a certain property, those similarities seem too general to achieve a good

performance. For citation recommendation, we care more about the co-cited rela-

tionship. Under this circumstance, random walk based samplings tend to bring noise,

especially for those nodes with a large number of citations.

Classic word2vec constructs the context of a word as the words which co-occur

with the target word within a sliding window. In the citation recommendation task,

70

we consider the context of a paper as other papers which co-occur in one of its

citing paper's reference list. For example, in Figure 7.2, context of target paper P is

highlighted by blue rectangles.

We consider a sampling strategy that emphasizes similarity between those co-cited

papers. Taking co-citation papers as the context of target paper seems intuitive and

reasonable for citation recommendation task.

As we shown in Algorithm 3, The outer loop iterates n times, each iteration is

making a pass over the graph and shu�e the reference list for each node during this

pass. For the inner loop, all nodes of the graph are traversed and we append the

shu�ed reference list to walks.
ALGORITHM 3: Co-Citation Sampling Process

for iter = 1 to n do

Shu�e(V);

foreach v ∈ V do

RL=Shu�e(ReferenceList(v));

Append RL to walks;

end

end

return walks

7.4 Ranking Strategies

After the embedding model is trained, we need to �nd a way to rank all the can-

didate papers. The �rst idea is based on the learned distributed representation of

papers, which we can obtain from the weighting matrix between the input layer and

the hidden layer after the training is �nished. An alternative strategy is using the

trained model to predict the probabilities of candidate papers appearing in the con-

text of seed papers, where both the weighting matrix between the input layer and

the hidden layer and the weighting matrix between the hidden layer and the output

71

layer are involved.

7.4.1 Embedding Based Ranking

Given the learned distributed representation of papers, we design three di�erent

approaches to score the candidate papers based on a set of seed papers.

In the �rst one, we calculate the cosine similarities between the candidate paper d

and all seed papers in S, then the average value, which is denoted as simAvg, is used

to rank all candidate papers.

SimAvgd =

∑
s∈S Cos(Es, Ed)

|S|

where Ed means the embedded vector of node d in the citation graph.

We also consider the fact that seed papers might not contribute equally to �nding

hidden papers. So we derive weights of seed papers in inverse proportion to their

degrees.

SimWgdd =

∑
s∈S

1
δs
Cos(Es, Ed)

|S|

where δs denotes the degree of seed paper s in the citation graph.

Another metric �rstly computes the average of seed papers as a reference paper,

then the cosine similarity between the reference paper and candidate paper d is taken

as SimRef .

SimRefd = Cos(

∑
s∈S Es
|S|

, Ed)

In general, embedding based ranking calculates the second order proximity of nodes

in graph. For many applications, the hidden layer and output layer are discarded once

the training is �nished, since the aim of embedding is only to obtain the distributed

representation.

72

7.4.2 Model Based Ranking

In order to rank candidate papers in a reasonable way, we also consider to use

the trained model to predict the probabilities of candidate papers appearing in the

context of seed papers. This model based ranking strategy measures the �rst order

proximity of nodes in graph.

In speci�c, we �rst aggregate the distributed representations of seed papers, then

multiply by the weighting matrix between hidden layer and output layer, and use

softmax to normalize the probabilities in the output vectors. Those probabilities

are then used to rank corresponding candidate papers. We denote this model based

ranking as CitMod.

Essentially, the embedding based ranking strategy scores the candidate papers

based on their similarities to seed papers, while the model based ranking strategy is

based on their relevance to seed papers. In next section, we show the comparison

experiments for various sampling and ranking strategies.

7.5 Experiment

7.5.1 Experimental Setup

In general, we follow similar random-hide experiment settings as described in 5.3.1.

Instead of removing all the irrelevant papers from the citation graph (to simulate the

time when the query paper was being written) when a query comes in, we train

distributed representations of nodes every year between 2004 to 2009. For example,

we remove all papers published after 2006 from the citation graph to get Graph-in-

2006 and generate walks from Graph-in-2006 and train embedding for nodes in that

graph. In this way, we can obtain di�erent graph embeddings from 2004 to 2009.

For each query paper published between 2005 and 2010, the embedding before the

publishing year is used for the task. Similarly, we randomly hide 10% of the references

as hidden set. This set of hidden paper is used as ground truth to recommend. The

73

remaining papers are used as the set of seed papers.

Finally, to evaluate the e�ectiveness of recommendation algorithm, we use recall@k,

the ratio of hidden papers appearing in top k of the recommended list.

Random walk sampling strategy involves a number of parameters. In the following

experiments, default number of walks n and walk length t are set to 10 and 80

respectively, the parameters p and q are both set to 1. During training process, the

dimension of embedded space is set to 128 and the window size of neighborhood is set

to 10 by default. For co-citation sampling, number of walks, dimension of embedded

space and window size are set to the same value as Random walk sampling strategy.

We also examine how di�erent choices of parameters a�ect the performance in 7.5.3.

7.5.2 Results

Figure 7.3 shows the performance of di�erent context sampling strategies on ci-

tation recommendation. Generally speaking, co-citation based sampling is achieving

better recall than random walk based sampling on all ranking schemes, and the model

based ranking CitMod outperforms all three embedding based rankings. Surprisingly

the SimAvg performs similarly as SimRef , which �rstly compute a reference paper

by averaging seed papers.

In particular, for SimAvg and SimRef co-citation sampling is 14.52% higher than

random walk sampling on recall@10 and 23.47% higher on recall@50; for SimWgd

co-citation sampling is 10.48% higher than random walk sampling on recall@10 and

14.98% higher on recall@50. In other words, the weighted approach SimWgd brings

higher impact on random walk sampling compared with co-citation sampling. The

model based ranking CitMod outperforms embedding based rankings by at least

28.17% and 22.48% for co-citation sampling and random walk sampling respectively.

74

10 15 20 25 30 35 40 45 50
top K

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
e
ca

ll

RandomWalkSampling
CoCitationSampling

(a) SimAvg

10 15 20 25 30 35 40 45 50
top K

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
e
ca

ll

RandomWalkSampling
CoCitationSampling

(b) SimWgd

10 15 20 25 30 35 40 45 50
top K

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
e
ca

ll

RandomWalkSampling
CoCitationSampling

(c) SimRef

10 15 20 25 30 35 40 45 50
top K

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
e
ca

ll

RandomWalkSampling
CoCitationSampling

(d) CitMod

Figure 7.3: Performance Comparison for Di�erent Sampling Strategies

75

7.5.3 Parameter sensitivity

There are a number of parameters involved in the process of representation learning

on graphs. So we examine di�erent choices of parameters on citation recommendation

task in Figure 7.4. Except for the parameter being tested, all other parameters assume

default values.

In general, the performance improves when parameter p and q decrease. Neverthe-

less, the sensitivities of these two parameter are not exact the same. For instance,

a smaller value of p (log2p > 0) is at least 18.58% higher than a larger value of p

(log2p < 0) on recall@10, while this number for parameter q is 6.51%. Parameter p

controls the likelihood of immediately revisiting a node in the walk and a lower p is

leading the walk to backtrack a step and keep the walk local close to the starting node.

Therefore, local structure or homophily similarity contains more useful information

for citation recommendation task.

It seems a large number of walks per paper is helpful to improve citation recom-

mendation performance. This is not surprising since we need enough sampling budget

to capture the graph structure given the randomness property of random walk sam-

pling strategy. However, the cost of large number of walks per paper is expensive for

both time and space. Moreover, we observe that performance tends to saturate once

the number of walks reaches around 15. Length of walk is a very similar parameter

to the number of walks, a longer length of walk will encode more accurate structure

information of the graph like a large number of walks does. We also examine how

the window size during training a�ects the performance. It turns out the di�erence

is slight when changing the value of window size.

76

3 2 1 0 1 2 3
log2p

0.05

0.10

0.15

0.20

0.25

R
e
ca

ll

3 2 1 0 1 2 3
log2 q

0.05

0.10

0.15

0.20

0.25

R
e
ca

ll

5 10 15 20 25
Number of walks per paper

0.05

0.10

0.15

0.20

0.25

R
e
ca

ll

20 40 60 80 100 120
Length of walk

0.05

0.10

0.15

0.20

0.25

R
e
ca

ll

5 10 15 20 25
Window Size

0.05

0.10

0.15

0.20

0.25

R
e
ca

ll

Figure 7.4: Parameter Sensitivity

77

7.6 Discussion

7.6.1 Robustness on Hidden Ratio

In the experimental setup, for each query paper we randomly hide 10% of its refer-

ences as hidden set. This set of hidden paper is used as ground truth to recommend.

The remaining papers are used as the set of seed papers. This experiment is designed

to simulate the scenario that when a researcher want to explore more papers based on

a set of seed papers. There are many cases that seed papers are small. Here we de�ne

the ratio of hidden set out of the reference list as hidden ratio. And we examine how

di�erent hidden ratios a�ect the performance.

As we can see in Figure 7.5, we compare the co-citation sampling (CCS) based

embedding with classic citation recommendation methods PR and CF on di�erent

hidden ratios. In original experimental setup where hidden ratio is 10%, both PR

and CF are signi�cant better than CCS. However, the performance decreases as the

hidden ratio increases for PR and CF, while CCS seems to be robust on di�erent

hidden ratios.

In particular, when the hidden ratio increases from 10% to 95%, the the perfor-

mance of co-citation sampling based embedding decreases by 12.92%, while the per-

formance of PR and CF decreases by 46.95% and 38.22% respectively. CCS reaches

a better performance than both PR and CF when the hidden ratio is large.

This experiment demonstrates CCS is a robust approach for citation recommen-

dation when hidden ratio changes, while the performance of PR and CF drops a lot

when hidden ratio is becoming large. In general, when the hidden ratio is small,

classic methods are better, but when the size of seed paper set is small, co-citation

sampling based embedding is a better choice.

78

20 40 60 80 100
Hidden Ratio

0.10

0.15

0.20

0.25

R
e
ca

ll@
1
0

CoCitationSampling+SimAvg
CoCitationSampling+CitMod
CollaborativeFiltering
PaperRank

Figure 7.5: Robustness

7.6.2 Usefulness on Result Organization

For many recommendation systems, the way to show the output is even more

important than the back end algorithms. Current paper recommendation systems

or search engines such as Google Scholar or Mendeley organize the results in the

form of lists. Here we consider to use graph visualization to organize the papers in

results. Graph-based organization shows some advantages compared with list-based

organization. For instance, more papers are allowed to show in the same page. This

is useful because users rarely browse the papers appearing after the �rst page for

list-based organization. Moveover, we can clearly see the citation structures and thus

enable users easily to �nd the papers they are interested in.

The idea is that the recommended papers can be clustered according to the citation

structure or semantical relevance. This will be helpful for users to understand the

structure of the literature or a set of recommendation. Essentially, it consists in

79

identifying sets of papers such that the papers within the set are expected to be

semantical relevant or highly cite each other.

Considering the main data available comes from the citation graph, we focus on

clustering methods on graph here. Graph clustering aims to group similar nodes

together, so that nodes in the same group are more similar to each other than those

in other groups. Graph clustering and related task such as community detection,

graph partition are well investigated in their �elds. Traditional graph clustering

algorithms seems like good choices for the task of result organization in citation

recommendation. However, the granularity problem usually prevent us to exploring

the structure of return papers for a certain query: top returned papers tend to belong

the same research community. A solution to this problem is clustering on the local

graph of returned papers instead of the global citation graph.

Local clustering is challenging since traditional algorithms cluster the nodes based

on local graph structure. However, local structure could be misleading since many

nodes and edges are not observed and hiding those nodes might signi�cant change the

graph structure. The missing information could result in poor performance for graph

clustering algorithms. On the contrary, representation vectors for nodes are learned

from global graph and they have encoded the unobservable information for a local

graph. Also, the graphs of returned papers are usually too sparse to run any graph

algorithm or even disconnected so that graph algorithms are di�cult to deal with.

Clustering based on the vectors of nodes which are learned from graph embedding is

a perfect solution for above cases.

Besides searching relevant literature, this clustering-based organization technique

can be used for similar applications. One can explore the structure of a set of papers

using semantically relevant clusters. It could be useful to navigate the results of a

search engine; or to understand what the major areas of research are by looking at

the structure of the references of a survey paper.

80

7.7 Conclusion

In this chapter, we presented the node embedding on graph for the citation rec-

ommendation task. Besides the random walk stream based sampling strategy which

encodes the general graph structural information, we proposed a task speci�c sam-

pling strategy using co-citation relationships.

In order to evaluate the embedding results on citation recommendation task, we

need a scheme to score the candidate papers based on a set of seed papers. Therefore,

we designed three embedding based rankings: SimAvg,SimWgd and SimRef and

one model based ranking: CitMod.

The experimental results show the co-citation sampling strategy outperforms the

random walks based sampling strategy on all ranking schemes, and the model based

ranking outperforms embedding based rankings for both sampling schemes.

Moreover, since there are a number of parameter involved in the graph embedding

process, we also examined the parameter sensitivity in this chapter. It turns out the

performance improves when parameter p and q decrease and a larger neighborhood

parameter will improve the performance at the cost of time and space. Di�erent values

of window size have limited impact on performance for citation recommendation.

Then we demonstrated that graph embedding is a robust approach for citation

recommendation when hidden ratio changes, while the performance of PR and CF

drops a lot when hidden ratio is becoming large. In general, when the hidden ratio

is small, classic methods are better, but when the size of seed paper set is small,

co-citation sampling based embedding is a better choice.

In particular, when the hidden ratio increases from 10% to 95%, the the perfor-

mance of co-citation sampling based embedding decreases by 12.92%, while the per-

formance of PR and CF decreases by 46.95% and 38.22% respectively. CCS reaches

a better performance than both PR and CF when the hidden ratio is large.

Finally we discussed result presentation by graph instead of a plain list. In practice,

81

learned vectors from graph embedding can help to organize the result in citation

recommendation.

CHAPTER 8: CONCLUSION

The academic community has published millions of research papers to date, and

the number of new papers has been increasing with time. To discover new research,

researchers typically rely on manual methods such as keyword-based search, reading

proceedings of conferences, browsing publication lists of known experts, or checking

the references of the papers they are interested. Existing tools for the literature search

are suitable for a �rst-level bibliographic search. However, they do not allow complex

second-level searches.

In this dissertation, we focus on citation recommendation problem on graph aim-

ing to help the users to build a strong bibliography by extending the document set

obtained after a �rst-level search.

First, since existing data sources have complementary advantages and disadvan-

tages, we merge Microsoft Academic Graph, DBLP and CiteSeerX to obtain an aca-

demic citation graph with clean meta data. In particular, we propose a method to

extract key phrases from scienti�c documents that can overcome the overgeneration

error, which is one of major errors most key phrase extraction approaches su�er from.

Then we revealed that the degree of the hidden papers in the projection graph is

a good indicator of whether the hidden paper will be discovered or not. And we �nd

classic methods are quite good at �nding hidden papers that are highly connected

in the citation projection graph. But these methods achieve poor performance on

loosely connected ones.

In order to �nd loosely connected hidden papers, we present di�erent approaches

that use metadata for citation recommendation: meta-path based ranking method,

where a meta path is a path de�ned on the heterogeneous network schema; aggregat-

83

ed random walks on attribute graphs for author, venue and keyword as LOGAVK;

random walk based algorithm combining the citation information and metadata in-

formation. The proj-degree experiments, which is desigend to evaluate the ability to

recommend papers with a particular degree in the citation projection graph, show

most methods are good at �nding papers with high proj-degrees. But for particular

values of proj-degree, the combined methods (C+X) outperform current methods.

These algorithms exhibit more di�erence on �nding papers with low proj-degrees. In

particular, for completely disconnect papers (δ = 0), C+K performs better than all

other tested algorithms, outperforming PaperRank by .02. Through the correlation

plots, we investigate how similar the papers recommended by the algorithms are for

loosely connected papers. The results show PaperRank, C+A, C+K, and C+V have

high correlation in terms of the rank of hidden papers, although the relations of C+X

with PaperRank are somewhat di�erent. Not surprisingly, collaborative �ltering and

cocitation are also highly correlated and interestingly the LOGAVK does not correlate

with any other method.

Since choosing which papers to cite is a complicated behaviour and there are usu-

ally limited length for reference list, only looking at recall numbers of recommended

papers just gives a single perspective on the usefulness of the methods. For better

understanding the quality of recommended papers, we explore di�erent citation rec-

ommendation algorithms on three metrics: Relevance-r, Relevance-rb and Relevance-

rbd. Through this experiment, we �nd current cocitations is a good predictor of

future cocitation and random walk based methods is good to �nd the relevant rela-

tions that were not known before. For instance, 20% of the recommended-seed pairs

for PaperRank will be cited in the future and half of these pairs were not known at

the time.

We also propose a local approximation algorithm for PaperRank and C+X, which

essentially is a tradeo� between the upper bound of recall and the e�ciency. Our

84

local method is 15x faster and the quality of recommendation is still competitive

comparing with original methods.

Finally, we present the node embedding on graph for the citation recommendation

task. Since papers in a citation graph are not linearly structured, how to de�ne the

neighborhood of a paper in graph is critical to this task. Random walk stream based

sampling strategy has been used widely for graph embedding and it turns out to be a

good strategy to encode the general graph structural information, thus achieve cheer-

ful performance on node clustering, classi�cation related task. In this dissertation, we

proposed a task-speci�c sampling strategy utilizing co-citation relationships. And the

experimental results show the co-citation sampling strategy outperforms the random

walks based sampling strategy on all ranking schemes, and the model based ranking

outperforms embedding based rankings for both sampling schemes. As there are a

number of parameter involved in the graph embedding process, we also examine the

parameter sensitivity in this chapter. It turns out the performance improves when

parameter p and q decrease and a larger neighborhood related parameter, such as

number of walks and walk length, will improve the performance at the cost of time

and space, while di�erent values of window size have limited impact on performance

for citation recommendation.

Then we demonstrated the usefulness of graph embedding for citation recommen-

dation. Firstly, it is a robust approach for citation recommendation when hidden

ratio changes, while the performance of PR and CF drops a lot when the hidden ratio

goes large. In general, when the hidden ratio is small, classic methods are better,

but when the size of seed paper set is small, co-citation sampling based embedding

is a better choice. And learned vectors from graph embedding can help organize the

returned papers in citation recommendation given the fact that local graph is usually

sparse.

In general, the citation recommendation on graph is not a trivial problem. On

85

one hand, the number of papers in reference list is usually limited. For instance, a

regular conference paper typically has around 30 papers as references. In other words,

authors can not cite every relevant papers: they have to choose which ones are going

to be cited. On the other hand, citation behaviours are still far away from being fully

understood. This makes citation recommendation di�cult to evaluate. Nevertheless,

with more complete data, we believe citation recommendation systems can bene�t

from investigating individual behaviours regarding citing papers or patterns within

projection graphs

86

REFERENCES

[1] M. Ley, �DBLP - some lessons learned,� PVLDB, vol. 2, no. 2, pp. 1493�1500,
2009.

[2] K. El-Arini and C. Guestrin, �Beyond keyword search: discovering relevant
scienti�c literature,� in Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 439�447, 2011.

[3] T. Strohman, W. B. Croft, and D. Jensen, �Recommending citations for aca-
demic papers,� in Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval, pp. 705�706,
2007.

[4] Q. He, J. Pei, D. Kifer, P. Mitra, and L. Giles, �Context-aware citation recom-
mendation,� in Proceedings of the 19th international conference on World wide
web, pp. 421�430, 2010.

[5] Q. He, D. Kifer, J. Pei, P. Mitra, and C. L. Giles, �Citation recommendation
without author supervision,� in Proceedings of the fourth ACM international
conference on Web search and data mining, pp. 755�764, 2011.

[6] Y. Lu, J. He, D. Shan, and H. Yan, �Recommending citations with translation
model,� in Proceedings of the 20th ACM international conference on Informa-
tion and knowledge management, pp. 2017�2020, 2011.

[7] W. Huang, S. Kataria, C. Caragea, P. Mitra, C. L. Giles, and L. Rokach, �Rec-
ommending citations: translating papers into references,� in Proceedings of the
21st ACM international conference on Information and knowledge management,
pp. 1910�1914, 2012.

[8] S. M. McNee, I. Albert, D. Cosley, P. Gopalkrishnan, S. K. Lam, A. M. Rashid,
J. A. Konstan, and J. Riedl, �On the recommending of citations for research
papers,� in Proceedings of the 2002 ACM conference on Computer supported
cooperative work, pp. 116�125, 2002.

[9] R. Torres, S. M. McNee, M. Abel, J. A. Konstan, and J. Riedl, �Enhancing
digital libraries with techlens+,� in Proceedings of the 4th ACM/IEEE-CS joint
conference on Digital libraries, pp. 228�236, 2004.

[10] M. Gori and A. Pucci, �Research paper recommender systems: A random-
walk based approach,� in 2006 IEEE/WIC/ACM International Conference on
Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06), pp. 778�781,
2006.

[11] C. Caragea, A. Silvescu, P. Mitra, and C. L. Giles, �Can't see the forest for
the trees?: a citation recommendation system,� in Proceedings of the 13th
ACM/IEEE-CS joint conference on Digital libraries, pp. 111�114, 2013.

87

[12] O. Küçüktunç, E. Saule, K. Kaya, and Ü. V. Çatalyürek, �Towards a per-
sonalized, scalable, and exploratory academic recommendation service,� in
IEEE/ACM International Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), 2013.

[13] H. Jia and E. Saule, �An analysis of citation recommender systems: Beyond
the obvious,� in Proceedings of 2017 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, 2017.

[14] J. Beel, B. Gipp, S. Langer, and C. Breitinger, �Research-paper recommender
systems: a literature survey,� International Journal on Digital Libraries, vol. 17,
no. 4, pp. 305�338, 2016.

[15] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, �Using collaborative �ltering
to weave an information tapestry,� Communications of the ACM, vol. 35, no. 12,
pp. 61�70, 1992.

[16] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, �Grouplens: an
open architecture for collaborative �ltering of netnews,� in Proceedings of the
1994 ACM conference on Computer supported cooperative work, pp. 175�186,
ACM, 1994.

[17] M. D. Ekstrand, P. Kannan, J. A. Stemper, J. T. Butler, J. A. Konstan, and
J. T. Riedl, �Automatically building research reading lists,� in Proceedings of
the fourth ACM conference on Recommender systems, pp. 159�166, 2010.

[18] O. Küçüktunç, E. Saule, K. Kaya, and Ü. V. Çatalyürek, �TheAdvisor: A
webservice for academic recommendation,� in ACM/IEEE Joint Conference on
Digital Libraries (JCDL 2013), p. 2, 2013.

[19] O. Küçüktunç, E. Saule, K. Kaya, and Ü. V. Çatalyürek, �Direction awareness
in citation recommendation,� in Proceedings of the 6th International Workshop
on Ranking in Databases (DBRank), p. 6, 2012.

[20] O. Küçüktunç, E. Saule, K. Kaya, and Ü. V. Çatalyürek, �Diversi�ed recom-
mendation on graphs: Pitfalls, measures, and algorithms,� in 22nd International
World Wide Web Conference (WWW), 2013.

[21] O. Küçüktunç, K. Kaya, E. Saule, and Ü. V. Çatalyürek, �Fast recommendation
on bibliographic networks,� in IEEE/ACM International Conference on Social
Networks Analysis and Mining (ASONAM), 2012.

[22] C. Wang and D. M. Blei, �Collaborative topic modeling for recommending sci-
enti�c articles,� in Proceedings of the 17th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD '11, (New York, NY,
USA), pp. 448�456, ACM, 2011.

88

[23] B. Golshan, T. Lappas, and E. Terzi, �So�a search: a tool for automating
related-work search,� in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pp. 621�624, 2012.

[24] C. K. Shin and D. S. Doermann, �Classi�cation of document page images based
on visual similarity of layout structures,� in Document Recognition and Retrieval
VII, vol. 3967, pp. 182�191, International Society for Optics and Photonics,
1999.

[25] W. Paik, S. Yilmazel, E. Brown, M. Poulin, S. Dubon, and C. Amice, �Applying
natural language processing (nlp) based metadata extraction to automatically
acquire user preferences,� in Proceedings of the 1st international conference on
Knowledge capture, pp. 116�122, ACM, 2001.

[26] D. Buttler, �A short survey of document structure similarity algorithms,� in
International conference on internet computing, vol. 7, 2004.

[27] Y. Seroussi, �Utilising user texts to improve recommendations,� in International
Conference on User Modeling, Adaptation, and Personalization, pp. 403�406,
Springer, 2010.

[28] Y. Seroussi, I. Zukerman, and F. Bohnert, �Collaborative inference of sentiments
from texts,� in International Conference on User Modeling, Adaptation, and
Personalization, pp. 195�206, Springer, 2010.

[29] F. Esposito, S. Ferilli, T. M. Basile, and N. Di Mauro, �Machine learning for
digital document processing: From layout analysis to metadata extraction,� in
Machine learning in document analysis and recognition, pp. 105�138, Springer,
2008.

[30] S. E. Middleton, D. C. De Roure, and N. R. Shadbolt, �Capturing knowledge
of user preferences: ontologies in recommender systems,� in Proceedings of the
1st international conference on Knowledge capture, pp. 100�107, ACM, 2001.

[31] N. Lao and W. W. Cohen, �Relational retrieval using a combination of path-
constrained random walks,� Machine learning, vol. 81, no. 1, pp. 53�67, 2010.

[32] J. Lin and W. J. Wilbur, �Pubmed related articles: a probabilistic topic-based
model for content similarity,� BMC bioinformatics, vol. 8, no. 1, p. 423, 2007.

[33] L. Rokach, P. Mitra, S. Kataria, W. Huang, and L. Giles, �A supervised learn-
ing method for context-aware citation recommendation in a large corpus,� IN-
VITED SPEAKER: Analyzing the Performance of Top-K Retrieval Algorithms,
p. 1978, 1978.

[34] Y. Jiang, A. Jia, Y. Feng, and D. Zhao, �Recommending academic papers via
users' reading purposes,� in Proceedings of the sixth ACM conference on Rec-
ommender systems, pp. 241�244, ACM, 2012.

89

[35] C. L. Giles, K. D. Bollacker, and S. Lawrence, �Citeseer: An automatic cita-
tion indexing system,� in Proceedings of the third ACM conference on Digital
libraries, pp. 89�98, ACM, 1998.

[36] F. Ferrara, N. Pudota, and C. Tasso, �A keyphrase-based paper recom-
mender system,� in Italian Research Conference on Digital Libraries, pp. 14�25,
Springer, 2011.

[37] C. Nascimento, A. H. Laender, A. S. da Silva, and M. A. Gonçalves, �A source
independent framework for research paper recommendation,� in Proceedings of
the 11th annual international ACM/IEEE joint conference on Digital libraries,
pp. 297�306, 2011.

[38] J. Beel, S. Langer, M. Genzmehr, and A. Nürnberger, �Introducing docear's
research paper recommender system,� in Proceedings of the 13th ACM/IEEE-
CS joint conference on Digital libraries, pp. 459�460, ACM, 2013.

[39] J. Beel, S. Langer, A. Nürnberger, and M. Genzmehr, �The impact of demo-
graphics (age and gender) and other user-characteristics on evaluating recom-
mender systems,� in International Conference on Theory and Practice of Digital
Libraries, pp. 396�400, Springer, 2013.

[40] E. Erosheva, S. Fienberg, and J. La�erty, �Mixed-membership models of scien-
ti�c publications,� Proceedings of the National Academy of Sciences, vol. 101,
no. suppl 1, pp. 5220�5227, 2004.

[41] J. Beel, �Towards e�ective research-paper recommender systems and user mod-
eling based on mind maps,� arXiv preprint arXiv:1703.09109, 2017.

[42] F. Zarrinkalam and M. Kahani, �Semcir: A citation recommendation system
based on a novel semantic distance measure,� Program, vol. 47, no. 1, pp. 92�
112, 2013.

[43] X. Yu, Q. Gu, M. Zhou, and J. Han, �Citation prediction in heterogeneous bibli-
ographic networks,� in Proceedings of the 2012 SIAM International Conference
on Data Mining (SDM), pp. 1119�1130, 2012.

[44] X. Liu, Y. Yu, C. Guo, Y. Sun, and L. Gao, �Full-text based context-rich hetero-
geneous network mining approach for citation recommendation,� in Proceedings
of the 14th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 361�370,
2014.

[45] X. Liu, Y. Yu, C. Guo, and Y. Sun, �Meta-path-based ranking with pseudo
relevance feedback on heterogeneous graph for citation recommendation,� in
Proceedings of the 23rd ACM International Conference on Conference on In-
formation and Knowledge Management, pp. 121�130, 2014.

90

[46] X. Ren, J. Liu, X. Yu, U. Khandelwal, Q. Gu, L. Wang, and J. Han, �Cluscite:
E�ective citation recommendation by information network-based clustering,� in
Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD), pp. 821�830, 2014.

[47] C. Bhagavatula, S. Feldman, R. Power, andW. Ammar, �Content-based citation
recommendation,� arXiv preprint arXiv:1802.08301, 2018.

[48] S. Gupta and V. Varma, �Scienti�c article recommendation by using distributed
representations of text and graph,� in Proceedings of the 26th International Con-
ference on World Wide Web Companion, pp. 1267�1268, International World
Wide Web Conferences Steering Committee, 2017.

[49] W. Huang, Z. Wu, P. Mitra, and C. L. Giles, �Refseer: A citation recommen-
dation system,� in Proceedings of the 14th ACM/IEEE-CS Joint Conference on
Digital Libraries, pp. 371�374, 2014.

[50] K. Sugiyama and M.-Y. Kan, �Scholarly paper recommendation via user's recent
research interests,� in Proceedings of the 10th annual joint conference on Digital
libraries, pp. 29�38, 2010.

[51] K. Sugiyama and M.-Y. Kan, �Exploiting potential citation papers in schol-
arly paper recommendation,� in Proceedings of the 13th ACM/IEEE-CS joint
conference on Digital libraries, pp. 153�162, 2013.

[52] K. S. Hasan and V. Ng, �Automatic keyphrase extraction: A survey of the
state of the art.,� in In Proceedings of the Annual Meeting of the Association
for Computational Linguistics., pp. 1262�1273, 2014.

[53] E. Frank, G. W. Paynter, I. H. Witten, C. Gutwin, and C. G. Nevill-Manning,
�Domain-speci�c keyphrase extraction,� in International Joint Conferences on
Arti�cial Intelligence, vol. 99, pp. 668�673, 1999.

[54] P. Turney, �Learning to extract keyphrases from text,� in National Research
Council Canada, Institute for information Technology, Technology Report, p-
p. ERB�1057, 1999.

[55] P. D. Turney, �Learning algorithms for keyphrase extraction,� Information Re-
trieval, vol. 2, no. 4, pp. 303�336, 2000.

[56] W.-t. Yih, J. Goodman, and V. R. Carvalho, �Finding advertising keywords on
web pages,� in Proceedings of the 15th international conference on World Wide
Web, pp. 213�222, ACM, 2006.

[57] S. N. Kim and M.-Y. Kan, �Re-examining automatic keyphrase extraction ap-
proaches in scienti�c articles,� in Proceedings of the workshop on multiword
expressions: Identi�cation, interpretation, disambiguation and applications, p-
p. 9�16, Association for Computational Linguistics, 2009.

91

[58] X. Jiang, Y. Hu, and H. Li, �A ranking approach to keyphrase extraction,� in
Proceedings of the 32nd international ACM SIGIR conference on Research and
development in information retrieval, pp. 756�757, ACM, 2009.

[59] P. Lopez and L. Romary, �Humb: Automatic key term extraction from scienti�c
articles in grobid,� in Proceedings of the 5th international workshop on semantic
evaluation, pp. 248�251, Association for Computational Linguistics, 2010.

[60] S. N. Kim, O. Medelyan, M.-Y. Kan, and T. Baldwin, �Semeval-2010 task 5:
Automatic keyphrase extraction from scienti�c articles,� in Proceedings of the
5th International Workshop on Semantic Evaluation, pp. 21�26, Association for
Computational Linguistics, 2010.

[61] M. Dredze, H. M. Wallach, D. Puller, and F. Pereira, �Generating summa-
ry keywords for emails using topics,� in Proceedings of the 13th international
conference on Intelligent user interfaces, pp. 199�206, ACM, 2008.

[62] O. Medelyan, E. Frank, and I. H. Witten, �Human-competitive tagging us-
ing automatic keyphrase extraction,� in Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing: Volume 3-Volume 3,
pp. 1318�1327, Association for Computational Linguistics, 2009.

[63] S. N. Kim, O. Medelyan, M.-Y. Kan, and T. Baldwin, �Automatic keyphrase
extraction from scienti�c articles,� Language resources and evaluation, vol. 47,
no. 3, pp. 723�742, 2013.

[64] A. Hulth, �Improved automatic keyword extraction given more linguistic knowl-
edge,� in Proceedings of the 2003 Conference on Empirical Methods in Natural
Language Processing, EMNLP '03, (Stroudsburg, PA, USA), pp. 216�223, As-
sociation for Computational Linguistics, 2003.

[65] A. Hulth and B. B. Megyesi, �A study on automatically extracted keywords
in text categorization,� in Proceedings of the 21st International Conference on
Computational Linguistics and the 44th annual meeting of the Association for
Computational Linguistics, pp. 537�544, Association for Computational Lin-
guistics, 2006.

[66] T. D. Nguyen and M.-Y. Kan, �Keyphrase extraction in scienti�c publications,�
in Asian Digital Libraries. Looking Back 10 Years and Forging New Frontiers,
pp. 317�326, Springer, 2007.

[67] P. Lopez and L. Romary, �Grisp: A massive multilingual terminological
database for scienti�c and technical domains,� in In Seventh international con-
ference on Language Resources and Evaluation (LREC), 2010.

[68] P. Turney, �Coherent keyphrase extraction via web mining,� in International
Joint Conference on Arti�cial Intelligence IJCAI-03, 2003.

92

[69] C. Caragea, F. A. Bulgarov, A. Godea, and S. D. Gollapalli, �Citation-enhanced
keyphrase extraction from research papers: A supervised approach.,� in 2014
Conference on Empirical Methods in Natural Language Processing, pp. 1435�
1446, 2014.

[70] S. D. Gollapalli and C. Caragea, �Extracting keyphrases from research papers
using citation networks.,� in AAAI Conference on Arti�cial Intelligence, p-
p. 1629�1635, 2014.

[71] F. Bulgarov and C. Caragea, �A comparison of supervised keyphrase extraction
models,� in Proceedings of the 24th International Conference on World Wide
Web Companion, pp. 13�14, International World Wide Web Conferences Steer-
ing Committee, 2015.

[72] S. EI-Beltagy and A. Rafea, �Kp-miner:a keyphrase extraction system for en-
glish and arabic documents.,� in Information Systems, pp. 132�144, 2009.

[73] R. Mihalcea and P. Tarau, �Textrank: Bringing order into texts.,� in In Pro-
ceedings of the Empirical Methods in Natural Language Processing, pp. 404�411,
2004.

[74] L. Page, S. Brin, R. Motwani, and T. Winograd, �Pagerank: Bringing order to
the web,� tech. rep., Stanford Digital Libraries Working Paper, 1997.

[75] X. Wan and J. Xiao, �Single document keyphrase extraction using neighborhood
knowledge.,� in AAAI Conference on Arti�cial Intelligence, vol. 8, pp. 855�860,
2008.

[76] F. Boudin, �A comparison of centrality measures for graph-based keyphrase
extraction,� in International Joint Conference on Natural Language Processing
(IJCNLP), pp. 834�838, 2013.

[77] B. Bollobás, �The evolution of random graphs,� Transactions of the American
Mathematical Society, pp. 257�274, 1984.

[78] A.-L. Barabási and R. Albert, �Emergence of scaling in random networks,�
Science, pp. 509�512, 1999.

[79] F. Rousseau and M. Vazirgiannis, �Main core retention on graph-of-words for
single-document keyword extraction,� in Advances in Information Retrieval,
pp. 382�393, Springer, 2015.

[80] T. Mikolov, K. Chen, G. Corrado, and J. Dean, �E�cient estimation of word
representations in vector space,� in arXiv preprint arXiv:1301.3781, 2013.

[81] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, �Distributed
representations of words and phrases and their compositionality,� in Advances
in neural information processing systems, pp. 3111�3119, 2013.

93

[82] R. Wang, W. Liu, and C. McDonald, �Corpus-independent generic keyphrase
extraction using word embedding vectors.,� in In Proceedings of the Conference
on Web Search and Data Mining Workshops, pp. 834�838, 2015.

[83] C. Florescu and C. Caragea, �A position-biased pagerank algorithm for
keyphrase extraction.,� in AAAI Conference on Arti�cial Intelligence, pp. 4923�
4924, 2017.

[84] C. Florescu and C. Caragea, �Positionrank: An unsupervised approach to
keyphrase extraction from scholarly documents,� in Proceedings of the 55th An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), vol. 1, pp. 1105�1115, 2017.

[85] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, �A neural probabilis-
tic language model,� Journal of machine learning research, vol. 3, no. Feb,
pp. 1137�1155, 2003.

[86] Q. Le and T. Mikolov, �Distributed representations of sentences and docu-
ments,� in Proceedings of International Conference on Machine Learning, p-
p. 1188�1196, 2014.

[87] B. Perozzi, R. Al-Rfou, and S. Skiena, �Deepwalk: Online learning of social
representations,� in Proceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pp. 701�710, ACM, 2014.

[88] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, �Line: Large-scale
information network embedding,� in Proceedings of the 24th International Con-
ference on World Wide Web Companion, pp. 1067�1077, International World
Wide Web Conferences Steering Committee, 2015.

[89] A. Grover and J. Leskovec, �node2vec: Scalable feature learning for networks,�
in Proceedings of SIGKDD, pp. 855�864, ACM, 2016.

[90] Y. Liu, T. Safavi, A. Dighe, and D. Koutra, �Graph summarization methods
and applications: A survey,� arXiv preprint arXiv:1612.04883, 2016.

[91] P. Goyal and E. Ferrara, �Graph embedding techniques, applications, and per-
formance: A survey,� arXiv preprint arXiv:1705.02801, 2017.

[92] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, �Community preserving
network embedding.,� in AAAI Conference on Arti�cial Intelligence, pp. 203�
209, 2017.

[93] X. Huang, J. Li, and X. Hu, �Label informed attributed network embedding,�
in Proceedings of WSDM, pp. 731�739, ACM, 2017.

[94] Y. Dong, N. V. Chawla, and A. Swami, �metapath2vec: Scalable representation
learning for heterogeneous networks,� in Proceedings of the SIGKDD, pp. 135�
144, ACM, 2017.

94

[95] H. Cai, V. W. Zheng, and K. Chang, �A comprehensive survey of graph embed-
ding: problems, techniques and applications,� IEEE Transactions on Knowledge
and Data Engineering, 2018.

[96] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.-j. P. Hsu, and K. Wang, �An
overview of microsoft academic service (mas) and applications,� in Proceedings
of the 24th international conference on world wide web, pp. 243�246, 2015.

[97] C. Caragea, J. Wu, A. Ciobanu, K. Williams, J. Fernández-Ramírez, H.-H.
Chen, Z. Wu, and L. Giles, �Citeseer x: A scholarly big dataset,� in European
Conference on Information Retrieval, pp. 311�322, Springer, 2014.

[98] J. Wu, K. M. Williams, H.-H. Chen, M. Khabsa, C. Caragea, S. Tuarob, A. G.
Ororbia, D. Jordan, P. Mitra, and C. L. Giles, �Citeseerx: Ai in a digital library
search engine,� AI Magazine, vol. 36, no. 3, pp. 35�48, 2015.

[99] H. Jia and E. Saule, �Addressing overgeneration error: An e�ective and e�cient
approach to keyphrase extraction from scienti�c papers.,� in BIRNDL@ SIGIR,
pp. 60�73, 2018.

[100] F. Boudin, �Reducing over-generation errors for automatic keyphrase extraction
using integer linear programming,� in ACL 2015 Workshop on Novel Computa-
tional Approaches to Keyphrase Extraction, 2015.

[101] S. R. El-Beltagy and A. Rafea, �Kp-miner: Participation in semeval-2,� in Pro-
ceedings of the 5th international workshop on semantic evaluation, pp. 190�193,
2010.

[102] J. Liu, J. Shang, C. Wang, X. Ren, and J. Han, �Mining quality phrases from
massive text corpora,� in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pp. 1729�1744, ACM, 2015.

[103] R. Wang, W. Liu, and C. McDonald, �How preprocessing a�ects unsupervised
keyphrase extraction.,� in In Proceedings of the CICLing Conference on Intel-
ligent Text Processing and Computational Linguistics, pp. 163�176, 2014.

[104] K. W. Boyack and R. Klavans, �Co-citation analysis, bibliographic coupling, and
direct citation: Which citation approach represents the research front most ac-
curately?,� Journal of the American Society for Information Science and Tech-
nology, vol. 61, no. 12, pp. 2389�2404, 2010.

[105] S. M. McNee, N. Kapoor, and J. A. Konstan, �Don't look stupid: avoiding
pitfalls when recommending research papers,� in Proceedings of the 2006 20th
anniversary conference on Computer supported cooperative work, pp. 171�180,
ACM, 2006.

[106] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen, �Collaborative �ltering
recommender systems,� in The adaptive web, pp. 291�324, Springer, 2007.

95

[107] R. Dong, L. Tokarchuk, and A. Ma, �Digging friendship: paper recommenda-
tion in social network,� in Proceedings of Networking & Electronic Commerce
Research Conference (NAEC 2009), pp. 21�28, 2009.

[108] L. Palopoli, D. Rosaci, and G. M. Sarné, �A multi-tiered recommender system
architecture for supporting e-commerce,� in Intelligent Distributed Computing
VI, pp. 71�81, Springer, 2013.

[109] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles, �Collaborative �ltering
by personality diagnosis: A hybrid memory-and model-based approach,� in
Proceedings of the Sixteenth conference on Uncertainty in arti�cial intelligence,
pp. 473�480, Morgan Kaufmann Publishers Inc., 2000.

[110] A. Vellino, �A comparison between usage-based and citation-based methods for
recommending scholarly research articles,� Proceedings of the American Society
for Information Science and Technology, vol. 47, no. 1, pp. 1�2, 2010.

[111] X. Shi, J. Leskovec, and D. A. McFarland, �Citing for high impact,� in Proceed-
ings of the 10th annual joint conference on Digital libraries, pp. 49�58, 2010.

[112] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, �Pathsim: Meta path-based
top-k similarity search in heterogeneous information networks,� Proceedings of
the Very Large Data Base Endowment, vol. 4, no. 11, pp. 992�1003, 2011.

[113] H. Jia and E. Saule, �Local is good: A fast citation recommendation approach,�
in Proceedings of European Conference on Information Retrieval, 2018.

[114] G. Hinton and R. Salakhutdinov, �Reducing the dimensionality of data with
neural networks,� Science, vol. 313, no. 5786, pp. 504 � 507, 2006.

[115] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, �Greedy layer-wise train-
ing of deep networks,� in Advances in neural information processing systems,
pp. 153�160, 2007.

[116] D. Cire³an, U. Meier, and J. Schmidhuber, �Multi-column deep neural networks
for image classi�cation,� arXiv preprint arXiv:1202.2745, 2012.

[117] A. Krizhevsky, I. Sutskever, and G. E. Hinton, �Imagenet classi�cation with
deep convolutional neural networks,� in Advances in neural information pro-
cessing systems, pp. 1097�1105, 2012.

[118] G. Dahl, A.-r. Mohamed, G. E. Hinton, et al., �Phone recognition with the
mean-covariance restricted boltzmann machine,� in Advances in neural infor-
mation processing systems, pp. 469�477, 2010.

[119] L. Deng, M. L. Seltzer, D. Yu, A. Acero, A.-r. Mohamed, and G. Hinton, �Binary
coding of speech spectrograms using a deep auto-encoder,� in Eleventh Annual
Conference of the International Speech Communication Association, 2010.

96

[120] M. Hena�, K. Jarrett, K. Kavukcuoglu, and Y. LeCun, �Unsupervised learning
of sparse features for scalable audio classi�cation.,� in ISMIR, vol. 11, p. 2011,
Citeseer, 2011.

[121] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, et al., �Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research
groups,� IEEE Signal processing magazine, vol. 29, no. 6, pp. 82�97, 2012.

[122] Y. Bengio, �Neural net language models,� Scholarpedia, vol. 3, no. 1, p. 3881,
2008.

[123] N. Srivastava and R. R. Salakhutdinov, �Multimodal learning with deep boltz-
mann machines,� in Advances in neural information processing systems, p-
p. 2222�2230, 2012.

[124] S. Fortunato, �Community detection in graphs,� Physics reports, vol. 486, no. 3-
5, pp. 75�174, 2010.

[125] J. Yang and J. Leskovec, �Overlapping communities explain core-periphery orga-
nization of networks.,� Proceedings of the IEEE, vol. 102, no. 12, pp. 1892�1902,
2014.

[126] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D. K-
outra, C. Faloutsos, and L. Li, �Rolx: structural role extraction & mining in
large graphs,� in Proceedings of the 18th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pp. 1231�1239, ACM, 2012.

