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ABSTRACT 

 

 

 

 

      Although transcription is one of the most important biological functions of cells, our 

understanding of its regulation is still limited.  In this dissertation, we have studied the 

transcriptional regulation in prokaryotes in three aspects. First, we investigated the extent 

to which cis-regulatory elements are conserved during the course of evolution using the 

LexA regulons in cyanobacteria as an example. We found that in most cyanobacterial 

genomes analyzed, LexA appears to function as the transcriptional regulator of the key 

SOS response genes. The loss of lexA in some genomes might lead to the degradation of 

its binding sites. Second, directional RNA-seq techniques have recently become the 

workhorse for transcriptome profiling in prokaryotes, however, it is a challenging task to 

accurately assemble highly labile prokaryotic transcriptomes for further analyses. To fill 

this gap, we have developed a hidden Markov model based transcriptome assembler 

which outperforms the state-of-the-art assemblers. Using our tool, we characterized 

alternative operon structures in E. coli K12 under various growth conditions and growth 

phases, and found that they are more complex and dynamic than previously anticipated. 

Lastly, we determined anti-sense and non-coding transcription patterns in E. coli K12 

under various growth conditions and time points. We found that a large portion of genes 

have antisense transcription in a condition-dependent manner. Most antisense transcripts 

are initiated and restricted to the 5‟-end of the gene on the sense strand, and their 

expression levels are correlated with those of the genes on the sense strand, suggesting 

that these antisense transcripts might play an important role in transcriptional regulation. 

SHAN LI. Evolution and dynamics of transcriptional regulation in bacteria.         

(Under the direction of DR ZHENGCHANG SU) 
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INTRODUCTION 

 

 

     Prokaryotic genomes generally consist of two types of sequences: protein- or RNA-

specifying coding sequences and intergenic non-coding sequences, with the former and 

the latter being about 85% and 15% of the genomes, respectively. While the coding 

sequences define the molecules that a cell can have, the non-coding sequences contain the 

regulatory sequences controlling the expression of the coding sequences in the cell under 

different growth phases and physiological as well as environmental conditions. In 

prokaryotes, several adjacent genes on the same strand of DNA can be co-transcribed as a 

polycistronic mRNA, thereby forming a multi-gene transcription unit called an operon. A 

group of operons and singleton genes regulated by the same transcription factor (TF) is 

called a regulon.  In eubacteria, gene transcription initiation is controlled by the σ-factor 

of the RNA polymerase (RNAP) and other specific TFs binding to cis-regulatory 

elements in the upstream region of an operon [1]. It is the interactions of the 

transcriptome and its products in the cell that determine its functions. Therefore, a full 

understanding of the transcriptional regulation of prokaryotic cells can facilitate the 

understanding of their physiology and applications in medicine, agriculture and industry.   

     As transcriptional regulation in prokaryotes plays an important role in controlling their 

responses to environmental changes, thus it is subject to nature selection during the 

course of evolution. The structure and complexity of transcriptional regulatory network in 

prokaryotes have changed, reorganized, enabling them to adapt to almost every 

environmental niche on earth over millions of years. However, our general understanding 

of the rules that govern the evolution of the transcriptional regulation is still very limited, 
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such as how a TF and its binding site co-evolve, and to what extent the changes in 

transcriptional regulation contribute to the adaptation of prokaryotes to environments. 

Elucidation of these rules will help to characterize the transcriptional cis-regulatory 

networks in prokaryotes. In this dissertation, we have attempted to derive some of such 

rules through studying the evolution of the LexA regulon in cyanobacteria.      

     For a long time it is believed that that transcription largely occurs in the coding region 

resulting sense mRNAs, rRNAs and tRNAs, and that operons are static structures, when 

activated, they are transcribed uniformly, and alternative operons are rare. However, 

recent applications of whole genome directional (strand-specific) tiling array and 

directional RNA-seq techniques in transcriptome profiling in prokaryotes have 

completely changed our view of the architecture and complexity of prokaryotic 

transcriptomes [2-9]. For example, by using a combination of whole genome directional 

tiling array and RNA-seq techniques, Guell et al. [10] found that the operon utilizations 

in the reduced parasitic M. pneumoniae genome are highly variable and dynamic, with 

almost half of 139 identified multi-gene operons show varying (dynamic) expression in a 

staircase-like manner. Furthermore, under different conditions, operons could be divided 

into smaller sub-operons, resulting in many alternative transcripts, suggesting that the 

operon structures in M. pneumoniae is highly dynamic, more similar to that of alternative 

splicing in eukaryotes than originally thought. They also identified a large number of 

ncRNAs and asRNA expressed under various culture conditions, thus a much larger 

portion of the genome is transcribed than previously anticipated [10]. Similar 

observations are observed in H. pylori [11], B. subtilis [12], Halobacterium salinarum 

NRC-1 [13], and Porphyromonas gingivalis W83 [14]. However, not all these surprising 
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observations are noted in some other studies. For instance, pervasive alternative operon 

usages were not reported in many studies in a broader range of genomes, such as E. coli 

[15], B. subtilis [16], Salmonella enterica serovar Typhi [17], Burkholderia cenocepacia 

[18], Caulobacter crescentus [19], Staphylococcus aureus [20], Vibrio cholera [21], 

Chlamydia trachomatis [22], Chlamydia pneumonia [23], Clostridium beijerinckii 

NCIMB 8052 [24], Listeria monocytogenes [25], Anabaena sp. strain PCC 7120 [26], 

Synechococcus elongatus PCC 7942 [27], and Sulfolobus solfataricus P2 [28], even 

though multiple transcription starting sites (TSSs) in the upstream intergenic region of 

genes are frequently reported in most of these studies. Moreover, although most of these 

studies found extensive anti-senses and non-coding transcription, the levels of their 

prevalence can vary quite differently from different studies even in the same genome. 

Contradictory results have also been reported. For instance, although Rasmussen et al. 

[16] did not note alternative operon utilizations in B. subtilis, more recently, Nicolas et al. 

[12] observed prevalent condition-dependent operon utilizations using similar tiling array 

techniques. Notwithstanding that these discrepancies can be due to different experimental 

conditions for different research purposes in these studies, nevertheless, they inevitably 

raise the following questions needed to be urgently addressed: is the dynamic and 

alternative operon utilizations a ubiquitous phenomenon in all prokaryotes or only more 

prevalent in some specific species for their specific genome structures?  What are the 

extent and patterns of anti-sense and non-coding transcriptions in the genomes? What are 

the molecular mechanisms that lead to their transcription under certain conditions and 

time points? And what are their biological significances? Furthermore, the existing 

transcriptome assembly tools are developed for eukaryotes, thus do not work well in 
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prokaryotes due to the highly labile nature of prokaryotic mRNA [29-32], thus, an tool 

for accurately assembling full-length prokaryotic transcripts is urgently needed. In this 

dissertation, we have addressed some of these questions by profiling the transcriptomes 

in E. coli K12 using a directional RNA-seq method. More specifically, we first sequenced 

the transcriptomes of the E. coli cells under a variety of culture conditions and growth 

phases. We then developed a Hidden Markov Model based algorithm and tool to 

assemble the full length transcripts from short directional RNA-seq reads. Finally, we 

analyzed the alternative operon utilizations and antisense transcription patterns and their 

possible biological functions under these culture conditions and growth phases.
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CHAPTER 1: COMPUTATIONAL ANALYSIS OF LEXA REGULONS IN 

CYANOBACTERIA  
 

 
1.1 Abstract 

     The transcription factor LexA plays an important role in the SOS response in 

Escherichia coli and many other bacterial species studied. Although the lexA gene is 

encoded in almost every bacterial group with a wide range of evolutionary distances, its 

precise functions in each group/species are largely unknown. More recently, it has been 

shown that lexA genes in two cyanobacterial genomes Nostoc sp. PCC 7120 and 

Synechocystis sp. PCC 6803 might have distinct functions other than the regulation of the 

SOS response. To gain a general understanding of the functions of LexA and its evolution 

in cyanobacteria, we conducted the current study. 

     Our analyses indicate that six of 33 sequenced cyanobacterial genomes do not harbor a 

lexA gene although they all encode the key SOS response genes, suggesting that LexA is 

not an indispensable transcription factor in these cyanobacteria, and that their SOS 

responses might be regulated by different mechanisms. Our phylogenetic analysis 

suggests that lexA was lost during the course of evolution in these six cyanobacterial 

genomes. For the 26 cyanobacterial genomes that encode a lexA gene, we have predicted 

their LexA-binding sites and regulons using an efficient binding site/regulon prediction 

algorithm that we developed previously. Our results show that LexA in most of these 26 

genomes might still function as the transcriptional regulator of the SOS response genes as 
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seen in E.coli and other organisms. Interestingly, putative LexA-binding sites were also 

found in some genomes for some key genes involved in a variety of other biological 

processes including photosynthesis, drug resistance, etc., suggesting that there is crosstalk 

between the SOS response and these biological processes. In particular, LexA in both 

Synechocystis sp. PCC6803 and Gloeobacter violaceus PCC7421 has largely diverged 

from those in other cyanobacteria in the sequence level. It is likely that LexA is no longer 

a regulator of the SOS response in Synechocystis sp. PCC6803.  

     In most cyanobacterial genomes that we analyzed, LexA appears to function as the 

transcriptional regulator of the key SOS response genes. There are possible couplings 

between the SOS response and other biological processes. In some cyanobacteria, LexA 

has adapted distinct functions, and might no longer be a regulator of the SOS response 

system. In some other cyanobacteria, lexA appears to have been lost during the course of 

evolution. The loss of lexA in these genomes might lead to the degradation of its binding 

sites. 

1.2 Background  

     The LexA protein was first characterized as the transcriptional regulator of the SOS 

response in Escherichia coli [33, 34], and later in several other bacteria, including 

Bacillus subtilis [35, 36] and Fibrobacter succinogenes [37]. In fact, the lexA gene is 

found in almost all eubacterial groups examined so far [37, 38]. In E. coli, around 30 

genes involved in the SOS response are under the regulation of LexA [34]. Under normal 

growth conditions, LexA represses the SOS response genes by binding to their promoter 

regions, and thus blocking their transcription. When DNA is damaged, the binding of 

RecA to the released single-stranded DNA induces the auto-cleavage of the Ala
84

-Gly
85 



3 

 

 

 

peptide bond [39, 40] in LexA, thereby inhibiting the dimerization of LexA and 

preventing its binding to DNA [41-43]. In this manner, SOS response genes are de-

repressed and expressed at different time points and different levels in a coordinated way 

[42].  

LexA in E. coli consists of an N-terminal DNA-binding domain and a C-terminal 

dimerization domain [40, 44].The N-terminal contains three -helices (I, II, III) and an 

anti-parallel  -sheet [44]. Helices II and III form a helix-turn-helix DNA-binding motif, 

and all the DNA-contacting residues Ser
39

, Asn
41

, Ala
42

, Glu
44

 and Glu
45

 are located in 

helix III [45] as revealed by both NMR [44] and X-Ray crystallography analyses [40]. 

The LexA-binding sites in E. coli were found to be a 16-bp palindromic motif with the 

consensus sequence CTG(TA)5CAG [46]. It has been shown that two reactive residues 

Ser
119 

and Lys
156

 in E. coli LexA are critical for the auto-hydrolysis of the peptide bond 

Ala
84

-Gly
85 

[33, 41]. The core set of the SOS response system consists of lexA, recA, 

uvrABCD, umuCD and ruvB [42]. Upon the auto-hydrolysis of LexA, the uvrABCD 

operon is expressed first, whose products are responsible for the nucleotide excision 

repair (NER). Then recA and several other genes for homologous recombination are 

expressed, retrieving the excised DNA double strands. Next, the cell division inhibitor 

SfiA is induced to guarantee a sufficient time for the DNA repairing to be completed. In 

the end, if the DNA is not completely repaired, the operon umuCD encoding the 

mutagenic DNA repair polymerase Pol V will be induced to perform translesion DNA 

synthesis [42]. Since the lexA gene itself is also under the control of LexA, after the 

damaged DNA is repaired, the activity of RecA declines, the production of LexA 

surpasses its auto-cleavage. Consequently, the increased concentration of LexA restores 
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the inhibition of the expression of the SOS response genes. 

     More recently, LexA homologs were also experimentally studied in a few 

cyanobacteria [47-53]. These studies suggest that LexA in Nostoc sp. PCC 7120 [48] 

binds to the promoter regions of lexA and recA; however, LexA in Synechocystis sp. PCC 

6803 may regulate different genes/systems other than the SOS system. Domain et al. 

concluded from microarray gene profiling analysis [53] that LexA in this species might 

be involved in carbon metabolism. Later, LexA in Synechocystis sp. PCC 6803 was found 

to regulate the crhR gene encoding a RNA helicase [51]. Moreover, it has been shown 

that the transcription of the bidirectional hydrogenase genes hoxEFUYH was regulated by 

LexA in Synechocystis sp. PCC6803[49]. In Nostoc sp. PCC 7120, hoxEFUYH genes are 

split into two separate operons, and LexA was found to bind to the upstream regions for 

both operons [47]. Mazon et al. [48] showed that the LexA-binding sites in Nostoc sp. 

PCC 7120 have a 14-bp pseudo-palindromic structure in the form of 

RGTACNNNDGTWCB, which are similar to those in B. subtilis. Additionally, Sjöholm 

et al. [47] found two putative palindromic LexA-binding sites: one in the promoter region 

of alr0750-hoxE-hoxF that resembles Mazon‟s LexA boxes[48], and another, 

TTACACTTTAA in the upstream region of hoxU in Nostoc sp. PCC 7120. Meanwhile, 

multiple putative LexA boxes were identified in Synechocystis sp. PCC6803: a 13-bp 

pseudo-palindromic segment AGTAACTAGTTCG in the upstream region of hoxE, which 

is similar to Mazon‟s site but with one base deletion [49]; another direct repeat pattern, 

CTA-N9-CTA proposed to be recognized by LexA in vitro [52]; and two putative LexA 

boxes that resemble none of the putative LexA boxes listed above [50]. Despite this 

progress, a more extensive study of LexA proteins and their binding sites and regulons in 
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cyanobacterial genomes is still needed. In this study, we have predicted LexA-binding 

sites and regulons in all the sequenced cyanobacterial genomes that harbor a lexA gene, 

and analyzed the evolutionary changes in the LexA regulons in cyanobacteria, as well as 

their relationship with those in proteobacteria and gram-positive bacteria. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Phylogenetic relationships of 27 cyanobacterial LexA proteins and their 

DNA-binding domains.(A) Phylogenetic relationships of the 27 cyanobacterial LexA 

proteins. The tree is rooted with the LexA in E. coli K12. Bootstrap values are shown on 

A

B

 helix III helix II

Clade C

Clade B

Clade A
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Figure 1.1 (continued) the nodes. (B) Alignment of the DNA-binding domain (DBD) of 

the 27 cyanobacterial LexA proteins. The DBD of LexA contains a helix-turn-helix 

motif, and DNA-contacting residues are located in helix III, and are labelled by vertical 

arrows.  

 

 

1.3 Results and Discussion 

1.3.1 Conservation of the DNA-binding domain of LexA in cyanobacteria 

     We identified orthologs of the LexA protein in Nostoc sp. PCC7120 (alr4908) in 26 of 

the 33 sequenced cyanobacterial genomes using the bi-directional best hit (BDBH) 

method based on BLASTP search with an E-value cutoff 10
-10

 (see Materials and 

Methods). Seven genomes appear not to harbor a lexA gene under this criterion, namely, 

Gloeobacter violaceus PCC7421, Synechococcus sp. JA-3-3Ab A-Prime, Synechococcus 

sp. JA-2-3B'a(2-13) B-Prime, Synechococcus elongatus PCC6301, Synechococcus 

elongatus PCC7942, Trichodesmium erythraeum IMS101 and Thermosynechococcus 

elongatus BP-1. We removed the Synechococcus elongatus PCC7942 genome from our 

study since Synechococcus elongatus PCC6301 is virtually identical to it [54]. However, 

an ortholog of the lexA gene (Gll0709) does exist in Gloeobacter violaceus PCC7421. 

The reason we failed to identify this ortholog is that it does not meet our BDBH criterion 

due to its largely divergent sequence. The phylogenetic tree of these 27 LexA amino acid 

sequences indicates that they can be clustered into three groups (Figure 1.1A), 

corresponding to the previously described Clade A (containing Gloeobacter violaceus 

PCC7421), Clade C (containing small marine Prochlorococcus and Synechococcus), and 

Clade B (containing most remaining cyanobacteria) [55]. However, aside from 

Gloeobacter violaceus PCC7421, the DNA-binding domains (DBD) of LexA from these 

cyanobacteria are highly conserved (Figure 1.1B), especially the helix III, where DNA-
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contacting residues are located [45]. This result is in agreement with earlier observations 

[48, 53]. This provides the rationale of our analysis, including the phylogenetic 

footprinting analysis (next section) and genome-wide scanning for LexA-binding site 

predictions. On the other hand, since the DBD in Gloeobacter violaceus PCC7421 is 

quite different from those in other cyanobacteria, especially where the DNA-contacting 

residues locate, thus, we excluded it from our study, leaving 31 species/strains for the 

putative LexA regulon prediction.  

1.3.2 LexA-binding sites predicted by phylogenetic footprinting 

     We considered both an operon and a singleton gene as a transcription unit (TU). As 

Mazon et al. [48] have demonstrated the binding of LexA to the upstream regions of two 

genes, lexA and recA, and predicted LexA-binding sites for other four genes (uvrA, ssb, 

alr4905, and all4790) in Nostoc sp. PCC7120, we used phylogenetic footprinting to 

identify possible LexA-binding sites in the pooled 118 inter-TU sequences associated 

with these six genes in Nostoc sp. PCC7120 [48] and their orthologs in the other 25 

cyanobacterial genomes (excluding Gloeobacter violaceus PCC7421) that harbor a lexA 

gene (see Materials and Methods). We identified 49 high-scoring 14-bp palindromic 

sequences (Table 1) out of the 118 input sequences by applying the motif finding tools 

MEME [56] and BioProspector [57] and incorporating the best motifs found by these two 

programs (See Methods and Materials and Additional file 5). However, the putative LexA 

box AGTCCTAGAGTCCT (Additional file 5) identified in Synechocystis sp. PCC6803 

was not identified by Patterson-Fortin et al. [52] using DNaseI footprinting assays or by 

Gutekunst et al.[49]. Therefore, we removed this site, leaving 48 putative LexA-binding 

sites (Table 1.1) for profile construction. The two LexA boxes that have been  



8 

 

 

 

Table 1.1: 48 Putative LexA binding sites identified by phylogenetic footprinting analysis 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Positions of the LexA binding sites relative to the first codon of the operon. 

 

characterized in Nostoc sp. PCC 7120 [48] were accurately recovered by the phylogenetic 

footprinting procedure (Table 1.1), suggesting that most of these high-scoring motifs are 

likely to be genuine LexA boxes. These putative LexA-binding sites show either a strong 

Genome Transcription Unit Name
Putative LexA-binding 

sites
Position1

Acaryochloris marina MBIC11017 AM1_3549    AM1_3550 - recA AATAAATCTGTACT -97

AM1_3948 lexA AGTACAGGTGTTTT -132

Anabaena variabilis ATCC 29413 Ava_2176 - AGTTCTCATGTACT -144

Ava_1462 - AGTACTTATGTACT -56

Ava_3591 - AGTTCTTCTGTATC -112

Ava_2198 lexA AGTACTAATGTTCT -47

Ava_2059    Ava_2058 - - CGTACATTTGTACC -71

Ava_4925 recA AGTATATCTGTTCT -93

Cyanothece PCC 8801 PCC8801_0945 - AAAACTCTTGTACT -78

PCC8801_2186   PCC8801_2185 - - AGTACTTATGTTCG -101

Microcystis aeruginosa NIES 843 MAE_39060 ssb CATACTATTGTACT -59

MAE_16070 recA CATACTGCTGTACT -68

Nostoc punctiforme PCC 73102 Npun_F1842 - AGTACACCTGTACT -56

Npun_F2914 recA AGTATATCTGTTCT -102

Npun_F6100    Npun_F6101    
Npun_F6102

- - - AGTACGATTGTTCT -111

Npun_R5568   Npun_R5567 - - CGTACATTTGTACT -74

Nostoc sp PCC7120 alr4908 lexA AGTACTAATGTTCT -35

all4790   all4789 - - CGTACATTTGTACC -31

alr4905 - AGTTCTCATGTACT -100

alr3716 uvrA AGTACTATTGTTCT -72

alr0088 ssb AGTACTTATGTACT -16

all3272 recA AGTATATCTGTTCT -52

Prochlorococcus marinus AS9601 A9601_17691 recA AGTACAGATGTACT -126

Prochlorococcus marinus CCMP1375 Pro1784 ssb AAAACATAAGTATT -109

Prochlorococcus marinus MED4 PMM1562 recA AGTACACATGTACT -123

PMM1262 lexA GGTACAAATGTATT -57

Prochlorococcus marinus MIT9313 PMT0380 - GGTACACATGTATT -56

Prochlorococcus marinus MIT9211 P9211_13051    P9211_13041 lexA - GGTACATATGTATT -69

Prochlorococcus marinus MIT9215 P9215_18341 recA AGTACAGATGTACT -126

Prochlorococcus marinus MIT9301 P9301_17531 recA AGTACAGATGTACT -125

Prochlorococcus marinus MIT9303 P9303_19141 lexA GGTACACATGTATT -81

Prochlorococcus marinus MIT9312 PMT9312_1654 recA AGTACAGATGTACT -126

Prochlorococcus marinus MIT9515 P9515_17441 recA AGTACGCATGTACT -123

P9515_18121 - AATATATCTATTCT -139

Prochlorococcus marinus NATL1A NATL1_20071 recA CGTACGTCTGTACT -132

NATL1_16801 lexA AGGACAAATGTACT -52

Prochlorococcus marinus NATL2A PMN2A_1133 recA CGTACGTCTGTACT -132

PMN2A_0828 lexA AGGACGAATGTACT -52

Synechococcus CC9605 Syncc9605_0929 lexA GGTACAAATGTATT -61

Syncc9605_0104 - GATACCGCAGTTTA -140

Synechococcus CC9902 Syncc9902_1949 recA CGTACGTTTGTACT -104

Syncc9902_1481 lexA GGTACAAATGTATT -59

Synechococcus PCC7002

SYNPCC7002_A0426   
SYNPCC7002_A0425  

SYNPCC7002_A0424

recA - - AGTACGATTGAACT -90

SYNPCC7002_A0119 ssb AGAACAGTTGTATG -53

Synechococcus RCC307 SynRCC307_1756 lexA GGCACAAATGTATT -39

Synechococcus WH7803 SynWH7803_0171 ssb CAACCGTCAGTTCT -56

SynWH7803_0439 recA CGTACATCTGTACT -172

Synechococcus sp WH8102 SYNW2062 recA CGTACGCCTGTACT -104
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palindromic structure similar to the experimentally characterized LexA boxes in Nostoc 

sp. PCC7120 [48], or a tandem repeat structure with the consensus sequence  

 

 

 

 

 

 

 

 

Figure 1.2. Phylogenetic tree of LexA binding sites in cyanobacteria, B.subtilis, a-

proteobacteria and E.coli. Binding sites of cyanobacteria were predicted in this study, 

those of B.subtilis were from DBTBS [58], those of a-proteobacteria were taken from 

Erill et al [59], and those of E.coli were from RegulonDB [60]. Phylogenetic tree was 

constructed by the STAMP[61] web tool, sequence logos were generated by weblogo [62]. 

 

AGTACWNWTGTACT. As demonstrated in Figure 1.2, this pattern is rather similar to 

the consensus sequence of the LexA-binding sites previously identified in B. subitlis 

(CGAACN4GTTCG) [35], and to a less extent, to that of LexA-binding sites found in α-

proteobacteria (GTTCN7GTTC and GAACN7GAAC) [59], but differs remarkably from 

that in E. coli CTG(TA)5CAG [46]. These results are consistent with our phylogenetic 

analysis of the 183 LexA proteins detected in 598 genomes, showing that LexA proteins 

in cyanobacteria are more closely related to those in gram-positive and α-proteobacteria 

bacteria than to those in -proteobacteria (Figure 1.3). Accordingly, since the LexA-

binding sites in B. subtilis [35, 48] have a palindromic structure, it is not surprising that 

the LexA-binding sites in cyanobacterial genomes might have a similar palindromic 
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structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Phylogenetic tree of LexA sequences across a total of 183 cyanobacteria, 

gram-positive bacteria, -proteobacteria, δ-proteobacteria, γ-proteobacteria and other 

bacterial species/strains. The tree was constructed in MEGA [63]. Branches of 

cyanobacteria are colored in red. 

 

1.3.3 Genome-wide prediction of LexA-binding sites and regulons in cyanobacterial 

genomes  
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     Both consensus sequence and position weight matrix (PWM) have been widely used 

to represent the pattern of similar sequences. The advantage of PWM (or profile) methods 

over the consensus sequence methods is that the former can capture more quantitative 

information about the patterns by using a probabilistic model to represent the sequences. 

In this way, it can differentiate subtly conserved positions from the non-conserved ones 

[64]. In our study, we used the profile of these 48 LexA boxes (Table 1.1) to scan the 31 

sequenced cyanobacterial genomes to predict additional putative LexA-binding sites and 

members of LexA regulons, using a scanning algorithm [65-67] that incorporates 

orthologous information and computes a log-odds ratio (LOR) score for evaluating the 

confidence of predictions in each genome (see Materials and Methods for details). The 

predicted results with a p-value<0.01 for the 26 genomes harboring a lexA gene are listed 

in Tables S1-26 (Additional file 2), while those for the five genomes without a lexA gene 

are listed in Additional file 6. The predicted results with a p-value<0.05 for the 31 

cyanobacteria are summarized in Additional file 3. 

     The score of a detected putative LexA binding site for a TU is the sum of two terms: 

one evaluates the extent to which the putative LexA binding site resembles the scanning 

profile; the other evaluates the similarity of this binding site to those identified for the 

orthologs of genes within the TU in the other genomes. To evaluate the confidence of 

each motif score s, we used randomly selected coding sequences as the null model to test 

the statistical significance. A false positive rate was used to evaluate this statistical 

significance, which was defined as the fraction of the randomly selected coding 

sequences containing binding sites with a score higher than the cutoff s in the genome.  
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Figure 1.4.  Evaluation of the predictions of LexA-binding sites in the 26 cyanobacterial 

genomes. The green curves represent the probability )( sSp
UI

 and the blue curves   
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Figure 1.4 (continued) )( sSp
UC  . The cyan curves are the number of iner-TU regions 

containing a putative binding site with a score > s, ( )
UI

N S s . The red curves are the 

log-odds ratio (LOR), defined as ))(/)(ln()( sSpsSpsLOR
UU CI  , (see Methods).  

 

We chose randomly selected coding regions as the null model based on the assumption 

that a coding sequence is less likely to contain cis-regulatory binding sites than an 

intergenic sequence. Although it might be possible for genuine LexA boxes to occur in 

coding regions [47, 52], such kind of binding sites should be rare. The LOR function for a 

genome evaluates the ratio of the fraction of the inter-TU sequences containing a binding 

site with a score higher than s to the fraction of the randomly selected coding sequences 

containing a binding site with a score higher than the same s in the genome. Accordingly, 

positive LOR values that increase monotonically with the increase in binding site sores 

would suggest that an inter-TU sequence is more likely to contain a high-scoring LexA-

binding site than does a randomly selected coding sequence in the genome. 

     As shown in Figure 1.4, when the motif score s increases beyond some value, the LOR 

is generally high for most of the 26 cyanobacteria that harbor a lexA gene, therefore those 

genomes with high LOR values are likely to contain some true binding sites. Exceptions 

exist in five genomes, namely, Cyanothece sp. PCC 8801, Synechocystis sp. PCC6803, 

Synechococcus RCC307, Synechococcus sp. PCC 7002, and Microcystis aeruginosa 

NIES-843, in which the LOR curves oscillate around zero when binding site score s 

increases. These poor LOR values might suggest that there are not more high-scoring 

LexA-binding sites in the inter-TU regions than in the coding regions in the five genomes. 

The reason for this could be that our scanning algorithm rewards a binding site that is 

shared by orthologs in the other genomes. If a true binding site is unique to a genome, 



14 

 

 

 

then it will not score high. In this sense, LexA is probably no longer a major SOS 

response regulator in these genomes. Instead, it might have become a specific local 

regulator during the course of evolution to adapt to their unique living environments (we 

will return to this subject later). In the case of Synechocystis sp. PCC6803 , it is noted that 

the LexA-binding sites identified by Patterson-Fortin et al.[52] are totally different from 

those identified by Mazon et al. [48], and that the LexA sequence in this genome is 

largely divergent from those in the other genomes (Figure 1.1A). Accordingly, the LexA 

binding sites in this genome might differ in some way from those in the other genomes, 

which can be another reason for its low LOR values.  

     In contrast, as shown in Figure 1.5, the LOR values in the five genomes that do not 

harbor a lexA gene (Synechococcus sp. JA-3-3Ab A-Prime, Synechococcus sp. JA-2-3B'a 

(2-13) B-Prime, Synechococcus elongatus PCC 6301, Thermosynechococcus elongates 

BP-1 and Trichodesmium erythraeum IMS101) oscillate around or decrease below zero 

when the motif score s increases beyond a certain value, implying that the chance to find 

a relative high-scoring putative LexA-binding site in an inter-TU region is not higher than 

in a randomly chosen coding sequence, suggesting that these genomes are unlikely to 

contain functional LexA-binding sites. On the other hand, the LOR values in the three 

genomes Synechococcus sp. JA-3-3Ab A-Prime, Synechococcus sp. JA-2-3B'a (2-13) B-

Prime and Trichodesmium erythraeum IMS101 are relatively higher than those in the 

other two genomes (Figure 1.5), or even could be comparable to those of the five poor- 

LOR-valued cyanobacteria that harbor a lexA gene (Figure 1.4). In fact, the numbers of 

predicted binding sites in the three genomes are not too small (Table S55, S56, S59 in 

Additional file 6), which suggests that a few putative LexA-like binding sites exist in  
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Figure 1.5 Results of genome-wide scanning for LexA-like binding sites in the five 

genomes that do not encode a LexA protein. 

 

these genomes. A possible explanation for this phenomenon could be that these LexA-

like binding sites are recognized by other transcription factors that have similar DNA-

binding domains to that of LexA. The predictions of LexA regulons in the 26 
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cyanobacterial genomes that harbor a lexA gene are summarized in Table 1.2. 

 

Table1.2. Summary of genome-wide LexA-binding site predictions in the 26 

cyanobacterial genomes 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.4 Conservation and diversity of the putative LexA regulons in cyanobacteria 

     To investigate how well the predicted LexA regulons in the 26 cyanobacterial 

genomes are conserved, we constructed a LexA regulon conservation tree based on the 

pairwise comparison of the predicted LexA regulons in these genomes (see Materials and 

Methods). As shown in Figure 1.6, these genomes are divided into two groups. 

Interestingly, one group is exclusively comprised of marine strains, and the other group  

Genome
Number 

of TUs

Number 

of genes

Score at 

p<0.05

LOR at 

p<0.05

No. of 

sites at 

p<0.05

Score at 

p<0.01

LOR at 

p<0.01

No. of 

sites at 

p<0.01

Acaryochloris_marina_MBIC11017 4507 6254 6.52 -0.143 213 7.02 0.007 48

Anabaena_variabilis_ATCC_29413 3967 5043 6.44 0.549 403 6.96 0.911 107

Cyanothece_PCC_8801 2989 4260 6.24 0.01185 169 6.73 0.22 38

Microcystis_aeruginosa_NIES_843 4736 6312 6.18 0.4941 256 6.70 0.326 73

Nostoc_punctiforme_PCC_73102 4798 6087 6.40 0.323 356 6.88 0.647 89

Nostoc_sp_PCC7120 4136 5366 6.44 0.534 389 6.88 0.995 122

Prochlorococcus_marinus_AS9601 1078 1921 6.34 0.671 107 6.74 1.330 50

Prochlorococcus_marinus_CCMP1375 1110 1883 6.37 0.070 53 6.87 -0.098 9

Prochlorococcus_marinus_MED4 961 1717 6.36 0.454 79 6.79 0.847 29

Prochlorococcus_marinus_MIT9313 1406 2269 6.63 -0.149 61 7.08 0.536 24

Prochlorococcus_marinus_MIT_9211 1081 1855 6.28 0.385 75 6.77 1.036 26

Prochlorococcus_marinus_MIT_9215 1135 1983 6.30 0.668 109 6.79 1.407 42

Prochlorococcus_marinus_MIT_9301 1070 1907 6.30 0.768 117 6.74 1.345 54

Prochlorococcus_marinus_MIT_9303 1881 2997 6.52 -0.0958 83 7.01 0.527 36

Prochlorococcus_marinus_MIT_9312 1013 1810 6.33 0.567 93 6.79 1.339 40

Prochlorococcus_marinus_MIT_9515 1088 1906 6.34 0.564 99 6.78 1.247 43

Prochlorococcus_marinus_NATL1A 1393 2193 6.30 0.495 131 6.81 1.138 43

Prochlorococcus_marinus_NATL2A 1175 1892 6.33 0.678 117 6.89 1.107 36

Synechococcus_CC9311 1700 2892 6.50 -0.153 69 7.14 0.218 19

Synechococcus_CC9605 1466 2645 6.54 -0.135 64 7.12 0.305 18

Synechococcus_CC9902 1288 2307 6.52 -0.103 63 7.00 0.786 22

Synechococcus_PCC_7002 2003 2823 6.31 -0.196 91 6.79 -0.156 20

Synechococcus_RCC307 1303 2535 6.74 -0.0904 35 7.33 0.085 8

Synechococcus_sp_WH8102 1296 2519 6.62 -0.254 59 7.18 0.142 22

Synechococcus_WH_7803 1303 2535 6.56 -0.278 56 7.36 0.623 16

Synechocystis_PCC6803 1312 2533 6.52 -0.388 79 7.00 -0.256 19
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Figure 1.6. Conservation relationships among the predicted LexA regulons in the 26 

cyanobacterial genomes. The tree is based on the pairwise conservation of the predicted 

LexA regulons in the 26 cyanobacterial genomes (see Methods).  

 

contains the remaining genomes isolated from different non-marine habitats. In the 

former group, high light (HL) adapted and low light (LL) adapted ecotypes are largely 

grouped into two sub-groups. The results suggest that the composition of LexA regulons 

is dependent on the habitat of the organisms to a large extent. The general topology of the 

LL

HL
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tree (Figure 1.6) is basically consistent with both the 16S rRNA gene tree (Figure 1.7) 

and the LexA protein tree of these genomes (Figure 1.1A). Furthermore, both the HL and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Phylogenetic relationships of 32 cyanobacterial genomes based on the 16S 

rRNA genes. The tree is rooted with the 16S rRNA gene of E. coli K12. Bootstrap values 

are shown on the nodes. Cyanobacterial genomes that do not encode a lexA gene are 

shown in red. 

 

 LL adapted marine sub-groups are very compact, indicating that the predicted LexA 

regulons in both sub-groups are relatively conserved. In contrast, the species in the non-
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marine habitats are not so close to one another (Figure 1.6), suggesting that the putative 

LexA regulons in these genomes share few genes with one another except for the closely 

related Anabaena variabilis ATCC 29413 and Nostoc sp. PCC7120. The tree also 

indicates that Microcystis aeruginosa NIES 843 and Synechocystis sp. PCC6803 have the 

most distinct LexA regulons from other cyanobacterial genomes (Figure 1.6).  

1.3.5 Functional classification of putative LexA regulons in cyanobacteria 

     Predicted members of LexA regulons in the 26 cyanobacteria that harbor a lexA gene 

are listed in Tables S1-S26 in Additional file 2, their functions can be summarized as 

follows.   

1). SOS response system 

     As shown in Table 1.3, all the 33 cyanobacterial genomes included in this study 

encode a few SOS response genes found in E. coli. Several of the SOS genes in some of 

the 26 genomes that harbor a lexA gene bear a high-scoring putative LexA-binding site in 

their regulatory regions (Table S1-26 in Additional file 1). In particular, two of the core 

SOS response genes [37, 38], namely, recA and lexA, are among the most conserved 

putative LexA targets in the 26 cyanobacterial species/strains (Table S64 in Additional 

file 6). In addition, the umuC and umuD genes encoded in 13 genomes are also predicted 

to bear a putative LexA-binding site in their promoter regions (Table S64 in Additional 

file 6, Table 3 and Additional file 4). These results suggest that as in E. coli, the SOS 

response in most cyanobacteria might still be regulated by LexA. However, the other 

SOS response genes were found to bear a putative LexA-binding site only in a few 

genomes (Table 1.3). For instance, a high-scoring LexA-binding site for the ruvB gene  
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Table 1.3: Putative LexA regulon members involved in various biological processes.  

 

 

 

 

 

 

 

 

 

 

 

 

encoding Holliday junction DNA helicase B was found only in HL adapted 

Prochlorococcus ecotypes MIT9312, MIT9515, MIT9215, MED4 and AS9601. 

Moreover, in the case of the nucleotide excision repair (NER) genes uvrA, B, C and D, 

which are under the regulation of LexA in E. coli [42], we were able to identify putative 

LexA-binding sites only in the promoter regions of the uvrA and uvrB in Nostoc sp. 

PCC7120 and the promoter region of uvrD in Prochlorococcus marinus MIT 9312 (Table 

1.3). Thus, it is likely that the NER process in the remaining genomes is regulated by 

some transcription factor other than LexA, given that uvr genes are present in all the 32 

cyanobacterial genomes analyzed in this study, including those that do not encode a lexA 

Genomes SOS Photo-synthesis Transporters

Acaryochloris marina_MBIC11017
lexA recA dnaK groEL

umuCD
4624

Anabaena_variabilis_ATCC_29413 lexA recA dnaJ sbcC psbA
4997 4148 

4995

Cyanothece_PCC_8801 lexA recA

Microcystis_aeruginosa_NIES_843 recA ssb ndhH ycf4 pstB2 

Nostoc_punctiforme_PCC_73102
lexA recA sbcC

F4123
F3763 

Nostoc_sp PCC7120 lexA recA uvrA uvrB dnaKJ alr5147

Prochlorococcus_marinus_AS9601 recA ruvB umuCD psbY 11511

Prochlorococcus_marinus_CCMP1375 recA sbcD groES groEL

Prochlorococcus_marinus_MED4 recA umuCD ruvB psbY

Prochlorococcus_marinus_MIT9313 lexA umuCD

Prochlorococcus_marinus_MIT_9211 recA umuCD

Prochlorococcus_marinus_MIT_9215 recA umuCD ruvB psbY 08441

Prochlorococcus_marinus_MIT_9301 recA umuCD psbY 11521 02331

Prochlorococcus_marinus_MIT_9303 lexA umuCD 21241 15661

Prochlorococcus_marinus_MIT_9312 recA ruvB umuCD uvrD psaA psbY 0561

Prochlorococcus_marinus_MIT_9515 recA ruvB dnaK psbY 06251 

Prochlorococcus_marinus_NATL1A lexA recA

Prochlorococcus_marinus_NATL2A lexA recA psaM

Synechococcus_CC9311 recA umuCD 2443 

Synechococcus_CC9605 recA umuCD 2635

Synechococcus_CC9902 recA umuCD 0850

Synechococcus_PCC7002 recA psaF

Synechococcus_RCC307 lexA

Synechococcus_sp_WH8102 recA umuCD ruvC 2111 0959

Synechococcus_WH7803 recA ndhH

Synechocystis_PCC6803 psbB 0467
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gene (Table S63 in Additional file 6). These results are consistent with the earlier 

observation that LexA target genes in bacteria are highly diversified in order for them to 

adapt to different ecological niches [37, 38].   

     On the other hand, in Synechococcus PCC7002, Synechococcus RCC307 and 

Synechococcus WH7803, LexA boxes were only detected for one of the core SOS 

response genes, i.e., SYNPCC7002_A0426 (recA) in Synechococcus PCC7002, 

SynRCC307_1756 (lexA) in Synechococcus RCC307 and SynWH7803_0439 (recA) in 

Synechococcus WH7803, although these genomes all encode a lexA gene and other core 

SOS response genes, such as recA (SYNPCC7002_A0426, SynRCC307_2111 and 

SynWH7803_0439,) and ruvB (SYNPCC7002_A1390, SynRCC307_1756 and 

SynWH7803_0185), umuC (SynRCC307_0043 and SynWH7803_1080,) and umuD 

(SynRCC307_0042 and SynWH7803_1081). Since only one single SOS response gene 

bears a putative LexA box in these genomes, it is likely that the role of LexA in the 

regulation of the SOS response in these genomes might have been attenuated. The case of 

Synechocystis sp. PCC6803 seems to go even further in this direction as detailed below. 

     As indicated previously [48, 50], the LexA protein of Synechocystis sp. PCC6803 is 

unusual in two aspects compared to those in the other genomes analyzed in this study. 

First, as shown in Figure 1.8, the Ala-Gly dyad in the N-terminus of LexA responsible for 

auto-cleavage of the protein in all other cyanobacteria as well as in E. coli and B. subtilis 

[48] are replaced by Gly-Gly in Synechocystis sp. PCC6803. Second, the reactive residue 

Ser (Ser
119

 of LexA in E. coli) that attacks the Ala-Gly peptide bond is replaced by Asp of 

LexA in Synechocystis sp. PCC6803 [48, 50]. It has been shown that SOS induction 

cannot be initiated by a non-cleavable LexA repressor [42, 48]. Therefore, it is highly 



22 

 

 

 

likely that LexA in Synechocystis sp. PCC6803 cannot undergo the auto-cleavage  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Multiple sequence alignments of the full-length LexA in the 27 cyanobacterial  

genomes. The sequence from E.coli LexA is also included for comparison. The auto-

cleavage sites are indicated by a red arrow, and the reactive residues are indicated by red 

dots. 
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reaction in response to DNA damage, and it might have adopted a different function other 

than the canonical SOS response regulator seen in E. coli and B. subtilis [68]. This 

argument is consistent with the observation that Synechocystis sp. PCC6803 has a notably 

larger branch length in the 27 LexA protein tree (Figure1.1A), but this is not seen in the 

16S rRNA gene tree (Figure 1.7).  

     Although the Synechocystis sp. PCC6803 genome harbors some core SOS response 

genes including lexA and recA (Table S63 in Additional file 6), none of them belongs to 

our predicted LexA regulon at a p-value < 0.01 (Table S26 in Additional files 2 and Table 

1.3). The mutS (sll1772) gene is the only gene that is likely to be in involved in DNA 

mismatch repair, while bearing a putative LexA binding site in the genome. However, the 

orthologs of mutS is not under the regulation of LexA in E. coli [34, 69] or within the 

putative LexA regulon of any other cyanobacteria (Table S1-26 in Additional files 2). 

These results suggest that at least most of SOS response genes are not under the 

regulation of LexA in Synechocystis sp. PCC6803. Indeed, using microarray gene 

expression profiling in response to lexA depletion, Domain et al.[53] concluded that 

LexA in Synechocystis sp. PCC6803 might be involved in carbon metabolism or 

controlled by carbon availability rather than the regulation of SOS response. However, 

our predicted LexA regulon in Synechocystissp. PCC6803 (Table S26 in Additional files 

2) has no intersection with the LexA-responsive genes identified by Domain et al.[53]. 

Since the LexA-binding sites that were experimentally characterized [49, 52] in 

Synechocystis sp. PCC6803 are different from the sequences in our scanning profile, and 

considering the distinct nature of the LexA protein in Synechocystis sp. PCC6803 

indicated above, it would be particular interesting to determine by experiment the 
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function of the predicted sites in this genome. 

     Thus, although Synechocystis sp. PCC6803 clearly harbors the components of a basic 

SOS response system (Table 1.3), it is probably no longer under the regulation of LexA. 

Accordingly, LexA in this genome might have adopted a different function. Thus, the loss 

of the original function of LexA in Synechocystis sp. PCC6803 is coupled with the loss of 

the sequence constraint, thereby accelerating its divergence from other cyanobacterial 

LexA proteins, at both the sequence and functional levels. On the other hand, given the 

importance of the SOS response in cell survival, it is highly likely that the transcriptional 

regulator of the SOS response system in Synechocystissp. PCC6803 has been replaced by 

another protein.  

2). Other cellular processes 

     Interestingly, we also found putative LexA-binding sites in the regulatory regions of 

genes that participate in various cellular processes in these 26 cyanobacterial genomes 

(Table 1.3). The major cellular processes that are likely under the regulation of LexA are 

summarized below. 

2.1) Photosynthesis 

     Putative LexA-binding sites were predicted for the following photosynthetic genes in 

the 26 cyanobacteria that harbor a lexA gene with p<0.01(Table 1.3, Table S1-26 in 

Additional file 4): Ava_3553, A9601_12231, PMM1117, P9215_12531, P9301_12241, 

PMT9312_1128, and P9515_12081, coding for a photosystem II reaction center protein 

PsbY; slr0906, coding for the photosystem II CP47 protein; and MAE_44810, 

PMT9312_1615, PMN2A_1682a and SYNPCC7002_A1008, coding for a protein 

involved in photosystem I. These results suggest that the SOS response system might 
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have cross-talk with photosynthesis in those genomes. 

2.2). Transporters 

     Around 20 genes encoding transporters were predicted to bear a putative LexA box 

(Table 1.3). Most of them belong to the ABC transporter proteins, including AM1_4624 

in Acaryochloris marina MBIC11017, Ava_4995 in Anabaena variabilis ATCC29413, 

MAE_18340 in Microcystis aeruginosa NIES843, Npun_F3763 in Nostoc punctiforme 

PCC73102, alr5147 in Nostoc sp PCC7120, P9215_08441 in Prochlorococcus marinus 

MIT9215, P9303_15661 in Prochlorococcus marinus MIT9303, P9515_06251 in 

Prochlorococcus marinus MIT9515, SYNW2111 in Synechococcus sp WH8102 and 

slr0467 in Synechocystis sp. PCC6803. In addition, several toxin and antibiotics exporters 

were identified to have a putative LexA-binding site in their regulatory regions, including 

cadmium resistance transporter Ava_4997 in Anabaena variabilis ATCC29413; MFS 

(major facilitator superfamily) multidrug efflux transporter P9301_11521 in 

Prochlorococcus marinus MIT9301 and A9601_11511 in Prochlorococcus marinus 

AS9601; multidrug efflux ABC transporter P9515_06251 in Prochlorococcus marinus 

MIT9515 and SYNW0959 in Synechococcus sp WH8102; putative ABC 

transporter/multidrug efflux family protein SYNW2111 in Synechococcus sp WH8102; 

drug exporter-1 ABC transporter ATPase subunit AM1_4624 in Acaryochloris marina 

MBIC11017. These findings are interesting since it has been shown that the SOS 

response system is related to drug resistance in E. coli [70, 71] and Staphylococcus 

aureus [71-73] by mechanisms that are not fully understood. It was reported that the 

vP2449 gene encoding a toxin exporter responsible for xenobiotic resistance in 

Vibrionales parahaemolyticus was under the direct control of LexA[74]. Therefore, it is 
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likely that these drug resistance genes are regulated by LexA, thereby coupling the SOS 

response to drug resistance in these cyanobacteria. 

1.3.6 The origin of the lexA gene in cyanobacteria 

     As indicated earlier, 27 of the 32 cyanobacterial genomes analyzed evidently harbor a 

lexA ortholog, while the remaining five genomes do not, even when being scrutinized by 

more sensitive sequence search methods such as PSI-BLAST (data not shown). The five 

cyanobacteria lacking a LexA are Synechococcus sp. JA-3-3Ab A-Prime, Synechococcus 

sp. JA-2-3B'a(2-13) B-Prime, Synechococcus elongatus PCC6301, Trichodesmium 

erythraeum IMS101 and Thermosynechococcus elongatus BP-1. However, the core SOS 

response genes remain in these five genomes (Table 1.3). In the tree of 183 detected 

LexA proteins in 598 sequenced genomes (Figure 1.3), the 26 cyanobacterial LexA 

proteins that are detected by BDBH (see Materials and Methods) form a monophyletic 

group while LexA in Gloeobacter violaceus PCC7421 is clustered with the group of α-

proteobacteria. Furthermore, the topology of the 16S rRNA gene tree (Figure 1.7) and the 

LexA tree/subtree of 27 cyanobacterial genomes (Figure 1.1A and Figure 1.3) are quite 

similar. This result suggests that lexA in the 26 cyanobacterial genomes (excluding 

Gloeobacter violaceus PCC7421) is likely to be vertically inherited from the last 

common ancestor of cyanobacteria. However, Gloeobacter violaceus PCC7421 might 

have lost its LexA protein during evolution and obtained an ortholog later through 

horizontal transfer from an α-proteobacterium. The five genomes that lack a lexA gene do 

not form a monophyletic group in the 16S rRNA gene-based phylogenetic tree of these 32 

cyanobacteria (Figure 1.7). In particular, Synechococcus elongatus PCC6301, and 

Trichodesmium erythraeum IMS101 are spread in a clade whose members except these 
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two genomes harbor a lexA gene. The most parsimonious explanation of this distribution 

would be that these two genomes Synechococcus elongatus PCC6301 and Trichodesmium 

erythraeum IMS101 lost their lexA genes through two independent events (one for each 

genome) to adapt to their corresponding environments during the course of evolution. 

Furthermore, the remaining three genomes, Thermosynechococcus elongatus BP-1, 

Synechococcus sp. JA-3-3Ab A-prime and Synechococcus sp. JA-2-3B'a (2-13) B-prime, 

which do not possess a lexA gene, branch earlier from the others (Figure 1.7). A plausible 

explanation of this distribution would be that these genomes lost their lexA genes 

inherited from the last common ancestor of cyanobacteria during the course of evolution. 

Interestingly, all these three genomes are thermophilic, their extreme ecological niches 

might facilitate the loss of the lexA gene. Since the core SOS response genes remain in 

these five genomes (Table S63 in Additional file 6) after lexA was lost, they might have 

been hijacked by another transcription factor given the importance of the regulation of 

the SOS response genes for cell survival. The genomes that lost their lexA gene appear to 

have lost LexA-binding sites (Figure 1.5). Alternatively, these five cyanobacteria might 

still harbor a lexA gene that has largely diverged from the others‟ during evolution to such 

a level that our method could not detect them 

     In addition, it has been suggested that the lexA gene was derived from gram-positive 

bacteria, which then spread into cyanobacteria and fibrobacteres. Then -proteobacteria 

acquired lexA from cyanobacteria [37, 38, 48]. Our phylogenetic analysis of the LexA 

proteins and their binding sites supports such an argument. As mentioned before, 

cyanobacterial LexA proteins are more closely-related to those in gram-positive bacteria 

and -proteobacteria than those in the other groups (Figure 1.3), and the predicted LexA-
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binding sites in cyanobacteria are clustered together with those in the gram-positive 

bacterium B. subtilis and in -proteobacteria, but are far away from those in E.coli 

(Figure 1.2).  

     Moreover, Erill et al.[59] have suggested that there is a common set of genes in the 

LexA regulon of proteobacteria and gram-positive bacteria: recA, uvrA, ssb, and ruvC. 

However, our predicted LexA regulons in cyanobacteria do not always include this set of 

genes. Thus, the concept of a common set of SOS response gene in its more general form 

warrants further scrutinization.  

1.4 Methods 

1.4.1 Materials 

     The sequences and annotation files of 33 sequenced cyanobacterial and the other 

genomes were downloaded from NCBI at ftp://ftp.ncbi.nih.gov/genomes/Bacteria/. The 

cyanbacterial genomes used in this study include: Acaryochloris marina MBIC11017 

(MBIC11017), Anabaena variabilis ATCC 29413 (ATCC29413), Synechococcus sp. JA-

3-3Ab (A-Prime), Synechococcus sp. JA-2-3B'a (2-13) (B-Prime), Cyanothece sp. PCC 

8801(PCC8801), Gloeobacter violaceus PCC7421 (PCC7421), Microcystis aeruginosa 

NIES 843 (NIES843), Nostoc punctiforme PCC 73102 (PCC73102), Nostoc sp. 

(PCC7120), Prochlorococcus marinus AS9601 (AS9601), Prochlorococcus marinus 

CCMP1375 (CCMP1375), Prochlorococcus marinus MED4 (MED4), Prochlorococcus 

marinus MIT9313 (MIT9313), Prochlorococcus marinus MIT 9211 (MIT9211), 

Prochlorococcus marinus MIT 9215 (MIT9215), Prochlorococcus marinus MIT 9301 

(MIT9301), Prochlorococcus marinus MIT 9303 (MIT9303), Prochlorococcus marinus 

MIT 9312 (MIT9312), Prochlorococcus marinus MIT 9515 (MIT9515), Prochlorococcus 

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
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marinus NATL1A (NATL1A), Prochlorococcus marinus NATL2A (NATL2A), 

Synechococcus sp. CC9311 (CC9311), Synechococcus sp. CC9605 (CC9605), 

Synechococcus sp. CC9902 (CC9902), Synechococcus sp. PCC 7002 (PCC7002), 

Synechococcus sp. RCC307 (RCC307), Synechococcus WH 7803 (WH7803), 

Synechococcus elongatus PCC 6301 (PCC6301), Synechococcus sp. WH8102 (WH8102), 

Synechocystis sp. PCC6803 (PCC6803),  Synechocystis sp. PCC7942 (PCC7942), 

Thermosynechococcus elongates BP-1 (BP-1) and Trichodesmium erythraeum IMS101 

(IMS101). 

1.4.2 Prediction of transcription units  

     We predicted the operon structures in cyanobacterial genomes using the operon 

prediction algorithm developed by Dam et al. [75]. The algorithm is based on the 

integration of both genome-specific and comparative genomic information. In this work, 

both the multi-gene operon and singleton operon (containing one gene) are considered as 

a transcription unit (TU), and the upstream intergenic sequence of the first open reading 

frame is not considered as a part of the operon. 

1.4.3 Prediction of orthologs 

     We used the bi-directional best hit (BDBH) method based on BLASTP searches with 

an E-value cut-off of 10
-10

 for both directions to predict orthologous protein pairs 

between any two proteomes. The BDBH method assumes that a cross-species protein pair 

are orthologous if each protein returns the other as the best hit in the whole proteome 

comparison [76]. 

1.4.4 Phylogenetic analysis 

    To construct the phylogenetic tree of LexA in cyanobacteria, multiple sequence 
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alignment of the LexA amino acid sequences from 27 cyanobacterial genomes and the 

E.coli K12 genome were made using ClustalW implemented in MEGA [63] with default 

settings. The phylogenetic tree was then constructed using the neighbor-joining method 

with Poisson correction model in MEGA. E.coli LexA was placed as the outgroup of the 

tree. To construct the species tree, the DNA sequences of 16S ribosomal RNA genes from 

the 32 cyanobacteria and E.coli were aligned using ClustalW with manual adjustment by 

removing the unalignable regions. A neighbor-joining tree was then constructed with 

E.coli K12 being the outgroup using the Kimura 2-parameter model. Statistical 

significance at each node in the trees was evaluated using 500 bootstrap resamplings. 

     To construct the LexA protein tree across cyanobacteria, gram-positive bacteria, -

proteobacteria, δ-proteobacteria and γ-proteobacteria and some other bacteria 

strains/species (Figure 1.3), we first downloaded 598 sequenced microbial genome 

sequences from NCBI, and then identified LexA orthologs in them by the BDBH method 

described above. Multiple sequence alignments of these LexA sequences were made 

using ClustalW implemented in MEGA[63] with default settings. The phylogenetic tree 

was then constructed in the same way as the 27 LexA protein tree.  

     The phylogenetic tree (Figure 1.2) of LexA-binding sites in cyanobacteria, B.subtilis, 

-proteobacteria and E.coli K12 was generated by the STAMP web tool [61] with the 

default alignment parameters: Pearson correlation coefficient for column comparison 

metric; ungapped Smith-Waterman for pair-wise alignment. The phylogenetic tree was 

constructed using the UPGMA method implemented in STAMP[61]. 

1.4.5 Phylogenetic footprinting and construction of LexA-binding sites in cyanobacteria 

     The previous study by Mazon et al[48] characterized the LexA boxes associated with 
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two genes: alr4908 (lexA) and all3272 (recA). Four putative LexA boxes were also 

identified in the promoter regions of alr3716 (uvrA), alr0088 (ssb), alr4905, and all4790 

in Nostoc sp PCC7120 in that study. The orthologs (if they exist) of these six genes in 

PCC7120 were identified in the other 25 cyanobacterial genomes which harbor a lexA 

gene. We pooled the entire upstream inter-TU regions of these six genes in the target 

genome Nostoc sp. PCC7120 as well as those of the TUs containing at least one of the 

orthologs of these six genes in other cyanobacteria. If the length of the inter-TU region is 

longer than 800 bases, then only the immediate upstream 800 bases were extracted. Two 

motif finding programs, MEME [56, 77] and BioProspector [57], were then applied to 

these pooled inter-TU regions to identify palindromic 14-mers as putative LexA-binding 

sites in these sequences according to previous studies [48]. MEME applies an expectation 

maximization method to fit a two-component finite mixture model and returns the 

identified motifs with an E-value[77], while BioProspector employs a Gibbs sampling 

strategy and estimates the significance of the identified motif by a Monte Carlo method 

[78]. These two programs were selected as they are widely used and often have 

complementary predictions [79, 80]. MEME identified 45 putative LexA-binding sites 

with an overall E-value of 1.4e-026 for its most significant predicted motif, while 

BioProspector detected 39 putative LexA boxes in its most significant predicted motif 

(see Additional file 1 for details). High-scoring putative LexA-binding sites from either 

program were selected to build the LexA-binding sites profile (Table 1.1) in 

cyanobacteria. Sequence logos of binding sites were created using the Weblogo server 

[62].  
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1.4.6 Genome wide prediction of LexA-binding sites 

We used the profile constructed above to scan the inter-TU regions of the genomes to 

predict all putative LexA-binding sites using a scanning algorithm that we previously 

developed [65-67]. This algorithm is briefly described as follows.  

     For each predicted TU U(g1,g2,…,gn) composed of genes g1,g2,…,gn in genome G, we 

extracted its upstream inter-TU regions and the first 40 bases of coding region(if its 

length is longer than 800 bases, then only the immediate upstream 800 bases were 

extracted), denoted as IU(g1,g2,…,gn). The set of all the IU(g1,g2,…,gn) in this genome is denoted 

as IU. To find the best matching substring in a sequence t in IU ( UIt  ) when scanned by 

profile M, we use the following scoring function:  
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where l is the length of the binding sites of profile M, h any substring of sequence t with 

length l (i.e. each l-mer of the sequence t), h(i) the base at the i-th position of h, p(i,b) the 

frequency of base b at position i in M, q(b) is the frequency of base b in the aggregated 

inter-TU regions for the organism, Ii is basically the information content or the relative 

entropy of the column [64, 81] divided by a normalization factor a, a is the upper limit of 

the information content Ii for this column to keep Ii [0, 1], n the number of binding sites 

for constructing the profile M. To avoid zero value of the numerator p(i,b), a pseudo 
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count 1 is added to the counts of the each base {A, C, G, T} in column i.  

     To show the derivation of the normalization factor a, we considered the extreme case: 

for a column i of profile M containing n binding sites, the more conserved the column is, 

the higher its information content Ii will be, and the maximum information content for 

column i occurs when this column is completely homogeneous. That is, all sequences 

have the same nucleotide, say, A at that position, and this nucleotide has the smallest 

background frequency, q(A), noted as q0. Thus, after adding one pseudocount to the 

counts of each of the four nucleotides to column i, the frequency of base A of column i in 

the profile will therefore be (n+1)/(n+4), and 1/(n+4) for the other three nucleotides. Then 

the upper limit a of the prenormalized Ii as shown by formula (1.3) can be derived as 

follows. 
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where 
0
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( ) min ( )

b A C G T
q q A q b


  .   

     Intuitively, we slide a window of length l across sequence t with the profile M, and 

return the substring h with the highest score defined by (1.1). 

     Since true regulatory binding sites are likely to be more conserved than other inter-TU 

sequences and thus tend to be shared by closely related orthologous genes. For each 

genome (considered as a target genome), we reward its putative binding sites appeared to 

be conserved in regions upstream from orthologous genes in other genomes. To do this, 

we assume a transcription unit U(g1,g2,…,gn) in the target genome G is composed of n 

genes. Gene gi (i = 1…n) has orthologs in mi genomes G1, G2, …, 
imG , and )( ik go is the 

upstream inter-TU sequence associated with the orthologous gene ig in genome kG (for a 

graphic explanation, see Figure 1.9). Then the sM(t) score for the inter-TU sequence t 

upstream from U(g1,g2,…,gn) in genome G can be increased by a term Amax(gi): 

max( ) ( ) ( )M is t s t A g             (1.5) 

where Amax(gi) is the value calculated for gene gi whose orthologs across other genomes 

have the maximum average of the product of two terms: 

max
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where
kid ,
is the Hamming distance between the sequence h detected by the profile M in 

sequence t and the corresponding sequence in )( ik go , and l is the length of the binding 

sites in profile M. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. An example for explaining the algorithm. For o1(g1), o2(g1) and o2(g2), assume 

they have the same value of sequence similarity to h,i.e.,                  . Then we should 

select orthologs of g1 in this case, i.e., i =1, and add its average score across genome G1 

and G2 to SM(t).  

 

     Since the orthologs of genes of a transcription unit in one organism may not comprise 

a single transcription unit in another. For U(g1,g2,…,gn) in target genome G, orthologs of 

g1,g2,…,gn may be separated into different TUs in other genomes, therefore we evaluated 

the orthologous inter-TU sequences for each gene in (g1,g2,…,gn), and chose the gene gi 

whose orthologs across other genomes have the maximum average of the product of two 

terms indicated above. Then by combining formula (1.5) and (1.6), the refined score of 

the best putative binding site in sequence t can be defined as: 
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   ,       (1.7) 

1.4.7 Statistical significance of predicted binding sites 

     To evaluate the extent to which a putative binding site with a score s or higher can be 

found purely by chance, we randomly extracted coding sequence with the same length as 

IU(g1,g2,…,gn), denoted as CU(g1,g2,…,gn). All the CU(g1,g2,…,gn) extracted in genome G form the 

set CU. The score of an extracted sequence t (t UC ) scanned by a profile M is also 

defined by formula (1). Note that each randomly chosen CU(g1,g2,…,gn) has nothing to do 

with U(g1,g2,…,gn). Therefore, when incorporating the additional score from reference 

genomes (formula (1.7)), the coding sequence )( ik go  is unlikely the coding sequence 

associated with the orthologous genes of g1,g2,…,gn in a reference genome Gk as it is a 

randomly chosen one. To avoid possible biased sampling of coding sequences for each 

IU(g1,g2,…,gn) in UI , we randomly extracted 300 coding sequences CU(g1,g2,…,gn) sharing the 

same length as IU(g1,g2,…,gn). These randomly chosen coding regions for all the 

U(g1,g2,…,gn) in genome G form a sequence set CU, then each sequence in the set CU was 

scanned using formula (1.7). Let )( UIS and )( UCS be the set of scores of binding sites 

found in UI and UC , respectively, and ))(( stSP  be the cumulative probability of finding 

a binding site in a sequence t ( UIt  or UCt  ) with a score stS )(  as defined by 

equation (1.7). Next, the false positive rate, )( sSp
UC  can be used to evaluate the 

statistical significance of the motif score s of a inter-TU sequence. )( sSp
UC  is actually 

the fraction of coding sequences bearing a putative binding site with a score higher than s 

in the coding sequences set CU in genome G. In other words, it describes the extent to 
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which one can find a motif with a score higher than s by chance. Thus, it can be 

considered as an empirical p-value for a binding site score s. A cut-off score s 

corresponding to a p-value < 0.01 is used for the LexA-binding site and regulon 

prediction in each genome in this study.                                                                               

     To evaluate the confidence of our overall predictions in inter-TU regions in one 

genome, we used a log odds ratio (LOR) to compare the probability of finding a putative 

binding site in an inter-TU region with the probability of finding a putative binding site in 

a randomly extracted coding region by considering all the extracted sIU and sCU in a 

genome. We estimated the statistical significance of the predictions using the LOR 

function defined as  

  
)(

)(
ln)(

sSp

sSp
sLOR

U

U

C
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 .      (1.8) 

     The LOR function for a genome is the log-odds ratio of the fraction of the inter-TU 

sequences containing a binding site with a score higher than s to the fraction of the 

randomly selected coding sequences containing a binding site with a score higher than 

the same s in the genome. Accordingly, a monotonic increase in positive LOR with the 

increase in the motif score in a genome would suggest that this genome is likely to 

contain some high-scoring LexA-binding sites. 

1.4.8 Analysis of the conservation of LexA regulons in cyanobacteria  

     We defined the conservation (cij) between two regulons Ri and Rj from genome i and j, 

respectively, as, 
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Where || ji RR   is the number of orthologous genes shared by both regulons Ri and Rj. 

We took the reciprocal of cij, 
ijc

1
as the distance

ijd between the two regulons. A neighbor 

joining tree (Figure 1.6) based on a distance matrix such defined was constructed using 

PHYLIP [82] and displayed by MEGA [63]. 

1.5 Conclusions  

     In this study we have predicted LexA-binding sites and analyzed the putative LexA 

regulons in 26 cyanobacterial genomes that harbor a lexA gene using a highly efficient 

motif scanning and regulon prediction algorithm. In most lexA-containing cyanobacterial 

genomes, some SOS response genes bear a putative LexA box. Some genes involved in 

various cellular processes such as photosynthesis, drug resistance, etc. are also predicted 

to bear a putative LexA box in their promoter regions. However, in Synechocystis sp. 

PCC6803, LexA might have adopted a new function and no longer be in charge of the 

SOS response genes. In some genomes, lexA was likely lost during the course of 

evolution accompanied by the loss of its binding sites. The SOS response genes in these 

genomes that appear to lack a lexA gene might be regulated by another or multiple 

transcription factors. Moreover, we conclude that cyanobacteria inherited the lexA gene 

from their last common ancestor; however, substantial genome-wide turnover seems to 

have led to the high degree of variation of the LexA regulons in some species during 

evolution.  



  

 

 

 

 

CHAPTER 2: RECONSTRUCTION OF OPERON STRUCTURES IN 

PROKARYOTES USING DIRECTIONAL RNA-SEQ SHORT READS BY A HIDDEN 

MARKOV MODEL 

 

                                               

2.1 Abstract 

     Although prokaryotic gene transcription has been studied over decades, many aspects 

of the process remain poorly understood. Particularly, recent studies using tiling array and 

RNA-seq have revealed that prokaryotic transcriptomes are far more complex and 

dynamic than previously thought. Genes in an operon are often alternatively and 

dynamically transcribed under different conditions, revolutionizing the classic operon 

definition. With continuous drop in costs, RNA-seq becomes the major method for 

profiling prokaryotic transcriptomes. However, it is a challenging task to accurately 

assemble full length transcripts/operons using short reads because of the highly labile 

nature of prokaryotic RNAs and the read bias of current RNA-seq techniques, leading to 

many uncovered parts in transcripts. To address this missing-read problem, we have 

developed a Hidden Markov Model based algorithm, TruHmm, for reconstructing full 

length transcripts/operons using directional RNA-seq reads. When tested on a dataset of 

Escherichia coli K12 under a variety of culture conditions and growth phases, TruHmm 

has achieved rather high specificity and sensitivity for assembling multi-gene operons. As 

RNA-seq becomes a routine for probing transcriptomes in prokaryotes, TruHmm can be a 

useful tool for understanding the complexity of transcriptomes and the underlying 

mechanisms in prokaryotic cells. 
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2.2 Introduction 

    In prokaryotes, several adjacent genes on the same strand of DNA are often co-

transcribed as a polycistronic mRNA, forming a multi-gene transcription unit called an 

operon.  More recently, it is found that in addition to genes, some parts of non-coding 

sequences and the opposite strands of coding sequences can be also transcribed under 

certain conditions, generating non-coding RNAs (ncRNAs) [1 ] and anti-sense RNAs 

(asRNA) [83, 84], respectively. Accumulating evidences suggest that ncRNAs [1, 85] and 

asRNAs [83, 84] may have important roles in the physiology of prokaryotes. Therefore, a 

full understanding of the transcriptomes of prokaryotic cells is necessary to annotate the 

functional elements in their genomes and reconstruct the gene transcriptional networks in 

their cells. However, experimental determination of operon structures, ncRNAs and 

asRNAs by traditional molecular biology methods is time consuming and labour-

intensive. As a result, no single prokaryote has so far had all of its operon structures, 

ncRNA and asRNAs characterized by such methods. For instance, even for the most 

well-studied model bacteria E. coli K12 and B. subtilis, only  3,409 [86] and 736 [87] 

operons have been determined in their genomes using these methods, respectively, after 

decades of research. On the other hand, although great progresses have been made in 

computational prediction of operons [75, 88-94] and small RNA genes [95-98], the 

accuracy of these predictors are still low [93, 99], and they can only predict the longest 

possible operons without considering possible alternative operons [75, 88-94].  

     In the past few years, increasing applications of whole genome directional (strand-

specific) tiling array and directional RNA-seq techniques to prokaryotes have completely 

changed our view of the architecture and complexity of prokaryotic transcriptomes [2-9]. 
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For example, using a combination of whole genome directional tiling array and RNA-seq 

techniques, Guell et al. [10] found that operon utilizations in the reduced parasitic M. 

pneumoniae genome are highly variable and dynamic, almost half of 139 identified 

multi-gene operons show varying (dynamic) expression in a staircase-like manner. Under 

different conditions, operons could be divided into smaller sub-operons, resulting in 

many alternative transcripts, suggesting that the operon structures in M. pneumoniae is 

highly dynamic, more similar to that of alternative splicing in eukaryotes than originally 

thought [10]. They also identified a large number of ncRNAs and asRNA expressed 

under various culture conditions, thus a much larger portion of the genome is transcribed 

than originally anticipated [10]. Similar results were observed in many other species [11-

14].  

   Compared to the tiling array technique, the RNA-seq method is more suitable for 

understanding the complexity of the prokaryotic transcriptomes due to its single-

nucleotide resolution, higher dynamic range, and lower noise natures, thus it has gained 

increasing popularity [100]. One important step in RNA-seq data analysis is to accurately 

assemble all meaningful transcripts in their full-length, so that correct conclusions can be 

drawn from typically tens of thousands of short RNA-seq reads. However, as has been 

shown earlier [10-14, 101, 102] and we will indicate later in this paper, the coverage of 

reads on transcribed regions in these studies are highly non-uniform, and there are even 

numerous zero coverage positions in transcribed regions [103-105], leading to gaps in 

otherwise an overlapping mapping of reads to a transcribed region [106-108]. These gaps 

make the transcriptome assembly a highly challenging task [10, 29-32, 101, 109]. Several 

technical problems in current library construction protocols and sequencing technologies 
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have been recently identified responsible for the non-uniform coverage and gaps. First, 

chemical fragmentation of RNA employed in many protocols may have bias to break or 

degrade some sequences [110]. Second, random primer based reverse transcription may 

preferentially transcribe some sequences than others [107, 111]. Third, ligases may 

preferentially link the adaptors to some sequences [112-114]. Fourth, PCR amplification 

is well-known for introducing GC contents-dependent bias in libraries [115-118]. Fifth, it 

was also recently found that sequencing errors were biased to some specific sequences, 

making such sequences missing the reads [119].  Moreover, prokaryotic RNAs are more 

labile than their counterparts in eukaryotes, thus segments of some RNAs can be more 

easily lost during the library preparation. Although some of these problems can be 

avoided by new technical development, such as using FRET-seq for amplification-free 

sequencing to avoid GC content-dependent PCR bias [120], or using single RNA 

molecular sequencing for longer reads to ease assembly problem [121, 122], no routine 

effective technique has been developed to avoid all these problems, however.   

   Although several transcriptome assemblers using short RNA-seq reads have been 

developed in the past few years, they are mainly for reconstructing alternative isoforms in 

eukaryotes [31]. These assemblers can be classified in two basic categories: the 

reference-based assemblers when a reference genome sequence is available, and the de 

novo assemblers when a reference genome is not available [31]. The reference-based 

assemblers usually involve two steps: RNA-seq reads are first mapped to the reference 

genome using an aligner, such as BLAT [123], TopHat [124] or Bowtie [125], and then a 

graph representing all possible isoforms from overlapping reads is constructed, and 

isoforms are resolved by traversing the graph. Examples of this strategy include Cufflinks 



43 

 

 

 

[32] and Scripture [126]. On the other hand, the de novo  assemblers such as Trinity 

[127], Oases [128], TransAByss [129], Rnnotator [130], and Multiple-k [131], generally 

assemble isoforms based on a De Bruijn graph constructed using overlapping reads. The 

advantage of de novo strategy is that it can assemble the transcripts when a reference 

genome is not available and can recover transcripts that are missing in the genome 

assembly. However, de novo transcriptome assembly is very sensitive to sequencing 

errors, missing reads and chimerical reads in the dataset, and their accuracy is generally 

lower than the reference-based approaches [31].  

 With thousands of sequenced prokaryotic genomes available, transcriptome assembly 

in prokaryotes can often be done using the reference-based approaches. The only 

reference-based transcriptome assembler for prokaryotes that we are aware of is  a 

Hidden Markov Model (HMM)-based method for reconstructing operons in Bacillus 

anthracis [132]. However, the aforementioned gap problem in transcript assembly was 

not fully addressed in the algorithm, and no tool was delivered from this research [132]. 

On the other hand, de novo assembly can be even more challenging in prokaryotes owing 

to prevalence of zero-coverage gaps caused by the aforementioned problems.  Because of 

the lack of a good prokaryotic assembler that sufficiently addresses the gap-problem, 

currently prokaryotic transcripts were assembled by either simply stitching the two 

covered segments if the gap between them is shorter than a cutoff [5], or determining 5‟ 

and 3‟ ends of transcripts via a probability-based approach [27], or relying on an 

additional source of information for the assembly, such as tiling array data that tend to 

have a more even and consecutive coverage along transcribed regions albeit at a lower 

resolution level [10, 12]. Therefore, as RNA-seq become a routine technique for probing 
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transcriptomes in prokaryotes, an efficient and more accurate assembly algorithm and 

tool that are tailored to prokaryotic transcriptomes are urgently needed in the research 

community.  

  To meet this need, here we present a reference-based prokaryotic transcriptome 

assembly algorithm and tool, TruHmm (TRancription Unit assembly by a Hidden 

Markov Model), which specifically addresses the gap problem in assembling prokaryotic 

transcriptomes using a HMM.  When evaluated on a directional RNA-seq dataset 

collected in Escherichia coli K12 str. MG1655 (E. coli K12) under different culture 

conditions and growth phases, TruHmm is able to reconstruct known operons with very 

high sensitivity and specificity.  Since other reference-based assemblers were designed to 

reconstruct eukaryotic isoforms, we compared TruHmm with the state-of-the-art de novo 

transcriptome assembler, Trinity [127]. Our method outperforms Trinity in most accuracy 

metrics, especially in sensitivity.  

2.3 Material and methods 

2.3.1 Bacteria culture  

     A frozen stock of Escherichia coli K12 strain MG1655 (a gift from Dr. Todd Steck, 

Department of Biology, the University of North Carolina at Charlotte) was thawed, 

inoculated in LB medium in a test tube by 1:100 dilution and cultured overnight at 37 
o
C 

and 250 rpm. The cells were then transferred to fresh LB medium in a flask by 1:100 

dilutions, and cultured at 37 
o
C and 250 rpm. When the cells grew to the log phase with 

an optical density at 610 nm [OD610] of 0.87, they were spun down at 3,200g for 25 min. 

For heat shock treatment (HS), the cell pellets were resuspended in the same volume of 

MOPS  medium (100 ml of 10X MOPS mixture, 880ml of sterile H2O, 10ml (0.132M) 
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KH2PO4 and 10ml of 20% glucose, Teknova, Hollister, CA), and incubated at 48
o
C and 

250 rpm. For phosphorus-starvation treatment (M-P), the cell pellets were resuspended in 

the MOPS medium without KH2PO4. Three milliliter cell suspension were collected in a 

tube containing 1.5ml RNA Later (Invitrogen) immediately after the cell pellets were 

resuspended in the indicated medium (0 min) and at the indicated time points thereafter 

(HS:15min, 30min and 60min; M-P: 0hrs, 2hrs, 4hrs). Cells were spun down at 6,000g, 8 

min and -4 
o
C, and the pellets were resuspended in 1.5 ml of RNAlater. The samples were 

stored at -800 
o
C until use.  

2.3.2 Isolation and enrichment of mRNA 

RNA was isolated using RiboPure
TM

 -Bacteria Kit (Ambion) following the 

manufacturer‟s instructions. Once isolated, ~10g total RNA was treated with 8 units 

DNase (Invitrogen) twice to remove genomic DNA, and the complete removal of DNA 

was confirmed  by 35 cycles PCR amplification of a 196 bps fragment of the crp gene 

(5‟-primer:AGCATATTTCGGCAATCCAG;3‟-primer:TACAGCGTTTCCGCTTTTTC). 

rRNAs were removed from the total RNA using a MICROBExpress kit (Ambion) to 

enrich mRNAs. 

2.3.3 Construction of directional RNA-seq libraries 

In our earlier experiments, sequencing was done on an Illumina GAII platform at the 

sequencing core facility of the University of North Carolina at Chapel Hill, and the 

directional RNA-seq libraries were constructed by following an Illumina‟s instruction 

using their Small RNA Sample Prep Kit with some modifications. Briefly, after the 

purified mRNA was fragmented using a RNA fragmentation kit (Ambion), the 

fragmented RNA was treated with Antarctic phosphatase (NEB) to remove the 5‟-tri-
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phosphate groups of RNAs with an intact 5‟-end. A mono-phosphate group was then 

added back to the 5‟-end of RNAs by polynucleotide kinase (PNK, NEB) in the presence 

of 10 mM ATP.  The v1.5 sRNA 3‟ Adaptor  (5' /5rApp/ 

ATCTCGTATGCCGTCTTCTGCTTG /3ddC/) was ligated to the 3‟-end of fragmented 

RNAs using truncated T4 ligase 2 (NEB), and the SRA 5‟ RNA adaptor 

(5'GUUCAGAGUUCUACAGUCCGACGAUC) was ligated to the 5‟-end of fragmented 

RNAs using T4 ligase. To preserve short inserts from small RNAs we omitted the size 

selection step after PCR application of inserts. For our later experiments, sequencing was 

done on an Illumina HiSeq 2000 platform at David H. Murdock Research Institute of the 

North Carolina Research Campus (Kannapolis, NC), and we constructed the directional 

RNA-seq libraries using Illumina‟s TruSeq Small RNA Sample Prep Kit, so that 

multiplex sequencing can be achieved by using the barcoded PCR primers. The details of 

the method will be described elsewhere (Dong, Li and Su). Briefly, after similar 

treatments as described above, the 5‟ Adapter (RA5: 5‟ 

GUUCAGAGUUCUACAGUCCGACGAUC), and 3‟ Adapter (RA3: 5‟ 

TGGAATTCTCGGGTGCCAAGG) were ligated to 5‟- and 3‟-end of fragmented RNAs, 

respectively. Reverse transcription-PCR (RT-PCR) was performed using SuperScript II 

Reverse Transcriptase Kit using the SRA RT primer, followed by 16 cycles of PCR 

amplification. Again, the size selection was omitted on PCR products to preserve short 

inserts from possible small RNAs. Single-end sequencing on the Illumina GA II platform 

was done with 76 cycles, while that on the HiSeq 2000 platform was done with 100 

cycles. Some samples (HS15min and M-P4h) were sequenced on both platforms. 
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2.3.4 Mapping and filtering RNA-seq reads 

 The genome sequence of E. coli K12 substr. MG1655 was obtained from NCBI 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_

uid57779/). The gene annotation file and the experimentally verified operons in the 

bacterium were downloaded from RegulonDB [60] (http://regulondb.ccg.unam.mx/). A 

total of 4501 annotated genes (also including pseudo genes and non-coding small RNAs) 

are included in this analysis. As the reads were not size-selected during the library 

construction, we trimmed the 3‟ adapters attached to some short insertions. Adapter-free 

reads with lengths of <10 nucleotides (nts) were discarded; the remaining reads were 

mapped to the E. coli K12 genome using Bowtie [125]. For the reads of length 10-14, 15-

29 and ≥30 nts, up to 1, 2, and 3 mismatches were allowed, respectively. Only uniquely 

mapped reads were used for further analysis. The alignment of mapped reads to the 

reference genome was visualized by Integrated Genome Browser (IGB) [133].  

    As for comparison to the de novo assembler Trinity [127], we first reconstructed the 

transcript using the following parameters: 

Trinity.pl   --seqType fq    --kmer_method  meryl    --SS_lib_type   F    --single *.fastq    -

-CPU 12 

  Then the alignment of the reconstructed transcript to the reference genome was 

generated using the BLAT program [123], using the built-in command of Trinity: 

alignReads.pl   --single  Trinity.fasta    --target  NC_000913.fa   --seqType  fa   --aligner  

BLAT    --SS_lib_type   F   

ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779/
http://regulondb.ccg.unam.mx/
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2.3.5 Normalization of the mapped counts  

     Normalization of the mapped counts is crucial for differential expression detection 

using RNA-seq [134], as different samples may have different total read counts, i.e. 

sequencing depths, as well as various bias mentioned earlier. The most commonly used 

methods include reads per kilobase of exon model (or open reading frame) per million 

mapped reads (RPKM) [103], fragments per kilobase of transcript per million fragments 

mapped (FPKM) [32], the hypergeometric model [135] and the more recent sophisticated 

model-based methods [104, 105, 107, 108, 115, 116, 136, 137].  However, it has been 

found that these kinds of global normalizations are strongly affected by a small 

proportion of highly expressed genes in the published datasets, leading to biased 

estimation of gene expression level across different conditions [134]. As shown in Figure 

2.1, our datasets are no exception to the problem as around 10% of gene with highest 

 

 

 

 

 

 

 

 

Figure 2.1. Impact of highly expressed genes on the mapped nucleotides in coding 

regions. Genes are sorted in the descending order of their number of mapped nucleotides 

in reads. The top 10 percent of genes with highest read counts contribute to around 80% 

~90% mapped nucleotides in the coding regions. 
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number of mapped nucleotides contribute up to 80%~90% of mapped nucleotides in the 

gene-coding regions across all the seven samples. Inspired by [134] and also for 

computational efficiency, in this study we used N* defined as the total nucleotide counts 

minus the counts of the top 10% of genes with highest counts to scale the gene expression 

level in each sample, instead of using the total counts of mapped nucleotides in each 

sample. 

     Furthermore, because our mapped reads have different lengths (see RESULTS AND 

DISSCUSION), instead of using the mapped read counts per gene, we used the mapped 

nucleotide counts per gene to measure the gene expression level defined as “Nucleotides 

Per Kilo base of transcript per Billion nucleotides mapped” (NPKB): 

)1.2(,

1010 39

* LN

n
NPKB



  

where n is the number of nucleotides of the reads mapped to the transcript, N* our 

normalization factor defined above, and L the length of the transcript. Clearly, when all 

reads have the same length, NPKB and RPKM differ by a constant scaling factor. A 

similar method has been used earlier [101], except that our NPKB is further normalized 

by the global scaling factor N* in each sample. 

2.3.6 Training the HMM and reconstruction of full length transcripts/operons 

     A HMM is a machine-learning algorithm that can be used to decode the path of hidden 

states that generate a sequence. In this paper, we use a HMM to infer whether or not a 

segment of a strand of DNA is consecutively transcribed given the expression values 

obtained from the mapped reads. The model consists of two states: the expression state E 

and non-expression state N (Figure 2.2). 
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Figure 2.2. Structure of the HMM for transcript assembly using RNA-seq reads. E 

represents the expression state and N the non-expression state, Letters r1, r2,…,rn are the 

emission values of E; and s1, s2,…, sN are the emission values of N. 

 

2.3.6.1 Selection of Expressed Adjacent Operon Pairs.  

     A gene is considered sufficiently expressed if over 50% of its length is covered by at 

least one read and at least 20nts of both of its termini are covered by at least one read. We 

used the 476 experimentally verified operons in RegulonDB (supplementary file 2) to 

train the parameters of the HMM, and evaluate the performance of our algorithm. Since 

these operons were not necessarily expressed in our samples, and alternative operon 

utilization could be very prevalent, as the first step to construct a positive operon set in a 

sample, we selected a pair of adjacent genes in a known operon (adjacent operon pair) if 

they met the following two criteria: 1) both genes were sufficiently expressed and over 50% 

of the length of their intergenic region were covered by at least one read in the sample; 

and 2) the correlation between the expression levels of the two genes and their intergenic 

region was greater than a cutoff.  To compute the correlation between the expression 
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levels of the two genes and their intergenic region, we extended the two ends of the 

intergenic region into the two flanking genes to double its length or extended until the 

other end of either gene was reached (Figure 2.3A). We equally divided the extended 

intergenic region as well as the intergenic region into n bins, and thus the expression 

levels (NPKB) over these bins formed two n-element vectors (Figure 2.3B). Pearson 

Correlation Coefficient (PCC) between the two vectors was used to quantify the 

correlation between the expression levels of the two genes and their intergenic region. To 

find an appropriate cutoff, we similarly divided a sufficiently expressed gene as well as  

 

 

 

 

 

 

 

 

 

Figure 2.3. Selection of known operon pairs for training and evaluation. A: The intergenic 

region between two adjacent genes in an operon is doubled by extending its two ends in 

the two flanking genes. B: A sufficiently expressed gene is equally divided into n bins, 

and its central half is further equally divided into n bins. The NPKB values for each bin 

of a gene and its central portion are a1,…, ai,…, aj, …, an and b1,…, bi,…, bj,…,  bn, 

respectively. An extended intergenic region is similarly divided by treating it as a “gene” 

with the intergenic region being the central portion of the “gene”. C: Distribution of PCC 

values between these two vectors for the sufficiently expressed genes with the bin size 

n=4. We choose 0.3 as the cutoff of PCC value since 60.1% of sufficiently expressed 

genes can be included. 
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its central half into n equal bins, and computed the correlation of the expression levels 

between the whole gene and its central half. We reason that for an expressed adjacent 

operon pair, the PCC value between the intergenic region and the extended intergenic 

region should follow the same distribution of the PCC value between the central half of 

an expressed gene and the whole gene, since an adjacent operon pair and their intergenic 

region should be expressed in a similar way as the different parts of a gene. The 

distribution of the PCC value between the central half and the whole gene (n = 4) is 

shown in Figure 2.3C. We chose 0.3 as the cutoff for our second criterion to select 

positive adjacent operon pair since this would allow us to include over 60% of 

sufficiently expressed genes. 

2.3.6.2 Positive and Negative Training Sets.  

     To train the HMM, we constructed a positive training set in a sample by simply 

stitching the known adjacent operon pairs that met the two criteria described above to 

form a large operon if it was a subset of a known operon according to RegulonDB. These 

positive training subsets in the seven samples are listed in supplementary file 2. To 

construct a relatively large negative training set in a sample, we included all the zero-

coverage regions excluding the ones inside the sufficiently expressed genes in the sample.  

2.3.6.3 Positive and Negative Testing Sets.  

     We evaluated the operon prediction accuracy using two methods: one was based on 

adjacent operon pairs, and the other on the entire operon structure using all the gene pairs 

of in a known operon. For the first method, we constructed a positive testing set in a 

sample, consisting of sufficiently expressed adjacent gene pairs, and a negative testing set 

consisting of known adjacent non-operon pairs that were both sufficiently expressed in 
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the sample. A known adjacent non-operon pair was made of either the first gene of a 

known operon and its immediate upstream gene, or the last gene in a known operon and 

its immediate downstream gene, as long as the intergenic region of the gene pair had at 

least one zero-coverage region, regardless of its length. For the second method, we 

constructed a positive testing set in a sample, consisting of all pair-wise combinations of 

the genes in a sufficiently expressed operon, and a negative testing set consisting of the 

gene pairs between the genes of the operon and the immediate upstream or immediate 

downstream gene, given that the known adjacent non-operon pairs with non-overlapping 

(UnTranslated Region) UTR as well as all these relevant genes were sufficiently 

expressed. 

2.3.6.4 Leave-one-out Cross Validation.  

     We employed a leave-one-out cross validation strategy to evaluate the performance of 

our algorithm. Specifically, we used the positive training sets and negative training sets in 

(n-1) samples to train the emission and transition probabilities of the HMM, and used the 

positive testing set and the negative testing set in the remaining sample to test the trained 

model.  

2.3.6.5 Training Emission Probabilities.  

     We used “coverage” to designate the number of reads mapped to a specific position 

(nucleotide) in the reference genome. To deal with the zero-coverage problem, we used a 

sliding window to compute a centroid coverage of each position on DNA, assuming that 

if the flanking regions of a position are transcribed, it is very likely that the position itself 

is also transcribed. Specifically, given a window size L (L is an odd number), the centroid 

coverage of the nucleotide i in the middle of the window is defined as: 
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where i is the i-th position (nucleotide) on the chromosome. N* the normalization factor 

defined in equation (2.1), L  the window size and Coverage (k) the coverage at position k 

in the reference genome. Note that a pseudo count of 1 is added to the average value of 

each window. The optimal window size is determined by balancing two goals with 

opposite effects: to cover as many gaps as possible and to exclude as many interoperonic 

regions as possible. See 2.4 Results and discussion for details of window size selection. 

     The emission signals of the states E (r1, r2, …,) and N (s1, s2, …) are the centroid 

coverage values of nucleotides in the reference genome. We used the positive training 

sets to estimate the emission probabilities of the signals of E. The distribution of centroid 

coverage values of the positive training set from all samples except LB is shown in 

Figure 2.4. The QQ plot indicates that the centroid coverage values of the positive 

training set approximately follow a Poisson distribution, which is consistent with the 

earlier results [134]. Thus, the emission probability of the centroid coverage values in the 

state E could be computed by the Poisson distribution, whose parameters were estimated 

with the maximum likelihood method.  Since our negative training set were virtually not 

covered by reads, the signal that the state N emits should be the centroid coverage values 

with zero coverage,   
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     Thus we arbitrarily assigned a high probability 1-10
-20

 for N to emit this value, and a 

low probability 10
-20

 for N to emit any other values. The value 10
-20

 is also a pseudo 

probability to avoid zero probability for decoding the HMM later. 

 

      

 

 

 

 

 

 

 

 

Figure 2.4 QQ-plot comparing the distribution of centroid coverage values of the positive 

training set in all the samples but LB with the fitted Poisson distribution. Deviation of a 

data point from the line y=x indicates its deviation from the theoretical Poisson 

distribution. Parameters of the Poisson distribution are estimated using the maximum 

likelihood method.     
 

2.3.6.6 Training Transition Probabilities.  

     Let ijP be the transition probability from state i to j. To determine the transition 

probabilities EEP and ENP i.e., the probability to stay in the state E and to transit from the 

state E to the state N, respectively, let X be the length of a consecutively expressed 

segment of genome DNA. Under the Markov assumption, we assume that X follows a 

geometric distribution, 
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    Similarly, let Y be the length of a consecutively non-expressed segment of genome 

DNA. Then Y also follows a geometric distribution, 

)5.2().1()( NN

n

NN PPnYP   

 We use the lengths of sufficiently expressed known operons in the positive training set 

to estimate the probability of staying in the state E as )1/(  operonoperonEEP   ,  where   

operon  is the mean value of the lengths of sufficiently expressed regions and can be 

determined from the raw coverage data. For example, using the positive training set from 

the all samples excluding LB, we obtained  1990.695operon nts (Figure 2.5A).  

Similarly, we use the lengths of non-expressed regions in the negative training set to 

estimate the probability of remaining in the state N as )1/(  zerozeroNNP  , where zero

also can be determined from raw coverage data, for example, 22.172zero nts for all 

the negative training set from all samples except LB (Figure 2.5B). The derivation of 

transition probabilities estimations is given in Figure 2.6. The QQ plot indicates that the 

lengths of expressed regions indeed can be nicely modelled as a geometric distribution 

(Figure 2.5C), but that of non-expression regions is not that good (Figure 2.5D), probably 

because of the gaps introduced in the expressed regions, constituting more short false 

non-expressed regions. However, we found that this deviation had little effects on the 

performance of the algorithm (see 2.4 Results and disscussion). 
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Figure 2.5. Distributions of the lengths of positive and negative training sets in all 

samples except LB. A: Histogram of the length of the positive training set (bin size =50 

nt). The curve is the fitted geometric distribution with success probability p = 0.000502 

estimated by the maximum likelihood method. B: Histogram of the length of negative 

training set (bin size =50 nt). The curve is the fitted geometric distribution with p = 

0.00577 estimated by the maximum likelihood method. C: QQ-plot of the length of 

positive training set against the fitted geometric distribution. D: QQ-plot for the length of 

negative training set against the fitted geometric distribution. 

 

2.3.6.7 Reconstruction of Operons.  

     We used the Viterbi algorithm [138] to decode the path of states that best explains the 

centroid coverage values of a region of DNA. If both genes in a neighbouring pair are at 
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least partly covered by a consecutive sequence of expressed states, the two genes are 

predicted as an adjacent operon pair. We stitched any two adjacent candidate operon pairs 

A-B and B-C to obtain the full length transcripts/operons. The transcription start site and 

transcription terminate site of predicted operon were determined by the locations of the 

5‟-end and the 3‟-end of the stitched transcript, respectively. If over half of the length of a 

terminal gene is predicted to be expressed, this gene is considered as a member of the 

predicted operon, otherwise the terminal gene is only considered as the UTR of the 

operon. When comparing our algorithm with Trinity for their performance of 

reconstructing full length transcripts/operons, we applied the same stitching strategy to 

the transcripts assembled by Trinity. 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Derivation of transition probabilities NNEE PP  and . The geometric distribution 

ppkY k)1()Pr(   is used to model the number of failures before the first success. The 

length for the consecutive expression state E or non-expression state N should follow a 

geometric distribution. Therefore the probability of staying in the expression state 
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Figure 2.6 (continued) the non-expression state is 
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    The algorithm was encoded in C++ and perl. The software package is open-source, and 

can be downloaded from http://bioinfolab.uncc.edu/TruHmm_package/. We provide the 

users the option to train their model if enough known operons are available in their 

genomes of interest and if more than two samples are available. Otherwise users can 

apply our algorithm using the default settings without the need of any training. 

2.3.7 Performance Metrics  

     To evaluate the performances of our algorithm, we use the following metrics. 

PrecisionRecall

PrecisionRecall
factorF
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Precision

FNTNFPTP
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Accuracy
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FPRySpecificit

FNTP
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     Where, TP (true positive) = Number of known operon pairs accurately classified as 

operon pairs by the model. 

     FP (False Positive) = Number of non-operon pairs falsely classified as operon pairs by 

the model. 

  FN (False Negative) = Number of known operon pairs falsely classified as non-

operon pairs by the model. 
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 TN (True Negative) = Number of non-operon pairs accurately classified as non-operon 

pairs by the model. 

 Sensitivity, i.e. TPR (True Positive Rate or recall) is the proportion of known operon 

pairs that can be correctly identified as operon pairs by the model.  Specificity, i.e. 1-FPR 

(False Positive Rate) is the proportion of non-operon pairs that are correctly classified as 

non-operon pairs. Accuracy combines the two metrics to quantify the overall performance 

of the model. A high Accuracy value represents a low total error rate. Precision denotes 

the proportion of predicted positives that are true positives.  F-factor combines Recall and 

Precision and normalized them to an idealized value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Flowchart of directional RNA-seq library constructions. 
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2.4 Results and discussion 

2.4.1 RNA-seq Reads Quality 

     We prepared the directional RNA-seq libraries from seven E. coli K12 samples 

collected at the log phase growth in LB, and different time points under heat shock (HS) 

or phosphorus starvation (M-P) treatments, denoted as LB, HS15min, HS30min, 

HS60min, M-P0h, M-P2h, and M-P4h to reflect the treatment and sampling time points. 

The experimental procedure of our work is listed in Figure 2.7. The libraries were 

sequenced on either Illumina GA II or HiSeq 2000 platforms. Specifically, sample LB 

was sequenced using the GAII platform, samples HS30min, HS60min, M-P0h, and M-

P2h were sequenced using HiSeq 2000 platform, whereas samples HS15min and M-P4h  
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Figure 2.8. Correlation of expression levels of all the genes between two platforms: GAII 

and HiSeq. Each dot represents a gene. The expression level is evaluated using log of the 

NPKB values. A) PCC of expression levels for HS15min between GAII reads and HiSeq 

reads. B) PCC of expression levels for HS15min between GAII reads and 2
nd

 HiSeq reads. 

C) PCC of expression levels for M-P4h between GAII reads and HiSeq reads.  D) PCC of 

expression levels for M-P4h between GAII reads and 2
nd

 HiSeq reads. The duplicates for 

each sample are from the same biological samples sequenced twice using platform HiSeq 

2000. 
 
were sequenced using both platforms. Each sample sequenced using HiSeq 2000 was 

repeated twice (technical replicates). The reads obtained from different platforms for the 

same sample are highly correlated (Figure 2.8), thus the data for the same sample were 

combined for the analysis. A total of 330,611,663 reads were generated from the seven 

samples. The mapping statistics of the samples are summarized in Table 2.1 showing that  

Table 2.1. Summary of mapping results  
 
 
 
 
 
 

 

23.07~44.18% of reads could be uniquely mapped to the genome, resulting in 7,735,369 

~ 29,581,761 uniquely mapped reads in each sample, corresponding to 93~355 time  

coverage of the genome. Of the 47.08~63.04% multiple mapped reads in each sample, 

over 99.6% were from duplicated tRNA/rRNA genes (data not shown). Furthermore, as 

shown in Figure 2.9, in all the samples over 90% and less than 10% of the total mapped 

nucleotides were mapped to the sense strand and intergenic regions, respectively, with 

only 0.35~0.95% of the total mapped nucleotides mapped to the antisense strand. These 

results indicate that most of our reads were from the sense strand, and thus our libraries 

were highly strand specific, which is consistent with an earlier result using a similar 

Sample Platform Total  reads
% Reads having 

adapter

Total reads 

after trimming

Uniquely 

mapped reads

Multiple 

mapped reads

Reads failed 

to map
% Unique % Multiple % Failed

LB GAII 32,129,789 16.70% 31,767,554 12,856,757 14,956,218 3,954,579 40.47% 47.08% 12.45%

HS15min GAII+HiSeq 72,868,580 60.29% 72,586,098 16,743,042 45,758,784 10,084,272 23.07% 63.04% 13.89%

HS30min HiSeq 35,042,119 84.22% 34,979,745 13,034,034 19,411,877 2,533,834 37.26% 55.49% 7.24%

HS60min HiSeq 25,930,027 80.37% 25,905,637 7,735,369 15,403,470 2,766,798 29.86% 59.46% 10.68%

M-P0h HiSeq 46,464,309 81.87% 46,342,018 14,129,411 27,602,193 4,610,414 30.49% 59.56% 9.95%

M-P2h HiSeq 67,034,479 76.30% 66,962,875 29,581,761 31,717,549 5,663,565 44.18% 47.37% 8.46%

M-P4h GAII+HiSeq 86,184,479 51.16% 85,795,131 29,183,476 44,847,797 11,763,858 34.02% 52.27% 13.71%
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library construction protocol [102].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Strand specificity of the directional RNA-seq libraries. The percentage of total 

nucleotides mapped to sense strand, antisense strand and intergenic regions is shown for 

LB

Sense, 89.86% 

Antisense, 0.35% 

Intergenic, 9.79% 

HS15min

Sense, 90.88% 

Antisense, 0.52% 

Intergenic, 8.60% 

HS30min

Sense, 93.22% 

Antisense, 0.50% 

Intergenic, 6.28% 

HS60min

Sense, 92.34% 

Antisense, 0.62% 

Intergenic, 7.04% 

M-P0h

Sense, 92.34% 

Antisense, 0.62% 

Intergenic, 6.76% 

M-P2h

Sense, 93.78% 

Antisense, 0.95% 

Intergenic, 5.27% 

M-P4h

Sense, 92.57%

Antisense, 0.82% 

Intergenic, 6.61% 
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Figure 2.9 (continued) the seven samples. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. Distribution of the genes with more than the indicated percentage of their 

length covered by at least one read in the samples. A) Distribution generated by our data: 

Less than 60% of genes have their length completely covered by at least one read. Over 

80% genes have over 50% of their length covered by at least one read except for sample 

HS60min. B) Distribution generated by Vivancos et. al[101]. Only less than 60% of 

genes have over 50% of their length covered by at least one read. 
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However, as shown in Figure 2.10A, even with such high levels of coverage, less than 

60% genes in the genome had their length completely covered by at least one read, while 

only less than 90% genes in the genome had at least 10% of their length covered by at 

least one read, suggesting that some expressed transcripts were not completely covered 

by the reads. The very same problem has been widely noted in both eukaryotes [102-104, 

107, 108, 139] and prokaryotes [11, 101] due to the aforementioned technical artifacts of 

the current RNA-seq techniques [106, 110, 111, 113, 119]. In fact, we found that the 

problem were even more serious in all published prokaryotic datasets we have reanalyzed, 

a typical example from [101] is shown in Figure 2.10B.  These prevalent zero-coverage 

gaps may be also partially caused by the loss of some RNA fragments during the library 

preparation due to the highly labile nature of prokaryotic RNAs as mentioned earlier, in 

addition to the aforementioned technical artifacts. Our data seems to support this 

hypothesis, as the percentage of gene body coverage in our samples collected under heat 

shock treatment were generally lower than that in other treatments, in particular, after 30 

and 60 min heat shock (Figure 2.10A). It is well known that RNAs have a shorter living 

time at a higher temperature. It is because of this gap problem that we define a gene with 

≥50% of the length covered by at least one read to be sufficiently expressed. Also, this 50% 

cutoff was chosen, as all the samples except HS60min had over 80% of genes with at 

least 50% length being covered (Figure 2.10A). Moreover, as shown in Figure 2.11, our 

uniquely mapped reads consisted of well-balanced different sizes of RNA fragments, 

indicating that our library preparation protocol could potentially capture small RNA 

species such as as-RNA and ncRNA, which were otherwise left out by a typical size 
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selection step in the library preparation process.  Additionally, as shown in Figure 2.12, in 

consistence with the earlier results [11, 109, 140], our libraries were also biased to the 5‟-

end of transcription units. The data have been submitted to NCBI SRA database with 

accession number XXX.    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.11. Distribution of the length of the uniquely mapped reads in the samples. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.12. Average percentile coverage of known operons in each sample. The      
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Figure 2.12 (continued) sufficiently expressed known multiple-gene operons 

(supplementary file 2) and singleton operons are equally divided into 20 bins, and the 

expression values in each bin were computed and averaged in each sample. The top 10% 

highest expressed genes were excluded from the calculation.  

 

2.4.2 Operon Prediction Accuracy  

     To compensate for the negative effect of zero-coverage gaps in the expressed regions 

on assembling, we used a centroid coverage value in a sliding window to represent the 

reads coverage for each nucleotide of DNA (see 2.3 Materials and methods). Meanwhile, 

we do not want to increase false positives by mistakenly bridging irrelevant reads using 

such a strategy. To find an appropriate widow size for this purpose, we plotted the 

distributions of interoperonic and gap lengths shown in Figure 2.13, which suggest that  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.13. Distributions of the length of interoperonic regions and the length of gaps in 

sufficiently expressed regions.  

 

the optimal window size might be shorter than 41nts. Therefore, we evaluated the 

performances of window size ranging from 1 to 41nts with an increment of 10nts on all 

the seven samples using the leave-one-out validation strategy as detailed in 2.3 Materials 

and methods. As shown in Figure 2.14A, when evaluated using the adjacent operon pairs,  
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Figure 2.14. Evaluation of the algorithm on the seven samples by the five metrics. A) 

Using operon pairs. The dashed horizontal line is at the 95.87% level. The vertical bars 

indicate standard errors. B) Using entire operon structure. The dashed horizontal line is at 

the 95.3% level and the vertical bars indicate   standard errors.  

 

our algorithm was very robust for the choice of the window size in the range of 11~21nts 

(the mean values for each metric are ≥ 94%). Particularly, when the window size L=11nts, 

the algorithm achieved probably the best-balanced performance (the mean values for 

each metric are ≥ 95.87%), especially in terms of the three most important measures: 

sensitivity, specificity and accuracy. When evaluated using the entire operon structure, 

our algorithm still achieved very good performance with all the five metrics being over 

94.6% for window size of 11~21nts (Figure 2.14B), and the best performance (the mean 

values for each metric are ≥ 95.3%) was also obtained when L=11nts. Therefore, we 

chose L=11nts for our further analysis. We also evaluated the effect of sequencing depth 

on the performance of our algorithms. As shown in Table 2.2 using M-P4h as an example, 

when the sequencing depth is over 153 times of genome size, our algorithm was very 

robust to the sequencing depth.  

 

A B 
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Table 2.2. Effect of sequencing depth on the performance of TruHmm using sample M-

P4h as an example  
 
 
 
 
 

 

 

2.4.3 Prediction of Transcription Start Sites and Terminate Sites 

     We next evaluated the ability of TruHmm to define operon boundaries, i.e., the 

transcription starting sites (TSSs) and ending sites (TTSs) of transcripts. However, 

accurate evaluation of predicted operon boundaries is complicated by the recently 

discovered fact that alternative TSSs and TTSs are far more prevalent than previously 

thought [10-12, 109, 140], and we lack a real gold standard TSS and TTS datasets even 

though some different TSSs and/or TTSs are documented in RegulonDB. Thus we 

evaluated our reconstructed TSSs and TTSs by the following two ways. First, we wanted 

to know how many experimentally verified TSS and TTS in RegulonDB could be 

recovered by the boundaries of our assembled operons in any of the samples. If two 

known TSSs were within 10nt from each other, we considered them as the same one in 

our evaluation. Thus, there are 1,387 TSSs (supplementary file 3) associated with the 

genes expressed in the seven samples. We considered a known TSS was recovered by our 

predicted TSS if they were at most 20 nts from each other. Using this criterion, 587 out of 

1,387 (~43.2%) known TSS were recovered by a total of our 6,424 predicted TSSs 

(supplementary file 3). Second, as for the remaining 5,837 predicted TSS with no match 

to a known TSS, 2,465 of which appeared in at least two samples, suggesting that they 

were likely to be true TSSs, The remaining 3,372 predicted TSSs that did not match the 

 Portion of 

total reads

Total unique 

mapped nt

Sequencing 

depth
Sensitvity Specificity Accuracy Precision F-factor

Total 

operons

Zero-coverage 

positions (nt)

10% 177,394,644 38.23 86.60% 96.00% 89.00% 98.00% 92.00% 2705 5,705,298

20% 354,676,352 76.44 89.60% 91.00% 90.00% 96.80% 93.00% 2513 4,983,472

40% 710,081,281 153.05 94.50% 93.20% 93.50% 95.80% 95.20% 2345 4,220,369

80% 1,419,721,627 306.00 96.60% 97.10% 96.50% 97.30% 96.95% 2133 3,438,913

100% 1,780,472,931 383.75 97.20% 98.90% 97.70% 99.00% 98.10% 2091 3,193,336



70 

 

 

 

known ones are summarized in Table 2.3.  As for the TTS predictions, our algorithm  

 

Table 2.3.  Summary of predicted TSS not accordant with known TSS in regulonDB  

 
 
 
 
 
 
 

recovered 148 out of 221 (~67%) known TTSs associated with expressed genes 

(supplementary file 3), which is higher than the recovery rate of known TSSs, even 

though the mapped reads are strongly biased to the 5‟-ends (Figure 2.12). The lower 

recovery rates of known 5‟ ends (TSS) compared to 3‟ ends (TTS) might indicate that 

operons utilize more alternative TSSs than TTSs under different conditions. In other 

words, the predicted TSSs without a match with the known TSSs in RegulonDB are 

highly likely to be novel alternative TSS of the transcripts in different conditions.  

Furthermore, we computed the distribution of the distance in term of number of 

nucleotides between a predicted TSS and the first codon of the most upstream gene as 

well as the distance between a predicted TTS and the stop codon of the most downstream 

gene of a reconstructed operon. As shown in Figure 2.15A, the vast majority of the 

predicted TSSs are at least 25nt (average 55 nt) upstream of the start codon of first gene 

in a reconstructed operon, in agreement with the length of known 5‟UTR in E. coli K12.  

Furthermore, as shown in Figure 2.15B, the vast majority of the predicted TTSs are at 

least 10 nt (average 45nt) downstream of the stop codon of the last gene in an operon, in 

consistence with the length of 3‟-UTR of the known operons. Taken together, all these 

results strongly suggest that most of the predicted TSSs and TTSs are likely to be true 

Predicted TSS without 

matches

Upstream of known 

TSS 

Downstream of 

known TSS 

Associated with genes 

without known TSSs

Multiple appearance (2406) 598 92 1,775

Single appearance (3661) 771 189 2,412
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transcription boundaries. The assembled operons and their expression levels in each 

sample are listed in supplementary file 5. Nonetheless, as demonstrated in earlier studies 

[11, 109, 140], to more accurately detect TSSs and TTSs of transcripts/operons, specific 

libraries targeted to the 5‟ and 3‟-ends of transcripts might be needed, in particular, a 

library targeted to the newly discovered transcription starting site RNAs (tssRNAs) [141].  

 

 

 

 

 

 

 

 

Figure 2.15. A) Distribution of the distance between the predicted TSS and the start 

codon of an assembled transcript. B) Distribution of distance between the predicted TTSs 

and the stop codon of an assembled transcript. A negative distance values means 

upstream, and a positive value downstream. 

 

 

2.4.4 Comparison between TruHmm and Trinity 

     Since the existing reference-based transcriptome assemblers such as Cufflinks [32] 

and Scripture [126] were designed to reconstruct isoforms of genes in eukaryotes instead 

of the full length transcript/operon structures of prokaryotes, they perform very poorly on 

prokaryotic datasets (data not shown), we compared TruHmm with a state-of-the-art de 

novo assembler, Trinity [127], for recall of  the sufficiently expressed known adjacent 
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operon pairs in each sample. To make the comparison relative even, we applied the same 

stitching strategy to Trinity. The original transcripts assembled by Trinity are listed in 

supplementary file 6, and the further stitched operons are provided in supplementary file 

7. When evaluated on both adjacent operon pairs (Figure 2.16A) and entire operon 

structure composed of all the gene pairs inside/outside operons (Figure 2.16B), TruHmm  

 

 

 

 

 

 

 

 

 

Figure 2.16. Comparison of performances between TruHmm and Trinity. A) Comparison 

of the performance of TruHmm (with window size 11) and Trinity on the seven samples 

based on the positive and negative sets composed of neighboring gene pairs. The vertical 

bars indicate standard errors. B) Comparison of the performance of TruHmm (with 

window size 11) and Trinity on the seven samples based on the positive and negative sets 

composed of all the gene pairs within/outside operons. The vertical bars indicate standard 

errors. 

 

 

significantly outperforms Trinity in sensitivity, accuracy and F-factor for all the samples, 

although Trinity does have a little higher specificity and precision. The poor performance 

of Trinity in sensitivity might be caused by the lack of sufficiently overlapping reads of 

the datasets (Figure 2.10), based on which Trinity and many other de novo assemblers 

assemble a transcript.  
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2.4.5 Prediction of Alternative Operons 

    As summarized in Table 2.4, our algorithm detected more than 2,000 operons involving  

     Table 2.4. Summary of assembled operons in the samples 

 
 
 
 
 
 

 

 

more than 4200 genes in each sample. There were 1121 consistent operons appearing in 

at least two of the seven samples, 207 of which were multiple-gene operons 

(supplementary file 8). Of these 207 consistent multiple-gene operons, 206 were 

expressed in all the seven samples except the operon istR-1 istR-2/b4616, which was not 

expressed in samples HS60min and M-P2h (supplementary file 8). Figure 2.17 shows an 

example of a consistent operon hemCDXY encoding enzymes involved in tetrapyrrole 

synthesis. Although all the four genes were consistently expressed and continuously 

covered by the reads under different cultures and growth phases, they had similar 

position-dependent varying level of the read coverage along the genes and operon, 

indicating the non-uniform coverage of our libraries. As we indicated earlier, this 

phenomenon has been widely noted for different variants of current RNA-seq techniques 

[10, 11, 13, 14, 101-108].  

Furthermore, we consider a non-consistent operon as an alternative operon if it shares a 

portion of genes with another operon in other samples. As shown in Table 2.4, from 981 

to 1,815 alternative operons were detected in each sample. Thus, around 50% of the 

reconstructed operons in each sample had at least an alternative form, a number  

LB(OD=0.87) HS15min HS30min HS60min M-P0h M-P2h M-P4h

# Genes expressed          4,314 4,366 4,340 4,222 4,296 4,395 4,420

# Hypothetical Proteins 29 29 31 27 28 30 32

# Operons 2,131 2,247 2,635 2,865 2,452 2,339 2,091

# Multi-gene operons 875 915 853 732 825 933 933

# Consistent operons 1,064 1,086 1,081 1,049 1,055 1,098 1,105

# Consistent multi-gene operons 207 207 207 206 207 206 207

# Alternative operons 1,065 1,160 1,552 1,815 1,396 1,239 981
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Figure 2.17. Reads coverage of the genes in the hem operon hemCDXY. The vertical axis 

is the number of reads covered at the position. The orange and dark green bars at the 

button of the graph represent the reverse and forward strands, respectively. Segments 

with arrows represent genes. Genes from the right to left are hemC, hemD, hemX and 

hemY. The graphs were generated using IGB. To make the expression levels for the four 

genes comparable in different samples, the same scale (1,200) of the vertical axis is used 

for all the samples. Although this four-gene operon is fully covered by the reads under 

different cultures and growth phases, note the similar position-dependent non-uniform 

coverage of the reads along the operon.  

 

comparable to that found in M. Pneumonia [10] and other prokaryotes [11-14] 

demonstrating that like many other prokaryotes [2, 8, 10-12], E. coli K12 also expresses 

enormous alternative operons under different culture conditions and growth phases, and it 

is far more prevalent than previously expected. An interesting example is the 14-gene 

operon phnCDEFGHIJKLMNOP coding for proteins responsible for the assimilation of 
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C-P bond-containing phosphonates under phosphorus starvation  conditions [142]. In LB, 

and heat shock samples (HS15min, HS30min and HS60min), this operon was split into 

several short suboperons (Table 2.5 and supplementary file 5) with low expression levels, 

 

Table 2.5. Reconstruction of the alternative phn operons  

 
 
 
 
 
 

 

 

whereas under phosphorus starvation (samples M-P2h and M-P4h), the phn genes were 

transcribed to form the large operon phnCDEFGHIJKLMNOP with high expression 

levels (Figure 2.18 and supplementary file 5), which is consistent with previous 

observations [142]. In fact, this 14-gene operon and its suboperons have been studied 

previously by several groups [142-145]. It is now known that phnCDE encodes a 

phosphonate transport system, which was detected in sample M-P0h, and phnF works as 

a repressor for this suboperon [146]. Moreover, phnGHIJKLM is essential for the C-P 

bond cleaving activity [147]. More recently, Jochimsen et.al have shown that phnGHIJK 

encodes a protein complex essential for organophosphonate utilization [145], this 

suboperon was detected in sample HS15min. Furthermore, genes phnNP function as 

downstream processing enzymes [148], whereas the phnO gene is unnecessary for 

transport or catalysis, and may therefore have a regulatory role [147]. Finally, as shown 

in Figure 2.18, the phnCDEFGHIJKLMNOP operon displayed varying/decreasing 

expression levels along the operon, another form of the complexity of prokaryotic 

Sample Operons/suboperons

LB (OD=0.87) phnC,  phnD,  phnH,  phnK,  phnL,  phnM,  phnNOP

HS15min phnCD,  phnE,  phnGHIJK,  phnMNOP

HS30min phnC, phnDE, phnGH, phnI, phnJ,phnK, phnL, phnM, phnNOP

HS60min phnC,  phnD,  phnG,  phnH,  phnK,  phnNOP

M-P0h phnCDE,  phnFGH,  phnI,  phnJK,  phnLMNOP

M-P2h phnCDEFGHIJKLMNOP

M-P4h phnCDEFGHIJKLMNOP
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transcriptomes in addition to alternative operon utilization [10]. However, further 

investigation of this phenomenon is out of the scope of this work.    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18. Reads coverage of the genes in the phn operon. The vertical axis is the 

number of reads covered at the position. The orange and dark green bars represent the 

forward and reverse strands, respectively. Segments with arrows represent genes. Genes 

from the right to left are yjdN, phnC, phnD, phnE, phnF, phnG, phnH, phnI, phnJ, phnK, 

phnL, phnM, phnN, phnO and phnP. The graphs were generated using IGB. To make the 

expression levels for the 14 genes in different samples visible and comparable, the same 

vertical axis scale (50) is used for the LB and HS treatments, and the same vertical axis 
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Figure 2.18 (continued) scale (450) is used for M-P treatments. Some positions with low 

read coverage cannot be shown while some other positions with high coverage are 

truncated. Note the varying levels of coverage and gaps along the operon under different 

cultures and growth phases, and again the similar position-dependent non-uniform 

coverage of the reads along the operon. 

 

Another interesting example in our samples is the alternative utilization of the 13-gene 

operon fliFGHIJKLMNOPQR encoding proteins in the flagella of E. coli K12 (Table 2.6 

and supplementary file 5). Although the fli operon was expressed as a 13-gene 

polycistron in sample LB, it was split into short suboperons under the treatments of heat 

shock or phosphorus starvation in a time dependent manner (Table 2.6). For example, at  

 

                          Table 2.6. Reconstruction of alternative fli operons  
 
 
 
 
 
 
 

 

 

the beginning of heat shock (sample HS15min), the fli operon was divided into four 

suboperons, it then was further split into six to seven suboperons (samples HS30min and 

HS60min). Interestingly, it has been shown that heat shock reduces bacterial mobility 

possibly through the regulatory interactions between the heat shock system and the 

flagellum/chemotaxis system [149]. Moreover, it has been indicated that inorganic 

phosphorus is necessary for the motility of bacteria [150]. However, the underlying 

mechanisms of these observations are largely unknown. Therefore, our results might 

provide a possible molecular explanation of these earlier observations:  the extreme 

Sample Operons/suboperons

LB (OD=0.87) fliFGHIJKLMNOPQR

HS15min fliFGHIJK,  fliLMN,  fliOPQ,  fliR

HS30min fliFGH,  fliI,  fliJKL,  fliMN,  fliO,  fliQ,  fliR

HS60min fliGH,  fliI,  fliK,  fliL,  fliM,  fliQ

M-P0h fliFGHIJKLMN,  fliOPQR

M-P2h fliFGHIJKL,  fliMN,  fliOP,  fliQR

M-P4h fliFGHIJKLMNO,  fliPQR
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conditions (heat shock/phosphorus starvation) alter the expression of flagella proteins by 

changing the patterns of alternative usages of the fli operon, thus influence the motility of 

the bacterial cells. 

2.4.6 Verification of Hypothetical Genes 

     Although E. coli K12 is probably the best studied and understood model organism, 

researchers have not completely defined even its coding genes. For instance, there are 

still 36 sequences labelled as hypothetical protein genes as of this writing in the 

RegulonDB [60]. Interestingly, we found that all these 36 hypothetical genes were 

transcribed in at least one of our seven samples (Supplementary file 9), and 21 (b0050, 

b0137, b1356, b1382, b1419, b1446, b1457, b1607, b1952, b1998, b3471, b3638, b3937, 

b4325, b4335, b4336, b4593, b4596, b4610, b4615 and b4620) of them were expressed 

in all the samples, suggesting they are highly likely to be true protein coding genes. 

Furthermore, 20 of them formed multi-gene operons with other known genes 

(Supplementary file 9). The functions of these known genes might provide hints to 

possible functions of the associated hypothetical genes for “guilt by association”.  

2.5 Conclusion 

     In this chapter we present a HMM-based assembly algorithm, TruHmm, for 

assembling prokaryotic transcriptomes. TruHmm is specifically designed to address the 

missing reads problem in the current RNA-seq library preparation procedures and short 

reads NGS technologies. By using a sliding window, TruHmm relieves the negative 

effect of gaps in the transcribed region on assemble, and therefore enhances its power to 

stitch broken segments. When tested on 7 RNA-seq datasets from E. coli K12, TruHmm 

has achieved very high performance measured by five metrics for assembling known 
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operons in the bacterium. Furthermore, TruHmm is able to detect alternative operon 

utilizations under different conditions. We hope that our programs will be useful for 

decoding the dynamics and complexity of transcriptomes in prokaryotes.  

 

  



  

 

 

 

 

CHAPTER 3: PREVALENT ANTISENSE TRANSCRIPTS MODULATE GENE 

TRANSCRIPTION IN PROKARYOTES IN A CONDITION-DEPENDENT WAY 

 

 

3.1. Abstract  

    It has been recently shown that antisense transcription in prokaryotes is more prevalent 

than originally anticipated, and the resulting antisense transcripts may play critical roles 

in the regulation of the activity of the cognate genes. However, little is known about the 

molecular mechanisms and patterns of antisense transcriptions of different genes under 

different growth phases and environmental conditions. In this chapter, we determined the 

transcriptome of E. coli K12 at different growth phases and four different culture 

conditions using directional RNA-seq technique and the TruHmm tool developed in 

Chapter 2. We found that 0.5~29% of the genome had transcripts from both the forward 

and reverse strands, and 13~87% of transcribed ORFs had at least one antisense transcript, 

dependent on growth phases and culture conditions. ORFs could have six different modes 

of transcription in a growth phase and culture condition dependent manner: sense only, 

sense dominant, equal transcription, antisense dominant, antisense only and silent modes. 

Almost all transcribed genes in our dataset changed their transcription modes between 

different growth phases and culture conditions, except for some housekeeping genes. 

Moreover, we found that antisense transcriptions can be initiated anywhere along an ORF, 

but strongly biased and restricted to the 5‟end the ORF, giving hints to the possible 

mechanisms of regulation by antisense transcripts. Therefore, antisense transcription is 
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very prevalent in E. coli K12, and may play important roles in various aspects of the 

bacterium‟s physiology.       

3.2 Introduction 

     Bacterial transcriptomes have long been considered to be composed of mRNAs, 

rRNAs, tRNAs and some small RNAs. In the past few years, applications of high density 

directional tiling array and in particular, directional RNA-seq techniques to prokaryotic 

transcriptome profiling have revealed prevalent transcription from the reverse 

complementary strand of protein coding genes, resulting in antisense RNAs (asRNAs) 

with a length from tens of nucleotides to thousands of nucleotides [10, 11, 16, 109, 132, 

151-154]. asRNAs can overlap the 5‟ end, the 3‟ end, the middle, or the entire gene on the 

opposite strand. It has  been proposed that asRNA can  affect the gene expression by 

several different mechanisms [83]: 1)  An asRNA can induce transcriptional interference, 

as the transcription from the antisense promoter blocks the transcription from the 

promoter of the gene. 2) An asRNA can induce transcriptional attenuation of the gene 

encoded on the opposite strand by changing the target mRNA‟s structure, resulting in 

premature transcription termination. 3) The duplex substrate generated by base pairing 

between the sense and antisense transcripts can either promote or block RNA degradation 

by directly generating or blocking a ribonuclease target site, or indirectly change the 

binding position of the ribonulease. 4) An asRNA can block translation of mRNA  either 

by directly binding to ribosome binding position or indirectly  block ribosome binding by 

impacting the target mRNA structure. All these regulatory mechanisms were proposed 

based on specific sense-antisense partners in the specific cases in different prokaryotic 
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species and strains, however, the prevalent antisense transcription strongly suggest that 

asRNAs might play important roles in the physiology of prokaryotes. 

     E. coli K12 is probably the best known free living model organism [155, 156], where 

novel biological hypotheses and computational algorithms can be tested. Indeed, it is 

mainly through the studies in E. coli K12 that we have understood many fundamental 

biological processes, including the mechanisms of gene transcription regulation [157-

159]. Extensive anti-senses and non-coding transcription have been experimentally 

identified in the E. coli [15, 154, 160], however, the levels of their prevalence can vary 

quite differently from different studies. For instance, Selinger et al. [15] reported that up 

to 4,000 E. coli K12 genes had anti-sense transcription based on a high-resolution 

"genome array", while using RNA-seq technique, Dornenburg et al. [154] only identified 

about 1,000 asRNA in the same genome under similar growth conditions. Therefore, how 

many antisense RNAs are there in the genome? What are the patterns of the antisense 

transcription under different culture conditions? What are their functions?  To answer 

these questions, we applied directional RNA-seq technique to study the patterns of 

antisense transcription in E. coli K12 under a variety of culture conditions and growth 

phases.  

3.3 Materials and methods 

3.3.1 Bacteria culture 

     A frozen stock of Escherichia coli K12 strain MG1655 was thawed, inoculated in LB 

medium in a test tube by 1:100 dilution and cultured overnight at 37 
o
C and 250 rpm. The 

cells were then transferred to fresh LB medium in a flask by 1:100 dilutions, and cultured 

at 37 
o
C and 250 rpm. When the cells grew to the log phase with an optical density at 610 
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nm [OD610] of 1.0, they were spun down at 3,200g for 25 min. For MOPS treatment 

(MOPS), the cell pellets were resuspended in the same volume of MOPS  medium (100 

ml of 10X MOPS mixture, 880ml of sterile H2O, 10ml (0.132M) KH2PO4 and 10ml of 20% 

glucose, Teknova, Hollister, CA). For heat shock treatment (HS), the cell pellets were 

resuspended in the same volume of MOPS medium, and incubated at 48
o
C and 250 rpm. 

For carbon-starvation treatment (M-C), the cell pellets were resuspended in the MOPS 

medium without KH2PO4. Three milliliter cell suspension were collected in a tube 

containing 1.5ml RNA Later (Invitrogen) immediately after the cell pellets were 

resuspended in the indicated medium (0 min) and at the indicated time points thereafter 

(HS:15min, 30min, 1h, 2hrs, 4hrs; MOPS: 1hr, 2hrs, 4hrs, 6hrs; M-C: 1hr, 2hrs, 4hrs, 

6hrs). Cells were spun down at 6,000g, 8 min and -4 
o
C, and the pellets were resuspended 

in 1.5 ml of RNAlater. The samples were stored at -80 
o
C until use.  

3.3.2 Isolation and enrichment of mRNA 

     RNA was isolated using RiboPure
TM

 -Bacteria Kit (Ambion) following the 

manufacturer‟s instructions. Once isolated, ~10 g total RNA was treated with 8 units 

DNase (Invitrogen) twice to remove genomic DNA, and the complete removal of DNA 

was confirmed  by 35 cycles PCR amplification of a 196 bps fragment of the crp gene 

(5‟-primer:AGCATATTTCGGCAATCCAG;3‟-primer:TACAGCGTTTCCGCTTTTTC). 

rRNAs were removed from the total RNA using a MICROBExpress kit (Ambion) to 

enrich mRNAs. 

3.3.3 Construction of directional RNA-seq libraries 

     In our earlier experiments, sequencing was done on an Illumina GAII platform at the 

sequencing core facility of the University of North Carolina at Chapel Hill, and the 
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directional RNA-seq libraries were constructed by following an Illumina‟s instruction 

using their Small RNA Sample Prep Kit with some modifications. Briefly, after the 

purified mRNA was fragmented using a RNA fragmentation kit (Ambion), the 

fragmented RNA was treated with Antarctic phosphatase (NEB) to remove the 5‟-tri-

phosphate groups of RNAs with an intact 5‟-end. A mono-phosphate group was then 

added back to the 5‟-end of RNAs by polynucleotide kinase (PNK, NEB) in the presence 

of 10 mM ATP.  The v1.5 sRNA 3‟ Adaptor  (5'/5rApp/ 

ATCTCGTATGCCGTCTTCTGCTTG /3ddC/) was ligated to the 3‟-end of fragmented 

RNAs using truncated T4 ligase 2 (NEB), and the SRA 5‟ RNA adaptor 

(5'GUUCAGAGUUCUACAGUCCGACGAUC) was ligated to the 5‟-end of fragmented 

RNAs using T4 ligase. To preserve short inserts from small RNAs we omitted the size 

selection step after PCR application of inserts. For our later experiments, sequencing was 

done on an Illumina HiSeq 2000 platform at David H. Murdock Research Institute of the 

North Carolina Research Campus (Kannapolis, NC), and we constructed the directional 

RNA-seq libraries using Illumina‟s TruSeq Small RNA Sample Prep Kit, so that 

multiplex sequencing can be achieved by using the barcoded PCR primers. The details of 

the method will be described elsewhere (Dong, Li and Su). Briefly, after similar 

treatments as described above, the 5‟ Adapter (RA5: 5‟ 

GUUCAGAGUUCUACAGUCCGACGAUC), and 3‟ Adapter (RA3: 5‟ 

TGGAATTCTCGGGTGCCAAGG) were ligated to 5‟- and 3‟-end of fragmented RNAs, 

respectively. Reverse transcription-PCR (RT-PCR) was performed using SuperScript II 

Reverse Transcriptase Kit using the SRA RT primer, followed by 16 cycles of PCR 

amplification. Again, the size selection was omitted on PCR products to preserve short 
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inserts from possible small RNAs. Single-end sequencing on the Illumina GA II platform 

was done with 76 cycles, while that on the HiSeq 2000 platform was done with 100 

cycles. Some samples (M-C1h and M-C2h) were sequenced on both platforms. 

3.3.4 Reads mapping and statistical analysis  

     The genome sequence of E. coli K12 substr. MG1655 was obtained from NCBI 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_

uid57779/). The gene annotation file and the experimentally verified operons in the 

bacterium were downloaded from RegulonDB [60] (http://regulondb.ccg.unam.mx/). A 

total of 4501 annotated genes (also including pseudo genes and non-coding small RNAs) 

are included in this analysis. As the reads were not size-selected during the library 

construction, we trimmed the 3‟ adapters attached to some short insertions. Adapter-free 

reads with lengths of <10 nucleotides (nts) were discarded; the remaining reads were 

mapped to the E. coli K12 genome using Bowtie [125]. For the reads of length 10-14, 15-

29 and ≥30 nts, up to 1, 2, and 3 mismatches were allowed, respectively. Only uniquely 

mapped reads were used for further analysis. The alignment of mapped reads to the 

reference genome was visualized by Integrated Genome Browser (IGB) [133]. We used 

the assembly tool TruHmm we developed in Chapter 2 to assemble transcripts in each 

sample with a window size = 11nt. Different from operon assembly, we omitted the 

stitching step (for detail please refer to chapter 2) to reconstruct the ncRNAs or asRNAs. 

In addition, we used DAVID [161] to analyze functional annotation enrichment for the 

groups of genes.  

3.4 Results and discussion 

3.4.1 Our RNA-seq reads are of high quality 

ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid57779/
http://regulondb.ccg.unam.mx/
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     We prepared the directional RNA-seq libraries from 16 E. coli K12 samples collected 

 
Figure 3.1. Correlation of expression levels of genes between any two replicates for 

samples M-C1h and M-C2h. Each dot represents a gene. The expression level is 

evaluated using log of the NPKB values. A) Correlation of expression levels for M-C1h 

between GAII reads and HiSeq reads. B) Correlation of expression levels for M-C2h 

between two technical replicates sequenced on HiSeq 2000 platform, HiSeq1 reads and 

HiSeq1* reads. C) Correlation of expression levels for M-C2h between two biological 

replicates sequenced on GAII reads and HiSeq1 reads, respectively.  D) Correlation of 

expression levels for M-C2h between GAII reads and HiSeq1* reads. E) Correlation of 

expression levels for M-C2h between HiSeq1 reads and HiSeq2 reads. F) Correlation of 

expression levels for M-C2h between HiSeq2 reads and GAII reads.    
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at the log phase growth in LB, and different time points under MOPS (MOPS), heat 

shock (HS) or carbon starvation (M-C) treatments, denoted as LB0.5, LB1.0, LB3.0,  

 

Table 3.1 Summary of mapping results. 

 

 

MOPS1h, MOPS2h, MOPS4h, MOPS6h, HS15min, HS30min, HS1h, HS2h, HS4h, M-

C1h, M-C2h, M-C4h and M-C6h to reflect the treatment and sampling time points. The 

experimental procedure of our work is listed in Figure 2.7, chapter 2. The libraries were 

sequenced on either Illumina GA II or HiSeq 2000 platforms. Specifically, all the samples 

were sequenced using the HiSeq 2000 platform, except that samples M-C1h and M-C2h 

were sequenced using both HiSeq 2000 and GAII platforms. M-C1h has two biological 

replicates, and M-C2h has four biological/technical replicates, one was sequenced on 

GAII platform, and one was sequenced twice on HiSeq 2000 platform, the other one was 

sequenced on HiSeq 2000 platform. The reads obtained from different platforms for the 

same sample are highly correlated (Figure 3.1), thus the data for the same sample were 

Sample Platform Total reads
Uniquely 

mapped reads

Multipe 

mapped reads

Reads failed 

to map

 Unique 

(%)

Multiple 

(%)

Failed 

(%)

LB0.5 HiSeq 35,456,265 3,141,933 22,113,900 10,200,432 8.86 62.37 28.77

LB1.0 HiSeq 44,278,709 4,753,962 26,356,555 13,168,192 10.74 59.52 29.74

LB3.0 HiSeq 39,089,273 3,400,925 32,077,448 3,610,900 8.70 82.06 9.24

HS15min HiSeq 39,815,593 6,515,460 29,989,690 3,310,443 16.36 75.32 8.31

HS30min HiSeq 34,593,476 5,257,054 25,654,089 3,682,333 15.20 74.16 10.64

HS1h HiSeq 43,645,193 6,602,284 33,886,728 3,156,181 15.13 77.64 7.23

HS2h HiSeq 38,782,211 4,978,191 30,815,704 2,988,316 12.84 79.46 7.71

HS4h HiSeq 43,139,317 3,941,623 35,707,566 3,490,128 9.14 82.77 8.09

MOPS1h HiSeq 28,239,285 4,991,358 21,423,634 1,824,293 17.68 75.86 6.46

MOPS2h HiSeq 34,690,431 5,654,106 26,509,249 2,527,076 16.30 76.42 7.28

MOPS4h HiSeq 32,390,937 6,349,465 23,724,159 2,317,313 19.60 73.24 7.15

MOPS6h HiSeq 42,791,495 3,351,297 36,182,059 3,258,139 7.83 84.55 7.61

M-C1h GAII + HiSeq 53,570,359 3,838,414 44,973,911 4,758,034 7.17 83.95 8.88

M-C2h GAII + HiSeq 52,475,132 2,828,573 45,106,071 4,540,488 5.39 85.96 8.65

M-C4h HiSeq 49,469,000 2,770,743 41,676,190 5,022,067 5.60 84.25 10.15

M-C6h HiSeq 48,903,212 2,410,973 42,052,434 4,439,805 4.93 85.99 9.08
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combined for the analysis. A total of 661,329,888 reads were generated from the 16 

samples. The mapping statistics of the samples are summarized in Table 3.1 showing that 

4.93~19.6% of reads could be uniquely mapped to the genome, resulting in 2,410,973 ~ 

6,602,284 uniquely mapped reads in each sample, corresponding to 52~142 times  

 

Table 3.2. Distribution of mapped nucleotides on coding (sense and 

antisense) and intergenic regions 

 

 

coverage of the genome. Of the 59.52~85.99% multiple mapped reads in each sample, 

over 99.8% were from duplicated tRNA/rRNA genes (data not shown). Furthermore, as  

shown in Table 3.2, in all the samples over 90% and less than 15% of the total mapped 

nucleotides were mapped to the sense strand and intergenic regions, respectively, with 

only 0.14~2.27% of the total mapped nucleotides mapped to the antisense strand. 

Therefore, as we discussed in chapter2, these results indicate that most of our reads were 

from the sense strand, and thus our libraries were highly strand specific.  

    

Sample
Total nt 

counts

Sense nt 

counts

Antisense 

nt counts
Sense %

Antisense 

%

Intergenic 

%

LB0.5 1.69E+08 1.53E+08 1.93E+06 90.29% 1.14% 8.56%

LB1.0 3.25E+08 2.94E+08 2.98E+06 90.29% 0.92% 8.79%

LB3.0 1.99E+08 1.85E+08 1.28E+06 93.23% 0.64% 6.13%

HS15min 4.28E+08 3.87E+08 3.78E+06 90.21% 0.88% 8.91%

HS30min 3.00E+08 2.69E+08 3.15E+06 89.51% 1.05% 9.44%

HS1h 3.54E+08 3.08E+08 5.39E+06 87.02% 1.52% 11.46%

HS2h 2.94E+08 2.58E+08 4.58E+06 87.63% 1.56% 10.81%

HS4h 1.95E+08 1.62E+08 4.42E+06 83.24% 2.27% 14.49%

MOPS1h 2.63E+08 2.43E+08 1.81E+06 92.10% 0.69% 7.21%

MOPS2h 3.54E+08 3.25E+08 2.07E+06 91.94% 0.58% 7.47%

MOPS4h 4.07E+08 3.76E+08 2.91E+06 92.33% 0.71% 6.96%

MOPS6h 2.00E+08 1.91E+08 986918 95.48% 0.49% 4.03%

M-C1h 3.37E+08 3.19E+08 995483 94.87% 0.30% 4.83%

M-C2h 5.57E+08 5.36E+08 1.30E+06 96.29% 0.23% 3.48%

M-C4h 1.17E+08 1.16E+08 159837 98.60% 0.14% 1.27%

M-C6h 1.01E+08 9.94E+07 155885 98.67% 0.15% 1.17%
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      Moreover, as the datasets we analyzed in chapter 2 (Figure 2.10A), the transcriptomes  

in this RNA-seq dataset also have the same gap-problem (Figure 3.2) caused by the loss 

of some RNA fragments during the library preparation due to the highly labile nature of 

prokaryotic RNAs as well as other technical artifacts [107, 111, 162]. Less than 50% 

 

 
Figure 3.2 Distribution of the genes with more than the indicated percentage of 

their length covered by at least one read in the samples: Less than 50% of genes 

have their length completely covered by at least one read. Over 75% genes have 

over 50% of their length covered by at least one read except for samples 

MOPS6h and M-C treatment. 
 

genes in the genome had their length completely covered by at least one read, while only 

less than 90% genes in the genome had at least 10% of their length covered by at least 

one read (Figure 3.2). Most of the samples except those of M-C treatment and MOPS6h 

have over 75% genes with ≥ 50% of the length covered by at least one read (Figure 3.2). 

The poor reads coverage on the gene-coding region is probably caused by the fact that the 
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cells stopped growing and began to die without carbon source as well as in the late stage 

of MOPS treatment when nutrients were exhausted. The reason will be discussed in detail 

later. On the other hand, as shown in Figure 3.3, our uniquely mapped reads consisted of 

well-balanced different sizes of RNA fragments. 

 
Figure 3.3. Distribution of the length of uniquely mapped reads in the samples: A) LB ; 

B) MOPS ; C) HS ; D) M-C, indicating that our library preparation protocol could 

potentially capture small RNA species such as asRNA and ncRNA, which were 

otherwise left out by a typical size selection step in the library preparation process.  

The data have been submitted to NCBI SRA database with accession number XXX. 

 

3.4.2 Antisense transcription is pervasive in E. coli K12 

     To see the source of transcription in the E. coli genome under different culture 

conditions and time points, we counted the percentage of positions of the genome from  
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which both the forward and reverse strands (forward & reverse), only the forward strand 

(forward only), only the reverse strand (reverse only) or neither strand was transcribed, 

respectively. Interestingly, as shown in Table 3.3, except for the samples in the late  

 

Table 3.3.  Summary of the coverage of the E. coli K12 genome by uniquely mapped 

reads on both the forward and reverse strands, on only one of the strands, or with no 

coverage, respectively. The cartoon shows the case of HS1h. 

 

 

phases of M-C treatment (M-C4h and M-C6h) when cells were dying, the proportion of 

the genome that was transcribed from both strands was highly variable under different 

conditions and time points (from 5.8% in MOPS6h to 29.0% in HS1h), while those that 

were transcribed either from forward strand only or reverse strand only strand were less 

Sample

 

Forward 

& 

reverse 

Coding 

region of 

both 

strand 

Forward 

only 

Coding 

region of 

forward 

only

Reverse 

only

Coding 

region of 

reverse 

only

Neither 

strand

Coding 

region of 

neither 

strand

LB0.5 11.1% 85.8% 30.7% 85.0% 32.3% 85.8% 25.9% 82.2%

LB1.0 16.3% 84.8% 31.6% 85.4% 33.2% 86.1% 18.8% 81.4%

LB3.0 8.7% 82.6% 30.4% 85.9% 32.9% 86.3% 28.0% 83.6%

HS15min 20.7% 85.3% 30.2% 83.4% 32.1% 83.8% 17.0% 81.2%

HS30min 17.0% 82.3% 28.9% 79.9% 30.8% 80.8% 23.3% 86.7%

HS1h 29.0% 83.7% 27.7% 80.1% 29.2% 81.5% 14.2% 85.9%

HS2h 26.7% 83.8% 28.8% 80.2% 29.9% 81.6% 14.7% 85.7%

HS4h 25.3% 83.3% 29.0% 80.7% 30.2% 81.5% 15.5% 86.5%

MOPS1h 11.1% 85.9% 30.3% 85.1% 32.2% 85.7% 26.4% 81.8%

MOPS2h 14.3% 85.3% 30.9% 85.1% 33.3% 85.9% 21.5% 81.9%

MOPS4h 18.3% 86.0% 31.0% 84.8% 32.9% 85.7% 17.9% 79.9%

MOPS6h 5.8% 84.5% 27.2% 84.6% 29.0% 85.2% 38.0% 85.0%

M-C1h 6.0% 82.1% 28.1% 85.4% 30.8% 86.0% 35.1% 84.9%

M-C2h 6.6% 85.5% 27.2% 84.2% 29.8% 84.6% 36.4% 84.6%

M-C4h 0.5% 75.1% 11.6% 83.6% 12.7% 83.5% 75.2% 87.9%

M-C6h 0.6% 75.7% 11.9% 84.0% 13.0% 84.6% 74.5% 87.8%

HS1h29% 27.7% 29.2% 14.2%

Forward & reverse
Forward only

Reverse only
Neither strand
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variable and were quite balanced between the two strands (from 27.2% and 29.0% in 

MOPS6h to 31.6% and 33.2% in LB). Furthermore, of the positions where both strand 

were transcribed, around 80% are in gene-coding regions in all the 16 samples, indicating 

that coding regions are more likely to have transcription from both strands. Thus the 

resulting asRNAs might be related to the function of sense transcripts, in agreement with 

the early studies [84, 163]. This conclusion is also supported the condition and time 

dependent changes in the proportion of “forward & reverse” transcription (Table 3.3). For 

example, HS generally induced higher proportions of transcription of both strands at all 

the time points measured (17~29%), while C-starvation resulted in lower proportions of 

both strands transcriptions (0.5~6%), which decreased with the increase in incubation 

time.  Moreover, samples taken at the latest time points of all the four different treatments 

have lower proportions of both strands transcription but highest proportion of neither 

strand transcription, suggesting that when the transcription activity decreased as the 

nutrients were exhausted and the cells became aging, both-strand  transcription also 

decreased.       

3.4.3. Modes of sense and antisense transcriptions  

     In principle, given an ORF on a locus of the chromosome, there are four possible 

transcription modes associated with it: 1) the ORF is transcribed but there is no 

associated antisense transcription (sense-only); 2) the ORF is not transcribed but there is 

associated antisense transcription (antisense-only), 3) the ORF is transcribed and there is 

also associated antisense transcription (sense & antisense), and 4) there is no transcription 

on neither sense nor antisense (silent). We first examined the ORFs with the sense & 

antisense pattern in the 16 samples, to see whether or not there is a correlation between 
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the transcription levels of such ORFs and those of their asRNAs. As shown in Figure 3.4, 

the levels of sense and antisense transcripts of the ORFs are highly correlated in most 

samples except for M-C4h and M-C6h, which behaved quite differently from the others  

 

 
Figure 3.4. Correlations between the expression levels of sense and antisense 

transcripts in all 16 samples. The plots show the dependence of the averaged antisense 

expression level vs. the sense expression level (log2 of NPKB value). The averaged 

antisense expression level is used here considering that one ORF tends to have multiple 

antisense transcripts on the reverse complementary strand. The line y=x aims to sort out 

the stronger signal from the sense and antisense transcripts.  The number in the bottom 

right corner is the Pearson correlation coefficient (PCC). Only the genes transcribed 

with antisense transcription are included in the plot. 
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probably because the cells were dying due to the lack of the most demanding element 

carbon. There were also notable different biases to the sense transcription level in 

different samples (Figure 3.4). As asRNAs are likely to execute their functions by 

forming complementary duplexes with their sense transcripts, to further investigate the  

 
Figure 3.5 Expression levels of genes against the ratio () of gene/antisense transcripts. 

A) LB treatment. B) MOPS treatment. C) HS treatment. D) M-C treatment. The genes 

in the plot are the expressed ones with antisense transcription. The ratio of the 

expression levels of genes over their antisense transcripts are centered at around 1.02 in 

all the samples, except samples M-C4h and M-C6h centered at  =0.99. The interval 

[0.9, 1.1] composed by the two dashed line contains the majority of genes in each 

sample. 

 

relationship between sense and antisense transcription, we plotted the transcription level 

of an ORF as a function of the ratio () of the transcription level to the average 
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transcription levels of its asRNAs (an ORF could have multiple asRNAs).  As shown in 

Figure 3.5, in all the four cultural conditions, the transcription level and the ratio 

 showed a very similar but complex triangular relationship. When the ratio  was in a 

narrow interval around 1, the transcription level of an ORF could vary dramatically 

without a significant change of the ratio (the upper angle), most ORFs fell in this regime; 

when the ratio   is lower than 1, the transcription level of an ORF was positively 

correlated with the ratio  (left angle); when the ratio   is higher than 1, the transcription 

level of an ORF might not change significantly with a dramatic change of the ratio   (the 

right angle). Relatively few ORFs fell in the latter two regimes. They might represent 

three different modes of antisense transcription and thus sub-transcription modes of the 

sense & and antisense mode. Based on the distribution of the  values of the ORFs as 

shown in Figure 3.6 and the above observations in Figure 3.5, we further divided the 

 
 

Figure 3.6. Distribution of ratio (γ) of ORF transcription level to the average 

transcription levels of its asRNAs. 
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sense & antisense transcription mode into three modes: sense dominant (γ > 1.1), equal 

transcription (0.9≤ γ ≤ 1.1), and antisense dominant (γ < 0.9). The interval [0.9, 1.1] was 

chosen because the standard deviation of ratio γ was around 0.1 in all the 16 samples 

(Figure 3.6).  Thus we classify transcription of an ORF into a total of six modes, i.e., 

sense only, sense dominant, equal transcription, antisense dominant, antisense only and 

silent modes. 

     Table 3.4 summarizes the transcription modes of the ORFs in the genome in the 16 

samples. As shown in the table, in all the samples except M-C1h, M-C4h, M-C6h, and 

MOPS6h, more than 60% of transcribed ORFs had at least one asRNA, and on average  

 

Table 3.4 Summary of transcription modes of genes in the 16 samplers according to their 

sense and antisense transcription modes: sense only, sense dominant, equal transcription, 

antisense dominant, antisense only, and silent. The numbers in the parentheses are the 

number of antisense transcripts. 

 
 

 

each transcribed gene had more than one asRNAs. Interestingly, although similar 

numbers of genes were transcribed in all the conditions except carbon starvation (samples 

Sample
Sense  

only

Sense 

dominant

Equal 

transcription

Antisense 

dominant

Antisense 

only

Neither 

strand

Total 

antisense 

Expressed 

genes

Gene with 

asRNA  

(%)

Average # 

asRNA per 

gene

LB0.5 1103 138 (1449) 3061 (5942) 24 (457) 10 (10) 165 7858 4326 74.50 1.82

LB1.0 1163 155 (1279) 3006 (6003) 155 (353) 10 (10) 149 7645 4479 74.03 1.71

LB3.0 1674 121 (842) 2466 (3933) 20 (291) 17 (17) 203 5083 4281 60.90 1.19

HS15min 827 185 (1942) 3344 (6927) 37 (549) 12 (13) 96 9413 4393 81.17 2.14

HS30min 751 200 (2302) 3422 (6829) 38 (762) 15 (15) 75 9908 4411 82.97 2.25

HS1h 547 165 (2686) 3693 (9248) 61 (773) 9 (9) 26 12716 4466 87.75 2.85

HS2h 664 150 (2337) 3587 (8273) 42 (629) 9 (9) 49 11248 4443 85.06 2.53

HS4h 632 177 (2410) 3595 (8209) 47 (605) 18 (18) 32 11242 4451 85.80 2.53

MOPS1h 1349 134 (1259) 2818 (5326) 21 (400) 8 (8) 171 6993 4322 68.79 1.62

MOPS2h 1261 133 (1275) 2932 (5841) 23 (395) 12 (12) 140 7523 4349 71.00 1.73

MOPS4h 1071 136 (1375) 3150 (6626) 30 (390) 11 (11) 103 8402 4387 75.59 1.92

MOPS6h 1928 96 (668) 2135 (2867) 18 (289) 10 (10) 314 3834 4177 53.84 0.92

M-C1h 2293 100 (484) 1700 (2092) 23 (218) 16 (16) 369 2810 4116 44.29 0.68

M-C2h 1608 104 (930) 2487 (4081) 25 (455) 12 (12) 265 5478 4224 61.93 1.30

M-C4h 2735 5 (65) 373 (289) 4 (70) 7 (7) 1377 431 3117 12.26 0.14

M-C6h 2722 12 (54) 377 (310) 3 (61) 5 (5) 1382 430 3114 12.59 0.14
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M-C4h and M-C6h), HS generally resulted in the most pervasive antisense transcription, 

as more than 81% of the transcribed genes had antisense transcription. HS also had the 

highest number of genes with the equal transcription mode, but fewest number of genes 

with sense only transcription (Table 3.4). In contrary, carbon starvation gave rise to the 

least pervasive antisense transcription, as only 12~62% of the transcribed genes had 

antisense transcription. Carbon starvation also had the fewest genes with the equal 

transcription mode, but largest number of genes with sense only transcription (Table 3.4). 

Meanwhile, the nutrient sufficient cultures MOPS and LB induced intermediate levels of 

antisense transcription, as 54~75% of the transcribed genes had antisense transcription. 

They also had intermediate numbers of ORFs with sense only and equal transcription 

modes (Table 3.4). These results strongly suggest that both the extent and modes of 

antisense transcription in the organism are culture condition dependent, stress can 

dramatically change the extent and modes of antisense transcription. Furthermore, the 

number of transcribed ORFs having antisense transcription dropped with the time of 

incubation in all the culture conditions except HS,  and the same was true for the average 

number of asRNA per transcribed ORF, while the number of ORFs with sense only 

transcription increase with time of incubation except HS (Table 3.4). These results 

strongly suggest that both the extent and modes of antisense transcription in the organism 

are also time or growth phase dependent.  In addition, dependent on culture conditions 

and growth phases, the most dominant form of the six transcription modes could be either 

equal transcription or sense only transcription, and the least used form was always 

antisense only, while sense dominant and antisense dominant were in the middle.  Taken 

together, our data indicates that antisense transcription might play an important role not 
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only in stress responses such as HS and carbon starvation but also in nutrient sufficient 

cultures such as MOPS and LB.    

3.4.4. ORFs switch their transcription modes in a time and condition dependent manner 

     We next asked whether or not an ORF switched its transcription mode under different 

growth phases of a culture condition and under different culture conditions. To this end,  

 
Figure 3.7.  Transitions among different transcription modes between two adjacent time 

points in LB, MOPS, HS and M-C cultures. Row represents earlier stage and column 

represents immediate later stage. 

 

we first counted each of all possible 6x6=36 transitions occurring between each two 

adjacent time points under a cultural condition. As shown in Figure 3.7, for all the four 

culture conditions, the most frequently occurring transitions between different modes 

were from equal transcription mode to sense only mode, and from sense only mode to 
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equal transcription nodes, although there were clearly subtle quantitative differences 

among the four conditions. For instance, there were more transitions from equal 

transcription mode to sense only mode under LB, MOPS and M-C cultures, while it was 

not true under HS. There were also considerable transitions from silent mode to sense 

only mode under LB, MOPS and particular M-C cultures, but not under HS culture. 

Furthermore, a large number of ORFs with equal transcription mode or sense only modes 

remained in the same modes between adjacent time points under all the four culture 

conditions examined (Figure 3.7). However, under carbon starvation (M-C), there were 

considerable numbers of transitions from equal transcription and sense only modes to 

silent transcription mode. In summary, the nutrient sufficient LB and MOPS cultures 

induced a very similar transitions pattern of transcription modes of ORFs, which were 

quite different from those induced by stress responses under HS and M-C cultures, 

suggesting that antisense transcription played important roles in the transition of growth 

phases under a variety of culture conditions.    

 

 
Figure 3.8.  Transitions among different transcription modes when cells were 

transferred from LB (OD=1.0) to MOPS, HS and M-C cultures for two hours. Row 

represents earlier stage and column represents immediate later stage. 
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     To further understand the patterns that ORFs changed their transcription modes under 

different culture conditions, we counted each of the 6x6=36 possible transitions by 

comparing an ORF‟s transcription mode in sample LB1.0 to the samples taken 2 hours 

after growing in HS, M-C and MOPS (i.e., samples HS2h, M-C2h and MOPS2h) when 

cells had fully adapted to the new growth conditions. As shown in Figure 3.8, when cells 

transferred from LB1.0 to any of the new growth culture conditions, the dominant 

transitions between different modes were from equal transcription mode to sense only 

mode or sense dominant mode, from sense only mode or sense dominant mode to equal 

transcription mode, while larger portions of ORFs are staying in the same modes of either 

equal transcription or sense only. However, there were striking differences among the 

transition patterns under different new cultures. For instance, for both the LB to MOPS 

and to M-C transfers, there were more transitions from equal transcription mode to sense 

only mode than for the reverse order transitions, but for the LB to HS transfer, the 

opposite was true.  There were also unique transition patterns to specific culture transfers. 

For instance, the transitions from silent mode to equal transcription mode for the LB to 

HS transfer, and the transitions from sense only mode to silent mode for the LB to M-C 

transfer (Figure 3.8). These results again strongly suggest that antisense transcription 

plays a critical role for the adaptation of the bacterium to the environment.     

     Figure 3.9 shows an example of how the gene, sulA encoding the cell division 

inhibitor, switched its transcription mode from equal transcription in LB to sense 

dominant at HS15min and HS30min, back to equal transcription at HS1h and HS2h, and  
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Figure 3.9 Distribution of uniquely mapped reads along the sulA locus in the E. coli 

genome before (LB1.0) and at different time points of heat shock. The vertical axis is 

the number of reads covered at the position. The dark cyan and orange bars at the 

bottom of the graph represent the forward and reverse strands, respectively. The 

arrowed orange segment represents the sulA gene. To make the expression levels for 

sulA and its antisense transcripts in different samples visible and comparable, the same 

vertical axis scale (40) is used for LB1.0, HS15min and HS30min, and the same 

vertical axis scale (390) is used for the other samples.  
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then to antisense dominant at HS4h. Such dynamic changes in transcription mode might 

be explained by the function of the sulA gene: at log growth phase in LB (OD=1.0), the  

 
Figure 3.10. Venn diagram showing common ORFs with the same transcription mode 

among the three samples from LB culture taken at OD=0.5, 1.0 and 3.0. 

 

 
Figure 3.11. Venn diagram showing common ORFs with the same transcription mode 

among the four samples from MOPS culture taken at 1, 2, 4 and 6 hrs after transfer 

from LB1.0 to MOPS. 

 

sulA locus was transcribed with equal transcription mode, so the activity of sulA was 

fined tuned by equivalent amount of its asRNAs. When the cells first responded to heat 

shock, the activity of sulA was enhanced by increased sense transcription and decrease 
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antisense transcription (Figure 3.9), so the locus was transcribed with sense dominant 

mode to prevent the cells from dividing before heat shock induced DNA damage had  

 
Figure 3.12. Venn diagram showing common ORFs with the same transcription 

mode among the five samples from HS culture taken at 15min, 30min, 1 hr and 2 

hrs after transfer from LB1.0 (37ºC) to MOPS (48ºC). 

 

 
Figure 3.13. Venn diagram showing common ORFs with the same transcription 

mode among the four samples from MOPS culture taken at 1, 2, 4 and 6 hrs after 

transfer from LB1.0 to MOPS without carbon (M-C). 
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been repaired. However, when cells gradually adapted to heat shock, SulA was less 

needed, thus the sense transcription decreased while the antisense increased, so the 

activity of sulA was fined tuned in the equal transcription mode. After the cells fully 

adapted to HS, the activity of sulA was attenuated by overwhelmingly larger amount of 

antisense transcription in the antisense dominant mode, thereby the cell division resumed.  

     To understand which ORFs changed and which ORFs remained their transcription 

modes between the time points examined, we analyzed using Venn diagrams ORFs with 

the same transcription mode at different time points under the four culture conditions. As 

shown in Figures 3.10, 3.11, 3.12, and 3.13 for LB, MOPS, HS and M-C, respectively, 

and we have already indicated earlier, there were many ORFs remained the same 

transcription mode of equal transcription and sense only. GO term analysis revealed that 

these ORFs are mainly involved in housekeeping functions. On the other hand, there 

were very few or none ORF sharing the same transcription node of sense dominant, 

antisense dominant and antisense only, suggesting that house-keeping genes were not 

transcribed in these modes. Furthermore, there were always unique ORFs with a certain 

mode of transcription under the four culture conditions, indicating that there are always 

some ORFs changing their transcription to that mode from different ones. Some ORFs 

were shared only by adjacent time points for a certain transcription mode, suggesting 

these genes change their transcription mode slowly, but eventually switched to a different 

one. Some ORFs were shared only by none-adjacent time points, indicating that these 

ORFs return to their original transcription mode after changing to a different one.   

     To understand which ORFs changed and which ORFs remained their transcription 

modes under different culture conditions, we analyzed using Venn diagrams ORFs with 
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the same transcription mode when growing in LB and after being transferred to different 

culture conditions for 2 hours when the cells were fully adapted to the new culture 

conditions. As shown in Figure 3.14, there were larger number of ORFs with sense only 

and equal transcription common to any two, three and all of the four samples (LB1.0, 

MOPS2h, HS2h, and M-C2h), suggesting that these ORFs were transcribed in the same 

mode at least two different conditions. GO term analysis revealed that the common genes 

 

 
Figure 3.14. Venn diagram showing common ORFs with the same transription mode 

when cells were growing in LB and after being transferred to MOPS, HS and M-C for 

two hours.  

 

were mainly involved house-keeping functions. For instance, the 1607 common ORFs 

equal transcription in all the four samples were enriched for housekeeping functions such 

as  amino sugar and nucleotide sugar metabolism (KEGG ID: eco00520), Citrate cycle 

(TCA cycle) (KEGG ID: ecg00020), phage recognition/detection of virus (GO:0009597),  

RNA degradation (KEGG ID: ecj03018),  cell wall macromolecule biosynthetic process 
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(GO:0044038), alcohol catabolic process (GO:0046164), Pentose phosphate pathway 

(KEGG ID: ecr00030), pentose and glucuronate interconversions (KEGG ID: ecf00040), 

bacterial secretion system (KEGG ID: ect03070), etc (Table S1 in supplementary file 1). 

Furthermore, there were ORFs unique to each sample for each transcription mode, 

suggesting that they might be involved in functions of cells under specific conditions. For 

instance, the 345 ORFs unique to sample HS2h with equal transcription were enriched for 

functions of DNA damage-induced stress responses such as mismatch repair (KEGG ID: 

eck03430), homologous recombination (KEGG ID: ecc03440), DNA replication (KEGG 

ID: ecc03030), and base excision repair (KEGG ID: ecf03410) (Table S2). It is well-

known that under some extreme conditions such as heat shock, these SOS response genes 

 

Table 3.5 Number of ORFs with a certain transcription mode in different samples.  

 

 

are induced for the survival of cell through the stress. Thus, our data presented here might 

indicate that this mode of transcription might play a role in fine tuning the expression of 

these SOS genes. Furthermore, the 74 ORFs unique to sample M-C2h (Figure 3.8A) with 

equal transcription mode were enriched for functions of  cell division, cell cycle and cell 

inner membrane, etc (Table S3). However, as ORFs with antisense only mode was all 

unique to a sample, this mode seemed to be restricted on a set of highly unique genes.  

LB MOPS HS M-C LB MOPS HS M-C

Sense only 2341 2792 1654 4057 396 321 102 508 4329 13
Sense dominant 360 404 600 198 7 2 9 0 1097 0

Equal transcription 3792 3900 4295 2958 1810 1386 2304 85 4380 59

Antisense dominant 52 81 155 48 2 0 2 0 272 0

Antisense only 31 31 47 31 0 0 0 0 110 0

Silent 314 406 155 1852 57 50 8 157 1867 8

Union Intersection
Transcription mode

Union of 16 

samples

Intersection of 

16 samples
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     Finally, as summarized in Table 3.5, although there were a large number of ORFs with 

sense only, sense dominant, or equal transcription modes and a considerable number of 

ORFs with antisense dominant or antisense only modes in at least one the 16 samples, 

few or none ORFs with these transcription mode were shared by all the 16 samples,  

 

 
Figure 3.15 Length of assembled antisense transcripts in all the samples. A) LB 

treatment. B) HS treatment. C) MOPS treatment. D) M-C treatment. 

 

except for equal transcription and sense only modes, where 59 and 13 house-keeping  

genes remained in the same mode in all the samples, respectively. Thus the results clearly  
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Figure 3.16.  Relative locations of antisense transcripts on the gene body. 

 

indicate that vast majority of ORFs changed their transcription modes at different growth 

phases and under different environmental conditions. In particular, ORFs with sense 

dominant and antisense dominant seemed to always switch to other transcription modes.  

3.4.5 Antisense transcripts are initiated at and restricted to 5‟ ends  

    As shown in Figure 3.15, the lengths of assembled antisense transcripts varied from 

tens to several thousand nucleotides, but the vast majority antisense transcripts were 

smaller than 150nt. However, asRNAs in samples from different treatments may have 

quite different length distributions. For instance, samples from HS treatment seemed to 

have longer antisense transcripts than other treatments, while samples from M-C 

treatment had much shorter antisense transcripts.  To see whether there was a pattern of 

the location of the short asRNA relative to the ORF on the sense strand, we divided each 

ORF to 10 equal portions (the 5‟UTR also belong to the 1
st
 bin), the relative position of 
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the 5‟end of an asRNA on the gene body determines which percentile this asRNA falls 

into. Figure 3.16 shows the distribution of relative locations of antisense transcripts on 

the gene body. Surprisingly, the majority of antisense transcripts are located to the most 5‟ 

end of the genes or on their 5‟ UTRs, especially for the samples in HS treatment, where a 

lot more genes are highly expressed than in other conditions. Since the antisense 

transcripts near the 5‟ end of gene or in 5‟ UTR can probably interfere with transcription 

on the sense strand or block translation on the sense strand either in a direct or indirect 

way [83], these large amount of antisense transcripts appearing near the 5‟ end are highly 

likely to repress or fine tune the expression on the sense strand. 

 3.5 Conclusion 

     By applying RNA-seq technique to E. coli K12, we reconstructed its transcriptomes 

under different growth phases and culture conditions, and found that antisense 

transcription was a common and widespread phenomenon and was much more pervasive 

than originally anticipated. We found that up to one third of the genome had transcripts 

from both the forward and reverse strands, and between 13 and 87% of transcribed ORFs 

had at least one asRNA, dependent on growth phases and culture conditions. ORFs could 

have six different modes of transcription in a growth phase and culture condition 

dependent manner: sense only, sense dominant, equal transcription, antisense dominant, 

antisense only and silent modes. The modes sense dominant, equal transcription, 

antisense dominant might present different levels of regulation by antisense transcripts.  

Almost all transcribed genes in our dataset changed their transcription modes between 

different growth phases and culture conditions, except for dozens of housekeeping genes 

that tends to remain in sense only or equal transcription modes. Moreover, we found that 
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antisense transcriptions can be initiated anywhere along an ORF, but strongly biased and 

restricted to the 5‟end the ORF, suggesting that a large portion of asRNA might achieve 

the regulation roles through transcription interference or translation blocking. Therefore, 

antisense transcription is very prevalent in E. coli K12, and may play important roles in 

various aspects of the bacterium‟s physiology through modulation transcription or 

translation processes.       

 

 

 

 

 

 

 

 



  

 

 

CHAPTER 4: CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

     This dissertation is an extensive investigation on evolution and dynamics of 

transcriptional regulation in bacteria using a combination of computational and 

experiment approaches. By studying the evolution of LexA regulons in cyanobacteria, we 

furthered our understanding of how the cis-regulatory elements such as the LexA binding 

sites evolve in the closely related species, thereby rewiring the transcriptional regulation 

networks, and how the divergence of cis-regulatory elements plays an important role in 

organisms‟ adaptation to environments during the course of evolution. By developing a 

transcriptome assembler tailored to prokaryotes using RNA-seq short reads, we 

reconstructed the alternative operon structures in the model microbial organism 

Escherichia coli K12 under different growth phases and culture conditions, and 

elucidated the modes of pervasive antisense transcription in a condition and stage 

dependent manner. Elucidation of these rules in bacteria is essential to better 

understanding transcriptional regulatory mechanisms and to the physiology of 

prokaryotic cells. 

     In chapter 1 we utilized a comparative genomic approach to study the LexA regulon in 

cyanobacteria. Specifically, we applied a regulon prediction algorithm [164] that we 

developed earlier to elucidate the evolution of the transcription factor LexA and its 

regulons in cyanobacteria. We found that in most cyanobacterial genomes that we 

analyzed, LexA appears to function as the transcriptional regulator of the key SOS 
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response genes. There are possible couplings between the SOS response and other 

biological processes. In some cyanobacteria like Synechocystis PCC 6803, LexA has 

adapted distinct functions, and might no longer be a regulator of the SOS response 

system. In some other cyanobacteria, lexA appears to have been lost during the course of 

evolution. The loss of lexA in these genomes might lead to the degradation of its binding 

sites. Moreover, we conclude that cyanobacteria inherited the lexA gene from their last 

common ancestor; however, substantial genome-wide turnover seems to have led to the 

high degree of variation of the LexA regulons in some species during evolution. 

Moreover, the divergence within cis-regulatory elements or the binding sites turn over 

facilitates the transcriptional rewiring and phenotypic adaptation. Of course, numerous 

important questions related to this topic remain to be elucidated. For instance, it is very 

interesting to study the co-evolution of the DNA binding domain of a TF and its binding 

sites in a wide spectrum of evolution distances.  

     Chapter 2 focused on development of the HMM-based transcriptome assembler 

tailored to prokaryotes using RNA-seq short reads. Although numerous transcriptome 

assembly algorithms and tools have been developed in the past several years using RNA-

seq short reads generated by next-generation sequencing (NGS) technologies, these tools 

are mainly designed for assembling eukaryotic isoforms, and cannot be used for 

prokaryotic transcriptome assembly. Furthermore, as has been shown earlier [10-14, 101, 

102] and we indicated in this chapter that, the coverage of reads on transcribed regions in 

these studies are highly non-uniform, and there are even numerous zero coverage 

positions in transcribed regions [103-105], leading to gaps in otherwise an overlapping 

mapping of reads to a transcribed region [106-108]. Therefore, we developed a HMM 
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based gap-tolerant algorithm and tool, TruHmm, for simultaneous assembly of full-length 

prokaryotic transcripts using a sliding-window strategy. When evaluated on a directional 

RNA-seq dataset collected in Escherichia coli K12 str. MG1655 (E. coli K12) under 

different culture conditions and time points, TruHmm is able to reconstruct known 

operons with very high sensitivity and specificity. Nevertheless, the limitation of our 

current prototype model is that it can only infer the expression or non-expression state for 

each position on the genome without estimation of the transcription level for one 

transcript to determine the portions of dynamic operons with „stair-case‟ manner, as 

discovered by Guell, et. al [10] in a genome-reduced bacterium. Hence, our model still 

needs to be upgraded to detect the dynamic (varying levels) expression along the 

assembled operon. With this tool, we will reconstruct alternative operons as well as anti-

sense and non-coding expression patterns under various growth conditions and time 

points in E. coli K12 by using a multiplex directional RNA-seq method for capturing 

RNA fragment of various lengths and types. 

      In chapter 3, we analyzed the patterns of antisense transcription in E. coli K12 under 

different growth phase and culture conditions using directional RNA-seq and the 

assembler TruHmm we developed in Chapter 2. We found that up to one third of the 

genome had transcripts from both the forward and reverse strands, and between 13 and 

87% of transcribed ORFs had at least one asRNA, dependent on growth phases and 

culture conditions. ORFs could have six different modes of transcription in a growth 

phase and culture condition dependent manner: sense only, sense dominant, equal 

transcription, antisense dominant, antisense only and silent modes. The modes sense 

dominant, equal transcription, antisense dominant might present different levels of 
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regulation by antisense transcripts.  Almost all transcribed genes in our dataset changed 

their transcription modes between different growth phases and culture conditions, except 

for dozens of housekeeping genes that tends to remain in sense only or equal transcription 

modes. Moreover, we found that antisense transcriptions can be initiated anywhere along 

an ORF, but are strongly biased and restricted to the 5‟end the ORF, suggesting that 

asRNA might achieve the regulation roles through transcription interference or 

translation blocking. Therefore, antisense transcription is very prevalent in E. coli K12, 

and may play important roles in various aspects of the bacterium‟s physiology through 

modulation transcription or translation processes.  Still, many open questions remain in 

the field. For example, how is antisense transcription initiated and regulated? What 

triggers the switch of transcription modes under certain conditions?   Furthermore, for the 

multi-gene operon, which gene is targeted for antisense transcripts? 

     To summarize, first, our investigation on the LexA regulon has largely furthered our 

understanding of the evolution of transcriptional networks in prokaryotes. Second, our 

tool for prokaryotic transcriptome assembling has proven to be very useful for our 

research to reveal the complexity of prokaryotic transcriptome. As RNA-seq becomes a 

routine for probing transcriptomes in prokaryotes, we hope our software can be a useful 

tool for understanding the complexity of transcriptomes and the underlying mechanisms 

in prokaryotic cells. Third, our analyses on alternative operon utilized and antisense 

transcription in E. coli K12 have greatly enhanced our understanding of the prevalence, 

patterns and molecular mechanisms of these two newly discovered important 

transcriptional regulation in prokaryotes.   
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APPENDIX A: LINKS OF SUPPLEMENTARY DATA OF EACH CHAPTER 

  

 

The additional files for chapter 1 can be downloaded from 

http://www.biomedcentral.com/1471-2164/11/527 

 

The supplementary files for chapter 2 and chapter 3 can be downloaded from  

http://bioinfolab.uncc.edu/ShanLi_dissertation_supplementary/ 
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