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ABSTRACT

FARIA KAMAL. Small signal stability analysis of doubly fed induction generator or
direct drive synchronous generator integrated power system. (Under the direction of

DR. BADRUL CHOWDHURY)

The power system stability issues concerning the integration of wind turbine gen-

erators have been under research for quite a long time now. This study focuses on the

small signal stability analysis of Doubly Fed Induction Generator (DFIG) and Direct

Drive Synchronous Generator (DDSG) integrated power system. For this purpose,

one synchronous generator in the IEEE 14 bus test system is first replaced by a DFIG,

and then by a DDSG while the wind penetration is varied between 24-40%. PSAT, a

matlab based power system analysis toolbox is used to perform small signal stability

analysis, where eigenvalues give the insight of system oscillations and damping. In

order to improve the damping of the Wind Turbine Generator (WTG) integrated

system, Power System Stabilizers (PSS) are designed for synchronous generators.

Lastly, a small disturbance is created to see the impact on both the DFIG and DDSG

integrated system with and without the PSSs. The key observations include the capa-

bility of WTGs to increase system stability under certain conditions, DDSG providing

better damping for a certain range of penetration, and DFIG providing stability for

a larger range of wind penetration. The findings were verified using time domain

analysis in PSAT, where the frequency response of the synchronous generators are

observed.
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CHAPTER 1: INTRODUCTION

The alternative energy resources are being promoted due to their relatively benign

environmental impacts and renewable nature, thereby leading to reduced dependency

on traditional fossil fuels [1]. According to the Wind Vision Report, Americas cur-

rent installed wind power capacity has tripled since the 2008 release of the Energy

Departments 20% Wind Energy by 2030 report. It assesses the potential scenario

of economic, environmental, and social benefits where wind power supplies 10% of

the nations electrical demand in 2020, 20% in 2030, and 35% in 2050. Wind energy

continues to thrive in the overall utility mix, with hundreds more megawatts in the

pipeline [2].

As wind power becomes a significant part of a utility companys generation mix,

its impact on power system stability cannot be neglected. In fact, the behavior and

interaction of the generators connecting to the power system largely determines the

dynamic behavior of a power system. Today, there are three major types of Wind Tur-

bine Generators (WTGs) in the market: squirrel cage induction generators (SCIGs),

doubly-fed induction generators (DFIGs) and direct-driven synchronous generators

(DDSG s) or permanent magnet synchronous generator (PMSG). Due to their indi-

vidual dynamic characteristics and working principles, the effects of these WTGs on

power system dynamics and stability vary by large margins. Therefore, it is essential

to explore the different WTGs individually [3].
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1.1 Background

1.1.1 Power System Small Signal Stability

Detailed descriptions of power system small signal stability can be found in [4] and

[5]. Small signal stability (or small-disturbance stability) is referred to as the ability of

power system to remain in synchronism under small disturbances [4], [5]. Small signal

stability problem now-a-days is often linked with the oscillatory stability problem

resulting from insufficient damping torque [4], [5]. Also, two main reasons behind the

lack of sufficient damping are large scale, long distance power transmission through

weak AC tie lines and fast-response high-gain exciters [4]- [6]. Again, since the

conventional synchronous generators would be replaced by the WTGs, it is important

to note that the synchronous generator exciter and damper windings are the primary

sources of internal positive damping beside loads of voltage and frequency dependency

characteristics [4], [7].

In today’s world, insufficient damping of oscillation contributes largely towards

small signal stability. Stability of the following four types of oscillations is of concern:

i) Local modes, ii) Interarea modes, iii) Control modes and iv) Torsional modes.

Local modes of oscillation occur when one generating station swings with respect to

the rest of the power system. Interarea modes are associated with the swinging of

many machines in one part of the system against machines in other parts. Control

modes are associated with with generating units and other controls where torsional

modes are associated with turbine-generator shaft system rotational components. [4].

The main approaches for analyzing power system small signal stability are damping
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torque analysis [8], modal analysis [9], time-domain simulations [4], normal form

method [10] and measurement methods based on the wide area measurement system

(WAMS) [11], among which modal analysis and time-domain simulations are the two

most efficient tools and they constantly complement each other [12].

The most cost effective method to introduce damping by controlling excitation

systems of synchronous generators is by using power system stabilizers (PSSs). Since

the conventional PSSs have limited capability to damp inter-area oscillations, different

types of PSSs or damping controllers were developed to mitigate inter area oscillations

and implemented in flexible AC transmission system (FACTS) [6], [13], high voltage

direct current transmission (HVDC) [14], energy-storage system (ESS) [6]. The

damping controllers can be local if the input signal source is local and global if the

source is remote such as phasor measurement units [15].

1.1.2 Wind Power Technology

WTGs, typically consisting of a mechanical subsystem, a generator and a power

electronic subsystem are used to extract the kinetic energy from the wind and then

convert it into electricity. The generator subsystem and power electronics subsystem

combined is called the electrical subsystem. As mentioned earlier, currently there

are three kinds of WTGs in the market, among which SCIGs are the fixed or Con-

stant Speed WTGs (CSWTGS), while DFIGs and DDSGs are Variable Speed WTGs

(VSWTGs). The major discrepancies of the WTGs are the electrical subsystem and

the limited aerodynamic efficiency of the wind turbine rotor of the mechanical sub-

system at high wind speeds [3]. The key features of these WTGs are listed below
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[3], [16]:

SCIGs-The Squirrel Cage Induction generator is connected with the wind turbine

rotor through a gearbox. The stator is directly coupled to the grid with a shunt

capacitor bank. A stall or active stall control is used to restrict the mechanical power

extracted from the wind at high wind speeds. Despite the simplicity, robustness and

low cost, the drawbacks of SCIG make the variable speed WTGs more desirable. Some

of those shortcomings are: i) low energy conversion efficiency, ii) high mechanical

stress, iii) gearbox maintenance requirement and iv) inability to control active and

reactive power separately.

Like the SCIG, the rotor in a DFIG is connected to the generator through a gearbox

and the stator is connected to the grid. However, the rotor also connects with the

grid through a partial-scale converter. For restricting the mechanical power at high

wind speeds, pitch control mechanism is used. DFIGs have some benefits compared

to SCIGs. They are: i) maximum power point tracking (MPPT) ability by speed con-

troller, ii) reduced mechanical stress, iii) ability to control active and reactive power

independently and iv) smaller converter scale. On the other hand, DFIGs are more

expensive than SCIGs and the maintenance of two gearboxes is still a requirement.

DDSGs or PMSGs- In Direct Drive Synchronous Generator or Permanent Magnet

Synchronous Generator, the wind turbine rotor is directly connected to the generator

and the stator is coupled to the grid through a full-scale converter. Thus, this is

also called full converter synchronous generator. Like DFIGs, the mechanical power

extracted from the wind can be restricted by pitch control during high wind speeds.

They are similar to DFIGs to some extent such as: i) Maximum Power Point Tracking
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(MPPT) ability by speed controller, ii) reduced mechanical stress, iii) flexibility to

control active and reactive power. Be-sides, PMSGs can operate without gearboxes

but they are heavier and incorporate converters which are larger than those for DFIGs.

1.1.3 Impact of Wind Power on Power System Small Signal Stability Analysis

A number of research efforts have taken place in recent times to address the im-

pact of wind power on small signal stability of the power system. The wind turbine

generators themselves do not take part in electromechanical oscillations as they are

not synchronously connected to the grid [3], [17], [18]. Moreover, the system

damping is usually affected by wind penetration through three primary mechanisms.

They are: i) the electromechanical modes of the system are affected when the syn-

chronous generators involved in electromechanical oscillations are replaced by WTGs

ii) damping torques may partly be influenced if the controllers of WTGs interact with

synchronous generators iii) power system damping may be influenced if the dispatch

of conventional generation and profile of power flow are altered [17], [18]. The first

mechanism mostly accounts for cases where conventional generation is replaced by

wind generation with the system topology and power flow unchanged. While the first

two mechanisms largely depend upon the type of WTGs, the last one lies independent

of the wind power technology.

Among the three types, the CSWTGs do not have controllers incorporated in their

electrical control for which their impact on small signal stability is not focused on as

much. However, for VSWTGs, it is the other way round. Due to different dynamic

characteristics, opinions on how VSWTG integration affects small signal stability
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vary. The two VSWTGs, i.e. DFIGs and DDSGs are supposed to have similar effects

on the damping of power systems as they are partially or fully decoupled from grid,

with the ability to control active and reactive power separately. What follows is a

survey of the current literature on impact of WTG on small signal stability of power

systems.

The issue of power system small signal stability impact of CSWTGs and VSWTGs

was first initiated by J.G.Slootweg et al. in 2003 [3]. Later on, further research took

place focusing this subject through modal analysis or time-domain simulations.

Generally, CSWTGs tend to contribute positively to the damping of electrome-

chanical oscillations, because an increase in synchronous generator speed would lead

to a slight voltage increase. This shifts the rotor speed versus power curve of the

squirrel cage induction generator, which has a damping effect on the power system

oscillation [3]- [19]. On the other hand, since the generator is decoupled from the

grid by the power electronic converter in the VSWTGs, their impact on the damping

cannot be generalized as such. The Nordic Grid studies by E. Hagstrom et al. show

that the DFIGs and DDSGs have slightly negative impact on the inter-area oscillation

damping [20].

On the contrary, O.Anaya-Lara et al. claimed DFIG’s capability of improving

system damping for a typical three-generator system [19], [21]. Similarly, E.Muljadi

et al. showed that in a weak grid, DFIGs can exhibit good damping performance [22].

These conclusions were confirmed by G.Tsourakis et al. in [23], [24], which is an

indication of the DFIG’s general trend to increase inter-area oscillation damping, even

though voltage control schemes may tend to reduce it. Furthermore, J.G.Slootweg et
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al. pointed out that the pros and cons of VSWTGs on system damping should be

discussed based on oscillation types [3].

Slightly deviating from the conclusions drawn above, N .R. Ullah et al. claimed

that the impact of voltage and constant power factor control mode of DDSGs on the

inter-area oscillation can be beneficial or detrimental depending upon the locations of

the wind farm [25]. Similarly, in [18], the analysis of eigenvalue sensitivity to inertia

indicates that the DFIG integration has both positive and negative impacts on small

signal stability. Again, a report by National Renewable Energy Laboratory (NREL)

on Western Wind and Solar Integration Study suggests that the loss of system inertia

associated with increased wind generation is of little consequence for up to at least

50% levels of instantaneous penetration for the Western Interconnection as long as

adequately fast primary frequency responsive resources are maintained [26]. On a

different note, it is shown that the effect of different types of WTGs on the New

Zealand system damping is minimal [17].

1.2 Problem Statement and Rationale

Based on previous research, the views about the impact of VSWTGs on damping

are controversial. Factors contributing towards these controversies among studies

mainly include: i) types of electromechanical oscillations, ii) locations and levels of

wind power penetration, iii) the system loading, and iv ) different control modes of

VSWTGs. Ref [3] shows that results of the analysis vary with types of oscillation

modes. Also, when the synchronous generators with higher participation factors

in electromechanical oscillations are replaced by VSWTGs, it might increase the
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damping while the replacement of others may reduce it. Secondly, the wind farms

can be integrated in other appropriate locations in a way which might alter the power

flow profile. Thirdly, the system loading level and penetration level of wind power

play a crucial role in power system damping.

In 2014, the Minnesota utilities and transmission companies, in coordination with

the Midcontinent Independent System Operator (MISO), conducted an engineering

study regarding the effects on the reliability and cost of increasing Minnesotas renew-

able energy standard (RES) to at least 40 percent by 2030. This study assumed new

wind plants were split roughly 50/50 between DFIG and DDSG. The key finding was

that 40% wind and solar penetration can be reliably accommodated by the electric

power system but, further analysis would be needed if it is to increase to 50% or so.

Hence, this issue of ”weak grid” is a relatively new area of concern within the industry.

For instance, synchronous generators and condensers contribute short circuit strength

to the transmission system, increasing Composite Short-Circuit Ratio (CSCR). On

the other hand, Static VAR Compensators (SVCs) and Static Synchronous Compen-

sators (STATCOMs) do not contribute towards short circuit current, and because

they are electronic converter based devices with internal control systems like wind

inverters, they could further reduce the effective CSCR [?].

Since tracking the maximum power with unity power factor is a basic active power

control strategy for VSWTGs, they cannot inject oscillating power to suppress low-

frequency oscillations. As a result, not so much damping contribution is expected

from VSWTGs. Also, even though not as widely used, voltage or reactive power

control schemes of VSWTGs have a latent impact on system damping. To conclude,
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due to the lack of analytical findings required, generalized conclusions cannot be

provided yet [27].

This thesis, however, incorporates small signal stability analysis to compare the sys-

tem stability obtained by replacing a synchronous generator with DFIG and PMSG

respectively in the IEEE 14 bus test system. The impact of these two wind turbine

generators on system damping varied depending on the level of wind power penetra-

tion.

1.3 Objective

The objective of this thesis is to observe the impact on small signal stability when

one synchronous generator in the system is replaced by a VSWTG and the wind

penetration level is varied. The eigenvalue analysis was done and the damping ratios

corresponding to the participating electromechanical modes of oscillations were ob-

served. The impact is observed first for DFIG and then for DDSG with different levels

of wind power penetration. Then, in order to improve the damping, power system

stabilizers for the synchronous generators were designed for both DFIG and DDSG

integrated systems. Later on, a small disturbance was created in the system, and the

results were compared through time domain simulations. The generator frequency re-

sponses were observed to compare the stability of DFIG and DDSG integrated system

with and without power system stabilizers for various levels of wind penetration.



CHAPTER 2: LITERATURE REVIEW

2.1 The Theoretical Analysis of Small Signal Stability

The small signal stability of a power system means the ability of the system to

maintain synchronism when subjected to small perturbations. As the name suggests,

the disturbance is defined as a small signal in this case. Therefore, to describe the

system response, the equations can be linearized by applying the linear system theory.

A power system is usually described with a set of differential-algebraic equations as

follows [28]:

x′ = f(x, u) (1)

y = g(x, u)

where system state vector x, output vector and input vector are as follows:

x =[x1, x2, x3..., xn]T

y =[y1, y2, y3..., yn]T

u =[u1, u2, u3..., un]T

f, g are linearized equations of x, u.
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The f, g is linearized in the operating point to get the incremental equation:

∆ẋ = A∆x+B∆u (2)

∆y = C∆x+D∆y

Here, A, B, C and D are the state, input, output and feedforward matrix respectively.

According to Lyapunov judgment principle of small signal stability, a system is

small signal stable if all eigenvalues of the state matrix A have negative real parts.

Complex eigenvalues are conjugate, and each pair corresponds to an oscillation

mode. Therefore, one pair of complex eigenvalues [28]:

λ = δ ± jω (3)

The frequency of oscillation in Hz:

f =
ω

2π
(4)

Damping ratio is represented as:

ζ = − −δ√
δ2 + ω2

(5)

The damping ratio ζ determines decay rate of the oscillating amplitude. The greater

the |ζ|, the faster the decay [29].

2.2 Wind Model

A composite wind model which includes average speed, ramp, gust and turbulence

has been used as the wind model. The first value of the wind speed sequence is the

initial average speed (vω(t0) = vωa) as computed at the initialization step of the wind
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turbines. Air density ρ at 15◦ and standard atmospheric pressure is 1.225kg/m3, and

depends on the altitude (e.g. at 2000 m ρ is 20% lower than at the sea level).

Wind speed time sequences are calculated after solving the power flow and initial-

izing wind turbine variables. During time domain simulations, the actual wind speed

values which are used for calculating the mechanical power of wind turbines are the

output of a low-pass filter with time constant τ . Figure 1 shows the low pass filter.

In order to simulate the smoothing of high frequency wind speed variations over the

Figure 1: Low-pass filter to smooth wind speed variations [30].

rotor surface [30]:

v̇ω = (v̌ω(t)− vω)/τ (6)

The composite model considers the wind as composed of four parts, as follows:

1. average and initial wind speed vωa;

2. ramp component of the wind speed vωr;

3. gust component of the wind speed vωg;

4. wind speed turbulence vωt;

Thus the resulting wind speed v̂ω is

v̂ω(t) = vωa + vωr(t) + +vωg(t) + vωt(t) (7)

where all components are time-dependent except for the initial average speed vωa.
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2.2.1 Wind Ramp Component

The wind ramp component is defined by an amplitude Aωr and starting and ending

times, Tsr and Ter respectively:

t < Tsr : vωr(t) =0 (8)

Tsr ≤ t ≤ Ter : vωr(t) =Aωr(
t− Tsr
Ter − Tsr

) (9)

t > Ter : vωr(t) =Aωr (10)

2.2.2 Wind Gust Component

The wind gust component is defined by an amplitude Aωg and starting and ending

times, Tsg and Teg respectively:

t < Tsg : vωg(t) =0 (11)

Tsg ≤ t ≤ Teg : vωg(t) =
Aωg

2
(1− cos( t− Tsg

Teg − Tsg
)) (12)

t > Ter : vωg(t) =Aωg (13)

2.2.3 Wind Turbulence Component

The wind turbulence component is described by a power spectral density as follows:

Sωt =

1
ln(h/z0)2

lvωa

(1 + 1.5 lf
vωa

)
5
3

(14)

where f is the frequency, h the wind turbine tower height, z0 is the roughness
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length and l is the turbulence length scale:

h < 30 : l =20h (15)

h ≥ 30 : l =600 (16)

The spectral density is then converted in a time domain cosine series as mentioned

in [3]:

vωt(t) =
n∑
i=1

√
Sωt(fi)∆fcos(2πfit+ φi + ∆φ) (17)

where fi and φi are the frequency and the initial phase of the ith frequency com-

ponent, being φi random phases (φiε(0, 2π)). The frequency step ∆f should be

∆fε(0.1, 0.3) Hz. Finally ∆φ is a small random phase angle introduced to avoid

periodicity of the turbulence signal.

2.3 Wind Turbines

This section describes the DFIG and the DDSG types as implemented in PSAT.

2.3.1 Doubly Fed Induction Generator (DFIG)

Figure 2 shows a doubly fed induction generator.
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Figure 2: Doubly fed induction generator (DFIG) [30].

Table 1 introduces the variables used to describe the DFIG model. Most of them

are used in DDSG as well.

Table 1: DFIG or DDSG variable introduction

Variable Description Unit
rs Stator resistance p.u.
xs Stator reactance p.u.
rR Rotor resistance p.u.
xR Rotor reactance p.u.
xm Magnetizing reactance p.u.
Hm Rotor inertia kWs/kVA
Kp Pitch control gain -
Tp Pitch control time constant s
KV Voltage control gain -
Tε Power control time constant s
R Rotor radius m
p Number of poles int
ηGB Gear box ratio -
Pmax Maximum active power p.u.
Pmin Minimum active power p.u.
Qmax Maximum reactive power p.u.
Qmin Minimum active power p.u.

Steady-state electrical equations of the doubly fed induction generator are taken

in such a way so that the stator and rotor flux dynamics are assumed much faster

than the grid dynamics, and the generator is decoupled from the grid through the
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converter controls. These assumptions result in [30]:

vds =− rSids + ((xs + xm)iqs + xmiqr) (18)

vqs =− rSiqs − ((xs + xm)ids + xmidr)

vdr =− rRidr + (1− ωm)((xR + xm)iqr + xmiqs)

vqr =− rRiqr − (1− ωm)((xR + xm)idr + xmids)

where,

vds, vqs=Stator d and q axis voltage

vdr, vqr=Rotot d and q axis voltage

ids, iqs=Stator d and q axis currents

idr, iqr=Rotor d and q axis currents

The stator voltages are functions of the grid voltage magnitude V and phase θ:

vds =V sin(−θ) (19)

vqs =V cos(θ)

The active and reactive powers injected into the grid depend on the stator currents

and the grid side currents of the converter:

P =vdsids + vqsiqs + vdcidc + vqciqc (20)

Q =vqsids − vdsiqs + vqcidc − vdciqc

where idc, iqc are grid side converter d and q axis currents.

The equation 20 can be rewritten considering the converter power equations, as
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discussed below. Firstly, the converter powers on the grid side are:

Pc =vdcidc + vqciqc (21)

Qc =vqcidc − vdciqc

and, on the rotor side:

Pr =vdridr + vqriqr (22)

Qr =vqridr − vdriqr

Secondly, assuming a lossless converter model and a unity power factor on the grid

side of the converter:

Pc =Pr (23)

Qc =0

which results into the powers injected in the grid:

P =vdsids + vqsiqs + vdridr + vqriqr (24)

Q =vqsids − vdsiqs

As it is assumed that the converter controls are able to alter shaft dynamics, the

generator motion equation is modeled as a single shaft. Thus, no tower shadow effect

is considered either. Hence one has:

ω̇m =(Tm − Te)/2Hm (25)

Te =ψdsiqs − ψqsids
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where,

Tm, Te=Mechanical and electrical torque

ψds, ψqs=d and q axis stator fluxes

and the link between stator fluxes and generator currents is as follows:

ψds =− ((xS + xm)ids + xmidr) (26)

ψqs =− ((xS + xm)iqs + xmiqr)

Thus the electrical torque τe may be expressed as:

Te = xm(iqrids − idriqs) (27)

The mechanical torque is:

Tm =
Pω
ωm

(28)

where Pω is the mechanical power extracted from the wind. The latter is a func-

tion of the wind speed vω, the rotor speed ωm and the pitch angle θp. Pω can be

approximated as follows:

Pω =
ρ

2
cp(λ, θp)Arv

3
ω (29)

in which ρ is the air density, cp the power coefficient or performance coefficient, λ

the tip speed ratio and Ar the area swept by the rotor. The tip ratio λ is the ratio

between the blade tip speed vt and the wind upstream the rotor vω:

λ =
vt
vω

= ηGB
2Rωωr
pvω

(30)
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The cp(λ, θp) curve is approximated as:

cp = 0.22(
116

λi
− 0.4θp − 5)e12.5/λi (31)

with

1

λi
=

1

λ+ 0.08θp
− 0.035

θ3
p + 1

(32)

As the converter dynamics are much faster than the electromechanical transients,

they are highly simplified. Therefore, the converter is modeled as an ideal current

source, where iqr and idr are state variables and are used for the rotor speed and

voltage control respectively, which are shown in Figures 3 and Figure 4.

Figure 3: Rotor speed control scheme [30].

Figure 4: Voltage control scheme [30].
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Differential equations for the converter currents are as follows:

˙iqr =(−xs + xm
xmV

P ∗ω(ωm)/ωm − iqr)
1

Te
(33)

˙idr =KV (V − Vref )− V

xm
− idr

where P ∗ω(ωm) is the power-speed characteristic roughly optimizing the wind energy

capture and is calculated using the current rotor speed value. Figure 5 shows the

power-speed characteristics of VSWTGs.

Figure 5: Power-speed characteristic [30].

It is assumed that P ∗ω=0 if ω < 0.5 p.u. and that P ∗ω = 1 p.u. if ω > 1 p.u.

Thus, the rotor speed control only has effect for sub-synchronous speeds. Both the

speed and voltage controls undergo anti-windup limiters in order to avoid converter

over-currents. Current limits are approximated as follows:

iqr,max =− Pmin (34)

iqr,min =− Pmax

idr,max =−Qmin

idr,min =−Qmax
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Finally the pitch angle control can be depicted in Fig. 6.

Figure 6: Pitch angle control scheme [30].

It can be expressed by the differential equation:

θ̇p = (Kpφ(ωm − ωref )− θp)/Tp (35)

where φ is a function which allows varying the pitch angle set point only when the

difference (ωm − ωref ) exceeds a predefined value ±∆ω.The pitch control works only

for super-synchronous speeds. An anti-windup limiter locks the pitch angle to θp = 0

for sub-synchronous speeds.

2.3.2 Direct Drive Synchronous Generator (DDSG)

Figure 7 represents a direct drive synchronous generator.

Figure 7: Direct-Drive Synchronous Generator (DDSG) [30].

Most of the variables used in DFIG model which were introduced in Table 1 are

used in case of DDSG as well. The remaining ones are introduced in Table 2.
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Table 2: Remaining DDSG variable introduction

Variable Description Unit
xd d-axis reactance p.u.
xq q-axis reactance p.u.
ψp Permanent field flux p.u.
Tv Voltage control time constant s
Tεp Active power control time constant s
Tεq Reactive power control time constant s

Steady-state electrical equations of the direct drive synchronous generator are as-

sumed, as the stator and rotor flux dynamics are much faster in comparison with grid

dynamics and the converter controls basically decouple the generator from the grid.

As a result of these assumptions, one has [30]:

vds =− rsids + ωmxqiqs (36)

vqs =− rsiqs − ωm(xdids − ψp)

where a permanent field flux ψp is used here to represent the rotor circuit. The

active and reactive power of the generator are as follows:

Ps =vdsids + vqsiqs (37)

Qs =vqsids − vdsiqs

while the active and reactive powers injected into the grid depend only on the grid

side currents of the converter:

Pc =vdcidc + vqciqc (38)

Qc =vqcidc − vdciqc (39)

where the converter voltages are functions of the grid voltage magnitude and phase,
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as follows:

vdc =V sin(−θ) (40)

vqc =V cos(θ)

Assuming a lossless converter and a power factor equal to 1, the output powers of

the generator becomes:

Ps =Pc (41)

Qs =0 (42)

Moreover, the reactive power injected in the grid is controlled with the help of the

converter direct current idc. Hence, equation 39 can be rewritten as follows:

Qc =
1

cos(θ)
V idc + tan(θ)Ps (43)

The generator motion equation is modeled as a single shaft, as it is assumed that

the converter controls are able to filter shaft dynamics. For the same reason, no tower

shadow effect is considered in this model. Thus one has:

ω̇m =(Tm − Te)/2Hm (44)

Te =ψdsiqs − ψqsids

where the link between stator fluxes and generator currents is as follows:

ψds =− xdids + ψp (45)

ψqs =− xqiqs
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The mechanical torque and power in DDSG are modeled the same as the DFIG,

thus equations from 28 to 31 apply.

Converter dynamics are highly simplified, as they are much faster with respect to

the electromechanical transients. Thus, the converter is modeled as an ideal current

source, where iqs, ids and idc are state variables and are used for the rotor speed

control, reactive power control and voltage control, respectively. Differential equations

of the converter currents are given as:

˙iqs =(iqsref − iqs)/Tεp (46)

˙ids =(idsref − ids)/Tεq

˙idc =(KV (Vref − V )− idc)/TV

where

iqsref =
P ∗ω(ωm)

ωm(ψp − xdids)
(47)

idsref =
ψp
xd
−

√
ψ2
p

x2
d

− Qref

ωmxd

Where P ∗ω(ωm) is the power-speed characteristic which roughly optimizes the wind

energy capture and which is calculated using the current rotor speed value (Fig. 5).

It is assumed that P ∗ω = 0 if the ωm < 0.5 p.u. and that P ∗ω = 1 p.u. if ωm > 1 p.u.

Thus, the rotor speed control only has effect for sub-synchronous speeds. Both the

speed and voltage controls undergo anti-windup limiters in order to avoid converter
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over-currents. Current limits are approximated as follows:

iqs,max =− Pmin (48)

iqs,min =− Pmax

ids,max =idc,max = −Qmin

ids,min =idc,min = −Qmax

Finally the pitch angle control is illustrated in Figure 6 and described by the

differential equation 35.

2.4 Order of the System

The order of the system is the total number of state variables used in the system.

These state variables are of synchronous and wind turbine generators, exciters, power

system stabilizers and turbine governors etc.

2.4.1 Generator Order

Third order generators can be represented through a transfer function that has

the highest exponent of three. In this model all the q-axis electromagnetic circuits

are neglected, whereas a lead-lag transfer function is used for the d-axis inductance.

The three state variables- angle δ, frequency ω and q-axis transient voltage e′q are

described by the following differential equations:

δ̇ =Ωb(ω − 1) (49)

ω̇ =(Pm − Pe −D(ω − 1))/M

ė′q =(−fs(e′q)− (xd − x′d)id + v∗f )/T
′
d0
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where the electrical power is:

Pe =(vq + raiq)iq + (vd + raid)id

where id, iq are d and q axis current, vd and vq are d and q axis voltages and ra is

the armature resistance. The voltage and current link is described by the equations:

0 =vq + raiq − e′q + (x′d − xl)id

0 =vd + raid − (xq − xl)iq

where x′d, xq and xl are the d axis transient, q axis and leakage reactances. This

model is the simplest one to which an automatic voltage regulator can be connected.

2.4.2 Order of Automatic Voltage Regulator

Automatic Voltage Regulators (AVRs) define the primary voltage regulation of

synchronous machines. Several AVR models have been proposed and realized in

practice. PSAT allows to define three simple different types of AVRs among which

AVR Type II is the standard IEEE model 1. Table 3 introduces the variables used in

exciter type 2 model. This can be described by the following equations:

Table 3: Variables of exciter type II

Variable Description Unit
vrmax Maximum regulator voltage p.u.
vrmin Minimum regulator voltage p.u.
Ka Amplifier gain p.u./p.u.
Ta Amplifier time constant s
Kf Stabilizer gain p.u./p.u.
Tf Stabilizer time constant s
Te Field circuit time constant s
Tr Measurement time constant s
Ae 1st ceiling coefficient -

Be 2nd ceiling coefficient -
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˙vm =(V − vm)/Tr (50)

˙vr1 =(Ka(vref − vm − vr2 −
Kf

Tf
vf )− vr1)/Ta


vr1 if vrmin ≤ vr1 ≤ vrmax,

vrmax if vr1 > vrmax,

vrmin if vr1 < vrmin,

˙vr2 =− (
Kf

Tf
vf + vr2)/Tf (51)

v̇f =− (vf (1 + Se(vf ))− vr)/Te

where the ceiling function Se is:

Se(vf ) = Ae(e
Be|vf |−1)

This is a forth order AVR and the state variables are vm, vr1, vr2 and vf

2.4.3 Order of Power System Stabilizer

Power System Stabilizers (PSSs) are typically used for damping power system os-

cillations and many different models are implemented in PSAT. The PSS type II adds

three state variables in the system and Table 4 gives an introduction to the variables

used.

Table 4: Variables of PSS type II

Variable Description Unit
vSmax Maximum stabilizer output signal p.u.
vSmin Minimum stabilizer output signal p.u.
Kω Stabilizer gain p.u./p.u.
Tω Wash-out time constant s
T1 First stabilizer time constant s
T2 Second stabilizer time constant s
T3 Third stabilizer time constant s
T4 Fourth stabilizer time constant s
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This can be described by the equations:

v̇1 =− (KωvSI + v1)/Tω (52)

v̇2 =((1− T1

T2

)(KωvSI + v1)− v2)/T2

v̇3 =((1− T3

T4

)(v2 + (
T1

T2

(KωvSI + v1)))− v3)/T4v̇s = (v3 +
T3

T4

(v2 +
T1

T2

(KωvSI + v1))− vs)/Tε

the output signal Vs is subjected to an anti-windup limiter and its dynamic is given

by a small time constant Tε = 0.001 s2.

2.4.4 Order of Wind Turbine Generators

The DFIG and DDSG each add 5 state variables to the system. For DFIG, they

are wind speed vω, rotor speed ωm, rotor q axis current iqr, rotor d axis current idr

and pitch angle θp expressed by equations 7, 25, 33 and 35.

For DDSG, the five state variables are the wind speed vω, rotor speed ωm, stator q

axis current iqs, converter d axis current idc and pitch angle θp expressed by equations

7, 25, 46 and 35.



CHAPTER 3: METHODOLOGY

All simulations were carried out in Power System Analysis Toolbox (PSAT) [31],

an open source MATLAB and GNU/Octave-based software package for analysis and

design of small to medium size electric power system.

3.1 Small Signal Stability Analysis in PSAT

It is possible to compute and plot the eigenvalues and the participation factors of

the system in PSAT, once the power flow is solved. The eigenvalues can be computed

for the state matrix of the dynamic system, and for the power flow Jacobian matrix

(QV sensitivity analysis) [32]. In PSAT, eigenvalues are computed using analytical

Jacobian matrices, which ensures high-precision results [31].

1) Dynamic Analysis: The Jacobian matrix Ac of a dynamic system is defined by: ∆ẋ

0

 =

Fx Fy

Gx JLFV


 ∆x

∆y

 = [Ac]

 ∆x

∆y

 (53)

where Fx = ∇xf, Fy = ∇yf,Gx = ∇xg and JLFV = ∇yg. Then the state matrix As

is obtained by eliminating ∆y, and thus implicitly assuming that JLFV is nonsingular:

As = Fx − FyJ−1
LFVGx (54)

With a high dynamic order of the system, the computation of all eigenvalues can

be lengthy. To overcome this issue, PSAT gives the option of computing a reduced
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number of eigenvalues based on sparse matrix properties and eigenvalue relative val-

ues. Also, PSAT uses right and left eigenvector matrices to calculate participation

factors [33].

2) QV Sensitivity Analysis: The QV sensitivity analysis is done on a reduced

matrix. Assuming the power flow Jacobian matrix JLFV can be divided into four

sub-matrices:

JLFV =

JPθ JPV

JQθ JQV

 (55)

The reduced matrix used for QV sensitivity analysis is defined as follows:

JLFV r = JQV − JQθJ−1
PθJPV (56)

where it is assumed that JPθ is nonsingular [32]. It is to note that the Jaco-

bian matrix used in PSAT for power flow, takes into account all static and dynamic

components such as tap changer models.

3.2 Power System Stabilizer Design

The complete state-space model for the power system, including the excitation

system, has the form [4]:



∆ω̇r

∆δ̇

∆ ˙ψfd

∆v̇1


=



a11 a12 a13 0

a21 0 0 0

0 a32 a33 a34

0 a42 a43 a44





∆ωr

∆δ

∆ψfd

∆v1


+



b1

0

0

0


∆Tm (57)

where the state variables are:
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∆ωr= speed deviation in pu = (ωr − ω0)/ω0

∆δ= rotor angle deviation in elec. rad

∆ψfd= Field flux linkage deviation

∆v1=Exciter voltage deviation

Figure 8 shows the block diagram representation of the excited model.

Figure 8: Block diagram representation with exciter & AVR [4].

It is applicable to any type of exciter, with Gex(s) representing the transfer function
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of the AVR and exciter. For a thyristor exciter: Gex(s) = KA.

a11 =− KD

2H
(58)

a12 =− K1

2H
(59)

a13 =−−K2

2H
(60)

a21 =ω0 = 2πf0 (61)

a32 =− ω0Rfd

Lfd
m1L

′
ads (62)

a33 =− ω0Rfd

Lfd
[1− L′ads

Lfd
+m2L

′
ads] (63)

b11 =
1

2H
(64)

b32 =
ω0Rfd

Ladu
(65)

K3 =− b32

a33

(66)

K4 =− a32

b32

(67)

T3 =− 1

a33

= K3T
′
d0

Ladu
Lffd

(68)

a41 =0 (69)

a42 =
K5

TR
(70)

a43 =
K6

TR
(71)

a44 =− 1

TR
(72)

where,

H = inertia constant in MW.s/MVA

KD = damping torque coefficient in pu torque/pu speed deviation
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ω0 = 2πf0 = 377 for a 60 Hz system

Lfd = field inductance = (Ldd∗Ld)
Ld−Ldd

Rfd = field resistance =
(Ld+Lfd)

Tdda21

TR = terminal voltage transducer time constant

The synchronous generator parameters Ladu and L′ads are the transient and sub-

transient inductances unsaturated and saturated. The elements of the A matrix are

obtained from PSAT which allows the calculation for all the gain constants K values.

With automatic voltage regulator action, the field flux variations are caused by the

field voltage variations, in addition to the armature reaction. From the block diagram

of Figure 8, it can be seen that:

∆ψfd =
K3

1 + sT3

[−K4∆δ − Gex(s)

1 + sTR
(K5∆δ +K6∆ψfd)] (73)

By grouping terms involving ∆ψfd and rearranging,

∆ψfd =
−K3[K4(1 + sTR) +K5Gex(s)]

s2T3TR + s(T3 + TR) + 1 +K3K6Gex(s)
∆δ (74)

The change in air-gap torque due to change in field flux linkage is:

∆Te |∆ψfd= K2∆ψfd (75)

Figure 9 shows the damping torque and synchronizing torque resulting fromK2∆ψfd.

K1-K6 are gain constants The effect of AVR is to increase the synchronizing torque

component and decrease the damping torque component when K5 is negative and

vice versa. It will be obtained in the form ∆Te |∆ψfd= KS(∆ψfd) ± KD(∆ψfd) =

A∆δ ±B(j∆δ).
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Figure 9: Positive damping torque and negative synchronizing torque due to
K2∆ψfd [4].

Hence, the net synchronizing torque coefficient is:

Ks = K1 +Ks(∆ψfd) (76)

The damping torque component due to ∆ψfd is:

KD(∆ψfd) = B(j∆δ) (77)

Since ∆ωr = s∆δ/ω0 = jω∆δ/ω0,

KD(∆ψfd) = −Bω0

ω
∆ωr (78)

Figure 10 shows the block diagram representation of a single bus infinite bus system

with AVR and PSS.
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Figure 10: Block diagram representation with AVR and PSS [4]

.

From the block diagram of Figure 10, with TR neglected (since it is very small

compared to T3), ∆ψfd due to PSS is given by:

∆ψfd =
K3KA

1 + sT3

(−K6∆ψfd + ∆vs) (79)

Therefore,

∆ψfd
∆vs

=
K3KA

sT3 + 1 +K3K6KA

(80)

Again, ∆Tpss = ∆Te due to PSS = K2(∆ψfdduetoPSS)

Hence,

∆Tpss
∆vs

= k2(
∆ψfd
∆vs

) (81)

which is obtained in the form C∠D◦. If ∆Tpss has to be in phase with ∆ωr, the ∆ωr

signal should be processed through a phase-lead network so that the signal is advanced
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by θ = D◦ at the frequency of oscillation. The amount of damping introduced depends

on the gain of PSS transfer function at that frequency. Therefore, ∆Tpss=(gain of

PSS at the frequency of oscillation)(C)(∆ωr).

With the phase-lead network compensating exactly for the phase lag between ∆Te

and ∆vs, the above compensation is purely damping. The damping torque coefficient

due to PSS at the frequency of oscillation is equal to:

Kd(PSS) = (gainofPSS)(C) (82)

Figure 11 represents the thyristor excitation system with AVR and PSS.

Figure 11: Thyristor excitation system with AVR & PSS [4].

The PSS representation in Figure 11 consists of three blocks: a phase compensation

block, a single wash out block, and a gain block. The phase compensation block

provides the appropriate phase lead characteristic to compensate for the phase lag

between the exciter input and the generator electrical torque. If the angle needed to
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be compensated it more than 45◦, two first order blocks are needed.

arg((1 + sT1)− (1 + sT2)) = ∠D◦ (83)



CHAPTER 4: RESULTS AND DISCUSSION

4.1 Base Test System

Figure 12 represents a one-line diagram of the well-known IEEE-14 bus test system

[34]. Appendix A contains the data used to conduct a power flow and dynamic analysis

of the system.

Figure 12: Modified IEEE 14 bus test system.

The system has a base of 100MVA and an order of 35 as it incorporates 5 third order

(equation 49) synchronous generators and 5 fourth order (equation 50) automatic
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voltage regulators (AVRs).

The 100 MVA generator at bus 3 of the IEEE 14 bus test system is replaced first by

a 100 MW DFIG wind farm and then by a 100 MW DDSG wind farm. On another

note, after one synchronous generator with AVR is replaced by a fifth order WTG,

it becomes a 33 order system. Third order (equation 51) PSSs for 3 synchronous

generators are designed after the WTG is integrated, making it a 42 order system.

Originally the system is marginally stable, not asymptotically stable. This means,

when the initial condition is slightly changed from equilibrium to some point near it,

two things might happen: for asymptotically stable equilibrium, ”displaced” motion

will get back to equilibrium and, for marginal stable equilibrium, the motion will be

near the equilibrium, but won’t get back to it. However, after WTG integration, the

stability is analyzed again. Then PSSs are designed to damp the oscillations. At

last, a small disturbance is created in the system to check the stability of the system.

The disturbance is a three phase fault occurring at bus 12, shedding 2.3% load of the

system for 0.25 seconds.

The total real and reactive power generation, load and losses of the system are

shown in Table 5. The generator numbers and where they are placed before and after

the WTG integration are presented in Table 6. It also shows which of the generators

are connected in PV buses supplying real power, and which generators are static

synchronous compensator connected supplying only reactive power. The power flow

results of the base system can be seen from Table 7. Generation from bus 3 is kept

at 1 p.u. i.e. 27%:
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Table 5: Total generation, load and
losses of the system

Total P Generation 3.766
Total Q Generation 1.491
Total P Load 3.626
Total Q Load 1.140
Total P Losses 0.140
Total Q Losses 0.352

Table 6: Generator location before
and after WTG placement

Bus No
Gen No. Gen no.
(Before) (After)

01 (Slack) 1 1
02 2 2
03 3 WTG
08 4 3
06 5 4

Table 7: Power flow report for 1 p.u. generation from gen. 3

Bus V phase P gen Q gen P load Q load
1 1.06 0.00 2.37 -0.13 0.00 0.00
2 1.05 -0.09 0.40 0.40 0.30 0.18
3 1.05 -0.18 1.00 0.52 1.32 0.27
4 1.01 -0.19 0.00 0.00 0.67 0.06
5 1.01 -0.17 0.00 0.00 0.11 0.02
6 1.07 -0.30 0.00 0.39 0.16 0.11
7 1.04 -0.27 0.00 0.00 0.00 0.00
8 1.09 -0.27 0.00 0.30 0.00 0.00
9 1.02 -0.31 0.00 0.00 0.41 0.23
10 1.02 -0.31 0.00 0.00 0.13 0.08
11 1.04 -0.31 0.00 0.00 0.05 0.03
12 1.05 -0.32 0.00 0.00 0.09 0.02
13 1.04 -0.32 0.00 0.00 0.19 0.08
14 1.00 -0.34 0.00 0.00 0.21 0.07

The eigenvalues are plotted in Figure 13 and the results along with corresponding

damping ratio are presented in Table ??. From the eigenvalue analysis it can be seen

that there exists a zero eigen, for which the system is marginally stable. It means the

system becomes stable, but not at the equilibrium.

Table 8: Electro-mechanical Modes of Oscillation of Base System

Most Associated States Eig (Real) Eig (Imag) Pseudo-Freq Frequency Damping Ratio (%)
ω5, δ5 -0.1001 9.1659 1.4588 1.4589 1.0919
ω5, δ5 -0.1001 -9.1659 1.4588 1.4589 1.0919
ω4, δ4 -0.1201 8.3312 1.3260 1.3261 1.4415
ω4, δ4 -0.1201 -8.3312 1.3260 1.3261 1.4415
δ3, ω3 -0.1867 8.1713 1.3005 1.3008 2.2846
δ3, ω3 -0.1867 -8.1713 1.3005 1.3008 2.2846
ω2, δ2 -0.0207 7.6077 1.2108 1.2108 0.2725
ω2, δ2 -0.0207 -7.6077 1.2108 1.2108 0.2725
δ1 0 0 0 0 -
ω1 -0.18397 0 0 0 100

This marginal stability effect can also be observed from the time domain analysis

in Figure 14. The frequency response of the generators show that the system becomes
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Figure 13: Eigenvalue plot of base case

stable not exactly at the equilibrium, but somewhere close to it.
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Figure 14: Frequency vs time response of synchronous generators

The results obtained in this study can be divided into 6 cases, as shown in Table

9. In each case, results are observed for different wind penetration levels. Starting

from 1 p.u. or 27% penetration, it was decreased to as low as 0.93 p.u. (24%) and

increased to as high as 1.5 p.u. (40%).
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Table 9: Cases

Case No. Case
1 Integrating DFIG
2 Integrating DDSG
3 Designing PSS for DFIG
4 Designing PSS for DDSG
5 Creating a Small Disturbance with DFIG Integrated
6 Creating a Small Disturbance with DDSG Integrated

4.2 Case 1: DFIG Integration

The synchronous generator at bus 3 is replaced by a DFIG. The real power pene-

tration from this bus is kept at 1 p.u. or 27%, therefore the power flow results remain

the same as in the base case shown in Table 7. However, the eigenvalue report in

Table 10 show significant difference in result.

Table 10: Electro-mechanical modes of oscillation after DFIG Integration at 1 p.u.

Most Associated States Eig (Real) Eig (Imag) Pseudo-Freq Frequency Damping Ratio (%)
ω4, δ4 -0.0971 9.1427 1.4551 1.4552 1.0619
ω4, δ4 -0.0971 -9.1427 1.4551 1.4552 1.0619
ω3, δ3 -0.1141 8.2651 1.3154 1.3156 1.3809
ω3, δ3 -0.1141 -8.2651 1.3154 1.3156 1.3809
ω2, δ2 -0.0642 7.9349 1.2629 1.2629 0.8096
ω2, δ2 -0.0642 -7.9349 1.2629 1.2629 0.8096
δ1, ω1 -0.0692 1.7024 0.2709 0.2712 4.0610
δ1, ω1 -0.0692 -1.7024 0.2709 0.2712 4.0610

It is seen from the eigenvalue analysis that there is no zero eigen. Therefore,

after the DFIG integration, the system became asymptotically stable from marginally

stable. Comparing with table ??, it can be observed that even though the first

two electromechanical modes participate less towards damping in case of DFIG, the

difference is far too less than how much more generator 2 modes participate towards

positive damping. Most importantly, generator 1 no longer participates towards a zero

eigen, which ultimately stabilizes the system at the equilibrium. This can be explained

from the physical origin of power system oscillations. In synchronous generators, the
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electrical torque is mainly dependent on the angle between rotor and stator flux. This

angle is the integral of the difference in rotational speed between these two fluxes,

eventually depending upon the difference between electrical and mechanical torque.

This makes the mechanical part of the synchronous machine a second order system

that shows oscillatory behavior by nature. Further, small changes in rotor speed

hardly affects the electrical torque developed by the machine, as they hardly change

the rotor angle. Therefore, the mechanical part of a synchronous system is naturally

prone to weakly damped oscillations [3].

However, this does not apply to the generator types normally used in wind turbines.

The variable speed wind turbines are decoupled from the grid by power electronic

converters that control the rotor speed and electrical power, damping any rotor speed

oscillations that may occur. Thus, variable speed wind turbines do not react to any

oscillations that occur in the power system, because the generator does not notice

them as they are not transferred through the converter. Therefore, they do not lead

to power system oscillations either [3].

In this case, wind power replaces the power generated by synchronous generators.

Therefore, the contribution of synchronous generators to the overall demand for power

becomes less, even though the topology of the system stays unchanged. Thus, the

synchronous generators become smaller relative to the impedances of the grid. This

strengthens the mutual coupling, which in most cases improves the damping of any

oscillations that occur between the synchronous generators [3]. Hence, as expected,

the replacement of the synchronous generator by the wind turbine generator (in this

case a DFIG) improved the overall damping of power system oscillations.
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4.2.1 Decreasing Penetration

Table 11 shows the power flow results for decreased wind penetration from DFIG.

If compared with Table 7, it can be seen that power generation from DFIG is lowered

to 0.94 and 0.93 p.u. from 1 p.u. As a result, more power is drawn from generator 1

at the slack bus.

Table 11: Power flow report for decreased generation from DFIG

Unchanged with varied penetration 0.94 p.u. 0.93 p.u.
Bus V P load Q load phase P gen Q gen phase P gen Q gen
1 1.06 0.00 0.00 0.00 2.43 -0.14 0.00 2.44 -0.14
2 1.05 0.30 0.18 -0.09 0.40 0.41 -0.09 0.40 0.41
3 1.05 1.32 0.27 -0.19 0.94 0.55 -0.19 0.93 0.55
4 1.01 0.67 0.06 -0.19 0.00 0.00 0.19 0.00 0.00
5 1.01 0.11 0.02 -0.17 0.00 0.00 -0.17 0.00 0.00
6 1.07 0.16 0.11 -0.31 0.00 0.39 -0.31 0.00 0.39
7 1.04 0.00 0.00 -0.27 0.00 0.00 -0.27 0.00 0.00
8 1.09 0.00 0.00 -0.27 0.00 0.30 -0.27 0.00 0.30
9 1.02 0.41 0.23 -0.31 0.00 0.00 -0.31 0.00 0.00
10 1.02 0.13 0.08 -0.32 0.00 0.00 -0.32 0.00 0.00
11 1.04 0.05 0.03 -0.31 0.00 0.00 -0.31 0.00 0.00
12 1.05 0.09 0.02 -0.33 0.00 0.00 -0.33 0.00 0.00
13 1.04 0.19 0.08 -0.33 0.00 0.00 -0.33 0.00 0.00
14 1.00 0.21 0.07 -0.34 0.00 0.00 -0.34 0.00 0.00

Table 12 shows the eigenvalue report for lower penetration of DFIG. If compared

with Table 10, apart from generator 3 electromechanical modes, the rest of the modes

participate towards less damping. Hence, the overall damping of the system is de-

creased with decreased penetration.

Table 12: Electro-mechanical modes of oscillation for decreased penetration from
DFIG

0.94 p.u. 0.93

Most Associated States
Real Imaginary Damping Real Imaginary Damping
Eigenvalue Eigenvalue Ratio (%) Eigenvalue Eigenvalue Ratio (%)

ω4, δ4 -0.0969 9.1451 1.0600 -0.0970 9.1447 1.0602
ω4, δ4 -0.0969 -9.1451 1.0600 -0.0970 -9.1447 1.0602
ω3, δ3 -0.1149 8.2700 1.3886 -0.1148 8.2693 1.3875
ω3, δ3 -0.1149 -8.2700 1.3886 -0.1148 -8.2693 1.3875
ω2, δ2 -0.0592 7.9474 0.7447 -0.0599 7.9456 0.7540
ω2, δ2 -0.0592 -7.9474 0.7447 -0.0599 -7.9456 0.7540
δ1, ω1 -0.0681 1.7066 3.9843 -0.0682 1.7058 3.9960
δ1, ω1 -0.0681 -1.7066 3.9843 -0.0682 -1.7058 3.9960
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4.2.2 Increasing Penetration

Table 13 shows the power flow results for increased wind penetration from DFIG. If

compared with Table 7, it can be seen that power generation from DFIG is increased

to 1.23 and 1.5 p.u. from 1 p.u. As a result, less power is drawn from generator 1 at

the slack bus.

Table 13: Power flow report for increased generation from DFIG

Unchanged with Varied Penetration 1.23 p.u. 1.5 p.u.
Bus V P load Q load phase P gen Q gen phase P gen Q gen
1 1.06 0.00 0.00 0.00 2.11 -0.08 0.00 1.83 -0.02
2 1.05 0.30 0.18 -0.08 0.40 0.35 -0.06 0.40 0.31
3 1.05 1.32 0.27 -0.14 1.23 0.45 -0.10 1.50 0.36
4 1.01 0.67 0.06 -0.17 0.00 0.00 -0.15 0.00 0.00
5 1.01 0.11 0.02 -0.15 0.00 0.00 -0.14 0.00 0.00
6 1.07 0.16 0.11 -0.29 0.00 0.39 -0.27 0.00 0.39
7 1.04 0.00 0.00 -0.25 0.00 0.00 -0.23 0.00 0.00
8 1.09 0.00 0.00 -0.25 0.00 0.30 -0.23 0.00 0.30
9 1.02 0.41 0.23 -0.29 0.00 0.00 -0.27 0.00 0.00
10 1.02 0.13 0.08 -0.30 0.00 0.00 -0.28 0.00 0.00
11 1.04 0.05 0.03 -0.29 0.00 0.00 -0.28 0.00 0.00
12 1.05 0.09 0.02 -0.31 0.00 0.00 -0.29 0.00 0.00
13 1.04 0.19 0.08 -0.31 0.00 0.00 -0.29 0.00 0.00
14 1.00 0.21 0.07 -0.32 0.00 0.00 -0.31 0.00 0.00

Table 14 presents the eigenvalue report for higher wind penetration from DFIG.

Again, if compared with Table 10, apart from generator 3 electromechanical modes,

the rest of the modes participates more towards positive damping. Hence the overall

system damping is increased with increasing penetration.

Table 14: Electro-mechanical modes of oscillation for increased penetration of DFIG

1.23 p.u. 1.5

Most Associated States
Real Imaginary Damping Real Imaginary Damping
Eigenvalue Eigenvalue Ratio (%) Eigenvalue Eigenvalue Ratio (%)

ω4, δ4 -0.0976 9.1382 1.0675 -0.0981 9.1395 1.0730
ω4, δ4 -0.0976 -9.1382 1.0675 -0.0981 -9.1395 1.0730
ω3, δ3 -0.1122 8.2542 1.3595 -0.1108 8.2491 1.3425
ω3, δ3 -0.1122 -8.2542 1.3595 -0.1108 -8.2491 1.3425
ω2, δ2 -0.0801 7.9004 1.0141 -0.0972 7.8727 1.2348
ω2, δ2 -0.0801 -7.9004 1.0141 -0.0972 -7.8727 1.2348
δ1, ω1 -0.0727 1.7043 4.2600 -0.0766 1.7365 4.4074
δ1, ω1 -0.0727 -1.7043 4.2600 -0.0766 -1.7365 4.4074
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4.3 Case 2: DDSG Integration

This time, the synchronous generator at bus 3 is replaced by a DDSG. The real

power penetration from this bus is kept at 27%, therefore the power flow results

remain same as in the base case shown in Table 7. However, the eigenvalue report in

Table 15 show significant difference in results.

Table 15: Electro-mechanical modes of oscillation after DDSG integration at 1 p.u.

Most Associated States Eig (Real) Eig (Imag) Pseudo-Freq Frequency Damping Ratio (%)
ω4, δ4 -0.0976 9.1425 1.4551 1.4552 1.0679
ω4, δ4 -0.0976 -9.1425 1.4551 1.4552 1.0679
ω3, δ3 -0.1148 8.2657 1.3155 1.3156 1.3884
ω3, δ3 -0.1148 -8.2657 1.3155 1.3156 1.3884
ω2, δ2 -0.0584 7.9325 1.2625 1.2625 0.7356
ω2, δ2 -0.0584 -7.9325 1.2625 1.2625 0.7356
δ1, ω1 -0.4567 1.0064 0.1602 0.1759 41.3253
δ1, ω1 -0.4567 -1.0064 0.1602 0.1759 41.3253

Similar to the DFIG integration of 1 p.u., it is seen from the eigenvalue analysis

that there is no zero eigen for DDSG integration either. Therefore for similar reasons

mentioned in case of DFIG, it can be said that after the DDSG integration the system

becomes asymptotically stable from marginally stable.

4.3.1 Decreasing Penetration

When the wind penetration is decreased from 1 p.u. to 0.94 and 0.93 p.u., the

power flow results remain the same as was observed in the case of DFIG as shown in

Table 11.

Table 16 shows the eigenvalue report for lower penetration of DDSG. If compared

with Table 15, all the electromechanical modes of oscillation participate towards less

damping. Hence, the overall damping of the system is decreased with decreased

penetration.
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Table 16: Electro-mechanical modes of oscillation for decreased penetration of
DDSG

0.94 p.u. 0.93

Most Associated States
Real Imaginary Damping Real Imaginary Damping
Eigenvalue Eigenvalue Ratio (%) Eigenvalue Eigenvalue Ratio (%)

ω4, δ4 -0.0962 9.1444 1.0517 -0.0962 9.1448 1.0514
ω4, δ4 -0.0962 -9.1444 1.0517 -0.0962 -9.1448 1.0514
ω3, δ3 -0.1143 8.2694 1.3821 -0.1144 8.2702 1.3832
ω3, δ3 -0.1143 -8.2694 1.3821 -0.1144 -8.2702 1.3832
ω2, δ2 -0.0467 7.9362 0.5881 -0.0458 7.9380 0.5770
ω2, δ2 -0.0467 -7.9362 0.5881 -0.0458 -7.9380 0.5770
δ1, ω1 -0.2005 1.3794 14.3815 -0.2001 1.3718 14.4332
δ1, ω1 -0.2005 -1.3794 14.3815 -0.2001 -1.3718 14.4332

The small signal stability analysis shows that with the lower penetration, the system

is heading towards marginal stability like it was in the original case, as the damping

ratio is significantly low.

4.3.2 Increasing Penetration

When the wind penetration is increased from 1 p.u. to 1.23 and 1.5 p.u., the power

flow results are the same as it was observed in case of DFIG as shown in Table 13.

Table 17 presents the eigenvalue report for higher wind penetration from DDSG.

Again, if compared with Table 15, apart from generator 3 electromechanical modes,

the rest of the modes participates more towards positive damping. Hence the overall

system damping is increased with increasing penetration.

Table 17: Electro-mechanical modes of oscillation at increased penetration of DDSG

1.23 p.u. 1.5

Most Associated States
Real Imaginary Damping Real Imaginary Damping
Eigenvalue Eigenvalue Ratio (%) Eigenvalue Eigenvalue Ratio (%)

ω4, δ4 -0.0981 9.1385 1.0739 -0.0987 9.1403 1.0799
ω4, δ4 -0.0981 -9.1385 1.0739 -0.0987 -9.1403 1.0799
ω3, δ3 -0.1129 8.2552 1.3673 -0.1114 8.2507 1.3506
ω3, δ3 -0.1129 -8.2552 1.3673 -0.1114 -8.2507 1.3506
ω2, δ2 -0.0741 7.8993 0.9378 -0.0914 7.8723 1.1608
ω2, δ2 -0.0741 -7.8993 0.9378 -0.0914 -7.8723 1.1608
δ1, ω1 -0.5537 1.1827 42.4000 -0.6326 1.4135 40.8496
δ1, ω1 -0.5537 -1.1827 42.4000 -0.6326 -1.4135 40.8496

The small signal stability analysis shows that with the higher penetration, the



48

system is more stable, as the damping ratio is significantly high.

4.4 Case 1 vs Case 2

A DFIG was integrated in case 1 and a DDSG was integrated in case 2. Wind

penetration was varied and small signal stability analysis was done. The resultant

eigenvalue plots between the two cases for each penetration level is compared in

this section. Additionally, to observe whether the damping ratio obtained from the

eigenvalue analysis holds true, time domain analysis was also done and the results

are compared in this section.

Figure 15 compares the eigen plots and Figure 16 compares the frequency-time

response between DFIG and DDSG integrated system at 1 p.u. wind penetration. It

can be observed from the eigenvalue plots that for both DFIG and DDSG, there are

33 negative eigen, no zero or positive eigen and 8 complex pairs.

−120 −100 −80 −60 −40 −20 0
−10

−8

−6

−4

−2

0

2

4

6

8

10

Real

Im
a
g

(a) DFIG at 1 p.u.
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Figure 15: Eigenvalue plots for 1 p.u. wind penetration

However, from the time domain analysis it is clear that the oscillation damps out

faster in case of DDSG. This is reasonable as from the eigenvalues in Table 10 and

Table 15 it can be seen that except for generator 2, all the modes provide more
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damping in case of DDSG. As a result, for the same penetration, the overall damping

of the DDSG integrated system is slightly higher.
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(a) DFIG at 1 p.u.
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(b) DDSG at 1 p.u.

Figure 16: Generator frequency vs time plots for 1 p.u. wind penetration

4.4.1 Lower Penetration

Figure 17 and Figure 18 compare the eigen plots between DFIG and DDSG in-

tegrated system at 0.94 p.u. and 0.93 p.u. wind penetration respectively. The

eigenplots show that out of 33, all the eigenvalues have negative real parts and 8 of

them are complex for both DFIG and DDSG.
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(a) DFIG at 0.94 p.u.
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Figure 17: Eigenvalue plots for 0.94 p.u. wind penetration
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(a) DFIG at 0.93 p.u.
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(b) DDSG at 0.93 p.u.

Figure 18: Eigenvalue plots for 0.93 p.u. wind penetration

Again, Figure 19 and Figure 20 compare the frequency-time response between

DFIG and DDSG integrated system at 0.94 p.u. and 0.93 p.u. wind penetration

respectively. The time domain simulation shows that even though DFIG integrated

system exhibits more oscillation (Figure 19a), with lower penetration, the DDSG

integrated system tries to move from the equilibrium (Figure 19b). Eventually it

becomes marginally stable after around 16 seconds, for 0.93 p.u. wind penetration

(Figure 20b). Whereas DFIG is not affected as much (Figure 20a).
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(a) DFIG at 0.94 p.u.
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Figure 19: Generator frequency vs time plots for 0.94 p.u. wind penetration



51

0 20 40 60 80 100
0.9985

0.999

0.9995

1

1.0005

1.001

1.0015

1.002

time (s)

 

 

ω
Syn 1

ω
Syn 2

ω
Syn 3

ω
Syn 4

(a) DFIG at 0.93 p.u.
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(b) DDSG at 0.93 p.u.

Figure 20: Generator frequency vs time plots for 0.93 p.u. wind penetration

4.4.2 Higher Penetration

Figure 21 and Figure 22 compare the eigen plots between DFIG and DDSG in-

tegrated system at 1.23 p.u. and 1.5 p.u. wind penetration respectively. If the

eigenplots are closely observed, it is clear that compared to the lower penetration the

eigens moved towards left for 1.23 and 1.5 p.u. penetration, meaning the real part

became more negative. Nevertheless, out of 33, all the eigenvalues have negative real

parts and 8 of them are complex.
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(a) DFIG at 1.23 p.u.
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Figure 21: Eigenvalue plots for 1.23 p.u. wind penetration
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(a) DFIG at 1.5 p.u.
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(b) DDSG at 1.5 p.u.

Figure 22: Eigenvalue plots for 1.5 p.u. wind penetration

Again, Figure 23 and Figure 24 compare the frequency-time response between

DFIG and DDSG integrated system at 1.23 p.u. and 1.5 p.u. wind penetration

respectively. The time domain simulation shows that the DFIG integrated system

exhibits more oscillation (Figure 23a), compared to the the DDSG integrated system

(Figure 23b). Even though the oscillations are damped slightly faster (Figure 24a) at

1.5 p.u. than they did at 1.23 p.u., still better damping is clearly visible with DDSG

(Figure 24b).
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(a) DFIG at 1.23 p.u.
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Figure 23: Generator frequency vs time plots for 1.23 p.u. wind penetration

Therefore, it can be concluded that at a particular penetration level, DDSG inte-

grated system damps out the oscillation faster by providing better damping, than the
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(a) DFIG at 1.5 p.u.
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(b) DDSG at 1.5 p.u.

Figure 24: Generator frequency vs time plots for 1.5 p.u. wind penetration

DFIG integrated systems. However, after a certain level of wind penetration, DDSG

tends to move the system back to marginal stability, like it was originally. In this

study, that level is found to be 0.93 p.u. DDSG fails to make the system asymptoti-

cally stable any longer when the penetration level reaches 0.93 p.u. or below. On the

other hand, DFIG does not exhibit such drastic change in stability with the change

of penetration.

This phenomenon can be explained from the characteristics equations of DFIG

and DDSG presented in chapter 2. For DFIG, differential equations for the converter

currents are as follows:

iqr,max =− Pmin

iqr,min =− Pmax

˙iqr =(−xs + xm
xmV

P ∗ω(ωm)/ωm − iqr)
1

Te

where P ∗ω(ωm) is the power-speed characteristic roughly optimizing the wind energy

capture and is calculated using the current rotor speed value. xs , xm are the stator

and magnetizing reactance of the generator, V is the grid voltage magnitude, ωm is
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the rotor speed, and is Te is the electrical torque.

For DDSG, following are the characteristic differential equations:

iqs,max =− Pmin

iqs,min =− Pmax

˙iqs =(iqsref − iqs)/Tε

iqsref =
P ∗ω(ωm)

ωm(ψp − xdids)

Where xd is the stator d axis reactance and ψp is the rotor field flux.

Comparing the 2 sets of equation, it can be observed that the minimum and maxi-

mum real power delivered to the grid is related to rotor and stator q axis current for

DFIG and DDSG respectively and the minimum power delivered is equal to maximum

q axis current. Hence the q axis current is of primary interest here. For DDSG, the iq

is more sensitive to parameters xd and ψp. Whereas for DFIG, iq is not as sensitive to

xs or xm , since xm is usually much larger than xs. As a result, for a smaller value of

xd, DDSG tends to perform well at higher penetration, and vice versa. In this thesis,

the parameter xd for DDSG was taken as low as 0.01 p.u., where as it can go up to

1.5 p.u. or higher, in which case it would perform well for lower penetration. On the

other hand, DFIG is not as sensitive to the reactance value. Hence for a particular

model, DFIG allows for a larger range of penetration, even though for a smaller range

of penetration, DDSG might provide better stability.



55

4.5 Case 3: PSS Design for DFIG Integrated System

In order to improve the damping, PSSs are designed for the DFIG integrated sys-

tem. From the electromechanical modes participating in the oscillation shown in

Table 10, it is clear that generators 2, 3 and 4 oscillate with frequencies 7.93, 8.27

and 9.14 radians respectively. Hence the three PSSs design for these generators are

quite similar. The following is the A matrix obtained from PSAT for 1 p.u. wind

penetration:

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


=



−0.19425 −0.0306 −0.06187 0

376.9911 0 0 0

0 −0.01796 −0.18691 0

0 −27.2066 814.6482 −1000


(84)

Generator 2 oscillates with a frequency of 7.93 radians. Hence the PSS design

based on that and generator parameters:

From equation (57) to (76), using matlab,

∆Te|ψfd =0.0033− 0.0078i

KD(∆ψfd) =− 0.0078 ∗ 377

7.93
= 0.37

From (79),(80),

∆TPSS =0.1497− 0.3400i = 0.3715∠− 66.24◦ (85)
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Hence, the minimum gain from the PSS:

KPSS =
0.37

0.0.34
= 1.1 (86)

Again, since the angle that needs to be compensated is 45◦, two phase compensation

block compensating 66.24
2

= 33◦ are needed. From (82):

T1 = T3 =0.28s

T1 = T3 =0.08s

Generator 3 oscillates with a frequency of 8.27 radians. Hence the PSS design

based on that and generator parameters:

From equation (57) - (76), using matlab,

∆Te|ψfd =0.0031− 0.0066i

KD(∆ψfd) =− 0.0066 ∗ 377

8.27
= 0.3

From (79),(80),

∆TPSS =0.1364− 0.2800i = 0.31∠− 64.03◦ (87)

Hence, the minimum gain from the PSS:

KPSS =
0.3

0.0.28
= 1.1 (88)

Again, since the angle that needs to be compensated is 45◦, two phase compensation
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block compensating 64.03
2

= 32◦ are needed. From (82):

T1 = T3 =0.27s

T1 = T3 =0.08s

Generator 4 oscillates with a frequency of 9.14 radians. Hence the PSS design

based on that and generator parameters:

Using same sets of equation in matlab,

∆Te|ψfd =0.0025− 0.0063i

KD(∆ψfd) =− 0.0063 ∗ 377

9.14
= 0.26

∆TPSS =0.1113− 0.2667i = 0.29∠− 67.35◦ (89)

Hence, the minimum gain from the PSS:

KPSS =
0.26

0.0.2667
= 0.97 (90)

Again, since the angle that needs to be compensated is 45◦, two phase compensation

block compensating 67.35
2

= 33.7◦ are needed. Therefore:

T1 = T3 =0.29s

T1 = T3 =0.08s

The eigenvalue analysis reports after designing the PSS, are shown in Table 18.

Comparing with the damping ratio in Table 10, it is visible that the damping of

the system has been improved after adding the PSS.
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Table 18: Electro-mechanical modes of oscillation with DFIG at 1 p.u. with PSS

Most Associated States Eig (Real) Eig (Imag) Pseudo-Freq Frequency Damping Ratio (%)
ω4, δ4 -0.1577 9.2427 1.4710 1.4712 1.7062
ω4, δ4 -0.1577 -9.2427 1.4710 1.4712 1.7062
ω3, δ3 -0.1250 8.2286 1.3096 1.3098 1.5190
ω3, δ3 -0.1250 -8.2286 1.3096 1.3098 1.5190
ω2, δ2 -0.4071 8.4160 1.3394 1.3410 4.8311
ω2, δ2 -0.4071 -8.4160 1.3394 1.3410 4.8311
δ1, ω1 -0.2105 1.6761 0.2668 0.2689 12.4607
δ1, ω1 -0.2105 -1.6761 0.2668 0.2689 12.4607

4.5.1 Stability with PSS at Lower Penetration of DFIG

When the wind penetration is decreased from 1 p.u. to 0.94 and 0.93 p.u. respec-

tively, the resulting eigenvalue analysis reports are shown in Table 19. Comparing

with the values in Table 12, it can be observed that the damping of the system has

been improved after the PSS design.

Table 19: Electro-mechanical modes of oscillation after PSS design for decreased
penetration from DFIG

0.94 p.u. 0.93

Most Associated States
Real Imaginary Damping Real Imaginary Damping
Eigenvalue Eigenvalue Ratio (%) Eigenvalue Eigenvalue Ratio (%)

ω4, δ4 -0.1574 9.2445 1.7024 -0.1574 9.2448 1.7018
ω4, δ4 -0.1574 -9.2445 1.7024 -0.1574 -9.2448 1.7018
ω3, δ3 -0.1196 8.2277 1.4529 -0.1186 8.2276 1.4416
ω3, δ3 -0.1196 -8.2277 1.4529 -0.1186 -8.2276 1.4416
ω2, δ2 -0.4024 8.4283 4.7694 -0.4017 8.4304 4.7593
ω2, δ2 -0.4024 -8.4283 4.7694 -0.4017 -8.4304 4.7593
δ1, ω1 -0.2103 1.6799 12.4206 -0.2102 1.6807 12.4126
δ1, ω1 -0.2103 -1.6799 12.4206 -0.2102 -1.6807 12.4126

4.5.2 Stability with PSS at Higher Penetration of DFIG

With the designed PSS, when the wind penetration is increased from 1 p.u. to 1.23

and 1.5 p.u.respectively, the resulting eigenvalue analysis reports are shown in Table

20.

Comparing with the values in Table 14, it can be observed that the damping of the

system has been improved after the PSS design.
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Table 20: Electro-mechanical modes of oscillation at increased penetration from
DFIG with PSS

1.23 p.u. 1.5

Most Associated States
Real Imaginary Damping Real Imaginary Damping
Eigenvalue Eigenvalue Ratio (%) Eigenvalue Eigenvalue Ratio (%)

ω4, δ4 -0.1591 9.2394 1.7216 -0.1609 9.2422 1.7407
ω4, δ4 -0.1591 -9.2394 1.7216 -0.1609 -9.2422 1.7407
ω3, δ3 -0.1438 8.2359 1.7458 -0.1604 8.2506 1.9440
ω3, δ3 -0.1438 -8.2359 1.7458 -0.1604 -8.2506 1.9440
ω2, δ2 -0.4255 8.3756 5.0739 -0.4494 8.3410 5.3795
ω2, δ2 -0.4255 -8.3756 5.0739 -0.4494 -8.3410 5.3795
δ1, ω1 -0.2114 1.6780 12.4963 -0.2127 1.7121 12.3305
δ1, ω1 -0.2114 -1.6780 12.4963 -0.2127 -1.7121 12.3305

4.6 Case 4: PSS Design for DDSG Integrated System

In order to improve the damping, PSSs are designed for the DDSG integrated

system. From the electromechanical modes participating in the oscillation shown in

Table 15, it is clear that generator 2, 3 and 4 oscillate with frequencies 7.93, 8.27

and 9.14 radians respectively. Hence the three PSSs design for these generators are

quite similar. The following is the A matrix obtained from PSAT for 1 p.u. wind

penetration:

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


=



−0.19763 −0.17784 −0.01591 0

376.9911 0 0 0

0 0.020066 −0.86508 0

0 17.03581 291.0661 −1000


(91)

Generator 2 oscillates with a frequency of 7.93 radians. Hence the PSS is design

based on that and generator parameters. From (57) - (76), using matlab,

∆Te|ψfd =− 0.0003 + 0.0012i

KD(∆ψfd) =− 0.0012 ∗ 377

7.93
= 0.057
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From (79),(80),

∆TPSS =0.0244− 0.0984i = 0.101∠− 76.073◦ (92)

Hence, the minimum gain from the PSS:

KPSS =
0.057

0.0984
= 0.6 (93)

Again, since the angle that needs to be compensated is 45◦, two phase compensation

block compensating 76.073
2

= 38◦ are needed. From (82):

T1 = T3 =0.3s

T1 = T3 =0.07s

Generator 3 oscillates with a frequency of 8.27 radians. Hence the PSS design

based on that and generator parameters:

Using same sets of equation in matlab,

∆Te|ψfd =− 0.0002 + 0.00093i

KD(∆ψfd) =− 0.00093 ∗ 377

8.27
= 0.04

∆TPSS =0.0179− 0.0760i = 0.078∠− 76.75◦ (94)

Hence, the minimum gain from the PSS:

KPSS =
0.04

0.076
= 0.6 (95)

Again, since the angle that needs to be compensated is 45◦, two phase compensation
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block compensating 76.75
2

= 38◦ are needed. Hence:

T1 = T3 =0.3s

T1 = T3 =0.07s

Generator 4 oscillates with a frequency of 9.14 radians. Hence the PSS design

based on that and generator parameters:

Using same sets of equation in matlab,

∆Te|ψfd =− 0.00017 + 0.00085i

KD(∆ψfd) =− 0.00085 ∗ 377

9.14
= 0.035

From (79),(80),

∆TPSS =0.0149− 0.0694i = 0.071∠− 77.88◦ (96)

Hence, the minimum gain from the PSS:

KPSS =
0.035

0.0694
= 0.5 (97)

Again, since the angle that needs to be compensated is 45◦, two phase compensation

block compensating 77.88
2

= 39◦ are needed. Hence:

T1 = T3 =0.3s

T1 = T3 =0.065s

The eigenvalue analysis reports after the PSS design are shown in Table 21. Com-

paring with the values in Table 15, it is clear that the overall damping of the system
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has increased.

Table 21: Electro-mechanical modes of oscillation after PSS Design with DDSG at 1
p.u.

Most Associated States Eig (Real) Eig (Imag) Pseudo-Freq Frequency Damping Ratio (%)
ω4, δ4 -0.3074 9.2447 1.4713 1.4722 3.3230
ω4, δ4 -0.3074 -9.2447 1.4713 1.4722 3.3230
ω3, δ3 -0.1334 8.1999 1.3051 1.3052 1.6269
ω3, δ3 -0.1334 -8.1999 1.3051 1.3052 1.6269
ω2, δ2 -0.4509 8.3488 1.3287 1.3307 5.3928
ω2, δ2 -0.4509 -8.3488 1.3287 1.3307 5.3928
δ1, ω1 -0.5476 0.8812 0.1402 0.1651 52.7835
δ1, ω1 -0.5476 -0.8812 0.1402 0.1651 52.7835

4.6.1 Stability with PSS at Lower Penetration of DDSG

With the PSS designed, when the wind penetration is decreased from 1 p.u. to

0.94 and 0.93 p.u. respectively, the eigenvalue analysis reports are shown in Table

22. Comparing with the values in Table 16, it can be observed that the damping of

the system has been improved after the PSS design.

Table 22: Electro-mechanical modes of oscillation after PSS Design with DDSG at
lower penetration

0.94 p.u. 0.93

Most Associated States
Real Imaginary Damping Real Imaginary Damping
Eigenvalue Eigenvalue Ratio (%) Eigenvalue Eigenvalue Ratio (%)

ω4, δ4 -0.3041 9.2502 3.2852 -0.3039 9.2506 3.2836
ω4, δ4 -0.3041 -9.2502 3.2852 -0.3039 -9.2506 3.2836
ω3, δ3 -0.1219 8.1952 1.4867 -0.1210 8.1950 1.4768
ω3, δ3 -0.1219 -8.1952 1.4867 -0.1210 -8.1950 1.4768
ω2, δ2 -0.4403 8.3603 5.2590 -0.4392 8.3628 5.2451
ω2, δ2 -0.4403 -8.3603 5.2590 -0.4392 -8.3628 5.2451
δ1, ω1 -0.3638 1.3240 26.4945 -0.3630 1.3156 26.5993
δ1, ω1 -0.3638 -1.3240 26.4945 -0.3630 -1.3156 26.5993

4.6.2 Stability with PSS at Higher Penetration of DDSG

When the wind penetration is increased from 1 p.u. to 1.23 and 1.5 p.u. respec-

tively, the resulting eigenvalue analysis reports are shown in Table 23. Comparing

with the values in Table 17, it can be observed that the damping of the system has

been improved after the PSS design.
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Table 23: Electro-mechanical modes of oscillation after PSS Design for increased
penetration from DDSG.

1.23 p.u. 1.5

Most Associated States
Real Imaginary Damping Real Imaginary Damping
Eigenvalue Eigenvalue Ratio (%) Eigenvalue Eigenvalue Ratio (%)

ω4, δ4 -0.3119 9.2407 3.3734 -0.3175 9.2425 3.4328
ω4, δ4 -0.3119 -9.2407 3.3734 -0.3175 -9.2425 3.4328
ω3, δ3 -0.1458 8.2102 1.7757 -0.1549 8.2248 1.8825
ω3, δ3 -0.1458 -8.2102 1.7757 -0.1549 -8.2248 1.8825
ω2, δ2 -0.4757 8.3025 5.7199 -0.5071 8.2637 6.1251
ω2, δ2 -0.4757 -8.3025 5.7199 -0.5071 -8.2637 6.1251
δ1, ω1 -0.6548 0.9979 54.8595 -0.9401 1.5646 51.5019
δ1, ω1 -0.6548 -0.9979 54.8595 -0.9401 -1.5646 51.5019
δ1, ω1 - - - -0.7966 1.0839 59.2217
δ1, ω1 - - - -0.7966 -1.0839 59.2217

4.7 Comparison between Case 3 and Case 4

After the PSSs are designed, the results were different for DFIG and DDSG inte-

grated systems. From the damping ratios obtained, it is clear that the overall damping

of the system is improved for each penetration level when the PSSs are added. In this

section, comparison is made between DFIG and DDSG integrated system damping

after the PSSs are added.

Figure 25 compares the eigenvalue plots obtained from DFIG and DDSG integrated

system for a wind penetration of 1 p.u. after the PSS is added. If compared with the

plots in Figure 15, it is clear that for both DFIG and DDSG eigens moved towards

negative, increasing the damping of the system. Also, comparing between Figure 25a

and Figure 25b it is visible that DDSG has 11 pairs of complex eigenvalues, whereas

DFIG has 9 which explains the results found in the time domain simulations later.
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Figure 25: Eigenvalue plots for 1 p.u. wind penetration

For the same penetration, Figure 26 compares the time domain simulation, i.e. the

frequency-time response of the system between DFIG and DDSG integrated systems.

It can be observed from the plots that with the designed PSS, both DFIG and DDSG

integrated systems damp out the oscillations faster. With PSS, both WTGs tend to

damp them out at around 40 seconds, with DFIG 4-5 seconds sooner than DDSG.
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(a) DFIG at 1 p.u.
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(b) DDSG at 1 p.u.

Figure 26: Generator frequency vs time plot for 1 p.u. wind penetration

4.7.1 Lower Penetration

Figure 27 and Figure 28 compare the eigenvalue plots obtained from DFIG and

DDSG integrated system for 0.94 and 0.93 p.u. wind penetration respectively after
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the PSS is added. Comparing with the plots in Figure 17 and Figure 18, the eigens

moved towards left, increasing the overall damping. Also, after adding the PSS, the

DDSG integrated system exhibits 11 pairs of complex eigenvalues, whereas DFIG

integrated system exhibits 9.

−120 −100 −80 −60 −40 −20 0
−10

−8

−6

−4

−2

0

2

4

6

8

10

Real

Im
a

g
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Figure 27: Eigenvalue plots for decreased wind penetration
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Figure 28: Eigenvalue plots for decreased wind penetration

The time domain simulation, i.e. the frequency-time response of the system be-

tween DFIG and DDSG integrated systems for 0.94 and 0.93 p.u. wind integration

after adding the PSSs are compared in Figure 29 and Figure 30 respectively. For

DFIG, the oscillation damps out within 40 seconds, which is much faster than with-

out PSS presented in Figure 19a and Figure 20a. On the other hand, for DDSG,
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the system tended to move away from equilibrium (Figure 19b) previously without

PSS. After adding the PSS, the system remains in the equilibrium state (Figure 29b).

However, in case of 0.93 p.u. penetration from DDSG, the PSS was able to keep the

system at equilibrium point till 30 seconds, unlike the case without any PSS where it

took off from equilibrium state at as early as 18 seconds (Figure 20b).
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(a) DFIG at 0.94 p.u.
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(b) DDSG at 0.94 p.u.

Figure 29: Generator frequency vs time plots for decreased wind penetration
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(a) DFIG at 0.93 p.u.
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(b) DDSG at 0.93 p.u.

Figure 30: Generator frequency vs time plots for decreased wind penetration

4.7.2 Higher Penetration

Figure 31 and Figure 32 compare the eigenvalue plots obtained from DFIG and

DDSG integrated system for 1.23 and 1.5 p.u. wind penetration respectively after
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the PSS is added. Comparing with the plots in Figure 21 and Figure 22 where no PSS

was added, the eigens moved towards left, increasing the overall damping. Also, after

adding the PSS, the DDSG integrated system exhibits 11 pairs of complex eigenvalues,

whereas DFIG integrated system exhibits 9.
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(a) DFIG at 1.23 p.u.
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Figure 31: Eigenvalue plots for increased wind penetration
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(a) DFIG at 1.5 p.u.
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Figure 32: Eigenvalue plots for increased wind penetration

The time domain simulation, i.e. the frequency-time response of the system be-

tween DFIG and DDSG integrated systems for 1.23 and 1.5 p.u. wind integration

after adding the PSS are compared in Figure 33 and Figure 34 respectively. For

DFIG, the oscillation damps out within 40 seconds, which is much faster than with-

out PSS presented in Figure 23a (100 seconds) and Figure 20a (80 seconds). On the
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other hand, for DDSG, the oscillations damp out within 38 seconds (Figure 23b and

24b), which is much faster than without PSS presented in Figure 23b and Figure 24b

where it takes almost 60 seconds to damp out all the oscillations.
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(a) DFIG at 1.23 p.u.
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(b) DDSG at 1.23 p.u.

Figure 33: Generator frequency vs time plots for 1.23 p.u. wind penetration
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(a) DFIG at 1.5 p.u.

0 20 40 60 80 100
0.999

0.9995

1

1.0005

1.001

1.0015

1.002

time (s)

 

 

ω
Syn 1

ω
Syn 2

ω
Syn 3

ω
Syn 4

(b) DDSG at 1.5 p.u.

Figure 34: Generator frequency vs time plots for 1.5 p.u. wind penetration

Hence, with the designed PSSs added, the oscillations in the DDSG or DFIG

integrated systems are damped out 22-60 seconds faster.

4.8 Case 5: Small Disturbance in DFIG Integrated System

A three phase fault occurs at bus 12 at 7th second and clears at 7.25th second.

This causes the system to lose 2.3% load of the system for 0.25 seconds. For this case,
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a time domain analysis of the DFIG integrated system is done without and with the

PSSs designed.

For 1 p.u. wind penetration, Figure 35a and Figure 35b show the time domain analysis

of the system without and with the PSS respectively. The frequency response of the

generators shows that with the PSSs, the oscillations damp out within 50 seconds of

the fault clearance whereas without any PSS added, it takes at least 100 seconds.
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(b) With the designed PSS

Figure 35: Generator frequency vs time plot with small disturbance before and after
adding PSS in 1 p.u. DFIG integrated system

4.8.1 Stability with Disturbance at Lower Penetration without and with the PSS

When the wind penetration is decreased to 0.94 p.u. from 1 p.u., Figure 36a and

Figure 36b show the time domain analysis of the system without and with the PSS

respectively. It can be observed from the frequency response of the generators that

even at lower penetration the oscillations are damped out within 50 seconds of the

fault clearance when the PSSs are added. Without the PSSs, it takes around 100

seconds to damp them out.
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Figure 36: Generator frequency vs time plot with small disturbance before and after
adding PSS in 0.94 p.u. DFIG integrated system

For 0.93 p.u. wind penetration, Figure 37a and Figure 37b show the time domain

analysis of the system without and with the PSS respectively. The results are similar

to what they were for 0.94 p.u. penetration. The oscillations damp out at around 100

seconds without, and within 50 seconds of the fault clearance with the PSSs added.

0 20 40 60 80 100
0.985

0.99

0.995

1

1.005

1.01

1.015

time (s)

 

 

ω
Syn 1

ω
Syn 2

ω
Syn 3

ω
Syn 4

(a) Before adding PSS

0 20 40 60 80 100
0.985

0.99

0.995

1

1.005

1.01

1.015

time (s)

 

 

ω
Syn 1

ω
Syn 2

ω
Syn 3

ω
Syn 4

(b) With the designed PSS

Figure 37: Generator frequency vs time plot with small disturbance before and after
adding PSS in 0.93 p.u. DFIG integrated system

4.8.2 Stability with Disturbance at Higher Penetration without and with the PSS

When the wind penetration is increased to 1.23 p.u. from 1 p.u., Figure 38a and

Figure 38b show the time domain analysis of the system without and with the PSS
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respectively. The frequency response curves show that the oscillations are damped

out within 45 seconds of the fault clearance when the PSS are added. Where as

without the PSSs, it takes around 100 seconds.
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Figure 38: Generator frequency vs time plot with small disturbance before and after
adding PSS in 1.23 p.u. DFIG integrated system

For 1.5 p.u. wind penetration, Figure 39a and Figure 39b show the time domain

analysis of the system without and with the PSS respectively. The results are similar

to those at 1.23 p.u. penetration, where the oscillations damp out within 45 seconds

of the fault clearance when the PSS added. Without the PSS however, it takes at

least 100 seconds for the oscillations to damp out.
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Figure 39: Generator frequency vs time plot with small disturbance before and after
adding PSS in 1.5 p.u. DFIG integrated system
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4.9 Case 6: Small Disturbance in DDSG Integrated System

A three phase fault occurs in bus 12 at 7th seconds and clears at 7.25th second.

This causes the system to lose 2.3% load of the system for 0.25 seconds. For this

case, a time domain analysis is done for the DDSG integrated system without and

with the PSSs designed.

For 1 p.u. wind penetration, Figure 40a and Figure 40b show the time domain

analysis of the system without and with the PSS respectively. It can be observed

from the frequency response of the generators that without the PSSs, the oscillations

take around 80 seconds to damp out where as after adding the PSS they damp out

within 40 seconds of the fault clearance.
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Figure 40: Generator frequency vs time plot with small disturbance before and after
adding PSS in 1 p.u. DDSG integrated system

4.9.1 Stability with Disturbance at Lower Penetration without & with the PSS

When the wind penetration is decreased to 0.94 p.u. from 1 p.u., Figure 41a and

Figure 41b show the time domain analysis of the system without and with the PSS

respectively. It can be observed from the frequency response of the generators that
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without the PSSs, the system tends to move away from the equilibrium at around

70th second, but it gets back right after. The oscillations however damp out within

around 80 seconds of the fault clearance. On the other hand, with the PSSs, the

system has no tendency to move away from the equilibrium, and the oscillations

damp out within 50 seconds of the fault clearance.
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Figure 41: Generator frequency vs time plot with small disturbance before and after
adding PSS in 0.94 p.u. DDSG integrated system

For 0.93 p.u. wind penetration, Figure 42a and Figure 42b show the time domain

analysis of the system without and with the PSS respectively. It can be observed from

the frequency response of the system that without the PSSs, the system moves away

from the equilibrium within 20 seconds of the fault before the oscillations are damped

out and heads towards marginally stability. Whereas with the PSS, the oscillations

are damped out within 45 seconds of the fault clearance, even though eventually

at around 70th second, the system leaves the equilibrium state and heads towards

marginal stability.
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Figure 42: Generator frequency vs time plot with small disturbance before and after
adding PSS in 0.93 p.u. DDSG integrated system

4.9.2 Stability with Disturbance at Higher Penetration without and with the PSS

When the wind penetration is increased to 1.23 p.u. from 1 p.u., Figure 43a and

Figure 43b show the time domain analysis of the system without and with the PSS

respectively. The frequency response of the generators show that the oscillations are

damped out within 65 seconds of the fault clearance without any PSS in the system.

When the PSSs are added, the oscillations damp out within 45 seconds of the fault

clearance.

0 20 40 60 80 100
0.985

0.99

0.995

1

1.005

1.01

1.015

time (s)

 

 

ω
Syn 1

ω
Syn 2

ω
Syn 3

ω
Syn 4

(a) Before adding PSS

0 20 40 60 80 100
0.985

0.99

0.995

1

1.005

1.01

1.015

time (s)

 

 

ω
Syn 1

ω
Syn 2

ω
Syn 3

ω
Syn 4

(b) With the designed PSS

Figure 43: Generator frequency vs time plot with small disturbance before and after
adding PSS in 1.23 p.u. DDSG integrated system
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For 1.5 p.u. wind penetration, Figure 44a and Figure 44b show the time domain

analysis of the system without and with the PSS respectively. The frequency response

of the generators show that the oscillations are damped out within 60 seconds of the

fault clearance without any PSS in the system. When the PSSs are added, the

oscillations damp out within 40 seconds of the fault clearance.
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Figure 44: Generator frequency vs time plot with small disturbance before and after
adding PSS in 1.5 p.u. DDSG integrated system

4.10 DFIG vs DDSG Summary

Table 24 compares the damping ratio between DFIG and DDSG for 0.93, 0.94,

1, 1.23 and 1.5 p.u. wind penetration before adding the PSS. It can be observed

that for DDSG, the damping ratio corresponding to all the electromechanical modes

of oscillation decreases when the wind penetration is below 1 p.u. Specially the

damping ratio corresponding to δ1, ω1 significantly drops. Where as for DFIG, the

decrease is much less for all the modes. In fact, δ3, ω3 participate towards positive

damping with lower penetration. Hence, the overall impact of lower wind penetration

is more on DDSG integrated system than it is on DFIG integrated system. Which

means even though with the decrease in wind penetration the overall system damping
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decreases for both DFIG and DDSG, DDSG integrated system exhibits a greater drop

in damping ratio. As a result, at 0.93 p.u. wind penetration, DFIG integrated system

exhibits higher overall damping than DDSG integrated system.

Table 24: Comparison between damping ratio of DFIG and DDSG integrated
system without PSS at different wind penetration

0.93 0.94 1 1.23 1.5
States DFIG DDSG DFIG DDSG DFIG DDSG DFIG DDSG DFIG DDSG
ω4, δ4 1.0600 1.0514 1.0602 1.0517 1.0619 1.0679 1.0675 1.0739 1.0730 1.0799
ω4, δ4 1.0600 1.0514 1.0602 1.0517 1.0619 1.0679 1.0675 1.0739 1.0730 1.0799
δ3, ω3 1.3886 1.3832 1.3875 1.3821 1.3809 1.3884 1.3595 1.3673 1.3425 1.3506
δ3, ω3 1.3886 1.3832 1.3875 1.3821 1.3809 1.3884 1.3595 1.3673 1.3425 1.3506
ω2, δ2 0.7447 0.5770 0.7540 0.5881 0.8096 0.7356 1.0141 0.9378 1.2348 1.1608
ω2, δ2 0.7447 0.5770 0.7540 0.5881 0.8096 0.7356 1.0141 0.9378 1.2348 1.1608
δ1, ω1 3.9843 14.4332 3.9960 14.3815 4.0610 41.3253 4.2600 42.4000 4.4074 40.8496
δ1, ω1 3.9843 14.4332 3.9960 14.3815 4.0610 41.3253 4.2600 42.4000 4.4074 40.8496

On the other hand, with higher penetration, the overall damping of the system

improves both for DFIG and DDSG integrated systems. Specially damping ratios

corresponding to δ1, ω1 are significantly high for DDSG integrated system. Also, the

increase in damping ratio corresponding to δ, ω of generator 2 and 4 is also higher in

case of DDSG integrated system than it is in case of DFIG integrated system. As a

result, at 1.5 p.u. wind penetration, DDSG integrated system exhibits higher overall

damping than DFIG integrated system.

Table 25 compares the damping ratio between DFIG and DDSG for 0.93, 0.94, 1,

1.23 and 1.5 p.u. wind penetration after adding the PSS. Comparing with Table 24, it

can be observed that all the damping ratios improved with PSS. Also, the decrease and

increase of damping ratio with the decrease and increase of wind penetration remain

consistent for both DFIG and DDSG integrated systems. The damping decreases

when the wind penetration is low and the damping increases when the penetration is

high.
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Table 25: Comparison between damping ratio of DFIG and DDSG integrated
system with PSS at different wind penetration

0.93 0.94 1 1.23 1.5
States DFIG DDSG DFIG DDSG DFIG DDSG DFIG DDSG DFIG DDSG
ω4, δ4 1.7018 3.2836 1.7024 3.2852 1.7062 3.3230 1.7216 3.3734 1.7407 3.4328
ω4, δ4 1.7018 3.2836 1.7024 3.2852 1.7062 3.3230 1.7216 3.3734 1.7407 3.4328
δ3, ω3 1.4416 1.4768 1.4529 1.4867 1.5190 1.6269 1.7458 1.7757 1.9440 1.8825
δ3, ω3 1.4416 1.4768 1.4529 1.4867 1.5190 1.6269 1.7458 1.7757 1.9440 1.8825
ω2, δ2 4.7593 5.2451 4.7694 5.2590 4.8311 5.3928 5.0739 5.7199 5.3795 6.1251
ω2, δ2 4.7593 5.24510 4.7694 5.2590 4.8311 5.3928 5.0739 5.7199 5.3795 6.1251
δ1, ω1 12.4126 26.5993 12.4206 26.4945 12.4607 52.7835 12.4963 54.8595 12.3305 51.5019
δ1, ω1 12.4126 26.5993 12.4206 26.4945 12.4607 52.7835 12.4963 54.8595 12.3305 51.5019

It can be observed from Table 25 that for each level of penetration, DDSG inte-

grated system exhibits more damping than the DFIG integrated system. On the other

hand, after adding the PSSs, the DDSG integrated system has 11 complex pairs of

eigenvalues and DFIG has only 9. As a result, time domain simulations presented in

section 1.7 shows that the oscillations in DFIG and DDSG integrated systems damp

out at around the same time for wind penetration 0.94 p.u. or higher. Although at

0.93 p.u., DDSG system seems to have higher damping ratio than DFIG, it is seen

from the frequency response of the generators that unlike DFIG, the DDSG integrated

system becomes marginally stable after a certain time (Figure 30b). This is due to

the dependency of DDSG converter q axis current on the stator q axis reactance, as

discussed in section 1.4.

Also, at 1.5 p.u. (40% penetration), the highest wind penetration considered in

this study, the damping ratio corresponding to δ1, ω1 drops for both DDSG and DFIG

integrated systems. Similar was the case with DDSG without PSS (Table 24) This

phenomenon can be explained by the weak grid. No commercially available wind

or utility-scale solar PV generation is capable of operation in a system without the

stabilizing benefit of synchronous machines. There is a point at which the amount



78

of short-circuit strength provided by synchronous machines becomes insufficient and

operation becomes impossible. ”Weak grid” is a generic term that describes operat-

ing near that point [26]. Hence with the wind penetration increasing above 40%,

the decrease in damping ratio might mean the system is moving towards weak grid

condition.



CHAPTER 5: CONCLUSION AND FUTURE WORK

5.1 Conclusion

The objective of the thesis was to integrate two types of variable speed wind turbine

generators, DFIG and DDSG one at a time and observe their impact on the small

signal stability of the system. Research related to the stability of DFIG integrated

systems has been going on for quite sometime, whereas DDSG is comparatively new in

the area. The findings are so far inconclusive regarding variable speed wind turbines

[12]. However, the rationale of this study was to observe the impact of these two

generators separately on the overall damping ratio of the system. This was done by

replacing a synchronous generator in the IEEE 14 bus system and performing small

signal stability analysis through PSAT. Later on generator frequency response was

observed through time domain analysis in PSAT. PSSs for the synchronous generators

were designed and a small disturbance was created to observe the improvement and

impact in stability for both DFIG and DDSG integrated systems. In summary, the

following conclusions can be drawn from this study:

1. WTGs have the capability to increase the small signal stability of a system

if the synchronous generators participating towards oscillation is replaced by them.

However, it can improve the damping only up to a certain level, depending on the wind

penetration. Wind penetration has to be large enough to mitigate the oscillations
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created by synchronous generators, and at the same time less enough to avoid weak

grid issues. Other factors like placement of the WTG, inertia which have not been

considered in this study might have significant impact as well.

2. For a certain level of penetration, DDSG integrated system has higher overall

damping. As a result the oscillations are damped faster in DDSG than in DFIG

integrated system. This holds true only when there is adequate q axis stator current

for controlling rotor speed to generate the rated power. This varies with penetration,

so under or above a certain penetration level, DDSG is no longer capable to provide

the required damping in the system.

3. The maximum and minimum power delivered by the DDSG depend on the

stator q axis current, which is largely dependent on the stator q axis reactance. On

the other hand, DFIG is not as highly dependent on the reactance, allowing itself for

a larger range of wind penetration.

4. The designed PSS increase the system damping. However, even if the damping

ratios corresponding to electromechanical modes are higher in the case of DFIG, due

to larger number of complex eigenvalues in DDSG after adding the PSSs, both the

generator seem to damp out the oscillation at about the same time.

5. With the small disturbance occurring for different penetration levels, the time

for the oscillations to damp out varies (80-100 s for DFIG and 60-80 s for DDSG) but

with the PSSs, the oscillations damp out within 45-50 seconds of fault clearance for

DFIG and within 40-45 seconds for DDSG, irrespective of the penetration level.

Recent works on DFIG show its integration is very likely to improve the stability

of the system compared to the constant speed WTGs. It can also provide better
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small signal stability performance if replaced for a synchronous generator, because

wind generators have no contribution to the system oscillations. On the other hand,

the integration of DFIG and DDSG may reduce the damping of the system, if the

marginal stability issue is not considered. This study, however finds the integration

of variable speed WTG helpful in terms of damping out oscillations. The system was

brought to asymptotically stable state from a marginally stable state and the damping

ratios were improved using PSSs. This study also claims that wind penetration has

a large role in deciding the overall damping of the system.

5.2 Future Work

Considering the limitations of this study, there are many potential fields to work

on it in future; focusing on the placement of WTG, high penetration stability issues

due to weak grid, impact of loss of inertia and fault location etc. Optimum placement

of DFIG has been under research for quite sometime now, but DDSG integration is a

whole new area to work on. Also, optimal and simultaneous placement of DFIG and

DDSG in a system and their impact on stability would be a potential field to work

on.

Again, further work can focus on higher wind penetration causing ”weak grid”

issue. Solving this issue by increasing composite short circuit ratio (CSCR) through

synchronous generators and condensers in the system is a current research interest

that can be worked on.

On another note, the lack of power system dynamic analysis has been identified as a

significant research gap from all of the large-scale regional wind and solar integration
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studies performed by he National Renewable Energy Laboratory (NREL) and others.

Thus there is a need to analyze the dynamic behavior of a system under high variable

renewable condition.

Another area to focus on, which has not been considered in this study is the in-

ertia. Large penetration of generation technologies that are not synchronous further

complicate this issue. Without special operation or controls, WTGs do not inherently

participate in the regulation of grid frequency. By contrast, synchronous machines

always contribute to system inertia. In fact, some fraction of the synchronous gen-

eration in operation at any point has governer controls enabled. Hence when wind

generation displaces conventional synchronous generation, the mix of the remaining

synchronous generators changes and has the potential to adversely impact overall fre-

quency response. Therefore, the stability impact pf WTGs largely depend on inertia

and this area of research needs further future attention.

In this study, only one location of fault or small disturbance has been considered.

The location of fault being close to the WTG or far and it’s impact on the stability

is another area that can be worked on in future.
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APPENDIX A: POWER FLOW AND DYNAMIC DATA OF THE SYSTEM

This appendix depicts schemes and data of the 14-bus test system used in the study.

Data are reported in the PSAT data format and were generated by the Simulink

models provided with the toolbox.

With 5 synchronous generators:

Bus.con = [ ...
1 69 1.06 0 4 1;
2 69 1.045 -0.13577 4 1;
3 69 1.01 -0.33247 4 1;
4 69 0.99756 -0.26488 4 1;
5 69 1.0029 -0.22667 4 1;
6 13.8 1.07 -0.38565 2 1;
7 13.8 1.0362 -0.34701 2 1;
8 18 1.09 -0.34701 3 1;
9 13.8 1.0134 -0.38858 2 1;
10 13.8 1.0127 -0.39516 2 1;
11 13.8 1.036 -0.39324 2 1;
12 13.8 1.0461 -0.40624 2 1;
13 13.8 1.0367 -0.40667 2 1;
14 13.8 0.9973 -0.42256 2 1;
];

Line.con = [ ...
2 5 100 69 60 0 0 0.05695 0.17388 0.034 0 0 0 0 0 1;
6 12 100 13.8 60 0 0 0.12291 0.25581 0 0 0 0 0 0 1;
12 13 100 13.8 60 0 0 0.22092 0.19988 0 0 0 0 0 0 1;
6 13 100 13.8 60 0 0 0.06615 0.13027 0 0 0 0 0 0 1;
6 11 100 13.8 60 0 0 0.09498 0.1989 0 0 0 0 0 0 1;
11 10 100 13.8 60 0 0 0.08205 0.19207 0 0 0 0 0 0 1;
9 10 100 13.8 60 0 0 0.03181 0.0845 0 0 0 0 0 0 1;
9 14 100 13.8 60 0 0 0.12711 0.27038 0 0 0 0 0 0 1;
14 13 100 13.8 60 0 0 0.17093 0.34802 0 0 0 0 0 0 1;
7 9 100 13.8 60 0 0 0 0.11001 0 0 0 0 0 0 1;
1 2 100 69 60 0 0 0.01938 0.05917 0.0528 0 0 0 0 0 1;
3 2 100 69 60 0 0 0.04699 0.19797 0.0438 0 0 0 0 0 1;
3 4 100 69 60 0 0 0.06701 0.17103 0.0346 0 0 0 0 0 1;
1 5 100 69 60 0 0 0.05403 0.22304 0.0492 0 0 0 0 0 1;
5 4 100 69 60 0 0 0.01335 0.04211 0.0128 0 0 0 0 0 1;
2 4 100 69 60 0 0 0.05811 0.17632 0.0374 0 0 0 0 0 1;
5 6 100 69 60 0 5 0 0.25202 0 0.932 0 0 0 0 0 1;
4 7 100 69 60 0 5 0 0.20912 0 0.978 0 0 0 0 0 1;
8 7 100 18 60 0 1.304348 0 0.17615 0 0 0 0 0 0 1;
];

Breaker.con = [ ...
16 2 100 69 60 1 1 200;
];
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SW.con = [ ...
1 100 69 1.06 0 9.9 -9.9 1.2 0.8 2.324 1 1 1;
];

PV.con = [ ...
3 100 69 1 1.045 0.5 -0.4 1.2 0.8 1 1;
2 100 69 0.4 1.045 0.5 -0.4 1.2 0.8 1 1;
6 100 13.8 0 1.07 0.24 -0.06 1.2 0.8 1 1;
8 100 18 0 1.09 0.24 -0.06 1.2 0.8 1 1;
];

PQ.con = [ ...
11 100 13.8 0.049 0.0252 1.2 0.8 0 1;
13 100 13.8 0.189 0.0812 1.2 0.8 0 1;
3 100 69 1.3188 0.266 1.2 0.8 0 1;
5 100 69 0.1064 0.0224 1.2 0.8 0 1;
2 100 69 0.3038 0.1778 1.2 0.8 0 1;
6 100 13.8 0.1568 0.105 1.2 0.8 0 1;
4 100 69 0.6692 0.056 1.2 0.8 0 1;
14 100 13.8 0.2086 0.07 1.2 0.8 0 1;
12 100 13.8 0.0854 0.0224 1.2 0.8 0 1;
10 100 13.8 0.126 0.0812 1.2 0.8 0 1;
9 100 13.8 0.413 0.2324 1.2 0.8 0 1;
];

Syn.con = [ ...
1 615 69 60 3 0.24 0 0.9 0.3 0.23 7.4 0.03 0.65 0.64

0.4 0 0.03 10.3 2 0 0 1 1 0 0 0 1 1;
3 100 69 60 3 0 0.0 1.05 0.19 0.13 6.1 0.04 0.98 0.36

0.13 0.3 0.1 13.08 2 0 0 1 1 0 0 0 1 1;
2 60 69 60 3 0 0.0 1.05 0.19 0.13 6.1 0.04 0.98 0.36

0.13 0.3 0.1 13.08 2 0 0 1 1 0 0 0 1 1;
8 25 18 60 3 0.13 0.0 1.25 0.23 0.12 4.75 0.06 1.22 0.72

0.12 1.5 0.21 10.12 2 0 0 1 1 0 0 0 1 1;
6 25 13.8 60 3 0.13 0.0 1.25 0.23 0.12 4.75 0.06 1.22 0.71

0.12 1.5 0.21 10.12 2 0 0 1 1 0 0 0 1 1;
];

Exc.con = [ ...
1 2 7.32 0 100 0.02 0.002 1 1 0.2 0.001 0.0006 0.9 1;
3 2 4.38 0 20 0.02 0.001 1 1 1.98 0.001 0.0006 0.9 1;
2 2 4.38 0 20 0.02 0.001 1 1 1.98 0.001 0.0006 0.9 1;
4 2 6.81 1.395 20 0.02 0.001 1 1 0.7 0.001 0.0006 0.9 1;
5 2 6.81 1.395 20 0.02 0.001 1 1 0.7 0.001 0.0006 0.9 1;
];

Bus.names = {...
’Bus 01’; ’Bus 02’; ’Bus 03’; ’Bus 04’; ’Bus 05’;
’Bus 06’; ’Bus 07’; ’Bus 08’; ’Bus 09’; ’Bus 10’;
’Bus 11’; ’Bus 12’; ’Bus 13’; ’Bus 14’};

Dfig.con = [ ...
3 1 100 69 60 0.01 0.1 0.01 0.08 3 3 10
3 10 0.01 62 4 3 0.01123596 1 0 0.7 -0.7 20 1;
];

Ddsg.con = [ ...
3 1 100 69 60 0.01 0.01 0.08 1 3 10 3 10
1 0.01 0.01 62 4 3 0.01123596 1 0 0.7 -0.7 20 1;
];

Wind.con = [ ...
3 15 1.225 4 0.1 20 2 5 15 0 5 15 0 50 0 0.2 50 10 1;
];
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APPENDIX B: CODES FOR DESIGNING POWER SYSTEM STABILIZER

PSS Design for DFIG Integrated System:

Code for Gen 2 PSS:

a11=-0.19425;a12=-0.0306;a13=-0.06187;a14=0;

a21=376.9911;

a22=0;a23=0;a24=0;a31=0;a34=0;a41=0;

a32=-0.01796;a33=-0.18691;

a42=-27.2066;a43=814.6482;a44=-1000;

Ld=1.05; Ldd=0.185; Ll=0;

H=6.54;

Lad=Ld-Ll;

Lfd=(Lad*Ldd-Ll*Lad)/(Lad-Ldd+Ll)

Tdd=6.1;

Ka=20;

s=0.06424+7.9349i;

Rfd=(Ld+Lfd)/(Tdd*a21)

Tr=-(1/a44)

T3=-(1/a33)

Kd=-2*H*a11

K1=-2*H*a12

K2=-2*H*a13

b11=1/(2*H)

b32=(a21*Rfd)/Ld

K3=-(b32/a33)

K4=-(a32/b32)

K5=a42*Tr

K6=a43*Tr

neu=-K2*K3*(K4*(1+s*Tr)+K5*Ka)

deno=s*s*T3*Tr+s*(T3+Tr)+1+K3*K6*Ka

deltaT e=(neu/deno)

Tpss=K2*(K3*Ka)/(s*T3+1+K3*K6*Ka)

Results:

Lfd = 0.2246
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Rfd = 5.5424e-04

Tr = 1.0000e-03

T3 = 5.3502

Kd =2.5408

K1 = 0.4002

K2 =0.8093

b11 = 0.0765

b32 = 0.1990

K3 =1.0647

K4 =0.0903

K5 = -0.0272

K6 = 0.8146

neu = 0.3911 - 0.0006i

deno =18.3534 +42.4664i

deltaT e =0.0033 - 0.0078i

Tpss =0.1497 - 0.3400i

Code for Gen 3 PSS:

a11=-0.19425;a12=-0.0306;a13=-0.06187;a14=0;

a21=376.9911;

a22=0;a23=0;a24=0;a31=0;a34=0;a41=0;

a32=-0.01796;a33=-0.18691;

a42=-27.2066;a43=814.6482;a44=-1000;

Ld=1.25; Ldd=0.232; Ll=0.134;

H=5.06;

Lad=Ld-Ll;

Lfd=(Lad*Ldd-Ll*Lad)/(Lad-Ldd+Ll)

Tdd=4.75;

Ka=20;

s=0.11414+8.26509i;

Rfd=(Ld+Lfd)/(Tdd*a21)

Tr=-(1/a44)

T3=-(1/a33)

Kd=-2*H*a11

K1=-2*H*a12
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K2=-2*H*a13

b11=1/(2*H)

b32=(a21*Rfd)/Ld

K3=-(b32/a33)

K4=-(a32/b32)

K5=a42*Tr

K6=a43*Tr

neu=-K2*K3*(K4*(1+s*Tr)+K5*Ka)

deno=s*s*T3*Tr+s*(T3+Tr)+1+K3*K6*Ka

deltaT e=(neu/deno)

Tpss=K2*(K3*Ka)/(s*T3+1+K3*K6*Ka)

Results:

Lfd =0.1074

Rfd =7.5804e-04

Tr =1.0000e-03

T3 =5.3502

Kd = 1.9658

K1 = 0.3097

K2 = 0.6261

b11 =0.0988

b32 =0.2286

K3 =1.2232

K4 = 0.0786

K5 = -0.0272

K6 = 0.8146

neu = 0.3566 - 0.0005i

deno = 21.1742 +44.2380i

deltaT e = 0.0031 - 0.0066i

Tpss = 0.1364 - 0.2800i

Code for Gen 4 PSS:

a11=-0.19425;a12=-0.0306;a13=-0.06187;a14=0;

a21=376.9911;

a22=0;a23=0;a24=0;a31=0;a34=0;a41=0;

a32=-0.01796;a33=-0.18691;
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a42=-27.2066;a43=814.6482;a44=-1000;

Ld=1.25; Ldd=0.232;Ll=0.134;

H=5.06;

Lad=Ld-Ll;

Lfd=(Lad*Ldd-Ll*Lad)/(Lad-Ldd+Ll)

Tdd=4.75;

Ka=20;

s=-0.09709+9.14269i;

Rfd=(Ld+Lfd)/(Tdd*a21)

Tr=-(1/a44)

T3=-(1/a33)

Kd=-2*H*a11

K1=-2*H*a12

K2=-2*H*a13

b11=1/(2*H)

b32=(a21*Rfd)/Ld

K3=-(b32/a33)

K4=-(a32/b32)

K5=a42*Tr

K6=a43*Tr

neu=-K2*K3*(K4*(1+s*Tr)+K5*Ka)

deno=s*s*T3*Tr+s*(T3+Tr)+1+K3*K6*Ka

deltaT e=(neu/deno)

Tpss=K2*(K3*Ka)/(s*T3+1+K3*K6*Ka)

Results:

Lfd = 0.1074

Rfd =7.5804e-04

Tr =1.0000e-03

T3 = 5.3502

Kd = 1.9658

K1 = 0.3097

K2 =0.6261

b11 = 0.0988

b32 =0.2286
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K3 =1.2232

K4 =0.0786

K5 =-0.0272

K6 = 0.8146

neu =0.3566 - 0.0006i

deno =19.9622 +48.9146i

deltaT e=0.0025 - 0.0063i

Tpss =0.1113 - 0.2667i

PSS Design for DDSG Integrated System:

Code for GEN 2 PSS:

a11=-0.19763;a12=-0.17784;a13=-0.01591;a14=0;

a21=376.9911;

a22=0;a23=0;a24=0;a31=0;a34=0;a41=0;

a32=0.020066;a33=-0.86508;

a42=17.03581;a43=291.0661;a44=-1000;

Ld=1.05; Ldd=0.1850, Ll=0;

H=6.54;

Lad=Ld-Ll;

Lfd=(Lad*Ldd-Ll*Lad)/(Lad-Ldd+Ll)

Tdd=6.1;

Ka=20;

s=-0.05835+7.93249i;

Rfd=(Lad+Lfd)/(Tdd*a21)

Tr=-(1/a44)

T3=-(1/a33)

Kd=-2*H*a11

K1=-2*H*a12

K2=-2*H*a13

b11=1/(2*H)

b32=(a21*Rfd)/Ld

K3=-(b32/a33)

K4=-(a32/b32)

K5=a42*Tr

K6=a43*Tr
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neu=-K2*K3*(K4*(1+s*Tr)+K5*Ka)

deno=s*s*T3*Tr+s*(T3+Tr)+1+K3*K6*Ka

deltaT e=(neu/deno)

Tpss=K2*(K3*Ka)/(s*T3+1+K3*K6*Ka)

Results:

Ldd =0.1850

Lfd =0.2246

Rfd =5.5424e-04

Tr =1.0000e-03

T3 =1.1560

Kd =2.5850

K1 =2.3261

K2 =0.2081

b11 =0.0765

b32 =0.1990

K3 =0.2300

K4 =-0.1008

K5 =0.0170

K6 =0.2911

neu =-0.0115 + 0.0000i

deno =2.1988 + 9.1765i

deltaT e =-0.0003 + 0.0012i

Tpss =0.0244 - 0.0984i

Code for GEN 3 PSS:

a11=-0.19763;a12=-0.17784;a13=-0.01591;a14=0;

a21=376.9911;

a22=0;a23=0;a24=0;a31=0;a34=0;a41=0;

a32=0.020066;a33=-0.86508;

a42=17.03581;a43=291.0661;a44=-1000;

Ld=1.25; Ldd=0.232, Ll=0.134;

H=5.06;

Lad=Ld-Ll;

Lfd=(Lad*Ldd-Ll*Lad)/(Lad-Ldd+Ll)

Tdd=4.75;
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Ka=20;

s=-0.11477+8.26566i;

Rfd=(Lad+Lfd)/(Tdd*a21)

Tr=-(1/a44)

T3=-(1/a33)

Kd=-2*H*a11

K1=-2*H*a12

K2=-2*H*a13

b11=1/(2*H)

b32=(a21*Rfd)/Ld

K3=-(b32/a33)

K4=-(a32/b32)

K5=a42*Tr

K6=a43*Tr

neu=-K2*K3*(K4*(1+s*Tr)+K5*Ka)

deno=s*s*T3*Tr+s*(T3+Tr)+1+K3*K6*Ka

deltaT e=(neu/deno)

Tpss=K2*(K3*Ka)/(s*T3+1+K3*K6*Ka)

Results:

Ldd =0.2320

Lfd =0.1074

Rfd =6.8321e-04

Tr =1.0000e-03

T3 =1.1560

Kd =2.0000

K1 =1.7997

K2 =0.1610

b11 =0.0988

b32 =0.2061

K3 =0.2382

K4 =-0.0974

K5 =0.0170

K6 =0.2911

neu =-0.0093 + 0.0000i
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deno =2.1748 + 9.5609i

deltaT e=-2.0804e-04 + 9.2878e-04i

Tpss =0.0179 - 0.0760i

Code for GEN 4 PSS:

a11=-0.19763;a12=-0.17784;a13=-0.01591;a14=0;

a21=376.9911;

a22=0;a23=0;a24=0;a31=0;a34=0;a41=0;

a32=0.020066;a33=-0.86508;

a42=17.03581;a43=291.0661;a44=-1000;

Ld=1.25; Ldd=0.232, Ll=0.134;

H=5.06;

Lad=Ld-Ll;

Lfd=(Lad*Ldd-Ll*Lad)/(Lad-Ldd+Ll)

Tdd=4.75;

Ka=20;

s=-0.11477+8.26566i;

Rfd=(Lad+Lfd)/(Tdd*a21)

Tr=-(1/a44)

T3=-(1/a33)

Kd=-2*H*a11

K1=-2*H*a12

K2=-2*H*a13

b11=1/(2*H)

b32=(a21*Rfd)/Ld

K3=-(b32/a33)

K4=-(a32/b32)

K5=a42*Tr

K6=a43*Tr

neu=-K2*K3*(K4*(1+s*Tr)+K5*Ka)

deno=s*s*T3*Tr+s*(T3+Tr)+1+K3*K6*Ka

deltaT e=(neu/deno)

Tpss=K2*(K3*Ka)/(s*T3+1+K3*K6*Ka)

Results:

Ldd = 0.2320
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Lfd =0.1074

Rfd =6.8321e-04

Tr =1.0000e-03

T3 = 1.1560

Kd = 2.0000

K1 = 1.7997

K2 =0.1610

b11 =0.0988

b32 = 0.2061

K3 =0.2382

K4 =-0.0974

K5 =0.0170

K6 = 0.2911

neu = -0.0093 + 0.0000i

deno = 2.1770 +10.5754i

deltaT e= -1.7117e-04 + 8.4721e-04i

Tpss = 0.0149 - 0.0694i


