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ABSTRACT

VOLKAN SEVIM. Students’ understanding of quadratic functions: A multiple case
study. (Under the direction of DR. VICTOR V. CIFARELLI)

The purpose of this study was to explore how individual students understand
various aspects of quadratic functions such as quadratic growth, quadratic
correspondence, quadratic graphs, vertex points, x-intercepts, y-intercept, line of
symmetry, parameters of general quadratic functions, and quadratic equations, in order to
provide detailed characterizations of the scope and depth of students’ understandings of
these concepts. To this end, a qualitative multiple case study methodology was used.
Semi-structured, video recorded, in-depth interviews with three university students and
one high school student, who either recently completed a formal pre-calculus course or
were currently enrolled in a pre-calculus course, constituted the study’s primary data
source. Students were given a twelve problem task instrument and their problem solving
activities were analyzed using cognitive constructivist theories in which the participants’
acts of understanding, bases of understanding, and cognitive structures were explicated
and modeled.

The first case, pseudo named Ken, yielded an understanding of quadratic function
as a unique type of equation where one “solves for y.” The analysis of the second case,
of Sarah, led to the emergence of an understanding of quadratic function as a unique type
of graph where every value of x has only one y value on the parabola shaped graph.
And, three of all four cases suggested a way of understanding quadratic functions as a
collection of things that are compartmentalized in multiple ways. In addition, all four

cases confirmed some of the major findings in the literature on students’ understandings



of functions. All four cases were compatible with both the action view of functions and
the compartmentalization of function knowledge. They thus added to the existing
findings in the literature by providing holistic fabrics of common ways of understanding
quadratic functions.

These findings emerged through several cross analyses between and among the
multiple cases of the study. The design of the study allowed this multiple layers of

analyses, while yielding rich descriptions and explanations throughout.
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CHAPTER 1: INTRODUCTION AND PURPOSE OF THE STUDY

As the current National Council of Teachers of Mathematics standards document
recommends, (NCTM, 2000) helping students make connections among mathematical
concepts in K-12 mathematics classes should be a critical component of the mathematics
curriculum and instruction. To this end, it is important for researchers and educators to
have a substantial knowledge and understanding of how students think and make
connections among mathematical concepts. In order to guide instructional practice on
effective methods that bring about the desired connections and deep understanding of
mathematical ideas, mathematics education researchers are investigating students’
understanding of various mathematics concepts. Although a substantial amount of
research has been conducted concerning the understanding of functions, research on
quadratic functions has been scarce. There have been only a few studies conducted in this
field. While these studies provided much needed knowledge and understanding of how
students think and make connections among certain aspects of quadratic functions, they
have not provided a complete explanation of how individual students think, understand
and make connections among multiple properties of quadratic functions.

According to Ellis and Grinstead (2008), the studies that have investigated
students’ understanding of quadratic functions provided insights into: (1) the ways
students reason about the influence of the parameters a, b, and cin y = f(x) = ax? +

bx + ¢ on the graph of a quadratic function; (2) students’ overgeneralization of the



properties of linear functions to quadratic function tasks; and (3) students’
misconceptions and difficulties in making connections between algebraic and graphical
representations of quadratic functions, and between quadratic equations and quadratic
functions.

In order to further contribute to our developing understanding of how individual
students think, reason and understand various aspects of quadratic functions, additional
research is needed that provides both a more holistic as well as a more complete
description of students’ understanding of quadratic functions. Thus, this study was
designed to address these by providing detailed characterizations of the scope and the
depth of the participants’ fabric of understandings regarding quadratic functions,
including their informal reasoning such as the intuitive quadratic function models they
use and meanings that they associate to the models.

The purpose of this study is to explore how individual students understand various
aspects of quadratic functions such as quadratic growth, quadratic correspondence,
quadratic graphs, vertex points, X-intercepts, y-intercept, line of symmetry, parameters of
general quadratic functions and quadratic equations. The study is intended to contribute
to our in-depth understanding of individual students’ conceptions of quadratic functions
through analysis and interpretation of their mathematical behaviors in an open-ended
problem solving environment. Four students were interviewed in order to obtain rich
descriptions, characterizations and explanations of the scope and the depth of individual
students’ unique fabric of understandings with respect to multiple aspects of quadratic

functions.



Many research questions are yet to be answered in this area of mathematics
education research. Because quadratic functions are one of the most frequently used
families of functions in the 6-12 grade curriculum (perhaps second only to linear
functions), and because their real world applications make them an important part of
school algebra and calculus, it is important that researchers study students’ understanding
of quadratic functions more in-depth.

Prior research has identified some misconceptions and student errors in dealing
with quadratic functions. This study aims to provide a more systematic characterization
of individual students’ rich fabric of conceptions or understandings, reasoning and
meanings about quadratic function concepts using in-depth qualitative data (Oehrtman,
2009). It employs “extensive open-ended tasks to reveal the conceptual structures [or
fabric of understandings or basis of understandings (Sierpinska, 1994)] that students
spontaneously apply to resolve difficult quadratic function problems” (Oehrtman, 2009,
p. 398). Indeed if such knowledge of individual students’ scope and depth of their prior
knowledge and understanding of various classes of functions were made available,
educators could then make more informed decisions in teaching and curricular practices
in school mathematics. This study attempts to analyze students’ understandings of only
one of those classes of functions: quadratics.

This study focuses on explicating students’ understanding of quadratic functions
through description, analysis and explanation. It investigates the ways that individual
students (1) operate with various aspects and properties of quadratic functions in problem
situations, (2) understand various aspects and properties of quadratic functions, and (3)

make connections between various aspects and properties of quadratic functions. The



study addresses the following research questions: What are students’ understandings of
quadratic functions? How do individual students understand and organize various aspects
and properties of quadratic functions? How are these understandings constituted within
situations involving quadratic functions and their properties?

These questions are posed from a cognitive constructivist theoretical perspective
in the field of mathematics education. In other words, as these research questions
indicate, the focus of the study is students’ existing conceptions and mental processes;
not social processes involved in their mathematical learning experiences in classroom
settings. According to this cognitive perspective, the a priori instructional representations
of mathematical ideas are not the primary source of students’ mathematical knowledge
(Cobb et al., 1992). Instead, students’ own constructions constitute their primary
knowledge source. To place this broad theoretical framework into perspective, Cobb’s
(2007) overview of four major theoretical perspectives in mathematics education research
and practice will be provided in the next section.

Because of the qualitative nature of the research questions and the study’s
cognitive constructivist theoretical perspective, a multi case study, with a primary data
source of two sets of 75 minute-long semi-structured clinical interviews with four
participants was conducted. Students’ mathematical problem solving activities within
quadratic function situations were audio taped and video recorded. The students solved
problems that involved both familiar and unfamiliar quadratic function situations. Their
written work and self-evaluations of their mathematics background were also collected as
supplementary data sources. The two semi-structured clinical interviews consisted of

participants responding to a task instrument (Appendices A and B) with several non-



standard problems on translations between graphical and algebraic representations of
quadratic functions that require minimum quantitative calculations (Appendix B). The
tasks were designed as free-response questions, and they required participants to provide
written explanations to either justify their answers or to refute other choices. The
participants of the study consisted of three university freshmen students who recently
completed a pre-calculus course and one newly graduated high school student who
recently completed a sequence of pre-calculus, AP calculus and AP statistics courses. The
following section provides the relevant theory as well as the particular theoretical
framework and constructs used in the study, and a review of existing literature on

students’ understanding of quadratic functions.



CHAPTER 2: RELATED RESEARCH AND THEORY

Cobb’s (2007) account of the current major theoretical perspectives in the field of
mathematics education, which was published in the National Council of Teachers of
Mathematics (NCTM)’s second handbook of research in mathematics education, serves
as a useful overview that provides a theoretical context for the current study.

According to Cobb (2007), four major theoretical perspectives underlie current
research and practice in mathematics education: Experimental psychology, cognitive
psychology, socio-cultural theory, and distributed cognition theory. Below, each
perspective is summarized in order to provide a theoretical context for the study. In-depth
historical origins and more detailed accounts of each perspective can be found in Cobb
(2007) and elsewhere.

Experimental psychology can be best described in terms of its strong emphasis on
using quantitative methods for understanding the effects of manipulable independent
variables, found in classrooms and school settings, on isolatable psychological
characteristics such as student performance. According to Cobb (2007), this perspective
is commonly used by educational policy makers who are concerned mostly with
administrative aspects of schooling. Determining which instructional or school conditions
(as independent variables) contribute to student performance is the primary focus of the
educators and researchers who work within this perspective. In seeking to better manage

the realities of schooling (often from a certain distance), conducting statistical studies that



offer compact group data is the most viable approach for educational administrators.
Within this perspective, an individual student is treated as an abstract, somewhat
statistically constructed, collective entity whose performance is discerned by its deviance
from the group norm that measures collective performance. All educational issues can be
studied quantitatively within this approach.

Cognitive psychology, on the other hand, mainly concerns with cognitive analyses
of specific students’ mathematical reasoning. Within this perspective, internal cognitive
structures and processes are central to research. Characterization, specification and
explication of these structures and the study of specific individuals’ active construction of
increasingly more sophisticated understandings of mathematical concepts are the major
focus of most of such research programs. Under this umbrella of psychology, the
constructivist perspective was originated in the early works of constructivist philosophers
such as Kant, and more recently the genetic epistemology of Piaget and his colleagues in
the Geneva School—not as invariant stages of development but as ongoing processes of
learning. Within this theoretical perspective, learning is viewed as an internal
construction and reorganization of sensory-motor as well as cognitive activity, and an
individual student is considered as an epistemic individual. As Cobb (2007) points,
educational factors regarding the social contexf of teaching and learning are often seen as
unsuitable for explanation from this line of research. Mathematics educators, who
conduct research with this theoretical perspective, explicate domain specific cognitive
frameworks, or develop general learning theories of mathematics. The results of such
studies are especially valuable to practitioners, who need to know their students’ current

knowledge and understanding of various mathematical topics, as well as researchers and



curriculum developers, who need to specify experiential and cognitive developmental
steps toward important mathematical ideas that all students should learn and to
characterize significant shifts that occur in students’ mathematical reasoning as they
study mathematics.

Socio-cultural theory, originating from the works of Russian psychologists
Vygotsky and Leont’ev, focuses on the notion of participation in established cultural
practices. The main area of study is the nature of the supported progressive participation
of members in established (and evolving) cultural practices of a society (Cobb, 2007). In
this perspective, cognition is viewed as inherently social, and learning is characterized as
an internalization process from the ‘inter-mental’ social interactions to ‘intra-mental’
individual thought. Such internalization processes are believed to be accomplished
through full participation in the existing cultural practices and appropriation of signs and
other artifacts of the society. Mathematics educators, who conduct research within this
theoretical perspective, study forms of reasoning inherent in various cultural practices.
The study of mathematical reasoning and cognitive development in out-of-school
settings, in daily life, is very relevant to this perspective. According to Cobb (2007),
throughout the years since its inception in the works of Vygotsky, there has been a shift
of focus within this perspective from studying the relationships between social interaction
and cognitive development to the relationships between cognitive development and
cultural practices (as seen in Leont’ev’s work). This perspective considers individual
students as individuals-in-culture.

Lastly, distributed cognition, as a theoretical perspective, is concerned with the

immediate physical, social and symbolic environments to which cognition extends out.



The activities of individual or small groups of students in such environments are studied
in terms of the ways their cognition is distributed over an immediate system of people
and artifacts. Cobb (2007) argues that distributed cognition theorists in mathematics
education see an individual student as an element of a larger reasoning system. In this
tradition, the roles played by classroom norms, discourse and tool use are valued as
significant cognitive resources that support learning—which is viewed as the increased
relations between the material, social and symbolic resources of the immediate
environment. Such classroom processes are viewed as emergent in the sense that they are
not already established. Activities in real life settings are also investigated in an attempt
to understand how cognition is distributed across elements of this immediate
environment. Cobb (2007) writes: “In addition to questioning whether people’s reasoning
on school-like tasks constitutes a viable set of cases from which to develop accounts of
cognition, several distributed cognition theorists have also critiqued current school
instruction. In doing so, they have broadened their focus beyond mainstream cognitive
science’s traditional emphasis on the structure of particular tasks by drawing attention to
the nature of the classroom activities within which the tasks take on meaning and
significance for students” (p. 26).

As this overview suggests, for the current study, which focuses on explicating
students’ fabric of understandings of quadratic functions through description, analysis
and explanation, and which investigates the ways that individual students operate,
understand, and make connections among various aspects and properties of quadratic
functions in problem situations, theoretical constructs within cognitive psychology were

considered more suitable.
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To address the research questions: What are students’ understandings of quadratic
functions? How do individual students understand and orgénize various aspects and
properties of quadratic functions? How are these understandings constituted within
situations involving quadratic functions and their properties? it was considered to be
necessary to explicate domain specific cognitive frameworks using constructs from this
particular theoretical perspective.

Furthermore, to obtain the desired broad description and systematic
characterization of students’ quadratic function conceptions, qualitative data were
analyzed within the large framework of constructivist thought (and the narrower
framework of cognitive constructivist thought) in mathematics education. As Noddings
(1990) suggests, from this perspective we need to ask: What conceptions do students
hold? What can they do with it? What are the characteristics of their reasoning? “In
research this means that we have to investigate our subjects’ perceptions, purposes,
premises, and ways of working things out if we are to understand their behavior”
(Noddings, 1990, p. 14). “In order to teach well, we need to know what our students are
thinking, how they produce the chain of little marks we see on their papers, and what they
can do (or want to do) with the material we present to them” (Noddings, 1990, p. 15).

Cognitive constructivism, the guiding overall theoretical framework of this study,
focuses on the learners’ internal mental actions and conceptions (Steffe and Kieren,
1994). Characterizing it as a cognitive position as well as a methodological viewpoint,
Noddings (1990) argues that constructivism can be best offered as a post-epistemological
perspective. According to Noddings (1990), constructivism is a form of cognitivism, a

particular perspective in cognitive psychology. She points out that in 1960s and 1970s
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there has been a philosophical shift from behaviorism to structuralism and cognitivism.
Building on Piaget’s work on genetic epistemology, constructivist thought in
mathematics education evolved throughout the second half of the past century to include
many directions (von Glasersfeld, 1995). The central question however remains
unchanged: how do learners, using their existing conceptions, make sense of their
experiences while they are engaged in a mathematical activity? Piaget (1970) offered a
convincing explanation to this, in which individuals construct their knowledge by using
two cognitive processes, assimilation and accommodation, that are triggered by internal
cognitive conflict. According to Piaget (1970), these two processes result in the
resolution of a cognitive conflict or a mental diseqﬁi]ibrium, and thus, in the construction
of higher level equilibriums called schemes. Piaget viewed cognitive structures as
products of development. These structures were seen as not innate but as developed
through the coordination of actions and reflections (Noddings, 1990). “Constructivism is
rooted in the idea of an epistemological subject, an active knowing mechanism that
knows through continued construction” (Noddings, 1990, p. 9). And, according to Piaget,
all construction or all constructive activity begin with base structures called assimilatory
structures (which are themselves constructed).

Noddings writes: “Finally, Piaget’s cognitive constructivism leads logically to
methodological constructivism. The need to identify and describe various cognitive
structures in all phases of construction suggests methods such as the clinical interview
and prolonged observation that permits us to make inferences about the structures that
underlie behavior” (p. 9). As Noddings (1990) further notes, students inevitably have

“multiple selves behaving in consonance with the rules of various subcultures” (p. 12).
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Although not the focus of this study, the participating students indeed came from
“different set of experiences and were exposed to pedagog)} and content about quadratic
functions in varying degrees. The variety of these students’ experiences and
understandings of quadratic functions strengthen the purposes of providing rich
descriptions and explications of large spectrums of fabrics of understandings. Through a
qualitative multiple case study using purposeful selection (Patton, 1990) this research
aims at “achieving representativeness or typicality of the [...] individuals,” and
“adequately capturing the heterogeneity in the population” (Maxwell, 1996, p. 71)
through what Guba and Lincoln (1989) refer to as maximum variation sampling.

Perhaps the first constructivist case study in mathematics education literature that
investigated the mathematical thinking of individual students is that of Erlwanger (1973).
Steffe and Kieren (1994) succinctly summarized Erlwanger’s study of a young child
pseudo-named Benny:

Erlwanger demonstrated the power of interpretive research as well as the need for
alternative methodologies [...]. This work in fact, was also one of the first to focus on
[...] the structural dynamics of an individual, as interpreted from the actions and words of
Benny. (Steffe and Kieren, 1994, p. 718)

Case studies of students with different cognitive structures were also part of
Piaget’s genetic-developmental epistemology research, which included a particular (and
useful) cognitive learning theory. The learning theory of Piaget can be summarized by its
six principles. Gallagher and Reid (1981) provide a clear and detailed description of this
theory. First, according to Piaget, the learning process involves more than observation
and experience. As an infernal process of construction, it requires an internal

coordination of one’s actions and their results. Thus, learning involves reflection on

activity. In addition to performing such activities as looking, touching, moving things
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around, and counting, a learner must also reflect on the results of these activities in order
to learn.

Second, learning is a process of continuously reorganizing on a higher mental
level that which was initially constructed at some lower mental level. While a learner
may abstract physical properties of objects by observation or experience alone,
coordination and reorganization at successive hierarchical levels of cognitive structures
are necessary in order to abstract rules and principles that govern objects. All of these
constructive mental activities are internal and involve continuous reorganization of action
(Gallagher and Reid, 1981).

Third, in Piaget’s learning theory, learning is subordinated to development. In
order for internal construction, coordination and reorganization on a higher level to occur,
learners must first have the capacity to respond to new experiences. In other words, the
necessary development must have already taken place before one can learn. According to
Gallagher and Reid (1981), Piaget and his Geneva School define development as a
spontaneous biological and psychological process, which is an integral part of a person’s
total growth. Once the necessary functions of the body, such as the nervous system and
the intellect, develop, then the relevant constructive mental activities become possible.

Fourth, a feedback process that involves questioning, contradictions and
consequent mental reorganizations is an essential element of learning. Often this process
triggers growth in knowledge. According to this theory, learners are able to self-correct
themselves through successive approximations (Piaget, 1970). When they observe
contradictions between their initial expectations and the actual results of their actions,

they revise their expectations accordingly. Through this process of self-correction, they
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eventually become “able to anticipate a correct solution from the outset” (Gallagher and
Reid, 1981, p. 9).

Fifth, questioning, contradictions and consequent mental reorganizations are
often stimulated by social interaction. Note that although this environmental stimulation
is important, and often leads to acquisition of knowledge, mostly the learner’s own
activity and the internal construction of hierarchical levels of cognitive structures are
responsible for learning. Sixth, understanding lags behind action. According to Piaget,
understanding and conscious realization are not sudden insights. Rather, they are
products of a continual process of reorganization (Piaget, 1970). One of the pedagogical
implications of this la;t principle is that, as Gallagher and Reid (1981) write, if “children
are able to perform tasks successfully without understanding why what they are doing
works” (p. 10), then the goals of instruction must be carefully examined and revised.

These six principles indicate that in addition to experience, reflection and internal
construction are necessary for acquisition of knowledge. They point to the critical role
placed on the learner’s own activity. One of the implications of Piaget’s theory of
learning in designing the current study is that, as we shall see in later sections, the
interview tasks were developed around what students were expected to currently know
and were capable of doing. They had access to the tasks in terms of being able to act on
them, and they were able to meaningfully reflect on their problem solving actions and
processes. In addition, the students were purposefully selected so that they already had
the necessary basic prior knowledge.

As the above theory of Piaget suggests, children are able to observe and

successfully manipulate physical objects through experience at the practical (action)
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level. However, they may have not yet constructed or abstracted the relationships,
principles or rules that govern those objects. If this is the éase, which is believed to be so,
we educators should survey their current levels of understanding (or understandings) and
design learning and teaching environments accordingly. Cobb’s (2007) suggestion
regarding the importance of the development, testing and revising of designs that support
students’ mathematical learning attests to the need for knowing what students understénd
about particular mathematics concepts in the design of effective learning environments.
This theory, especially its sixth principle, can be applied to the teaching of
quadratic functions in a pre-calculus class. For example, we can assert that most pre-
calculus students can successfully use the so-called “completing the square” technique in
order to convert a quadratic expression from its generalr form (ax? + bx + c) to its
standard vertex fofm (a(x — h)? + k). Students may first observe their teacher
completing the square for them, talking out loud: “I make sure that the leading coefficient
of the quadratic polynomial is 1; then I take the middle coefficient of the three-term
expression and divide this middle coefficient by two; then I take the square of this half,
and add and subtract the resulting square in between the second and third terms; and
finally turn the first three terms (of the now five-term expression) into a complete square
and take care of the remairﬂﬁg numbers at the end.” ““What happens if the leading
coefficient is not 1?” “How do you know what to write inside the completed square at the
end?” “What do you do with those fourth and fifth terms at the end?”’ “Or how do you
take care of them?” “Why do you add and subtract the squared term in between the
second and third terms?” or “Do you add first or subtract first?” might be some of the

questions that students could ask.
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This instructional method of telling, demonstrating, modeling, or showing a
sample solution might be considered as very traditional. wa, let’s incorporate a more .
authentic and difficult activity involving the completing the square technique. As Piaget’s
learning theory suggests, students’ understanding lags behind their action and they can
successfully carry out tasks without understanding the underlying principles and rules
that govern mathematical symbols and objects (i.e., without knowing why those rules
work). As an example, consider the following task that requires the same solution
technique. “Sketch the graph of y = x2 + 4x + 9 without using a graphing calculator,
and by transforming the parent graph y = x2.” To start, some students may erroneously
try to shift the parent graph upward vertically by 9 units and then apply a dilation of 4 to
the graph.

In order to establish the falseness of the vertical shift by 9 units and dilation by 4,
the teacher could quickly flash the correct graph on an overhead calculator screen (with a
marked y-axis with point (0,9) in bold letters somewhere far above the correct graph)
that can point at the contradiction between their expectations and the actual graph of the
function. After students are convinced of the falseness of the proposed solution, a
feedback process that involves further questioning, more contradictions and consequent
mental reorganizations through interaction and discourse can be encouraged.
Constructions are made by personal puzzlement, goal-setting, and testing-hypotheses
(Noddings, 1990).

This instructional activity is more compatible with both Piaget’s six principles of
learning and the recommendations of the current reform-based documents such as the

Principles and Standards for School Mathematics by the National Council of Teachers of
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Mathematics (NCTM, 2000). According to NCTM (2000), students should “understand
relations and functions and select, convert flexibly among; and use various
representations for them,” and they should “understand and perform transformations such
as arithmetically combining, composing, and inverting commonly used functions, using
technology to perform such operations on more-complicated symbolic expressions” (p.
296). After students are convinced that the correct graph is not a result of vertical
translation by 9 units, a whole class or small group discussions could ensue. The
classroom teacher could also suggest that in y = x? + 4x + 9 students break 9 into 4 + 5
(using their ‘number sense’) or try an easier related problem such as graphing (x + 1)2,
(x — 1)?, or (x + 2)? by hand and by transforming the parent function y = x2. He or she
could also suggest that students compare the problem to the binomial expansion (a +

b)? = a? + 2ab + b2.

Although these activities are more compatible with constructivist theories of
learning and they may provide students with opportunities to reflect on the results of their
activities and continuously reorganize their conceptions of binomial expressions and their
squares on higher mental levels, the outcomes of students” work wiH depend on what
they currently understand about the constituent parts of the activities and the
mathematical concepts and relationships involved in the task. For instance, a more mature
learner of mathematics may understand x? + 4x + 4 as a single entity (as one
expression) and operate on it accordingly, whereas other learners may understand
x% + 4x + 4 as a ‘problem’ or as an ‘equation.’ It is the purpose of this research study to
elicit student conceptions such as these that help or hinder them in various quadratic

function situations.
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In sum, in designing instructional activities that are consistent with Piaget’s
learning principles, it is hypothesized that students” own nlleaningful mathematical
activity—stimulated by social interaction and led by a feedback process involving self-
corrections and successive approximations—would play a central role toward the goal of
internal construction of the underlying relationships between symbols. Although teaching
is not a focus of the proposed study, the significance of ascertaining students’
conceptions, that are meaningful to them, becomes more transparent when we keep this
practical goal in mind.

In providing a rationale for their choice of students’ understanding of quadratic
functions as a research domain, Ellis and Grinstead (2008) succinctly summarize the
existing research literature on the topic:

Quadratic functions served as an appropriate domain both for its extension
beyond linear functions, thereby providing a site for studying students’ generalizations
across families of functions, and for its relative lack of attention in the literature
compared to work on linear functions. Studies focusing on quadratic functions have
mainly detailed students’ difficulties in a few key areas, including (a) connections
between algebraic, tabular, and graphical representations, (b) a view of graphs as whole
objects, (c) struggles to correctly interpret the role of parameters, and (d) a tendency to
incorrectly generalize from linear functions. (Ellis and Grinstead, 2008, pp. 277-278)

These studies and other broader studies on students’ understanding of quadratic
functions will be discussed next.

Mathematics educators and researchers have offered useful insight into teaching
quadratic functions (Bosse and Nandakumar, 2000; Buck, 1995; Craine, 1996; Edwards
and Ozgun-Koca, 2010; Edwards, 1996; Gibbs, 2006; Moore-Russo and Golzy, 2005;
Movshovitz-Hadar, 1993; Olmstead, 1995; Winicki-Landman, 2001). These practical

suggestions included the exploration of the parameters of a quadratic function, moving

from geometric to algebraic representation of a quadratic function, exploring the graph of
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a quadratic function through graphs of lines, and using historical development of the
concept as a motivating factor.

However, research on this important mathematics concept has been scarce. A few
studies documented students’ difficulties with translations (i.e., horizontal shifts) when
manipulating the graphs of quadratic functions (Zazkis, Liljedahl, & Gadowsky, 2003;
Eraslan, 2008). Ellis and Grinstead (2008) provided some explanation of students’
understanding of the roles played by the parameters in a quadratic function. For example,
they found that two thirds of their eight participants from an urban high scﬁool ina
Midwestern city in the United States identified the parameter a, in y = ax? + bx + c, as
the “slope” of the parabola. These students’ grades in their advanced algebra or
trigonometry classes were in the A-C range, and they were identified as more .articulate
than their peers.

Schwarz and Hershkowitz (1999) and Buck (1995) documented students’
tendencies to generalize from linearity. They found that students often use linear
interpolation and extrapolation in quadratic situations that require non-linear interpolation
and extrapolation. Inappropriate generalization from linearity was also documented in
Zaslavsky’s (1997) seminal study on students’ understanding of quadratic functions.
These studies have mostly explicated student misconceptions regarding quadratic
functions. Leinhardt et al. (1990) offered a definition of misconception as “incorrect
features of student knowledge that are repeatable and explicit” (p. 30).

Thus, prior research has identified some misconceptions and student errors.
Sierpinska (1994) writes: “... how would one practically check that a person’s

understanding is not contradictory with any statement of the theory? There may be an
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infinity of them. It is much simpler to prove that a student’s understanding is not perfect:
one contradiction would suffice. This is why the mathematics education literature is full
of stories of students’ ‘errors,” ‘lack of understanding,” ‘misconceptions,’ ¢
misunderstandings,’ etc. Accounts of good understanding are rare, and those that exist are
often poorly justified” (p. 113). To offer a richer and broader understanding of the ways
students think and understand about quadratic functions, the current study provides a
systematic characterization of students’ conceptions, reasoning and meanings about
quadratic function concepts.

In a study involving over eight hundred tenth and eleventh grade students,
Zaslavsky (1997) investigated conceptual obstacles that may impede students’
understanding of quadratic functions. All participating students had studied quadratic
functions in their mathematics classes at most six months prior to the study. The students
were given a questionnaire with several non-standard problems on translations between
graphical and algebraic representations of quadratic functions that required minimum
quantitative calculations. The tasks were designed as multiple-choice items, and they
explicitly required students to provide written explanations to justify their answers and to
refute other choices.

Zaslavsky’s (1997) study can be considered as the first systematic study on this
topic; and it is used as a backdrop for the subsequent (few) studies on quadratic functions.
It is important for the current study to build on Zaslavsky’s findings on students’
conceptual obstacles, or the stumbling blocks in their thinking and problem solving,
because they provide some of the central components of most students’ understanding of

quadratic functions.
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The results of Zaslavsky’s (1997) study revealed 5 conceptual obstacles
surrounding students’ experiences with quadratic functions: 1 ) The interpretation of
graphical information (pictorial entailments) involves the consideration of only the
visible part of the graph of a quadratic function and not taking into account its infinite
domain. For example, treating a graph as a picture rather than a symbolic representation
of a function with analytical properties led students to infer that there was no y-intercept
when the y-intercept did not show on the graph. 2) The relation between a quadratic
Junction and a quadratic equation also appeared to impede students’ understanding of
quadratic functions. The underlying obstacle relates to equivalent quadratic equations,
which have the same truth-value for any value of the variable in the two equations.
Zaslavsky (1997) noted that students are usually taught that “if two equations are
equivalent they can be treated as if they are the same” (p. 31). In the case of quadratic
functions however, two quadratic functions with the same x-intercepts differ in their
values for all the other x values. In her study, many students constructed a quadratic
function based on only the given x-intercepts and failed to check whether a third point
was on the function. Therefore, they treated quadratic functions as quadratic equations.

3) The analogy between a quadratic function and a linear function refers to

2 &

students’ “excessive adherence to linearity” (p. 33). Despite the fact that no three points
on the graph of a quadratic function are collinear, many students in the study argued that
the midpoint of a line segment connecting two points of a parabola is also on the
parabola. Zaslavsky’s (1997) account for this explanation combines students’ excessive

adherence to linearity with the pictorial entailments of graphs (e.g., if the relevant part of

the parabola looks like a line, it can be treated as a line). Another obstacle related to
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linearity is students’ over-generalization of the characteristics of lines (e.g., constant
slope) to quadratic functions. Zaslavsky (1997) posited that the common use of the letters
a, b and ¢ as coefficients of the standard form of quadratic functions and the letters a and
b as coefficients of linear functions might have caused students to find the difference
quotient between two points on a parabola in order to find the value of the leading
coefficient a.

4) The seeming change in _form of a quadratic function whose parameter is zero is
shown to be an obstacle when students dealt with functions with an equation of the form
y = ax? + bx. Students argued that this quadratic function does not have a y-intercept
because it does not have a “c” value. And the last obstacle, 5) The over-emphasis on only
one coordinate of special points, is related to students’ familiarity with finding only the
missing values of the x and y-intercepts where the other coordinate is fixed-zero. When
asked to determine whether two quadratic functions with equations y = ax? + bx + 1
and y = ax? + bx + 5 have the same vertex, many students responded positively,
ignoring the y-coordinate of the vertex.

Zaslavsky contends that most of the above conceptual obstacles originate from the
prior formal instruction that students have received. According to Zaslavsky (1997), the
students seemed to lack experiences with visualizations of quadratic functions and in
making connections between the symbolic and graphical representations of functions.

Zaslavsky provides two additional observations. In the study, students preferred
translating from equations to graphs over translating from graphs to equations. For
example, in most cases students used the parameters of the given equations to check the

graphs. And although they were able to find the line of symmetry of a parabola by
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reading off of the graph, when determining whether certain points were on the graph or
not, students were not able to utilize the line of symmetry.'Zaslavsky concurs with Vinner
and Dreyfus’ (1989) notion of compartmentalization of knowledge, which seemed to
account for students’ lack of ability to use the line of symmetry to solve other problems.

Although not particularly focusing on quadratic functions, another study that
investigated students’ conceptual understanding of functions is Schwarz and
Hershkowitz’s (1999) large research and development project, which spanned over
twenty years. Schwarz and Hershkowitz’s (1999) study was developed in three
consecutive cycles of curricula, the last of which incorporated an interactive léaming
environment based on multi-representational software and high-level discursive activity.
The focus of the study was to characterize ninth graders’ ‘concept images’ of function
(Vinner and Dreyfus, 1989). As part of this research and development project, authors
report their findings on their comparisons between the nature of students’ function
concept images in the last curricular cycle and of those developed in the previous, more
traditional cycles. Each cycle was based on the same syllabus for a yearlong course that
met 2 or 3 hours per week.

The first curricular cycle of the large project was completed in 1991, and it was
traditional in the sense that the set-theoretic definition of function was presented at the
outset and students worked on examples in their textbooks. The textbook examples were
short and rarely emerged from problem contexts. The second cycle was similar, with the
exceptions that it included more examples of functions besides linear and quadratic
functions (such as polynomial, absolute value and greatest integer functions) and that its

development was informed by research findings from the studies of the first cycle. It also



included different representations of functions and encouraged some exploration of
problem situations. Finally, the third cycle, which was named the Functions Project, “was
based on the cumulative experience drawn from the previous two cycles and on research
and theory concerning the role of multi-representational software in learning the function
concept” (p. 368). In this cycle, students were first encouraged to explore problem
situations involving functions and then they were given a short informal definition of
function. Students had access to either multi-representational software or a graphing
calculator. When exploring problem situations, students were free to choose a function
representation that they wanted to use or to link different representations as they wished.
They worked in small groups and shared their findings in whole-class discussions.

The Schwarz and Hershkowitz (1999) study is important in that it explains some
of the ‘frames of reference’ that students use in coping with unfamiliar function tasks.
Specifically, in characterizing students’ understanding of functions, the researchers
explored three aspects of function ‘concept images’ (Vinner and Dreyfus, 1989), which
they named as: Prototypicality, part-whole reasoning, and attribute understanding.
Prototypicality refers to the prototype functions that students use in handling various
function tasks. According to the authors, prototypes are specific examples of a concept
that serve as frames of reference in coping with unfamiliar tasks. The two most common
prototypical examples of the function concept are linear and quadratic functions. These
prototypes have all the critical attributes of the function concept as well as some
additional self-attributes that are unique to them. Schwarz and Hershkowitz (1999)
investigated whether students used prototypes exclusively or whether their use of

prototypes was beneficial in handling new examples. The second aspect of students’
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function concept images, part-whole reasoning, refers to the ability to recognize a
representative as belonging to a function representation. A representative is defined as a
partial embodiment or display of a function representation. And the third aspect, attribute
understanding, is the ability to recognize the invariants among representatives across
representations. “It is important to note, though, that because of the difficulty of drawing
graphs of functions and computing their values without appropriate tools, linear and
quadratic functions have commonly been the only families of functions taught
systematically” (p. 367). “[It is not clear] however, whether reference to linear or
quadratic functions is a result of their central role in the teaching process or results from
their intrinsic prototypical natures” (p. 367).

While the Schwarz and Hershkowitz (1999) study provided a broad understanding
of how students see functions and their representations, Zazkis et al. (2003) offered an
analysis of a particular property of functions, horizontal translation, in the context of
quadratic function problems. Zazkis et al. (2003) examined how teachers and students
think about horizontal translations in the context of quadratic functions. Ten eleventh and
twelfth grade students, fifteen pre-service secondary teachers and sixteen in-service
secondary teachers were asked to first sketch the graphs of y = x?and y = (x — 3)? and
compare their answers with the graphs of these parabolas displayed on a graphing
calculator screen, and then explain the relationship between the two graphs. Building on
the prior research finding that for many students horizontal translation of functions is
more problematic than other types of transformations (Baker et al., 2000; Eisenberg and

Dreyfus, 1994) the authors searched for possible sources of students’ difficulties with the
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direction of the horizontal translation of functions and looked for ways to remedy the
situation.

Zazkis et al. (2003) reported that half of the students participated in their study
sketched the graph of y = (x — 3)? incorrectly by translating the graph of y = x?2 three
units to the left along the x-axis. These students attributed the inconsistency between their
expectations (that the graph of y = x2 should move three units to the left) and the correct
graph of y = (x — 3)? on the calculator screen to the fact that they forgot to “do the
opposite.” Those students who graphed the parabolas correctly offered no explanation for
how the two graphs are related. Most of the students simply accepted the rule that if a
number is subtracted from x “inside the parenthesis,” then the graph shifts to the right;
and if a number is added to x “inside the parenthesis,” then the graph shifts to the left. All
of the students thought the location of the graph of y = (x — 3)? is counterintuitive and
is the opposite of what they would expect.

The teachers on the other hand, sketched the two graphs correctly. As Zazkis et al.
(2003) state: “Unlike the uniformity in students’ tendency to rely on memorized rules,
there was more variety in teachers’ responses to the interviewer’s request to explain the
movement of the parabola” (p. 441). Nevertheless, the majority of the teachers referred to
the same rule of “opposites” that the students did. Whereas in vertical translation, adding
a number moves the graph up and subtracting a number moves it down, in horizontal
translation, adding a number moves the graph to the left and subtracting a number moves
it to the right. Some of the teachers plotted various points, and preserving the shape and
symmetry of y = x2, connected the points to sketch the graph of y = (x — 3)2. And half

of the teachers argued that the zero of y = (x — 3)?is x = 3, which is also the vertex,
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and therefore the rest of the graph could be sketched by using the notion of symmetry and
preserving the overall shape of the graph. The pre-service and in-service teachers’
explanations did not differ significantly from each other and most of them were not
completely satisfied with the reasons they gave for the counterintuitive direction of the
horizontal translation of y = x?2.

These findings in Zazkis et al. (2003) suggest that the ability to translate y = x?
on the horizontal axis correctly does not imply that the participants understand the
underlying reasons for the direction of the horizontal translation. They viewed the
direction as counterintuitive and their reasons involved memorization, point-wise
graphing and attending to the zeros of functions, and none of the participants (students or
teachers) claimed a satisfactory justification.

Zazkis et al. argue that one of the sources of the participants’ intuitions might be a
conceptual obstacle (Zaslavsky, 1997) that they possess. That is, the over-generalization
of the fact that adding 3 to a number results in the positive translation to the right on the
number line and subtracting 3 from a number results in the negative translation to the left
on the number line (e.g., x = (x — 3)). To substantiate this claim for a potential obstacle
in students’ (counter) intuitions of horizontal translation of functions, Zazkis et al.
provide the following detailed explanation.

“We suggest that the main source of difficulty here is in seeing this algebraic
replacement [substituting (x — 3) in place of x] as a transformation (x moves to (x — 3))
and trying to infer the geometric transformation, the movement of the graph, from the
algebraic substitution. That is to say that the transformation f(x) — f(x — 3) is

simplified to be viewed as x = (x — 3). Such a view is in accord with what Hazzan
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(1999) described as reducing abstraction, which is a strategy used by learners to cope
with complexity” (p. 445).

‘Therefore, the over-generalization of the learners’ experiences with number facts
to reduce f(x) = f(x — 3) into x = (x — 3) with an exclusive focus on the algebraic
representation of functions is what Zazkis et al. offer as the source of learners’ difficulty,
which differs from what Eisenberg and Dreyfus (1994) view the source of difficulty as
visual processing of information or what Baker et al. (2000) view the source as the
complexity of mental construction needed to process a horizontal transformation.

To overcome the above obstacle, Zazkis et al. propose a pedagogical approach
that introduces translations in the context of geometric transformations before students
study functions. It is argued that this pedagogical route can be much more beneficial for
the conceptual understanding of function transformations. This curricular sequence is
also supported by the NCTM’s (2000) geometry standards that introduce informal
transformations such as flips, turns and slides in grades PreK-2. The authors argue that
the traditional instruction of translations of functions in the context of algebraic
representations of functions may be the root of the above conceptual obstacle of reducing
the translation T ((x,y)) = (x + 3,y) or f(x) = f(x — 3) into x = (x — 3). However,
studying translations of functions via geometric transformations can help students to
develop a sense of the translation T((x,y)) = (x + 3,y) of y = x2, whose image can be
described by the equation y = (x — 3)2.

While Zazkis et al. (2003) offer these useful insights into how students think
about horizontal translations of quadratic functions, another study that investigated

students’ understanding of quadratic relations is Vaiyavutjamai and Clements (2006).
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Vaiyavutjamai and Clements studied 231 ninth graders’ understanding of quadratic
equations in Thailand. The authors investigated: (1) students’ ability to solve elementary
quadratic equations and (2) the effects of “traditional teaching approaches” on students’
ability to solve quadratic equations and on their ‘relational understanding’ (Skemp, 1976)
of quadratic equations. Vaiyavutjamai and Clements administered a pre-test (before the
students received instruction on quadratic equations) and a post-test (after the students
received instruction on quadratic equations) that consisted of 18 equations with varying
forms and difficulty levels. They observed all of the participating students in six
classrooms, and interviewed 18 of them before and after instruction. The two interviews
with the students included the following four tasks: Solve the quadratic equations: (1)
(x=3)(x=5=0;(2) x> —x =12;(3) x? = 9; and (4) 2x? = 10x.

The instruction that students received consisted the common instructional
sequence of review, introduction, model example, seatwork, and summary. The rationale
for studying the effects of such traditional instruction was that if traditional instruction is
the most widely used approach around the world (Hiebert at al., 2003), then the effects of
such approach on students’ understanding of quadratic equations need to be known. The
instruction included solving quadratic equations by factorization (and the application of
the “null factor law™), completing the square and using the quadratic formula.

To assess students’ performances on the pre- and post-tests, the authors gave a
score of 1 to a correct response and 0 to a wrong or no response. Overall, the 231
students’ mean score (out of a maximum score of 18) on the pre-test was 1.75 and 6.17
on the post-test. To assess students’ ‘conceptual understanding’ (Hiebert and Lefevre,

1986) of solving quadratic equations, Vaiyavutjamai and Clements developed a rubric
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that draws distinctions between different levels and aspects of students’ understanding.
The scores for each of the four interview tasks ranged between 0 and 4; 0 indicating a
lack of comprehension of a task and 4 indicating correct solution of an equation with the
use of appropriate methods, relating the answers to the equation and checking the
answers if they are indeed the solutions of the equation. The 18 interviewees’ pre-
interview mean score was less than 1 and post-interview mean score was less than 2.
Overall, the interviewees were able to provide a correct answer to most of the four
interview tasks after the instruction (as reflected in the post-interview mean score
between 1 and 2); however they were far from having a conceptual understanding of their
solutions, which would be reflected by a score of 3 or 4.

In addition to the above findings, the authors also observed a misconception about
students’ conceptions of variables in quadratic equations. Most of the interviewees
thought that in (x — 3)(x — 5) = 0 the two x’s stand for different variables. They
substituted x = 3 in (x — 3) and x = 5in (x — 5), and argued that (3 — 3)(5—5) = 0.
Vaiyavutjamai and Clements argue that “at the post-teaching stage a minority of students
in the six classes grasped the concépt of variable in the context of quadratic equations”
(p. 72).

In sum, the literature on students’ understanding of quadratic functions provide
useful information about how students think about quadratic equations, x-intercepts,
prototypical graphs, quadratic function translations, domains and representations of
functions. Although these studies have provided these valuable findings that helped

deepen our understanding of students’ (mis)conceptions of quadratic functions, more
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research is needed in ordér to describe fully what and how individual students understand
various aspects of quadratic functions.

To this end, in the current study, the notion of act of understanding (Ajdukiewicz,
1974; Sierpinska, 1994) is viewed to be more compatible with the purpose of explicating
students’ fabric of actions in quadratic function situations as well as the fabric of their
understandings of quadratic function concepts. The construct of act of understanding
helps interpret how and what the four students were thinking about various aspects of
quadratic functions while solving quadratic function tasks. Briefly, an act of
understanding is defined by Ajdukiewicz (1974) as “an act of mentally relating the object
of understanding to another object” (cf., Sierpinska, 1994, p. 28). Sierpinska (1994)
further develops Ajdukiewicz’s (1974) theory, and defines the ‘another object’ in the
above definition as the basis of understanding. And, lattices of acts of understanding
form the process of understanding. These theoretical constructs and other related theories
will be further discussed in detail in Chapter 3.

In the following section, the details of the design and research methods of the
study that helped explicate these bases of understandings of quadratic functions are

discussed.



CHAPTER 3: RESEARCH METHODS

Research Design

To inform practice about effective teaching strategies and curricular resources that
are built on students” own mathematical conceptions (or understandings) and the
connections they make among them, mathematics education researchers have studied
students’ understanding of various mathematical concepts in-depth. These valuable
efforts however, have not shed light on all concepts of school mathematics that are
considered to be important. For example, research on students’ understanding of
quadratic functions, an important mathematical concept in school curriculum, have been
scarce and have investigated the topic rather superficially. Providing new and more
extensive insights on issues of importance is a significant contribution to the field of
research in mathematics education (Heid, 2010). Thus, unlike earlier work documenting
students’ misconceptions, the purpose of this study is to describe and explain how
students think and reason about quadratic functions. Studying students’ thinking also
enables us “to see how the socially defined, mathematical conventions expressed in
[textbooks] resonate with or deviate from student thinking” (Confrey, 1991, p. 124). Such
insight is especially useful for mathematics teachers and curriculum developers in
designing effective resources and learning environments for students.

In this chapter, first, the research design is discussed in-depth. Second, a

description of the characteristics of participating students is given, and the rationale for
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their selection is clarified. Third, data collection and data analysis methods are explained
in detail. In addition, the results of a pilot study that desigﬁ of the current study are
discussed. Finally, the chapter closes with a discussion of issues regarding validity,
generalizability and ethics.

This study investigates how students understand quadratic functions. To elicit
data that could provide answers to the kind of research questions proposed in this study, a
qualitative case study research design was used. Case study design was chosen as an
appropriate method because the study demanded an in-depth analysis of individual
students’ thinking, reasoning and understanding of quadratic functions in a holistic
manner. For the purposes of obtaining sufficiently rich and varied data, four participants
(cases) were studied.

Semi-structured, video recorded, in-depth interviews with three university
students and one high school student, who either recently completed a formal pre-
calculus course or were currently enrolled in a pre-calculus course, constituted the
study’s primary data source. Each student was considered to have a unique set of
understandings about quadratic functions, and therefore were treated as an individual
‘bounded system,’ or a case (Creswell, 1998; Maxwell, 1996; Yin, 1989; Stake, 1995),
and thematic analyses within and across individual cases were conducted. As Creswell
(1998) succinctly put: “When multiple cases are chosen, a typical format is to first
provide a detailed description of each case and themes within the case, called a ‘within-
case analysis,” followed by a thematic analysis across the cases, called a ‘cross-case
analysis,; as well as assertions or an interpretation of the meaning of the case” (Creswell,

1998, p. 63).
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As Noddings (1990) emphasized, students need building materials, patterns, tools,
and sound work habits in order to construct abstract mathematical relationships. What are
their current building materials, patterns, tools or work habits with regard to quadratic
functions? The answers to this central question of constructivist perspective and other
general research questions of this kind were believed to be obtained only from data rich
in context and embedded within the students’ own individual problem solving activity
(Maxwell, 1996).

Creswell (1998) places qualitative data sources into four categories: Obsewatic;ns,
interviews, documents, and audio-visual materials. Observations provide opportunity to
record verbal and visual information in real time at original settings; interviews allow the
researchers to elicit specific types of information from individual participants; documents
offer the original words of the participants; and audio-visual materials supply rich images
that help easily visualize and share reality (Creswell, 1998). In the current study, two of
the above categories, interviews and documents, were used to obtain the necessary rich
data. In addition, video recording of all the interviews, where students engaged in
problem solving activity, allowed another category of data source, i.e., the audio-visual
materials. According to Creswell, there are also various types of data under each of the
four categories. The current study included two task-based semi-structured interviews
with each participant, a survey of individual mathematics background, students’ work on
the task sheets, and transcriptions of audio and video recordings of problem solving

events. Thus, multiple data sources were used in order to obtain rich data on each case.
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Participant Selection and Data Collection Methods

Four students, who recently completed a formal pré-calculus course, constituted
the cases of this study. After gaining some experience with linear and quadratic functions
in middle school or high school algebra and geometry classes, most students in the
United States formally study quadratic functions in a pre-calculus course. It was desired
that all participating students have had experiences with quadratic functions within a
variety of contexts—in their early algebra and geometry classes as well as pre-calculus
classes. Moreover, it was believed that interviewing students who had some level of
success in the formal study of mathematical functions would provide richer data for the
purposes of this study. Therefore, students who had successfully completed a pre-
calculus course at most one year prior to this study were selected.

Due to the teaching background of the researcher, it was possible for this study to
include as participants students having a variety of experiences with the formal study of
quadratic functions. It was believed that examining a wide spectrum of experiences
would provide rich data in the investigation of students’ understanding of this important
concept. To this end, three university students and one student from a local public high
school participated in the study. The researcher’s prior work place, an urban high school
in a large Southeastern city in the United States, was used in the selection of one of the
participants of the study, i.e., the high school student. The researcher’s current work
place, an urban university campus in the same Southeastern city, provided the other three
participants. The researcher’s existing rapport with three of the students (two of the

university students and the high school student) enabled easier access to participants in
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both schools. The researcher taught the pre-calculus courses that these three students
completed.

At one end of the spectrum of success in pre-calculus, students that have had
somewhat stronger mathematics background and that are substantially more articulate
was preferred. In the study, participants were not only be required to have studied
quadratic functions prior to data collection, but also they were asked to provide detailed
explanations and reasons for their solutions to various non-traditional quadratic function
tasks. At the other end of the spectrum, students who have demonstrated some level of
mastery in pre-calculus (without a strong background in mathematics) were chosen. The
students were also required to have passed their pre-calculus course with a grade of “C”
or better; they all were asked to articulate their thoughts and approaches to all parts of the
interview tasks during their problem solving activities. This spectrum of student
experiences enabled the researcher provide a broader description of students’
understanding of quadratic functions. Such purposeful selection (Patton, 1990) was
desired in a qualitative study that aimed both at “achieving representativeness or
typicality of the [...] individuals,” and “adequately capturing the heterogeneity in the
population” (Maxwell, 1996, p. 71) through what Guba and Lincoln (1989) referred to as
maximum variation sampling.

Two semi-structured one-on-one clinical interviews with each of the four
participants, in which their mathematical problem solving activity was audio-taped and
video recorded, comprise the primary data collection method for this study. The two
interviews (i.e., the initial and subsequent interviews) were semi-structured in that they

included a structured interview protocol (Appendix A) with a fixed set of quadratic
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function tasks (Appendix B), and at the same time they allowed participants to lead the
discussion, based on their own developing purposes, goalé and thoughts, with minimum
input provided by the interviewer (i.e., hints, suggestions, clues or directions). The tasks
were also designed to be open-ended in that they could be solved in multiple ways. Each
student was given a task instrument (Appendix B) with 8 to 12 quadratic function tasks
depending on the pace of their problem solving activities during the two interviews. The
partitioning of the 12 tasks between the two interviews was thus determined based on the
pace and flow of each individual case. Each interview lasted approximately 75 minutes.

The tasks were designed as free-response questions, and they required students to
provide written explanations to either justify their answers or to refute other possible
choices. They were designed to be a mixture of traditional and non-traditional tasks that
require students to demonstrate their knowledge of various aspects of quadratic functions
in a variety of problem solving situations. Some of the tasks were adapted from standard
pre-calculus textbooks, some from existing literature, and some were created by the
researcher. Traditional or standard tasks included those that can be found in common pre-
calculus textbook exercises located at the end of each section or unit (Larson et al., 2001;
Sullivan, 2008; or Dugopolski, 2008). Non-standard tasks were those for which students
had no familiar ways of approaching. They were intended to engage students in an
inquiry into a problematic situation; therefore they were considered as rather unfamiliar,
conceptual and problematic.

For instance, while a traditional textbook exercise may require students to recall a
particular computational skill such as finding the x component of the vertex of quadratic

function graph using a formula, a non-standard task may ask students to compare two or
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more function graphs and reason through their similarities and differences. Most of these
(latter) tasks include translations between graphical and aﬁalytic representations of
quadratic functions that require minimum numerical calculations. As seen in Appendix B,
some of these non-standard tasks ask students to make assessments on what is important
to them, some ask them to self-generate definitions, some, without any symbolic or visual
cue, ask them to coordinate certain aspects of a given quadratic function, and some ask
for the bases on which they interpret certain forms of a quadratic function.

All interviews were conducted at the researcher’s current work place, on a
university campus, in a mathematics education conference room in the Department of
Mathematics and Statistics. In addition to the interview transcripts, the video recordings
and the written work of the students were used as other data sources.

The semi-structured interview enabled the researcher to elicit the ways in which
students’ spontaneously apply their conceptions or understandings of quadratic function
concepts to resolve problematic situations (as presented in the form of interview tasks).
One of the characteristics of clinical interview methodology is that when the participants
are engaging in a problem solving activity, the researcher does not guide them in any
way. The participants are not detached from their own purposes. The researcher tries to
elicit all aspects of the problem solving activity that underlie participants’ mathematical
behavior (including their purposes, perceptions, premises, and ways of working things
out (Noddings, 1990). Therefore this methodology was appropriate for this study that
uses cognitive constructivism as its main theoretical perspective.

During the interviews the researcher made an effort to be conscious of what data

would be useful for answering the research questions and therefore serve the research
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purposes (Creswell, 1998). Interviews provided useful data for investigating how the
individual learners thought about mathematical situations. Researcher also strived to cope
with spontaneous participant inputs during the interviews by frequently asking probing
questions that required further elaboration of meanings and underlying understandings.

Besides the interviews, other data sources included: students’ written solutions to
the tasks, their self-generated diagrams and mathematical expressions, their responses to
the individual mathematics background survey (Appendix C), and the researcher’s
observations throughout the students’ problem solving activity. The interview protocol
included a set of probing questions in order to facilitate students’ problem solving
activity and to ensure the think-aloud description of their attempts to make sense of their
activity.
Data Analysis Methods

After stating the research problem, formulating the research questions, collecting
appropriate data, and providing detailed descriptions of two of the four cases (Case 1:
Ken and Case 2: Sarah) as illustrative examples, thematic qualitative data analysis
techniques were employed in an attempt to best interpret all four students’ quadratic
function conceptions. In order to address the issue of lack of depth inherent in a multiple
case study (Creswell, 1998), as compared to a single case study, the cases of Ken and
Sarah were treated as illustrative cases that were described and analyzed more in-depth.
The resulting descriptions, themes and assertions guided the analysis of the subsequent
cases. In-depth analyses of these two cases also afforded the generation of tentative
models and hypotheses against which the subsequent cases (Case 3: Seth and Case 4:

Joseph) were interpreted. The interviews were transcribed verbatim. The structure of the
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analysis of each case study consisted of: An opening vignette that includes general
information about the participant, the participant’s past mathematical experiences, their
overall approach to and performance on the quadratic function tasks presented in the
interview instrument; selected quotes from the participant’s responses to multiple data
sources that characterize their reasoning and thinking about quadratic functions; and data
analysis and discussion of the findings about the case. For each case, data analysis
included: description, direct interpretation, generation of categorieslor themes, category
aggregation, and generation of patterns among categories (Creswell, 1998; Stake, 1995).
Video recordings and written documents were examined to discern problem solving
episodes that reveal salient aspects of students’ understanding of quadratic function
concepts.

Themes or categories of how students understand quadratic functions, or the ways
they reason about and act on problem situations involving quadratic functions, evolved
through the phases of observation, transcription, in vivo coding, and identifying portions
of interview data that seemed to represent participants’ own meanings.

Video recordings enabled the researcher to not only infer students’ inert actions
but also observe their overt reactions, expressions and gestures. These reactions,
expressions and gestures were included in all interview transcriptions as annotations.
Students’ locélized goals and purposes within clusters of problem solving activity
(Schoenfeld, 1985) were also analyzed. Other theoretical constructs of constructivism,
such as cognitive structure, concept images and acts and bases of understanding were

used as the interactive research process further evolved.
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Results of the Pilot Study

In support of the proposed dissertation research, a i)ilot case study investigating
students’ understanding of quadratic functions was conducted of a high school student,
pseudo-named Tim, who had studied quadratic functions in his pre-calculus honors class
three months prior to the data collection. Tim described mathematics as his favorite and
strongest subject in school. The pre-calculus honors class in which Tim was enrolled was
one of the classes that the researcher taught at the same school. Before taking this pre-
calculus honors class in tenth-grade, Tim took pre-algebra in sixth-grade, algebra (or
Algebra 1) in seventh-grade, geometry in eight-grade, and advanced algebra (or Algebra
2) in ninth-grade. He received A’s in all of these courses. Data for this pilot study
included a 120-minute videotaped semi-structured clinical interview and Tim’s written
work. The interview protocol included a task instrument designed to elicit the student’s
approach to various aspects of functions and equations, as well as his understanding of
quadratic functions. The task instrument seen in Appendix B evolved from this pilot
instrument. The initial analysis confirmed the previous research findings that students can
more easily coordinate representations of functions by generating and plotting points
from a given function rule and that they cannot easily coordinate representations by
looking at a series of coordinate points and generating the function rule that applies to
those points. The table of x and y values that Tim generated in response to a task
(Appendix B, Task 11) includes the set of points {(—2,4), (-1, 2),(0,1), (1,2), (2,4)}.
It seems that once he chooses a few arbitrary points and makes mirror images of them
about the axis of symmetry, he feels confident that connecting all the points would result

in the graph of a quadratic function. Tim seemed to believe that the vertex of a quadratic
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function is where the turn within a symmetric pattern of points occurs. If the points “go
up” to the vertex, then they must “come down” past the vertex. If the points “come
down” to the vertex, then they must “go up” past the vertex. Tim’s investigation of “the
points that could work,” suggested that he coordinated the different coordinate pairs in
his table in a rather unique way, and that he did not make sure that there is a quadratic
function relation between the x and y coordinates of each pair. On the other hand, if he
was given a quadratic function rule he made sure that he applied the rule to every (x,y)
pair.

Issues of Validity, Generalizability, and Ethics

The theoretical framework of the study, constructivism, is a position that is
problem based and methodological. The clinical interview as the primary research
method was dynamic enough to provide ample opportunities to see accurate expressions
of the students’ understandings as he or she negotiated the problematic situations. The
interviews were therefore interactive and included well thought out probing questions.
The variation in the interview tasks was sufficient enough for the tasks and data gathering
to be able to probe into students’ conceptions. In addition, maximum variation sampling
allowed the conclusions to represent the entire range of variation (Maxwell, 1996).

No physical or psychological risk was involved in participating in the study. All
participants were given a pseudo-name, and their identities were kept secret. All data
including the student documents, interview transcripts and video recordings were secured
in a secure location and kept anonymous. An IRB approval was obtained prior to data

collection.
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While these methodological practices are valid, generalizability is a complex
issue. While the results are intended to explain the undersiandings of entire group of
participants, it would be premature to say that the results further predict how other
students view quadratic functions. For example, even though the students demonstrated
understanding that suggests that they would perform well in an academic course that
included quadratic functions, none of the students demonstrated what might be called a
high abstract understanding of quadratic functions in the discipline of mathematics.
Summary

The current study is a qualitative multiple-case study using a constructivist
perspective to examine how students understand quadratic functions. Videotaped
interviews with four participants from a local high school and a university constituted its
primary data source. All participants were required to have been formally introduced to
quadratic functions in a pre-calculus course. Thematic qualitative analyses were
conducted for each case as well as across multiple-cases.

The purpose of this study was to explore how individual students understand
various aspects of quadratic functions such as quadratic growth, quadratic
correspondence, quadratic graphs, vertex points, x-intercepts, y-intercept, line of
symmetry, parameters of general quadratic functions and quadratic equations. The study
is intended to contribute to our in-depth understanding of individual students’
conceptions of quadratic functions through analysis and interpretation of their
mathematical behaviors in an open-ended problem solving environment. Four students

were interviewed in order to obtain rich descriptions, characterizations and explanations



of the scope and the depth of individual students’ unique fabric of understandings with
respect to multiple aspects of quadratic functions.

Many research questions are yet to be answered in this area of mathematics
education research. Because quadratic functions are one of the most frequently used
families of functions in the 6-12 grade curriculum (perhaps second only to linear
functions), and because their real world applications make them an important part of
school algebra and calculus, it is important that researchers study students’ understanding
of quadratic functions more in-depth.

Prior research has identified some misconceptions and student errors in dealing
with quadratic functions. This study aimed to provide a more systematic characterization
of individual students’ rich fabric of conceptions or understandings, reasoning and
meanings about quadratic function concepts using in-depth qualitative data (Oehrtman,
2009). It employed “extensive open-ended tasks to reveal the conceptual structures [or
fabric of understandings or basis of understandings (Sierpinska, 1994)] that students
spontaneously apply to resolve difficult” quadratic function problems (Oehrtman, 2009,
p. 398). Indeed if such knowledge of broad characterizations of individual students’
scope and depth of their prior knowledge and understanding of various classes of
functions, as recommended in NCTM (2000), were made available, educators can make
more informed decisions in teaching and curricular practices in school mathematics.

This study attempted to investigate students’ understandings of only one of those
classes of functions: quadratics. It focused on explicating students’ fabric of
understandings of quadratic functions through description, analysis and explanation. It

investigates the ways that individual students (1) operate with various aspects and
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properties of quadratic functions in problem situations, (2) understand various aspects
and properties of quadratic functions, and (3) make connections between various aspects
and properties of quadratic functions. The study addressed the following research
questions: What are students’ understandings of quadratic functions? How do individual
students understand and organize various aspects and properties of quadratic functions?
How are these understandings constituted within situations involving quadratic functions
and their properties?

These questions were posed from a cognitive constructivist theoretical perspective
in the field of mathematics education. In other words, as these research questions
indicate, the focus of the study was students’ existing conceptions and mental processes;
not social processes involved in their mathematical learning experiences in classroom
settings. According to this cognitive perspective, the a priori instructional representations
of mathematical ideas are not the primary source of students’ mathematical knowledge
(Cobb et al., 1992). Instead, students’ own constructions constitute their primary
knowledge source. To place this broad theoretical framework into perspective, Cobb’s
(2007) overview of four major theoretical perspectives in mathematics education research
and practice will be provided in the subsequent section.

Because of the qualitative nature of the research questions and the study’s
cognitive constructivist theoretical perspective, a multi case study, with a primary data
source of two sets of approximately 75 minute-long semi-structured clinical interviews
with four participants were conducted. Students’ mathematical problem solving activities
were audio taped and video recorded within quadratic function situations that were

familiar as well as unfamiliar to them. Their written work and self-evaluations of their
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mathematics background were also collected as supplementary data sources. The two
semi-structured clinical interviews consisted of participan'ts responding to a task
instrument (Appendix B) with several non-standard problems on translations between
graphical and algebraic representations of quadratic functions that require minimum
quantitative calculations. The tasks were designed as free-response questions, and they
required participants to provide written explanations to either justify their answers or to
refute other choices. Three university freshmen students who recently completed a pre-
calculus course and one newly graduated high school student that completed a sequence
of pre-calculus and AP calculus courses within the last year were chosen as the

participants of the study.



CHAPTER 4: RESULTS

Descriptions of Two Illustrative Cases: Case 1 (Ken) and Case 2 (Sarah)

In order to provide an in-depth analysis of how students understand quadratic
functions, two participants were selected as initial cases, and their mathematical problem
solving activities were described in full. In addition to the verbatim transcripts, these
detailed descriptions enabled the researcher to generate codes, categories and themes
against which the other two participants’ responses were analyzed. These two initial
students were considered as sufficiently articulate, and their responses were observed to
be ample sources for generating working models that guided the subsequent analyses.
The two initial cases were pseudo named Ken and Sarah. They were not selected based
on the strength of their mathematical knowledge. As it will be further clarified, the
analyses aimed at addressing the research questions only, which involved the explanation
of the students’ ways of understanding without focusing on their mathematical validity or
correctness. The two subsequent cases, pseudo named Seth and Joseph, are analyzed in
the cross analysis section.

Case 1 Results: Ken’s Solution Activity.

The first case of this study is a college freshman with a pseudonym Ken. In high
school, after taking Algebra I and Geometry, Ken took Algebra II, Pre-calculus, Discrete
Mathematics and AP Statistics courses. He characterizes his experiences in school

mathematics as “good experiences; most errors come from lack of focus.” In his
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individual mathematics background survey, and in his informal interactions with the
researcher, Ken portrayed himself as confident and reasonébly strong in mathematics. He
claimed that he did not focus too much on academic subjects in high school and rather
p.ut less effort in high school mathematics. As a response to the question “what aspects of
mathematics, if any, do you like the most?”” Ken wrote, in the individual mathematics
background survey, “applying what I know to solve problems I haven’t seen before;
specifically in classes such as chemistry and physics.” When asked “what aspects of
mathematics, if any, do you dislike the most?”” Ken wrote “how much losing focus will
affect your grade: careless mistakes can make a large difference.” In the same survey, he
self-rated the strength of his mathematics knowledge in arithmetic, algebra, geometry,
upper level mathematics, and other mathematical topics such as discrete mathematics and
statistics, on a scale of 1 to 5 (1 being the weakest and 5 the strongest), as 5, 5, 4, 5, and
4, respectively. In other words, other than geometry, discrete mathematics and statistics,
he placed himself in the strongest category.

During both interviews, Ken remained calm and confident as he worked on the
tasks. When he experienced puzzlement or difficulty, he offered explanations that were
consistent with what he said before, and somewhat downplayed his struggles as simple
forgetfulness. This seemed to have helped him avoid major frustrations. Attributing the
inconsistencies in his results to not remembering well certain formulas or properties
seemed to have helped him stay calm and confident. Below are the descriptions of Ken’s

responses to the tasks in the interview task instrument in APPENDIX B.
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Task 1: Describing functions.

Ken started the first task: “In your own words, pleﬁse explain what you think a
“function” is. Feel free to write as much as you like. You may also draw graphs,
diagrams or tables,” by asking whether the researcher wanted him to write out what he
thinks a function is. After receiving a positive response, he continued:

Ken: When you have a function it’s usually a function of something, and how I

usually see it like f of x [writes f(x)] would be a function of x, which to explain

that, it would be... and that would equal y [writes y = f(x)], so ¥ is a function of

x and what that is saying to me that it like an x value if x is 1 that would equal y

[writes y = f(1)] and then y would be equal some value; it could be 3 [writes

vy = 3]. And then a function would usually be some formula that would like for

this one, f of one, it would be x plus 2 would be the function [writes x + 2 next

toy = f(1)] and I use [pointing at x + 2] to plug in the x to solve for y. [4 long
pause] That’s about it.

After being prompted to feel free to draw graphs or diagrams, Ken first drew two
axes and created a table with separate x and y columns and said: “Like for that function
[pointing at y = f(1), ¥ = 3 and x + 2 in Figure 1.1], I can draw what that function is.”
He wrote x + 2, above the x and the y columns, and filled the table with numerical
values he generated [Figure 1.2], and then went on to “draw it out” by plotting the x and
y pairs (1, 3) and (2, 4) [Figure 1.1]. To generate these pairs, as he argued earlier, Ken

used “the formula,” x 4+ 2, “to plug in the x values to solve for the y values.”
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Figure 11. Ken’s Response to Task 1

Figure 1.2 Ken’s First Table

The following excerpt from Ken’s first interview illustrates how Ken recapitulates
what he thinks a function is:

R [Researcher]: So function is ... It is a function of something.

K [Ken]: Uh-huh.

R: And what is that something?

K: What do you mean?

R: Like what is it a function of?

K:Of ...



51

R: What kinds of things it is a function of?

K: The independent variable of a dependent variable.

R: And can you show me what the function is in here? [Pointing at y = f(1),

y =3 andx + 2 in Figure 1.1]

K: It would be a function of x equals x plus 2. [Writes f(x) = x + 2 in Figure

1.1]

R: Uh-huh.

K: Where y would be dependent variable and x be the independent. Because y

depends on x.

In sum, according to Ken, a function is “usually a function of something” and “it
would usually be some formula.” Function is written as y = f(x) where the dependent
variable y is a function of the independent variable x.

Task 2: Describing quadratic functions.

In the second task, Ken was asked to draw a quadratic function in a blank
rectangular box and to (a) explain what makes his graph quadratic, (b) discuss what parts
of the graph are important or special (and why); and (c) give an equation for the graph
that he drew. His initial response to this task was to write ax? + by + ¢ = 0 and assert
that a quadratic function is usually in this form. After stating that this form can also be
written in terms of some other variables, he changed his initial response ax? + by + ¢ =

0 to ax? + bx + ¢ = 0. Then he sketched a graph [Figure 1.3].
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Figure 13. Ken’s Self-generated First Quadratic Graph

When asked what makes this graph quadratic, he wrote: “because it fits the
quadratic formula.” He stated that usually when he sees something that is quadratic, it fits
the formula. At this point, Ken’s explanation suggests that he is thinking of some given
“formula,” not a graph, which somehow fits “the quadratic formula” ax? + bx + ¢ = 0.
He also calls this “the original formula.”

K: And why that’s quadratic, why the formula is quadratic, I don’t really know to

be honest.

R: Can I ask you to explain what this means? [Pointing at Ken'’s response to Task

2a: “because it fits the quadratic formula”)

K: I would say it is quadratic because it is in the form of that equation [pointing at

ax? + bx + ¢ = 0] of the quadratic equation. So that’s why I would say it’s

quadratic. I don’t really know what it means to be quadratic or not. I forgot the

definition of'it.
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R: What is the difference between some equation like this [pointing at ax? +

bx + ¢ = 0] that looks like a quadratic and another equation that is not a
quadratic? Because you know that one of them fits the quadratic function.

K: Uh-huh.

R: And the other doesn’t fit. So how do you know which one fits?

K: Umm. I usually look at the variables, and it’s just I have seen it so much it kind
of sticks out to me whenever I see it. It usually cross, or umm [tracing the graph
that he drew in Figure 1.3 with his pencil in the air] it usually looks like a
parabola so, I just kind of recognized it. Or we are solving a problem I know it’s a
quadratic or not. It’s just like umm basically memorized it. Like don’t really
understand it.

R: That’s okay. When you look at the graph, umm how do you know if it’s a
quadratic graph? Because you drew that as an example of a quadratic function,
right?

K: Uh-huh.

R: Why did you draw that way but not some other way? Some other curve.

K: Just because it did look like an example of something that I know it’s a
quadratic.

R: And what are the important pieces of the graph that are special you think?

K: I would guess that. [ Pause] Can I ask you a question?

R: Yeah yeah.



K: If it is umm, would be like something x squared plus like if it was in the form
of [writes x%and immediately changes it into x3] x cubed plus x squared plus x

plus ¢, would that be a quadratic? [Writes the cubic equation in Figure 1.4]

Figure 14. Ken’s Cubic Equation

R: Hmm. What do you think?

K: I think not.

R: Okay. Why you think not?

K: Just because [’'m thinking of follow the definition of a quadratic cause

quadratic is usually just one [fracing the graph that he drew in Figure 1.3 with his

pencil in the air], where is that it would look like [pointing at the cubic equation

in Figure 1.4, and drawing the cubic graph under the equation] it would go up

and a dqwn and up. Which I don’t think it is a quadratic.

R: Because it doesn’t fit the shape? [Pointing at the graph in Figure 1.3]

K: Uh-huh. Just the model, which would be just one parabola. [Tracing the graph

that he drew in Figure 1.3 with his pencil in the air. Ken does not trace y = x*

with a vertex at the origin. He traces the graph he drew]

For Ken, the important parts of a quadratic graph are the minimum or the
maximum points on the graph and “the ends” of the graph that “go to” positive or

negative infinity. Besides these two characteristics of quadratic graphs, Ken stated that
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the “U-shaped” parabola can be upside down (the “inverse”), but it cannot be sideways.
To provide a rationale for this claim, Ken argued that he remembers the sideways
parabolas [Figure 1.5] have different equations; however he forgot what those equations

were.

Figure 15 Sideways Parabolas

In sum, in this task, Ken drew a graph of a quadratic function [Figure 1.3] without
paying close attention to the details of the graph. He simply sketched a curve that is
somewhat of a “U-shaped,” “one parabola” that has a minimum point and its ends
extending towards infinity. He also argued that the equation of the graph will have the
general or the original form ax? + bx + ¢ = 0. In Task 2c, he wrote f(x) = 3x% + 2x +
4 = ( as an example that could be an equation of a quadratic graph. Ken’s responses to
the questions in this task reveal somewhat of a weak connection, if not a disconnection,
between the ways he thinks about functions in general and quadratic functions in
particular. For example, in terms of functions, Ken sees dependent variables as functions
of independent variables. Moreover, he thinks that one can find the values of a dependent
variable—usually called y, which is a function of some independent variable called x, by
“plugging in” the values of the independent variable in some formula. On the other hand,
when asked about quadratic functions, he insists on a “quadratic formula” or “a general
form” or “an original formula” ax? + bx + ¢ = 0. And, he develops his arguments on
quadratic graphs based on the notions of minimum and maximum points, end behaviors,

the existence of only one parabola, and resemblance to the formula ax? + bx + ¢ = 0. In
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other words, unlike in the first task on functions, he does not explicitly separate quadratic
functions from their graphs. Only towards the end, when the researcher attempts to elicit
the connections that he may make between the concepts of functions and quadratic
functions, he reads off the minimum point on the quadratic graph in Figure 1.3 asx = 1
and y = —3 and writes f(1) = —3. Thus, to this point in the interview Ken does not
indicate any conception of a quadratic relation between two variables, such as values of
one variable being the squares of the values of another variable. There is no explicit
mention of squares, or squaring,.
Task 3: Graphing y = - (x — 4)% + 16.

Ken approached the third task by thinking out loud, asking himself if he
“remembers how to do this.” After circling the negative sign in front of (x — 4)? and
calling it “the inverse over the x-axis,” he drew the little curve at the top corner of his

initial graph [Figure 1.6].

Figure 16. Ken’s Response to Task 3
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He continued with applying a series of transformations to ¥ = x2: he shifted it
four units to the right, moved it up 16 units, and then drew the “inverse” of it by changing
the direction in which the graph opens. Upon probing, he specified some of the points
that the graph passes through by picking two x values, namely x = 0 and x = 1, and
computed the corresponding y values by substituting the two x values in the function
equation.

K: So it would be shifted; the original graph would be just of a simple equation;

would be something like that. [Draws the dotted curve in Figure 1.6]

R: What is that simple equation?

K: That’s just the standard form of the quadratic. Just with the origin at zero, and

it goes up from there.

R: Okay.

K: And then now it’s gonna take that and shift it to the right by four units because

it is x minus four so it is one, two, three, four.

Ken used the terms reflection and inverse interchangeably, and he successfully

coordinated function translations with reflection. Although he stated that a negative sign
in front of a function indicates that its graph is reflected about the x-axis, he successfully
reflected the graph of y = (x — 4)? + 16 about the line y = 16 (and not the x-axis,
y = 0). The fact that he highlighted the line y = 16 [Figure 1.6] suggests that he might
be thinking of applying the function translations to x- and y-axes as well. It is plausible
that he might be thinking of the line x = 4 as “the new y-axis,” the line y = 16 as “the
new x-axis,” and the point (4, 16) as “the new origin.” Furthermore, he somehow

coordinates the multiple transformations that are applied to a particular function. These
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hypotheses will be further analyzed during the discussions of Ken’s responses to Task 4
and Task 11. He offered more explanation to his notion of “inverse” of a graph in these
tasks.
Task 4: Further discussion on quadratic functions.
When asked, in Task 4, how he would explain quadratic functions to a friend who
missed class, Ken stated that one of the more important things that he hasn’t mentioned

: : : -b FVbZ-4
yet is “the quadratic equation” %

K: What this is solving for are the x values on the quadratic.

R: Uh-huh.

K: So it’s, and usually get two values because of the plus or minus.

R: Uh-huh.

K: So x would equal something and x would equal something else. [ Writes

Xint = and Xint =]

It may be worthy of note that Ken first started writing the above expression while

saying: “one of the more important things that I haven’t mentioned yet [a very short

pause]” and stopped at the step “b + V,” and wrote ax? + bx + ¢ = 0 while finishing
his sentence with the phrase: “is the quadratic equation.” It is evident that Ken refers to
the equation ax? + bx + ¢ = 0 by the phrases “general form of a quadratic” or “the
quadratic formula.” He used the phrase “quadratic equation” when discussing ax? +

bx + ¢ = 0 only once. It is rather a curious coincidence that he was writing his “general

s Ny

form” or “quadratic equation” ax? + bx + ¢ = 0, while referring to

quadratic equation.



59

Ken also wrote y = - (x — 4)? + 16 as an example of a quadratic function, which
he just worked on in the prior task, and stated that he wouid also show his friend this
form because it’s easier to graph it. He also asserted that if one factors this form out, they
can obtain something that looks like the general form ax? + bx + ¢ = 0.

K: You can graph it by this probably easier. Because this shows you the

transformations or the things that are happening to the graph.

R: Hmm.

K: Like this would be, umm, that’s the change in y [pointing at the number 16]

yeah.

R: Like the way you did before, you shifted up.

K: Yeah, that would shift the y [pointing at the number 16] and that would shift

the x [pointing at the number 4] and that would inverse it [pointing at the

negative sign in front of (x — 4)?%]. If there is something in front of it [fovering

the tip of his pencil above the negative sign in front of (x — 4)?].

R: What do you mean by inverse it?

K: Umm. Well because it’s outside the parenthesis, it would be reflected over the

x-axis. So it would look like that. [Draws the dotted graph in Figure 1.7]



Figure 1.7 Ken’s Inverse Graph

When the researcher asked Ken to further explain why a negative sign outside the
parenthesis would reflect the graph over the x-axis, Ken said: “when you are solving it, it
just comes out that the y value it would be negative instead of where it would usually be
positive.” Then the researcher showed him the graph [the final graph that is opening
downward] in Figure 1.6 and pointed to him the fact that although there is a negative sign
in front of the parenthesis [iny = - (x — 4)? + 16] the y values between y = 0 and y =
16 are not negative. The below excerpt reveals how Ken reasons about the multiple
transformations that are applied to a function:

K: Well yeah that’s because they were shifted. By sixteen.

R: Hmm.

K: So it’s not so much that the negative, it just, they are opposite of what they

would be without it.

R: What do you mean by that?

K: Actually that is not correct. It’s. [Pause]

R: Opposite of?
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K: Well I guess it is to me. Like the way I’'m thinking about it. Cause if I were to
draw the original one without the negative [draws a new larger graph around the
small graph that is crossed out and opening upward in Figure 1.6] it would look
something like that [pointing at the new larger graph that is opening upward in

Figure 1.6].

R: Uh-huh,

K: And, with it, so the point would be up there [draws a point on the new larger

graph that is opening upward in Figure 1.6, which represents the reflection of the

point (1,7) that was drawn earlier).

R: Uh-huh.

K: And if you were to just make a new like make a new axis I guess [draws a line

through y = 16], so I guess you are flipping over that. [Makes a flipping move

with his right hand over the line y = 16]

R: Hmm.

K: So that’s what I meant by opposite. Which is not really the opposite but the

way I am thinking about it; it is.

Task 5: Solving quadratic equations.

Ken approached Task 5 [Solve 2x? — 7x + 3 = 0] by stating that whenever he
sees a problem like this, he thinks of solving for the x-intercepts; and he would use the
“quadratic equation” to solve for them. Note that, earlier in the interview, he explicitly
stated that the x-intercepts of a quadratic graph are also the x values or the zeros. Thus,

Ken uses several different terms synonymously when referring to the x-intercepts. Before
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using the “quadratic equation,” he first wrote the equation ax? — bx + ¢ = 0 in Figure

1.8, which seemed to model the original equation 2x? — 7x +3 = 0.

Figure 1.8 Ken’s Initial Approach to Task 5

Then, he continued: “the opposite of b, which is positive seven, plus or minus the
square root of b squared, which is negative seven squared, minus four times a, which is

two, times ¢, which is three, divided by two times a, which is two” [Figure 1.9].

Figure 1.9. Ken’s Solution to Task 5

He computed the expression (—7)% — 4(2)(3) using a graphing calculator [that

was provided by the researcher for this particular purpose], and he mistakenly rewrote his

55 BT (—27():)— 120G =25, He found two x values,

original “quadratic equation
x = —0.5 and x = —3. At this moment, he said:
K: Those are the values of x and a lot of times you see them as x plus zero point

five [writes (x + 0.5)] and then x plus three [writes (x + 3)].
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R: What are those? The parentheses you just wrote? These two? [ Pointing at

(x +0.5) and (x + 3)]

K: Yeah, I am trying to remember. Umm, I wanna say that the values of x in the
equation. [Pointing at 2x* — 7x + 3 = 0]

R: Uh-huh.

K: But I cannot really remember. I just know that it’s like that. I can’t think of
why at the moment though.

R: Okay.

K: I think it’s; y equals. [Speaking very quietly]

R: Huh?

K: Yeah, I can’t remember. It’s because that equals something [pointing at

(x + 0.5)]. Oh yeah, that equals zero [writes (x + 0.5) = 0], and then you would
solve for x. They are like the zero [writes (x + 3) = 0], so x equals negative
point five and x equals negative three [writes x = —.5 and x = —3 for the second
time].

R: Uh-huh.

K: That’s why. That’s where it comes from. Because that [pointing at (x +

0.5) = 0 and (x + 3) = 0 by connecting the two equations, in the air, with the tip

of his pencil] that part is, this is supposed to equal zero [adds “= 0" in

+7F (-222)'4(2)(3) = 0]. That balances off the equation [adds “= 0" in if-é =

0]. So once you get that [pointing at _74:F 2 = 0], which is that [pointing at




x = —.5 and x = —3], you are solving for that [pointing at (x + 0.5) = 0 and
(x +3) = 0].

R: Hmm. Okay. When you subtract or add five to negative seven, that’s negative
two divided by four, that’s zero?

K: Yeah.

R: Okay, let’s.

K: I don’t think that’s right.

R: Negative two over four.

K: Which would be negative point five. I am not sure how that [pointing at

_74¥ 2 = 0] relates to that [pointing at (x + 0.5) = 0 and (x + 3) = 0] really, I

just know that there would be x plus that [pointing at 0.5] equals zero. There
[pointing at x = —.5]. Unless I solved it wrong. It could be me that mixed up I’'m
not sure. To check it I would just graph it on the calculator to make sure I did it
right though.

R: How would you check it in the calculator?

K: I would go to y equals and plug in the original equation and I would see where
it crosses the x-axis to make sure it is right.

Ken correctly represented the -b term in the quadratic formula as “the opposite of

b,” which is - (-7) or + 7, but when he simplified it to _7f 2 he mistakenly put -7 instead.

It is unclear whether his two statements about, “a” being 2 and “b” being -7 and “c”
being 3, and that 2x? — 7x + 3 = 0 is ax? — bx + ¢ = 0 might be playing two

conflicting roles and therefore accounting for the mistake. He did not check whether
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x = —.5 and x = —3 are the correct solutions or not. In addition, his interchangeable use

of mathematical expressions and equations and his use of the name “quadratic equation”

— B p— 0 . — -_— -—
for =2+ Yb"—4ac “;ﬁ‘m" seem to have led him to write =Y 27():) DB _ 0 and % =0

without computing the numerical expressions on the left hand sides of these two
equations. There is no evidence that he differentiates, at least intentionally, expressions
(algebraic or numeric) and equations.

Besides using the quadratic formula (or “the quadratic equation™), to solve
2x% — 7x + 3 = 0, Ken argued that one can write 2x> —7x + 3 =0inaformy =
_(x —_)?* + __, where “some value in front and it would be x minus some value
squared plus some value, so it would be in that form; equals y” [as illustrated in Figure
1.10]. One can then “graph the equation” and “solve for x that way.” Recall that Ken sees
x-intercepts, zeros and solutions as the same. Furthermore, one can use a calculator to

“graph the equation” and find the x-intercepts by using its ‘calculate — zero’ feature.

Figure 1.10. Ken’s List of Strategies for Solving Quadratic Equations

Lastly, when asked to solve x2 — 5x + 6 = 0 in a way that is different from the
ways he used in the previous parts of this task, he said he would use factoring. Earlier,
when Ken wrote 2x%2 — 7x + 3 = O in the formy = _ (x — _)? + __, he mentioned that
he forgot what this strategy was called and wrote the label “factoring” in front of

2x% — 7x + 3 = 0 [as in Figure 1.10]. In this last part, however, he referred to



“factoring” x? — 5x + 6 = 0 as writing it in the form (x — 2)(x — 3). In other words, he
corrected himself by going back to Figure 1.10 and circling the label “factoring” and
linking it to (x — 2)(x — 3) instead. He stated: “If you factor this out [x2 — 5x + 6] it
would equal that [(x — 2)(x — 3)] because x times x, or if you ‘FOIL’ it [(x — 2)(x —
3)] back out, it would be x squared minus five x plus six [x? — 5x + 6].”

And then, he said:

K: To solve for x, you; I know how to do it, but I don’t think [ remember

technically why it works, I just know like if you set one of the equations [pointing

at (x — 2)] equal to zero like x minus two equals zero [writes x — 2 = 0] and

solve x that way by algebra [ writes x = 2]. So x equals two; and you can do the

same thing to the other one [wrifes x — 3 = 0] zero and x equals three [wrifes

x = 3].

R: Okay.

K: Yeah. Now that I think about it, I am not sure why you can do that. But.

R: Which one, the zeros?

K: Yeah. Like why you can kinda neglect the f of there [pointing at the (x — 3)

in (x — 2)(x — 3)] and just say x equals this [pointing at x = 2].

R: What do you mean x equals this?

K: Well, like how you can just take only that one [pointing at the (x — 2) in

(x — 2)(x — 3)] and bring it down here [pointing at (x — 2) = 0] and say x

minus two equals zero and just kind of forgetting that part right there [pointing at

the (x — 3) in (x — 2)(x — 3)] but it works, so.
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Ken was not asked to further elaborate on this. Although the current study mainly
focuses on students’ understanding of quadratic functions'; this task and the following
task (i.e., Task 6, which asks students to explain the difference between a function and an
equation) were designed to elicit students’ ways of approaching to all elements of
quadratic functions, including solving quadratic equations. Thus, it would have been
beneficial if the researcher further probed Ken’s thinking about solving equations in the
form (x — 2)(x — 3) = 0. In their study on students’ understanding-of quadratic
equations, Vaiyavutjamai and Clements (2006) observed a misconception that students
displayed regarding the meaning of variables in quadratic equations. Most of their
interviewees thought that for example in (x — 3)(x — 5) = 0, the two x’s have different
values. The interviewees substituted x = 3 in (x — 3) and x = 5 in (x — 5), and argued
that (3 — 3)(5 — 5) = 0. Vaiyavutjamai and Clements argue that “at the post-teaching
stage a minority of students [in the six Algebra 1 classes that they observed] grasped the
concept of variable in the context of quadratic equations” (p. 72). As it will be clearer in
the cross analysis of Ken’s case with the next case, participants of this study also seemed
to have such idiosyncratic conceptions of mathematical expressions and equations.
Neither seemed to conceptualize or use a mathematical expression with multiple terms as
a single entity. Whereas a mathematician or a mathematics educator may see (x —

3)(x — 5) as a single expression, which is a product of two binomial expressions with the
same variable x, and see (x — 3)(x — 5) = 0 as an equation with one variable, students
may perceive (x — 3) and (x — 5) in (x — 3)(x — 5) = 0 as two ‘equations’ or two
‘problems.” There is evidence that Ken views expressions such as (x — 3) and (x — 5) as

two ‘equations’ or two ‘problems.” He frequently refers to expressions as equations.
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Task 6: Describing the difference between an equation and a function.

To Ken, there are several differences between a function and an equation. The

main difference is that in an equation one solves for a variable (to find the value of that

unknown variable) whereas in a function one uses the values of x to “solve for y.” In

addition, functions have equations in them, and functions “always come out to be

graphs.”

K: Well like I said before a, well, in an equation, it’s something equals something
else, which is the same as function I guess but. [Speaking quietly]

R: What do you mean?

K: I can recognize the difference; I am just thinking of like a way to word the
difference.

R: Give an example.

K: Yeah, well, a function will always be a function of something [writes f(x)]

equals some equation [writes f(x) = in Figure 1.11], and the equation

itself is I guess I can use a quadratic [pause], that’s an equation [writes 2x? +

3x + 4 = 0 in Figure 1.11] and for an equation you’re usually just solving for a
variable umm, in a function it’s usually, it’s, there are equations in functions and
[rewrites f(x) = in Figure 1.12 and writes “solve for variable” in
Figure 1.13] what makes a function different is that [pause] it’s hmm it’s usually
like you like you’re using an equation to solve for something else. That’s not

right.

R: What does that mean? What do you mean?
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K: It’s like with the function it’s it would always come out to be a graph so a
function of x would be x squared plus two [writes' f(x) =x*+ 2 in Figure 1.12].
R: Uh-huh.

K: And then, you’re using you for this one [pointing at f(x) = x* + 2] you are
basically plugging values for x to come up with the values for y.

R: Uh-huh.

K: And a way I remember learning it is that you plug in put in the value, say x
[draws the function box in Figure 1.12, writes the label x above the first arrow],
this is the function itself [writes the word function inside the box|, and you come
up with the value y [writes the label y above the second arrow], so it’s taking
something to get another value whereas in an equation you’re just solving for

something.

Figure 1.11. First Part of Ken’s Response to Task 6
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Figure 1.12. Second Part of Ken’s Response to Task 6

Figure 113 Third Part of Ken’s Response to Task 6

Ken later added that if he takes a function like the one Figure 1.14, which he
remembers as a piecewise-defined function, one can use different “equations” to find the
y values. When asked what he means by “equations,” [Figure 1.14], Ken confidently and

quickly circled the two expressions x2 + 2 and x.

Figure 114 Fourth Part of Ken’s Response to Task 6

K: That’s for the first one and that’s for the second one.

R: Okay.

foeel]

R: In the equations x? + 2 and x, which variables are you solving for?

K: Oh, well it’s, they actually are kind of more different because this is not just
[pointing at the circled x in Figure 1.14] wait. It would have to be equal to

something else for it to be an actual equation.
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R: Oh, okay so they are not actual equations [pointing at the circled x* + 2 and x

in Figure 1.14].

K: No.

R: What are they?

K: They are functions. Well [pause], yeah. They are function of x [pointing at

‘f(x)’in Figure 1.14]. Never thought about it before.

It is evident that Ken thinks of functions as some sort of processes, or collections,
in which one uses x values to solve for y values, draws graphs out of those x and
y values, or simply writes them in an equation form as “f of x equals something.” In
other words, f(x) = ___, where a function f, of some independent variable x, equals
some “equation.” He summarizes the difference between an equation and a function:

K: I guess an equation it’s like you are given an equation and you are solving for

the variables, whereas a function, you are given a function of something and

you’re trying to [a short pause] graph it. Cause it’s, a function usually comes out
as a graph. Because it’s, you like, you might be given the x variables and you
have to solve for the y variables.

He also states that in an equation “a variable has discrete values, whereas in a
function it changes depending on what you use.” In other words, the value of an unknown
in an equation doesn’t change “because it is set to a discrete number” such as zero or,
say, sixteen. In addition, because of equations’ and functions’ respective discrete and
changing natures, Ken posits that he can turn an equation into a function by simply
writing “= f(x)” at the end of an equation. He writes: 2x 4+ 3x + 4 = f(x).

K: Two x plus three x plus four equals a function of x.
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R: Uh-huh.

K: I just denote that it is a function.

R: Whereas if you replace that f of x with sixteen I think.

K: Then it’s a set value and you are solving for the, yeah it’s a set value, you are

solving for x.

Task 7: Finding the vertex of f(x) = 6x — x2.

Ken first suggested that he can graph this function using a graphing calculator, but
without it he would need f(x) = 6x — x? written in a different form. Earlier in Task 3,
he graphed y = —(x — 4)? + 16 by applying a series of transformations to the graph
of y = x2; therefore his approach to graphing quadratic functions is consistent with his
suggestion to rearrange the given equation f(x) = 6x — x2. After writing the function in
the form y = a (x — h)? + k he can graph it and look at its minimum or maximum point.
He clearly stated that he does not know how to find the vertex by looking at f (x) = 6x —
x?. He also said: “If I really wanted to, I guess I would just plug in values of x until I
found the vertex [while hovering the tip of his pencil above the graph paper and making a
swinging motion] it’s kind of long way to do it.” In his first attempt to rearrange the
given equation, he “pulled out the x” and wrote: x(6 — x). Not pleased by this form, he
then wrote —x? + 6x and said:

K: Makes more sense. Oh, there is a formula you can use to find out the x the

vertex of the x.

R: Uh-huh.

K: Forgot what it was though. I think it’s opposite of b over two a?

R: Uh-huh.
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K: I think that’s right. So it would be negative six over two minus negative one,
so it’s negative six divided by negative two, which equals three. So x of it umm
some three value [marks the point (3,0) on the x-axis of the graph paper very
lightly in Figure 1.15], and for the y [pause], oh if you plug in the three because
it’s a function of x [pointing at f(x) = 6x — x?].

R: Uh-huh.

K: So by plugging in the three then you can solve for what the y value is, so,
negative x. I’'m just going to use this [pointing at f(x) = 6x — x?] when solving
because it’s the negative that’s confusing me [pointing at “-x* + 6x 7] six
know I don’t wanna make a careless mistake.

R: Uh-huh.

K: Three squared, six times three would be eighteen minus nine, which would
equal nine. So then that’s the y value.

R: Uh-huh.

K: And it’s usually, the fact that that’s a function [pointing at f (x) = 6x — x?] so
it’s one, two, three, four, five, six, seven, eight, nine. That’s the vertex. [Plots the

point (3,9)]
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Figure 115. Ken’s Response to Task 7

And, upon the researcher’s request, he sketched thé graph in Figure 1.15. Ken
mentioned that it is “clearly inverted again” because of the negative sign in front of the x
squared. He also stated that he can “plug in some more points to find out some actual
coordinates” since the more points “the more accurate it would be.”

In response to the question: Can you make up a quadratic function with no vertex?
Ken said: “no, it is part of the definition of what a quadratic is.”

R: And what did you say about quadratic functions? I think we taught your friend

there [refers to Task 4].

K: I think it is there but I used it when we [picks up his Task 2 sheet] here. That’s

what I did just something that made it special or important that it had a minimum

or maximum value and the minimum or maximum is basically the vertex of the
graph.

R: Umm.

K: Yeah.

R: And without a minimum or a maximum.

K: Then it’s not a quadratic function anymore.

Task 8. Finding x-intercept, y-intercept, line of symmetry, and vertex.

Ken approached this task by comparing the four function equations for f, g, h
and k to the functions that he worked on in the previous tasks. He stated that the h
function is very similar to the one he worked on in Task 7, “except for the negative sign.”
He then started the task by investigating the x-intercepts and said that in the k function,

one can set each of the factors equal to zero ((x — 3) = 0 and (x + 2) = 0), as he did
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previously, and easily solve for the x-intercepts. Ken asserted that f and h, the two
functions that are given in the form y = ax?® + bx + c, aré not too difficult in terms of
finding the x-intercepts, but “he needs to do something.” He offered the same explanation
for the g function as well. It is inferred that Ken is referring to setting the equations equal
to zero and carrying out algebraic manipulations such as factoring. Recall that he was

able to factor the expression 6x — x2 into x (6 — x) in Task 7. In terms of finding the

vertex, Ken wrote “~ b/2a, plug x to solve for y” next to the function h. Referring to f
as the first function, g as the second function, h as the third function, and k as the fourth
function, he then wrote: “vertex: 1% and 3Hd easiest, 2™ and 4™ most difficult.” He offered
the following explanation.

K: Cause again I have to remember how to do it. I mean it’s not that it’s actually

like complicated math or some abstract concept, it’s just I forgot how to do it. So

to solve, like if T was given a question like that tomorrow on my test.

R: Hmm.

K: I would have to remember how to do it. I would have to relearn it.

In terms of the y-intercept, Ken also wrote: “y-int: 1% and 3™ easiest, 2" and 4™
most difficult,” arguing that one can find the y-intercept by setting the x equal to zero. He
also added that “wherever the graph crosses the y-axis, that’s the y-intercept, where x is
zero.” He said that in the first and third functions, y-intercept is zero. For the other ones,
again, “he needs to do something.”

Ken also discussed the line of symmetry, arguing that it is the line that goes

through the vertex. He claimed that the line of symmetry is only the x component of the
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vertex, and “y values do not matter,” because one cannot have sideways parabolas. When
the researcher showed his graphs in Figure 1.5, Ken said: '

K: Oh yeah, the vertical line test it’s test of if it’s actually a function. You could

use that and explain why that’s not a function [pointing at one of the “sideways

parabolas” in Figure 1.5].

R: What is the vertical line test?

K: It tells you that, cause part of the definition of a function is that no one x value

you can have more than one y value? I think that’s right. Yeah.

He also moved his pencil along the graph from right to left, while mentioning that
the vertical line has to cross the graph only once. It is assumed that he was referring to
the vertical lines crossing the graph at each x value only once. He also drew another
graph in Figure 1.16 to demonstrate that one cannot have two y values for a given x

value.

Figure 1.16. Ken’s Explanation of the Vertical Line Test in Task 8
Ken also stated that the graph is symmetric about the line of symmetry.
Task 9. Finding the quadratic function that has a vertex (—2, 5) and that

passes through (0, 9).
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Ken’s first reaction to this task was to ask: “Am I looking for the equation?” After
receiving an answer of “yes,” he decided to draw the grapﬁ first. He plotted the two given

points, as in Figure 1.17, and sketched a parabola that passes through them.

Figure 1.17. Ken’s Response to Task 9

In terms of the equation for this graph, he first wrote ax? + bx + ¢ = 0, and then
stated that he would use the form in which it is easier to see the transformations [while

writing the two equations in Figure 1.18].

Figure 1.18 Ken’s Equations in Task 9

He reiterated the rules for horizontal and vertical translations (as well as

reflections), and said:



K: Now I am thinking about if it was either stretched or shrunk, which is if that’s
original graph it could be like that or it could be like that [draws the graphs in
Figure 1.19]. And how exactly solve for that I don’t know.

R: Can you manipulate that a little bit? In other words, umm what did we say that,
rearrange the equation.

K: Sure. I can expand it. [ Writes the expressions in Figure 1.18]

R: And how can we find if this is stretched or shrunk. [Pointing at the graphs in

Figures 1.18 and 1.19)

Figure 1.19. Ken’s Demonstration of Dilations in Task 9

K: I am not sure that they are going out the same angle [moving his pencil along

the right hand side of the graph in Figure 1.17]. So like a way of saying.

Ken argued that because the slope of the line that passes through the two points
(=2,5) and (0,9) is 4/2 = 2 and the slope of the line that passes through the two points
(0,0) and (2, 4) in the graph of y = x? is also 4/2 = 2, there is no dilation. He offered
this explanation while circling the parts of the graphs in Figure 1.19 and making triangles

in the air on the graph in Figure 1.17 [from (-2, 5) to (0,9) one would “go to the right
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two and up four,” and from (0, 0) to (2, 4) one would also “go to the right two and up
four”]. He also added that the two graphs are “proportional.” After establishing that there
is no dilation, and thus the leading coefficient is 1, Ken claimed that y = (x + 2)? + 5 is
the correct equation of his graph in Figure 1.17.
Task 10. Choosing the easiest graph to represent with an equation.

Ken approached this task by discussing whether the three graphs were stretched or
shrunk.

K: The basic quadratic is a parabola pointing up [draws the graph of y = x* in

the air]. And I can see that that one is pretty wide.

R: Which one?

K: The longest one [pointing at the middle graph in Figure 1.20]. It is expanded.

And that one it’s shrunk [pointing at the graph on the right| so there would be a

half in front of that [pointing at the a in the equation f(x) = ax? + bx + c]. And

that one [pointing at the graph on the left] it looks like a little smaller but would

just use I guess not, I guess I would pick this one.

Figure 1.20. Ken’s Response to Task 10



Ken chose the graph on the left in Figure 1.20 and used the same reasoning in the
previous task about dilations. In other words, he compared the slopes of two lines passing
through the points (—6,—7) and (=5, —6) and through (0, 0) and (1, 1). He identified
the vertex of the graph as (—6, —7) and concluded that there is no dilation. Thus he
treated the graph the same as the shape of the parabola y = x2, which is moved six units
to the left and seven units down. He represented the equation of his graph [the one on the

left in Figure 1.20] as in Figure 1.21.

Figure 1.21. Ken’s Equation in Task 10

Finally, after writing the equation in the form f(x) = x? + 12x + 29, Ken used
the expression —b/2a to compute the x value of the vertex. He found the x component of
the vertex to be x = —6, which confirmed that his answer was correct.

Task 11. Creating a quadratic function with no x-intercept.

At first, Ken wrote y = x? + 2 as an example of a quadratic function with no x-
intercept claiming that drawing the graph of y = x2 + 2 would simply be moving the
graph of y = x2 up two units. Therefore there would be no x-intercepts. However, when
the researcher asked if he can find another function that resembles the given f, g, h, or k

in Task 11, Ken started manipulating (6 — x)? [in the lower right corner of Figure 1.22].
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After several attempts at finding out the vertex and the transformations applied to y =

x2, he decided to expand (6 — x)? as in Figure 1.23.

Figure 122 Ken’s First Attempt to Visualize the Graph of g(x) = (6 — x)?

Figure 123 Ken’s Second Attempt to Visualize the Graph of g(x) = (6 — x)?

After finding the vertex [(6, 0)], he drew the graph in Figure 1.24, arguing that
the graph is opening upward because there is no reflection about the x-axis. He also
added that there is only a reflection about the y-axis. Without discussing this reflection,

he drew the dashed graph in Figure 1.24 in order to represent the vertical translation of



two units upward. He concluded that he found the function he was looking for [i.e., one

without an x-intercept].

Figure 1.24. Ken’s Sketch of the Graphs of g(x) = (6 —x)?and y = (6 — x)? +

2
Task 12. Comparing px? — qx + 3 and px? — qx + 6.
In this task, Ken first suggested that one can also write the given function
equations in the form: (x + __)(x — __). However, he added that he does not want to

solve the problem “that way” and changed (x + _)(x — _)to (x — __)(x — __). He
then wrote y = 0 above the phrase ‘x-intercepts’ on the task sheet, and stated that the
graph of g would be the same as the graph of f shifted 3 units up. He illustrated this in

Figure 1.25.

82
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Figure 1.25. Ken’s Response to Task 12

He chose arbitrary values for the vertices and the x-intercept to simply give
examples and illustrate his point about the vertical translation. He said that the x-
intercepts of f and g are not the same because: |

K: By graphing that [pointing at the graph in bold in Figure 1.25] I can see that

because it is an exponential growth [pointing at the right hand side of the graph in

bold in Figure 1.25, while tracing his pencil in the air along the curve] it’s not
‘really. What [ mean by that [ mean like the distance between there is the same as
up there [drawing the small rectangular shapes on the lefi hand side of the graph

in bold in Figure 1.25].

R: Can you explain that?

K: Yeah, I guess the best way to explain that is by looking at the x squared.

Ken drew the graph in Figure 1.26 and argued that the distances between y values
are getting larger as one moves to the next x value. He pointed out the difference of 1
between the y values of (0,0) and (1, 1) and the difference of 3 between the y values of
(1,1) and (2, 4). Therefore, because of this exponential growth, Ken stated that the x-

intercepts of the two graphs in Figure 1.25 would be difference since the dashed graph in



Figure 1.25 (i.e., the graph of g(x) = px? — gx + 6 “would not have enough time to get

to” the x-intercepts of the graph of f.

Figure 1.26. Ken’s Explanation of the “Exponential Growth”

He concluded this task by stating that y-intercepts of f and g would also be
different because f(0) = 0 — 0 + 3 = 3 and g(0) = 6. And for the vertex, he wrote:
“—b/2a same x different y by 3.”

Case 2 Results: Sarah’s Solution Activity.

The second case of this study is a college senior with a pseudonym Sarah. Sarah is
a returning college student, who in high school, about twelve years ago, took Algebra,
Geometry, Trigonometry and AP Calculus courses. Five or six years ago, she also took
college algebra and statistics courses. She was enrolled in a college pre-calculus course
during time of data collection. She characterizes her experiences in mathematics as: “I
usually do very well in math classes and usually find the concepts easy to learn.” In her
individual survey comments, Sarah stated: “I like mathematics first of all, because there
is always an exact answer. I am enjoying pre-calculus, and I enjoyed recently using the
trigonometric identities to simplify expressions. I also remember enjoying postulates in

geometry.” When asked “what aspects of mathematics, if any, do you dislike the most?”
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Sarah wrote that she remembers disliking some aspects of calculus. She remembers
statistics and calculus “being a little difficult,” but other than that she seems quite
positive toward mathematics. In the same survey, she self-rated the strength of her
mathematics knowledge in arithmetic, algebra, geometry, upper level mathematics, and
other mathematical topics such as discrete mathematics and statistics, on a scale of 1 to 5
(1 being the weakest and 5 the strongest), as 5, 5, 4, 5, and 3, respectively. In other
words, other than geometry, discrete mathematics and statistics, he placed herself in the
strongest category.

During both interviews, Sarah worked very hard on each task in order to answer
every question she was asked. When she experienced difficulty, she seemed only slightly
frustrated and she continued to work hard on the task until her results made more sense to
her. Below are the descriptions of Sarah’s responses to the tasks in APPENDIX B.

Task 1: Describing functions.

Sarah started the first task by immediately writing on her paper “f (x) =" while
stating:

S [Sarah]: Umm, so I first think of a function I think of f of x equals something

umm and if I draw a graph I think that definition of a function, I’m just going to

draw a line [draws the line in Figure 2.1], umm will pass a vertical line test

[makes a horizontal motion with her pencil across the entire graph from left to

right] so that means it, I think it means it can’t take, can’t, let me draw one that

isn’t a function. [ Draws the curve in Figure 2.2]

R: Okay.



S: So this one [pointing at the graph in Figure 2.2] would not be a function cause
it doesn’t pass the vertical line test [makes a hovizontal motion across the graph
with her pencil, holding it as a vertical line]. So it can have no umm for every
value of x [draws a table with two columns one labeled x, the other y in Figure
2.3] umm there can’t be the same, no, for every value of, okay hold on let me
think here. This has the same x value [draws the dashed line in Figure 2.2] so x is
three there [writes 3 in the x column of the table in Figure 2.3] umm see you can’t
have umm [writes another 3 in the x column of the table in Figure 2.3] more than
one why can’t I, okay, I’m sorry umm you can’t have more than one y value for a

single value of x.

Figure 21. First Part of Sarah’s Response to Task 1

Figure 22 Second Part of Sarah’s Response to Task 1 .
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Figure 23 Sarah’s First Table in Task 1

Similar to that of Ken, her explanation of what constitutes, or what does not
constitute, a function included three different types of representations: numerical,
graphical and algebraic. Unlike Ken, however, Sarah used ‘the vertical line test’ as an
important tool in determining whether a given graph represents a function or not. When
asked how the vertical line test works, she said: “Make a vertical line, and go across, and
if the graph does not hit the vertical line in more than one place, then it’s a function.” For
Sarah, every value of x must have only one y value—not more. When asked why for
every value of x there must be only one y value, Sarah offered the following explanation:
S: F of x equals whatever that equation is [draws the scribble next to “f(x) =" in Figure
2.2]. F of x is the same as y [writes f(x) = y] so if you have an equation [pointing at the
scribble in Figure 2.2] umm that equals two different y’s wait I thought I was making
some sense umm then they can’t they won’t equal two different y’s maybe? Or they
won’t be a function of x. But I’m still not. I think I am confusing myself now. Umm I just
know that by definition I guess.

When the researcher asked how she would define a function in one sentence,

Sarah stated:



S: An equation of something, a line or shape that you can graph that for every

value of x only has one y value on the graph.

The way Sarah referred to a mathematical expression [in her case, the scribble in
Figure 2.2] is similar to how Ken called expressions equations. In her discussion of
functions, Sarah also defined the terms equation and graph: Equation is “more the
numerical representation or a way to write it,” and a graph is a “visual representation of
the shape or whatever that equation makes.” She gave two additional examples of a
function, in Figures 2.4 and 2.5, besides the line in Figure 2.1. She wrote y = 3x + 4,
drew a table with numbers 1, -1, -2, 0 in the first [x] column, and the corresponding 7, 1,
-2 values in the second [y] column. She left the y value that corresponds to x = 0 blank,
but she computed y = 3(0) + 4 = 4 and plotted the point (0, 4) on a coordinate plane.
She sketched the graph of the line y = 3x + 4 in Figure 2.4 by plotting and connecting

the points (1, 7), (—1,1), (—2,—2) and (0, 4).

Figure 24. Sarah’s First Additional Example in Task 1
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Figure 25 Sarah’s Second Additional Example in Task 1

Her final example of a function was “a parabola,” for which she argued that “the
parent graph of a parabola” passes the vertical line test and is written as y = x? [while
referring to her graph in Figure 2.5 and making a horizontal motion with her pencil across
the entire graph from left to right]. She also generated a table of values in Figure 2.6
using the equation y = x2. After she gave these two additional examples, the researcher

summarized what Sarah has said until that moment about functions:

Figure 26 Sarah’s Second Table in Task 1

R: Okay. And that’s another example of an equation and the graph.

S: Yes.

R: Okay. Umm so in summary, if I understood it correctly, you mentioned about
an equation and y is equal to f of x and that’s some equation.

S: Uh-huh.

R: And that equation has is producing some shape, which is represented visually
by a graph.

S: Uh-huh.

R: And for each x value in that graph there cannot be more than one y value.

S: Yes.

R: And that’s established by checking with vertical line test.



S: Uh-huh.
R: And so, what you call a function is? Is that the équation or the graph?
S: Umm I guess both really, the equation and the graph [pause] are functions.
R: What do they have in common?
S: Umm, what do they have in common? [Speaks quietly)
R: The equation and the graph. What are you thinking?
S: Umm I am trying to think of what they would have in common, I mean. If you
take any point on the graph, and umm plug it into the equation so if you take any
or if you take any x value and plug it into the equation you will get the
corresponding y value that’s on the graph [pointing at the point (—1,1) in Figure
2.5], if you take a y value on the graph you’ll get umm and plug it into the
equation you will get the corresponding x value. So they’re umm I mean they’re
the same thing they are just different representations of it.
R: Okay. What is the thing? What is the thing that they both represent?
S: Oh they both represent the function.
R: Uh-huh. Okay. What is it? That we call function, that commonality. What kind
of thing is that?
S: Umm. What kind of thing? I am not sure. I am trying to think. Umm, what kind
of thing, is the relationship that they have? Or what kind of thing is a function?
Umm.

Task 2: Describing quadratic functions.
Sarah approached the second task by stating that she is “trying to remember what

a quadratic equation is.” First, she wrote ax? + bx + ¢ = 0 in Figure 2.7, and stated:
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S: Umm, what is their shape usually? Umm, so I can just make up an equation so
I can make a graph of it. Umm which [ mean I do think [draws two perpendicular
lines, the x and y axes, in the box in Figure 2.7] y equals x squared is a quadratic
equation. Umm, but, umm that’s almost too easy to really show this but umm
maybe and what I think what makes it quadratic when I see quad [underlines the
first four letters “quad” in the word “quadratic” in the bottom of Figure 2.7] 1
think of four, umm and I’m not really exactly sure why it’s called that but the best
thing that I can maybe think of is why it might mean four [draws two empty
parentheses ( )( )] is because you when you take this equation [pointing at
ax? + bx + ¢ = 0] depending upon what it is and if you put it into its two factors.
R: Uh-huh.

S: You’ll have something plus something plus something [includes addition signs
in the two empty parentheses: ( + )( + )] umm.

R: Okay.

S: So there is one, two, three, four [draws four small lines inside the two
parentheses: ( _ + __)(_ + __)] of those that could be why it’s called
quadratic umm.

R: Can you draw? One quadratic function? Doesn’t matter if it’s.

S: If it’s just y is equal to x squared?

R: If it’s easy or difficult or doesn’t matter.

S: Okay. I'll just draw this one cause that’s just what I think of [draws the graph
of y = x? in Figure 2.7 in one move without lifting her pencil off from the paper).

R: Graph of a quadratic function?
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S: Uh-huh. Yeah.

R: Okay. What makes this graph quadratic?

S: Umm, well it I know it fits this equation [pointing at ax? + bx + ¢ = 0] umm
because if umm if @ was one and b was zero and ¢ was zero, we would have umm
x squared equals zero? I don’t know. Umm it would fit that definition I guess.
Umm maybe because umm there is quadrants? [Touches four pofnts in the four
distinct regions of the coordinate plane, Quadrant 1, 2, 3, and 4] and it’s the same
on both sides of two of them? [Touches the point on the y-axis in Figure 2.7,
where y = 1, and two other points on the graph of y = x? in Figure 2.7, one

point on the left, near (—1,1) and another on the right near (1,1)]

Figure 2.7 Sarah’s Response to Task 2

When the researcher suggested that she may think of a quadratic function in terms

of how it is different from other types of functions, and not so much in terms of how it is
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worded, Sarah said: “Because x is squared?” while pointing at the x2 in ax? + bx + ¢ =
0. She continued: “So you will have more than one y valué for each x maybe.” To
explain why that is so, Sarah generated the table in Figure 2.7 and plotted the five points
(-1,1),(0,0), (1,1), (—2,4) and (2, 4) on the graph. She argued that x = —2 and

x = 2 both have the same y value of 4 (and that x = —1 and x = 1 both have the same y
value of 1), and therefore “the absolute value of any x value will have the same y value”
“because it is squared.” Although this assertion seems to contradict what she said about
the definition of a function when using the vertical line test to ensure that there is only
one y value for each x value, Sarah seems to be simultaneously operating in two different
mathematical situations without the need to somehow connect the situations. While
making her argument that x = —2 and x = 2 both have the same y value of 4, Sarah was
pointing at the two points (—2, 4) and (2, 4) one after the other on an imaginary y = 4
line. Therefore, she was correct in identifying two different things, or two different points
with the same y value on the quadratic graph, that are symmetric. Later, when she plotted

the x-intercepts of (x + 3)(x + 4) = y, (—3,0) and (—4, 0), she noticed that the x

coordinate of the vertex x = ;—Z = ——% = —3.5 lies in the middle of the two x-intercepts.

She introduced the term ;—z herself, using it to find the x component of the vertex. Her

sense of the existence of some sort of symmetry, which brings about “two y values,” one
on the left and one on the right, seems to have been further confirmed in this later
discussion. Thus, the need to identify and describe various cognitive structures (or lattices
of acts of understandings, or bases of understandings) in all phases of construction using
the clinical interview is clear in researchers’ attempts to make inferences about “the

structures that underlie behavior” (Noddings, 1990, p. 9). It is evident in her two separate



behaviors that Sarah is not coordinating the vertical line test, which, for her, requires the
existence of one y value for each x value, with her obsewétion that there are two points
on the quadratic graph that lie on the y = k line and are symmetric about the line x = h,
where vertex is at point (h, k).
R: [Sarah generated the table in Figure 2.7 and plotted the five points] If you take
one of the x values, do you see two y values or?
S: Uh-huh. Yeah. For the two and negative two [pointing at the numbers -2 and 2
in the x column of the table in Figure 2.7] they both have a y value of four umm
negative one and one [pointing at the numbers -1 and 1 in the x column of the
table in Figure 2.7] both each have the y value of one.

It is also plausible that because Sarah thinks that “the absolute value of any x

value will have the same y value,” and “because it is squared,” x = —1 and x = 1 can
somewhat be treated as a single x value; and that because both x = —land x = 1
generate y = 1 simultaneously, side by side, y = 1 that corresponds to x = —1 and

y = 1 that corresponds to x = 1 can somewhat be treated as two y values. Also, note that
Sarah did not mention the vertical line test anywhere in this second task. Thus far, she
offered the quadratic equation ax? + bx + ¢ = 0 as the general form of a quadratic
function; sketched the “too easy” example of y = x? (the case where a = 1, b = 0, and
¢ = 0in ax? + bx + ¢ = 0); and explored why the function might be named quadratic.
In terms of the important or special parts of the graph, Sarah asserted that the
vertex and the origin are the most important parts of the graph. When asked, she
explicitly stated that she refers to point (0, 0) as the origin. She sees the origin as an

important part of the graph because the graph of y = x? “is symmetric about the origin.”
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Furthermore, according to Sarah, the origin or the vertex in y = x?2 is also the minimum
point and no y value of the function can be negative or carll “go below that.” She
confirmed this fact by stating that “anytime you square any number you will always get a
positive number.” When further asked if the origin is important only for the graph of
y = x2 in Figure 2.7 or for any graph, Sarah said she wishes she could draw and picture
another quadratic graph in her head.
To find another example of a quadratic graph, she went on to fill the two
parentheses she wrote earlier, as (x + 3)(x + 4) = y, and solved the two equations
x + 3 = 0 and x + 4 = 0 and found the zeros of the function, x = —3 and x = —4.
S: But that doesn’t really tell me my y value [while solving the equations
x+ 3 =0andx+ 4 = 0 and finding x = —3 and x = —4]. What does that, oh,
those are points for, okay, so for this equation [pointing at (x + 3)(x + 4) = 0]
... So x is negative three, I believe that means those are points where it yeah
where y is zero [marks two points on the x-axis in Figure 2.9, x = —3 and
x = —4]. So y is zero at those points. And I can’t remember how to convert this

[pointing at ax? + bx + ¢ = 0] to find what the vertex is.
She wrote ;—z, and manipulated the expression (x + 3)(x + 4) and wrote x? +

4x + 3x + 12 and x? + 7x + 12 in Figure 2.8. In order to find the y value of the vertex,
Sarah asserted that she could “plug in the x value in that equation.” [Pointing at the

expression x2 + 7x + 12 in Figure 2.8]



Figure 24 Finding the Vertex

Figure 29. Graphing (x + 3)(x +4) =y
Sarah remembered that there is a vertex form of the quadratic equation, ax? +

bx + ¢ = 0, but she couldn’t recall what that was. However, she introduced %’ as a way

of finding the x value of the vertex, and found —_-ZZ, which she said makes sense for the

vertex to be in between x = —3 and x = — 4. When asked why, she responded:
“Because, oh, yeah cause it’s a quadratic so I guess quadratics are always parabolas.” The
vertex needs to be in between the two points where y is equal to zero because “it needs to
be drawn like this”—she draws the graph in Figure 2.9. Sarah discussed about the
symmetric property of parabolas earlier, thus it is reasonable to assume that she is
thinking of some line of symmetry where the vertex lies. She did not make any reference
to why the graph is facing upward or why the vertex was sketched in that particular

location in Figure 2.9.
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Before sketching this graph, while solving the two equations x + 3 = 0 and
x + 4 = 0, Sarah stopped for a moment and asked herself: “Why am [ setting these equal
to zero? All that’s going to do is get me an x value.” At first, she was looking at (x +
3)(x + 4) = y; but then she considered ax? + bx + ¢ = 0 and said that “it should be
equal to zero” because “that’s the quadratic equation.” She changed (x + 3)(x +4) =y
into (x + 3)(x + 4) = 0. Recall that her original purpose was to generate another
quadratic graph by choosing four termsin ( _+ __)(_ + _) = y. After writing
(x + 3)(x + 4) = y, she drew a blank table with x and y columns and mentioned that
she would “solve for y values.” In other words, initially she seemed to be graphing the
function (x + 3)(x + 4) = y by generating (x, y) pairs and plotting them in the
coordinate plane—and not by finding x-intercepts. However, she did not do that. Her new
focus on the quadratic equations ax? + bx + ¢ = 0 and (x + 3)(x + 4) = 0 led her to
work on solving x + 3 = 0 and x + 4 = 0 and finding x = —3 and x = —4. She later
claimed that when x = — 3 and x = —4, y values are zero. And, she sketched the graph
in Figure 2.9 by plotting these two points (—3, 0) and (—4, 0) and simply connecting
them so that they form the shape of a parabola.

Sarah then tried to find the vertex by substituting "77 for x in x2 + 7x + 12 and
tried to compute the corresponding y value. After several arithmetic errors and

§ ¥ -1 . .
subsequent corrections, she arrived at y = FL which made sense to her in terms of her

graph in Figure 2.9. She closed this task by adding the phrase “y values are zero” to her
initial response to the question in Task 2b about important or special parts of a quadratic

graph. The parts of the graph where y values are zero, the x-intercepts, are important to
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Sarah because they helped her draw the graph. As a response to Task 2c, she wrote
x%+ 7x+ 12 = y and (x + 3)(x + 4) = y to indicate her graph in Figure 2.9.
Task 3: Graphing y = - (x — 4)2 + 16.

S: So, I’1l probably just start by plugging in values of x because that’s the easiest

way to do that.

When the researcher asked if there is any other way she can graph the equation,
Sarah said that she can do what she just did: She “could set the equation equal to zero and
find the x values and draw them.” She then wrote 0 = - (x — 4)? + 16 and solved the

equation as in Figure 2.10.

Figure 2.10. Finding the x-intercepts of y = - (x — 4)%? + 16

At the solution step “—16 = - (x — 4)2,” Sarah “factored out” the term (x — 4)?
by uttering “first, outer, inner and last.” And, after she wrote “~ 16 = - (x%? — 4x — 4x +
16),” she said: “Is that what I wanna do? Wait a minute.” She then decided that she is not
going to do “that,” and divided both sides of the equation by negative one and wrote

“16 = (x — 4)(x — 4).” This choice of strategy for solving quadratic equations will

become clearer in a later task on solving quadratic equations.
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S: And since those are both the same [pointing at (x — 4)(x — 4)], I’'m only

going to do once I’'m only gonna have one zero value for x [writes (x —4) = 16

and x = 20]. When y is zero, x is twenty [draws a single point on the x-axis of a

blank coordinate plane).

She checked her solution in Figure 2.10 by mentally computing all the steps one
more time, and said: “So all [ have is the vertex really.” It is unclear at this point why she
called x = 20 as the vertex. Immediately after mentioning the vertex, Sarah claimed that
she could also factor the equation out [while pointing at the right hand side of the original
equation y = - (x — 4)% + 16] and find the ‘a’ and ‘b’ values in order to find where the
vertex is.

S: But is it going to be the same anyway?

R: Hmm.

S: Umm, b over two a equals, forget how you do that; I’m just going to plug in

some values because.

R: Okay.

S: I am not remembering right now.

Sarah then counted by twos on the x-axis up to 18 and stopped at the point on the
axis adjacent to x = 20. Later in the interview, Sarah will mention that she is drawing a
quadratic graph by connecting the x values that are next to each other. By “next to each
other,” it is understood that she is thinking of consecutive integer values,n — 1, n,n + 1,

orn — 2,n,n+ 2, etc., depending on the scale used. After finding a large y value, 196,

by substituting x = 18 in y = - (x — 4)? + 16 Sarah decided to start from a smaller x

value instead. Figure 2.11 shows the table of x and y values that she generated; and
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Figure 2.12 shows the points that she plotted and the graph that she drew—again, by

connecting the points one by one such that the shape come out as that of a parabola.

Figure 211. Sarah’s Table of Values in Task 3

Figure 212 Sarah’s Response to Task 3

At a certain moment when she had only three points plotted, i.e., the initial point (20, 0)
on the far right, (2, 12) and (4, 16), Sarah seemed puzzled about the way the three points
looked on the graph paper.

S: What am I doing wrong here? [Computes the y values for x = 2 and x = 4

again)

[.]

S: This is not what I expected this graph to look like? Umm.

R: Why is that the case?
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S: Umm I thought it would be a parabola. Umm.

R: What is wrong with that scenario here?

S: Umm, oh! [Exclamation] 1 see, it’s negative [pointing at the negative sign in

front of the term (x — 4)? in the original function equation y = - (x — 4)? + 16].

So it’s gonna be, it’s gonna be this way [draws a very small parabola opening

downward, in a blank space on the paper]. That’s why. Okay. I believe that’s

what’s happening. Umm, so six minus four is two, squared, which is four, sixteen

minus four is twelve again [plots the fourth point on the graph paper, (6,12)].

Okay, there’s my vertex. [Pointing at (4,16)]

Sarah then counted the small squares on the graph paper along the x-axis, and
chose x = 10 as the next x value to use. She computed the corresponding y value,
y = —20, but then, because her graph “is going to be way down there,” [somewhere at
the lower portions of Figure 2.12] and because she doesn’t know “how she got that” [the
point (20, 0) on the far left], she changed her choice of x value to x = 0 and stated that
she is not sure how she found that “zero value” [the point (20, 0) on the far right]. After
she plotted the point (0, 0), the researcher asked how many such points she would need
to graph the equation. She said:

S: Once you have enough that you see a shape; you can kind of connect the lines.

Umm, I don’t know if there is set number that you would need.

At this moment, she indicated that she got that point, on the far right, wrong.
When the researcher further asked her what kinds of ideas or strategies she follows when

connecting the points (or the lines) to draw the graph, she stated:
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S: I guess the strategy would be the next closest value of x. Umm, because |
would draw to there [connects the points (0, 0) and (2,12)] and then [ would
draw to that one [connects (2,12) and (4,16)] and then this is the next x
[connects (4,16) and (6,12)] that’s the next x, so [connects (6,12) and (8,0) so
that the curve resembles the shape of a parabola]. 1 don’t know how I got that
one [pointing at (20, 0)] so anyways, so yeah.

R: Okay.

Upon researcher’s request to reconsider what parts of this new graph [Figure
2.12] are important or special, Sarah posited that the vertex is now the maximum point
instead of the minimum point, “because there is a negative sign in front of the quadratic.”

R: Can you explain why, when there is a negative, the graph looks like this one?

[Pointing at the graph in Figure 2.12]

S: Umm. I just know it means you flip it over umm.

R: Over what?

S: From what it would be if that was positive. Umm, let me think. Well it’s

making you subtract from the sixteen rather than add, so you are subtracting umm

so you would be going the same number of spaces in this direction [traces the tip
of her pencil along the graph in Figure 2.12 on the right side of the vertex] that
you would be going in this direction if it was positive [moves the tip of her pencil
in the air along a vertical line upward, starting from the vertex] therefore it
makes it curve down. So, the negative and positive direction of the opening of the
parabola.

R: Okay. Are you flipping it about a certain thing or?
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S: Umm. Two, four, six, eight, ten, twelve, fourteen [counts by two on the y-axis
with the tip of her pencil in the air]. Yeah, about the sixteen, which is the
maximum. So, yeah. I can’t remember.

R: What is that?

S: Tam trying to like, usually I don’t have problems with remembering these

things but now I am having trouble like what the ¢ value is. Umm, I guess that is

the, that’s where the lowest or highest umm y value will be of the graph.

R: The ¢?

S: Yeah, when you have a x squared plus b x plus ¢. Yeah.

Task 4: Further discussion on quadratic functions.

When asked, in Task 4, how she would explain quadratic functions to a friend
who missed class, Sarah added that if one starts with the basic graph of y = x? one can
have different transformations of that basic graph [while drawing the two graphs in
Figure 2.13 in a row]. She also argued that the graph of y = —x? represents a reflection
of the graph of y = x? over the x-axis. It is unclear if she simply remembers the rules of
transformations she learned in her pre-calculus class or if she is thinking about y =
—x? + 0 as ‘making her subtract from the zero rather than add to it’ (as in the previous

task) and that she is “flipping” the graph over the vertex, (0, 0).

Figure 213 Graphing y = —x% and y = x?
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S: What are the other ways you can? Trying to remember the other ways that you
can graph these. Umm, there is a way to predict the vertex. Umm, but I guess I
could tell them also that if you have umm let’s see y equals and this is with the
let’s see x squared minus four.
She generated the quadratic function y = x? — 4 and factored out the term
“x% — 4” and wrote y = (x — 2)(x + 2). Then, as in previous tasks, she solved the two
equations x — 2 = 0 and x + 2 = 0 [Figure 2.14] and plotted two points where x = - 2

and x = 2 and “the y-values would be zero” [Figure 2.15].

Figure 2.14. Finding the x-intercepts of y = x? — 4

Figure 215. Graphing y = x? — 4
S: I don’t, I honestly can’t remember how to find the vertex right now, or. But

that’s a way to help graph it. [Draws the graph in Figure 2.15]
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Sarah also added a zero to y = x? — 4 in Figure 2.14 [after enclosing the “x? —
4” term inside parentheses] and argued that, iny = (x? — 4) + 0, “whatever number you
add here or subtract here [the part ‘+ 0’] will move the vertex up or down on the y-axis”
[while tracing the tip of her pencil in the air along the y-axis upward and downward].

S: So it will translate up or down.

Lastly, when asked to explain again what vertex means, Sarah clearly stated that
she is referring to a point or a “coordinate” with an x and a y value, which is “either the
minimum or the maximum of the graph” “depending on where it [the graph] points.” She
also went back to all three graphs in Figures 2.13 and 2.15 and wrote (0, 0) for the two
graphs in Figure 2.13 and wrote the word “vertex” in Figure 2.15. Then she stated that
she couldn’t remember how to find the vertex of y = (x? — 4) + 0. Immediately after
stating this, however, she added that “on that one” [on the graph in Figure 2.15] the
vertex would be “whenever x is zero.” As she demonstrated earlier, Sarah seems to
somehow pairs up points, here the x-intercepts (—2, 0) and (2, 0), and looks for the
vertex in between those two points. After substituting zero for x, she found the y value to

be negative four and wrote (0, —4) next to the vertex. She also argued that because b = 0
iny = x? — 4, the x component of the vertex will be zero in x = 2—’:1 [while writing

(i f (i)) without any negative sign]. Note that Sarah introduced the term “;—:” as the

2a’’ \2a
x component of the vertex in Task 2, therefore it is possible that she does not remember
this “formula” well.
Task 5: Solving quadratic equations.

Sarah approached Task 5 [Solving 2x% — 7x + 3 = 0] by saying:
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S: So I know I want to factor the x and then I’m gonna have two linear equations

multiplied by each other [writes (  )( ) =0]. '

After checking the equations (2x + 1)(x +3) =0and (2x + 1)(x —3) =0 to
see if they represent 2x? — 7x + 3 = 0, using the ‘FOIL’ (First, Outer, Inner, and Last)
method; she settled on the equation (2x — 1)(x — 3) = 0 and expanded it into 2x2 —
6x — x + 3 = 0 and then to 2x? — 7x + 3 = 0. She then solved the two equations:
2x—1=0and x — 3 =0, and wrote x = Y2and x = 3.

Besides using this method of factoring a quadratic expression into two binomials,
Sarah also mentioned that she could use the “quadratic formula” but did not pursue or

write this second method. In the second part of this task however, she did write:

—b ¥ Vb2-4ac . : i i i
e e 29¢ and called it the quadratic formula. Without doing any computations, she

explained that she would get two different answers from this formula, “because plus or

; —y . —bFVbZ-14 . .
minus accounts for that” [+ in --~—~—-2—a---35] One of the answers would include a minus

sign and the other would include a plus sign. When asked what the a, b and c values
would be, Sarah wrote a = 2, b = —7 and ¢ = 3 by looking at the original quadratic
equation 2x%2 — 7x + 3 = 0.

S: I'really don’t think of any other ways to solve for it. Honestly. Umm, those are

the two ways I would use.

R: Alright.

In the third part of this task [solving x? — 5x + 6 = 0 for x in a different way
than the way she solved the original equation], Sarah said she would use the “quadratic”

and wrote her solution in Figure 2.16.
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Figure 216 Sarah’s Solution to the Third Part of Task 5

After finding the two solutions x = 3 and x = 2, Sarah quietly uttered: “That
doesn’t seem right; because, negative b, which would be, cause one of them should be
negative.” When asked why, she said: “Or they both should be negative.”

S: Because I have negative five there [pointing at -5 in x> — 5x + 6 = 0]. So, I

am not sure what I did but it should be x minus three times x, oh, [writes:

“(x — 3)(x” and stops writing] oh yeah that’s right. I’'m sorry, because once you

do x minus three equals zero [pointing at x = 3], so yeah that’s right [wrifes

“(x = 3)(x — 2) = 0] equals zero. So that’s right.

Unlike Ken, for Sarah, setting both of the factors of x? — 5x + 6 equal to zero
and solving for x, as in x — 3 = 0 therefore x = 3, and in x — 2 = 0 therefore x = 2,
was not something problematic. Throughout the two interviews, she did not mention this;
she set the two factors equal to zero and solved for the x values.

Task 6: Describing the difference between an equation and a function.

To Sarah, an equation is not always a function; she said: “I know that.” Her

second reaction to this task was to write in words: “A function always has an equation

that can represent it.”
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S: So there like an equation is a representation of the function, but the function is
actually umm the graph of it [in question tone]. Umm I guess ... But every
equation is not a function.

R: Can you give me an equation that’s not a function?

S: Umm, well the like, a, umm I’'m trying to think how. What I think like the
entire graph of like y is equal to sine of x is not a function [writes y = Sin x]. No,
it just doesn’t have an inverse; that is a function. Umm, I can I mean I can draw
one, I just can’t think of how to write that equation. Umm, but I suppose [draws
the graph in Figure 2.17] like that, umm well I mean I can think y squared equals
x isn’t a function. I’'m pretty sure [wrifes y? = x]. Cause I think that’s [pointing
at the graph in Figure 2.17] what that graph would be if you interchange your y
and x values [draws a small graph of y = x*] umm that’1l be the same but when
x is one, square root of x, is that right? So this would be y equals the square root
of x [writes y = vx] umm so [makes a mark in Figure 2.17 that represents the

point (1,0)] that’s one, yeah so that wouldn’t be a function [pointing at the

equation y = \/x]. That’s an equation that’s not a function.
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Figure 217 Sarah’s First Graph in Task 6

When the researcher asked if she can give another e;xample of an equation that is
not a function, Sarah wrote y = x3.

S: Is that a function? Umm, I don’t think so. If x is negative one [pause].

Negative one [pause] would be negative one. Umm, that doesn’t seem right

though.

R: Why you say that?

S: I am trying to remember what shape this graph should be [draws the point

(—=1,1) in Figure 2.18); and |long pause] this doesn’t seem right [speaking

silently]. If it’s negative two, two times would be eight [draws the point (-2, 8)

in Figure 2.18] but it would be negative eight [lightly marks a point in Figure

2.18 to represent (—2,—8)]. Yeah, I’m, cause that seems obviously that’s not,

wouldn’t just be a line. But for some reason that seems to be what.

R: How would you connect those dots?

Figure 215 Sarah’s Second Graph in Task 6: Attempting to Graph y = x3

After connecting the three points in Figure 2.18 with a line, Sarah decided to
redraw the points in Figure 2.19. In Figure 2.18, the plotted points were not drawn on

scale; and it is unclear what prompted her to redraw the points, however, she seemed
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quite doubtful that the graph of y = x* “wouldn’t just be a line.” These episodes offer
significant insight into how Sarah thinks about graphs of functions. It is evident that she
is somehow looking for particular shapes that she can recognize. There is no evidence of
her seeing x and y values varying according to a certain relation among them. For
example, instead of looking at, say (—2,—8), (—1,1), (0,0), (1, 1), (2,8), where the y
values are the cubes of the x values, and where the rate of change in y values and change
in x values is not constant, Sarah only looks at how the plotted points look like or what

recognizable shape they form.

Figure 219. Sarah’s Third Graph in Task 6: Graphing y = x>

When she sketched the graph in Figure 2.19, Sarah stated that it is still a function
because the graph passes the vertical line test. She applied the vertical line test by moving
her right index finger across the graph, showing that the vertical lines cross the graph
only once at each value of x. She concluded her discussion of the function y = x3 by
saying: “I’m not really sure if I drew that right though.” The researcher then introduced
another example of an equation by asking: “What about the equations like five is equal to

three plus two?” According to Sarah, because there is no x or y value, an equation like
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“5 = 3 + 2” cannot be a function. She also asked herself whether “5 = 3 + 2” is an
equation, but quickly affirmed that it is. Thus, for her, a function must have x and y
variables in them. Her requirement that functions will have (x and y) variables in them
prompted her to generate another example, y = 5, which has only one variable in it. She
drew the graph of y = 5 in Figure 2.20 and applied the vertical line test and declared that

this equation is a function.

Figure 2.20. Sarah’s Fourth Graph in Task 6: Graphing y = 5
The researcher continued to explore Sarah’s understanding of the difference
between a function and an equation by asking her to compare, without looking at or

thinking about graphs, the below three equations that have x and y variables in them:

2

° ye=x
° y:ﬁ
° y=x2

Sarah stated that y = v/x, in particular, is easy to tell that it is not a function
“because the square root of any number can have a positive value or a negative value,”
and therefore there are more than one “answer,” or more than one y value for a given x.
It is apparent that Sarah treats y = +/x as y = F+/x, and she is using the idea of

functions having one y value for each value of x. She claimed that y = x? is a function,
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“because any value of x that you are gonna have, it’s gonna give you a different value of

b+

.

R: For example if you choose x is one, you get one,

S: Uh-huh.

R: x is negative one, you get the same y?

S: Yeah. Wait. No I’m. Yeah, you can have the same y [pointing at the y in the

equation y = x*] umm, but you can’t have one x [pointing at the \/x in y = \/x]

and have two different y values [pointing at the y in'y = \x].

Sarah further supported her argument that y = /x does not represent a function—by
choosing an x value, i.e., 49, and asserting that there could be two y values, -7 or 7.
Task 7: Finding the vertex of f(x) = 6x — x2.

Sarah’s approach to this task was identical to Ken’s in that they both wanted to
first change the form of the equation. She stated: “Just because it is easier, | am gonna
change the way it is formatted first of all,” and wrote “~ x? + 6x” and “a = —1,b = 6.”
She claimed that she does not have a “c” value. When Zaslavsky’s (1997) research
participants dealt with functions with an equation of the form y = ax? + bx, Zaslavsky
found that most of the participants claimed that the quadratic function does not have a y-
intercept because it does not have a “c” value. Based on this finding, Zaslavsky (1997)
suggested that the seeming change in form of a quadratic function whose parameter is
zero acts as an obstacle that causes difficulties for students when working with quadratic
functions that “don’t have” all the three terms of the standard form y = ax? + bx + c.
Although Sarah did not investigate the y-intercept of the given function, and therefore did

not experience any difficulty in correctly interpreting the y-intercept of a quadratic
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function given in the form y = ax? + bx that has a zero ¢ parameter, her confidence in
not having a “c” value at least supports the finding that students understand y = ax? +
bx as having only two parameters, a and b, as opposed to a, b, and ¢, where ¢ = 0.

After writing “~x2? + 6x, a = —1, and b = 6.”, Sarah also wrote

(— %, f (— %)), as she did in Task 4, and computed the vertex as (—3, —27) by first

finding its x value using “El-:;” and then substituting it in “~ x? + 6x.” She plotted this
point in Figure 2.21, and quickly moved on to the next question, “Can you make up a
quadratic function with no vertex?” When the researcher asked her if she could speculate
a little bit on the graph of “~ x? + 6x,” she started writing “0 = - x? + 6” and rearranged
this equation into 0 = x(-x + 6), and found x = 0 and x = 6 to be the two x-intercepts
of the function. When she plotted the points (0, 0) and (6, 0) in Figure 2.21, she seemed

puzzled by seeing the three points, (—3, =27), (0, 0) and (6, 0) on the graph paper.

Figure 221. Sarah’s Response to Task 7
Sarah’s puzzlement seemed to be due to the fact that before computing and

plotting the two x-intercepts, she briefly described the graph as having a vertex or a
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maximum at (—3, —27) and opening downward from this maximum point—because of
the negative coefficient of the x? term. She responded to tﬁis inconsistency between her
expectation (based on her understanding of reflections) and the result of her computations
(for finding the x-intercepts) by expressing that maybe the graph does not open
downward.
S: I thought that meant that it would open downward. That’s if the entire, [pause]
yeah, I.’m still not sure.
While she was trying to make sense of drawing a quadratic graph through those
three points, Sarah articulated the following chain of reasoning:
S: That point cannot be the vertex. This, it’s squared [pointing at the x? term in
the function] so you know it is going to be a parabola, which is a quadratic
function. So, the vertex should be in between those points at least [draws an
imaginary vertical line with the tip of her pencil in air halfway between the points
(0,0) and (6,0)]. I thought I did the math right.
After a long pause, the researcher showed Sarah what she wrote in Task 2,
—b

o —?7, i.e., the x component of the vertex of y = x?% 4 7x + 12. After seeing this, she

seemed relieved.

S: Oh. Did I say b over two a? It should be negative b over two a.
She computed the vertex again, using ;—3 this time, and found the point (3, 9) as

the vertex. She also changed the scale of the graph and made the x and y intervals equal
to one unit, and drew the graph in Figure 2.21. Once this inconsistency was resolved, the
researcher asked Sarah to elaborate on the parameter ¢ in ax? + bx + ¢ being the

maximum or the minimum point, which she mentioned in an earlier task.



115

S: ¢ is zero here, but nine is actually the highest value [pointing at (3, 9)].

R: What would the meaning of ¢ be?

S: Umm. I can’t remember now [speaking very silently]. If I add the c in the

equation, how would it relate to it?

R: You mentioned it earlier.

S: Uh-huh.

R: Like goes up and down.

S: Uh-huh. So I guess ¢ doesn’t represent the highest or the lowest value. But, if

we were to have a ¢ value [pointing at y = 6x — x?] 1 believe what it would do

would just move that [pointing at the vertex (3,9)] down or up. So if it was a

positive c¢ it would move it up and if it was a positive ¢ it would move that down.

R: Negative c?

S: Yeah, negative ¢. I’'m sorry.

In response to the question, in Task 7b, “Can you make up a quadratic function
with no vertex?,” she said: “I’m not sure.” Then she argued that if a = 0, then that
wouldn’t be a quadratic function. She wrote y = 0x? + 2x + 3 and y = 2x + 3 and
concluded that a quadratic function without a vertex would not be a parabola, and instead,
it would be a line.

Task 8. Finding the x-intercept, y-intercept, line of symmetry, and vertex.

Recall that in Task 8 participants are asked to compare four quadratic functions
with respect to their x-intercepts, y-intercepts, vertices and lines of symmetry. In

particular, students are asked to determine the easiest and the most difficult function

among f(x) = 4x — x2, g(x) = (6 — x)?, h(x) = -6x — x? and k(x) = 5(x —
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3)(x + 2) in terms of finding their x-intercepts, y-intercepts, vertices and lines of
symmetry. Sarah started comparing the functions with regafd to the y-intercepts and
stated:

S: Well, all of them would end up being zero. Umm for the y-intercept so, I feel

like I am not doing something right [pause]. Umm let me think umm, but I mean

that is right because it is gonna intercept the y-axis and the y-axis is whenever x is

Zero.

R: Uh-huh. Okay.

S: So, really any of them.

Sarah also mentioned that she knows that the x value of the y-intercept is zero.
However, without substituting zero for x in the four function equations and computing
the corresponding y values, she somehow thought that setting x equal to zero would
make all the equations equal to zero. No further explanation was provided on this
reasoning.

In terms of finding the x-intercepts, Sarah stated that the k function would be the
easiest because when you set the function equation equal to zero, you can easily solve for
x. However:

S: You set it equal to zero umm I almost think. Because you can, I am not,

because you still have that five there I am not sure exactly what I should do

properly. I don’t know if you can just say five equals zero and just get rid of that

[writes 5(x — 3)(x + 2) = 0]. Umm. Because you still have that five there, I

can’t remember at the moment. What, how that would affect the x-intercepts.

Maybe I won’t say that one is the easiest.



117

Therefore she was puzzled by the constant coefficient 5 and changed her answer
to g being the easiest function in terms of finding the x-intércepts. She wrote the equation
(6 — x) = 0 found x = 6 by solving it. Note that similar to her way of solving the
equation 16 = (x — 4)(x — 4) in Task 3, Sarah again only considered one of the factors
of the quadratic equation. Recall that in Task 3, she said: “Since those are both the same,
I am only going to do once.” This time she also added:

S: You don’t need to write it out twice because the x is, you’re gonna get the

same each time.

In terms of finding the vertex points, Sarah said that f and h are easier because

one can easily identify the parameters a and b and find the vertex using (— 5%, £ (— 5%)).

S: The line of symmetry is gonna go through the vertex. So essentially, once you
found the vertex, you found the line of symmetry.
Task 9. Finding the quadratic function that has a vertex (—2, 5) and that
passes through (0, 9).
In Task 9, when asked to find the quadratic function with a vertex at (—2, 5) and
that passes through the point (0, 9), Sarah decided to draw these two points in order to
visualize what the graph might look like. She plotted the points (—2, 5) and (0, 9) in

Figure 2.22 argued that graph will go upward:
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Figure 222 Sarah’s Response to Task 9

S: I can tell that it’s gonna have to go up because this is the vertex [pointing at the

point (—2,5)] so if there is a point up here it’s gonna have to be umm pointing up

like that [draws a curve that starts at (—2,5) and that stops at (0,9)].

R: Why is that again?

S: Umm. Because, the vertex is either the lowest or the highest point. If the graph

were turning down, it wouldn’t hit that point [pointing at the point (0,9)].

R: Okay.

S: So I know that x squared is gonna be positive as well.

After drawing the graph in Figure 2.22 that passes through the two given points,
Sarah directly started writing the equation y = (x + 2)? + 5 based on what she
remembered about the vertex form of a quadratic function where y = a(x — h)? + k. She
did not mention however that the standard graph of y = x? moves 2 units to the right and
5 units up. She simply remembered that in the vertex form one substitutes the h
and k values of the vertex (h, k). She did not write the form y = a(x — h)? + k

anywhere in this task; she only wrote y = (x + 2)? + 5.
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She then checked whether her equation was correct by substituting x = 0 and
x = —2 in her equation. Because she found the corresponding y values to be y = 9 and

y = 5, respectively, she confirmed her solution as correct.

Figure 223 Sarah’s Equation in Task 9

After Sarah was convinced that she was finished with the problem, and did not
see the need to further explore the leading coefficient of the quadratic function, the
researcher posed another question. The researcher asked Sarah to find the equation of a
quadratic function that has a vertex (—2, 5) and that passes through the point (0, 7).

She then sketched a curve starting from the vertex and ending at (0, 7). She then
argued that the equation would be the same because she still would have y = (x + 2)% +
5. However, when the researcher asked her if she could check it as she did earlier, she
then stated that the y-intercept should be 7 and not 9.

S: Hmm. What else could I do to solve for it? Umm.

Then she completed the initial curves that she sketched in Figure 2.22 into

parabolas and asserted that the graph that passes through (0, 7) would be wider, and thus
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“there needs to be a number in front of the x,” “an a value.” She used the equations
y=x%+44x+4+5andy = x? + 4x + 9 in developing an argument that she needs a 7
at the end of the equation because the y-intercept is (0, 7). After thinking about how to

obtain “a 7 at the end,” she wrote the equations in Figure 2.24.

Figure 224 Sarah’s Solution to the Alternative Question in Task 9

Sarah’s strategy for obtaining a 7 was to divide the constant term 4 by 2 in the

equation y = x2 + 4x + 4 + 5. She completed her solution by checking her answer, i.e.,
the equation y = %xz + 2x + 7, by substituting x = —2. She confirmed that her answer

was correct.
Task 10. Choosing the easiest graph to represent with an equation.
Sarah approached this task by stating:
S: First of all, the first thing I’m looking at the umm is the vertex, the x-intercepts
umm and really that’s about it. Umm and then I’'m trying to look at which points
hit on the x-intercepts [pointing at the x-intercepts of the graph labeled f in

Figure 2.25] and which points of the vertex are most like whole numbers.
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She also claimed that none of the x-intercepts [of the three graphs in Figure 2.25]
are “on a number.” Sarah then picked the graph of f in Figﬁre 2.25 because its x-
intercepts “looked like half” to her. Her first attempt to find the equation of f involved
identifying the vertex point and the ¢ value [in the lower portion of Figure 2.26]. Recall
that she also found the equation of the alternative function in Task 9 [with y-intercept at

(0,7)] using the vertex and c.

Figure 225 Sarah’s Response to Task 10

Figure 226 Sarah’s Initial Strategy for Finding the Function Equation in Task 10
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She wrote ¢ = 3 and (1, —3) to denote the y-intercept and the vertex respectively.
It is assumed that she mistakenly wrote ¢ = 3 instead of ¢ - —3. Because the y-intercept
“looks like -3” it is taken as -3. Note that the y values of the vertex and the y-intercept
are the same, i.e., y = —3. Then, instead of using the vertex form, as she did in the
previous task, Sarah changed her strategy to exploring transformations. Starting from
y = x? [Figure 2.26] she applied a horizontal translation of 1 unit to the right and a
vertical translation of 3 units down.

S: Then the tricky part is figuring out umm the width here. And how that.

R: What do you mean the width?

S: Well now I need I know there is going to be a number in front of this [pointing

aty = (x — 1) — 3]. Because it is wider I know it is going to be a fraction.

Umm what I need to figure out is how far it’s stretched.

At this point Sarah drew the graph in Figure 2.25 that represents y = (x — 1)? —
3 and identified the x-intercepts of the two graphs, i.e., of f and y = (x — 1) — 3, to be
x = —45and x = 6.5 and x = —2 and x = 4 respectively. She then suggested that
because the difference between the x-intercepts x = 4 and x = 6.5 is 2.5 or 5/2, the
number in front of the equation [a] has to be 2/5. As an explanation, she said:
S: So it is two and a half wider [pointing at the graph of f]. 1 think if it was two wider it
would be, that value of a would be one half.

She said she doesn’t know why that is true but it seems to work. Figure 2.27

shows her work.



123

Figure 227 Sarah’s Final Equation in Task 10.

To check if this equation was correct, Sarah tried to test a point on the graph of f,
(6, 2) , and found that the equation was not correct.

Cross Case Analyses

Cross Case Analysis: Ken and Sarah.

In the previous two sections, the cases of Ken and Sarah were presented in
detailed descriptions. Ken’s and Sarah’s responses to the tasks, their drawings, and
verbatim statements provide a context for their cases (Merriam, 1988). The two
interviews with each participant, the written artifacts of the students’ mathematical
solutions and drawings, and documentation of their self evaluations, are the study’s main
data sources; and the data generated in each case is analyzed holistically as an entire case
(Yin, 1989). In order to address the issue of lack of depth inherent in a multiple case
study (Creswell, 1998), as compared to a single case study, these two initial cases were
treated as illustrative cases that were described and analyzed more in-depth. The resulting

descriptions, themes and assertions guided the analysis of the subsequent cases.



124

In the initial analysis of the results presented in the previous two sections, Ken’s
and Sarah’s mathematical behaviors in quadratic function situations were interpreted
using two theoretical constructs from the existing literature on understanding in
mathematics and on students’ understanding of functions. First, the notion of act of
understanding (Ajdukiewicz, 1974; Sierpinska, 1994) is used to interpret how and what
the two students were thinking about various aspects of quadratic functions while solving
the tasks. Ajdukiewicz (1974) defined understanding as “an act of mentally relating the
object of understanding to another object” (cf., Sierpinska, 1994, p. 28). He viewed act of
understanding as directing ones thoughts about a given word or expression, or relating
these givens, to some other object.

thile Ajdukiewicz’s (1974) definition included only words and verbal
expressions as the objects of understanding, Sierpinska (1994) generalizes this definition
to include any type of object, and not merely verbal expressions, which, in mathematics,
can be “[mathematical] concepts, relations between concepts (sometimes stated in forms
of theorems), problems, arguments (proofs), methods, theories, mathematical symbolism,
mathematical representations such as diagrams, graphs etc” (p. 42). Furthermore, she
adds that an act of understanding is an actual or potential mental experience, and calls the
two objects in Ajdukiewicz’s definition the object of understanding and the basis of
understanding. In other words, Sierpinska refers to act of understanding as an act of
mentally relating the object of understanding to another object called the basis of
understanding.

Sierpinska (1994) contends that basis of understanding can be viewed as mental

representations or mental models. Ajdukiewicz defined mental “representations as
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instantaneous mental experiences of an individual: definite experiences at a given
moment in a given person’s mind. In an act of understanding based on a representation of
the object that is being understood, the subject [the individual] does not take any position
toward this object and does not evaluate or judge it. The object of understanding is only
being matched with some mental image and/or description” (Sierpinska, 1994, p. 49).
Thus, the collection or the fabric of such mental images (or basis of understanding) of a
given mathematical word or concept (or object of understanding) could also be viewed as
what Vinner and Dreyfus (1989) called concept image. Vinner and Dreyfus (1989)
differentiated these images from concept definitions that are comprised of conventional
and formal mathematical knowledge.

Finally, a basis of understanding, or a fabric of related mental images and
representations, can also be viewed as conceptual structures from the theoretical
framework of cognitive constructivism discussed in Chapter 1. The object of
understanding and the basis of understanding are also compatible with the parts of
Steffe’s (1994, 2002) notion of scheme. Steffe’s notion of scheme, which is similar to an
act of understanding, is composed of three parts: (1) the triggering experiential situation,
(2) the student’s activity, and (3) the results of that activity from the perspective of the
student (von Glasersfeld, 1991). Thus, while the object of understanding is compatible
with the triggering experiential situation, and the act of relating the object to the basis is
with the student’s activity, the basis of understanding is similar to the cognitive structure
that is being accommodated to results of activity from the perspective of the student (von

Glasersfeld, 1991).
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To justify the use of the theoretical constructs of act of understanding and basis of
understanding in mathematics education research and pedégogy, Sierpinska (1994)
writes: “...sometimes understanding is confused (or deliberately merged) with knowing,
and ... this is perhaps not a desirable thing to do in education. Unfortunately,
institutionalized education is framed to develop students’ knowledge rather than
thinking” (p. 68). Evaluative qualifications of understanding, such as “good,” “deep,”

3% Ce3

rich,” or “weak,” “poor,” “incomplete,” can indeed give mathematics

7 <

“robust,
educators guidance in finding ways to help students develop the bases of understanding
that are compatible with the conventional knowledge in the discipline, or resemble a
conceptual understanding (Hiebert and Lefevre, 1986) or a relational understanding
(Skemp, 1976). ... When we speak not of understanding in general, but of good or deep
understanding, for example, in mathematics, then we think of the possible activities that a
student could engage in, indeed, what actions could he or she perform on the object of
understanding” (Sierpinska, 1994, p. 103). However, by separating understanding from
true, correct, or conventional knowledge, or correct chain of inferences from premises to
conclusions, or correct reasoning, or successful actions or systematic cognitive structures
that explain why the actions are successful (as in Piaget, 1978), educators can better
assess where students are in their level of learning or development. Recall that Piaget
(1978) considered understanding as having conceptualizations that are based on
knowledge of why a certain action was successful and why certain other possible actions
wouldn’t. In other words, he contended that there must be some reasoned understanding

in order for it to be called understanding at all.
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In Sierpinska (1994), understanding is defined very differently. As an alternative
to reducing understanding to knowing or knowledge, as Si'erpinska and Ajdukiewicz
propose, it is more beneficial in education to explore students’ ways of understanding or
understandings that are their basis of understanding. While the current literature on
students’ understanding of quadratic functions provide insight into students’
misconceptions and obstacles, common errors, and their difficulties in quadratic function
situations, it is the aim of this analysis to contribute to the body of knowledge on
students’ understanding of quadratic functions by explicating holistic pictures of
students’ conceptual structures or collections or fabrics of understandings (or bases of
understanding) that they relate to with regard to different aspects of quadratic functions.

According to Sierpinska (1994), there are four mental operations involved in an
act of understanding that either determine the object of understanding or relate or link the
object and basis of understanding: Identification, discrimination, generalization and
synthesis. In identification, a student isolates (or singles out) some object and recognizes
it as something that he or she intends to understand. He or she may or may not name or
classify the object. “Identification is the main operation involved in acts of understanding
called einsicht by Gestalt psychologists: acts that consist in a re-organization of the field
of consciousness so that some objects that, so far, have been in the background, are now

9%

perceived as the ‘figure’” (Sierpinska, 1994, p. 57). Categorization is not seen as part of
identification because categorization involves generalization: a class of objects is
considered to be a particular case of another class of objects. Discrimination is the

identification of two objects as two (or different), and not as one. In the mental operation

of generalization, a class of objects, situations, events, problems, theorems or theories is
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thought of as a particular case of another class of objects, situations, events, problems,
theorems or theories. And synthesis is the search for a common link or a unifying
principle that results in recognition of a collection of objects or generalizations as a
coherent whole (Sierpinska, 1994). Abstraction is not included as a separate operation of
an act of understanding, because it does not link the object and basis of understanding.
Instead, it is the detachment of certain features from the object of understanding. As
Sierpinska points out, abstraction is involved in all the above operations.

One might argue, from experience, that generalization and synthesis are too
difficult for most high school or college students, who for instance, when faced with a
task or a problem, may only identify what is given, what is to be found and what category
of problems does it belong to (so that they can carry out the memorized routine
solutions); as opposed to carrying acts of understanding that “may result in its
reformulation, in the discrimination between the essential and the superfluous
assumptions, its generalization, or discovery of an important analogy” (Sierpinska, 1994,
p- 45). Although students may lack the mathematical sophistication of research
mathematicians, they may still use the above operations at varying levels in relation to
their existing understandings.

Unlike the ‘activity theory’ of Leont’ev (1981) and Davydov and Radzikhovskii
(1985), which asserts that in order to understand an object, a learner must act upon it to
transform it into a new object, Sierpinska’s act of understanding does not involve an a
priori voluntary aim to change the object. While acting on the object of understanding,
the learner maps the object onto his or her basis of understanding (or collection of

understandings), according to some criterion, without having any intention of doing
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anything to do object other than understanding it—or relating it to other objects through
identification, discrimination, generalization or synthesis. 'Sierpinska acknowledges that
the object may be transformed into a new object during the act of understanding;
however, she opposes the prem.ise that the learner has a prior aim of changing it. Dewey
(1971), in his book How We Think, also writes: “An increase of the store of meanings
makes us conscious of new problems, while only through translation of the new
perplexities into what is already familiar and plain do we understand or solve these
problems. This is the constant spiral movement of knowledge” (p. 140). For Sierpinska,
this translation could be only the identification of the object as an existing understanding
or understandings. In other words, the new problem or the new object that the learner
attends to is mapped onto what is already familiar and plain—as in Dewey’s words. This
identification does not involve an intention to change what is being identified.

In order to clarify the distinction between meaning and understanding, it may be
sufficient to articulate how Sierpinska (1994) differentiates the two. According to
Sierpinska, most of the traditional philosophical thought explains understanding with
meaning, positing that once a subject (or learner) ‘grasps’ the meaning of an object he or
she understands it. There is an assumed essence or core meaning of objects; and the
possession (or knowledge) of that meaning constitutes understanding. As discussed
earlier, knowledge, understanding, correct reasoning, logical thought, or the ‘grasp of
meaning’ are used synonymously in most theories of traditional philosophy. Sierpinska,
however, suggests that meaning should be explained with understanding, or acts of
understanding. In explaining meaning with understanding, one defines meaning of an

object (for a learner) as a collection of understandings.
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In terms of conditions of understanding and criteria for relating the object of
understanding with its basis, Sierpinska argues that attentilon, intention and question are
three necessary conditions of an act of understanding. She notes that, however, it is
difficult to identify the sufficient conditions of an act of understanding. In terms of the
criteria for relating the object and the basis, family resemblance, recall of a similar
experience, internal consistency or finding a fit based on some existing internal order are
considered.

Sierpinska claims that attention to an object is necessary in an act of
understanding; even if some idea or thought just come to our minds, without experience,
or if we directly relate it to our basis of understanding without attending to it, it must still
come from a prior act of understanding of it that was rooted in an earlier experience.
Intention is necessary also, because it enables acting and thus identifying, discriminating,
generalizing and synthesizing. Although the existence of a question is not always
necessary for an act of understanding to occur, as in relating a word in mother language
to some meaning, “it seems that any act of understanding that brings about a substantial
change in what we know, or think, or believe, is preceded by a question. A sensible and
interesting question seems to be absolutely necessary in maintaining both the attention
that allows us to notice that there is something to understand, and the tension that is
required in conducting long reasoning that only can promise the reward in understanding”
(Sierpinska, 1994, p. 64).

Finally, according to Sierpinska’s (1994) theory of understanding that is espoused
here, an act of understanding should be distinguished from a process of understanding.

An act of understanding is an actual single experience occurring in an individual’s mind
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at a given time. On the other hand, process of understanding is “regarded as lattices of
acts of understanding linked by reasoning [inference or déduction]” (p. 72).
The second theoretical construct used in the cross analysis of the two cases of Ken
and Sarah, is that of action view of functions. Dubinsky (1992) and Carlson et al. (2010)
explain a certain way that students approach to function situations as action view of
Sunctions:
Students with an action view of function often think of the graph of a function as
being only a curve (or fixed object) in the plane; they do not view the graph as
defining a general mapping of a set of input values from the independent axis to a
set of output values on the dependent axis. They then interpret the location of
points, the vertical line test, and the “up and over” evaluation of the slope of
functions as geometric properties of the graph and not as properties of a more
general mapping or relationship between two varying quantities. (Carlson et al.,
2010, p. 116)
A student with an action view of function tends to rely solely on computational
reasoning. For the real valued function, f, defined by f(x) = 2x2 + 1, students
with an action view are confined to seeing the defining formula as a
computational procedure for finding a single answer for a specific value of x.
They view the formula as a set of instructions: square the value of x, multiply this
number by two, and then add one to get the answer. (Carlson et al., 2010, p. 116)
The rationale for using these two theoretical constructs, act of understanding and
action view of functions, is that they are most compatible with the researcher’s initial
interpretations of Ken’s and Sarah’s mathematical behaviors. To recall, for Ken, a
function is some formula where one uses an x value to solve for a y value. It is a function
of something, of the independent variable, and it is represented as ‘y equalsf of x” or
‘y = f(x).” Quadratic functions on the other hand, are usually in the form ax? + bx +
¢ = 0, which Ken calls the “quadratic formula” or “the original formula.” Quadratic

functions, like any other function, have graphs and their graphs look like a parabola. The

important aspects of graphs of quadratic functions, for Ken, are the minimum or the
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maximum point (the vertex), and the end behaviors of the parabola that “go to positive or
negative infinity.”

Ken drew quadratic graphs either by first drawing the prototypical y = x? graph
and applying a series of transformations to it, or simply sketching a singular shape that
looked like a parabola. When the given quadratic function was not in the form y =
a(x — h)? + k, he used the “formula”—b/2a, that he remembered, to find the x
component of the vertex, and sketched a shape around this vertex point which looked like
a parabola—without specifying other points on the graph unless it was explicitly asked
for. Ken found the y values of points by substituting the x values in the function
equation. He always looked at the leading coefficient of the quadratic function equation
to see if the graph is “regular” or facing upward, or “inverse” or facing downward. A
negative leading coefficient meant the graph was “inverse,” of what it would have been
without the negative sign, or facing downward.

Sarah, on the other hand, sketched her quadratic graphs by either generating and

connecting several points one by one such that the shape come out as that of a parabola,
or by trying to find two x-intercepts and a vertex point (using (— EbE ol (— 5%))) and

connecting these three points so that the shape come out as that of a parabola. In the first
strategy, she also looked for symmetry between pairs of x values so that she can locate
the x component of the vertex. Similar to Ken, she found the y values (of points on the
graph) by substituting the x values in the function equation. Her strategy choice did not
depend on the form in which the quadratic function was given. If it was given in the form
‘y = a(x — h)? + k,’ she tried to find the x-intercepts by solving the equation ‘0 =

a(x — h)? + k,” and locating the x component of the vertex by finding the midpoint
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between the two x-intercepts. Then she connected the three points one by one such that
the shape came out as that of a parabola. If it was given in the form y=ax®*+bx+c,

again she tried to find two x-intercepts by solving 0 = ax? + bx + ¢ and the vertex point
this time by using (— 2—‘;, f (— Eb;)), and connected these three points so that the shape

come out as that of a parabola. If on the other hand she was not able to find two x-
intercepts with which she can draw a symmetric parabola shape (as in Task 3), she went
back to the first strategy of generating and connecting several points one by one such that
the shape come out as that of a parabola.

For Sarah, a function is “an equation of something, a line or shape that you can
graph that for every value of x only has one y value on the graph.” For her, a function
seems to be somewhat of a collection of two things: an equation and a graph. It is an
equation with two variables where one uses an x value to solve for a y value—just as in
Ken. It is also a graph where for every value of x there is only one y value, as confirmed
by the vertical line test. This graph must also be a certain recognizable shape. Function
equation is represented as ‘y equals f of x’ or ‘y = f(x).” Quadratic functions are
represented by the quadratic equation ‘ax? + bx + ¢ = 0.” Quadratic functions, like any
other function, have graphs and their graphs look like a parabola. The important aspects
of graphs of quadratic functions, for Sarah, are the minimum or the maximum point (the
vertex), and the points where y values are zero. The origin is also important, because as
in ‘y = x2’, the graph is symmetric about the line that contains the origin. In other words,
line of symmetry is an important part of quadratic function graphs.

Let’s examine more closely, how these two students acted in some of the problem

situations, which generated significant findings. In Task 1, Ken identified the word
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‘function’ as the object of his act of understanding, and related it to the following
understandings: ‘a function of something,’ ‘a formula,’ ‘the equation y = f(x),” ‘the
dependent variable y is a function of the independent variable x,” ‘solve for y,” and ‘plug
in x values in the formula.” Although he did not mention explicitly, he seemed to relate
the object of his act of understanding, the word function, to the understandings ‘a
function of something,” and ‘the equation y = f(x),’ based on what he recalls from his
pre-calculus class: that a function “f™ is “f of x” or f(x). The other understandings, ‘a
formula,” “solve for y,” and ‘plug in x values in the formula,” seem to be based on an
internally consistent view of functions as formulas, which is compatible with Dubinsky
(1992) and Carlson et al.’s (2010) action view of functions where the defining formula
[y = f(x)] is a computational procedure for finding a single answer [y] for a specific
value of x.

Furthermore, when prompted to feel free to draw graphs or diagrams, Ken drew a
table and a graph for the example of a function that the generated, f(x) = x + 2 in
Figures 1.1 and 1.2. This prompt, to which Ken attended, was his object of
understanding. He also discriminated the words ‘graphs’ and ‘diagrams’ as two objects to
which he related what he seemed to recall from his past experiences the existence of
tables and graphs that are parts of functions. Therefore, ‘a table of x and y values’ and ‘a
set of plotted coordinate points on a graph paper’ can also be considered as parts of his
basis of understanding of function. The mental representations that constitute Ken’s
relevant conceptual structure are included in the following basis of understanding—
which can be called the fabric of his function understandings.

Ken’s basis of understanding of the word function can be summarized as follows:
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e A function of something
e The equation y = f(x)
e The dependent variable y is a function of the independent variable x
e A formula
e Solve fory
e Plug in x values in the formula
e A table of x and y values
e A set of plotted coordinate points on a graph paper
Sarah, on the other hand, identified the word ‘function’ as the object of her act of
understanding and related it to the following understandings: ‘f of x is equal to
something,” ‘the equation f(x) = ......... ., ‘a graph,’ ‘a line or shape that you can graph,’
‘the vertical line test,” ‘a graph that passes the vertical line test,” ‘can’t have more than
one y value for a single value of x.” She also drew a table of x and y values and sketched
two graphs, one representing a function and the other one not. Thus, ‘a table of x and y
values’ will also be considered as part of her basis of understanding the word function.
When asked why for every value of x there must be only y value, Sarah first attempted to
relate this understanding of hers [now the object of this act of understanding] to some
other understandings on the bases of reasoning and internal consistency. However, she
stopped at a certain point in her reasoning, and instead mapped this object to the phrase
‘by definition’ based on memory.
S: F of x equals whatever that equation is [draws the scribble next to “f (x) =" in
Figure 2.2]. F of x is the same as y [writes f(x) = y] so if you have an equation

[pointing at the scribble in Figure 2.2] umm that equals two differenty’s wait I
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thought I was making some sense umm then they can’t they won’t equal two

differenty’s maybe? Or they won’t be a function of x. But I’m still not. I think I

am confusing myself now. Umm I just know that by definition I guess.

Sarah also offered a definition of function: “An equation of something, a line or
shape that you can graph that for every value of x only has one y value on the graph.”
She gave two additional examples of functions, y = 3x + 4 and y = x2, and articulated
the following additional ways of understanding the word function: ‘equation as the
numerical representation of function or a way to write it,” ‘a graph as a visual
representation of the shape or whatever that equation makes,” ‘both equation and graph
are functions,’ ‘take any x value and plug it into the equation and you will get the
corresponding y value,” ‘take a y value on the graph and plug it into the equation and you
will get the corresponding x value.” When asked, what the two representations, the
equation and the graph, have in common, or what they both represent, Sarah acted on this
question by relating it to her understandings that they both are functions and they both
represent the same thing, i.e., the same function. Upon further questioning, she seemed to
link different acts of understanding and reason that the commonality is ‘the relationship
that they have.” This process of understanding seems to be the coordination of the acts of
understanding that were based on the understandings of ‘equation as the numerical
representation of function or a way to write it,” ‘a graph as a visual representation of the
shape or whatever that equation makes,” ‘both equation and graph are functions,’ ‘take
any x value and plug it into the equation and you will get the corresponding y value,’
‘take a y value on the graph and plug it into the equation and you will get the

corresponding x value.” Because the researcher did not pressure Sarah further to explain
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what she referred to when she said: “the relationship that they have,” it is unclear how
these understandings are linked. Below is a summary of Sarah’s understandings.
Sarah’s basis of understanding of the word function can be summarized as

follows:

e f of x is equal to something

e The equation f(x) = .........

e A graph

e A line or shape

e The vertical line test

e A graph that passes the vertical line test

e (Can’t have more than one y value for a single value of x (“by definition™)

e A table of x and y values

e Equation as the numerical representation of function or a way to write it

e Graph as a visual representation of the shape or whatever that equation makes

e Both equation and graph are functions

e Take any x value and plug it into the equation and you will get the corresponding y
value

e Solve for y values

o Take a y value on the graph and plug it into the equation and you will get the
corresponding x value

e The relationship that they have

Similar to Ken, Sarah also demonstrated an action view of functions where, in her

case, the graph of a function is viewed as being only a curve (or fixed object) in the
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plane. Moreover, the vertical line test is viewed as a geometric property of the graph of a
function.

The theme that emerged from the above analysis of Ken’s response to Task 1 was
that Ken seems to understand function as a unique type of equation where one solves for
y. In Sarah’s case, on the other hand, her frequent use of the vertical line test as a
property of the function graph led to the emergence of the theme: function as a unique
type of graph where every value of x has only one y value on the graph. And finally, both
Ken and Sarah seemed to have a way of understanding function as a collection of things.
This theme emerged after the cross analysis of the two cases, in which both students
seemed to refer to a collection of graphs, tables, equations, and x and y variables, without
paying attention to what they may have in common. Sarah called equations and graphs as
different representations of functions, and, upon extended probing, she referred to a
relation between things; however she did not make it explicit whether she sees a relation
between equations and graphs or between two co-varying variables.

The analysis of the results of this study supports Thompson’s (1994) hypothesis
about students’ use of multiple representations of functions: “Tables, graphs, and
expressions might be multiple representations of functions to us, but I have seen no
evidence that they are multiple representations of anything to students. In fact, I am now
unconvinced that they are multiple representations even to us, but instead maybe areas of
representational activity among which, as Moschkovich, Schoenfeld and Arcavi (1993)
have said, we have built rich and varied connections, that our sense of ‘common referent’
among tables, expressions, and graphs is just an expression of our sense, developed over

many experiences, that we can move from one type of representational activity to
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another, keeping the current situation somehow intact. Put another way, the core concept
of ‘function’ is not represented by any of what are commolnly called multiple
representations of function, but instead our making connections among representational
activities produces a subjective sense of invariance” (p. 24). Although Sarah uttered the
phrase “both equations and graphs represent functions,” neither Ken nor Sarah, acted on
the different representations of a function on the basis of an understanding of invariance
among them. To these students, the representations were simply parts of somewhat of a
collection, the totality of which was seen as function.

Thompson’s (1994) assertion is also consistent with Sierpinska’s theory of
understanding, which makes it clear that the subject (or the person), who is engaged in an
act of understanding, attends to and identifies the object of their understanding and
relates it to their basis of understanding. Without the knowledge of what the students are
attending to or identifying as objects of their understanding, or what ways of
understanding they relate these objects to, mathematics educators may not effectively
address the appropriate use of the pedagogical tools such as multiple representations. As
Thompson (1994) suggests, the pedagogical implication of this observation is that
mathematics educators can better address this issue by “finding situations sufficiently
propitious for engendering multitudes of representational activity, and [orienting]
students toward drawing connections among their representational activities in regard to
the situation that engendered them” (p. 24). Mathematics educators know from their own
experiences that the representations are often presented to students as “different
representations of functions,” and they often emerge neither from situations nor from

students’ own activities.
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Three hypotheses were thus generated from these emergent themes: (1) Students
with similar sets of experiences may understand function asa unique type of equation
where one solves for y or as a unique type of graph where every value of x has only one
v value on the graph; (2) Students with similar sets of experiences may have a way of
understanding function as a collection of things; and (3) Tables, graphs, and expressions
might be multiple representations of functions to mathematics teachers, but they are not
representations of anything to their students.

In Task 2, recall that participants were asked to draw a quadratic function in a
blank rectangular box and to (a) explain what makes their graph quadratic, (b) discuss
what parts of the graph are important or special (and why); and (c¢) give an equation for
the graph that they drew. Ken’s initial act of understanding the object of ‘drawing a
quadratic’ was to recall what he named ‘the quadratic formula,” or ‘the 6riginal formula,’
or ‘the quadratic equation,’ax? + bx + ¢ = 0. He then sketched the graph in Figure 1.3
in one move without lifting his pencil off from the paper. In other words, he drew this
graph as rather a single picture that somehow resembled that of a parabola—he did not
plot points, or followed any systematic method for drawing the graph. Ken again
demonstrates an action view of functions where the graph of a function is viewed as
being only a curve (or fixed object) in the plane. Ken’s response to the first part of this
task suggests that he relates quadratic functions to the following understandings: ‘a graph
or an equation is quadratic if it fits the quadratic formula: ax? + bx + ¢ = 0,” ‘the graph
of a quadratic is the shape of a parabola,’ “there is only one parabola,” [whereas he
suggests that a cubic function might have two parabolas and three x-intercepts], ‘the

graph has either a minimum or a maximum point,’ the ends of the graph either go to
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positive infinity or negative infinity,” ‘the parabola is a U-shaped parabola,’ ‘the U-
shaped parabola can be upside down, i.e., it can be “inverse” if there is a negative sign in
front of the equation,” ‘the U-shaped parabola cannot be sideways because it would then
have a different type of equation,” and ‘f(x) = 3x? + 2x + 4 = 0 is an example of an
equation of a quadratic graph.’

Ken’s criteria for relating the object of his understanding, quadratics, to his basis
of understanding that ‘the graph of a quadratic is the shape of a parabola,’ is that he
simply recalls similar experiences in his classes and that recognizes problems involving
the quadratic equations, ax? + bx + ¢ = 0, and parabolas as quadratic problems. The
following excerpt illustrates this point:

R: Why did you draw that way but not some other way? Some other curve.

K: Just because it did look like an example of something that I know it’s a

quadratic.

Thus, in his acts of understanding in all three parts of this task, Ken generated
somewhat of a fixed shape of a parabola in a single drawing, related the word quadratic
to a fit or a match with the “original formula,” ax? + bx + ¢ = 0, and related the
example f(x) = 3x% + 2x + 4 = 0 to the phrase: equation of a quadratic function.
While the task explicitly stated the phrase “quadratic function,” Ken somehow did not
identify the word function as his object of understanding in the above acts of
understanding. For example, no part of this task included any use of most of his basis of
understanding of functions in Task 1. Specifically, he did not map any object onto the
understandings of dependent variable y being a function of the independent variable x, or

function as a formula, or solving for y, or plugging in x values in the formula, or a table
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of x and y values being part of a function. It rather seemed that he only attended to the
word quadratic and identified this word as his only object of understanding. This was also
evident in the fact that he never uttered the word function in this task. The inference that
Ken’s object of understanding was only the word quadratic could have a significant
implication for teaching quadratic functions, which usually starts in high school algebra
where students mostly only manipulate expressions, solve equations and explore
transformations of prototypical graphs (e.g., that of y = x?). Below is Ken’s fabric of
understandings related to quadratic functions (or simply ‘quadratics’).
Ken’s basis of understanding of quadratic functions can be summarized as
follows:
e The quadratic formula, the original formula, or the quadratic equation: ax? + bx +
c=0 |
e A parabola
e A graph or equation is quadratic if it fits the quadratic formula: ax? + bx + ¢ = 0
e The graph of a quadratic is the shape of a parabola
e There is only one parabola
e The graph has either a minimum or a maximum point
e The ends of the graph (the parabola) either go to positive infinity or negative infinity
e The parabola is a “U-shaped” parabola
e The U-shaped parabola can be upside down, i.e., it can be inverse if there is a
negative sign in front of its equation
e The U-shaped parabola cannot be sideways because it would then have a different

type of equation
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e f(x)=3x?+ 2x + 4 = 0 is an example of an equation of a quadratic graph
These quadratic function understandings can be further organized into: equation

understandings, graph understandings, and connections.

1) Equation Understandings:

e The quadratic formula, the original formula, or the quadratic equation: ax? + bx +
c=0

e f(x)=3x?%+ 2x + 4 = 0 is an example of an equation of a quadratic graph

2) Graph Understandings:

e A parabola

e The graph of a quadratic is the shape of a parabola

e There is only one parabola

e The graph has either a minimum or a maximum point

e The ends of the graph (the parabola) either go to positive infinity or negative infinity

e The parabola is a “U-shaped” parabola

e The U-shaped parabola can be upside down, i.e., it can be inverse if there is a
negative sign in front of its equation

e The U-shaped parabola cannot be sideways because it would then have a different
type of equation

3) Connections:

e A graph or equation is quadratic if it fits the quadratic formula: ax?® + bx + ¢ = 0

Sarah’s initial act of understanding was also, as in Ken’s case, to recall what she
called ‘the quadratic equation,” ax? + bx + ¢ = 0. After she wrote this equation, she

asked herself: “what is their shape usually?” She recalled y = x? and stated that it is a
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quadratic equation. The facts that she wrote the equation ax? + bx + ¢ = 0 next to the
question in part (a), what makes this graph quadratic, and that she spent some time
discussing about “what makes it quadratic” (without drawing any graphs), lead to the
inference that the object of her initial act of understanding was either the word
“quadratic” or the question “what makes something (maybe an equation) quadratic.” This
object of understanding is very similar to Ken’s object of understanding in which the
word quadratic was also central. Sarah’s reasoning about the question “what makes it
quadratic” revealed the following ways of understanding this question: ‘quad means
four,” ‘the reason it might be four is that the quadratic equation ax? + bx + ¢ = 0 can be
factoredinto( )(  ),”‘C  )( )canbewrittenas( + )( + ), and
‘(. + )( + )canbewrittenas(_ + _)(_ + _).

After being prompted to draw a graph, Sarah sketched the graph of y = x2 in
Figure 2.7 in one move without lifting her pencil from the paper. Ken also drew his first
quadratic graph the same way, but, unlike Ken’s, Sarah’s drawing indicated some kind of
systematic approach, where the left hand side of the graph ends at a minimum or a
bottom point and the right hand side begins from that point and is drawn by following
some symmetry to the one previously drawn on left. As did Ken, when asked what makes
her graph quadratic, Sarah related this question to the existence of a fit or a match with
what she called quadratic equation: ax? + bx + ¢ = 0. Unlike Ken, however, Sarah
explicitly stated that y = x2 fitsax? + bx + c = 0whena =1, b = 0, and ¢ = 0.

R: Okay. What makes this graph quadratic?

S: Umm, well it, I know it fits this equation [pointing at ax* + bx + ¢ = 0] umm

because if umm if @ was one and b was zero and ¢ was zero, we would have umm
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x squared equals zero? I don’t know. Umm it would fit that definition I guess.
Umm maybe because umm there is quadrants? [taﬁches four points in the four
distinct regions of the coordinate plane, Quadrants 1, 2, 3, and 4] and it’s the
same on both sides of two of them? [Touches the point on the y-axis in Figure 2.7,
where y = 1, and two other points on the graph of y = x? in Figure 2.7, one
point on the left, near the point (—1, 1) and another on the right, near (1,1)]
Recall that Ken gave f(x) = 3x% + 2x + 4 = 0 as an example of an equation of
a quadratic graph. When Sarah was stating that y = x? fits ax® + bx + ¢ = 0, when a =
1, b = 0, and ¢ = 0, she identified the resulting equation x? = 0, and acted on this
equation. She said “I don’t know,” and then in her act of understanding x? = 0 she
related this result to the understanding: ‘a fit with the definition of quadratic equation.’
Seemingly unsatisfied with this result, she went back to her exploration of the meaning of
the word quadratic and suggested that the reason it might be four (or that there are four
things in quadratics) is that there are quadrants and “it’s the same on both sides of two of
them.” This assertion further supports the earlier inference (in the analysis Sarah’s
mathematical behavior in Task 1) that she demonstrated an action view of functions. In
other words, whereas in Task 1, the vertical line test was a geometric property of the
graph of a function; here symmetry is used as a property of only the graph and “not as [a
property] of a more general mapping or relationship between two varying quantities”
(Carlson et al., 2010, p. 116).
Also recall that, from the previous section, the description of Sarah’s case, when
the researcher suggested that she may think of a quadratic function in terms of how it is

different from other types of functions, and not so much in terms of how it is worded,
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Sarah said: “because x is squared?” while pointing at the x2 in ax? + bx + ¢ = 0. She
continued: “So you will have more than one y value for ea.ch x maybe.” To explain why
that is so, Sarah generated the table in Figure 2.7 and plotted the five points: (—1, 1),
(0,0), (1,1), (—2,4) and (2,4) on the graph. She argued that x = —2 and x = 2 both
have the same y value of 4 (and that x = —1 and x = 1 both have the same y value of 1),
and therefore “the absolute value of any x value will have the same y value” “because it
is squared.” Although this assertion seems to contradict what she said about the definition
of a function when using the vertical line test to ensure that there is only one y value for
each x value, Sarah seemed confident about her reasoning and did not display any
puzzlement. This finding confirms Vinner and Dreyfus’ (1989) notion of
compartmentalization of knowledge, which seems to account for the fact that Sarah did
not use her understandings of the concept of function, such as the vertical line test, to
solve this problem. Here, compartmentalization is viewed as treating related concepts as
independent, as in the sense of Gerson (2008).

These acts of understanding indicate that she is relating the term quadratic to the
idea of symmetry between points on two sides of the graph (left and right) that lie on the
same horizontal line. These acts of understanding, however, do not involve reference to
her basis of understanding of functions such as her central notion of the vertical line test.
Ken’s acts of understanding_quadratic function situations also did not involve most of his
understandings that were central to him in the function situations of the first task. The
omission of the vertical line test in Sarah’s above acts also strengthen the inference that
she demonstrates an action view of functions in which she uses the vertical line test as a

geometric property of the graph of a function—not as a property indicating a special
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relationship between two quantities, which applies to quadratic function graphs as well.
In sum, Sarah seemed to relate only graphs of ‘functions’ to the vertical line test, and not
quadratic function graphs (or quadratics, as she sees it). Therefore a separation was
observed in both cases between the students’ acts of understanding functions and
quadratics.

Sarah’s act of understanding of the object, the parts of the graph that are
important or special, included the following ways of understanding: ‘the graph of y = x?2
is symmetric about the origin (0, 0) and therefore origin is important for this graph,’ ‘the
vertex of the graph is either the minimum point (and no y value can go below that point)
or the maximum point (and no y value can go above that point),” ‘points where y = 0 are
important because they help in graphing the equation,” and ‘points where y = 0 are
Zeros.’

As an additional example, beside y = x?, Sarah generated another quadratic by
choosing four terms and fillinginy = (_ + _)(_ + _)asy = (x + 3)(x + 4).
While attending to this equation and isolating it as the object of her understanding (with
the goal of graphing it), Sarah related this equation to her understanding ‘the quadratic
equation ax? + bx + ¢ = 0, and said that “it should be equal to zero” because “that’s
the quadratic equation.” She changed (x + 3)(x + 4) = y into (x + 3)(x + 4) = 0. At
first, immediately after writing (x + 3)(x + 4) = y, she drew a blank table with x and y
columns, and stated that she would “solve for y values.” In other words, initially she
seemed to be graphing the quadratic (x + 3)(x + 4) = y by generating (x, y) pairs and
plotting them in the coordinate plane, as she would do to any function. It seems that

initially she may have related the quadratic to her basis of understanding of functions
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such as ‘generating a table of x and y values,” and ‘taking any x value and plug it into the
equation and you will get the corresponding y value.” But instead, her act of
understanding (x + 3)(x + 4) = y by relating it to the way of understanding: ‘A graph
or equation is quadratic if it fits the quadratic equation, or the definition ax? + bx + ¢ =
0,” seemed to have led Sarah to change (x + 3)(x + 4) = yinto (x + 3)(x + 4) = 0 and
solve the equations x+3=0andx+ 4 = 0and find x = —3 and x = —4. And she
sketched the graph in Figure 2.9 by plotting these two points (—3,0) and (—4, 0) and
simply connecting them so that they form the shape of a parabola. Before sketching the
graph, which resembled a parabola, Sarah found the x-coordinate of the vertex using
- b/2a (which she remembered from her class) and said that - b/2a = - 7 /2 makes
sense to her because it is in between x = —3 and x = —4. However, she did not consider
finding the y-coordinate of the vertex in order to graph it. She found the y-coordinate of
the vertex by referring to her understanding of ‘taking any x value and plugging it into
the equation to get the corresponding y value.” She then found y = —1/4 to be the y-
coordinate of the vertex and confirmed that her graph was correctly drawn.
Sarah’s basis of understanding of quadratic functions can be summarized as

follows:
e The quadratic equation: ax? + bx + ¢ =0
e y = x? is a quadratic equation
e (Quad means four
e The reason it might be four is that the quadratic equation ax? + bx + ¢ = 0 can be

factoredinto (  )( )

e ( )( )canbewrittenas( + )( + )
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( + )( + )canbewrittenas (_ + _)(_ + _)

A graph or equation is quadratic if it fits the quadratic équation, or the definition:
ax?+bx+c=0

The reason it might be four is that there are quadrants and it’s the same on both sides
of two of them

The graph is quadratic because x is squared

Inax? +bx+c=0,whena=1,b =0, and c = 0, the resulting equation x? = 0
fits the definition of quadratic equation

The graph of y = x? is symmetric about the origin (0, 0) and therefore origin is
important for this graph

The points on the left hand side of the vertex are symmetric with the points on the
right hand side of the vertex

The vertex of the graph is either the minimum point (and no y value can go below
that point) or the maximum point (and no y value can go above that point)

To generate an equation of a quadratic, one could choose four terms and fill in

¥ = P )l o )

—b/2a gives the x value of the minimum or the maximum value

There is a vertex form of the equation ax? + bx + ¢ = 0 (“but cannot remember”)
Quadratics are always parabolas

Take any x value and plug it into the equation and you will get the corresponding y
value

Points where y = 0 are important because they help in graphing the equation

Points where y = 0 are zeros



In order to graph a quadratic equation one could find two x-intercepts and a vertex
point (using (— 5% i (— ;b;))), which is the midpoint between the two x-intercepts,

and connect these three points so that the shape come out as that of a parabola
(x + 3)(x + 4) = yorx?+ 7x + 12 = y is an example of an equation of a
quadratic graph

These quadratic function understandings can be further organized into: equation

understandings, graph understandings, understanding of related concepts, and

connections.

1)

[ ]

2)

Equation Understandings:

The quadratic equation: ax? + bx + ¢ =0

y = x? is a quadratic equation

Inax?+bx+c=0,whena =1,b =0, and ¢ = 0, the resulting equation x* = 0
fits the definition of quadratic equation

To generate an equation of a quadratic, one could choose four terms and fill in
y={ .+ _ ) +_)

There is a vertex form of the equation ax? + bx + ¢ = 0 (“but cannot remember”)
Take any x value and plug it into the equation and you will get the corresponding y
value

(x + 3)(x + 4) =yorx?+ 7x + 12 = y is an example of an equation of a
quadratic graph

Graph Understandings:

The graph of y = x? is symmetric about the origin (0, 0) and therefore origin is

important for this graph
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4)
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The points on the left hand side of the vertex are symmetric with the points on the
right hand side of the vertex

The vertex of the graph is either the minimum point (and no y value can go below
that point) or the maximum point (and no y value can go above that point)
Quadratics are always parabolas

Points where y = 0 are important because they help in graphing the equation

Points where y = 0 are zeros

In order to graph a quadratic equation one could find two x-intercepts and a vertex
point (using (— %, i (— %))), which is the midpoint between the two x-intercepts,
and connect these three points so that the shape come out as that of a parabola
Understanding of Related Concepts:

Quad means four

( )( )canbewrittenas ( + )( + )

( + )( + )canbewrittenas (__ + _)(_ + _)

Connections:

The reason it might be four is that the quadratic equation ax? + bx + ¢ = 0 can be
factoredinto (  )( )

A graph or equation is quadratic if it fits the quadratic equation, or the definition:

ax’+bx+c=0

The reason it might be four is that there are quadrants and it’s the same on both sides

of two of them
The graph is quadratic because x is squared

—b/2a gives the x value of the minimum or the maximum value
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As in the case of Ken, Sarah never uttered the word function in this task. She also
seemed to be only attending to the word quadratic (as oppdsed to the phrase quadratic
function) and identifying it as her object of understanding. In addition, similar to Ken,
Sarah made very little use of her basis of understanding for functions.

The two participants’ above acts of understanding in Task 2, in summary, suggest
the following similarities and differences in their understandings of quadratics. Both
students identified the graphs of quadratics as having the shape of a parabola, which is a
self-attribute of quadratic functions. And both students referred to the attribute that
quadratic graphs (or parabolas) have only one minimum or one maximum point. Only
Sarah however, made reference of this point being related to the minimum or maximum y
value as well. Thus, the two students also demonstrated certain understandings that were
unique to them. For example, to Ken, the end behaviors of the graph of a quadratic
function were important. These end behaviors are also connected to reflection in that if
the leading coefficient is negative the graph opens downward and it opens upward if the
leading coefficient is positive. On the other hand, Sarah used the attribute of line of
symmetry in quadratic graphs while graphing quadratic functions. She also considered a

product of two binomials having four terms, suchas (_ + _)(_ + __),asan

important form of quadratic functions. And, whereas Sarah related the quadratics to the
observation that ‘x is squared,” Ken made no reference to the notion of squaring.

The most important commonality however, which was observed in both cases on
several occasions, led to the emergence of a theme. Both students somewhat used the

equation ax? + bx + ¢ = 0 as a prototype quadratic function. It should be recalled that

the students sometimes replaced the term ‘quadratic function’ with the word ‘quadratic.’
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The use of ax? + bx + ¢ = 0 as a prototype quadratic function thus seemed to have
contributed to the compartmentalization of their knowledgé of functions (in general) from
their understandings of quadratic [functions] in particular (Vinner and Dreyfus, 1989) in
that they both attended to and operated on the concepts of quadratic equations, quadratic
formulas, quadratics and parabolas—as opposed to the concept of function. In other
words, incompatible conceptions coexisted without the students being aware of them.
The understanding of ax? + bx + ¢ = 0 as a prototype quadratic function further
supports Thompson’s (1994) hypothesis about multiple representations of functions. It
suggests that because both Ken and Sarah were relating expressions to equations and sets
instructions to carry out (as opposed to single entities—as in Sfard’s (1991) notion of
object understanding), and equations to functions and formulas, while operating within
their action view of functions, they were not engaged in acts of understanding that were
based on representational activities (Thompson, 1994) that relate the given equations or
graphs to the underlying invariant relationships. Instead, they both identified the term
quadratic only with the shape of a parabola and the equation ax? + bx + ¢ = 0; and they
conducted computations that aimed at the geometric or the algebraic properties of the
respective types of function representations.

The centrality of the equation ax? + bx + ¢ = 0 in their basis of understanding of
quadratic functions, coupled with their seeming understandings of expressions as
equations (as observed in the previous section) or as sets of instructions or somewhat as
processes (Sfard, 1991) also caused difficulties for both students in handling situations
where they had to find y values, x-intercepts, or vertex coordinates. Recall that Ken

offered f(x) = 3x? + 2x + 4 = 0 as an example of an equation of a quadratic graph;
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and Sarah went back and forth among ax? + bx + ¢ =0, (x + 3)(x + 4) = 0 and
(x + 3)(x + 4) = y while finding the x-intercepts and the v coordinate of the vertex in
Task 2.

The basis of understanding ax? + bx + ¢ = 0 as a prototype quadratic function
is also compatible with the understandings of functions as unique types of equations or
graphs and functions as collections of things. For both Ken and Sarah, it was somewhat
unproblematic to simultaneously and consistently act on equations in the form ax? +
bx + ¢ = 0 and on shapes of parabolas in tandem without having the need to look for
some coherence or unity between different representations that they generated. While this
theme may be named ‘functions as collections of representations,’ the lack of unity,
commonality among representations, or invariance has been studied in the literature
before. For instance, Ken’s and Sarah’s acts of understanding and bases of understanding
quadratic functions seem to be incompatible with a covariational view of functions
(Thompson, 1994; Carlson, 1998, Carlson et al., 2010). In referring to this type of
functional reasoning, Carlson et al. (2010) state that “the ability to interpret the meaning
of a function modeling a dynamic situation also requires attention to how the output
values of a function are changing while imagining changes in a function’s input values”
(p. 115). Although the task instrument of this study did not involve a quadratic function
task that models a dynamic quantitative situation, neither Ken’s nor Sarah’s
understandings involved the use or mention of variables changing in relation to one
another. Neither of them related symbolic situations such as y = x% + 2 to two variables
with two sets of values, e.g., x = 0, 1, 2, 3, ... (where values are increased by a constant

difference), and y = 2, 3, 6, 11, .... (where values are two more than the squares of the



155

corresponding x values, and where they change according to a special quadratic
relationship).

In Task 3, Ken’s act of understanding the prompt: Graph y = - (x — 4)% + 16
involved his immediate reference to: the “simple form” or “standard form™ or the graph
of y = x? and his understanding that ‘the U-shaped parabola can be upside down, i.e., it
can be “inverse” if there is a negative sign in front of its equation.” After relating the
quadratic function equation, which is given in the form y = a(x — h)? + k to these two
understandings, Ken translated the graph of y = x2 4 units to the right horizontally and
16 units upward vertically. He also identified the need to do the “inverse,” which meant
to him reflection of the graph of y = (x — 4)? + 16 about the line y = 16.

K: Well yeah that’s because they were shifted. By sixteen.

R: Hmm.

K: So it’s not so much that the negative, it just, they are opposite of what they

would be without it.

R: What do you mean by that?

K: Actually that is not correct. It’s. [Pause]

R: Opposite of?

K: Well I guess it is to me. Like the way I’m thinking about it. Cause if | were to

draw the original one without the negative [draws a new larger graph around the

small graph that is crossed out and facing upward in Figure 1.6] it would look

something like that. [ Pointing at the new larger graph in Figure 1.6]

R: Uh-huh.
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K: And, with it, so the point would be up there [draws a point on the new larger
graph in Figure 1.6, which represent the reflection .of the point (1,7) that was
drawn earlier].
R: Uh-huh.
K: And if you were to just make a new like make a new axis I guess [draws a line
through y = 16], so I guess you are flipping over that [makes a flipping move
with his right hand over the line y = 16].
R: Hmm.
K: So that’s what I meant by opposite. Which is not really the opposite but the
way I am thinking about it; it is.
Ken’s clear coordination of function translations and reflections in quadratic
function situations involving the activity of graphing functions given in the form
y = a(x — h)? + k further demonstrate the compartmentalization of his bases of
understanding for functions, quadratic functions and transformations of functions that are
given in the form: y = a(x — h)? + k (Vinner and Dreyfus, 1989). Thus, in this task,
Ken fluently and successfully applied all the necessary function transformations on to the
graph of y = x? without discussing any other aspect of quadratic functions. Below is list
of Ken’s basis of understanding quadratic graphs in the form y = - (x — h)? + k.
Ken’s basis of understanding of the graph of y = - (x — h)? + k can be
summarized as follows:
e The parabola is a “U-shaped” parabola
e The simple form or standard form y = x?

e The graph of y = x?
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e The U-shaped parabola can be upside down, i.e., it can be inverse if there is a
negative sign in front of its equation
e Horizontal translation of h units to the right

e Vertical translation of k units upward

e The graph of y = - (x — h)? + k as the reflection of y = (x — h)? + k about the line
y=k

Sarah on the other hand, did not relate this question to such a ‘transformational
view’ as did Ken. Rather, she seemed to identify the question as that of graphing a given
equation by ‘taking any x value and plugging it into the equation and getting the
corresponding y value,” generating a table of those x and y values, plotting them on the
graph paper, and by connecting all the points. She referred to this method as “the easy
way.” Upon the researcher’s suggestion that she may use a different method instead,
Sarah recalled her understanding that ‘points where y = 0 are important because they
help in graphing the equation,” which was demonstrated earlier as a part of her basis of

understanding of quadratic functions. Then she tried to solve the equation 0 =

- (x — 4)? + 16 so that she can identify the two x-intercepts. Because she also related
y

this graphing situation to her understanding that ‘in order to graph a quadratic equation
one could find two x-intercepts and a vertex point (using (— %, f (— 2%))), which is the

midpoint between the two x-intercepts, and connect these three points so that the shape
come out as that of a parabola,” there is evidence that the object of her understanding was
specifically graphing a quadratic equation and not any type of function equation. It was
also demonstrated earlier that ‘the graph is quadratic because it is squared’ is a way of

understanding quadratics for Sarah.
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Sarah’s solution included the following steps: (1) 0 = - (x — 4)? + 16; (2)
~16=-(x—4)%03)16=(x—4)(x—4); 4 16 = (x _ 4); (5) 20 = x. When her
expectation, that she should find two x-intercepts for this quadratic equation, was not
met, Sarah said: “So all I have is the vertex really.” The following excerpt illustrates how
she reasoned about the above solution steps, which suggest a unique way of
understanding quadratic equations.

S: And since those are both the same [pointing at (x — 4)(x — 4)], I’'m only

going to do once I’'m only gonna have one zero value for x [writes (x — 4) = 16

and x = 20]... When y is zero, x is twenty.

Sarah’s understanding of the equation 16 = (x — 4)(x — 4), as 16 = (x — 4), ‘because
they are both the same’ is a finding about how students think about quadratic equations,
adding to the findings of Vaiyavutjamai and Clements (2006). Such way of
understanding of the product of two identical binomial expressions ((x — 4)(x — 4)) also
suggests that students may not relate the expression (x — 4)(x — 4) to the concept of
product. Ken’s puzzlement about why when solving (x — 2)(x — 3) = 0 one sets both
(x — 2) and (x — 3)equal to zero to solve forx also indicates a similar way of
understanding the product (x — 2)(x — 3) as somewhat ‘two problems written side by
side.’

Because Sarah found only one x-intercept instead of two, she identified the point
(20, 0) and the vertex. Then, she chose an x value consecutive to 20, x = 18, and tried to
plot points and connect them in order to generate a parabolic graph. When she found that
the corresponding y value for x = 18 was too large, she decided to choose smaller x

values starting from x = 2. When she couldn’t relate her object of understanding, the
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three points (20, 0), (2,12) and (4, 16), to her basis of understanding, that connecting
the points should form the shape of a parabola, she decided to call the point (20,0) a
mistake and continued generating more points in the table in Figure 2.11. She also
identified a reflection (when the noticed the negative leading coefficient of the equation),
which accounted for the fact that the graph looked like it was facing downward.

R: Can you explain why, when there is a negative, the graph looks like this one?

[Pointing at the graph in Figure 2.12]

S: Umm. I just know it means you flip it over umm.

R: Over what?

S: From what it would be if that was positive. Umm, let me think. Well it’s

making you subtract from the sixteen rather than add [in y = - (x — 4)? + 16], so
you are subtracting umm so you would be going the same number of spaces in
this direction [fraces the tip of her pencil along the graph in Figure 2.12 on the
right side of the vertex| that you would be going in this direction if it was positive
[moves the tip of her pencil in the air along a vertical line upward, starting from
the vertex] therefore it makes it curve down. So the negative and positive
direction of the opening of the parabola.

R: Okay. Are you flipping it about a certain thing or?

S: Umm. Two, four, six, eight, ten, twelve, fourteen [counts by two on the y-axis
with the tip of her pencil in the air]. Yeah, about the sixteen, which is the

maximum.
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Ken demonstrated almost an identical way of understanding multiple transformations in
quadratic function situations in which function translations and reflections are
coordinated.
Sarah’s basis of understanding of the graph of y = - (x — h)? + k can be
summarized as follows:
e The graph is quadratic because x is squared
e Quadratics are always parabolas
e Take any x value and plug it into the equation and you will get the corresponding y
value
e Points where y = 0 are important because they help in graphing the equation
e Points where y = 0 are zeros if there are two of them, and they are vertices if there is
one of them

e In order to graph a quadratic equation one could find two x-intercepts and a vertex
point (using(— %, T (__ EbE)))’ which is also the midpoint between the two x-

intercepts, and connect these three points so that the shape come out as that of a
parabola
e The graph of y = - (x — h)? + k is the reflection of y = (x — h)? + k about the line
y=k
Thus, unlike in Task 2, this time Sarah related the given quadratic graphing
situation to her basis of understanding of functions. As was in the case of Ken, she did
not relate any of her objects of her understanding within this task to the prototypical

quadratic ax? + bx + ¢ = 0. In addition, they both understood the graph of y =
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- (x — h)? + k as the reflection of y = (x — h)? + k about the line y = k,
demonstrating coordination of function translations and reflection.

As further discussion on quadratic functions in Task 4, Ken offered the general

solution to the quadratic equation ax? + bx + ¢ = 0, —————— as the ‘quadratic

~bFVb2- 4ac
2a

equation,” and identified it as an important aspect of quadratic functions. Specifically, he

related :—P—iat-);:-fﬁ to finding the x-intercepts of a quadratic graph. He also defined

transformations of functions, which he successfully applied to the parent graph of y =
x2, as “things that are happening to the graph.” The way he named the expression

—b ¥Vb? —4ac

o as the ‘quadratic equation’ further strengthens the earlier inference that Ken

operates on expressions as if they are equations, or problems, or sets of instructions to
carry out.

Sarah also articulated a few additional understandings that she has about quadratic
functions. She repeated that the graph of y = —x? would be a reflection of the original
graph y = x? over the line on which the vertex lies (the x-axis). She further clarified that
she does understand reflections of quadratic graphs the way that Ken understands. In
other words, ‘if the leading coefficient of the quadratic equation is negative then the
original graph reflects about the horizontal line on which its vertex lies.” Therefore, this
task helped clarify some of the earlier ways of understanding certain aspects of quadratic
functions and graphs. She also added that if one adds a certain number k in an equation
such as y = (x? — 4) + k, then the graph of y = (x? — 4) would move k units up. If one
subtracts a positive number k as iny = (x? — 4) — k, then the graph of y = (x? — 4)

would move k units down. There is no evidence at this point how she relates the addition
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or subtraction of such term in vertical translation situations involving the quadratic
function forms y = a(x — h)? + k and y = ax? + bx + c. It is plausible that she may
operate on y = a(x — h)? + k in a very similar way (as in y = (x2 — 4) + k), however,

there is no evidence at this point how she thinks about the constant ¢ in y = ax? + bx +

Thus, additions to Sarah’s and Ken’s bases of understanding of quadratic

Jfunctions can be summarized as follows:

Ken:
—bF \f 2.
e The quadratic equa‘[i011—9171;———4E can be used to find the x-intercepts or zeros of a
quadratic graph

e Transformations of a quadratic function graph are things that are happening to the
graph
Sarah:
o [fthe leading coefficient of the quadratic equation is negative then the original graph
reflects about the horizontal line on which its vertex lies
e If one adds a certain number k in an equation such asy = (x? — 4) + k, then the
graph of y = (x? — 4) would move k units up
e If one subtracts a positive number k as in y = (x? — 4) — k, then the graph of
y = (x% — 4) would move k units down
In Task 6, Ken’s acts of understanding the difference between equations and
functions revealed more details about how he understands quadratic functions. Earlier it
was argued that that Ken understands functions as unique type of equations where one

solves for y. He also understands the existence of a collection of representations for
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functions. His understanding of functions consists of a process of computing values of the
dependent variable y from the given values of the independent variable x. If an equation
allows such computation, then he sees it as a function. Sarah on the other hand, acted on
this difference based on her central conception of the vertical line test. She drew graphs
of several candidate equations and checked if their graphs passed the vertical line test. If
they did, then she called them functions. These findings are also consistent with what
Gerson (2008) writes: “A student’s concept image of function might include: “you plug a
number to it” or “it passes the vertical line test.” It might include a mental picture of
“f(x)” or the graph of the function f(x) = x2” (p. 28).

In Tasks 7 and 8, both students related what they understood as their object of
understanding with regard to various attributes of quadratic functions such as line of
symmetry, vertex, x-intercepts and y-intercept. Both students seemed to be fluent
procedurally in finding the x component of the vertex using - b/2a when the quadratic
function equation was in the form y = ax? + bx + c. They demonstrated a mixture of
algebraic manipulation skills in converting one form of quadratic function equation to
another. In Task 8, Ken’s act of understanding the line of symmetry in a quadratic graph
involved recalling and relating it to the vertical line test. He introduced his additional
understandings of the vertical line test and the function definition of “no one x value you
can have more than one y value.

In Task 9, using a strong sense of function transformations, Ken related the
question of “how can we find if a quadratic graph is stretched or shrunk?” to a basis of
understanding about dilations. His understanding of quadratic growth is observed to be

somewhat broad and unspecified; this understanding became apparent in Task 12
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[Figures 1.24 and 1.25] where he discussed exponential growth in parabolas. In terms of
how to determine if a graph is dilated, Ken used a unique 60nception of proportionality.
Recall that in Figure 1.19, Ken argued that because the slope of the line that passes
through the two points (—2,5) and (0,9) in the graph of y = (x + 2)> + 5is 4/2 = 2
and the slope of the line that passes through the two points (0,0) and (2, 4) in the graph
of y = x? is also 4/2 = 2, there is no dilation. Also recall that he offered this explanation
while circling the parts of the graphs in Figure 1.9 and making triangles [i.e., from
(—2,5) to (0,9) one would “go to the right two and up four,” and from (0, 0) to (2,4)
one would also “go to the right two and up four”]. This way of understanding dilations
was not observed in Sarah’s case. Sarah on the other hand, seemed to be able to find
dilation factors through decomposing numbers. Recall that she looked at ¢ values in Task
9 [Figure 2.24] and tried to find out what number she needed to multiply the ¢ values in
order to preserve the given points on the quadratic graph.

These idiosyncratic ways of understandings of Ken and Sarah and the themes that
were developed in this cross analysis are compared and contrasted with the subsequent
two cases, Seth and Joseph.

Cross Case Analysis: Case 3 (Seth) and Case 4 (Joseph).

Seth is a university freshman, who identified his mathematics background as
“very vague and primitive.” He also stated in his background survey (Appendix C) that
he is “artistically minded and [he has] trouble wrapping [his] mind around numbers.” He
took Algebra I, Advance Functions and Modeling, Discrete Math, Pre-calculus and
Statistics courses in high school and received a mixture of grades (from F to A) in them.

Despite the number of mathematics courses that he took, Seth identified himself as
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having difficulty in upper level mathematics courses. He also wrote: “I am mostly a
visual and tactile learner,” and “I hate theoretical math bec;duse I can’t see it.”

Joseph is a recent graduate from a local public high school, who is accepted to a
major university in his home state. He took Algebra II, Geometry, Pre-calculus, and AP
Calculus courses in high school and received A’s and B’s in all of them. He was less
articulate than the other three cases and he provided additional insights to his answers to
the interview tasks only when the researcher asked for them. He characterized his
mathematical knowledge as “good, but not perfect because there is plenty of topics out
there that [he has] not yet learned about.” He also stated that until pre-calculus, he has
“been able to pretty much breeze through [his] math classes.”

In this section, Joseph’s and Seth’s acts of understanding quadratic functions are
analyzed together. Their mathematical problem solving behaviors and their articulations
of their thoughts are also compared to those of Ken’s and Sarah’s (as well as the themes
that emerged therein).

Seth’s act of understanding the word function involved recalling, “off of top of
[his] head,” the understandings: ‘f of x equals,’ ‘a function of a particular equation
equals something,” ‘the graph of the line y = x or f(x) = x’ [in Figure 3.1], ‘f(x) =y,
and ‘f of x is another way of saying y.” He stated that he cannot think of what a function
is or what it might be, but if there were a particular problem that asks him to do
something to the given function, then he would be able to solve it. When asked to give
examples of functions, he wrote: f(x +1) = 7 and f(x) = 6.

SE [Seth]: Alright, a function. The most I know about a function off the top of my

head is f of x equals. So, the function of a particular equation equals something.
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So, that’s really all I’ve got at this point. So, I’m gonna write that f of x equals.
That’s all I know about a function. So, umm.

R: Ok, what are you thinking?

SE: Umm, f of x equals y [writes f(x) = y]. I’'m trying to figure out how to
attack this problem; how to write it in a definition sense, as opposed to just f of x
equals. So, ’'m searching my mind for any words that I might have associated
with a function. And none are coming to mind. So, I’m kinda worried a little bit.
But, I could draw a graph f of x equals that [pointing at y], you know, that’s not,

umm, f of x equals y. At this point I’ve kind of stopped working on the problem.

Figure 3.1. Seth’s Response to Task 1
Seth’s basis of understanding the word function can be summarized as follows:
f of x equals
A function of a particular equation equals something
The graph of the line y = x or f(x) = x
fx)=y
f of x is another way of saying y

f(x+ 1) =7and f(x) = 6 are examples of functions
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Joseph’s act of understanding the word function, on the other hand, involved
identification and recall of the existence of an equation, “its own graph,” and a “table of
coordinates.”

J [Joseph]: Whenever I think of a function, it’s more like you have an equation

and it’s, it always has its own graph and table of coordinates. So, umm whenever [

think of a function I always think of things like [writes ax? + bx + ¢ = 0 in

Figure 4.1, which he later rewrote as f(x) = ax? + bx + ¢ ] let this bex, umm of

quadratic equations and they always have their own tables [draws the table in

Figure 4.2] like I said with several coordinates and graphs [draws the graph in

Figure 4.1]. Umm and also with functions you can umm I do remember there was

one thing I was taught that the definition of a functioﬁ. I just don’t quite

remember it.

Figure 41. Joseph’s Response to Task 1
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Figure 42 Joseph’s First Table

R: What comes to your mind when you are trying to remember it? Besides the

graph you said, and a table.

J: Uh-huh. Well, umm with functions also there are several different types of

forms for functions that you have to solve for some type of variable.

R: Uh-huh.

J: That’s pretty much all I can remember right now.

R: Ok, can you tell me more about those zero, one, one, two? Those points?

[Pointing at the table in Figure 4.2]

J: These coordinates would be used to graph the actual line.

R: Alright, so let’s recap what you said about functions. What is a function?

J: Well, basically a function is something that you, it’s a, umm, an equation that

you are able to plot on the coordinate plane and the whole side has its own set of

coordinates on table. Umm.

Joseph’s basis of understanding the word function can be summarized as follows:
You have an equation, such as f(x) = ax® + bx + c, and it always has its own graph
and table of coordinates
There are several different types of forms for functions that you have to solve for
some type of variable

Coordinates would be used to draw the graph
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Thus, Both Seth and Joseph used graphs and equations in their acts of
understanding the word function. However, only Joseph seemed to di splay what was
inferred as a way of understanding functions as a collection of things, held by Ken and
Sarah. To Seth, the equations and graphs were also related, but they did not form some
collection called function.

In the second task, Seth related the prompt, draw a quadratic function, to the
understandings that ‘a quadratic function is x squared,’ ‘it’s a parabola,” ‘the x value is
squared so all y results are positive resulting in a parabola shape,’ and ‘the x value is
squared so all y are in a parabola shape.’

SE: Ok, a quadratic function is x squared it’s a parabola [sketches the graph in

bold in Figure 3.2]. So that would be wider than that [pointing at the graph he

drew, without making any changes to it]. So, that’s about it.

R: Ok.

SE: What makes this graph quadratic? The x value is squared so all y results are.

positive resulting in a parabola shape.

Figure 32 Seth’s Response to Task 2
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When he read the question about the important or special parts of the graph, Seth

SE: Which parts of the graph are important or special and why? Umm, at this
point I’'m wondering what, which parts of the graph means. What [ would do as a
student, would say: “What do I know about parts of a graph?” Well, this side is
positive and this side is negative. This is quadrant one, two, three and four [writes
1, 2, 3, 4 in the four quadrants in Figure 3.2]. So, quadrants one and two are
where the entire graph takes place. I would say quadrants one and two are the
most important parts of the graph.

R: For this particular graph?

SE: For this particular graph. Because that’s where the entire graph takes place.
R: What do you mean by the entire graph takes place?

SE: Umm, everything stops here at y is x squared [places his pencil horizontally
on the x-axis). So, this is the graph, this upper area here [pointing above the x-
axis|.

R: Ok.

SE: Down here, there’s nothing [pointing below the x-axis].

R: Ok.

SE: I mean, that’s my thought process there.

R: Can you think of a quadratic function that would start.

SE: Lower?

R: In the third or fourth?
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Then Seth drew the lighter colored graph in Figure 3.2, and discussed what he
remembers about function translations that would move gréphs up or down, or, left or
right. He recalled that when you subtract a number from the “end,” as in y = x2 — 3, the
original graph moves down. Upon reflecting on this result of his act of understanding
vertical translation, Seth went back to his response to Task 2a, what makes this graph
quadratic, and changed the sentence “the x value is squared so all y results are positive
resulting in a parabola shape” to “the x value is squared so all y are in a parabola shape.”
However, he maintained that the x values are still squared and therefore all y results are
still positive, but, as in the above example, those y values may move up or down
depending on the equation.

Seth’s behavior confirms Zaskis et al.’s (2003) finding about horizontal
translations of quadratic functions that students “just remember the rule” that “if there is a
positive sign inside the parenthesis, as in y = (x + 2)?, the original graph moves to the
left, and that “if there is a negative sign inside the parenthesis, asin y = (x — 2)?, the
graph moves to the right.” In other words, they relate their object of understanding, the
question of what transformation to apply, to their basis of understanding of these rules
about horizontal and vertical shifts on the grounds of memorization—and not logical
reasoning, generalization or synthesis. Identification of rules based on memory suffices
for most students. It was for Seth.

Lastly, when asked how he would write the equations for the two graphs in Figure
3.2, Seth wrote y = x? for the bolder one and y = x% — 3 for the lighter one. The
researcher also asked Seth to explain what the function is in the second situation,

y = x2 — 3, represented by the lighter graph in Figure 3.2. Seth stated that he is not sure
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what “function” means, and wrote: f(x? — 3) =? in Figure 3.3. He also put the term

f(x? — 3) in a rectangular box indicating that it is the y value of the function.

Figure 33. Seth’s Representation of y = x? — 3 as a Function
Thus, Seth’s basis of understanding quadratic functions can be summarized as
follows:
e x squared is a parabola
e 1y equals x squared
e The x value is squared so all y results are positive, resulting in a parabola shape
e In the graph of y = x? the first and second quadrants are the most important because
there are more values (or points) in those quadrants
These quadratic function understandings can be further organized into: equation
understandings and graph understandings.
1) Equation Understandings:r
ey equals x squared
2) Graph Understandings:

e x squared is a parabola
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e The x value is squared so all y results are positive, resulting in a parabola shape
e In the graph of y = x? the first and second quadrants a're the most important because
there are more values (or points) in those quadrants

Joseph acted on Task 2 by drawing a coordinate plane and choosing a “vertex at
(—1,—2).” He also chose “an x-intercept of negative four and zero” [(—4, 0)] in order to
“keep the actual function balanced” so he “can come up with what a good estimate of the
equation would be.” After connecting these two points and sketching a half of the shape
of a parabola [Figure 4.3], he identified (3, 0) as his other x-intercept and drew the other
half of the graph [i.e., the half that is on the right hand side of the vertex (—1,—2) in
Figure 4.3].

J: So, it would cross at (3,0) for its other x-intercept. Ok, I’'m just trying to

straighten it out. Ok, so with this function what makes it a quadratic is because it

has umm two roots, which is both the x-intercepts here. [ Pointing at (-4,0) and

(3.0)]

After claiming that the graph is quadratic because there are two x-intercepts (or
roots), Joseph then asserted that these two x-intercepts and the y-intercept are the most
important or special parts of the graph because “they help find the equation.” Thus, he
related the graph of a quadratic function to the following basis of understanding: ‘keep
the actual function balanced so that you can come up with what a good estimate of the
equation would be,” ‘the graph is quadratic because it has two roots,’ and ‘the x-

intercepts and y-intercept are important because they help find the equation of the graph.’
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Figure 43 Joseph’s Quadratic Graph in Task 2

After observing Joseph making several references to the x-intercepts as being
important in finding the equation of the graph, the researcher asked:

R: What if your graph did not have an x-intercept, or? Is that possible? Or y-

intercept? Then what would it be? What part would be special?

J: I think it would be possible to find the equation with umm finding estimates

where the x and y-intercepts would be like, umm this y-intercept is a little bit

below negative two. So, I’d probably say it’s somewhere around negative two
point two zero. So, you just try to give estimates to see if you come close to what
you are looking for.

R: So, basically, you are saying x and y-intercepts are.

J: Very important to find the equation.

Thus, Joseph seemed to be confident about the importance of the intercepts. When
he is given a certain graph, he argued that it is sufficient to use estimates if the exact
coordinates of the intercepts are unknown. When he carried out an act of understanding
the equation of his gfaph in Figure 4.3, however, he had difficulty using the intercepts—

to find the equation. He attributed his difficulty to the fact that he has not tried to find
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equations of given graphs before; instead he has always found graphs of given equations.
In Zaslavsky’s (1997) study, students also preferred transléting from equations to graphs
over translating from graphs to equations. For Seth, finding the equations of his graphs in
Figure 3.2 was not problematic because he started with an equation, y = x? and recalled
its graph. He also recalled that when you subtract a number “from the end,” the graph
would move down. Therefore he was able to graph and write y = x? — 3 quite easily.
Joseph further discussed his thoughts about Task 2c:

J: So, now when we try to find the equation, we know that the form for this be y

equals a x squared plus b x plus ¢ [writes y = ax? + bx + c]. The simplest way

to actually write this out would be, umm.

R: Could you think out loud?

J: 1just had it in my head. I wasn’t quite sure. Umm.

R: What was it you weren’t quite sure about? I’d like to know.

J: Right now, I’'m just trying to figure out what I can do to write the equation. I do

have my x and y-intercepts, so I’'m just going to write that down. This is the x-

intercept [writes (3, 0) and then (—4,0)]. The y-intercept would be somewhere

around two, ok umm [writes (0, —2.2)].

R: Alright, so, what is the, what are the ideas that come, came to your mind when

you read the question?

J: Hmm. Well, at first I was thinking if it would be easier if I would started off

with finding the slope of this. But, umm it’s not a straight line so. That’s what I

was thinking about first. That’s what confused me a little bit.

R: Where would the slope be here?
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J: [Long pause] Umm. I think we do have a slope here. I’'m just not quite sure

where it would be. Umm. [Long pause]

R: Ok, what are you thinking?

J: Umm right now I’m just trying to think what’s an easy way to start off writing

an equation. So I know the actual equation to start off with the quadratic formula,

y equals x squared, very basic, which gives you the parabola with the y-intercept

of zero [touches the tip of his pencil on the origin (0,0) and draws the graph of

y = x?2 with his pencil in the air].

R: And that’s you call that the quadratic formula?

J: Uh-huh.

R: Ok, and then after the quadratic formula the basic one y is x squared, what

else?

J: Umm, I do believe the easiest way to do it is by looking at which way the graph

moves. So, the graph didn’t actually move left to right, but it does move down by

two spaces.

R: Ok.

J: So, umm I would say somewhere close to x squared minus two. Cause

whenever you subtract from the base it would either go down or, if you add it

goes up [pointing at the equation y = x?].

As seen in the above excerpt, Joseph used his understandings of ‘whenever you
subtract from the base it would either go down, or if you add it goes up’ and ‘the base is
the basic equation y = x2’ and then wrote y = x2 — 2 as his answer to Task 2c¢. Joseph

thought that using estimates of the intercepts (or the vertex) is acceptable in finding the
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answer. Although his initial choice of vertex was (—1, —2), he seemed to have
abandoned that point and considered (0, —2.2) to be the vértex due to an error in
choosing the second x-intercept, (3, 0). It is unclear what he would have done had he
chose (2, 0) as the second vertex instead. Thus, it seems that Joseph held an
understanding of symmetry in parabolas (which was evident in his explanations of his
rationale for strategically choosing two x-intercepts when drawing a quadratic graph so
that he keeps “the function balanced.” This conception of ‘balance’ is inferred to be his
concept image for symmetry (Tall and Vinner, 1981).
Joseph’s basis of understanding of quadratic functions can thus be summarized as
follows:
e  When drawing a quadratic graph, keep the actual function balanced so that you can
come up with what a good estimate of the equation would be
e The graph is quadratic because it has two roots
e The x-intercepts and y-intercept are important because they help find the equation of
the graph
e Using estimates of the intercepts (or the vertex) is acceptable in finding the equation
of a given quadratic graph
e  Whenever you subtract from the base it would either go down, or if you add it goes
up
e The base is the basic equation y = x2, which can also be called the quadratic formula
These quadratic function understandings can be further organized into: équation
understandings, graph understandings, understanding of related concepts, and

connections.
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Equation Understandings:

The base is the basic equation y = x2, which can also be called the quadratic formula
Graph Understandings:

When drawing a quadratic graph, keep the actual function balanced so that you can
come up with what a good estimate of the equation would be

Using estimates of the intercepts (or the vertex) is acceptable in finding the equation
of a given quadratic graph

Whenever you subtract from the base it would either go down, or if you add it goes
up

Connections:

The graph is quadratic because it has two roots

The x-intercepts and y-intercept are important because they help find the equation of
the graph

When we examine Seth and Joseph inferred bases of understandings of quadratic

functions, neither of them relied on the equation that Ken and Sarah did—the quadratic

equation ax? + bx + ¢ = 0. Unlike Ken or Sarah, Seth’s act of understanding the

important parts of a quadratic graph resembled what Bruner (1973) called an iconic

mental representation that is mediated only through pictures. Thus far in the interview,

Seth seemed to only look at the graph he drew (based on memory) and identify it as a

picture rather than something that stands for a certain relationship between x and y

values. Joseph on the other hand, saw using estimates of the location of important points

such as the x and y-intercepts as acceptable in finding the equation of a given quadratic

graph.
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In Tasks 3 and 7, Seth chose several points and plotted them on his graph paper;
and related his acts of understanding to symmetry. In the same tasks, Joseph instead only
created tables of x and y values, and then plotted and connected points. Furthermore,
neither of them seemed to have a basis of understanding of the prototypical equation
ax? + bx + ¢ = 0 that the other students had. Only Joseph mentioned this equation in
the very beginning of Task 1, and he never returned to it. Both students seemed to have
common understandings related to function translations, especially the vertical translation
of simple forms such as y = x2, They both demonstrated some components of the action
view of functions.

Cross Case Analysis of All Four Cases.

Research on students’ understanding of the concept of function has revealed
common student understandings such as: (1) function as a machine that produces an
output number when an input number is supplied, (2) function as an equation involving x
and y, and (3) function as a graph that passes the vertical line test (Vinner, 1992; Sand,
1996; Clement, 2001). Students who hold the conception of a function machine consider
functions as an input-output box, where an output [y] value is found by substituting an
input [x] value in some equation. On the other hand, students who hold the understanding
of function as a graph that passes the vertical line test may also associate the graph with
an equation, and students who hold that function is an equation involving x and y values
may link the equation with a corresponding graph.

All four cases of this study, Ken, Sarah, Seth, Joseph, revealed bases of
understanding of functions that were compatible with these findings from the research

literature. Ken seemed to have a conception of function as a machine where one solves
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for y. Sarah demonstrated the understanding that function is a graph that passes the
vertical line test. Both Seth and Joseph viewed functions as equations that involve two
variables x and y.

Researchers studying students’ conceptions of functions have also identified some
common student beliefs regarding certain characteristics of functions. According to
Vinner (1992), many students believe that a function has a single rule or expression. In
other words, if there are two rules or expressions for the independent variable x, students
believe that there are two functions. In the first case of this study, Ken generated a piece
wise defined function with two rules, x? + 2 and x (Figure 1.14). Despite the fact that he
only wrote the f(x) symbol once in labeling the two rules, he explicitly referred to the
existence of two functions. Research has also suggested that many students believe that a
function must have an analytic or symbolic expression and its graph has to be continuous
(Vinner, 1992).

While the four participants of the study each seemed to hold an action view of
Sfunctions (Dubinsky, 1992; Carlson et al., 2010), relying solely on computational
reasoning, none of the four participants seemed to demonstrate function understandings
that were compatible with what Thompson and Carlson called a covariational view of
Sunctions (Thompson, 1994; Carlson, 1998, Carlson et al., 2010). Recall that in referring
to this type of functional reasoning, Carlson et al. (2010) found that “the ability to
interpret the meaning of a function modeling a dynamic situation also requires attention
to how the output values of a function are changing while imagining changes in a

function’s input values” (p. 115).
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Furthermore, O’Callaghan (1998) characterized students’ understanding of the
concept of function (by assessing their knowledge using a function test that he
developed) in a slightly different way. The function test that he used was designed to
assess four theoretical component understandings of function. These understandings are:
(a) modeling a real world situation using a function, (b) interpreting a function in terms of
a realistic situation, (c) translating among different representations of function, and (d)
reifying functions. O’Callaghan (1998) found that the most difficult component
understanding for students was seeing functions as single entities (reifying them into
single objects and operating on them as wholes). The analyses of the four cases of this
study suggest that none of the students were operating on functions as single entities—
instead they were reasoning computationally and exploring only the geometric or
algebraic properties of the various representations that they generated. Furthermore, as
discussed earlier, Ken, Sarah and Joseph were seeing various function representations as
collections of things. These students believed that this collection was the function itself;
and they did not act on the different representations of a function on the basis of an
understanding of invariance among them. Thus, the current study confirmed Thompson’s
(1994) hypothesis that: “Tables, graphs, and expressions might be multiple
representations of functions to us, but I have seen no evidence that they are multiple
representations of anything to students... Put another way, the core concept of ‘function’
is not represented by any of what are commonly called multiple representations of
function, but instead our making connections among representational activities produces
a subjective sense of invariance” (p. 24). It is inferred from the students’ acts of

understanding that neither Ken, Sarah, or Joseph seemed to have had such
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representational activities in which the different representations emerge as necessary
communication tools for the intended object of understand.ing of the invariant
relationship between varying quantities.

Chazan (2000) also discussed in detail three canonical (or most referred to)
representations related to functions. One of those representations focuses on the
procedural aspect of getting from particular inputs to associated outputs (the symbolic or
analytic representation), other focuses more on the values of inputs and outputs and less
on how one gets the outputs from the inputs (the fabular representation), and the third
focuses on the dynamics of the two sets of numerical values that are treated as coordinate
points (the graphical representation).

Other researchers also reported that there are many students at the high school and
college level, who view functions as: “plug the number in the equation and get the
answer.” Schwingendorf, Hawks and Beineke (1992) identified five different
understandings of the concept of function. These understandings ranged from lesser
degrees of sophistication to higher degrees. When a student views functions merely as
equations and does not display any usage of a process (e.g., taking something and
transforming it to something else) they called it a “pre-function” understanding. At this
level, a student is said to have no understanding of function, because equations are not
related to sets of objects or description of some rules. When a student displays a usage of
an overall process of transforming a number to obtain another number (e.g., “plug the
number in the equation and get the answer”) then Schwingendorf, Hawks and Beineke
called it an “action” understanding of function (as did Dubinsky, 1992, and Carlson et al.,

2010). When a student coherently uses an input-output relationship in which there is only
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one output, and he or she holds an understanding of some systematic handling of pairs of
input and output values in which different pairs are coordiﬁated) then the student is said
to have a “process” understanding of functions. When a student sees function as a single
entity of a correspondence or dependence between two variables, then Schwingendorf,
Hawks and Beineke called it a “correspondence/dependence” understanding.

In a study of ten secondary teachers’ understanding of functions, Norman (1992)
also characterized various understandings such as: the ability to define, exemplify, and
characterize functions; having valid illustrations of definitions; recognizing the
conditions that are necessary and/or sufficient for determining the functionality of a
relation; and relating the applications of the concept of function in a variety of situations.
To define the notion of functional reasoning, Norman (1992) stated: “This sort of
reasoning includes the ability to deduce properties or generalizations related to functions,
to use one’s knowledge of functions to analyze and interpret mathematical situations
involving graphical or algebraic presentations of functionally related information, to
communicate about functional situations, and to use functions to extend one’s knowledge
about a mathematical concept, process, or situation” (p. 218). Norman’s notion of
functional reasoning includes the aforementioned covariational view; and none of the
current study participants’ bases of understanding of functions was compatible with this
type of reasoning. For example, referring to Skemp’s (1976) theory of instrumental and
relational understanding, Norman (1992) explains how a student may operate with the
vertical line test, while holding the understanding of functions as graphs, as Sarah did:
“... Consider the determination of functionality of a graphical representation of a relation

via the standard vertical line test. It is not difficult for students at an instrumental level to
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learn to identify whether or not a particular graph is a function. Relational understanding,
however, requires an understanding of how the vertical lines used in the test are actually
related to the definition of a function and how the graph represents that function. A
student exhibiting relational understanding can explain why and in which situations the
vertical line test works. In general, relational understanding comes from an understanding
of deeper relationships among the concepts and processes associated with a particular
concept or situation” (p. 215).

Sand (1996) asked in his classroom with first year high school calculus students
to complete the sentence: “a function is...” The most common response that students
gave was: “An equation with x and y.” According to Sand (1996), most students viewed
function as either an equation (with x and y) or as a machine where there is an input and
an output: "*An equation with x and y’ was a common response, with several including
details about a unique y for each x. Two main points struck me about their responses.
First, all students thought of a function as a process, or operation, that inputs an x value,
or domain value, and later outputs a y value, or range value. None viewed a function as
an object, something that has properties and can be manipulated in well-defined ways”
(p. 468). Moreover, his students thought that functions act on numbers only. Although
some type of functions have indeed numerical domain and range (such as continuous,
increasing, or quadratic functions), many other functions act on different types of objects.
None of the four participants of the current study made reference to the concepts of
domain and range. There were no instances in any of the interviews where these two
concepts were brought to discussion. Moreover, none showed a basis of understanding

that included a view of functions as single objects.
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As described earlier, Schwarz and Hershkowitz (1999) attempted to characterize

? <C

the nature of students’ “concept images” of functions (Talil and Vinner, 1981). They
suggested three aspects of concept images of the function concept: (1) prototypicality, (2)
part-whole reasoning, and (3) attribute understanding. While most of the participants
demonstrated understandings resembling the use of prototypicality and part-whole
reasoning, none displayed an attribute understanding.

Finally, neither Ken’s, Sarah’s, Seth’s or Joseph’s fabric of understandings
included the critical components of the formal set-theoretic definition of function. Only
Sarah held that ‘for each x value there is only one corresponding y value.” The others
made no reference or use of this property. The formal set-theoretic definition of function
can be written as follows: Let A and B be two sets; a function f from set A toset Bisa
relation between A and B such that for each element a in set A there is one and only one
element b in set B; and set A is called the domain of the function and set B is called the
range of the function; and a function is often denoted as y = f(x) indicating a special
relation {(x, f(x))}.

In sum, as seen in Table 1 below, the students in the current study acted on
functions as either computational procedures, with an action view, or equations in which
one solves for y, or equations that simply have x and y variables, or graphs that pass the
vertical line test where every value of x has only one y value on the graph. None of the
students demonstrated a basis of understanding of functions that included a dependency
between two quantities, a relationship between two varying quantities, or a relationship or
correspondence between two sets of objects. Table 1 summarizes all four participants’

bases of understanding of the word function, the underlying rationales for these bases, as
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well as the emergent themes for ways of understanding functions. And Table 2

summarizes their bases of understanding of quadratic function, the underlying rationales

for these bases, and the emergent themes for ways of understanding quadratic functions.

Table 1: Ways of Understanding Function

Case Basis of understanding of the Underlying Themes for ways of
word function / Fabric of rationales for the | understanding function
understandings basis of

understanding
Ken e A function of something A consistent view | Function as a unique
. of functions as type of equation where
e The equation y = f(x) formulas one solves for y
e The dependent variable y isa | The formula Function as a
function of the independent y=f(x)isa collection of things:
variable x computational Graphs, tables,
procedure for equations and x and
e A formula finding an answer | y variables
[y] for a specific
e Solve for y value of x Action view of
function
e Plug in x values in the formula L
Compartmentalization
e A table of x and y values Of_ un_derstandmgs )
within representations
¢ A set of plotted coordinate (Gerson, 2008)
points on a graph paper
Sarah e f of x is equal to something Graphs must pass | Function as a unique

.e The equation f(x) = .........
e A graph
e A line or shape

e The vertical line test

e A graph that passes the vertical
line test

e Can’t have more than one y

the vertical line
test

type of graph where
every value of x has

only one y value on
the graph

Functionas a
collection of things:
Graphs, tables,
equations and x and
v variables

Action view of
Sfunction
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value for a single value of x
(“by definition™)

e A table of x and y values

¢ Equation as the numerical
representation of function or a
way to write it

e Graph as a visual
representation of the shape or
whatever that equation makes

¢ Both equation and graph are
functions

e Take any x value and plug it
into the equation and you will
get the corresponding y value

e Solve for y values

e Take a y value on the graph
and plug it into the equation
and you will get the

corresponding x value

e The relationship that they have

Compartmentalization
of understandings
within representations

Seth

e f of x equals

e A function of a particular
equation equals something

e The graph of the line y = x or
f(x)=x

o f(x)=y

e f of x is another way of saying
y

o f(x+1)=7and f(x) =6
are examples of function

Recalling that the
equation
fx)=y
represents a
function

Action view of
Sfunction

Function as an
equation with x and y

Comparitmentalization
of understandings
within representations
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Joseph

* You have an equation, such as
f(x) = ax? + bx + ¢, and it
always has its own graph and
table of coordinates

e There are several different
types of forms for functions
that you have to solve for
some type of variable

e Coordinates would be used to
draw the graph

An equation with
x and y are used
to generate a
table of
coordinates, and
these coordinates
are used to draw

graphs

Action view of
Jfunction

Function as an
equation with x and y

Function as a
collection of things:
Graphs, tables,
equations and x and
y variables

Compartmentalization
of understandings
within representations

In terms of their self-generated responses to the questions about quadratic

functions in Task 2, the four students of the study showed the following fabrics of

understanding various aspects of quadratic functions:

Table 2: Ways of Understanding Quadratic Function

Case Basis of understanding of Underlying Themes for ways of
quadratic function / Fabric of rationales for the | understanding
understandings basis of quadratic function

understanding

Ken e The quadratic formula, the Strong emphasis | The equation ax? +

original formula, or the
quadratic equation: ax? + bx +
c=0

e A parabola

e A graph or equation is quadratic
if it fits the quadratic formula:
ax?+bx+c=0

e The graph of a quadratic is the
shape of a parabola

e There is only one parabola

e The graph has either a minimum

on the words
‘quadratic’ and
‘parabola’ and no
reference to
functions

Little use of basis
of understanding
for functions

Identification of
the overall shape
of a parabola and
the prototypical
equation y = x?
as main examples

bx+c=0asa
prototype quadratic
Sfunction

Compartmentalization
of understandings
within concepts (of
function and
quadratic function)




189

or a maximum point of quadratics

e The ends of the graph (the
parabola) either go to positive
infinity or negative infinity

e The parabola is a “U-shaped”
parabola

e The U-shaped parabola can be
upside down, i.e. it can be
inverse if there is a negative sign
in front of its equation

e The U-shaped parabola cannot
be sideways because it would
then have a different type of
equation

of(x)=3x*+2x+4=0isan
example of an equation of a

quadratic graph
Sarah | e The quadratic equation: Strong emphasis | The equation ax? +
ax?+bx+c=0 on the words bx+c=0asa
‘quadratic’ and prototype quadratic
ey = x? is a quadratic equation | ‘parabola’ and no | function
reference to
e Quad means four functions Compartmentalization
of understandings
o The reason it might be four is Little use of basis | within concepts (of
that the quadratic of understanding | function and
equation ax? + bx + ¢ = 0 can for functions quadratic function)

be factored int
e factoredinto (. )( ) Identification of

the overall shape
of a parabola and
the prototypical
equation y = x?
as main examples
of quadratics

e( )( )canbe written as

( +)C+)

e( + )( + ) canbe written
CELR | WL

e A graph or equation is quadratic
if it fits the quadratic equation,
or the definition: ax? + bx +
c=0

Consistency in
graphing
quadratics other
than y = x? by
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e The reason it might be four is
that there are quadrants and it’s
the same on both sides of two of
them

e The graph is quadratic because
x is squared

eln ax? + bx + ¢ = 0, when
a=1,b=0,andc = 0, the
resulting equation x? = 0 fits
the definition of quadratic
equation

e The graph of y = x? is
symmetric about the origin
(0, 0) and therefore origin is
important for this graph

e The points on the left hand side
of the vertex are symmetric with
the points on the right hand side
of the vertex

e The vertex of the graph is either
the minimum point (and no y
value can go below that point)
or the maximum point (and no y
value can go above that point)

e To generate an equation of a
quadratic, one could choose four
terms and filliny = (_ +

-+ )

e —b/2a gives the x value of the
minimum or the maximum value

e There is a vertex form of the
equation ax® + bx + ¢ =0
(“but cannot remember™)

e Quadratics are always parabolas

using two x-
intercepts

The symmetric
nature of a
parabola about
the line of
symmetry where
the vertex lies
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e Take any x value and plug it
into the equation and you will
get the corresponding y value

e Points where y = 0 are
important because they help in
graphing the equation

e Points where y = 0 are zeros

e In order to graph a quadratic
equation one could find two x-
intercepts and a vertex point

. b b :
(using (— 5o i (— Z)))’ which
is the midpoint between the two
x-intercepts, and connect these
three points so that the shape
come out as that of a parabola

e(x + 3)(x + 4) =yor
x>+ 7x+12=7yisan
example of an equation of a

quadratic graph
Seth ex squared 1sa parab()la Identification of An iconic view Of
the overall shape | function graphs as
oy equa]s x squared ofa parabola and pictures
the prototypical
e The x value is squared so all y equati.on y=x
results are positive, resulting in | @S main ex.amples
a parabola shape of quadratics
e In the graph of y = x? the first
and second quadrants are the
most important because there
are more values (or points) in
those quadrants
Joseph | ¢ When drawing a quadratic Identification of | Compartmentalization
graph, one should keep the the overall shape | of understandings

actual function balanced so that
one can come up with what a
good estimate of the equation
would be

of a parabola and
the prototypical
equation y = x?
as main examples
of quadratics

within representations
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e The graph is quadratic because
it has two roots The symmetric

nature of a

e The x-intercepts and y-intercept | parabola about
are important because they help | the line of
find the equation of the graph symmetry where

the vertex lies

e Using estimates of the intercepts
(or the vertex) is acceptable in
finding the equation of a given
quadratic graph

e Whenever you subtract from the
base it would either go down, or
if you add it goes up

e The base is the basic equation
y = x2, which can also be
called the quadratic formula

In summary, all four students displayed function understandings that were
compatible with the well known action view of functions. All students in the current
study also demonstrated compartmentalized knowledge. In her analysis of one pre-
calculus student’s understanding of functions, Gerson (2008) states that “translation from
one representation to another includes skills like plotting points from a table of data,
finding an equation for a graph, and creating a table of data from an equation” (p. 28). All
participants demonstrated this skill in one or more of the interview tasks. See for example
Joseph’s and Seth’s solutions to Task 1, Ken’s and Sarah’s solutions to Tasks 2. Gerson
also writes: “In each representation of a given function, different mathematical features
of the function may be apparent. Transferring between representations means carrying
those mathematical features through the translation process” (p. 28). However, none of
the participants of the study showed evidence of a basis of understanding that enabled

them to do so. Gerson’s (2008) research report reveals one student’s, pseudo named
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David, understandings of functions. David demonstrated an action view of functions and
his understandings were compartmentalized. Note that David “was one of the three A
students studied and therefore represents capable, procedurally fluent students in a
traditional pre-calculus class” (p. 20). Gerson’s larger study included nine high school
students enrolled in a pre-calculus course at the time of the study. Action view of
functions and compartmentalization in the context of quadratic functions were observed
in all four cases of the current study. Only these two types of understandings seemed to

capture the commonalities across all four cases.



CHAPTER 5: DISCUSSION

Discussion of Results

As von Glasersfeld (1990) argued, students develop their conceptions and
understandings by constructing them. As students reflect on their activities that make
sense to them, they relate their various understandings and build unique conceptual
structures. Perceptual experiences and conceptual operations on existing understandings
shape their developing conceptions. And learning is viewed as the organization of these
conceptual structures, or schemes. von Glasersfeld (1990) also wrote: “No schemes could
be developed if the organism [the individual] could not isolate situations in which a
certain action leads to a desirable result. It is the focus on the result that distinguishes a
scheme from a reflex and makes possible the form of learning that Piaget called
accommodation. It takes place when a scheme does not lead to the expected result” (p.
24; parenthesis added).

Although the current study did not attempt to address how students develop
conceptual structures with regard to quadratic functions, it did address three research
questions that aimed at explicating students’ current conceptual structures. The research
questions of the study were: What are students’ understandings of quadratic functions?
How do individual students understand and organize various aspects and properties of
quadratic functions? How are these understandings constituted within situations

involving quadratic functions and their properties?
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The detailed bases of understanding for selected tasks and concepts provided
some answers to these questions. The connections that four students made among their
understandings as well as their compartmentalized use of various parts of bases of
understanding helped explicate how they understand quadratic functions and their
properties. The bases of understanding that are presented in the study are hypothetical,
and not definitive. They serve as working models of how students understand various
aspects of quadratic functions. One important contribution of this study has been to give
specificity and interpretation to these conceptions. The study also yielded results that
suggest additional research studies.

By explicating a small group of students’ current conceptions and individual ways
of acting on quadratic function problem situations, the study generated several findings.
Ken’s case yielded an understanding of quadratic function as a unique type of equation
where one “solves for y.” The analysis of Sarah’s case led to the emergence of an
understanding of quadratic function as a unique type of graph where every value of x has
only one y value on the parabola shaped graph. And, three of the four cases suggested a
way of understanding quadratic functions as a collection of things that are
compartmentalized in multiple ways. In addition, all four cases confirmed some of the
major findings in the literature on students’ understandings of functions. All four cases
were compatible with both the action view of functions and the compartmentalization of
function knowledge. They also added to these existing findings in the literature by
providing holistic pictures or fabrics of common ways of understanding quadratic

functions.
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These findings emerged through several cross analyses between and among the
multiple cases of the study. The design of the study allowed this multiple layers of
analyses, while yielding rich descriptions and explanations throughout.

Implications for Teaching

In a typical mathematics classroom, it is likely to observe a teacher focusing on
helping his or her students carry out a certain solution method or algorithm correctly.
This method is likely to be presented in its entirety at once and demonstrated several
times until most students seem to have mastered its correct execution. Computation is
likely to be the overarching mathematical process; and obtaining right answers to the
computational procedures is likely to be considered the manifestation of the mastery of
the lesson objectives. Vis a vis these typical practices, Ball (1991) writes: “When we hear
right answers simply as representing understanding, we miss opportunities to gain insight
into students’ thinking” (p. 45).

Several professional educational organizations published documents that
encouraged the inclusion of additional mathematical processes and lesson objectives in
attempts to increase students’ ability and knowledge in mathematics. NCTM (2000)
recommended the inclusion of five content and five process standards at each level of
schooling, including individual classrooms. The recommended content standards are:
number and operations, algebra, geometry, measurement, and data analysis and
probability. And the recommended processes are: problem solving, reasoning and proof,
connections, communication, and representation. National Research Council (NRC)
published a book entitled “Adding It Up,” which combined the competencies proposed

by the reform movement of the 1980s and 1990s, i.e., reasoning, solving problems,
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connecting mathematical ideas, and communicating mathematics to others, with the
proposals from the critics of the movement, i.e., emphasis on memorization, facility in
computation, and being able to prove mathematical assertions, in a research based
practical guide for mathematics educators (Kilpatrick et al., 2001). These different goals
for school mathematics were synthesized into five mathematical proficiency strands that
the authors “believe is necessary for anyone to learn mathematics successfully”
(Kilpatrick et al., 2001, p. 116). They stated: “Mathematical proficiency, as we see it, has
five components, or strands: conceptual understanding: comprehension of mathematical
concepts, operations, and relations; procedural fluency: skill in carrying out procedures
flexibly, accurately, efficiently, and appropriately; strategic competence: ability to
formulate, represent, and solve mathematical problems; adaptive reasoning: capacity for
logical thought, reflection, explanation, and justification; productive disposition: habitual
inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief
in diligence and one’s own efficacy” (Kilpatrick et al., 2001, p. 116).

The authors further argued that these five strands should be viewed as interwoven
and complementary to one another. Thus, there has been a strong emphasis on changing
the typical, traditional mathematical classrooms to include the development of a variety
of knowledge, skills, abilities and mathematical competencies. Conceptual understanding
is one of these espoused goals.

The ways in which students reason and think about a given mathematical situation
are crucial for teachers to know because, based on constructivist theories, students’

existing knowledge and ways of thinking shape their current learning. Even if a student
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gives a correct answer to a question, the meanings and understandings that the student
holds should be known to educators in order to promote cohceptual development.

To that end, Simon et al. (2004) suggested a conception based teaching approach,
which focuses on identifying students’ current understandings, articulating crucial desired
understandings within students’ process of conceptual development, and designing
activity sequences that help them attain the desired conceptions. The instructional goals
are not articulated around getting correct answers by routine application of rules or
algorithms. The traditional telling and showing method is considered to be insufficient in
developing students’ mathematical proficiency. Instead of teaching students how to solve
different types of problems, conceptual learning based teaching aims at teaching how to
think and reason mathematically and how to problem solve in mathematics. Simon et
al.’s (2004) conception based perspective to teaching is based on three principles: (1)
Mathematics is a human activity and it is created by humans. Humans have no access to a
mathematics that is independent from their ways of knowing (2) What individuals
currently know afford and constrain what they can understand (3) Learning mathematics
is a transformation process in which learners’ current conceptions, ways of thinking and
acting change into new conceptions (Simon et al., 2004).

“In guiding our students towards a generalization, very often we forget that the
object to generalize may not yet be an object for them” (Sierpinska, 1994, p. 59). If we
want our students to have strong knowledge of quadratic functions, we need to help them
acquire or develop certain ways of understanding or understandings that we want them to
have. In order for them to develop the desired ways of understanding, they need to

experience acts of understanding in a very rich set of situations involving quadratic
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functions. Teachers who are equipped with the knowledge of students’ current
understandings can better design those learning situations. indeed, teachers can
communicate their own understandings to their students, but it is the students themselves
who will attend and identify certain objects (i.e., objects that they identify as objects of
their understanding) and relate them to their existing bases of understanding. “The
concept of function has many aspects and grasping as many of them as possible in
teaching should probably be aimed at. The problem is however, that when we use
ordinary language to say something about a function, we necessarily focus the listener’s
attention on one possible understanding of functions. This means that ‘whatever we say a
function is, it isn’t.”” (Sierpinska, 1994, p. 39; Korzybski, 1950). In other words,
whatever a teacher says a quadratic function is, in fact it isn’t because the students will
map that assertion onto their own understandings that are most likely very different from
what is presented to them.

“We want to make the students acquire certain ways of understanding, certain
‘understandings,’ certain knowledge, of course, but we cannot do this other than by
helping them to experience acts of understanding” (Sierpinska, 1994, p. 27). “Some
teachers, and education researchers, believe that a teaching approach which places the
study of equations, including quadratic equations, within the study of functions—the so-
called ‘functions approach’—is far more likely than traditional elicitation/exposition
appfoaches to solving equations to induce relational understanding within students”
(Vaiyavutjamai and Clements, 2006, p. 73).

For example, none of the participants of this study seemed to conceptualize or use

a mathematical expression with multiple terms as a single entity. For instance, whereas a
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mathematician or a mathematics educator may see (x — 3)(x — 5) as a single expression,
which is a product of two binomial expressions with the same variable x, and see (x —
3)(x — 5) = 0 as an equation with one variable, students may perceive (x — 3) and

(x —5) in (x — 3)(x — 5) = 0 as two ‘equations’ or two ‘problems.’ There is some
evidence that Ken sees expressions such as (x — 3) and (x — 5) as two ‘equations.” He
frequently refers to expressions as equations. It is useful for teachers to know these
results and start thinking about effective lessons that provide rich experiences.

None of the participants of the current study mentioned or used the notions of
domain and range of a function. Domain and range, as a topic, may have been
compartmentalized into a certain set of problems that students have memorized. It is
imperative that teachers help their students make sense of quadratic function situations in
terms of covarying quantities or variables with corresponding values that belong to
different sets called domain and range. Sand (1996) also suggested the use of a real-world
example of a function: What a mail carrier does. Each letter (each domain value) is
placed in only one mailbox (range value). Such kinds of problems and real world
situations of functions could be developed with regard to quadratic functions.

Another recommendation based on the results of the current study is that teachers
would better serve their students if they provide them with meaningful experiences with
quadratic functions that have either one or no x-intercept. All four students demonstrated
an expectation for the need to have two x-intercepts on a quadratic graph. Recall that
Sarah heavily relied on the existence of two x-intercepts in graphing quadratic functions.

Also, three of the four participants of the current study seemed to conceive

function representations as the necessary parts of a certain collection. They merely
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accepted the existence of a collection (of graphs, tables, equations, etc.) without
investigating quadratic relations between varying quantitie;s.

Although these results provide these practical suggestions, they are not expected
to suggest the design of specific activities. Instead, they provide a holistic sense of how
similar students may think about quadratic functions and their properties. By making
explicit what students know about this concept, teachers and curriculum developers could
better diagnose other students, and design learning experiences and relevant assessments.
The results thus provide more possibilities for teachers to find ways of helping their
students to construct the desired understandings. As mentioned above, teachers could be
better equipped in decomposing the necessary quadratic function concepts for their
students instead of transmitting information that students memorize and take as true
without developing conceptually connected understandings.

Possible Limitations of the Study

Although the current study provided insights into how students may understand
various aspects of quadratic functions, it did not include participants who hold
completely mathematical understandings that resemble formal definitions. It would be
beneficial to extend the current range of student understandings to include such wider
range of conceptions. Such knowledge could help teachers in serving more advanced
students.

While the task instrument did not include any task in which a quadratic function is
embedded in real life context as a model of a quantitative situation, it was believed that
this may confuse the issues that the study intended to address. Instead, it included a

sufficiently conceptual and unfamiliar set of tasks that mostly asked students to self-
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generate a variety of responses and solutions regarding quadratic functions. Moreover,
with the exception of a few tasks (i.e., Task 5 and Task 9),.none of the tasks were
approached by any of the students as “problems that they know or remember how to
solve.”

Recommendations for Future Research

The three hypotheses that were generated in the current study could be tested with
both qualitative and quantitative methods.

Students’ quadratic function conceptions can be further investigated within real-
world contextual application problem situations. Such a study could provide more insight
into this phenomenon by exploring possible ways of understanding, for instance,
projectile motions.

Gerson’s (2008) research questions could also be further investigated within
quadratic function understandings. For example, are students’ concept images of
quadratic functions compartmentalized within representations and/or within related
concepts? This question can be studied by choosing students with very different
mathematical backgrounds.

Further studies could be conducted that give students two points and ask them to
find a third point on the quadratic graph. These studies could explore the use of linear
interpolations and extrapolations. In addition, students’ understanding of quadratic

growth could be investigated more in-depth.
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APPENDIX A: INTERVIEW PROTOCOL

This session is an experiment to observe different ways that students solve math
problems. I would like you to solve some pre-calculus problems in the next 75 minutes or
so. I am not interested in whether you got the correct answer or the wrong answer. [
won’t even look at that. What I am interested in is what you think about and how you
think about the problems as well as the steps of your solution methods. Therefore, do all
of your thinking out loud. That is, tell everything you are thinking about while you solve
every single step of each problem. What you say and do will be both videotaped and
audio-taped. If you work silently, I will remind you to think aloud by saying something
such as, “what are you thinking?”

Please put all your written work on the problem sheets that I provide. Do not erase

any of your work. Since we will not be focusing on the correctness of your work, you can

just ignore the work that you are not satisfied with. If you want to disregard something,
draw a single line through it. Do not erase it.

You are not expected to solve the problems quickly. Take your time and think
thoroughly about each problem. Some problems might make you think for a while
(Again, while you are thinking, please think aloud). You can comment on the problems
however you like. You may use as much time as you like.

Here is the procedure that we will follow for each problem:
* For each problem, as you read it, read out loud. Whenever you reread all or part
of the problem, please read aloud.
* Talk out loud in your normal tone of voice as you work through the problems,

saying everything you are thinking about. Speak clearly enough to be understood.
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¢ Write all of your work, including scratch work, on the papers provided.
* Do not erase anything.

*  You can quit anytime you want.
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APPENDIX B: INTERVIEW TASKS

1) In your own words, please explain what you think a “function” is. Feel free to write
as much as you like. You may also draw graphs, diagrams or tables.

2) Please draw a quadratic function in the box below:

a) What makes this graph quadratic?
b) Which parts of this graph are important or special? Why?
c¢) Can you give an equation for your graph?

3) Graphy =-(x—4)? +16

©,0) x|

A

v

4

4) Suppose a friend of yours missed the class that was on quadratic functions. If you

were to teach quadratic functions to your friend, what would you tell him or her?
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5) Inthe below equation, find the values of x that make the equation a true equation. In

other words, solve for x.
2x2-7x+3=0

How many other different ways you think you can solve the above equation? List as
many ways you know. Just list the steps of the strategies; you don’t have to complete
the solutions all the way.
Solve x2 — 5x + 6 = 0 for x, in a different way than the way you solved the above
equation.

6) In mathematics, what do you think is the difference between a “function” and an
“equation?”

7) a) Find the vertex of the quadratic function below. Represent the vertex as a
coordinate point (x, y).

f(x) = 6x — x?

AY

(0,0 x_ Il

A4

b) Can you make up a quadratic function with no vertex?
8) If we want to find the x-intercepts (if any), the y-intercept, the line of symmetry and

the vertex of the below quadratic functions; which one of them you think is the
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easiest to solve? Which one is the most difficult? Pick one and write “Easiest” next to
it. Pick one and write “Most difficult” right next to it. You do not need to solve...
(Explain whether it is the easiest or most difficult in terms of finding the x-intercepts,

y-intercept, line of symmetry, or the vertex)

f(x) = 4x — x?
g (x) = (6 —x)?
h(x) = - 6x — x?

k(x) =5(x—3)(x + 2)

9) Find the quadratic function that has a vertex at (—2, 5) and whose graph passes
through the point (0, 9).

10) Look at the three graphs below. Choose a graph that you think is the easiest to
represent with an equation. Write the function you chose in the form f(x) = ax? +

bx + c. Explain the reason for your choice.

1) f(x) = 4x — x?
g (x) =(6-x)°

h(x) =-6x — x*
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k(x) =5(x—3)(x + 2)
Look at the above quadratic functions. Can you make ﬁp a similar function (to f, g,
h, or k) that has no x-intercept?
12) Do you think f(x) = px? — gx + 3 and g(x) = px? — qx + 6 have the same x-
intercepts? Or do they have different x-intercepts? Explain your reasoning.
Compare the graphs of f and g.
Do you think f(x) = px? — qx + 3 and g(x) = px* — qx + 6 have the same y-
intercept? Or do they have different y-intercepts? Explain your reasoning.
Do you think f(x) = px? — gx + 3 and g(x) = px? — gx + 6 have the same vertex?

Or do they have different vertices? Explain your reasoning,
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APPENDIX C: INDIVIDUAL MATHEMATICS BACKGROUND SURVEY

Please feel free to write, draw or scribble anything you like in response to these

questions. Your answers will be kept confidential.

)

2)

3)

4)

5)

6)

How would you characterize your knowledge of mathematics?

How would you characterize your experiences in your past and current
mathematics classes?

Which high school and college mathematics classes have you taken? How well
did you do in them? You can write down the grade you earned (if you remember
and prefer to share it).

What aspects of mathematics do you like the most? You can give a particular
mathematics class and explain why you do like it the most, or you can give
particular mathematics topics and explain why you like them the most.

What aspects of mathematics do you dislike the most? You can give a particular
mathematics class and explain why you do dislike it the most, or you can give
particular mathematics topics and explain why you do dislike them the most.

If you were to rate yourself on a scale between 1 (weak) to 5 (strong), where
would you place yourself in:

Arithmetic (basic mathematics, numbers, fractions, etc.):

Algebra:

Geometry:

Upper level mathematics (pre-calc, calculus, etc.):

Other mathematical topics (discrete mathematics, statistics, etc.):
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7) Among these, was there any particular topic or subject that caused difficulty for
you?

8) Is there anything else that you want to share about your math background?



