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ABSTRACT

JONATHAN MICHAEL MOSS. Vibration analysis of a steel twin I-girder
pedestrian bridge: structural identification and evaluation of pedestrian excitation

Models. (Under the direction of DR. MATTHEW J. WHELAN)

Excessive vibration of footbridges caused by pedestrian excitation is an impor-

tant design consideration that has received increased attention in recent years fol-

lowing serviceability-related failures of several notable pedestrian bridges. Numerous

models have been proposed and modified for simulating both individual pedestrian

footfall excitations as well as groups of persons. However, experimental validation

of pedestrian load modeling has yet to be extensively performed for this challeng-

ing human-structure interaction problem. This thesis evaluates the performance of

published pedestrian load models by comparing time history simulations from a cal-

ibrated finite element model of a pedestrian bridge to experimental data obtained

from full-scale testing of the structure.

Operational modal analysis of a steel twin I-girder span is conducted through am-

bient vibration monitoring using a distributed wireless sensor network with triaxial

accelerometers. The experimentally obtained estimates of the modal parameters are

then used to calibrate a finite element model of the structure through structural

identification, or finite element model updating, using a genetic algorithm optimiza-

tion routine. Following this field calibration of the dynamic properties of the model,

modal superposition time history analyses of the response of the span obtained us-

ing the finite element model with published pedestrian load models are compared to

experimental measurements acquired during controlled pedestrian loading. The com-
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parisons reveal that published pedestrian load models significantly underpredict the

measured peak accelerations for this case study. Parameter identification of variables

within each model through optimization of the model correlation with the measured

response was performed to calibrate coefficients within each model to the case study

data. The results indicate that, for this structure, a single harmonic periodic load

with a force amplitude larger than recommended in standardized models produced

strong correlation with the measurement data.
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CHAPTER 1: INTRODUCTION

1.1 Introduction

Pedestrian induced vibrations in footbridges present a challenge in that they can

create serviceability issues, even in circumstances when the pedestrian bridge has

been adequately designed to resist static and dynamic strength limit states. Due to

the dynamic nature of pedestrian footfall loading, bridges intended for use by pedes-

trian traffic require special considerations to mitigate pedestrian induced serviceabil-

ity concerns, such as resonance of the structure due to synchronization of the pacing

frequency of pedestrians (Bachmann and Ammann, 1987). Pedestrian-induced exces-

sive vibrations can be problematic for both the structural integrity of the pedestrian

bridge and for the comfort of the pedestrians present at the time of the vibrations

(Murray et al., 2003). Therefore, minimizing excessive vibrations is an important but

challenging aspect to the design and maintenance of pedestrian bridges.

The importance of adequately anticipating the dynamic response under pedestrian

loading is exemplified by the case of the London Millennium Bridge, which despite

being adequately designed for structural limit states, was closed to traffic on its

second day of operation due to excessive vibrations that resulted from resonance of

the bridge superstructure by pedestrian crowd loading during normal service (Dallard

et al., 2001). The vibrations in the Millennium Bridge resulted in displacements of up
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to 70 mm (2.75 in), providing a stark example of the potential effects of pedestrian

induced vibrations. In order to reduce the vibrations to an acceptable level, this bridge

required an extensive seven million dollar retrofit with associated closure of the bridge

until the work had been completed (Roberts, 2005). Although extensive research had

been previously performed in the area of pedestrian induced vibrations, this highly

publicized incident in June of 2000 has brought wider attention to pedestrian loading

and led to more research on footfall loading, crowd loading, and the causes of excessive

vibrations within human-structure interaction problems (Zivanovic et al., 2010).

Adequately designing for pedestrian loading requires the use of an accurate rep-

resentation of footfall loads. This too is exemplified by the case of the Millennium

Bridge, where footfall loading was initially accounted for in the design process through

the use of a then-current but now outdated design guidance for modeling footfall

loading (Dallard et al., 2001). Such methods for modeling pedestrian loading vary by

governing or voluntary design standard, although most design guides are similar in

their prescribed methodology to account for pedestrian loading. For design purposes,

design guides typically recommend use of a time varying forcing function to repre-

sent the pedestrian footfall loads progressing along the walking surface. While this

method accounts for the moving load associated with footfall loading, the modeling of

the time varying forces applied to the structure during a footstep presents a challenge

due to the unknown interaction of the structural response with the mechanics of the

footfall producing the loading. The current forcing functions prescribed to model

footfall loading rely on limited experimentally measured footfall forces to approx-

imate the expected dynamic loads using Fourier series representations (Bachmann
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and Ammann, 1987). Amplitude and phase coefficients for harmonic contributions

to the footfall force have been recommended by various organizations to anticipate

the changes in the nature of the applied loading due to expected human-structure

interaction in commonly encountered design scenarios. However, these models do not

explicitly consider the human-structure interaction and therefore it is expected that

significant discrepancies between predicted and measured response may occur when

they are applied to specific structures.

In summary, the predicted response of structures, particularly lively footbridges, to

pedestrian loads remains a challenging and practically relevant problem. Prediction

of these dynamic forces requires the use of an accurate loading model to replicate the

actual forces created by pedestrian footfalls, but there is a lack of well documented

case studies evaluating the predictive accuracy of the various published footfall mod-

els relative to field measurements obtained from full-scale structures. Methodology

for performing such assessments of pedestrian footfall models incorporating dynamic

calibration of the underlying analytical model of the structure has also not been

sufficiently addressed.

1.2 Anticipated Contribution of the Research Effort

This research will evaluate the performance of standardized pedestrian footfall func-

tions using experimental measurements and a field calibrated finite element model.

As described, there are currently multiple design guides that recommend methods for

modeling pedestrian footfall loading. However, these design guides vary by location,

with various countries and organizations using different standards and loading models.
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The objective of this research is to examine several different load models sourced from

the literature to identify potential shortcomings in the current recommended func-

tions. To facilitate this research, full-scale vibration testing of a pedestrian bridge

was conducted to perform operational modal analysis of the structure and obtain

vibration response measurements under controlled pedestrian excitation. Modal pa-

rameter estimates derived through operational modal analysis are used to calibrate

the dynamic properties of a finite element model developed of the structure to en-

sure consistency with the actual in-service behavior. The calibrated finite element

model is then leveraged to perform linear dynamic analysis of the response of the

bridge to pedestrian loads. Through comparison of the analytical acceleration time

histories obtained to experimental measurements, the forcing functions are evaluated

and methodology to field calibrate the coefficients in each model to the experimental

measurements is developed.

This study seeks multiple contributions to research in this area of structural dynam-

ics. The methods used to develop the idealized and updated finite element models

will be described in detail, contributing to applied research on structural identifi-

cation by providing a case study for finite element model updating using genetic

algorithms. Furthermore, a process for evaluating the predictive accuracy of vari-

ous pedestrian footfall loading models is explained, and the applied results obtained

through comparisons with experimental test data are presented. Lastly, a method-

ology for calibrating coefficients within these functions to achieve improved model

correlation with the experimentally measured response is developed to offer insight

into the characteristics of the actual applied pedestrian excitation in the presence of
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human-structure interaction for this case study.

1.3 Organization of Thesis

The outline of this thesis is as follows:

• Chapter 2 presents a literature review on the mechanics of pedestrian footfall

loading and the different models used for modeling footfall loads. Furthermore,

a review of finite element model updating using genetic algorithms for parameter

identification is presented.

• Chapter 3 presents a description of the instrumentation, vibration testing, and

operational modal analysis of a pedestrian bridge used as the case study struc-

ture for this research.

• Chapter 4 presents details of a finite element model developed for the case study

pedestrian bridge and the use of genetic algorithm for structural identification

to improve the correlation between the dynamic properties of the model and

the experimentally estimated modal parameters.

• Chapter 5 presents an evaluation of various footfall forcing functions using rec-

ommended amplitude and phase coefficients for single pedestrian excitation dur-

ing walking. A methodology is also presented to calibrate the coefficients in

these models to the field measurements to identify the characteristics of the

pedestrian excitation observed in this case study.

• Chapter 6 summarizes conclusions of the research effort and provides recom-

mendations for future work in this area of research.



CHAPTER 2: LITERATURE REVIEW

In this chapter, a literature review on pedestrian-induced vibrations and finite

element model updating is presented. This literature review examines the background

behind pedestrian-induced vibrations, acceptable vibration comfort levels, and the

methods used to model pedestrian loading, followed by a review of finite element

model updating techniques.

2.1 Overview of Pedestrian-Induced Vibrations

Pedestrian loads are the loads generated by the footfalls of walking pedestrians.

These loads and the resulting vibrations are subjects that have been studied ex-

tensively, particularly in Bachmann and Ammann (1987). Pedestrian loads can be

categorized as a type of dynamic loading and, more specifically, these loads are a type

of periodic dynamic loading, meaning that the load is repeated at a regular interval.

This is due to the repetitive motion of one foot being placed in front of the other,

resulting in a rhythmic application of the load. Because the load is applied at the

pacing rate of the pedestrian, the vibrational excitation will also be generated at

this rate. The periodic loading translates into vibrations induced through dynamic

response of the structure, although this response of the structure is influenced by

human-structure interaction (Dallard et al., 2001). Furthermore, it has been found

that the loads applied by the pedestrians act in both the vertical and horizontal
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planes, with the vertical forces being significantly greater than those acting in the

horizontal plane (Ricciardelli and Pizzimenti, 2007). Therefore, pedestrians induce

both vertical and lateral vibrational responses in structures as they walk. The mag-

nitude of these vibrations is affected by various factors, such as the type of structure,

weight of the pedestrian, and the pacing rate of the pedestrian relative to the natu-

ral frequencies of the structure. As reviewed subsequently in this chapter, multiple

methods have been proposed for approximating footfall forces through mathematical

models.

2.1.1 Serviceability Recommendations for Comfort Levels

Human perception and comfort levels play a critical role in vibration analysis of civil

structures. Often, the vibrations experienced in structures are not significant enough

to cause structural damage but are enough to cause discomfort. For this reason,

standards and design guidance have been developed to not only address structural

integrity concerns related to dynamic loads, but to also account for human comfort.

Examples of such standards and design guides are AISC Design Guide 11 (Murray

et al., 2003), ISO 2631-2 (ISO, 1989), ISO 10137 (ISO, 2007), and the British Annex to

Eurocode 1 (BSI, 2008). In all of these publications, guidelines are set forth based on

human perception and acceptance of structural vibrations. The criteria established in

each of these standards will be reviewed to develop an understanding of serviceability

concerns and acceptance thresholds associated with pedestrian induced vibrations.

In Murray et al (2003) and ISO 10137 (2007), significant portions of the design

guidance is focused on human comfort and vibration acceptance. According to Murray
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et al (2003), human perception and tolerance of structural vibrations varies according

to multiple factors. The factors that play the most significant roles in vibration

comfort levels are the type of structure and the activity of the occupants. For example,

the guide specifies that vibrations are more accepted on an outdoor footbridge than

in a residential structure due to both user expectations and impact on use of and

activity within the structures. Because of this, the guide recommends a comparison

of the actual vibrations within a structure, measured by accelerometers monitoring

vibrations during service, to predetermined human comfort limits. The acceleration

limits, first developed in ISO 2631-2 (1989) and then expounded upon in both AISC

Design Guide 11 and ISO 10137 (2007), are presented in the form of a chart that

prescribes the maximum acceptable magnitude of vertical accelerations for various

structures. In this chart, the magnitude of the peak acceptable acceleration varies

by structure type and the frequency of the vibrations. The lowest amplitude curve

was developed as a baseline acceleration acceptance limit, while the various limits

for other structures were developed through the use of multiplication factors applied

to the baseline curve. The acceptable level of vibration varies with the frequency

of the vibration due to the nature of human perception, which causes vibrations

to be more noticeable at certain frequencies than at others. This chart, which is

replicated in Figure 2.1 based on Murray et al (2003), indicates that vibrations are

most accepted in outdoor footbridges and structures subjected to rhythmic activities,

where vibrations would be both generally expected and less noticeable due to the

nature of the activity. Similarly, the same baseline curve is used in ISO 10137 (2007)

but with more detailed multiplication factors. In that case, factors reflecting time of
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Figure 2.1: Recommended peak accelerations for various structures (Reproduced
from Murray et al (2003))

day and number of people using the structure are presented.

Similar to the case of vertical accelerations, peak lateral acceleration limits were

developed in ISO 10137 (2007). Consistent with the prior design charts, a baseline

curve to which multiplication factors are applied to extend the baseline curve to

structure-specific cases is presented. This plot is replicated in Figure 2.2 with the

baseline lateral acceleration curve and the peak acceleration curve for the case of out-

door footbridges. The peak acceleration curves provide a useful method of evaluating

measurements from in-service vibration monitoring in relation to human comfort lev-

els. If the accelerations obtained through testing or analysis of a structure are higher

than the recommended peak accelerations, the structure presents serviceability con-

cerns.

Similar to the recommended limits set forth in AISC Design Guide 11 and in ISO
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Figure 2.2: Recommended peak lateral accelerations based on human perception
(Reproduced from ISO 2631-2 (1989))

Table 1: Eurocode recommended peak acceleration (Eurocode, 2001)

Case Peak Accelerations (g’s)
Vertical accelerations 0.0714
Horizontal accelerations under typical loading 0.0204
Horizontal accelerations under crowd loading 0.0408

10137, peak acceleration recommendations have also been established in Eurocode

standards formed by the European Committee for Standardization. In the Eurocode

(2001), peak acceleration limits for the vertical and lateral response have been estab-

lished for pedestrian bridges. While it is noted in the Eurocode (2001) that the peak

acceptable acceleration may vary by project, the given limits that are applicable in

most cases are presented in Table 1.

In the British Annex to the Eurocode, recommended serviceability limits are further

defined (BSI, 2008). This standard recommends a peak design acceleration magnitude
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of less than the peak design acceleration limit calculated as

alimit = 1.0k1k2k3k4 [m/s2] (1)

where k1 is a site usage factor ranging from 0.6 to 1.6, k2 is a route redundancy factor

ranging from 0.7 to 1.3, k3 is a structure height factor ranging from 0.7 to 1.1, and

k4 is an exposure factor that is typically assumed to be equal to 1.0, unless otherwise

determined on an individual basis. Furthermore, the peak design acceleration limit

is restricted between 0.5 m/s2 and 2.0 m/s2.

2.1.2 Influence of Dynamic Structural Properties on Pedestrian Excited Response

As was seen in the case of the peak acceptable acceleration chart presented in

Figure 2.1, vibrations are more tolerated in certain structures than in others. While

this can be attributed in part to the intended use of the structure, it is also due to

the dynamic properties possessed by the structure. Two of these properties that will

be focused on in this section are the natural frequencies and relative damping factors.

The natural frequencies of a structure affect the amplitude and perception of vi-

brations within that structure. The natural frequencies of a structure are defined as

the characteristic frequencies at which the structure will vibrate if initially displaced

and then allowed to freely respond absent of any external driving forces (Tedesco

et al., 1999). If the frequency of external applied loads on a structure coincide with

a natural frequency, the amplitude of acceleration, velocity, and displacement of the

structure will increase relative to excitation at other frequencies. This phenomenon

is known as resonance and should be avoided when significant dynamic service loads
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are present.

According to Murray et al (2003), the fundamental natural frequency, which is the

lowest, is typically of the most concern when considering excitations due to human

activities. When feasible, low fundamental natural frequencies within the bandwidth

excited by human activities should be intentionally avoided in structures where such

loads are prevalent. Specifically, in the case of structures subject to pedestrian load-

ing, natural frequencies between 1.6 Hz and 2.4 Hz should be avoided, since the pacing

frequency of pedestrian loads typically falls within this range (Bachmann and Am-

mann, 1987). Furthermore, the American Association of State Highway and Trans-

portation Officials LRFD Guide Specifications for the Design of Pedestrian Bridges

recommends that the fundamental natural frequency of vertical modes exceed 3.0 Hz

and the fundamental natural frequency of lateral modes exceed 1.3 Hz (AASHTO,

2009).

The relative damping factor is another important dynamic property that influences

the response of structures to pedestrian loads. Structural damping is a mechanism

of energy dissipation within a structure introduced by internal and external friction,

drag, and other means of mechanical energy loss (Tedesco et al., 1999). Since the rela-

tive damping applies to mechanical energy during vibration, structures with increased

damping are more effective at dissipating vibrations than structures with otherwise

similar properties and therefore experience lower amplitudes of peak acceleration.

According to Bachmann and Ammann (1987), damping can be increased by the

presence of non-structural items, such as railings or joints, which serve to dissipate

energy by means of friction. Furthermore, the same authors concluded that pedes-
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trian bridges typically have less damping than other structures due to an absence of

non-structural fixtures. While the relative damping factor associated with individ-

ual modes of a particular structure can be determined through instrumentation and

experimental analysis of the dynamic response, several studies have been performed

in an effort to establish reliable estimates of the relative damping typically exhib-

ited by pedestrian bridges. In Bachmann and Ammann (1987), a study of numerous

pedestrian bridges found the relative damping factor to typically range from two to

six percent. For design calculations, a relative damping factor of 0.005 was recom-

mended in Bachmann and Ammann (1987) for concrete on steel girder structures,

while 0.01 was recommended in Murray et al (2003). As identified within the case

studies reviewed in this chapter, the addition of damping through active and passive

control devices is also a viable means of reducing excessive vibrations.

2.2 Review of Experimental Studies on Pedestrian-Induced Vibration of

Footbridges

There have been multiple studies regarding pedestrian-induced vibrations in foot-

bridges, and many of these case studies focus on particular incidents of excessive

vibrations encountered in noteworthy structures. In this section, relevant case stud-

ies, including details of the specific structures, causes of the reported vibrations, and

solutions to the problems, will be reviewed and their findings summarized.

One of the most notable case studies related to pedestrian induced vibrations of

footbridges is the London Millennium Bridge. This bridge was opened on June 10th

of 2000 and experienced excessive vibrations on the same day (Dallard et al., 2001).
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Excessive motion of the bridge span occurred in the lateral direction as a crowd

of between 80,000 and 100,000 people crossed the bridge. These vibrations caused

up to 70 mm of lateral deflection at the center span. Due to concerns over the

excessive motion, the bridge was closed for investigation and retrofitting on June

12th, 2000 (Dallard et al., 2001). Investigations revealed that the probable cause

of the vibrations was the synchronization of footfall loads from the crowd crossing

the bridge (Roberts, 2005). Synchronization can occur when the individuals within a

crowd walk in step with each other and instinctively step in unison with the harmonic

motion of the bridge. This causes the forces to be applied at the resonant frequency

of the structure leading to large accelerations and, furthermore, the synchronization

becomes more pronounced as the motion of the structure increases. Consequently,

this leads to additional amplification as the crowd becomes increasingly synchronized

as the movements of the bridge increase (Dallard et al., 2001). The solution to

prevent future excessive vibrations in the Millennium Bridge was determined to be

the introduction of dampers to the structure to increase the relative damping factor

of the resonant mode (Dallard et al., 2001).

Another case of excessive vibration occurring in a pedestrian bridge was analyzed

in Fujino et al (1993). In this study, which took place seven years prior to the

highly publicized Millennium Bridge incident, excessive motion was observed in a

cable-stayed pedestrian bridge during crowd loading. This structure was a two-span,

continuous steel girder bridge, with the longest span being 134 m. It was found

that when crowds of up to 2000 pedestrians were simultaneously crossing the bridge,

excessive vibrations in both the vertical and lateral directions became apparent. As
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with the Millennium Bridge, it was concluded that pedestrian loading was amplifying

the resonance of the structure through synchronization. Applied research revealed

that small initial vibrations led the pedestrians to instinctively change their stride

to match the bridge movement and walk approximately at the natural frequency

of the first lateral mode of the bridge, which occurred at 0.9 Hz. Measurement

of the pacing frequency of the pedestrians revealed that, on average, the crowd of

pedestrians adjusted their footfall frequency to 0.883 Hz. As the motions increased,

over 20 percent of the pedestrians synchronized their movements to the bridge, causing

the amplitude of vibrations to increase. However, the study found that, although

the vibrations were apparent, many of the pedestrians had grown accustomed to

the movements and did not seem concerned. The researchers also noted that only

vertical vibrations were considered during the initial design, as the potential problems

associated with lateral vibrations were not yet well known. As with the Millennium

Bridge, the solution developed to remediate the problem was installation of dampers

on the structure (Fujino et al., 1993).

A pedestrian bridge of much shorter span length than the previous two case studies

was analyzed in Pan (1992). The bridge in this study had a single span of 43.3 m

and consisted of a steel framed superstructure with a concrete deck. In contrast to

the previous other two case studies, this bridge was found to experience excessive

accelerations in only the vertical direction. Accelerometers were deployed to monitor

the response of the bridge and it was found that the fundamental natural frequency

associated with the first vertical mode was 2.65 Hz. This moderately low frequency,

coupled with heavy pedestrian traffic was identified as the reason for the excessive
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vertical vibration. Suggested retrofit of the structure included both the introduction

of dampers and an additional support column to the structure.

Operational modal analysis and subsequent finite element model updating of a

pedestrian bridge located in Montenegro was presented in Zivanovic et al (2006),

which is of particular relevance to the current study. This pedestrian bridge super-

structure consisted of a main, central span of 78 m and two shorter spans of 13 m.

The cross section of the bridge spans utilized a stiffened steel box girder with a con-

crete deck. This pedestrian bridge was described as lively, and was thus used as a

case study structure in Zivanovic et al (2006). The excessive vibrations in this case

had been observed since the bridge opened in the 1970s and were attributed to the

low natural frequency of the bridge that was likely an issue due to a lack of service-

ability design standards at the time of construction. Prior to the operational modal

testing described in Zivanovic et al (2006), a retrofit of the bridge had been carried

out to increase the stiffness of the structure, but was neutralized by a corresponding

increase in the mass of the bridge. Therefore, the fundamental natural frequency of

the bridge was still within the range of typical pedestrian pacing frequencies during

the modal testing. In this study, the objective of the research was to develop a finite

element model capable of replicating the response of the experimentally tested struc-

ture. The authors found that while an idealized finite element model of the structure

could yield estimates of its dynamic properties, tuning of the finite element model

yielded far superior model correlation between the analytical and experimental dy-

namic responses. The recommendation of this study was that finite element models

used to model existing structures for dynamic analysis should be calibrated to field
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measurements from the actual structure using structural identification to ensure the

accuracy of the predictions.

2.3 Pedestrian Footfall Models for Single Pedestrian Loading

Several footfall loading functions have been developed in an effort to accurately

model pedestrian loading of structures (Bachmann and Ammann, 1987, BSI, 2008,

Murray et al., 2003). These models typically involve the use of a time dependent

forcing function to represent the footfall force exerted by the pedestrian.

In Bachmann and Ammann (1987), it was found that there are certain aspects

of pedestrian loading that must be considered. While it was known that walking

loads were periodic, it was also known that footsteps could not simply be applied

as a heaviside step load at a set time interval. This is due to the stepping motion

of a pedestrian, in which the exerted force moves from the heel to the ball of the

pedestrian’s foot. The amplitude of the applied force varies throughout the duration

of the step with peak forces occurring at the beginning and end of each footstep.

The result of these two amplitude peaks is a saddle shape in the forcing function

as the force increases, decreases, and then increases again. Furthermore, the forcing

function should account for the fact that a walking pedestrian will always have a foot

in contact with the ground. This constant ground contact results in a slight overlap

of footsteps when the heel of the leading foot touches the ground as the ball of the

trailing foot leaves the ground. This overlap results in an increase in amplitude of

the first peak within the saddle shaped graph, as this peak is the sum of the forces of

both the leading and trailing feet. These different factors were taken into considera-
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tion in Bachmann and Ammann (1987), in which a Fourier series representation was

developed to model single pedestrian loading. This function is given by

FP (t) = G+ ∆G1sin(2πfst) + ∆G2sin(4πfst− ψ2) + ∆G3sin(6πfst− ψ3) (2)

where FP (t) is the time dependent footfall force, G is the weight of the pedestrian,

fs is the pacing frequency of the pedestrian in Hz, and ∆Gn and ψn are the load

amplitude and phase angle of the nth harmonic, respectively. Two of the most sig-

nificant variables in this function are the weight of the pedestrian, which is directly

proportional to the amplitude of the applied force, and the pacing frequency of the

pedestrian. The pacing frequency varies by the speed and stride length of the pedes-

trian, with increasing frequencies corresponding to an increase in walking speed or

decrease in the stride length. For the case of a pedestrian moving at a normal walk-

ing speed, the pacing rate has been found to typically fall between 1.7 Hz and 2.3

Hz. The expected amplitude of the fundamental driving frequency appearing in the

forcing function has been determined to be between 0.4G for a pacing frequency of

2.0 Hz and 0.5G for a pacing frequency of 2.4 Hz (Bachmann and Ammann, 1987).

Interpolation has been proposed as a valid method for determining the amplitude in

the case of different pacing frequencies. For the amplitude of the second and third

harmonics, 0.1G was proposed as a reasonable value. For all harmonics, the phase

angle was specified as π/2. The typical forcing function represented in this model

with the recommended variable assignments for a pedestrian weighing 0.8 kN (180

lb) and walking at a pacing frequency of 2.0 Hz is presented in Figure 2.3.

It was also noted in Bachmann and Ammann (1987) that the periodic footfall forces
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Figure 2.3: Typical footfall forcing function following Bachmann and Ammann
(1987)

occurred in both the vertical and horizontal directions. Naturally, the vertical load

exerted by pedestrians is far greater than the horizontal force due to the direction of

gravity. However, the amplitude of the horizontal forces, while only approximately 10

percent of the vertical forces, also occurred with each footstep. This is due to the sway

of a person as he or she walks, as the swaying creates a horizontal force component on

the walking surface. The horizontal force develops similarly to the vertical force, as

both result from the same step. However, it should be noted that while the vertical

force exerted by each footstep consistently applies a downward force, the horizontal

load will alternate in the direction of load application with each step. Therefore, the

horizontal force should be applied in each horizontal direction at half the rate of the

vertical force.

The pedestrian loading function developed in Bachmann and Ammann (1987) is

a commonly used model for representing the loading from a single pedestrian. A

similar Fourier series representation is recommended for vibration analysis by the

International Standards Organization in ISO 2631-2 (1989) and ISO 10137 (2007).

According to these standards, the function can be used to model both vertical and

horizontal loads, with the only difference being a slight variation in the recommended
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amplitude coefficients associated with the harmonics. It is also recommended in ISO

10137 (2007) that the number of harmonics included in the forcing function may vary

depending on the structure being analyzed. However, tables listing recommended

numerical values for the dynamic coefficients in both the vertical and horizontal di-

rections are provided in ISO 10137 (2007) for the first five harmonics. The values of

the harmonics vary by both direction of the force and by the pacing frequency.

A similar time history function is described for modeling pedestrian loading in

Murray et al (2003). This function is referenced by the American Institute of Steel

Construction in AISC Design Guide 11: Floor Vibrations Due to Human Activity.

While similar to the loading function recommended in ISO 10137 (2007), the time

history function found in Murray et al (2003) recommends a different number of

harmonics and slightly different amplitude and phase assignments for each harmonic.

The recommended forcing function is given by

Fn(t) = P [1 + Σαncos(2πnfst+ ψn)] (3)

where P is the weight of the pedestrian, and αn is the force amplitude of the nth

harmonic. The other variables in the equation are consistent with the notation in the

prior model. It is recommended in the design guide that the weight of the pedestrian

be taken as 0.7 kN (157 lb), while the harmonic force component coefficients are

specific to the pacing frequency and are provided in Table 2. Furthermore, although

it is stated that the above function is a reliable pedestrian loading model, it is also

permitted for simplicity to consider only the first harmonic for design purposes. This

is permitted because the harmonics occurring after the first are of lower amplitude
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Table 2: AISC recommended dynamic coefficients for walking pedestrians (Murray
et al., 2003)

Harmonic f (Hz) α ψ
1 1.6-2.2 0.5 0
2 3.2-4.4 0.2 π/2
3 4.8-6.6 0.1 π/2
4 6.4-8.8 0.05 π/2

Figure 2.4: Typical footfall forcing function following AISC design guidance

and are less likely to induce significant perceptible vibrations through the higher

frequency modes of the structural response. Plots of the typical excitation time

histories associated with the full model featuring four harmonics and the simplified

single harmonic function are presented in Figure 2.4.

An additional pedestrian loading model is described in the British National Annex

to the Eurocode 1 Structural standard (BSI, 2008). In this standard, a generalized

function is presented to represent the dynamic loading introduced by pedestrian traffic

for both single and multiple pedestrians. The applicability of the function to single

pedestrian and crowd loading is accomplished through the use of various adjustment



22

factors within the function. These factors vary with different load scenarios, and

recommended values for the factors are provided in the BSI (2008). Since this function

can be used to model either single or multiple pedestrian loading, the functional form

of the model will be presented and discussed in more detail in the following section

concerning multiple pedestrian loading.

2.4 Pedestrian Footfall Models for Groups of Pedestrians

The pedestrian footfall models presented in the previous section dealt with single

pedestrian loading. In this section, current methods for modeling multiple pedes-

trian loading will be discussed. Modeling the loads induced by groups of pedestrians

presents challenges that are not present during loading by a single pedestrian. Aside

from the increase in force created by multiple pedestrians, the effects of synchroniza-

tion are amplified, as pointed out in the case studies.

Several of the previously discussed single pedestrian load models have been adapted

to approximate loads from groups of pedestrians. An early attempt to model crowd

loading using a multiplier to represent the number of pedestrians was proposed in

Matsumoto et al (1978). This method was referenced in Bachmann and Ammann

(1987) as being untested in the field but verified through computer simulations. The

method is relatively simple and uses the mean flow rate of pedestrians across the

bridge deck and the time taken to cross the length of the bridge to calculate the

number of pedestrians occupying the deck at a given time. The square root of the

number of pedestrians is then used as a multiplier to amplify the forcing function
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Figure 2.5: Amplification of applied force for multiple pedestrian loading following
Matsumoto et al (1978)

associated with a single pedestrian. This is shown mathematically by

Fm(t) = mFp(t) (4)

m =
√
λT0

where Fm(t) is the forcing function for multiple pedestrian loading, m is an amplifi-

cation factor to account for the loading from multiple pedestrians, λ is the mean flow

rate of pedestrians over the bridge, and T0 is the time required for a pedestrian to

cross the span length of the bridge. Use of this method results in a nonlinear increase

in the applied force as the number of pedestrians increases, as illustrated in Figure

2.5.

A similar method to that developed by Matsumoto et al (1978) is recommended in

ISO 10137 (2007). The recommended method is also based on the concept of using

a multiplier to amplify the forcing function developed for a single pedestrian. The

function takes the form

FN(t) = C(N)Fp(t) (5)
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where C(N) is a coordination factor, which is a function of the number of pedestrians,

N .

In this approach, the forcing function appears the same as in the case of a single

pedestrian, except the pedestrian weight is taken as the estimated weight of the

group of pedestrians, while the multiplier is a reduction factor, referred to as the

coordination factor. The premise of reducing the force is based on the assumption

that a lack of coordination will reduce the force on the surface. Therefore, perfect

coordination would have the same effect as a single pedestrian of equal weight to the

entire group of pedestrians, because the coordination factor would be equal to one.

Values for the coordination factor are prescribed in ISO 10137 (2007) for different

levels of coordination. For the case of a complete lack of coordination, the presented

coordination factor is recommended.

C(N) =

√
N

N
(6)

As previously mentioned, the BSI (2008) presents a generalized pedestrian loading

function applied for simulating either single or groups of pedestrians. This standard

recommends the forcing function

F = F0k(fv)
√

1 + λ(N − 1)sin(2πfvt) (7)

where F0 represents the reference amplitude of the applied force, N is the number

of pedestrians considered, and fv defines the natural frequency of the vertical mode

being evaluated. A combined factor, denoted as k(fv), is used to account for effects

of the pedestrian traffic, harmonic responses, and pedestrian sensitivity to structural
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Figure 2.6: Typical footfall forcing function following the British Annex to Eu-
rocode

accelerations. A reduction factor, denoted by λ, is used to account for unsynchronized

pedestrian movement. A typical footfall model for a single pedestrian developed using

this function is presented in Figure 2.6 for a reference amplitude of 0.28 kN (63 lb)

and a pacing frequency of 2 Hz.

Through adjustment of the variables in the equation, the forcing function can be

applied for any number of pedestrians. Several tables and figures are provided in

the BSI (2008) to determine recommended values of the coefficients. The combined

factor varies by the natural frequency of the structure, while the synchronization

reduction factor varies by the number of pedestrians and the relative damping ratio

of the structure. For design and analysis purposes, the forcing function is modeled

as a moving dynamic load along the deck of the bridge with a reference amplitude

of 0.28 kN. The response of the bridge is then calculated at the most unfavorable

location on the bridge deck. It is further specified that the load model should be

applied considering not only the fundamental mode shape but also the other modes

of the structure.

All of the methods reviewed are relatively simplistic in that the amplitude of the

force is assumed to steadily increase with the number of pedestrians. Furthermore,
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the multiplier does not account for differences among pedestrians, such as weights

and pacing rates, that introduce stochastic characteristics to the loading model. This

is because the methods use a scalar factor to simply amplify the loading model for a

single pedestrian. The forcing function is therefore based on one specific pedestrian

and cannot account for the differences in others.

2.5 Finite Element Model Updating

Analysis of the dynamic response of structures to loads varying in time and space

is readily facilitated using either direct time history analysis or modal superposition

time history analysis with finite element models (Weaver and Johnston, 1987). How-

ever, due to differences between the predicted dynamic properties of the analytical

model and those of the actual structure, significant errors can arise from the use

of finite element models to predict dynamic responses without first verifying and, if

warranted, field calibrating the dynamic properties of the model (Friswell and Mot-

tershead, 1995). These discrepancies can arise from uncertainties regarding geometric

and material properties of the structure, modeling idealizations, and discretization er-

rors in the finite element model. In order to minimize the effects of these differences

and to improve the accuracy of the predictions developed by finite element models,

various methods of finite element model updating, or structural identification, have

been proposed and evaluated through application to laboratory and full-scale field

structures (Çatbaş et al., 2013).

Finite element model updating is accomplished by selectively changing certain pa-

rameters within the finite element model while other parameters remain fixed (Friswell
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and Mottershead, 1995). These parameter changes are associated with changes in the

stiffness and mass matrices of the finite element model, and consequently lead to

changes in the predicted response and dynamic structural properties of the model.

The effectiveness of the changes can be evaluated through the use of an objective func-

tion, which is developed to quantitatively compare the analytically predicted response

to the experimentally measured structural response. Therefore, an improvement in

the objective score reflects improved model correlation with the change in the uncer-

tain parameters updated, with the objective being to determine the globally optimal

solution of parameters for the model. Additional information on parameterization of

finite element models and model correlation using an objective function is presented

in Chapter 4. The following review of structural identification is specific to the use

of genetic algorithms to field calibrate finite element models, which is investigated in

this study using field measurements from a case study structure.

Multiple local and global optimization techniques for locating the optimum solu-

tion have been favored over recent years as computational techniques and computing

power have improved (Mottershead et al., 2011, Zárate and Caicedo, 2008). One of

the emerging techniques gaining popularity for structural identification is the global

optimization method of genetic algorithms (Levin and Lieven, 1998). This method of

optimization uses the principles of natural selection and genetics to search for glob-

ally optimal solutions for a given set of parameters (Goldberg, 1989). As with most

conventional optimization techniques, a set of uncertain parameters in the finite ele-

ment model are selected for optimization within a prescribed range of plausible values

defined by specified lower and upper bounds for each parameter. Therefore, while the
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optimization is completed by the genetic algorithm, the method still requires human

discretion to properly update the model. In order to determine the optimal solution,

the genetic algorithm evaluates individual sets of candidate parameter assignments,

referred to as individuals, across a population of combinations covering the range of

possible parameter assignments, or the search space. The quality of each individual

is evaluated through the objective function, and the genetic algorithm uses the ob-

jective scores across the population to identify the best individual solutions from the

population. In this way, the method of genetic algorithm updating uses a survival of

the fittest approach to retain and pass on the characteristics of these best individual

solutions when recursively generating and evaluating a new population in the search

for a globally optimum solution (Goldberg, 1989).

The method parallels natural selection by forming subsequent generations using

the surviving individuals, or elites, from each previous population. The subsequent

generations developed consist of either crossover, mutation, or elite individuals. Fol-

lowing this methodology, crossover individuals consist of combinations of two previous

parameter sets, mutation individuals involve random changes applied to parameters

in an individual, and elite individuals represent the unchanged set of best parameter

sets according to the objective function (Levin and Lieven, 1998). By the presence of

the elite individuals, the best objective score in each subsequent population must ei-

ther increase or remain unchanged, leading to an eventual convergence on an optimal

solution.

Genetic algorithm optimization has been proven effective for use with finite element

model updating across multiple studies. In Levin and Lieven (1998), genetic algorithm
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optimization was successfully applied to a finite element model updating problem, in

which a genetic algorithm routine was used to update a finite element model of a wing

shaped plate structure. In this relatively simple evaluation, the genetic algorithm

updating routine was found to improve the correlation between the modal results

obtained through experimental testing and through finite element analysis.

Genetic algorithm optimization was further used in Nguyen et al (2015) to update

a finite element model of a vehicle bridge located in Croatia in order to improve

the correlation between the experimental and analytical modal property estimates of

the structure. The test structure in the study was an arch bridge constructed using

fiber reinforced concrete and having an overall length of 157 m divided across nine

spans. In this case, the MATLAB computing environment was used to complete the

genetic algorithm updating routine of the finite element model, which was developed

using the Abaqus software. Comparison of the properties of the finite element model

to experimentally estimated modal parameters was used to conclude that a signifi-

cant improvement in the correlation of the modal results could be obtained following

implementation of the genetic algorithm updating routine.

The extension of genetic algorithm optimization for finite element model updating

of civil structures to vibration-based damage detection was explored in Friswell et al

(1998), in which a genetic algorithm was used in conjunction with vibration data to

predict the location of damage in a finite element model of a cantilever beam. The

effectiveness of the genetic algorithm led to the conclusion that the genetic algorithm

is a robust method of finite element model updating and is well suited to solving

difficult optimization problems. Genetic algorithms were further used for finite ele-
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ment model updating and damage detection in Kernicky et al (2015). In this study,

a genetic algorithm was used to field calibrate a finite element model of a masonry

infill wall in a full-scale structure to experimentally obtained modal parameter esti-

mates acquired both prior to and after the introduction of damage. The optimization

routine was successfully used to calibrate an idealized finite element model to im-

prove the correlation between the experimental and predicted modal parameters of

the case study wall. Subsequent structural identification of the finite element model

using modal parameters measured after subjecting the wall to blast loading was used

in this study to predict localized changes in the stiffness of the masonry wall. The

predicted locations of damage were found to be plausible with respect to field ob-

servations of damage and dynamic nonlinear simulations of the blast response of the

wall.

These examples serve to verify the successful use of genetic algorithm optimization

for finite element model updating. In all of the cases, the genetic algorithm was found

to improve the correlation between experimental and analytical dynamic responses

through updating of finite element model parameters.



CHAPTER 3: EXPERIMENTAL VIBRATION TESTING OF A STEEL TWIN
I-GIRDER PEDESTRIAN BRIDGE

In this chapter, operational modal analysis of a pedestrian bridge that serves as

a case study structure in this thesis is presented. The test structure, a steel twin I-

girder bridge, was vibration tested under both ambient excitation and under a series

of prescribed pedestrian load cases. Vibration test results were analyzed to determine

the modal characteristics of the structure and to determine the peak accelerations of

the bridge throughout the tests. The details of the test structure, experimental modal

analysis, and experimental pedestrian-induced vibration results are presented.

3.1 Description of Test Structure

Full-scale instrumentation and ambient vibration monitoring was conducted on the

longest span of a steel twin I-girder pedestrian bridge for the purposes of operational

modal analysis and pedestrian-induced vibration analysis. The bridge, shown in

Figure 3.1, is a concrete deck on steel girder superstructure consisting of four spans

of unequal length. The bridge serves as a crossing for pedestrian and bicycle traffic

over a multi-lane highway. The total length of the bridge, detailed in the as-built

construction plans, is 102.49 meters, with the longest span being 35.69 meters. An

elevation view drawing of the bridge, which indicates the location of the instrumented

span, is shown in Figure 3.2. The framing of the bridge consists of two steel built-

up I-shape girders in the cross-section that are independent for each span. The plate
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Figure 3.1: Pedestrian bridge experimentally tested within research program

girders for each span feature pin and hanger assemblies to connect the adjacent spans.

Due to the placement of the columns supporting the bridge, each span is supported

on one end by either a column or ramp, while the other end is connected to the next

span by the pin and hanger assembly. As seen in the elevation view, the bridge is

supported by three columns, located approximately at the end of each span, and by

ramps at each end of the bridge. At the abutments at each of these ramps, the bridge

is supported by a pair of rocker bearings placed under the end diaphragms of the

respective spans. The columns consist of hollow tubular steel sections of two foot six

inch diameter filled with concrete.

The girders feature transverse stiffeners formed by T-shape cross sections welded

between the upper and lower flanges of the girders. Steel C12x25 channels serve

as diaphragms between the girders and support the reinforced concrete deck, which

is located approximately at the mid-height of the main girder depth. The bridge

features a composite deck with steel decking beneath the reinforced concrete deck
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Figure 3.2: Elevation view of bridge

Figure 3.3: Typical cross-section

slab. It should be noted that the details of the composite design of the deck were

not known. The steel channel framing is connected through the use of simple bolted

shear connections. A typical cross section is illustrated in Figure 3.3. It is notable

that construction of this design type, with the deck located at the mid-height between

twin girders, is considered to be especially susceptible to excessive vibrations (Murray

et al., 2003).

The framing plan of the instrumented span of the bridge is presented in Figure 3.4.

The bridge is braced laterally by steel ST6x17.5 beams running diagonally between the

girders, as shown in the framing plan. Each diagonal spans two diaphragm sections,

but is connected to the intermediate diaphragm with a simple shear connection. It is
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Figure 3.4: Framing plan of the instrumented span

Figure 3.5: Bridge deck (top left). Bridge framing (top right). Pin and hanger
assembly (bottom left). Girder stiffener (bottom right).

also noteworthy that the deck of the bridge is cast directly to both the diaphragms and

the twin I-girders in a manner suggesting composite action. In addition to being cast

directly to the top of the steel diaphragms, the concrete deck was poured in a way that

it surrounds the transverse stiffeners of the main girders, thereby facilitating some

degree of composite action with the steel superstructure. Photographs of the bridge

deck, steel framing, pin and hanger connections, and the concrete deck surrounding

the transverse stiffeners can be seen in Figure 3.5.
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3.2 Instrumentation and Ambient Vibration Monitoring

In order to obtain acceleration time histories for vibration analysis and for the ex-

perimental estimation of the modal parameters of the instrumented span of the bridge

for finite element model calibration, field testing of the structure was performed with

a distributed array of accelerometers. This field testing was completed on a clear

day with mild temperatures and minimal winds. Consequently, ambient vibrations

recorded throughout the experimental test program can be attributed to pedestrian

loading and vibrations induced by vehicles passing beneath the bridge. To facilitate

testing, a network of 16 wireless sensors, each acquiring data from a Kionix KXR 94-

2283 triaxial accelerometer, was attached to the deck of the longest span of the bridge.

The accelerometers were sampled at a rate of 125 Hz, thereby offering an effective

measurement bandwidth from 0 to 56.3 Hz. Digital anti-alias filters and oversam-

pling techniques designed into the wireless sensor network hardware maximize this

measurement bandwidth and ensure rejection of any high frequency response or noise

in the recorded measurements. The nominal sensitivity of the accelerometers used in

the testing was 1000 mV per g, the noise density was 45 µg/
√
Hz, and the full-scale

range was +/- 2 g. The accelerometers were oriented to record accelerations primar-

ily in the longitudinal, vertical, and lateral directions of the bridge. However, since

the accelerometer cases were mounted directly to the deck surface and since the deck

profile had a mild slope, the local vertical direction was established as the direction

locally normal to the bridge deck, while the local longitudinal direction was estab-

lished locally tangent to the deck in the lengthwise direction. The deck profile from
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the original plans was used to estimate the local orientation of each sensor relative to

the gravitational direction and then correct the measurements to the global directions

used in the subsequent finite element model described in the following chapter. The

local lateral direction of each sensor was naturally lateral to the actual deck and re-

quired no correction due to the deck profile. The sensors were attached to the bridge

deck through the use of a small amount of wax adhesive, which kept the sensors fixed

in place without the need for permanent attachments. The sensors were installed

symmetrically along the bridge deck, with sensor locations selected as the locations

where the lateral bracing connects to the girders. This layout is shown in Figure 3.6.

The selected placement provided uniform spacing along the length of the bridge span

and was sufficient to monitor critical peak accelerations in all three directions across

the full span. This layout also provided enough spatial density to reconstruct mode

shape estimates of the bridge span from the acceleration data. Since each triaxial

accelerometer provided three local measurements of acceleration, the network of 16

sensors resulted in a total of 48 measurement channels that were streamed in real-

time to a host receiver using a wireless transmission protocol developed in Whelan

and Janoyan (2009). The receiving antenna for the sensors was located at the end of

the span that corresponded to sensors 15 and 16. Images of the wireless sensors and

testing apparatus are shown in Figure 3.7.

The objective of the ambient vibration monitoring program was to collect data both

with and without deliberate pedestrian excitation. The data sets without pedestrian

excitation are subsequently used to develop modal parameter estimates of the bridge

through output-only system identification, or operational modal analysis. The data
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Figure 3.6: Sensor placement on bridge span

sets with pedestrian excitation are used in this study to determine the peak acceler-

ations induced in the bridge under specific pedestrian loading scenarios to assess the

performance of pedestrian excitation models. Data sets with pedestrian excitation

could not be used for operational modal analysis since the excitation from pedes-

trian loading introduces strong harmonic excitations that violate the assumption of

broadband excitation required for operational modal analysis.

Ambient vibration monitoring without pedestrian excitation was performed first,

since these results were used to immediately determine the fundamental resonant fre-

quency of the span for subsequent controlled pedestrian testing. The testing without

pedestrian excitation consisted of two types of tests. One set of tests was carried out

using a mechanical shaker to excite the bridge, while the other set was carried out

under ambient conditions without applying additional external excitation with the

shaker. Initially, the mechanical shaker, shown in Figure 3.8, was positioned on the

bridge deck to induce accelerations in the bridge through prescribed motion of the

reaction masses. Using this approach, the shaker provided excitation additional to

the ambient vibration sources using a slow swept sine motion of the reaction masses

over the full measurement bandwidth while the accelerometers acquired the vibra-
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tion response data. Accelerations higher than ambient levels would have ideally been

developed with the aid of the shaker to facilitate improved modal parameter esti-

mation through increased signal-to-noise ratio of the measurements. However, while

attempting to complete the testing with the shaker, it was found that the vibrations

induced by the shaker were not significant enough to produce accelerations notably in

excess of those developed under ambient conditions. Since tests involving the shaker

required reallocating one of the sensors from the bridge to measure the input exci-

tation from the motion of the masses, it was ultimately determined that the modal

parameter estimates would be produced using the data from ambient vibration moni-

toring without this additional excitation. For the remainder of the ambient vibration

cases, it was necessary to collect data when the bridge was not subject to unusual

or strongly periodic external excitations. Therefore, the ambient data was collected

during intervals when there was either an absence of pedestrian traffic or the presence

of only light traffic. Furthermore, it should be noted that both the ambient vibration

data and the shaker data were collected with vehicular traffic flowing underneath the

bridge. However, the presence of vehicular traffic passing under the bridge can be

considered acceptable for operational modal analysis, as these occurrences are gener-

ally random and non-periodic. Over the course of the ambient vibration monitoring,

data records of 190 second duration were repeatedly obtained to form a basis for

developing and averaging modal parameter estimates. Since there were occasional

disruptions in the usual flow of pedestrian traffic, including bicyclists, joggers, and

pedestrians stopping to examine the sensors, a large number of sets of ambient data

were collected. Ultimately, the test program yielded seven data sets absent of pedes-
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Figure 3.7: Sensors on bridge deck (top left). Individual accelerometer (top right).
Wireless accelerometer (bottom left). Receiving antenna (bottom right)

Figure 3.8: Mechanical shaker oriented to provide excitation in the vertical direction
(left) and in the longitudinal direction (right)

trian induced resonance, which are used for the operational model analysis described

in Section 3.4.

After the ambient testing had been completed, the bridge was tested under pre-

scribed pedestrian loading cases. The objective was to measure the dynamic re-

sponse of the bridge under several cases of pedestrian excitation in order to quantify

the peak accelerations developed by a single person walking and by small groups of

people walking in different configurations. The various pedestrian load cases that
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Figure 3.9: Pedestrian load cases examined

were tested included the cases of one person walking, two persons walking shoulder-

to-shoulder, three persons walking shoulder-to-shoulder, and three persons walking

in single file. Photographs illustrating these pedestrian load cases are presented in

Figure 3.9. For each loading case, the footfalls were timed to a metronome set to

approximately match, and thus excite, the resonant frequency of the fundamental

vertical bending mode. Examination of the previously obtained ambient data deter-

mined that the resonant frequency associated with this mode was approximately 2.1

Hz. Therefore, the metronome was set to 126 beats per minute, as this results in 2.1

beats per second. For each loading scenario, three runs were completed, so that the

results for each load case could later be averaged. Furthermore, these data sets were

obtained during closure of the bridge to all other pedestrian traffic to ensure that

the measured response could be attributed predominantly to the prescribed walking

loads associated with each test with minimal vibration interference.
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Table 3: Summary of ambient accelerations

Case Peak Sensor Peak Sensor Peak Sensor
Longitudinal Vertical Lateral
Acceleration Acceleration Acceleration

(mg) (mg) (mg)
1 2.52 15 8.18 14 4.15 15
2 2.35 8 9.53 3 3.69 15
3 2.48 16 10.96 12 4.17 16
4 4.14 16 23.04 8 5.99 15
5 2.43 7 9.36 3 5.86 16
6 2.74 11 12.97 10 5.11 16
7 2.71 16 11.58 13 9.76 16
Average 2.77 11.29 5.53

3.3 Characteristics of Recorded Vibration Response

Prior to developing estimates of the modal parameters of the instrumented span,

the data recorded during the ambient testing was analyzed to determine the peak

accelerations recorded on the span in the three measured directions of motion. This

statistic was used to identify time histories without significant pedestrian excitation.

The results are presented in Table 3 and provide measurements of the peak acceler-

ations obtained across the instrumented bridge span. The sensor number is included

to show the location where the respective peak acceleration was recorded. Figure

3.10 presents a typical time history acceleration response graph for the midspan of

the bridge during ambient vibration conditions.

In order to characterize the frequency response of the instrumented span, an aver-

age normalized power spectral density plot (ANPSD) was developed using the data

collected through field testing. The ANPSD represents an estimate of the averaged

strength of the acceleration measured across the bridge as a function of frequency.
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Figure 3.10: Time history acceleration plots at midspan under ambient conditions

As such, peaks in signal strength can be identified on the ANSPD at the frequencies

at which they occur. For the purpose of this research, the ANSPD was developed

within the MATLAB computing environment using Welch’s method (Brandt, 2011)

to determine the power spectral density. The resulting ANSPD is presented in Figure

3.11. This plot can be a useful reference when locating the resonant frequencies of

the structure, which correspond closely with the undamped natural frequencies of the

structure for most typical cases of structural damping.

3.4 Operational Modal Analysis

For each data set collected during ambient vibration testing, operational modal

analysis, or output-only system identification, can be applied on the recorded acceler-

ation time histories to develop estimates of the natural frequencies, relative damping
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Figure 3.11: Average normalized power spectral density computed across ambient
vibration time histories

factors, and mode shapes expressed in the measured response for the span under

test. The system identification performed on this structure was completed in the

MATLAB computing environment using a toolbox developed at the Katholieke Uni-

versiteit Leuven. This software is entitled Signal Processing in Civil Engineering

(SPICE), or in later versions Modal Analysis on Civil Engineering Constructions

(MACEC) (Van den Branden et al., 1999) and implements the stochastic subspace

state-space system identification (SSI) algorithm developed in Van Overschee and De

Moor (1996). The SSI algorithm is a time domain method of system identification.

This method works by regression of a state space model, consisting of state variables,

to the measurement data in order to develop a mathematical model for the response of

the structure that is consistent with the ordinary differential equation of mechanical

vibration. Following regression of the state space model, modal parameter estimation
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is performed by eigendecomposition of the estimated state matrix. As the method

makes the assumption that the applied force is random, it is especially useful when

the input forces, such as winds or traffic underneath the bridge, are not measured

due to either logistical or economic reasons (Peeters and Roeck, 2001). This allows

for analysis based only on measured response data and provides a means for vibra-

tion monitoring of large civil structures under ambient conditions that do not require

temporary closure of the structure.

Using the SSI algorithm within the SPICE software, stabilization plots for each

data set were generated to extract estimates of stable poles in the system models.

An example of such a plot is shown in Figure 3.12. As can be seen in the represen-

tative plot, stable poles can be identified by columns of data points, which typically

correspond to locations of a resonance peak within the frequency response spectra.

Each pole corresponds to a single modal parameter estimate, consisting of a natural

frequency, damping ratio, and mode shape for a potential structural mode. Since

each row of poles corresponds to an estimate of the system model with a given model

order, five modal parameter estimates were obtained for each identified potential

structural mode from each data set. These five estimates were taken for each mode

and across each data set for the purpose of averaging the data and model order used

for the modal parameter estimation when developing the final estimate for each mode.

This selection process was completed for each of the seven ambient data sets, until

five modal parameter estimates had been compiled for each potential mode identified

within each data set. Since several data sets were averaged, it was necessary to pair

consistent modal parameter estimates prior to averaging. To achieve this, estimates



45

Figure 3.12: Selection of modes in SPICE

were initially grouped together based solely on similarities in the undamped natu-

ral frequencies. However, it was possible that different mode shapes could occur at

similar frequencies and that some modal parameter estimates may be inconsistent

due to the pole selection process. Since the averaging of distinctly different modes

would produce inaccurate results, the modal assurance criteria (MAC) was calculated

across the grouped sets of modal parameter estimates to ensure selection of consistent

modes prior to averaging. The MAC is a commonly used statistical measure of modal

vector consistency that can be used to verify that a pair of mode shape estimates are

actually estimates of the same mode (Ewins, 1984). The equation used to calculate

the MAC value is

MAC =
|[φj][φi]

T |2

([φj])[φj]T )([φi][φi]T )
(8)

where φj is the measured mode shape to which another mode is compared, and φi is
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the mode shape being compared to the first mode. The MAC value was applied to

individual groups of mode shape estimates with similar natural frequencies through

the use of a cross-MAC estimator, which returns a matrix of MAC values for all pairs

of modes in the group. Higher MAC values indicate greater correlation between the

modes. For example, the MAC value computed for two identical mode shapes would

be equal to 100 percent. For each set of averaged modes, a minimum threshold value

of 85 percent was established for the cross-MAC of each modal parameter estimate

used within averages. To expedite this process, the matrix of MAC values computed

over each group were represented using a 2D color plot. This provides a means of

evaluating the cross-MAC to identify sets of consistent modal parameters for each set

of estimates.

After the modes had been reduced to sets of consistent estimates according to the

MAC criteria established, averaging could be directly performed across the natural

frequencies of the paired modes. The relative damping factors could also be averaged

at this point since those are also unbiased estimates. However, due to uncertainties

created by outliers in the relative damping factor estimates, the mean and standard

deviation of the set of estimates for each mode were first calculated. All values outside

the range of the mean plus and minus the standard deviation were discarded. The

remaining values were then averaged to obtain a final estimate of the relative damp-

ing factor for the mode. In contrast to the natural frequencies and relative damping

factors, the mode shape estimates are of relative scale and arbitrary phase. Conse-

quently, it is necessary to apply a normalization to correct the scale and direction

of the mode shape estimates prior to averaging. To perform this normalization, the
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modal scale factor (Allemang, 2003), presented by

MSF =
[φj]

T [φi]

[φi]T [φi]
(9)

was applied to the common set estimates of the same modes. Each mode shape was

scaled to the first mode shape in the corresponding set to ensure that the individual

vectors were averaged both in-phase and in an unbiased manner. In Equation 9,

φj is the reference mode to which other modes are normalized, and φi is the mode

subject to normalization. Following normalization, the mode shapes were averaged

to produce a single mode shape estimate for each natural frequency.

It was lastly necessary to determine which estimated mode shapes were reliable

representations of the structural modes in order to minimize the possibility of in-

cluding either a false or poorly estimated mode shape within the final set of modal

parameter estimates. This was accomplished through the use of the ANSPD of the

time history data recorded in the ambient data sets. The estimated natural frequen-

cies were compared to the resonance peaks in this plot to confirm that the estimates

occurred where sufficient excitation of the mode during the field test was reflected

in the measured strength of vibration. Modal estimates that did not correspond to

peaks or occurred at exceptionally low amplitudes on the plot were regarded as po-

tentially spurious modes or unreliable estimates and were discarded. This comparison

is illustrated in Figure 3.13, which indicates the locations of the undamped natural

frequencies of the averaged modal parameter estimates below 25 Hz superimposed

on the ANSPD estimate. The final set of averaged modal parameter estimates for

the instrumented span is presented in Figure 3.14. Both isometric and plan views
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Figure 3.13: Average power spectral density plot including locations of modal
estimates

of the instrumented span are presented for each mode to permit for identification of

both vertical and lateral bending present within each mode. It should be noted that

some modes look redundant. However, these similarities arise from the interaction

of the connected spans and therefore some of the modes being predominantly driven

by resonance within the other spans. This is illustrated later in Chapter 4 through

the use of the finite element model developed to simulate the response of the full

structure.

3.5 Measured Response to Pedestrian Excitation

The accelerations induced by the cases of prescribed pedestrian loading were evalu-

ated to determine the peak accelerations experienced at the instrumented locations of

the measured span. For each data set of each prescribed loading scenario, the acceler-
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Figure 3.14: Experimental modal parameter estimates

ation of each accelerometer along the deck of the structure was evaluated. The peak

acceleration measured within each direction was extracted from the recorded data and

is compiled in Table 4. It was observed that the peak longitudinal and vertical acceler-

ations occurred at the accelerometers closest to the midspan of the structure (sensors

7 through 10). In contrast, the peak lateral acceleration was typically found to oc-

cur toward either end of the span. Time history plots of representative acceleration

data recorded during prescribed pedestrian excitation, showing typical accelerations

of the deck at midspan, are presented in Figures 3.15, 3.16, 3.17, and 3.18. It can

also be observed that the peak accelerations recorded on the bridge increased with

an increase in the number of pedestrians providing the loading. This is illustrated

by Figure 3.19, showing the peak accelerations plotted against the number of persons

walking across the span. Furthermore, a line following the power law was also plot-

ted with the peak vertical accelerations. This was included in order to compare the
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Table 4: Summary of pedestrian-induced peak accelerations across local measure-
ment axes

Pedestrian Peak Sensor Peak Sensor Peak Sensor
Load Case Longitudinal Vertical Lateral

Accel. Accel. Accel.
(mg) (mg) (mg)

1 Person Walking 4.79 7 43.79 8 8.40 14
1 Person Walking 4.67 7 33.89 8 4.98 16
1 Person Walking 5.62 7 41.97 9 4.50 16
1 Person Average 5.03 39.89 5.96
2 Persons Walking 8.36 7 70.63 9 5.86 6
2 Persons Walking 7.76 7 58.13 10 6.50 16
2 Persons Walking 9.55 7 73.30 10 10.40 16
2 Person Average 8.56 67.35 7.59
3 Persons Walking 8.42 7 64.36 8 6.67 2
3 Persons Walking 10.91 7 73.77 9 6.48 16
3 Persons Walking 10.55 7 83.29 7 5.86 2
3 Person Average 9.96 73.81 6.34
3 Persons Single File 8.69 7 65.00 9 7.06 6
3 Persons Single File 9.00 7 72.76 9 7.02 6
Single File Average 8.84 68.88 7.04

experimental data to certain pedestrian load models discussed in Chapter 2. These

pedestrian load models indicate that a multiplier should be applied to the acceler-

ation induced by a single pedestrian in order to determine the acceleration induced

by multiple pedestrians. This multiplier is equal to the square root of the number

of pedestrians. Therefore, the line plotted in Figure 3.19 indicates the peak vertical

acceleration from the case of a single pedestrian multiplied by the square root of the

number of pedestrians. The experimental data indicates that this power law under

predicts the peak vertical accelerations induced by the small groups of pedestrians on

this structure.
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Figure 3.15: Time history of accelerations measured at midspan for one person
walking

Figure 3.16: Time history of accelerations measured at midspan for two persons
walking
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Figure 3.17: Time history of accelerations measured at midspan for three persons
walking

Figure 3.18: Time history of accelerations measured at midspan for three persons
walking single file
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Figure 3.19: Comparison of peak acceleration to number of persons walking



CHAPTER 4: FINITE ELEMENT MODELING OF THE SPAN AND
STRUCTURAL IDENTIFICATION

In this chapter, the development of a finite element model of the case study struc-

ture used for structural identification and subsequent linear dynamic analysis is pre-

sented. The initial section of this chapter describes the methodology, idealizations,

and assumptions used when modeling the structure within the commercial finite ele-

ment analysis software SAP2000. Subsequent sections describe the structural identi-

fication routine used to update uncertain parameters within the finite element model

for the purpose of improving the correlation between the modal properties of the

finite element model and the measured modal parameter estimates obtained through

the field testing and system identification described in the previous chapter. The

correlation between the experimental modal parameter estimates and those predicted

by the updated finite element model are presented at the conclusion of this chapter

and serve to validate the use of the model for further linear dynamic analysis under

prescribed pedestrian footfall loadings.

4.1 Description of the Finite Element Model

The purpose of developing the finite element model was to create a field calibrated

representation of the case study pedestrian bridge using software capable of perform-

ing linear dynamic analysis. Following validation of the modal parameters of the field

calibrated finite element model through comparison to the experimentally obtained
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estimates, the this model could be reliably used to simulate pedestrian loading across

the bridge span. The first step in producing the field calibrated finite element model

was to create an idealized model of the test structure that reflects only engineering

judgment in developing the modeling assumptions and assigning material properties.

The idealized finite element model, which was modeled using the geometries speci-

fied in the original as-built plans of the structure and by observations made during

field instrumentation, served as a preliminary model to be later improved by struc-

tural identification. Therefore, the idealized finite element model did not attempt to

correct uncertainties within the structural model. This idealized model serves as a

baseline to document improvements in model correlation afforded by the structural

identification.

In developing the idealized finite element model of the structure, it was determined

that the entire length of the pedestrian bridge should be represented within the model,

despite that the operational modal analysis was carried out on only the longest span

of the bridge. The reason for this decision was that it was likely that the dynamic

responses and the modal parameters observed in the instrumented span were influ-

enced by coupled interaction with the other spans, since the pin and hanger assemblies

do not produce truly independent spans. By modeling the entire span of the struc-

ture, the idealized finite element model should more properly simulate the non-ideal

boundary conditions at the ends of the instrumented span and account for how the

behavior of the span of interest was affected by the adjacent spans. However, since

the operational modal analysis was limited to a single span, the experimental modal

parameter estimates are incomplete with respect to the response of the full structure
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and therefore did not include direct evidence of the behavior of adjacent spans. This

presented unique challenges in the model correlation and updating routines that are

addressed later in this chapter.

Finite element modeling of the structure was performed using SAP2000 v.15, a

commercial finite element analysis software developed by Computers and Structures,

Inc. This software can be used to perform both linear and nonlinear dynamic analyses

of structures and is especially useful for structural identification research as it allows

for assembling and exporting the stiffness and mass matrices of the model for pro-

cessing within external codes. Additionally, an open-source application programming

interface (API) allows for assembly, modification, and analysis of SAP2000 models

from the MATLAB computing environment, which was used extensively through-

out the model updating process to expedite time consuming and error prone manual

manipulation of the finite element model.

The process of developing the idealized finite element model was completed within

SAP2000 using the program’s graphical user interface, which provides a relatively

user-friendly method of modeling structures using frame, area, and solid elements.

For this research, the model was developed using only planar area, frame, and link

elements. The nodes were initially placed within the x, y, and z planes at points

corresponding to each diaphragm of the bridge. These locations had been determined

from the as-built plans, which included dimensioned drawings of the structure. The

nodes then served as a framework to which other elements could be added. The

procedure of specifying nodes and then adding connecting elements approximates

the camber of the plate girders and the associated curvature of the deck. In this
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approximation, the diaphragms, and thus the nodes, were spaced closely together to

approximate the gradual changes in elevation sufficiently to represent the geometry

of the structure without the need for curved elements.

The majority of the elements forming the model consisted of those used to model

the twin I-girders and the concrete deck. These elements were assigned as thin shell

area elements with their respective material properties. The steel girder was assigned

an elastic modulus of 199,900 MPa (29,000 ksi) and mass density of 800.38 kg/m3

(490 lb/ft3), while the concrete deck was assumed to be a lightweight concrete with

an elastic modulus of 18,561.24 MPa (2692 ksi) and mass density of 196.01 kg/m3

(120 lb/ft3). It should be noted that the actual unit weight and elastic modulus

of the concrete was not known, as it was not provided in the as-built construction

plans. Furthermore, the actual bridge deck was constructed with formed steel decking

that contributes additional stiffness to the concrete deck. The steel decking is not

included in the finite element model, which uses the concrete alone as the decking

material. This is in part due to the exclusion of the steel decking from the as-built

construction plans, since the current deck is not original to the structure. Since

design details for the replacement deck were not available, the details for the original

deck were used as a guideline. Consequently, the deck was modeled according to the

given thickness of 10.16 centimeters (4 inches), although it was unknown whether the

same thickness was used for the replacement deck. Observations made during the

field experimentation revealed the presence of a concrete curb running the length of

the deck surface adjacent to each I-girder. This curb, which was not present in the

as-built plans, is approximately 15.24 centimeters (6 inches) tall by 33.02 centimeters
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Figure 4.1: Bridge deck and corresponding elements of model

(13 inches) wide. As this could potentially affect the results of the modal analysis due

to increases in both mass and stiffness, this layer was included in the finite element

model. This can be seen in Figure 4.1, which displays both a photograph of the actual

deck and an extruded representation of the finite element mesh used for representation

of the deck and curb. In contrast to the concrete deck, the dimensions of the twin

I-girders and stiffening elements were found to be consistent with the as-built plans

and were thus modeled with the original geometries detailed in the plans.

The steel framing of the bridge was modeled using frame elements sized to the

specified members in the as-built plans and connected to the girders and other fram-

ing elements through the use of ideal simple shear connections. All steel framing was

assigned the same material properties as the plate girders. The columns serving as

bridge piers were also modeled using frame elements. However, unlike the cross sec-

tions of the steel frame elements, the columns could not be selected from the library

of standard shapes, as the columns are a composite design consisting of a cylindrical

steel tube section filled with concrete. It was therefore necessary to compute the com-

posite cross-sectional properties, which was facilitated through the use of the cross

section designer feature of SAP2000. The cross section designer is an interface that
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allows users to manually input the cross sectional dimensions and associated mate-

rials for a frame element. The dimensions and assumed material properties for the

composite columns were specified within this section designer, which then computed

the geometric properties of the frame element using an equivalent stiffness referenced

to the material properties and mass density of a normal weight concrete. There-

fore, although the column cross sections were modeled with both steel and concrete,

SAP2000 represents the columns with different dimensions than those specified in the

as-built plans. However, the equivalent stiffness and mass match that of the assumed

cross section. As the model is used for only a linear elastic analysis, these equivalent

properties are sufficient for representing the behavior of the composite columns and

are reflected in the global stiffness matrix assembled by the software.

In the initial idealized finite element model, boundary conditions of the model

were assigned to nodes of frame elements at the locations where the bridge spans

were supported at the abutments. These boundary conditions simulate the simple

supports provided in the superstructure as ideal pin restraints that allow freedom of

rotation while restraining the local translational degrees of freedom. These boundary

conditions were applied to a diaphragm member rather than the plate girder to match

the observed bridge design. A comparison of the bearing provided on the actual

structure and the idealized boundary enforced on the finite element model is presented

in Figure 4.2.

Throughout the finite element model, there were several aspects of the structure

where link elements were used to simulate behavior of members or assemblies. Link

elements are two-dimensional elements that can be used to connect two nodes with
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Figure 4.2: Bridge bearings and corresponding boundary conditions in model

prescribed translational and rotational stiffness assignments. Therefore, they are

especially useful when two elements are connected by a member or mechanism pro-

viding either full or partial restraint in a limited number of degrees of freedom. One

of the bridge components modeled through the use of link elements was the pin and

hanger assemblies used to connect adjacent spans. The pin and hanger assemblies

featured on the bridge are assumed in the idealized finite element model to act as

translationally rigid elements permitting freedom of rotation associated with major

axis bending and minor axis bending of the plate girder, but not torsion. The use of

the link element to model the pin and hanger assembly is shown in Figure 4.3, which

provides a photograph of the actual connection and a rendering of the mesh of the

plate girder webs with the link element used to simulate the behavior of the pin and

hanger assembly.

Link elements were also used to model the connection between the column piers

and the end diaphragms of the superstructure that they support. Each column of

the actual structure is connected to its respective span through the use of a bear-

ing plate on top of the column. Two W18x118 beams spanning between the twin

I-girders are anchored to this bearing plate through a bolted connection. In order

to model this connection in a simplified manner without introducing solid elements
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Figure 4.3: Pin and hanger assemblies and corresponding modeling approach

to the model, link elements were used to connect the end diaphragms to the top of

the pier. Use of these link elements permits the beam elements to be positioned in

the correct geometric location with respect to the pier and provides for specification

of idealized connection behavior. For the idealized model, all translational degrees

of freedom and the rotation about the lateral axis were fixed for this element. This

connection is displayed in Figure 4.4, which compares the actual connection to the

modeled connection in SAP2000 in both element and extruded representations. The

use of link elements for simulation of this connection and the pin and hanger connec-

tion also provides a means for model updating, as the stiffness of these elements in

each translational and rotational direction can be established as uncertain parameters

rather than relying on idealized assignments.

The final aspect of the idealized model that involved the use of link elements was

representation of the composite nature of the bridge deck. As previously stated, the

deck of the actual bridge was poured in a way suggesting some degree of composite

action between the deck and the steel diaphragms and also between the deck and

the twin I-girders. To model the connections between the deck and steel diaphragms,
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Figure 4.4: Bridge columns and corresponding modeling approach

link elements were connected between nodes of the bridge deck and corresponding

nodes of the diaphragms below. These link elements were fixed in their translational

degrees of freedom but provided no rotational restraint at their nodes. Additionally,

since the concrete deck was cast around the tee-shaped transverse stiffeners on the

plate girders, as seen in Figure 4.5, it was expected that some degree of composite

behavior would occur between the deck and twin I-girders that should be included

in the finite element model. However, since the degree of stiffness provided at this

interface between the deck and girders could not be easily estimated, several different

modeling approaches were taken to develop a representation most agreeable with the

measured modal parameter estimates. The first of these modeling approaches fea-

tured no connection between the plate girders and the deck, thereby relying only on

the diaphragms to transfer loads from the deck to the girders. This approach was

discarded after a comparison between the modal parameter estimates of the model to

those experimentally measured revealed that the plate girders lacked significant tor-

sional stiffness in many of the modes where such stiffness would likely be contributed

to by the casting of the deck to the girder. Therefore, the model was revised so that
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the external nodes of the deck were shared with nodes on the web of the girders. While

this increased the torsional stiffness of the girder modes, the finite element model had

a tendency to return mode shape estimates dominated by flexure in the girders that

did not significantly engage the deck. Therefore, the model was revised so that nodes

from the transverse stiffeners were also shared with the deck to introduce another

connection increasing the composite stiffness of the section. This, however, appeared

to increase the torsional stiffness of the model well beyond the experimentally ob-

served response. Lastly, the model was revised so that the deck no longer shared

nodes directly with the girders or transverse stiffeners. Instead, link elements were

added to the model to connect the nodes on the exterior edges of the deck elements to

nodes on the girder web. In order to implement this approach, a small gap was added

between the deck and the web of each I-girder to ensure that connectivity between

these elements was limited to only the link elements. This approach allowed for the

translational degrees of freedom of the connecting link elements to be fixed without

inhibiting the rotational degrees of freedom. With respect to the future structural

identification routine, these links also provide a stiffness parameter assignment that

could be modified during the model updating process to identify the optimal degree

of partial fixity to represent the composite action in the structure. Consequently,

the link element approach was adopted in the idealized finite element model and was

used in the subsequent structural identification routine. Each of the four approaches

investigated for modeling this connection is represented in Figure 4.5, which shows

the modeling techniques investigated leading up to and including the final idealized

model. Although the renderings of these modeling approaches often appear to be
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Deck          

disconnected 

from I-girder 

Deck connected 
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I-girder 

Deck connected 
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through link 
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Actual 
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Figure 4.5: Different methods used to model connections between bridge deck and
I-girders

identical, the difference between the first two models is that the deck and girder do

not share connectivity at the nodes along the edge of the deck in the first model,

while the second model features connectivity between these elements at these nodes.

This connectivity cannot be discerned through visual observation of the model. The

third and fourth modeling approaches are more discernible, as the nodes where the

deck and I-girders are connected can be identified by the meshes of the components.

The gap between the deck and web of the girder is also apparent in the final modeling

approach.

Since modal parameters of a structure are sensitive to mass and mass distribution,

it is important to consider the added mass of nonstructural elements in addition to the

mass and stiffness contributions of structural members. The structure tested supports

aluminum fencing along each girder consisting of an aluminum railing original to the

bridge and a second, taller chain-link fence that was presumably added at a later

time. Both of these fixtures span the entire length of the bridge and, while they were

assumed to contribute minimal stiffness to the bridge, they contribute to the mass
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Table 5: Number of nodes and elements in the idealized finite element model

Nodes 11053
Shell Elements 10169
Frame Elements 727
Link Elements 941

distribution of the structure. The added mass of this fencing was estimated from the

dimensions of the fencing and the density of aluminum. The estimated mass was then

uniformly distributed along the length of the bridge to the nodes of the girders at the

diaphragms where the fencing was supported.

In the same respect, a highway sign is directly supported by one of the plate girders,

as observable in the photograph of the structure in the prior chapter (Figure 3.1).

Since this added mass was asymmetrically applied to the structure, it may affect the

torsional and lateral behavior of the instrumented bridge span. Consequently, the

added mass contribution from the sign was accounted for by application of additional

masses to the nodes of the model corresponding to the locations of the supporting

columns of the sign. For the idealized model, the mass of the sign was estimated to

be 250 kg (551 lb) divided evenly across the three nodes.

The final idealized finite element model is presented in an isometric view in Figure

4.6. The number of nodes and each element type used within the model is summarized

in Table 5. The number of degrees of freedom present in the final idealized model

was 63,410.

While it was anticipated that the idealized finite element model would require model

updating to achieve optimal correlation with the experimentally measured modal

parameter set, the natural frequencies and mode shapes produced by eigenanalysis
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Figure 4.6: Finite element model of instrumented pedestrian bridge in SAP2000

of the idealized model serve to characterize the initial correlation in the model prior

to application of the structural identification routine. The first twelve mode shape

estimates generated by the finite element model are presented in Figure 4.7, where

the modes are labeled with their corresponding natural frequency. In these figures,

the full model is displayed in the isometric view, while the instrumented span is

shown in detail in the plan view. This set of modal parameter estimates serves to

illustrate many of the challenges faced when matching experimental modes to the

results of the finite element eigenanalysis. Foremost, it can be seen that many of

the modes are predominantly associated with resonance occurring in spans other

than the instrumented span. In some cases, these modes feature interaction with the

instrumented span, while in others the response is essentially isolated. Consequently,

the decision to model the full structure rather than idealize the support provided to
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the instrumented span is justified. However, by modeling the full span there is a

significantly larger set of modes that must be calculated than the set experimentally

measured. More significantly, because of the interaction between the spans there are

often several modes that appear identical when only the response of the instrumented

span is observed. For instance, the modes from the finite element model present

at 5.31 Hz, 5.754 Hz, and 6.605 Hz all appear to produce similar behavior in the

instrumented span even though they are distinct modes in the full model. This

presents challenges in properly matching the modes when the experimental data is

limited to a single span when such interaction is present. Strategies for automating

the mode pairing in the presence of this challenge are discussed in a subsequent

section.

Using the natural frequencies and mode shapes computed from the finite element

model, an initial statistical comparison was made to the experimental modal param-

eter estimates. Mode pairing between the two sets of modal parameter estimates

was performed based on the percentage error in natural frequencies, the modal as-

surance criterion (MAC) correlation, and visual pairing of mode shapes to determine

the subset of analytical modes that best corresponded to experimental mode shapes.

A strategy used when pairing modal parameter estimates was to assess the relative

amplitude of the mode shape within the instrumented span. This relative amplitude

measure was taken as the maximum absolute amplitude of the unit normalized eigen-

vector of each mode shape limited to the measurement locations on the instrumented

span. High relative amplitudes indicated that the mode was primarily driven by the

dynamics of the instrumented span, while low relative amplitudes indicated that the
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Figure 4.7: First twelve modal parameter estimates produced from the idealized
finite element model

mode primarily featured resonance in another span. This comparison was crucial to

identifying the set of modes that were most likely to be well excited and well mea-

sured by the limited instrumentation on the single span of the bridge. The modes

from the idealized finite element analysis that were found to best correlate with the
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Table 6: Comparison of modal estimates obtained through experimentation and
predicted by the idealized finite element model

Mode fexp(Hz) fFEA(Hz) % difference MAC
1 1.876 2.152 14.704 0.938
2 2.062 2.123 2.965 0.988
3 2.947 2.806 -4.806 0.611
4 4.597 5.754 25.162 0.792
5 7.491 7.944 6.056 0.996
6 7.806 8.583 9.963 0.192
7 9.850 10.336 4.931 0.548
8 10.933 10.490 -4.051 0.724
9 11.420 16.435 43.902 0.313
10 14.070 14.250 1.272 0.834
11 14.970 15.712 4.986 0.963
12 16.499 17.435 5.675 0.700
13 19.577 20.429 4.350 0.713
14 22.597 21.718 -3.888 0.735
15 24.872 26.202 5.348 0.364

15 experimental mode shape estimates are presented in Figure 4.8. The experimen-

tally measured modal parameter estimates corresponding to these modes are included

in the comparison, and the mode shapes from the finite element model are plotted

only at the corresponding sensor locations to facilitate a direct comparison. Table 6

presents a quantitative comparison of the modal parameter estimates from the ide-

alized finite element model and the experimental estimates. As evidenced by the

percentage errors in natural frequencies and the MAC values, some of the estimates

obtained through finite element eigenanalysis compare well with the modal parameter

estimates while others exhibit relatively poor correlation. Due to a desire to improve

the model correlation, especially for the lowest frequency modes of the model, struc-

tural identification was pursued to field calibrate the model to the measured modal

parameter estimates.



70

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M
ea

su
re

d
 m

o
d

es
 

A
n
al

y
ti

ca
l 

m
o
d
es

 
M

ea
su

re
d
 m

o
d

es
 

A
n
al

y
ti

ca
l 

m
o
d
es

 
M

ea
su

re
d
 m

o
d

es
 

A
n
al

y
ti

ca
l 

m
o
d
es

 

Figure 4.8: Comparison of modal parameters from the idealized finite element
model to experimental estimates

4.2 Structural Identification for Model Calibration

4.2.1 Parameterization of the Model

Comparison of the modal parameters of the idealized finite element model to the

experimental estimates within the prior section revealed generally good correlation.



71

However, there are several instances where the discrepancy between estimated and

measured natural frequencies is very significant and, additionally, where mode shapes

exhibit poor correlation to the measurement, as indicated by low MAC values. To

minimize these differences and generate an analytical model that is dynamically more

consistent with the experimental measurements, structural identification, or finite

element model updating, was applied to the model using the experimental modal

parameter estimates. This process will be described in this section and was com-

pleted through the use of a genetic algorithm to search for globally optimal values for

uncertain parameters within the model.

While the genetic algorithm ultimately determined the parameter assignments that

would produce modal parameter estimates closest to the experimental results, it was

first necessary to determine the subset of uncertain parameters in the model to be up-

dated. This is a critical step in the structural identification process since including too

few parameters in the calibration would limit the improvement in the model calibra-

tion, while the genetic algorithm would have difficulty arriving at the globally optimal

solution if too many parameters were included as the combinations of parameters in

the search space would be too large. Furthermore, the chosen parameters needed

to be significant enough to effectively change the modal parameters of the finite ele-

ment model on which the model correlation is based. Lastly, it was further necessary

that the selected parameters were linear properties of the finite element model. This

last constraint allows for the ease of constructing parameter specific stiffness and

mass matrices using superposition of linearly scaled matrix contributions rather than

assembling the matrices from individual elements for each individual analysis.
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The parameters were selected based off of differences observed between eigenanal-

ysis of the idealized finite element model and the experimental modal parameter es-

timates. It was observed that the idealized model appeared stiffer than the response

exhibited in the experimental estimates and it particularly exhibited less relative

lateral motion than was observed in the experimental mode shapes. The selected

parameters were therefore chosen for the reasons that they should theoretically af-

fect the stiffness and bending properties of the model. As will be explained later, a

quantitative basis of ranking potential uncertain parameters by evaluating the effects

produced through the adjustment of individual parameters on the modal parameters

of the model was used to ensure selection of the most significant set of uncertain

parameters.

It was determined that parameters within the deck should be updated, as the deck

is an integral component of the model and influences bending in both the vertical

and lateral directions. The actual bending properties of the deck were not known, as

neither the steel decking nor the reinforcement within the concrete slab was included

in the as-built plans used when modeling the structure. Therefore, the uncertainty

in these parameters was addressed through application of property modifiers applied

to the major axis and minor axis flexural stiffness of the deck area elements.

Many of the link elements used throughout the model were also selected as uncer-

tain parameters in the structural identification routine. With the exception of the

link elements used to model composite action between the concrete deck slab and

the diaphragms, the remaining link elements are associated with mechanisms that

significantly affect the torsional properties of the span, the interaction between ad-
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jacent spans, and the effect of boundary conditions on each span. Since both the

natural frequencies and the mode shapes are sensitive to such properties and since

the link elements in the idealized finite element model approximate the behavior with

idealized conditions, the assigned stiffnesses of link elements was favored as potential

uncertain parameters in the structural identification routine. The set of uncertain pa-

rameters selected included the stiffness of the link elements representing the pin and

hanger assemblies, the link elements used to connect the columns to the diaphragms,

and the link elements connecting the concrete deck slab to the girder web. However,

the stiffness of each link element is specified for six degrees of freedom, represented

by three local translational and three local rotational degrees of freedom. Updating

each directional stiffness assignment for all link element sections would result in an

impractically large set of unknowns. Therefore, only certain degrees of freedom were

specified for each link element. In order to determine which of the degrees of freedom

would yield the most significant benefit to the model correlation through updating,

the sensitivity of the model to changes in the stiffness of each degree of freedom

was examined for each link element. This was accomplished by changing each of the

degrees of freedom individually and examining the effects on the modal characteris-

tics of the idealized finite element model. This method of ranking the sensitivity of

each parameter will be explained later in more detail, as a similar process was com-

pleted for each of the uncertain parameters. For the link element representing the

pin and hanger assembly, the axial stiffness and the shear stiffness of the hanger in

the direction parallel to the longitudinal direction of the concrete slab were selected

as uncertain parameters. For the link element connecting the end diaphragms of
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Table 7: Global coordinate degree of freedom assignments for the link elements
used in model updating

Idealized finite element model joint assignments
Idealized link element Ux Uy Uz Rx Ry Rz

Pin and hanger Fixed Fixed Fixed Free Fixed Free
Diaphragm to column Fixed Fixed Fixed Fixed Free Free
Bridge deck to girder Fixed Fixed Fixed Free Free Free

Field calibrated finite element model joint assignments
Updated link element Ux Uy Uz Rx Ry Rz

Pin and hanger Updated Fixed Updated Free Fixed Free
Diaphragm to column Fixed Updated Fixed Updated Free Free
Bridge deck to girder Fixed Updated Fixed Free Free Free

each span to the supporting columns, the shear stiffness of the element in the lateral

direction and the rotational stiffness about the axis longitudinal to the bridge deck

were selected. These parameters significantly affect the relative lateral and torsional

motion at the column supports. Since several experimental mode shape estimates

exhibited relatively large lateral and torsional motion at the end of the instrumented

span supported by a column, relative to the idealized finite element model, these

parameters were deemed necessary for improved model correlation. Lastly, the axial

stiffness of the link element connecting the bridge deck to the girder web was selected

for updating. The degree of freedom assignments for each link element in global

coordinates are summarized in Table 7, which presents the assignments used in the

idealized model as well as those adopted in the field calibrated model.

As in static structural analysis, the dynamic properties of a finite element model are

often highly sensitive to the boundary conditions in the model (Živanović et al., 2007).

Consequently, the boundary conditions associated with the rocker bearings at the

abutments were included in the structural identification routine. Within the idealized
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finite element model, these boundary conditions had been specified as idealized pin

supports. To model the rocker bearing with partial translational fixity in the direction

of rocking, the restraint on this degree of freedom was removed for updating and

was replaced by a linear elastic spring element. The stiffness assignment of this

spring was included in the set of uncertain parameters. The final uncertain parameter

selected for the structural identification routine was the mass of the highway sign

attached to one of the I-girders, since this asymmetric added mass has the potential to

significantly affect the symmetry of the mode shapes and was assigned by estimation

in the idealized finite element model.

To limit the size of the search space over the uncertain parameters and limit the

solution to reasonable parameter assignments, upper and lower bounds were estab-

lished for each parameter. For the link element and boundary condition stiffness

assignments, the desired bounds were associated with the full range between the fully

fixed and friction free conditions. However, practical upper bounds were established

for these parameters since at some point increased stiffness would no longer have any

significant effect on the modal parameters of the model. This is similarly true for

decreased stiffness assignments associated with the lower bounds. Therefore, optimal

upper and lower bounds were determined by changing each parameter assignment

individually and observing the changes in natural frequency estimates. The upper

and lower bounds of these parameters were selected as the values at which a change

in the parameter assignments no longer affected the first ten natural frequencies. For

the total mass of the supported sign and the property modifiers associated with the

bending stiffness of the deck, lower and upper bounds were established by engineering
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Table 8: Sensitivity analysis of the uncertain parameter for the column link stiffness

Mode Lower bound Upper bound % difference
number result (Hz) result (Hz)
1 0.976 2.123 117.520
2 1.529 2.145 40.288
3 2.120 2.249 6.085
4 2.244 2.508 11.765
5 2.347 2.797 19.173
6 2.871 3.065 6.757
7 3.053 3.530 15.624
8 3.256 3.680 13.022
9 3.621 3.990 10.191
10 4.034 5.287 31.061

Sensitivity 27.149

judgment.

To quantify the relative impact of each uncertain parameter on the dynamic prop-

erties of the model, a sensitivity analysis was performed over the bounds of the

parameter assignments. For this sensitivity analysis, the first ten natural frequencies

of the finite element model were calculated with each individual parameter assigned

to its lower and then upper bound limit. The percentage difference between each

natural frequency calculated when the parameter was set equal to the lower bound

and to the upper bound was then calculated. A single index used to quantify the

relative impact of each uncertain parameter on the dynamic properties of the model

was then established using the average absolute percentage difference over the first

ten natural frequencies. This calculation is illustrated in Table 8 for the parameter

associated with the rotational stiffness of the link element connecting end diaphragms

to the supporting columns. A summary of the final set of uncertain parameters in-

cluded in the structural identification routine is presented in Table 9, which presents
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Table 9: Summary of uncertain parameters included in the structural identification
routine

Uncertain parameter Idealized value θ θ Sensitivity
Pin and hanger
shear stiffness (kN/m) Fixed 100 100000 70.8
Column link rotational
stiffness (kN-m/Rad) Fixed 1000 1000000 27.1
Pin and hanger
axial stiffness (kN/m) Fixed 1000 1000000 24.6
Column link
shear stiffness (kN/m) Fixed 1000 1000000 18.8
Deck and girder link
shear stiffness (kN/m) Fixed 1000 1000000 12.9
Rocker bearing
spring stiffness (kN/m) Free 1000 1000000 11.2

Mass of highway sign (kg) 250 0 500 3.5
Deck bending
modifier M22 1 0.5 2.5 0.6
Deck bending
modifier M11 1 0.5 2.5 0.4

the value associated with the idealized finite element model, the lower bound (θ), the

upper bound (θ), and the sensitivity computed for each parameter. The parameters

are arranged from most sensitive to least sensitive, according to the simple index

associated with only the natural frequencies of the model.

4.2.2 Global Optimization Using Genetic Algorithm

The genetic algorithm requires assembly and analysis of a large number of models

with unique combinations of uncertain parameter assignments. The values populating

these sets of uncertain parameter assignments were initially selected at random from

within their respective upper and lower bounds. These sets could be referred to as the

individuals of the genetic algorithm, which together form a population. To converge
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on an optimal solution, the genetic algorithm requires the evaluation of a large number

of populations, and for each individual within the population the genetic algorithm

requires the estimation of natural frequencies and mode shapes of the specific model

using the assembled mass and stiffness matrices. To efficiently allow for assembly of

these models with any given set of parameter assignments, the individual models were

assembled through superposition of linear mass and stiffness matrix contributions

normalized to the uncertain parameters. This is demonstrated in Equations 10 and

11, which show changes in the stiffness and mass matrices incorporated into the initial,

baseline matrices for each parameter.

K = KBaseline + ∆K1θ1 + ∆K2θ2 + ∆K3θ3 + ...∆KNθN (10)

M = MBaseline + ∆M1θ1 + ∆M2θ2 + ∆M3θ3 + ...∆MNθN (11)

KBaseline and MBaseline are the stiffness and mass matrices of the model with lower

bound parameter assignments and ∆Ki and ∆Mi are the normalized changes in the

stiffness and mass matrices of the model associated with a unit change in parameter

θi. The decomposition and superposition of the stiffness and mass matrices allowed

for the reconstruction of the matrices by any combination of linear parameters. Im-

plementation of this technique required the initial assembly of the stiffness and mass

matrices of the baseline idealized model and of the model featuring each individual

uncertain parameter. The assembly of the matrices for each case of the finite element

model was completed through the use of SAP2000 in conjunction with MATLAB

through the open application programming interface. The script used to complete



79

this assembly is presented in Appendix A.

Following development of the baseline and parameter contribution matrices, the

genetic algorithm was implemented within the MATLAB computing environment us-

ing the global optimization toolbox. Global optimization seeks to find the optimal

combination of assignments for uncertain parameters in the model to achieve the

best correlation with the experimental estimates according to a single objective func-

tion. Consequently, differences between each of the predicted natural frequencies and

mode shapes and the experimental estimates had to be distilled into a single function

suitable for minimization. In structural identification of civil infrastructure, this is

typically done by a weighted sum of eigenvalue residuals and eigenvector residuals

(Zárate and Caicedo, 2008). The objective function used for this analysis is

J(θ) =
10∑
i=1

αi

∣∣∣∣fa
i − f e

i

f e
i

∣∣∣∣+ βi(1−MAC(φe
i , φ

a
i )) (12)

where fa
i and f e

i are the undamped natural frequency estimates obtained from the

finite element model and the experimental analysis, respectively, for mode i after

mode pairing and MAC(φe
i , φ

a
i ) is the modal assurance criterion value computed

for this same pair of modes. Weighting factors, αi and βi, are applied to express

preference for minimizing the residuals associated with specific modes. In this study,

the weighting factors were prescribed as

αi =
1

f e
i

βi =
1

2f e
i

which weights the lower frequency modes with more significance than the higher
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frequency modes and weights the eigenvalue residuals with twice the significance

of the eigenvector residuals. The rationale behind weighting the lowest frequency

modes with more significance is that these modes were within the bandwidth excited

by pedestrian loading. A better correlation was desired for these lowest frequency

modes to ensure the fidelity of subsequent time history analysis of pedestrian loadings

performed with the field calibrated model. The greater weighting applied to the

eigenvalue residuals expresses greater confidence in these experimental estimates than

the corresponding eigenvectors (Živanović et al., 2007).

The first ten modal parameter estimates from the experimentally measured data

were considered in the calculation of the objective value, which compared the set

of experimentally measured modes to the ten most similar modal parameters from

the finite element model. The number of experimental modal parameter estimates

considered was limited to ten for the purpose of obtaining the optimal match for

the lower frequency modes. Including additional modes in the objective function

would have resulted in effectively weighting the lower frequency modes with less

relative significance in the objective function and may have been detrimental to the

quality of the correlation achieved for the lower frequency modes, which are of greater

importance when examining pedestrian loading models.

A particular challenge in structural identification is the automated correct pair-

ing of analytical modes with the corresponding experimental modes to compute the

correlations in the objective function (Friswell and Mottershead, 1995). Often, the

modal assurance criterion alone is used to pair modes. However, the discrepancy

between the limited measurement of a single span and the finite element model of
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the full structure required an additional strategy to encourage correct mode pairing.

The previously discussed method of calculating the eigenvector amplitudes of the an-

alytical modal estimates was again used to characterize the mode shape estimates of

the field calibrated finite element model. Furthermore, an additional step to ensure

that the correct modes were automatically paired during the optimization process

leveraged natural frequency differences. For every analytical modal parameter esti-

mate considered in the comparison, the percent difference between the experimental

and analytical natural frequency was first considered. For cases where the percentage

error in the undamped natural frequency was greater than 30 percent, the MAC value

associated with the potential mode pairing was penalized by applying a scale factor

of 0.1.

The objective values of the entire population are used to form consecutive popu-

lations, which, due to the nature of genetic algorithm, typically reflected improved

objective values. For this research, the genetic algorithm was performed with a popu-

lation size of 5,000 individuals and a stopping criteria of 25 populations. This resulted

in a total of 125,000 analyses per optimization run. The number of elite individuals

for each population was set to 25, and the remaining individuals in each population

were produced using a 60 percent crossover rate and 40 percent mutation rate. These

population settings consistently resulted in convergence of the solution prior to the

completion of the 25th population.

In addition to the uncertain parameters subject to updating by genetic algorithm,

there were two additional uncertain parameters in the model that were calibrated

indirectly due to the nature of their effects on the model. These two parameters were
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the thickness and unit weight of the concrete deck, which were unknown due to deck

replacement. However, both of these parameters exhibit significant influence on the

modal parameters of the finite element model. Including the thickness of the area ele-

ments used to model the deck as an uncertain parameter using the efficient approach

implemented to reconstruct the mass and stiffness matrices by linear superposition is

not possible since the stiffness of the area elements is not proportional to thickness.

Although the mass of the deck could be treated as a linear parameter, requiring the

genetic algorithm to optimize significant stiffness and mass parameters concurrently

leads to uniqueness issues in the inverse eigenvalue problem (Kenigsbuch and Halevi,

1998). Consequently, the optimal combination of deck thickness and unit weight

assignments was determined by applying the genetic algorithm to multiple models,

with each model prescribed with a different combination of stationary deck thickness

and unit weight assignments. The combination associated with the lowest objective

value after application of the genetic algorithm was selected as the field calibrated

model featuring the optimal combination of deck unit weight and thickness. The

values of deck thickness and unit weight to be used in the models were determined

based on common values for these properties and on observations made during field

experimentation. Different unit weights were paired with deck thicknesses of either

10.16 cm, 12.70 cm, or 15.24 cm (4 in, 5 in, or 6 in). For each deck thickness, the

unit weight was adaptively adjusted by 24.5 kg/m3 (10 lb/ft3) intervals around 196.01

kg/m3 (120 lb/ft3) until the minimum in the objective function was observed. Fig-

ure 4.9 presents the results obtained for all combinations analyzed, ordered by deck

thickness. As can be seen in the results, the optimization is more sensitive to the unit
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Figure 4.9: Minimum objective scores obtained when varying deck unit weight and
thickness

weight assigned than the deck thickness prescribed. The minimum objective function

obtained across the combinations was associated with a deck thickness of 12.70 cm

(5 in) and unit weight of 228.68 kg/m3 (150 lb/ft3). This combination of deck unit

weight and thickness, with the associated uncertain parameter assignments identified

for the combination by the genetic algorithm, were used for the final field calibrated

model. Table 10 presents a comparison of the identified parameter assignments to

the parameter assignments in the idealized model.

4.2.3 Comparison of Field Calibrated Model to Experimental Data

Following identification of the set of parameter assignments yielding the lowest ob-

jective score, the finite element model was updated to reflect the optimized parameter
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Table 10: Comparison of idealized and updated finite element model parameters

Uncertain parameter Idealized value θ Updated value θ
Pin and hanger
shear stiffness (kN/m) Fixed 100 27500 100000
Column link rotational
stiffness (kN-m/Rad) Fixed 1000 795000 1000000
Pin and hanger
axial stiffness (kN/m) Fixed 1000 228000 1000000
Column link
shear stiffness (kN/m) Fixed 1000 104000 1000000
Deck and girder link
shear stiffness (kN/m) Fixed 1000 22000 1000000
Rocker bearing
spring stiffness (kN/m) Free 1000 744000 1000000

Mass of highway sign (kg) 250 0 411 500
Deck bending
modifier M22 1 0.5 2.26 2.5
Deck bending
modifier M11 1 0.5 2.26 2.5

assignments. After updating the model, the modal parameters of the finite element

model were compared to the modal parameter estimates obtained through experimen-

tal testing. A comparison of the natural frequencies and MAC values is presented

in Table 11. It should be noted that, while the objective function minimized by the

genetic algorithm included only the modal parameter estimates from the first ten

modes, the table presents the correlation for all fifteen of the experimental modal

parameter estimates. This extended comparison is provided to support the plausibil-

ity of the updated model. In general, a strong correlation between natural frequency

estimates and generally good correlation in the mode shape estimates was achieved.

It can be seen that, while differences still exist between the experimental and ana-

lytical data, the MAC values and percentage errors in estimated undamped natural
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Table 11: Comparison of modal parameters obtained through experimentation and
predicted by the field calibrated finite element model

Field calibrated Improvement
Mode fexp(Hz) fFEA(Hz) % Error MAC ∆%Error ∆MAC
1 1.876 1.994 6.272 0.978 -8.432 0.040
2 2.062 2.062 0 0.994 -2.953 0.006
3 2.947 2.906 -1.399 0.690 -3.407 0.079
4 4.597 5.198 13.073 0.877 -12.089 0.085
5 7.491 7.254 -3.160 0.977 -2.896 -0.019
6 7.806 7.724 -1.045 0.870 -8.918 0.678
7 9.850 9.450 -4.063 0.985 -0.868 0.437
8 10.933 9.308 -14.861 0.867 10.810 0.143
9 11.420 14.657 28.335 0.316 -15.566 0.003
10 14.070 14.478 2.890 0.895 1.618 0.061

11 14.971 14.916 -0.368 0.686 -4.618 -0.277
12 16.499 16.458 -0.247 0.676 -5.428 -0.024
13 19.577 19.040 -2.747 0.856 -1.603 0.143
14 22.597 22.691 0.416 0.551 -3.472 -0.184
15 24.872 25.208 1.352 0.690 -3.996 0.326

Average 5.349 0.794 -4.120 0.167

frequencies are significantly improved over the idealized model. This is especially true

for the lower frequency modes, which are of greater importance when modeling the

response under pedestrian loading. The average improvement in percentage error of

natural frequency over the 15 experimentally measured modes is 4.12%, and the av-

erage improvement in the MAC correlation is 0.167. Graphical representation of the

mode shapes predicted by the field calibrated finite element model are presented in

Figure 4.10. As in the previous comparison of the modal parameters from the ideal-

ized model, the experimental mode shape estimates are included for comparison, and

the mode shapes from the finite element model are plotted only at the corresponding

sensor locations to facilitate a direct comparison.
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Figure 4.10: Comparison of modal parameters from field calibrated finite element
model to experimental estimates



CHAPTER 5: COMPARISON OF PEDESTRIAN FOOTFALL MODELS TO
EXPERIMENTAL DATA

In this chapter, the analytical evaluation of various footfall loading models through

finite element analysis is described with comparison to experimental measurements

obtained from the case study structure. The pedestrian footfall models presented

in three different standards are applied to the field calibrated finite element model

of the pedestrian bridge to predict acceleration time histories at the instrumented

locations of the span. The results obtained through application of each footfall model

are compared to the experimental results to assess the relative predictive fidelity of

each approach. Following the comparison of the results obtained using the code rec-

ommended standards, optimization techniques are employed to calibrate parameters

in each model to improve the correlations to the experimentally measured response.

Based on the results obtained through the recommended and optimized pedestrian

footfall models, modifications to the evaluated loading models are suggested.

5.1 Modal Superposition Time History Simulation of Pedestrian Excitation

The finite element model used for all subsequent analysis is the parametrized model

presented in Chapter 4 with the field calibrated parameter assignments summarized

in Table 10. The modal parameters of this model were presented in Figure 4.10, and

the model correlation with the modal parameter estimates obtained through opera-

tional modal analysis are summarized in Table 11. To prescribe damping to the finite
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element model, the relative damping factors associated with all of the experimentally

estimated modes were assigned using the pairs of natural frequency and damping

ratios. By these assignments, the modal responses associated with the modes that

featured an experimental comparison are prescribed the same relative damping as ex-

perimentally estimated for that mode. For the remaining modes, the relative damping

is interpolated between the assigned pairs of natural frequencies and associated damp-

ing ratios. The three pedestrian footfall models selected for evaluation using the field

calibrated finite element model were those recommended in AISC Design Guide 11

(Murray et al., 2003), ISO 10137 (ISO, 2007), and the BSI UK National Annex to

Eurocode 1 (BSI, 2008).

To perform time history analysis, pedestrian footfall loading models needed to be

applied as forces varying with both time and location to simulate the motion of a

pedestrian across the bridge span. This required the preliminary step of establish-

ing the forcing functions associated with each node in the model loaded during the

pedestrian motion. Since the determination of these functions depended on several

parameters, such as pacing frequency and both amplitude and phase coefficients in

each footfall model, a MATLAB script was developed to construct forcing functions

for each node and assign them to the field calibrated SAP2000 model using the open

application programming interface (API). This script is provided in Appendix B.

The forcing functions for each model could be imported into SAP2000 as user

specified time history functions. Imported forcing functions were matched to nodes

generated in the model to correspond with footfall locations based on pacing frequency

and stride length. Since the locations of these nodes that correspond to footfall
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Figure 5.1: SAP2000 model displaying frame elements used to prescribe pedestrian
loading

locations were not coincident with nodes of the area elements representing the deck

surface, frame elements with insignificant stiffness were introduced to the model to

efficiently distribute the loads from the footfall nodes to the area elements of the

bridge deck. These frame elements were located at the center of the bridge deck

relative to the twin I-girders and along the span of the deck to define the path along

which the pedestrian footfall loads could be applied. This is demonstrated in Figure

5.1. It should be noted that due to the minimal cross-sectional dimensions of these

members, the frame elements did not significantly affect the stiffness or mass of the

model nor the modal parameters. Since the spacing of the nodes along the frame

elements that would receive footfall load time histories could vary with each time

history function, the assignment of these nodal locations and associated functions

was completed through MATLAB. The locations of the nodes were determined based

on the spacing of a stride length of 1 m (3.3 ft) at a specified pacing frequency.

For each model, time history analyses were conducted using modal superposition
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to generate analytical predictions of the acceleration time histories at each of the

instrumented locations to permit comparison with the experimentally measured re-

sponses. The pedestrian footfall models that were evaluated followed the functional

forms presented in Chapter 2, with each forcing function featuring a unique set of

variables associated with the functional form of the model. For each model, the vari-

able assignments recommended by each respective standard were applied to generate

the time histories of the footfall loading function. Comparison of the predicted re-

sponses for each model relative to the experimental measurement are presented in the

following section. Subsequently, an optimization analysis is presented to determine

calibrated variable assignments required to obtain optimal correlation with the field

experiment.

5.2 Performance Evaluation of Standardized Pedestrian Excitation Models

The predictive fidelity of each standardized pedestrian footfall model was assessed

using comparisons to experimental measurements of accelerations induced by con-

trolled passage of a single pedestrian. For these comparisons, the experimental load

cases examined in this chapter were limited to passage of a single pedestrian from the

western end of the instrumented span to the eastern end.

In order to facilitate the comparison between experimental and analytical data,

several steps were taken during preprocessing of the measured data. To permit direct

comparison of the acceleration time histories produced by the finite element model

to the experimental data, a strategy was developed to align the two sequences of

data. Since the time at which the pedestrian load started in the experimental test
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could not be precisely determined from the recorded data, this strategy accounts

for time shifts in the experimental data relative to the predictions from the finite

element model. Specifically, an algorithm was produced to determine the optimal

time shift to apply to a time window of the experimental test data. First, to reduce

the measurement time window to the duration of response with strong signal-to-noise

ratio, only 14 seconds were used from each recorded time history. This time window

included six seconds prior to the instant of peak recorded accelerations and eight

seconds after this instant. Then, incremental time shifts were introduced to this

windowed data and the mean squared error of the corresponding analytical data over

the same time period was calculated. The optimal time shift was determined as the

one that produced the lowest mean squared error. Time aligning of the data allowed

for direct comparison of the experimental and analytical time histories overlaid on

the same axis. In addition to visual comparison, the differences in the predicted

and measured accelerations could also be numerically quantified. This quantification

of the model correlation was later necessary to construct an objective function for

optimizing parametric assignments associated with each pedestrian footfall model.

5.3 Evaluation of Single Pedestrian Loading Models Using Recommended

Coefficients

Each loading model was initially evaluated using the parameter assignments rec-

ommended by each respective standard. The results obtained by modal superposition

time history analysis incorporating the first 15 modes of the field calibrated finite ele-

ment model are presented in this section, along with a comparison of these results to
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Figure 5.2: Peak amplitude acceleration time histories of the experimental load
cases used for comparison to the predicted response

experimental data for each loading model. For each analysis, the modal superposition

time history analysis was conducted with a time step of 0.008 seconds to coincide with

the sampling rate used in the experimental test program.

Two sets of experimental acceleration time histories were used for comparison to

the predicted response of the model. Both time histories are representative of the

loading case of one pedestrian crossing the bridge and are generally consistent with

one another. The peak accelerations were 34.858 mg and 31.687 mg, respectively,

for each case, which results in an average peak acceleration of 33.272 mg. The peak

accelerations were observed at the location of sensor 10, and representative time

history plots of the accelerations observed at sensor 10 are presented in Figure 5.2.
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5.3.1 American Institute of Steel Construction (AISC) Model

The loading model presented in AISC Design Guide 11 (Murray et al., 2003) was

evaluated first. This pedestrian footfall model takes the form:

Fn(t) = P [1 +
4∑

n=1

αncos(2πnfst+ ψn)] (13)

with the recommended amplitude coefficients presented in Table 12. The pacing

frequency of the forcing function was taken to be 2.062 Hz in order to match the

undamped natural frequency of the first vertical bending mode of the instrumented

bridge span, as recommended by the standard. The weight of the pedestrian was set as

0.76 kN (170 lb) in order to correspond with the weight of the pedestrian providing the

excitation during the experimental testing. A comparison of the acceleration response

predicted by the finite element model to the experimental data is displayed in Figure

5.3. The response shown is associated with the accelerations in the gravitational

direction for the location of sensor 10. The peak acceleration observed in the predicted

results was 11.262 mg at the location of sensor 9. Consequently, the AISC pedestrian

footfall model underestimates the peak acceleration by 66.2% when the recommended

parameter assignments are used. It should be noted that sensor 9 is located at

the same longitudinal location in the span as sensor 10, where the peak measured

acceleration was recorded, but on the opposite side of the bridge deck.

5.3.2 International Standards Organization (ISO) Model

The pedestrian acceleration response analysis was repeated using the loading model

presented in ISO 10137 (ISO, 2007). As indicated in Chapter 2, this forcing function
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Table 12: AISC recommended dynamic coefficients for one pedestrian walking
(Murray et al., 2003)

Harmonic α ψ
1 0.5 0
2 0.2 π/2
3 0.1 π/2
4 0.05 π/2

Figure 5.3: Experimental bridge deck response compared to AISC loading model
predicted response

is nearly identical to the model presented in Murray et al (2003) and takes the form:

FP (t) = G[1 +
i=5∑
i=1

αsin(2πift+ ψi)] (14)

However, the model varies in the recommended coefficient values and the number of

harmonics considered. The dynamic coefficients recommended by ISO for the case

of one person walking are shown in Table 13. A pacing frequency of 2.062 Hz and

pedestrian weight of 0.76 kN were again used in the simulation for consistency. The

predicted acceleration response is presented in Figure 5.4 with comparison to the
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Table 13: ISO recommended coefficients for one pedestrian walking (ISO, 2007)

Harmonic α ψ
1 0.393 0
2 0.1 0
3 0.06 0
4 0.06 0
5 0.06 0

Figure 5.4: Experimental bridge deck response compared to ISO loading model
predicted response

experimental response. As in the previous case, the response at the location of sensor

10 is presented. The predicted peak acceleration using this model was 9.116 mg, which

occurred at the location of sensor 9 and represents an underestimation of 72.6% of

the measured peak acceleration during passage of a single pedestrian.
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Table 14: BSI recommended coefficients for one pedestrian walking (BSI, 2008)

Coefficient Value
k(fv) 1.0
λ 1.0

5.3.3 British Standards Institute (BSI) Model

Lastly, the response of the finite element model to the footfall model recommended

by BSI (2008) was evaluated. This footfall model takes the form:

F = F0k(fv)
√

1 + λ(N − 1)sin(2πfvt) (15)

The coefficients recommended in the standard for this model are presented in Table

14. As in the previous analyses, the pacing frequency and pedestrian weight were

taken to be 2.062 Hz and 0.76 kN, respectively. A comparison of the acceleration

responses at sensor 10 obtained from the modal superposition time history analysis

and the experimental measurement is presented in Figure 5.5. The peak acceleration

predicted through the model was 23.391 mg, which occurred at sensor 9. While this

footfall model compared significantly more favorably to the measured response, this

estimate represents an underestimation by 29.7% of the measured peak acceleration

during the passage of one pedestrian.

5.4 Evaluation of Calibrated Single Pedestrian Excitation Loading Models

5.4.1 Optimization of Single Pedestrian Excitation Models

The previous analysis reveals that the standardized pedestrian models with rec-

ommended parameter assignments produce predicted responses in the field calibrated

finite element model that are significantly different than the experimentally measured
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Figure 5.5: Experimental bridge deck response compared to BSI loading model
predicted response

response of the case study structure. The loading models recommended in AISC De-

sign Guide 11 (Murray et al., 2003) and ISO 10137 (ISO, 2007) significantly under-

estimated the peak acceleration of the instrumented span, while the loading model

recommended by BSI (BSI, 2008) moderately underestimated the peak acceleration.

To explore the sensitivity of each pedestrian footfall model to the corresponding set

of parameter assignments, an optimization was performed to identify the parameter

assignments associated with the greatest correlation between the analytical estimates

and the experimental results.

Optimization was necessarily performed independently for each of the three loading

models in order to determine the optimal parameter assignments for use within each

model. In addition to the amplitude and phase parameters in each model, the forcing

frequency used within each loading model was included as an uncertain parameter

within the optimization process. This measure was taken to acknowledge that the pre-
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dominant step frequency in the experimental test may not have corresponded exactly

with the undamped natural frequency of the first vertical bending mode. Therefore,

a different excitation frequency would be required to avoid biasing the optimization

as a result of accumulated phase errors over the time history due to differences in the

excitation frequency. Additionally, a random excitation was introduced to all nodes

of the bridge deck in the model to simulate ambient excitations present during test-

ing, such as wind and vehicular traffic beneath the bridge that provided additional,

measurable accelerations during the testing. The amplitude of this broadband excita-

tion was included as an uncertain parameter within the optimization scheme. Similar

to the structural identification performed in the prior chapter, the calibration of un-

certain parameters within each pedestrian footfall model was performed by genetic

algorithm using the MATLAB global optimization toolbox.

To facilitate optimization of parameter assignments, an objective function was

developed to compare the time windowed analytical predictions and experimental

measurements. The objective function was developed simply as the sum of the squares

of the prediction error after aligning and time windowing the analytical predictions.

This objective function, J , takes the form:

J =

#Pts∑
i=1

12∑
j=6

(aexpj,i − aFEA
j,i )2 (16)

where i indicates the time step, j indicates the sensor number, and a is the accelera-

tion. Since there were two sets of experimental acceleration time histories, the sum of

the objective function computed over each data set was used to produce an aggregate

objective score.
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The comparison was completed using the acceleration data measured by sensors

6 through 12, because these sensors correspond to the nodes along the midspan of

the bridge where the response amplitude, and consequently the signal-to-noise ratio

of the measurement, was the highest. It was found that the sensors closer to the

ends of the span were affected by ambient excitation and were therefore less suitable

for comparison with the analytical results. Consequently, although an acceleration

response was measured for each of the twelve sensors, only the sensors near the

midspan were used for the comparison to finite element analysis results. Furthermore,

as presented in Chapter 3, the experimentally measured accelerations were subject

to coordinate transformations to reorient the measurement directions to the global

coordinate frame of the finite element model to permit direct comparison.

The genetic algorithm updating routine applied to the loading models followed a

similar method to that used in Chapter 4 to update the finite element model. As both

procedures utilized genetic algorithm updating routines, the fundamental methods

remained the same concerning the use of individuals forming successive populations

through elite survival, crossover, and mutation until converging on a globally optimal

solution. However, due to the nature of the dynamic time history analysis using pedes-

trian loading models, there were significant differences in the routine used to evaluate

individuals within each population. As within the modal calibration, the optimiza-

tion process was performed using a script developed in MATLAB to initialize the

optimization problem over the SAP2000 open API interface (Appendix B). However,

since the dynamic analysis did not involve changing the stiffness or mass matrices of

the model, it was no longer necessary to extract the matrices from the finite element
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model. It was, however, necessary to extract the acceleration time histories obtained

following modal superposition time history analysis using the parameter assignments

for each individual within the population. Therefore, a routine was developed within

the API to open the finite element model in SAP2000, assign the prescribed load time

histories, run the modal superposition time history analyses, and export the results to

MATLAB for post processing. By using modal superposition rather than direct time

history analysis, the evaluation of individuals within a population was expedited, as

the finite element model needed only to be assembled and eigenanalysis performed

only once per generation. All prescribed load cases were assigned to the software for

the parameter combinations of each individual in the population prior to the analysis

so that an entire population could be evaluated sequentially from the results of the

single eigenanalysis. These results were returned to the MATLAB host application

as a matrix of acceleration time histories for each individual from which the time

shifting, windowing, and objective function calculations could be performed across

the set of two experimentally measured time histories. For each optimization run,

25 generations consisting of 200 individuals per generation were used, resulting in a

total of 5,000 analyses completed per optimization run to ensure convergence. The

populations were developed using an elite count of 10, while the remaining individuals

were produced using a 60 percent crossover rate and 40 percent mutation rate.

5.4.2 Evaluation of Field Calibrated AISC Loading Model

The forcing function presented in AISC Design Guide 11 (Murray et al., 2003)

contained a total of eight uncertain parameters in addition to the amplitude of random
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Table 15: Optimization of AISC forcing function: lower bounds, upper bounds, and
field calibrated parameters

Variable Lower boundary Field calibrated value Upper bound
fs(Hz) 1.85 2.076 2.3
α1 0.5 1.270 2.0
α2 0.005 0.127 0.2
α3 0.005 0.037 0.2
α4 0.001 0.015 0.1
ψ1 -1.571 -1.533 1.571
ψ2 -1.571 -1.567 1.571
ψ3 -1.571 1.158 1.571
Noise amplitude (N) 0 5.709 100

noise excitation parameter included in the optimization. The uncertain parameters

in the pedestrian footfall model included the harmonic amplitude coefficients, phase

angles of each harmonic, and pacing frequency. The parameter set was subjected

to the previously described genetic algorithm optimization routine to determine the

optimal solution.

The identified parameter assignments for optimal model correlation through the

developed objective function are presented in Table 15, along with the lower and

upper bounds applied to each variable during the optimization. The comparison of

acceleration responses at sensor 10 is presented in Figure 5.6, and the peak amplitude

of the predicted response was found to be 28.187 mg at sensor 9. This represents an

underestimation of 15.0% of the peak measured acceleration, which corresponds to

an improvement of 51.2 in the percentage error when compared to the prediction

using the recommended parameters. The most significant result of the calibration

was the increase in the amplitude of the first harmonic coefficient, which resulted in

a significant increase in the amplitude of acceleration in the predicted response.
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Figure 5.6: Experimental acceleration compared to field calibrated AISC loading
model predicted acceleration

5.4.3 Evaluation of Calibrated ISO Loading Model

The calibration of the ISO recommended pedestrian footfall model followed a nearly

identical process to that followed for the case of the AISC loading model. The only

significant difference was the additional harmonic term in the model, which introduced

an additional uncertain parameter for both amplitude and phase. The field calibrated

parameters identified through the genetic algorithm are displayed in Table 16 with the

lower and upper bounds used in the optimization for each parameter. A comparison

of the optimized response to the experimental response at the location of sensor 10 is

presented in Figure 5.7. The peak acceleration was found to be 28.213 mg at sensor

9. This represents an underestimation of 15.2% of the peak measured acceleration,

which corresponds to an improvement of 57.4 in the percentage error when compared

to the prediction developed using the recommended parameters. As was the case when
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Table 16: Optimization of ISO forcing function: lower bounds, upper bounds, and
field calibrated parameters

Variable Lower bound Field calibrated value Upper bound
fs(Hz) 1.85 2.076 2.3
α1 0.5 1.264 2.0
α2 0.005 0.103 0.2
α3 0.005 0.0317 0.2
α4 0.005 0.0189 0.2
α5 0.001 0.0557 0.1
ψ1 -1.157 -1.560 1.157
ψ2 -1.157 -1.525 1.157
ψ3 -1.157 0.883 1.157
ψ4 -1.157 -1.4168 1.157
Noise amplitude (N) 0 12.800 0

using the parameters presented in (Murray et al., 2003), the most significant result

of the calibration was the increase in the amplitude of the first harmonic coefficient.

Furthermore, the field calibrated parameters agreed strongly with those yielded by

field calibration of the AISC pedestrian footfall model. This is evidenced by the

identical field calibrated pacing frequency and strong correlation between amplitude

and phase assignments for the four harmonics present in both models. This similarity

is expected due to the similarity of the two pedestrian footfall models.

5.4.4 Evaluation of Field Calibrated BSI Loading Model

The calibration of the BSI pedestrian footfall model followed the same fundamen-

tal process of optimization by genetic algorithm that was followed for the previous

two loading models. However, the functional form of this pedestrian footfall model

differed significantly from the prior two models and resulted in only three uncertain

parameters that could be optimized for the case of a single pedestrian loading. These

were the pacing frequency, the combined factor k(fv), and the amplitude of the ran-



104

Figure 5.7: Experimental acceleration compared to field calibrated ISO loading
model predicted acceleration

dom noise. The synchronization factor, λ, has no influence on the model when N

is one, which is the case for the single pedestrian loading, so this parameter is not

featured in the optimization.

The optimization resulted in the field calibrated parameter assignments presented

in Table 17. The acceleration response produced from application of the field cali-

brated BSI model is presented in Figure 5.8 with comparison to experimentally mea-

sured data at the location of sensor 10. The peak acceleration predicted by the

finite element analysis was found to be 28.049 mg, which occurred at sensor 9. This

represents an underestimation of 15.7% of the peak measured acceleration, which

corresponds to an improvement of 14.0 in the percentage error when compared to

the prediction using the recommended parameters. As was the case with the previ-

ous two pedestrian footfall models, the pacing frequency parameter assignment again

converged to 2.076 Hz.
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Table 17: Optimization of BSI forcing function: lower bounds, upper bounds, and
field calibrated parameters

Variable Lower bound Field calibrated value Updated bound
fn(Hz) 1.85 2.076 2.3
k(fv) 0.8 1.285 1.5
Noise amplitude (N) 0 4.842 100

Figure 5.8: Experimental acceleration compared to field calibrated BSI loading
model predicted acceleration

5.5 Summary of Comparisons Before and After Calibration

It can be seen from the evaluations of the finite element predictions that there was

a significant discrepancy between the predicted accelerations determined using the

standard recommended variables and using the parameter assignments determined

through calibration of the AISC and ISO loading functions. Prior to calibration,

the accelerations predicted using these loading models correlated poorly with the

experimentally measured accelerations. In both cases, the analytical acceleration was

significantly underestimated. The BSI model, however, returned a significantly more
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accurate prediction of the bridge deck response.

The predictions produced following calibration show a significant improvement in

the correlation with the experimental time histories. This is demonstrated in Table

18, which compares the peak responses within the experimental measurements and

the analytical results calculated using both the recommended and field calibrated

parameter values. However, due to the nature of the experimental response, it was

impossible for any of the models to predict a response perfectly matching the data.

This can be seen in Figures 5.6, 5.7, and 5.8. There is a noticeable decrease in

the amplitude of the experimental response after the peak acceleration has been

reached. This could not be duplicated through the finite element model with the

given loading functions, which resulted in a more gradual increase and then decrease in

acceleration amplitude. Therefore, the analytical response is initially under-predicted

and then over-predicted in relation to the amplitude of the time history accelerations

in order to obtain the best fit to the experimental data. Overall, the predicted

responses of all three loading models returned similar time history responses and peak

accelerations, with all three models showing significant improvement in correlation

with the experimental response.

Several conclusions can be drawn from the results of the optimization runs. All

three optimized models returned similar results, indicating that once the variables

were updated, the predicted sinusoidal accelerations correlated almost equally well to

the experimental response. Furthermore, optimization in every case indicated that

optimal correlation was achieved using a forcing frequency of 2.072 Hz, despite the

first vertical mode occurring at 2.062 Hz. This indicates that the pedestrian during
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Table 18: Peak analytical accelerations before and after calibration compared to
the experimentally measured peak acceleration

Load case Average peak acceleration (mg) % difference
Experimental 33.272

Recommended footfall models
AISC 11.262 -66.152
ISO 9.012 -72.914
BSI 23.391 -29.698

Field calibrated footfall models
AISC 28.187 -15.283
ISO 28.213 -15.205
BSI 28.049 -15.698

experimental testing could have been walking at a frequency of 2.072 Hz, rather than

at the estimated undamped natural frequency of the bridge.

The optimization results also indicate that the source of the initial underestima-

tion seen in all three of the loading models can be attributed to the magnitude of

the dynamic coefficient of the first harmonic. This was the most significant update

to these forcing functions and resulted in significant increases in the amplitude of

the predicted accelerations. This is most noticeable for the AISC and ISO loading

functions and is therefore demonstrated in Figure 5.9. The predicted acceleration

response shown was calculated using the AISC forcing function featuring all of the

recommended variables with the exception of the first dynamic coefficient, which was

set to equal the field calibrated value. The randomly generated noise was also omitted

for this comparison. It can be seen that increasing the amplitude of the first harmonic

alone results in improved correlation with the experimentally measured response that

is similar to that achieved with inclusion of all additional harmonics. For the AISC

and ISO loading functions, optimization produced minor changes in the higher order
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Figure 5.9: Experimental acceleration response compared to the AISC predicted
response calculated using the AISC recommended forcing function in conjunction
with the calibrated value for the first harmonic coefficient

harmonics, associated phase angle, and the amplitude of the random noise excitation.

These parameter changes, however, produced less significant changes to the predicted

response of the model.

In order to illustrate the similarities between the loading models after calibration,

plots of the forcing functions before and after calibration were developed and are pre-

sented in Figure 5.10. Calibration in all three cases yielded similar forcing functions

with nearly identical peak-to-peak force amplitudes. Furthermore, the insignificant

contribution of the higher order harmonics to the calibrated forcing functions is read-

ily apparent. In all cases, the first harmonic dominates the forcing function and

suggests that a single harmonic periodic function can be used to predict the response

of the structure to single pedestrian excitations for this case study.
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(a)

(b)

Figure 5.10: Single pedestrian footfall loading models using (a) recommended co-
efficients and (b) calibrated coefficients

5.6 Evaluation of Multiple Pedestrian Loading Models

For the previously examined loading models for single pedestrian loading, provi-

sions exist to extend the model to multiple person footfall analysis. These methods

introduce an amplification factor to the sinusoidal components of the forcing func-

tion in order to approximate both the increased weight of multiple pedestrians and

the effect of synchronization of their loading. These methods result in higher ampli-

tude forcing functions that take the same functional form as in the case of a single

pedestrian. However, this disagrees with the experimentally measured accelerations

induced by the multiple person loading cases in this study, which do not simply reflect

increases in the amplitude of the acceleration time histories. This is demonstrated

in Figure 5.11, which shows the experimentally measured acceleration time history
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Figure 5.11: Experimentally measured response from two pedestrians (top) com-
pared to the analytically predicted response for the same load case

and a typical acceleration time history produced using the ISO recommended forcing

function for the loading case of two pedestrians. As can be seen, the envelope of the

experimental acceleration time history does not correlate well with the envelope of

the predicted acceleration time history. All three of the recommended loading func-

tions predicted similar time history acceleration envelopes, none of which feature a

response similar to that observed in the experimental response for the multiple person

load case.

The discrepancies in the responses can likely be partially attributed to differences

between the analytically pure forms of the pedestrian footfall models and the reali-

ties of actual pedestrian loadings, which are likely more stochastic. While measures

were taken to ensure synchronization of the pedestrians as detailed in Chapter 3,

it is likely that the multiple pedestrians did not maintain complete synchronization

while walking the length of the bridge span, leading to one pedestrian matching the
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natural frequency of the structure while the other did not. The interactions of the

footfall loads could lead to unpredictable constructive and destructive interferences

that are not explicitly considered in the analytical pedestrian footfall models. More

importantly, this structure featured fairly closely spaced modes near the first vertical

bending mode. The excitation of these modes could have produced the discrepancies

with the analytical models that would not anticipate such modal interactions given

the form of the multiple pedestrian footfall models.

Due to the difference between the experimental and analytical results, it was not

feasible to complete an analysis comparing the responses and optimization parameters

within each model. While increasing the number of pedestrians within the analyt-

ical analysis would result in fairly predictable increases in acceleration amplitude,

the experimental responses did not behave in an accordingly predictable manner.

Consequently, a thorough comparison of the multiple person experimental results to

recommended and then calibrated loading models was not performed and is deferred

as an area of recommended future research.



CHAPTER 6: CONCLUSIONS

6.1 Summary of Research and Key Findings

The primary focus of this thesis is the evaluation of common footfall loading models

to a case study structure and the development of a methodology for calibrating param-

eters in these excitation models to achieve improved correlation with the experimental

measurements. However, the research presented is relevant to and offers contributions

to the areas of operational modal analysis of civil structures and structural identifi-

cation, or finite element model updating. Vibration testing and operational modal

analysis were performed on a case study pedestrian bridge to estimate the modal pa-

rameters of the structure and characterize the structural response under prescribed

pedestrian loading. A finite element model of the pedestrian bridge was developed and

the dynamic properties of the model were calibrated to the experimentally obtained

estimates using optimization by genetic algorithm.

The field calibrated finite element model was then used to predict the response of

the bridge to single pedestrian walking loads using pedestrian footfall models recom-

mended within several design guides and standards. The three pedestrian loading

models evaluated were those presented in AISC Design Guide 11 (Murray et al.,

2003), ISO 10137 (2007), and the BSI (2008). In each case, recommended coefficients

for single pedestrian excitation during walking were used to develop the footfall func-
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tions applied to the finite element model. Overall, the model recommended by the

BSI provided the strongest correlation with the experimental measurements when

the recommended parameter assignments were used. This footfall model produced a

predicted response that modestly underestimated the accelerations across the bridge

deck, while the loading models recommended by AISC and ISO were found to signif-

icantly underestimate the response.

The research also produced a method for calibrating coefficients within each ana-

lytical footfall function by optimizing the correlation with the measured acceleration.

Following this calibration of the footfall functions, all three models produced similar

results and correlated better with the experimentally measured response. Analysis of

the parameters identified through the optimization indicated that the fidelity of the

AISC and ISO models could be greatly improved by simply increasing the force am-

plitude of the first harmonic of the footfall functions. Furthermore, a comparison of

the calibrated footfall models revealed strong consistency between the characteristics

of the identified excitation in each case and suggested that a single harmonic periodic

function with larger amplitude excitation than expected by any of the standardized

models could be used to predict the actual experimentally measured response.

However, it is important to emphasize the challenges associated with controlled

experimental testing on full scale structures, and it should be acknowledged that con-

trolled application of footfall loads in the absence of additional ambient excitations

is difficult to achieve. Consequently, the conclusions developed related to the per-

formance of the various footfall models could have been affected by these external

effects. Due to the unpredictability of human-structure interaction and possible am-
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bient interference that could have occurred during experimentation of the case study

structure, the analytical responses observed in this case study can only indicate which

loading model proved most accurate when applied to this specific structure. These

results do not yet provide sufficient evidence to forecast the performance of these

models when applied to other structural models. Consequently, the conclusions de-

veloped should be limited to this particular case study unless supported by additional

experimentation on a number of other structures.

6.2 Recommendations for Future Work

Through the course of this research, several challenges were encountered. It is

recommended that these areas of research be addressed in future work.

• Accurately modeling connections and component interactions with the bridge,

specifically the interface at the concrete slab cast around the transverse stiffeners

on the girder, proved challenging and created difficulties when calibrating the

finite element model. Simplified methods for modeling such connections in a way

conducive to model updating should be investigated further in future research.

• The dynamic response of the structure predicted using the AISC and ISO

loading models varied significantly from the experimentally measured response.

Likewise, parameter identification of the excitation forces suggested that a single

harmonic periodic function was sufficient for accurately modeling the excitation

rather than the use of four or five harmonics, as suggested by these models. It is

recommended that additional field experimentation be performed on full scale

structures and that the methodology developed be applied to extend the anal-
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ysis from this limited case study.

• It is suspected that the differences between the analytical predictions and mea-

sured responses are largely due to the loading models being developed using

forcing data acquired from footfalls applied to hard, stable surfaces. This does

not explicitly account for the interaction between the pedestrian and the vibrat-

ing structure. Therefore, future research into the effects of human-structure in-

teraction and means to incorporate the impact within simplified models suitable

for design is recommended.

• One of the original goals of this research was to extend the analysis of the

pedestrian loading models to cases of multiple pedestrians. However, due to

significant discrepancies between the experimentally measured acceleration time

histories and those predicted by amplified footfall models, this analysis could

not be completed, either directly using recommended coefficients or through

optimization. Therefore, techniques for the analysis of simplified pedestrian

footfall models extended to multiple pedestrian loading should be investigated

in future research.
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APPENDIX A: SAP2000 MATRIX EXTRACTION CODE

1 % SAP2000 Matrix Extraction Code
2 % This code is used to define the stiffness and mass matrices
3 % (K and M) and changes in the matrices (delK and delM) resulting
4 % from parameter assignment modification. This script is applied
5 % to the idealized SAP2000 model prior to genetic algorithm
6 % updating.
7

8 % Define the lower and upper parameter bounds
9 clear all

10 % Define lower bounds
11 lb=[0.5;
12 0.5;
13 1;
14 1;
15 1;
16 1;
17 10;
18 1;
19 0];
20 % Define upper bounds
21 ub=[1.5;
22 1.5;
23 1000;
24 1000;
25 1000;
26 1000;
27 1000;
28 1000;
29 500];
30 % Define scale factor applied to lower and upper bounds
31 sc=[1;
32 1;
33 1000;
34 100;
35 1000;
36 1000;
37 1000;
38 1000;
39 1];
40 % Establish updating parameter assignments
41 Pop(1,:)=lb;
42 for k=1:numel(lb)
43 Pop(k+1,:)=Pop(1,:);
44 Pop(k+1,k)=ub(k);
45 end
46 for k=1:numel(lb)
47 Pop(:,k)=Pop(:,k)*sc(k);
48 end
49

50 %Establish Model
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51 root=strcat(cd,'\');
52 % Establish Global Optimization Problem
53 for k=1:length(lb)+1
54 % Initialize SAP2000 model
55 clear SapObject SapModel
56 feature('COM SafeArraySingleDim',1);
57 feature('COM PassSafeArrayByRef',1);
58 SapObject = actxserver('sap2000v15.SapObject');
59 SapObject.ApplicationStart(6,'True');
60 SapModel = SapObject.SapModel;
61 ret = SapModel.InitializeNewModel(6) %#ok<*NASGU>
62 ret = SapObject.SapModel.File.OpenFile(strcat(root,...
63 '/FEModel/SAPModel.sdb'))
64 fprintf('Set Model Units to kN, m, C\n')
65 ret=SapObject.SapModel.SetPresentUnits(6)
66 fprintf('Delete Results\n')
67 ret=SapObject.SapModel.Analyze.DeleteResults('MODAL',1)
68 fprintf('Unlock Model\n')
69 ret=SapObject.SapModel.SetModelIsLocked(false)
70 fprintf('Set Model Units to kN, m, C\n')
71 ret=SapObject.SapModel.SetPresentUnits(6)
72 fprintf('Set Gravity Load\n')
73 ret = SapObject.SapModel.AreaObj.SetLoadGravity('ALL',...
74 'DEAD',0,0,1,true,'GLOBAL',1)
75

76 % Apply parameter changes to the SAP2000 model
77

78 % Set the Bending property modifiers of the deck slab area elements
79 fprintf('Set Bending Modifiers of Deck')
80 ret = SapObject.SapModel.AreaObj.SetModifiers('DeckAll',[...
81 1,1,1,Pop(k,1),Pop(k,2),1,1,1,1,1]',1)
82

83 % Set the link element properties
84 % Properties of the pin and hanger link element
85 fprintf('Set Span Link Properties')
86 ret = SapObject.SapModel.PropLink.SetLinear('SPANLINK',[true,...
87 true,true,false,true,false]',...
88 [false,false,true,false,true,false]',[Pop(k,3),Pop(k,4),...
89 0,0,0,0]',[0,0,0,0,0,0]',0,0)
90 % Properties of the column-to-diaphragm connection link element
91 fprintf('Set Column Link Properties')
92 ret = SapObject.SapModel.PropLink.SetLinear('COLUMNLINK',[...
93 true,true,true,true,false,false]',...
94 [true,true,false,false,false,false]',[0,0,Pop(k,5),...
95 Pop(k,6),0,0]',[0,0,0,0,0,0]',0,0)
96 % Properties of the girder web-to-deck slab link element
97 fprintf('Set Web Deck Link Properties')
98 ret = SapObject.SapModel.PropLink.SetLinear('WebDeckLink',[...
99 true,true,true,false,false,false]',...

100 [false,true,true,false,false,false]',[Pop(k,7),0,0,0,0,0]',...
101 [0,0,0,0,0,0]',0,0)
102

103 % Set the properties of the boundary condition spring element
104 fprintf('Set BC Springs')
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105 ret=SapObject.SapModel.PointObj.SetSpring('BCSpring',[...
106 Pop(k,8),0,0,0,0,0]',1,true,true)
107

108 % *****************************************************************
109 % RUN THE INITIAL MODEL ANALYSIS
110 % *****************************************************************
111 ret = SapObject.SapModel.File.Save(strcat(root,'/FEModel/MK',...
112 num2str(k-1),'.sdb')); % Need to Save Model Before Analysis
113 ret = SapObject.SapModel.Analyze.SetRunCaseFlag('Linear',0);
114 ret = SapObject.SapModel.Analyze.SetRunCaseFlag('MODAL',1);
115 ret = SapObject.SapModel.Analyze.RunAnalysis();
116 ret = SapObject.SapModel.Results.Setup.SetCaseSelectedForOutput(...
117 'MODAL',1); % Set case and combo output selections
118 ret = SapObject.SapModel.Results.Setup.SetCaseSelectedForOutput(...
119 'Linear',0);
120 SapObject.ApplicationExit(true);
121

122 % *****************************************************************
123 % EXTRACT EQUATION NUMBERS AND DEVELOP MAPPING OF MATRICES
124 % *****************************************************************
125 %Import Stiffness Matrix file
126 TK=importdata(strcat(root,'/FEModel/MK',num2str(k-1),'.TXK'));
127 TK=TK.data;
128 %Import Mass Matrix file
129 TM=importdata(strcat(root,'/FEModel/MK',num2str(k-1),'.TXM'));
130 TM=TM.data;
131 %Determine full matrix size
132 n=max(TK(:,1));
133 %Populate other half of symmetric matrix
134 TK=[[TK(:,1);TK(:,2)],[TK(:,2);TK(:,1)],[TK(:,3);TK(:,3)]];
135 %Remove duplicate reference to diagonal entries
136 TK=unique(TK,'rows');
137 K{k}=sparse(TK(:,1),TK(:,2),TK(:,3),n,n);
138 clear TK;
139 TM=[[TM(:,1);TM(:,2)],[TM(:,2);TM(:,1)],[TM(:,3);TM(:,3)]];
140 TM=unique(TM,'rows');
141 M{k}=sparse(TM(:,1),TM(:,2),TM(:,3),n,n);
142 clear TM n;
143 end
144 for k=2:numel(lb)+1
145 delK{k-1}=K{k}-K{1};
146 delM{k-1}=M{k}-M{1};
147 end
148 K=K{1};
149 M=M{1};
150 fid=fopen(strcat(root,'/FEModel/MK0.TXC'));
151 fgetl(fid);
152 flag=0;
153 k=1;
154 while(flag==0)
155 A=fgetl(fid);
156 if (A==-1)
157 flag=1;
158 else
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159 CONS(k,:)=[str2num(A(1:12)),str2num(A(13:26)),...
160 str2num(A(27:52))];
161 k=k+1;
162 end
163 end
164 fclose(fid);
165

166 % *****************************************************************
167 % EXTRACT EQUATION NUMBERS AND DEVELOP MAPPING OF MATRICES
168 % *****************************************************************
169 fid=fopen(strcat(root,'\FEModel\MK0.TXE'));
170 fgetl(fid);
171 flag=0;
172 kj=1;
173 while(flag==0)
174 A=fgetl(fid);
175 B=fgetl(fid);
176 if (B==-1)
177 flag=1;
178 else
179 if isempty(strfind(A(1:10),'NULL'))
180 if isempty(strfind(A(1:10),'CElement'))
181 Eqtemp(kj,:)=[str2num(A(1:10)),str2num(A(11:24)),...
182 str2num(A(25:38)),str2num(A(39:52)),...
183 str2num(A(53:66)),str2num(A(67:80)),str2num(B(1:14))];
184 kj=kj+1;
185 end
186 end
187 end
188 end
189 fclose(fid);
190 clearvars -except K M delM delK Eqtemp CONS
191

192 % Establish highway sign parameter lower and upper bounds
193 % (This is added separately because it directly affects the
194 % mass matrix)
195 masslb=[0];
196 massub=[1103.26];
197 % Define the location of the sign mass
198 SignJoints=[141;407;1830];
199 [ILC,LOCB]=ismember(SignJoints,Eqtemp(:,1));
200 SignIndices=reshape(Eqtemp(LOCB,2:4),length(LOCB)*3,1);
201 I=find(SignIndices<1);
202 SignIndices(I)=[];
203 % Apply the sign mass to the mass matrix
204 delM{9}=sparse(SignIndices,SignIndices,massub(1)/32.2/1000,...
205 size(M,1),size(M,2));
206 delK{9}=sparse(1,1,0,size(M,1),size(M,2));
207

208 % Clear workspace of unnecessary data and save remaining workspace
209 clearvars -except K M delM delK Eqtemp CONS
210 save MK Brooklyn.mat
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APPENDIX B: SCRIPTS USED TO OPTIMIZE COEFFICIENTS IN
PEDESTRIAN FOOTFALL MODELS

1 % Footfall model updating script
2 % This code is used to initialize and run the genetic algorithm in
3 % MATLAB to calibrate the pedestrian footfall loading models.
4 % Define parameter lower bounds
5 lb=[0.5,...
6 0.005,...
7 0.005,...
8 0.005,...
9 0.001,...

10 -pi/2,...
11 -pi/2,...
12 -pi/2,...
13 -pi/2,...
14 0,...
15 1.85];
16

17 % Define parameter upper bounds
18 ub=[2.0,...
19 0.2,...
20 0.2,...
21 0.2,...
22 0.1,...
23 pi/2,...
24 pi/2,...
25 pi/2,...
26 pi/2,...
27 100,...
28 2.3];
29

30 % Set genetic algorithm options
31 options=gaoptimset(@ga);
32 options=gaoptimset('OutputFcns',...
33 @SaveFunctionMATLAB RunSAP ReturnAccelerations);
34 options.PlotFcns={};
35 options.PopulationSize=[200];
36 options.TolFun=0;
37 options.TolCon=0;
38 options.EliteCount=10;
39 options.Generations=25;
40 options.CrossoverFraction=0.6;
41 options.CrossoverFcn=@crossoverheuristic;
42 options.PopInitRange=[lb;ub];
43 options.UseParallel='never';
44 options.Vectorized='on';
45 format shortg
46 ['Starting the Genetic Algorithm']
47 nparams=11;
48 [x,fval,exitflag,output,population,scores]=...
49 ga(@MATLAB RunSAP ReturnAccelerations,nparams,[],[],[],[],...
50 lb(1:nparams),ub(1:nparams),[],[],options)
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1 % MATLAB to SAP2000 Interface for Pedestrian Traffic
2 % This code is used to establish the SAP2000 model for application
3 % of pedestrian load cases, apply the pedestrian loading model to
4 % the finite element model, and extract the acceleration response
5 % of specified nodes.
6 function Objective = MATLAB RunSAP ReturnAccelerations(params)
7 params
8 % Preliminary step - Opening field calibrated SAP2000 model
9 root=cd; % Opening SAP2000

10 feature('COM SafeArraySingleDim',1);
11 feature('COM PassSafeArrayByRef',1);
12 SapObject = actxserver('sap2000v15.SapObject');
13 SapObject.ApplicationStart(1,'True');
14 SapModel = SapObject.SapModel;
15 ret = SapModel.InitializeNewModel; % Opening SAP2000
16 ret = SapObject.SapModel.File.OpenFile(...
17 strcat(root,'\FieldCalibratedSAPModel.sdb'));
18

19 % Step 1 - Determining Frame/Points where step load is to be
20 % applied
21 ret = SapObject.SapModel.FrameObj.SetSelected('PATH',true,1);
22 numberframe=double(0);
23 framenames=cellstr('');
24 [ret,numberframe,framenames]=...
25 SapObject.SapModel.FrameObj.GetNameList(numberframe,...
26 framenames);
27 framesel=logical(zeros(numberframe,1));
28 for k=1:numberframe
29 [ret,framesel(k)]=...
30 SapObject.SapModel.FrameObj.GetSelected(framenames{k},...
31 framesel(k));
32 end
33 I=find(framesel==1);
34 framenames=framenames(I);
35 numberframe=length(I);
36 point1='';
37 point2='';
38 x=0; y=0; z=0;
39 for k=1:numberframe
40 [ret,point1,point2]=...
41 SapObject.SapModel.FrameObj.GetPoints(framenames{k},...
42 point1,point2);
43 Pt1{k}=point1;
44 Pt2{k}=point2;
45 [ret,x,y,z]=SapObject.SapModel.PointObj.GetCoordCartesian(...
46 Pt1{k},x,y,z);
47 Pt1x(k)=x; Pt1y(k)=y; Pt1z(k)=z;
48 [ret,x,y,z]=SapObject.SapModel.PointObj.GetCoordCartesian(...
49 Pt2{k},x,y,z);
50 Pt2x(k)=x; Pt2y(k)=y; Pt2z(k)=z;
51 end
52 [Pt1x,order]=sort(Pt1x);
53 Pt1y=Pt1y(order);
54 Pt1z=Pt1z(order);
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55 Pt2x=Pt2x(order);
56 Pt2y=Pt2y(order);
57 Pt2z=Pt2z(order);
58 framenames=framenames(order);
59 for k=1:numberframe
60 framelength(k)=...
61 sqrt((Pt2x(k)-Pt1x(k))ˆ2+(Pt2y(k)-Pt1y(k))ˆ2+...
62 (Pt2z(k)-Pt1z(k))ˆ2);
63 end
64 framedist=cumsum(framelength);
65

66 % STEP 2 - Applying footstep loads to the model
67 d=3.3; % Distance between footsteps (in m or ft);
68 weight=0.7; % Weight of pedestrian (in kN or k);
69 nsteps=floor(framedist(end)/d);
70 for k=1:nsteps
71 temp=find(k*d<framedist);
72 I=temp(1);
73 if I==1
74 reldist=k*d;
75 else
76 reldist=k*d-framedist(I-1);
77 end
78 ret=SapObject.SapModel.LoadPatterns.Add(strcat('nstep',...
79 num2str(k)),8,0,true);
80

81 ret=SapObject.SapModel.FrameObj.SetLoadPoint(framenames{I},...
82 strcat('nstep',num2str(k)),...
83 1,10,reldist,weight,'Global',false,true,0)
84 end
85

86 % STEP 2 for random noise - apply randomly generated loads to the
87 % model deck
88 ret=SapObject.SapModel.LoadPatterns.Add('rng',8,0,true)
89 ret=SapObject.SapModel.PointObj.SetLoadForce('DeckNodes','rng',...
90 [0.001,0.001,-0.001,0,0,0]',true,'GLOBAL',1)
91

92 % STEP 3 - Load in the walking and random noise forcing functions
93 % Pedestrian loading forcing function (the ISO function is shown)
94 for kGen=1:length(params)
95 G=1;
96 alpha=[params(kGen,1);params(kGen,2);params(kGen,3);...
97 params(kGen,4);params(kGen,5)];
98 fs=params(kGen,11);
99 speed=fs*d;

100 phi=[params(kGen,6),params(kGen,7),params(kGen,8),params(kGen,9)];
101 i=[1;2;3;4];
102 t = linspace(0,1/fs,1000);
103 for al=1:1
104 Fp(:,al)=G*(1+alpha(1,al)*cos(2*pi*i(1)*fs*t)+...
105 alpha(2,al)*cos(2*pi*i(2)*fs*t+phi(1))+...
106 alpha(3,al)*cos(2*pi*i(3)*fs*t+phi(2)))+...
107 alpha(4,al)*cos(2*pi*i(4)*fs*t+phi(3)));
108 end
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109 t(end+1)=t(end)+(t(end)-t(end-1));
110 ft=Fp(:,hk);
111 ft(end+1)=0;
112 ret=SapObject.SapModel.Func.FuncTH.SetUser(['Walking',...
113 num2str(kGen)],length(t),t',ft);
114

115 % Random noise forcing function
116 rng(1);
117 RRForce=(rand(size(ft))-0.5)*params(kGen,10)/100;
118 t2 = linspace(0,(1/fs)*nsteps,1000);
119 ret=SapObject.SapModel.Func.FuncTH.SetUser(['RandomNoise',...
120 num2str(kGen)],length(t2),t2',RRForce);
121

122 % STEP 4 - Setup linear modal time history load case
123 DampFreq=[1.876,2.062,2.947,4.597,7.491,7.806,9.85,...
124 10.93,11.42,14.07,14.97,16.5,19.58,22.6,24.87];
125 RelDamp=[0.0439,0.00881,0.00793,0.0959,0.012,0.0219,...
126 0.012,0.0236,0.0688,0.0426,0.0111,0.0245,0.0767,0.0173,...
127 0.00256];
128 timestep=1/125;
129 duration=nsteps*d/speed;
130 ntimesteps=duration/timestep;
131 ret=SapObject.SapModel.LoadCases.ModHistLinear.SetCase(...
132 ['ModalTime',num2str(kGen)]);
133 ret=...
134 SapObject.SapModel.LoadCases.ModHistLinear.SetDampInterpolated(...
135 ['ModalTime',num2str(kGen)],6,15,DampFreq',RelDamp');
136 ret=SapObject.SapModel.LoadCases.ModHistLinear.SetTimeStep([...
137 'ModalTime',num2str(kGen)],ntimesteps,timestep);
138 for k=1:nsteps
139 loadtype{k,1}='Load';
140 loadname{k,1}=strcat('nstep',num2str(k));
141 func{k,1}=['Walking',num2str(kGen)];
142 sf(k)=1;
143 tf(k)=1;
144 at(k)=(k-1)*d/speed;
145 CSys{k,1}='Global';
146 Ang(k)=0;
147 end
148 ret=SapObject.SapModel.LoadCases.ModHistLinear.SetLoads([...
149 'ModalTime',num2str(kGen)],...
150 nsteps+1,[loadtype;'Load'],[loadname;'rng'],[func;[...
151 'RandomNoise',num2str(kGen)]],[sf';1],[tf';1],[at';0],...
152 [CSys;'GLOBAL'],[Ang';0])
153 end
154

155 % STEP 5 - Run analysis
156 ret=SapObject.SapModel.File.Save(strcat(root,'\MATLABBRIDGERUN',...
157 num2str(hk+20)));
158 ret = SapObject.SapModel.Analyze.SetRunCaseFlag('DEAD',0);
159 ret = SapObject.SapModel.Analyze.SetRunCaseFlag('MODAL',0);
160 ret = SapObject.SapModel.Analyze.SetRunCaseFlag('DEAD2',0);
161 ret = SapObject.SapModel.Analyze.SetRunCaseFlag('rng',0);
162 ret = SapObject.SapModel.LoadCases.ModalEigen.SetNumberModes(...
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163 'MODAL',20,20);
164 ret = SapObject.SapModel.Analyze.RunAnalysis();
165

166 % Step 6 - Extract results
167 for kGen=1:length(params)
168 ret = SapObject.SapModel.Analyze.SetRunCaseFlag([...
169 'ModalTime',num2str(kGen)],1);
170 ret = SapObject.SapModel.Results.Setup.SetCaseSelectedForOutput(...
171 ['ModalTime',num2str(kGen)],1);
172 ret = SapObject.SapModel.Results.Setup.SetCaseSelectedForOutput(...
173 'DEAD',0);
174

175 SapObject.SapModel.Results.Setup.SetOptionDirectHist(2);
176 SapObject.SapModel.Results.Setup.SetOptionModalHist(2);
177 SapResult= zeros(7,1,'double');
178 NumberResults = 0;
179 Obj = cellstr(' ');
180 Elm = cellstr(' ');
181 ACase = cellstr(' ');
182 StepType = cellstr(' ');
183 StepNum = zeros(1,1,'double');
184 U1 = zeros(1,1,'double');
185 U2 = zeros(1,1,'double');
186 U3 = zeros(1,1,'double');
187 R1 = zeros(1,1,'double');
188 R2 = zeros(1,1,'double');
189 R3 = zeros(1,1,'double');
190 GroupElm = 2;
191 ret = ...
192 SapModel.Results.Setup.DeselectAllCasesAndCombosForOutput;
193 ret = SapModel.Results.Setup.SetCaseSelectedForOutput([...
194 'ModalTime',num2str(kGen)]);
195 [ret, NumberResults, Obj, Elm, ACase,...
196 StepType,StepNum, U1, U2, U3,...
197 R1, R2, R3]=...
198 SapModel.Results.JointAcc('SENSORS', ...
199 GroupElm, NumberResults, Obj, Elm,...
200 ACase,StepType, StepNum, U1, U2, U3,...
201 R1, R2, R3);
202 nl=length(U1)/16;
203 for cm=1:16 %Establishing predicted accelerations
204 SU1(cm,:)=U1(1+(nl*(cm-1)):(nl*cm));
205 SU2(cm,:)=U2(1+(nl*(cm-1)):(nl*cm));
206 SU3(cm,:)=U3(1+(nl*(cm-1)):(nl*cm));
207 end
208 Objective(kGen,:)=Correlation(SU3)
209 clear SU1 SU2 SU3; %Results must be cleared for the next
210 % generation
211 end
212 ret=SapObject.ApplicationExit(true);
213 end
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1 % Pedestrian footfall correlation code
2 % This code is used to compute the objective score calculated for an
3 % analytical acceleration time history compared to an experimental
4 % acceleration time history
5 function Objective = Correlation(SU3) % The correlation of the
6 % vertical acceleration
7 % Match the first dataset
8 load('SinglePersonCase1'); % Experimental acceleration file 1
9 mlen=length(CAccel(:,1));

10 SU3g=SU3/32.2*1000; % Converting accelerations to mg
11 for j=1:(length(SU3(1,:))-mlen)
12 for k=6:12
13 % Calculation of the objective score for one load case
14 Error(k)=sum((CAccel(:,32+k)-SU3g(k,j:j+mlen-1)').ˆ2);
15 end
16 CError(j)=sum(Error(k));
17 end
18 [M,I]=min(CError);
19 EXPFFT1=mean(abs(fft(CAccel(:,33:48))),2);
20

21 % Match the second dataset
22 load('SinglePersonCase2') % Experimental acceleration file 2
23 mlen=length(CAccel(:,1));
24 SU3g=SU3/32.2*1000;
25 for j=1:(length(SU3(1,:))-mlen)
26 for k=6:12
27 % Calculation of the objective score for one load case
28 Error(k)=sum((CAccel(:,32+k)-SU3g(k,j:j+mlen-1)').ˆ2);
29 end
30 CError(j)=sum(Error(k));
31 end
32 [M2,I2]=min(CError);
33 Objective=M+M2; % Summation of the objectives
34

35 % Plotting the comparison between experimental and analytical
36 % acceleration time histories
37 for csensor = 6:12
38 figure
39 set(gca,'FontSize',18)
40 stime=1/125:1/125:length(SU3g)/125;
41 mtime=1/125:1/125:mlen/125;
42 plot(stime(I)+mtime,CAccel(:,csensor+32),'r')
43 hold on
44 plot(stime,SU3g(csensor,:),'--');
45 legend('Experimental response','SAP2000 predicted response')
46 xlabel('Time (s)')
47 ylabel('Acceleration (mg)')
48 end
49 end


