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ABSTRACT 
 

VARAD ABHIMANYU KARKHANIS. Hydrodynamic Simulations of Ejecta 
Production from Shocked Metallic Surfaces. (Under the direction of DR. PRAVEEN 

RAMAPRABHU) 

 
The phenomenon of mass ejection into vacuum from a shocked metallic free surfaces can 

have a deleterious effect on the implosion phase of the Inertial Confinement Fusion (ICF) 

process. Often, the ejecta take the form of a cloud of particles that are the result of 

microjetting sourced from imperfections on the metallic free surface. Significant progress 

has been achieved in the understanding of ejecta dynamics by treating the process as a 

limiting case of the baroclinically-driven Richtmyer-Meshkov Instability (RMI). This 

conceptual picture is complicated by several practical considerations including breakup 

of spikes due to surface tension and yield strength of the metal. Thus, the problem 

involves a wide range of physical phenomena, occurring often under extreme conditions 

of material behavior. 

We describe an approach in which continuum simulations using ideal gases can be used 

to capture key aspects of ejecta growth associated with the RMI. The approach exploits 

the analogy between the Rankine-Hugoniot jump conditions for ideal gases and the linear 

relationship between the shock velocity and particle velocity governing shocked metals. 

Such simulations with ϒ-law fluids have been successful in accurately predicting the 

velocity and mass of ejecta for different shapes, and in excellent agreement with 

experiments. We use the astrophysical FLASH code, developed at the University of 

Chicago to model this problem. Based on insights from our simulations, we suggest a 

modified expression for ejecta velocities that is valid for large initial perturbation 
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amplitudes. The expression for velocities is extended to ejecta originating from cavities 

with any arbitrary shape. The simulations are also used to validate a recently proposed 

source model for ejecta that predicts the ejected mass per unit area for sinusoidal and 

non-standard shapes. Such simulations and theoretical models play an important role in 

the design of target experiment campaigns. 
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 CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 
 

The phenomenon of mass ejection into vacuum from a shocked metallic free surface can 

have a deleterious effect on the implosion phase of the Inertial Confinement Fusion [1] 

(ICF) process. Often, the ejecta take the form of a cloud of particles that are the result of 

microjetting sourced from imperfections on the metallic free surface. Similarly, stellar 

ejections are central to the process of mass and energy distribution associated with 

supernovae detonations [2-4]. Ejecta are also capable of corrupting optical and electrical 

measurements at metallic surfaces. Much of the recent progress in our understanding of 

ejecta dynamics stems from the recognition that ejecta constitute a limiting case of the 

shock-driven Richtmyer-Meshkov [5,6] (RM) instability problem. Also, in these 

applications of interest, RM instability (and the ensuing ejecta generation) is not the 

result of a single, but multiple incident shocks originating in the same material. This 

approach has led to successful models that describe several quantities of interest, 

including the velocities and mass. In this work, we build on these earlier efforts to (i) 

combine numerical simulations and data from recent experiments to characterize ejecta 

from second shock impact, and in the process validate a recently developed model [7,8] 

for mass ejection, (ii) suggest an expression for ejecta spike velocity that is accurate for 

large initial perturbation amplitudes imposed at the free surface, (iii) extend this 

expression and a previously proposed model for bubble velocities [9] to ejecta from 

arbitrary shapes using the approach outlined in [7], (iv) validate these models for 
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different initial shapes and perturbation amplitudes using an extensive suite of continuum 

hydrodynamics and molecular dynamics simulations, and (v) evaluate the implications of 

these findings to a recently proposed source model for ejecta [7,8].  

While the ejecta phenomenon has been addressed extensively through experiments [10-

18,9,19-23] and numerical simulations [7,24-30], the corresponding double shock 

problem [31] has received comparably less attention. Charakhch’an [32] numerically 

studied ejecta from RM instability under the influence of two successive shocks 

impacting a free surface of Aluminum. The first shock in their continuum model was 

stronger (75 GPa) with a piston velocity of 3 km/s, so that Al is in a liquid state for the 

second shock event (Pmelt for Al ~ 70 GPa). Recent experiments at Los Alamos National 

Laboratory (LANL) [18,17] reported measurements of ejecta mass from a metallic Sn 

target that was driven by two successive shocks generated using a high explosive (HE) 

driver package. Shocks of different strengths resulting in temperatures below and above 

the metal melt condition were investigated, while measurements included free surface 

velocities, ejecta mass and velocities. Such experiments in which the drive is provided by 

detonation of high-explosives resulting essentially in Taylor waves follow earlier efforts 

at LANL in which supported shock waves were generated with the use of flyer plates 

[10]. 

Ejecta development occurs in three distinct stages that are referred as “sourcing”, 

“transport” and “conversion”. When ejecta are generated from a shocked metallic free 

surface in to vacuum, the associated ‘sourcing’ and ‘transport’ phenomena can be 

explained in terms of the initial stages of the RM instability in the limit of infinite density 

ratios between the two fluids. This is reflected in the Atwood number parameter 



3 
 

 

B A

B A

A ρ ρ
ρ ρ

 −
= + 

, which approaches 1A → −  in this limit. Cherne et al. [7] exploited this 

analogy to propose an RM-based source model for ejecta, that is also valid for any initial 

perturbation shape. Similarly, “transport” refers to the flight of ejecta in the participating 

medium, a process that is explained through an understanding of the nonlinear bubble and 

spike velocities associated with the underlying RM instability. Successful ejecta transport 

models must acknowledge this connection, which is the approach taken in several recent 

articles [7,8,25,9], as well as this work. The emphasis on nonlinearities and non-

sinusoidal shapes is important to interpreting experiments where the metal free surface is 

shocked twice in succession [18,17]. It is expected that at the time of second shock, the 

interface would have already evolved to a nonlinear amplitude and a non-sinusoidal 

shape resulting from the first shock interaction. Thus, our objective in this work is to 

understand how ejecta sourcing and transport are modified by the twin issues of non-

linearities and non-standard shapes, using simulations and models. The more complex 

issue of ejecta conversion falls outside the scope of this work.  

We briefly review phenomenology and models of RM growth from a single-wavelength 

perturbation, before discussing recent theoretical efforts focused on modeling ejecta from 

machined grooves. We adopt the following terminology: the amplitudes, velocities and 

ejected mass associated with perturbations are denoted by h, V and m respectively.  

Additional information on the state of the flow at which quantities are extracted, and the 

provenance of the data are provided through subscripts and superscripts. Thus, subscripts 

‘0’ refers to quantities at their initial state (prior to shock impact), while ‘bu’ and ‘sp’ 

connote quantities associated with bubbles and spikes respectively. Superscripts provide 



4 
 

 

information on the source of data, so that quantities computed from a particular model are 

identified by the author(s)’ initials, and data from the LANL experiments are indicated by 

the use of EXPT etc. Finally, we specify conditions immediately after (before) the first 

shock with the additional superscript ' '+  (' '),−  while the properties immediately 

following (before) the second shock are denoted with the superscript ' '+ + (' ').− −   

1.1 Ejecta bubble and spike velocity models 

In this work, we have evaluated several existing models for ejecta bubble and spike 

velocities by comparison with continuum hydrodynamics simulations using FLASH, and 

have suggested a modified expression for ejecta velocities motivated by the models of 

[33,34]. We first briefly review models for bubble and spike growth rates that are based 

on linear and nonlinear Richtmyer-Meshkov (RM) theory at ejecta conditions ( )1A → − . 

The relative scale of initial perturbations at the interface determine the subsequent RM 

instability-driven growth. Thus, a stage of linear growth is observed when the 

perturbation wavenumber ( 2k π
λ

≡ ), and the pre-shock amplitude ( )0h −  satisfy 0 1kh −
 . 

In this regime, the initial peak growth rate immediately following the interaction of the 

shock with the interface is given by the impulsive model of [5] according to: 

0 0 .RMV kh A U+ += ∆       (1.1) 

In eq. (1.1), U∆  is the interface jump velocity due to shock impulse, and A+  is the post-

shock Atwood number: 2 1

2 1

A ρ ρ
ρ ρ

+ −
=

+
 (Fig 1b). Note that compressibility effects are 

typically addressed in eq. (1.1) by taking post-shock values for the amplitude (ℎ0+) and 
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the Atwood number. The post-shock amplitude is obtained as ℎ0+ = 𝐹𝐹𝑐𝑐ℎ0−, where the 

compressibility factor 1C

i

UF
W
∆

= − is computed using the incident shock speed ( iW ) and 

the interface velocity ( U∆ ). For 0A+ < , Meyer-Blewett [35] suggested replacing 0h +  

with the average of pre- and post-shock amplitudes 0 0

2
h h− + +

 
 

, since the interface in 

such heavy-to-light interactions undergoes a phase inversion. In this case, the 

compressibility factor becomes 1
2

C

i

UF
W

∆
= − , so that when CF  is applied to the pre-

shock amplitude, the operation returns the average of the pre- and post-shock amplitudes. 

The linear growth rate according to their model at 1A = −  is then: 

0 0 .MB CV F kh U−= ∆       (1.2) 

For 0 1kh − ≥  or (t) 1kh+ ≥ , the resulting flow is nonlinear and eqs. (1.1) – (1.2) are no 

longer applicable. A physical manifestation of the nonlinear regime is the appearance of 

asymmetric bubble cavities and spike jets on either side of the original interface. Several 

nonlinear models have been proposed  [33,36] to predict the asymptotic behavior of 

bubbles and spikes, and are based on the general potential flow approach first introduced 

by Layzer’s [37]. Mikaelian [36] found solutions to the potential flow equations for the 

special case of 1A = , by choosing appropriate velocity-potential functions in the 

neighborhood of bubbles, and arrived at the following analytical expression for the time-

dependent ejecta bubble velocity:  
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     0

0

(t) .31
2

KM
bu

VV
V kt

=
+

           (1.3) 

Zhang [33] extended this approach to spikes by taking the spike curvature as opposite in 

sign to the corresponding bubble curvature. Thus, for a sinusoidal perturbation, Zhang 

[33] obtains ξspike = -ξbubble = kh0/2, leading to the following expression for the asymptotic 

spike velocity:  

0
0

0

13 .
3 1

QZ
sp

khV V
kh

+
=

+
       (1.4) 

The term within the square-root in eq. (1.4) accounts for the initial condition (nonlinear) 

effects through the spike curvature. Mikaelian [34] extended the above model to 3D using 

Bessel functions.  

An upper limit for the asymptotic spike velocities may be found by applying the limit kh0 

<<1 (Mikaelian [38]): 

0 3.KM
spV V→        (1.5) 

Note that in eqs. (1.3-1.5), the choice of 0V  is not specified, and we must account for the 

possibility that the initial growth rate may itself be compromised by nonlinearities 

resulting from finite-sized initial perturbations ( 0 1kh − ≥ ). Using perturbation analysis, 

Velikovich and Dimonte [39] obtained independent expressions for bubble and spike 

growth rate reduction factors in terms of higher-order Pade approximants (up to order 33) 

to capture the nonlinear modification to the initial velocity from eq (1.2). Dimonte and 

Ramaprabhu [40] provided a compact expression for the spike nonlinear growth rate 

reduction factor, as a fit to the higher order Pade approximant from [39]: 
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2

0

1 .

1
2

NL
spF

kh −
=

 
+  

 

      (1.6) 

Recently, Velikovich et al. [41] used high-order perturbation theory to develop an 

expression for a nonlinear correction factor to Richtmyer’s impulsive model (eq. 1.1) for 

any arbitrary Atwood number. In the limit of 1A → − , their formula for nonlinear 

correction reduces to eq. (1.6) when higher order terms ( )( )3
0O kh are neglected. Buttler 

et al.[9] suggested a similar nonlinear correction for bubbles as a fit to the corresponding 

higher-order Pade approximant to the bubble growth rate from [39]: 

   
0

1 .
1

6

NL
buF

kh −=
+

      (1.7) 

Thus, eqs. (1.7) and (1.6) are intended as prefactors to be used in eq. (1.2) to obtain the 

actual bubble/spike growth rate when the interface is seeded with large initial 

perturbations. From Buttler et al. [9], we get: 

0/ 0 / 0 .WB NL MB
bu sp bu spV F V=                  (1.8) 

Buttler et al. [9] further suggested using the above expression for the initial nonlinear 

bubble/spike growth rate as a choice for 0V  in eq. (1.3) or eq. (1.5) for the corresponding 

asymptotic velocities.  

From continuum and molecular dynamics simulations across a wide range of parameters, 

authors of [25] obtained the following models by fitting to observed bubble and spike 

growth rates:  
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20 0
0 0

0 0

1,  ( ) ,
1 3 1

MB
GD GD GD

bu sp bu sp
bu i

V khV V t V
kh M kh

φ
φ

−

− −

+
= =

+ +
    (1.9) 

Dimonte et al.[25] recommended using ~ 0.45buφ , ~ 2.625spφ  (for ~ 3Aγ ) to match 

simulation and experimental data. The above model accounts for compressibility effects 

through the inclusion of the shock Mach number Mi and by making φsp dependent on the 

adiabatic index γA. This may well be an important effect, but is not explored in this work.  

Based on these earlier efforts, and the above discussion, we highlight the following 

attributes for a spike velocity model: 

1. A model for spike velocities should include the effects due to the initial spike 

curvature on the asymptotic velocity as suggested by [33]. 

2. In addition, the initial growth rates are also modified by nonlinearity, and this 

must be included through 0V  separately for bubbles and spikes (e.g. eq. (1.8)). 

3. In the limit of 0 0kh → , the asymptotic spike velocity should approach the 

corresponding potential flow result 03V , since both the curvature and nonlinear 

effects are negligible in that limit.  

4. It is desirable (though not necessary) for the model to explain existing data 

without the use of tunable coefficients. 

1.2 Ejecta mass models 

The mass of ejecta generated at a shocked free surface depends on the missing area 

carved out by bubbles that have saturated in time. Thus, the bubble velocity history (eq. 

1.3) and the shape of saturated bubbles determine the quantity of ejecta channeled 

through the spikes. A recent ejecta source model [15] is based on the above hypotheses, 
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and obtains the time-dependent ejecta mass from integrating the asymptotic bubble 

velocity from (eq. 1.3): 

0
0

( ) ( ) ( ) ln 1 .
t

WB
f bu

tm t S t V t dt mρ
λ τ

 = = + 
 ∫        (1.10) 

In the above equation, the shape factor fS  was assumed to be unity resulting in 0 3
m ρλ

π
=

, and  
03 WB

buV
λτ

π
=  is a time constant. Note that using Sf = 1 in eq. (1.10) sets an upper 

limit for the ejecta mass, and implies idealized bubble channels that are rectangular. 

Authors of Ref. [7] extended the above model by using a parabolic shape factor 

representative of real bubbles to obtain the following expression for the time evolution of 

ejecta mass: 

0

4( ) ( ) ( ) .
3

t
FC

bu bum t L t V t dtρ
λ

= ∫         (1.11) 

The bubble half width at the location of the free surface is denoted by ( )buL t  in eq. 

(1.11), and appears here as a result of the parabolic shape factor assumption. Enforcing 

conservation of volume flux across the free-surface [7] leads to an expression for buL  

directly in terms of bubble and spike velocities:  

( ) ( )
( ) ( )

1 .
2

sp
bu

bu sp

V t
L t

V t V t
λ

=
+

      (1.12) 

Inserting eq. (1.12) in eq. (1.11) and integrating over time, the following source model 

for ejecta mass is obtained [7]: 
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0
0

1 (t)2( ) ln  ,  .
3 (t)1

bu spFC

sp

t
V V

m t m t V
βτ β

βτ

 +  +
= = ∆ + 

 

     (1.13) 

Note that the pre-factor 2/3 stems from the use of the parabolic shape factor 

approximation for bubbles, while the parameter β  in the logarithmic term lengthens the 

timescale, and is a consequence of volume flux conservation. Using the initial bubble 

velocity 0
WB

buV from eq. (1.8) and the asymptotic spike velocity 0( ) 3KM
spV t V→  from 

eq. (1.5) in eq. (1.13), the following expression for β  is obtained [7]: 

11 .
3

NL
KM bu

NL
sp

F
F

β = +         (1.14) 

In Chapter 5, we use our proposed expression for asymptotic spike velocity to evaluate 

the parameter β, and compare it with data from numerical simulations. 
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 CHAPTER 2: PROBLEM SETUP AND NUMERICAL METHOD 
 

The simulations described in this work were performed using the astrophysical FLASH 

[42] code, developed by the FLASH center for computational sciences at the University 

of Chicago. The numerical method employed in FLASH is the 2nd order Piecewise 

Parabolic Method (PPM) to solve the Euler equations. PPM has been demonstrated [43] 

to be well suited to describing flows involving contact discontinuities such as sharp 

material interfaces and shocks. FLASH is also equipped with an Adaptive Mesh 

Refinement (AMR) capability, so that mesh resources are concentrated in regions of large 

gradients in the primary variables [44]. FLASH is a massively parallel code, with 

demonstrated scaling performance over hundreds of thousands of processor cores, and 

across multiple computing platforms. In FLASH, an ideal gas equation of state capable of 

handling multiple species calculates the thermodynamic properties of an ideal, gamma 

law fluid.  

In our continuum simulations we have adopted the approach of [25] to model metallic 

ejecta with an equivalent γ-law fluid. In the instance of shock-driven jetting of material 

from perturbed surfaces, the response of a metal to shock loading can be described using 

a linear us-up relation [45]: 

0s pu c su= +                                                                       (2.1) 

Here, us is the incident shock speed, while up is the particle (piston) velocity behind the 

shock, c0 is the bulk sound speed in the metal, and s is a constant. Dimonte et. al [25] 
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estimated that for weak shocks, the relationship between the shock speed and the particle 

velocity in a γ-law fluid simplifies to: 

0 1
4

A A
s p

A

Pu uγ γ
ρ

+ = +  
 

                                                        (2.2)  

Equation (2.2) may be taken to be the γ-law analog of Equation (2.1), with 0
0

A

A

P
c

γ

ρ
= , 

and 1

4
As

γ +
= . By comparing parametric plots of P, us and density vs. up, obtained from 

simulations of a metal described by a Mie-Gruneisen EOS and a γ-law fluid, Dimonte et 

al. [25] concluded that the behavior of Copper under explosive loading may be 

approximated by an ideal fluid with ρA = 8.93 g/cm3, and γA = 3.0. Specifically, the 

choice of γA = 3.0 was found to reproduce the hydrodynamic response of Copper (to 

within 7%) over the range up = 0 – 5 km/s, although the temperature response was not 

captured due to differences in the EOS. Thus, for the continuum simulations described 

here, we adopt the following approach to approximate the hydrodynamic response of 

shock-loaded Copper. First, we estimate the incident shock speed us from Equation (2.2) 

for a particle velocity of up = 2.5 km/s employed in the MD simulations. The continuum 

simulations were then initialized with an initial shock with strength Mach number, Ma ~ 

2.5 matching the shock properties used in MD. In FLASH, the light fluid was chosen to 

be air with γB = 5/3 and ρB = 1.22x10-3 g/cm3, while the Cu-equivalent fluid had ρA = 8.93 

g/cm3, and γA = 3.0. The corresponding particle velocity from the Rankine-Hugoniot 

jump conditions is 612.53 cm/s. The density of the shocked region is 15.4 g/cm3, while 

the corresponding release density for these conditions is 7.57 g/cm3. Using continuum 
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simulations, we have investigated shock-driven jetting arising from initial perturbations 

with Sinusoidal, Chevron, Fly-Cut, Square-Wave and Gaussian forms (results are 

detailed in Chapter 3). The initial non-dimensional perturbation amplitudes employed 

were kh0=1 and 1/8 and the simulations were run to a non-dimensional timescale of 

t/τ =65 and t/τ =44.1 respectively. The perturbation wavelength was chosen to be λ=1 cm 

for all initial waveforms. To observe the late-time nonlinear development of imposed 

perturbations, the 2D simulation domain had an aspect ratio of 40 for kh0=1 and 80 for 

kh0=1/8 (corresponding to t/τ =65 and 44.1 respectively). An Adaptive Mesh Refinement 

(AMR) level of 6 corresponding to an equivalent uniform mesh resolution of 256 zones / 

λ was employed in the continuum simulations.  

Fig. 2.1 is a schematic of the problem configuration used in the numerical simulations 

reported here, where we have adopted the nomenclature suggested by Mikaelian [46] to 

delineate shocked and unshocked regions. The pressure in region 3, corresponding to an 

incident shock strength of Ma=2.5, was initialized to be 8.9x105 Pa. Results for shocked 

Copper at these shock conditions are summarized in Chapter 3. 

We have also performed simulations of ejecta production from twice shocked Tin (ρA = 

7.29 g/cm3), and compare our simulation results with target experiments of [18,17] in 

Chapter 4. The second shock generation technique differs slightly from the simulation 

setup explained earlier. Fig. 2.2 shows a typical x-t diagram for our double-shock setup, 

where the sequence of events in a doubly-shocked RM problem are shown. Velocities of 

the incident (IS) and transmitted shocks (TS), rarefactions (RR) and the interface 

obtained from FLASH in fig. 2.2 agree with the corresponding values from the Rankine-
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Hugoniot jump conditions [46] to within 2%. Following the exit of the reflected 

rarefaction wave (RR1) from the first shock/interface interaction (event SI1 in fig. 2.2) 

through boundary Lx , a second shock is specified in the region occupied by guard cells at 

Lx x≤  in fig. 2.1(b). In many of our simulations, we manipulate the second shock arrival 

time at the interface (event SI2 in fig. 1(c)), to achieve specific values of the nonlinear 

amplitude of the interface at the instance of the second shock-interface interaction 

0( )kh −− . The sinusoidal perturbations were specified according to 0( ) cos( ),h y h ky=  

where 0h  was the initial amplitude and was varied in our simulations. Chapter 4 details 

FLASH continuum simulations performed for the double-shock study as well as the 

procedure we have adopted to compare our simulation results with data from the target 

experiments of [18,17]. 
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FIG. 2.1. Schematic of the computational domain showing the problem configuration and 
nomenclature adopted from [46]. (a) Initial condition, (b) configuration after shock-
interface interaction. 
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FIG. 2.2. x-t diagram from a typical second shock simulation. SI1 – first shock-interface 
interaction, TS1- transmitted shock wave from first shock, RR1- Reflected rarefaction 
from first shock, IS1 - Incident shock 1 and so on. 
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CHAPTER 3: EJECTED MASS FROM NON-SINUSOIDAL SHAPES 
 
 
In this Chapter, we discuss the effects of machining different two-dimensional shaped 

grooves in copper and examine the resulting flow of the material after being shocked into 

liquid on release. Simulations are performed using massively parallel FLASH code 

(detailed in Chapter 2) with machined grooves of kh0=1 and kh0=1/8, where 2h0 is the 

peak-to-valley height of the perturbation with wavelength λ and k=2π/λ. The surface 

morphologies studied include a Chevron, a Flycut, a Square-wave, and a Gaussian. Our 

findings indicate that the resulting mass can be scaled by the missing area of a sinusoidal 

curve with an effective wavelength, λeff, that has the same missing area. The mass 

formula proposed by authors of [7] with extension to any arbitrary shape captures the 

corresponding time evolution and total mass for all shapes considered here. In the 

following, we provide details of surfaces studied under this work. 

3.1 Surfaces studied 

Surface profiles were constructed using the expressions below. We recognize that some 

of these profiles may be difficult to manufacture due to their complexity, yet within the 

numerical simulation cell, the material ejected from these can be studied to determine 

isolated geometrical effects. In all of the simulations presented below the kh0 was held 

fixed at a value of 1 or 1/8. A value for h0 was defined as half the total height between the 

machined surface groove top and bottom. All shapes were constructed about the 

centerline axis of symmetry, as shown in Figure 3.1.  
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FIG. 3.1. The shapes described by these functions. a) Sinusoidal, b) Chevron, c) Fly-Cut, 
d) Square-Wave, and e) Gaussian. 
 

Since the profiles are even periodic functions in x we can use a Fourier cosine series 

representation.  The Fourier cosine series can be generalized as: 

0
1

n n
n

f ( x ) a a cos(k x)
∞

=

= + ∑ ,                                                                                        (3.1) 

where kn=(2π/λ)n. Mikaelian [47] has defined an "asymptotic-shape" that describes the 

RM linear growth instability of the perturbation. According to Mikaelian [47] the 

"asymptotic-shape" for a particular profile is related to the above Fourier series as: 

1
asympt n n n

n
f ( x ) k a cos( k x )

∞

=

= ∑                                                                                  (3.2) 

We note that there are special cases where the above series may not converge, namely, 

when the  values decay as 1/n, then knan would be a constant value, and indeed, this is 

the case for several of the profiles, and may be observed in the resulting surface structure. 

na
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The linear RM instability amplitude growth formula for a wavenumber k is, 

( ) ( )0 1kh t h UkAt= + ∆ , taking a value of -1 for solid shocked into a vacuum, t is time, 

and 0h  is the initial sinusoidal amplitude. Applying this to each of the Fourier terms 

gives a shape that initially develops (with a0=0) as: 

1 1
n n n n n

n n
h( x,t ) UAta cos(k x) k a cos(k x)∆

∞ ∞

= =

= +∑ ∑      (3.3) 

It is evident that the notion of an “asymptotic shape” derives from the development of the 

second term on the right hand side of Equation (3.3). However, we note that this is a 

“linear” RM evolution, and so as a wave evolves we should expect a different shape from 

a cosine. Mikaelian [47] also notes that at points where there are discontinuities in the 

original function, "kink-singularities" form, and are affected by effects such as 

nonlinearity, compressibility, viscosity, surface tension, and strength. 

In the following, we provide the functional representation of the surface and then its 

Fourier cosine series representation. In some cases, namely for the circular based profiles, 

the series expansion assumes particular values for the radius, wavelength, and height of 

the machined well. Our objective with these functions is to develop an understanding for 

the principal mode responsible for ejecta formation, and the resulting velocities. 

A. Sinusoidal: 

The simplest, and the standard surface used, to study Richtmyer-Meshkov instability is 

that of a sinusoid, namely,  and 0
2cos .asympt

xf h k π
λ

 = −  
 

 The 

simulation surface is shown in Figure 3.1 (a). 

B. Chevron: 
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This profile could be obtained from a machining process where v-notched grooves were 

left in the surface. It is also one of the simpler functions for Fourier series representation, 

and is shown in Figure 3.1 (b). The Chevron surface is represented by a periodic 

representation, and its Fourier cosine series representation is given by: 

0
0

4( ) ,        
2 2

hh x x h xλ λ
λ

−
= − ≤ ≤        (3.4) 

and 

( )
( )

( )0
22

0

2 2 18 1 cos
2 1f

n

n xhh x
n

π
π λ

∞

=

+ 
= −  

+  
∑      (3.5) 

We note that in Equation (3.5) the pre-factor decays as the inverse of the square of the 

odd coefficients, and also that the asymptotic shape function is given by: 

( ) ( )
0

0

16 1 2 (2 1)cos
2 1asympt

n

h n xf x
n

π
π λ

∞

=

+ = −  +  
∑                                                       (3.6) 

C. Fly-cut: 

The Fly-Cut shape could be manufactured by the tip of a fly-cutter machining off 

material at a depth less than the radius of curvature of the machine tool tip. However, as 

will be evident from the results, the Fly-Cut also closely resembles the late-time evolved 

shape of all the shapes considered, and as such is a canonical case as an initial condition 

at second shock. Evaluation of the Fourier cosine coefficients for circular-based shapes is 

complicated because it involves evaluation of the integral: 

( ) /22 2
0 00

2 2 2cos cos ,
b

n b

nx nxa C R x dx h dx
λπ π

λ λ λ
    = ± − +        
∫ ∫                            (3.7) 
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where b is the intersection of the circle with the flat surface based on the depth of the 

groove, namely,  , and  is the translation along the axis of symmetry for 

the desired circle center.  The  values oscillate and decay ~ 1/n. The above integral is 

readily evaluated numerically for a given  and . We evaluate the Fourier series 

representation of the above integral for the special case  below. 

This shape is perhaps the closest to a machined surface, Figure 3.1 (c).  Fly-Cut machine 

tools consist of a cutting angle with a semicircular section at the tip. The actual functions 

that produce this shape are given by the following expressions: 

0

2
2

0

0

( )                                                0 - ,
2

       - - - -                - ,
2 2 2

                                                      .
2

h x h x b

R h R x b x b

h b x

λ

λ λ λ

λ λ

= ≤ ≤

 = ≤ ≤ + 
 

= + ≤ ≤

                                                 (3.8) 

where R is the radius of the tip of the cutter and to generate the series, . The 

Fourier cosine series is: 

               (3.9) 

and 

              (3.10) 

2
0 02Rh h± − 0C

na

λ 0h

0 1kh =

02.2R h=

( ) 0.140274 1.11995cos( ) 0.162593cos(2 ) 0.104506cos(3 )
0.126311cos(4 ) 0.0523246cos(5 ) 0.0221736cos(6 )
0.0501894cos(7 ) 0.032069cos(8 ) 0.00325706cos(9 )...

h x x x x
x x x

x x x

= − + + −
+ + −

+ +

( ) 1.11995cos( ) 0.325186cos(2 ) 0.313518cos(3 )

0.505244cos(4 ) 0.261623cos(5 ) 0.1330416cos(6 )
0.3513258cos(7 ) 0.256552cos(8 ) 0.02931354cos(9 )...

asymptf x x x x
x x x
x x x

= − + + −

+ + −
+ +
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D. Square-wave: 

This shape, Figure 3.1 (d), is not feasibly machined but it is interesting from a modal 

analysis perspective, and as a limiting case with a step as opposed to a finite gradient. 

The functional representation of this shape is given by: 

                                                                             (3.11) 

The Fourier cosine series representation is: 

                                                                           (3.12) 

The Fourier coefficients decay as 1/n and oscillate between positive and negative 

numbers. This is in contrast to the Chevron coefficients that decay as 1/n2 for all odd 

values of n. The longer decay for a Square-Wave may contribute to regions of very high 

strain rates as the perturbation evolves, namely, the corners of the square well. 

The "asymptotic" shape function is: 

( ) 0

1

8 2sin cos
2asympt

n

h n n xf x π π
λ λ

∞

=

   =    
   

∑                                                                     (3.13) 

where this expression does not converge at high values of n, but recall that this result 

relates to a linear analysis of the evolution. 

E. Gaussian: 

The motivation for studying a Gaussian shaped surface (Fig. 3.1(e)), was that it may best 

approximate a post shocked surface profile after a Richtmyer-Meshkov instability inverts.  

The functional representation of a Gaussian is given by: 

0

0

0

/ 2 / 4
( ) / 4 / 4

/ 4 / 2

h x
h x h x

h x

λ λ
λ λ

λ λ

− ≤ ≤ − 
 = − − ≤ ≤ 
 ≤ ≤ 

0

1

4 2( ) sin cos
2n

h n n xh x
n

π π
π λ

∞

=

   =    
   

∑
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                                                                                                         (3.14) 

where  and c are the height and width of the Gaussian spike respectively.  Unlike the 

former profiles, where we have specified the functional axis to be the midpoint between 

the top and the bottom of the excavated well, here the axis is from the flat surface.  The 

integration of this function to determine the Fourier coefficients is significantly 

simplified: 

                                                                                       (3.15) 

and 

2 2

2
2 2 2 2 2

02 2 4 4
2 2 2 2

cn

n
h c ic n ic na e Erf Erf

c c

π
λπ λ π λ π

λ λ λ

−     − +
= +    

    
                            (3.16) 

From examination of the expression in Equation (3.16) it is evident that the real portion 

of  decays as ~ , implying that the first Fourier coefficient would be the dominant 

mode. 

3.2 Discussion and Results 

We adopt the following approach, developed in [7] to detect the x-locations of bubble 

and spike extrema from our simulations. The position of the bubble tip is identified as the 

x-location where the planar (y-) averaged density falls below 90% of the release density- 

relρ  following the first or second shock events. From mass conservation across the 

interface, the position of the free-surface may be determined from: 

2

22
0( ) 2

x
ch x h e

 −
  
 =

0h

0
0

2 2
2 2

h ca Erf
c

π λ
λ

 =  
 

na
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(t)

(t) (t)

( ) ( - ( ) ) ( ) ,
fs

bu fs

x

rel
x x

m t x dx x dxρ ρ ρ
∞

= =∫ ∫       (3.17) 

where ,  bu fsx x  are bubble, and free-surface locations in the shock tube, while ( )xρ  is 

the planar-averaged density at x. An iterative process is then used to infer the location of 

the free-surface fsx . We also use the LHS of Equation (3.17) to track the ejected mass 

( )m t  from our simulations for comparison with the model described in Chapter 2.  

Initial wavelengths and amplitudes for the FLASH simulations are given in Tables 3.1. 

Figure 3.2 shows density plots from the FLASH simulations for kh0=1 for Sinusoidal, 

Chevron and Square Wave profiles at non-dimensional timescale of / 16.77t τ = . We note 

that these FLASH results are in remarkably good agreement with corresponding results 

from Molecular Dynamics (MD) simulations [7] at the same non-dimensional time (albeit 

on different length and time scales). While the gross features between the MD and 

FLASH simulations are in excellent agreement, differences at the small scales are 

observed likely due to the absence of physical viscosity in the FLASH calculations which 

was present in MD.  
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TABLE. 3.1. FLASH simulations: (a) kh0=1/8, h0=0.02 cm, λ=1.0 cm. (b) kh0=1.0, 
h0=0.1592 cm, λ=1.0 cm. 

 

 

Figure 3.3 shows the temporal progression of bubbles and spikes and the complex 

subsurface release wave structure. Figures 3.3 (a) – (f) show contours of density realized 

at key stages of flow evolution corresponding to non-dimensional times, t/τ = 0, 1.16, 

6.32, 12.76, 25.62 and 51.38, respectively. The solid black line in each figure indicates 

the location of the equivalent free surface, obtained from a separate simulation with kh0 = 

0. The phase reversal process expected for these A < 0 simulations is clearly under way 

by t/τ = 1.16 (Figure 3.3 (b)), and is complete by t/τ = 6.32 (Figure 3.3 (c)). The 

Sinusoidal (top panel) and Chevron waveforms (middle panel) result in qualitatively 

similar flow structures through intermediate (Figures 3.3 (c) – (d)) and late times (Figures 
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3.3 (e) - (f)), since the wavenumber content of the initial conditions for each of these 

cases are similar. 

 

FIG. 3.2. FLASH simulations for Sinusoidal (upper panel), Chevron (middle panel) and 
Square-Wave (lower panel) shapes. kh0 =1, t/τ=16.77. 
 

Bubble structures that are nearly flat displace the heavy fluid into long and tenuous spikes 

visible in Figures 3.3 (d) – (f). In contrast, simulations initialized with a square wave 

display more complicated structures, consistent with the presence of a broad spectrum of 

modes that only decay as 1/n in Equation (3.12). By t/τ = 51.38, spikes growing out of a 

square wave perturbation appear to be susceptible to a secondary instability seen in the 

bottom panel of Figure 3.3 (f).  
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FIG. 3.3. FLASH simulations for Sinusoidal (upper panel), Chevron (middle panel) and 
Square-Wave (lower panel) shapes. kh0 =1, t/τ=0, 1.16, 6.32, 12.76, 25.62, and 51.38.  
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Note that by t/τ ~ 51.38 (Figure 3.3 (f)), the spikes only span a few mesh cells and are 

thus likely to be no longer resolved structures. Thus, the breakup seen in Figure 3.3 (f) 

could be attributed to numerical dissipation at such small scales. Overall, the 

hydrodynamic simulations produce spike amplitudes that are in good agreement with the 

MD simulations [7] at similar values of t/τ for the same values of kh0. Note that at large 

initial amplitudes (kh0 = 1), both FLASH and SPaSM [7] simulations exhibit complex 

secondary features not observed at lower values of kh0. These features include bubble-

side ejections and blunted spike tips (figs. 3.2-3.3), and are attributed to the additional 

vorticity deposited at the interface at larger interfacial amplitudes due to the increased 

misalignment between the shock and the interface. Such features have been observed 

elsewhere in simulations [25] and pRad experiments [9]. The FLASH simulations were 

performed without surface tension (T) and viscosity (µ). We believe these effects may 

cause modifications at the fine-scale structure of the microjetting phenomena, but do not 

significantly affect the integral quantities discussed in this paper. For instance, surface 

tension has been observed to cause jet breakup and fragmentation of spikes at late times 

in experiments. However, the FLASH simulations reported here have been run up to kV0t 

~ 50 (V0 being the initial RM growth rate), a time period over which the surface tension 

driven breakup process does not advance significantly. This can be demonstrated with the 

following simple analysis adopted from [25]: The velocity scale associated with the spike 

fragmentation process can be written as 2~ 2 /jet breakupV T ρ λ
−

 (from [48]). Using the surface 

tension for molten Cu (T ~ 1000 dyne/cm [49]), we obtain Vjet-breakup ~ 0.03 km/s for MD 

simulations, and 16.25 cm/s for FLASH simulations (if it had surface tension). For the 
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longest simulations in this study with ~ 50MBkV t , the spike fragmentation process has only 

have experienced MB
jet breakup

MB

kV t
V

V−
×  ~ 1.38 e-foldings [25] for the FLASH simulations (while 

the RMI has clearly proceeded to non-linearity). Thus, we do not expect the exclusion of 

surface tension in FLASH to significantly alter the results compared to its MD 

counterpart. Similarly, the model of [50] may be used to estimate the reduction in growth 

rate due to viscosity of molten Cu in the MD simulations relative to the continuum 

simulations, which were inviscid. From [50], in the presence of viscosity, the RM growth 

rate is modified according to  

( )22
0

k t
th h uA ke ν−

= ∆          (3.18) 

Furthermore, the strain rates in the FLASH simulations are much lower (kV0 ~ 5.6e2 

(3.7e3) s-1 for the kh0 = 1/8 (1) cases). It is not clear how viscosity would affect RM in 

the nonlinear stage, but we expect small-scale features (visible in some of the FLASH 

simulations) to be affected by the inclusion of viscosity.  

We have used several methods to analyze the computed results. We first define an 

effective wavelength, λeff, from the area excavated out to form the initial surface 

perturbation, Ash, by  λeff = Ash/h0 ,where h0 is the half height of the peak to valley 

distance. Accordingly, the effective wavenumber keff = 2π/λeff .and the timescale τ  (Eq. 

1.10) is given by 0/ (3 )b

eff effτ λ πη= . Similarly, an effective mass per unit area, m0eff, is 

defined as, 0 3eff effm ρλ π= . It can be shown that upon integration of Equation (1.3), 

substituting keff in place of the k, m0 in Equation (1.10) becomes m0eff. We also define an 

amplitude, h0f, equal to the first amplitude coefficient in the Fourier series expansion. 
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Table 3.1 provides parameter values for the shapes considered for values of kh0 =1 and 

1/8. 

We start our analysis by inspecting the areal mass vs. time plots in Figures 3.4 (a) and (c) 

for FLASH simulations. Although all the shapes had the same initial h0 and λ it is evident 

that they produce different areal masses, with the flycut being the lowest for kh0=1/8 and 

the highest for kh0=1. The model formula (eq. 1.13) suggests an areal mass scaling of 

m0=ρλ/3π. Since λ is the same for all the shapes, this will not usefully scale the shapes. 

However, the Figures 3.4 (b) and (d), show that a scaling based on m0eff=ρλeff/3π does 

give a useful collapse for both kh0=1 and 1/8. This is essentially the same scaling used by 

Asay and Bertholf [22]. However our model suggests an additional time scaling that is 

examined in the next paragraph. 
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FIG. 3.4. Ejected mass per unit area for FLASH simulations. a) kh0=1/8, m(t) vs. time; b) 
kh0=1/8, scaled mass m(t)/(2/3m0eff) vs. time; c) kh0=1, m(t) vs. time; d) kh0=1, scaled 
mass m(t)/(2/3m0eff) vs. time. 
 

To further assess the model given in Equation (1.13) it is necessary to specify τeff  which 

depends on both λ and kh0. We consider two methods. The first method (I) assumes that 

the shape with a given peak to valley height, 2h0, may be represented by an equivalent 

sinusoidal perturbation with effλ λ→  and 0 0effkh k h→ . The second method (II) assumes 

that at late times, the bubble growth is dominated by the longest wavelength in the 
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Fourier decomposition as discussed above. We thus take λ and 0 0 fkh kh→  as variables 

in Equation (1.13). Figure 3.5 compares these two methods for the FLASH 

hydrodynamic simulations. Figures 3.5 (a) and (c) show the ejecta mass per unit area 

scaled by 2/3 m0eff plotted vs. the natural logarithm on the right hand side of Equation 

(1.13) using method (I). Figure 3.5 (a) corresponds to kh0=1/8 and Figure 3.5 (c) to 

kh0=1. Figures 3.5 (b) and 3.5 (d) are the same kh0 values using method (II). The FLASH 

simulations were run for approximately 12 milliseconds for kh0=1 cases (t/τ ~ 65), and 54 

milliseconds for kh0=1/8 cases (t/τ ~ 44). Perfect agreement between theory and 

simulation corresponds to a straight line at 45 deg. in these figures. We track 

independently the time evolution of bubble and spike tips in our FLASH simulations, 

from which we obtain the timestamps of the following key events: the instance when the 

shock first arrives at the interface (T1), the time instance when the shock arrives at the 

valley of the perturbation (T2), and the instance when the interface is flat (T3). Δt is then 

computed as 3 1t T T∆ = − for use in Equation (1.13). 
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FIG. 3.5. Simulation mass per unit area compared with theoretical model, FLASH 
simulations. (a) and (b) kh0=1/8: (a) Method I, (b) Method II; (c) and (d) kh0=1: (c) 
Method I, (d) Method II. Dashed line—theoretical model. 
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Figure 3.5 reveals a reasonable agreement with the theoretical prediction using both 

method I and II. However one must take into account the scaling of the data and ordering 

of the curves shown in Figure 3.4. Referring to Table 3.1, the ordering in Figures 3.4 (a) 

and (c) has the highest areal mass corresponding to the largest values of λeff. When λeff is 

the same, the ordering is approximately according to the magnitude of h0f. Method I 

incorporates the λeff ordering explicitly in the pre-factor m0eff. Since method I depends on 

the local geometry of the perturbation it may be useful for calculating the ejected mass 

from machined surfaces with local inhomogeneities and a distribution of surface 

roughness. Method II incorporates the missing area dependence in τeff through h0f rather 

than with λeff and gives areal masses proportional to h0f in the limit that t τ   which is 

approximately correct for the simulation data. We recommend method I because of its 

simplicity and its ease of generalization to non-periodic or quasi-periodic surface profiles. 

In Figures 3.5 (c) and (d), for t*<1 (t* is the x-axis coordinate in Figure 3.5 

( ) ( )( )* ln 1 / /t t t tβ τ τ= + − ∆ + ∆  ) and kh0=1 there is a steeper growth of areal mass 

release, but thereafter the areal mass release matches well with the model. This steeper 

release for kh0=1 does not occur for kh0=1/8 indicating that the initial inversion period 

does not follow the sinusoidal path suggested by the model collapse. However, the t*>1 

collapse for kh0=1 onto the model supports the overarching hypothesis that late-time areal 

mass release is controlled by the longest wavelength and initial amplitude. 
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CHAPTER 4: EJECTA PRODUCTION FROM SECOND SHOCK 

 

In this Chapter, we explore ejecta production at an interface that is impulsively 

accelerated by two successive shock waves using detailed numerical simulations and 

comparison with recent experiments. The perturbed material interface demarcates the 

boundary between a metal and vacuum resulting in the formation of ejecta driven by the 

Richtmyer-Meshkov instability. The numerical simulations were performed with the 

astrophysical FLASH code, in which the shocked metallic response is conceptually 

modeled using continuum hydrodynamics. The experimental data were obtained from a 

two-shockwave, high-explosive tool at Los Alamos National Laboratory capable of 

generating ejecta from a shocked Sn surface in to a vacuum. In both the simulations and 

the experiment, linear growth is observed following the first shock event, while the 

second shock strikes a finite-amplitude interface leading to nonlinear growth. The timing 

of the second incident shock was varied systematically in our simulations to realize a 

finite-amplitude re-initialization of the RM instability driving the ejecta. We take 

advantage of the nonlinear growth following the second shock, to evaluate a recently 

proposed model for sourcing of mass in ejecta formation that accounts for shape effects 

through an effective wavelength. In particular, we find the agreement between 

simulations, experiments and the mass model is improved when such shape effects 

associated with the interface at the instance of second shock are incorporated. The 

[Type a 

quote 

  

   

   

 

 

  

 

  

 

   

  

 

 

 

  

 

 

  

  

 



 
 

 

 

36 

approach outlined here of combining continuum simulations with validated nonlinear 

models can aid in the design of future experimental campaigns.  

4.1 Ejecta simulations (A → -1 cases) 

In this section, we present results from our double shock simulations at ejecta conditions 

with molten ‘Sn’ modeled as an ideal γ-law fluid using the methodology outlined in 

Chapter 2. At these conditions, pre- and post-shock Atwood numbers differ only slightly 

so that - ~ ~ -1A A+ . In many of our simulations, the interface has evolved to a nonlinear 

state at the instance of second-shock arrival, so that the subsequent evolution of bubbles 

and spikes will be described by nonlinear models such as eqs. (1.3), (1.5), and (1.8). We 

also report on the evolution of ejected mass from successive shock events, and compare 

our numerical results with a recently developed ejecta source model [7] (eq. 1.13).  

Table 4.1 provides a listing of FLASH simulations performed in this study at 1A → − , 

with corresponding values of first ( )1Ma  and second shock ( )2Ma  strengths, initial 

perturbation forms and interfacial amplitudes 0( )kh −−  immediately prior to second shock 

event. Note that all the cases in Table 4.1 were initialized with a scaled interfacial 

amplitude of 0 0.12kh − =  prior to the first shock, ensuring the initial perturbation growth 

occurs within the linear RM regime governed by eq. (1.2). In contrast, the time of arrival 

of the second shock was varied to realize perturbed interfaces of different amplitudes at 

the instance of second shock impact.  
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TABLE 4.1. Summary of FLASH simulations ( )1A → −  

 
 

In Figure 4.1, we plot density contours from case 1 corresponding to different values of 

the non-dimensional time [7] 2 .SIt t
τ ++

−
 Note that 

2SIt  refers to the time of second shock 

impact, while τ ++  is used as defined in the context of equation (1.13), but evaluated for 

second shock conditions. The initial sinusoidal perturbation with 0 0.12kh − =  is shown in 

Figure 4.1 (a), with the incident Mach 1.6 shock located upstream at sx x= , while the 

location of the corresponding unperturbed interface (obtained separately from a 

simulation with 0 0kh − = ) is depicted by the dashed line. Following shock impact (SI1 in 

Figure 2.2), the interface in our simulations is compressed to a post-shock amplitude of 

~0.05, in agreement with 0 0 0.055kh khχ+ −= = , where 0

0

1 0.45
i

h U
h W

χ
+ +

− −

∆
≡ = −   is an 

amplitude compression factor and iW −   is the incident first-shock speed. The reflected 

rarefaction from the shock-interface interaction decompresses material A from an initial 

density of 7.29 g/cm3 to a final ‘release’ density relρ +  ~ 7.073 g/cm3. Since the shock 
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passage is from a heavy-to-light medium with iU W+ −∆ < , an ‘indirect’ phase inversion 

[51]  is observed in Figure 4.1 (b), where erstwhile bubbles (spikes) have inverted to 

form spikes (bubbles). Figure 4.1 (c) shows the interface has achieved a scaled bubble 

amplitude of ~ 0.45bukh −−  at 2 0SIt t
τ ++

−


 prior to second shock impact. The sequence of 

events following the interaction of the interface with the Mach 1.3 second shock (SI2) is 

shown in Figures 4.1 (d) – (g). The second shock compresses the interface to a post-

shock bubble amplitude of ~ 0.3bukh ++ , consistent with the compression factor 

0

0

1 0.65
i

h U
h W

χ
++ ++

−− −−

∆
≡ = −   evaluated for conditions of the second shock interaction. The 

rarefaction from the second shock results in further decompression of fluid A to relρ ++  ~ 

7.0442 g/cm3. This is followed by a second phase inversion (since 0A++ < ), which leads 

first to a flat interface at 2 2.2SIt t
τ ++

−


 (Figure 4.1 (d)) and to the restoration of bubbles and 

spikes to their original y-positions by 2 3.3SIt t
τ ++

−


 (Figure 4.1 (e)). Note that the 

momentary flattening of the interface in Figure 4.1 (d) implies the bubble surface 

recovers the ejected mass from the first shock interaction that has been fed to the spikes. 

At late times (Figures 4.1(f) – (g)), the twice-shocked interface goes through a nonlinear 

saturation, marked by the emergence and dominance of higher harmonics as well as 

bubbles and spikes acquiring distinct shapes - the bubbles appear to flatten, while the 

spikes are concentrated into long and narrow jets of the heavy fluid penetrating the light. 

As the mature bubbles feed mass in to the spikes, mass conservation dictates that the 
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spikes become progressively narrower while their amplitudes increase linearly with time 

according to eq. (1.5). Thus, we terminate our simulations at late times when the spikes 

span merely a few mesh cells, and are thus susceptible to dissipation by numerical 

viscosity.  

 

FIG. 4.1. Density contour images from FLASH simulations (case 1, khbu--~0.45) at 
different scaled times ((t-tSI2)/τ++). Dashed line indicates the location of unperturbed free 
surface. 

 

The spike locations, namely spx  are computed as 1% of planar (y-) averaged mass 

fraction of heavy fluid, a measure that was found to be a robust predictor based on 

comparisons with density contours as well as velocity profiles along the length of the 

spike.  
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In Figure 4.2 (a), we plot bubble and spike amplitudes scaled by the perturbation 

wavenumber k, and as a function of the scaled time ( 2SIt t
τ ++

− ) from a doubly-shocked 

simulation (case 1) using the techniques described above. The associated bubble and 

spike velocities are scaled with the prediction from the Meyer-Blewett [35] impulsive 

model evaluated for second-shock conditions ( )0
MBV ++ , and plotted in Figure 4.2 (b) – 

(c). The heavy-to-light shock transition ( )0A <  sets up a phase inversion clearly visible 

in Figure 4.2 (a), as bubble (solid line) and spike (dashed line) amplitudes grow 

negatively from their initial values in each case. As predicted by eq. (1.3), bubble 

amplitudes appear to saturate at late times, while the spikes grow linearly in time with a 

terminal velocity.  

The corresponding bubble velocity in Figure 4.2 (b) achieves short-lived peaks following 

the first and second shock events at 2 ~ 1SIt t
τ ++

−
−   and ~ 0 respectively, before entering a 

prolonged period of decay consistent with eq. (1.3). Following first shock, the maximum 

bubble velocity (at 2 ~ 1SIt t
τ ++

−
− ) from the simulation satisfies eq. (1.8) to within 5%, 

provided we take 1 ~ 0.73
2

L

i

UF
W

+
+

−

∆
= − , and 

0

1 ~ 0.98
1

6

NL
buF

kh
+

−=
+

. Similarly, the 

maximum bubble velocity following second shock impact (at 2 ~ 0SIt t
τ ++

− ) is within 5% of 

eq. (1.8), if NL
buF ++  is calculated using ~ 0.45bukh −− , the bubble amplitude immediately 

preceding shock arrival. The ensuing time-dependent bubble decay in Figure 4.2 (b) 
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(dashed line) is in excellent agreement with the 
0

1
WB

buV kt++   trend line predicted by eq. 

(1.3) through late times. As spikes continue to narrow, they reach a constant, terminal 

velocity seen in Figure 4.2 (c). The dashed line in Figure 4.2 (c) indicates the terminal 

velocity obtained by spikes given by eq. (1.5). Note that the Meyer-Blewett growth rate 

0
MBV ++  in eq. (1.8) is calculated using the bubble amplitude ( )bukh −−  at the time of 

second shock. Thus, evaluating NL
spF ++  in eq. (1.8) with ~ 1,spkh −− we obtain 

0 0~ 0.8WB MB
spV V++ ++  and an asymptotic scaled spike velocity of 

0

( )
~ 1.4sp

MB

V t
V ++

→ ∞
 in good 

agreement with eq. (1.5) in Figure 4.2 (c). 

 

FIG. 4.2. Time evolution of (a) scaled bubble and spike amplitudes, scaled (b) bubble and 
(c) spike velocities from case 1. Simulation data is compared with predictions from ejecta 
model of [9] summarized in eqs. (1.3), (1.5), and (1.8). 

 

In Figures 4.3 (a) – (g), we plot density contours from case 3, in which the second shock 

was delayed so that the bubble amplitude prior to SI2 2 0SIt t
τ ++

− 
 
 



was nonlinear and 

approaching ~ 0.96bukh −− . At the instant of second shock arrival, corresponding spikes 
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have matured to a nonlinear amplitude of ~ 2spkh −−  and are shown in Figure 4.3 (c). 

Thus, the finite amplitudes of bubbles and spikes at second shock suggest this is a robust 

test case for nonlinear, analytical growth models such eqs. (1.3), (1.5), and (1.8). Second 

shock compression reduces the post-shock bubble amplitudes from ~ 0.96bukh −−  to 

~ 0.63bukh ++  ( )~ 0.65χ , before triggering another indirect phase inversion evident in 

Figures 4.3 (c) - (d). In contrast to the low amplitude case discussed earlier, the ejecta 

remnants from the first shock event are visible on the newly formed second shock bubble 

surface (Figures 4.3 (d) – (e)). At late times (Figures 4.3 (f) – (g)), such secondary 

features on the bubble tips recede due to the ongoing phase inversion followed by 

localized mean transport away from the bubble tip, leaving behind a clean, rounded 

bubble surface that is excavating and redirecting mass into long, pointed spike jets.  
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FIG. 4.3. Density contour images from FLASH simulations (case 3, khbu--~0.96) at 
different scaled times ((t-tSI2)/τ++). Dashed line indicates the location of unperturbed free 
surface. 
 

Quantitative data from this case includes the time evolution of scaled bubble and spike 

amplitudes (Figure 4.4 (a)) and corresponding scaled velocities in Figures 4.4 (b) – (c). 

Similar to the low amplitude case discussed earlier, bubble and spike amplitudes from 

case 3 undergo sign reversals following each shock in Figure 4.4 (a). At late times, 

bubble amplitudes saturate to ~ 2bukh , compared to a saturation amplitude of ~ 1.5bukh  
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for case 1. This trend is consistent with the observation in [25] that the eventual 

saturation amplitudes of bubbles ( )( )bukh t → ∞  depends (linearly) on the average of the 

pre- and post-shock initial perturbation amplitudes. Bubble and spike velocities from case 

3 are depicted in Figures 4.4 (b) - (c), and show behavior predicted eqs. (1.3), (1.5), and 

(1.8). For instance, eq. (1.8) suggests the scaled peak bubble velocity should satisfy

0

0

WB
NLbu

MB bu
V

FV

+
+

+ = . Prior to its interaction with the second shock, the interface acquires 

an amplitude of ~ 0.96bukh −− , so that NL
buF ++  evaluates to ~ 0.86, compared to the 

observed peak of ~ 0.84. The subsequent decay of bubble velocity from our simulations 

also appears to be captured by eq. (1.3), which is an extension of eq. (1.8) to capture the 

time-dependence. Similarly, according to eqs. (1.8), (1.5) spikes must have an initial 

velocity of 0

0

WB
NLsp

MB sp
V

FV

+
+

+ =  which will increase to a terminal velocity of 
0

3 WB
spV + . 

As before using ~ 2spkh −− , the terminal spike velocity of 
0

( )
~ 0.9

WB
sp

MB

V t
V

++

++

→ ∞
 is in good 

agreement with simulation data in Figure 4.4 (c). 
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FIG. 4.4. Time evolution of (a) scaled bubble and spike amplitudes, scaled (b) bubble and 
(c) spike velocities from case 3. Simulation data is compared with predictions from ejecta 
model of [9] summarized in eqs. (1.3), (1.5), and (1.8). 

 

We summarize bubble peak velocities from all the simulations in Figure 4.5, where we 

plot 0

0

bu
MB

V
V

++

++  obtained immediately after SI2 as a function of the corresponding scaled 

bubble amplitude ( )bukh −− . The dashed line indicates prediction from eq. (1.8) and thus 

corresponds to NL
buF +  evaluated for the range of pre-second shock amplitudes. From 

Figure 4.5, the nonlinear decay factor for bubbles ( )NL
buF +  is in excellent agreement with 

the simulation data. This is particularly important as the bubble velocity following SI2 

features prominently in the determination of the ejected mass according to eq. (1.13). 

Note that the nonlinear factors ( )/
NL

bu spF +  were also independently proposed in [41]. 
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FIG. 4.5. PEAK bubble growth rates from FLASH simulations scaled with V0MB++ and 
plotted against the scaled initial bubble amplitude prior to second shock. Simulation data 
is compared with peak bubble growth rates from model of [9]. 
 

4.2 Bubble Surface Shape Analysis 

The shape of the bubble surface prior to second shock is of particular importance since it 

sources the mass that is fed in to the spikes. After examining several candidate shapes, 

we find the nonlinear bubble surface prior to the second phase inversion (Figures 4.1 (c), 

4.3 (c)) most closely resembles a ‘flycut’ profile with a phase-shift of π  from the 

original sinusoid. The authors of [7] reported that eq. (1.13) successfully predicts the 

ejected mass from different shapes if the effective wavelength effλ  associated with each 
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shape is used in that equation. In this article, we follow a similar approach in describing 

the bubble surface just before second shock as a flycut with an effective wavelength that 

is used in eq. (1.13) to compute the ejected mass. We find the difference in missing areas 

for bubbles associated with a sinusoid and a flycut is significant, and is a source for 

additional mass ejection in the case of the flycut.  

To account for the additional missing area available for mass ejection, we first attempt to 

fit a flycut profile to the bubble immediately preceding the second shock. A flycut 

surface can be defined with three independent parameters, the amplitude 0h , the 

wavelength λ  and the radius R using the equation 

0

2
2

0

0

( )                                                0 - ,
2

       - - - -                - ,
2 2 2

                                                      .
2

h x h x b

R h R x b x b

h b x

λ

λ λ λ

λ λ

= ≤ ≤

 = ≤ ≤ + 
 

= + ≤ ≤

                              (4.1) 

In Equation (4.1), 2 2
0- ( - 2 )b R R h= is the length of the chord that signifies the 

intersection of the circle with the flat surface (Figure 4.6 (a)). Such shapes are generated 

in practice by a fly cutter milling tool frequently used in face milling operations. In 

Figure 4.6 (b), we attempt to construct a flycut with ( )0 , ,h Rλ  that match corresponding 

properties associated with the mature bubble surface just before it is impacted by the 

second shock. From Figures 4.6 (a) – (b), it is clear that 2( )bu spL L λ+ = , where ( )bu spL L  

is the half width of the bubble (spike). Similarly, we define the flycut amplitude 0 buh h= , 
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the bubble height relative to the position of the free surface in our simulation. From the 

geometry of the flycut, this leads to  

21
2

bu
bu

bu

LR h
h

−−
−−

−−

 
= + 

 
,                                 (4.2) 

thereby defining a profile based on the independent parameters ( ), ,bu bu sph L L  that match 

the bubble surface properties. The thick-dashed line in Figures 4.6 (b) shows the profile 

so constructed to match the interface (solid-thin line), and the R2 fit with the underlying 

bubble shape is 0.99. The corresponding sine wave fit is shown as the dotted line in 

Figures 4.6 (b), and clearly undercounts the bubble mass available for ejection (R2 = 

0.86). An effective wavelength for the flycut may then be defined as shape
eff

bu

A
h

λ −−= , where 

shapeA  is the missing area associated with that shape and obtained as the area enclosed by 

the circular arc and the chord with length 2b in Figures 4.6 (a). From the geometry of 

Figures 4.6 (a), 2
0- ( - 2 )shapeA R b R hθ= , where -1sin b

R
θ = . A summary of bubble 

surface profiles and corresponding flycut parameters is provided in Table 4.2 for all the 

simulations considered in this study. 
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FIG. 4.6. Shape analysis of the interface at second shock: (a) Geometric parameters 
associated with a flycut surface, and (b) flycut and sine profiles fitted to the pre-second 
shock bubble profile from case 1. 
 
 
TABLE 4.2. Geometric properties of the interfaces at second shock from FLASH 
simulations. 

 
 

The time evolution of ejected mass from case 1 is shown in Figure 4.7 (a), along with 

predictions from eq. (1.13) for different shapes. The mass from the FLASH simulations 

( )FLASHm t  is computed from planar-averaged density profiles using eq. (3.17). We also 

plot ( )FCm t  from eq. (1.13), evaluated separately for sine ( )effλ λ=  and flycut 
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( )1.125effλ λ=  shapes. The time axis is origin-shifted by 
2SIt t+++ ∆ , where t++∆  is the 

time interval between second shock breakout at the perturbed interface and the instant 

when the interface is rendered completely flat. Figure 4.7 (a) reveals ejecta mass from our 

double-shock simulations are in excellent agreement with the model of [7] following both 

first and second shocks, particularly when eq. (1.13) is evaluated for a flycut shape with 

consistent effλ . Note that the second phase inversion leads to a momentary flattening of 

the interface (see Figure 4.1 (d) for instance), resulting in a partial recovery of the mass 

ejected from the first shock. Subsequently, the RM growth from the second shock 

releases additional mass from the newly formed bubble surface through long and directed 

spikes. The higher value of effλ  associated with the flycut increases 0m ++  in eq. (1.13) to 

~ 0.84 g/cm2 (from ~ 0.74 g/cm2 for a corresponding sinusoid), while increasing τ ++  

from ~1.0e-3 s to ~1.3e-3 s. The results from case 3 ( )0 ~ 1kh  are plotted in Figure 4.7 

(b), and show a similar trend to the lower amplitude simulation discussed above. Due to 

the larger initial amplitudes, the bubble surface prior to SI2 encompasses significantly 

more missing area. As a result, the higher value of effλ  increases 0m ++  used in equation 

(1.13) from ~0.74 g/cm2 (sine) to ~0.93 g/cm2 (flycut) which shows better agreement with 

the FLASH data. Thus, when the mass history from the model eq. (1.13) ( )(t)FCm is 

plotted with corrections for a flycut shape, significant improvement in agreement with 

simulation results are observed compared with the original uncorrected sine profile. In 

Figure 4.7 (c), we plot the time evolution of the ejecta masses computed from the mass 

model described in eq. (1.13). The lines corresponding to cases 1 and 3 are plotted to the 
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times when the bubble velocities in each case drop to 0.1% of their initial peaks. We take 

the corresponding late-time masses as indicative of the asymptotic ejecta mass for that 

case. Thus, from Figure 4.7 (c), case 1 saturates to ~ 3.1 g/cm2, while the asymptotic 

mass from case 3 is ~ 3.3 g/cm2. 

 

FIG. 4.7. Ejected mass from (a) case 1 and (b) case 3 compared with predictions from the 
mass model of [7] evaluated for sine and flycut profiles. (c) Time evolution of ejecta 
masses from cases 1 and 3, calculated using eq. (1.13). 

 

We summarize our results in Figure 4.8, by comparing the scaled mass from cases 1 – 3 

with the logarithmic mass model of [7]. Accordingly, we plot the mass ejections recorded 

in our simulations against the RHS from eq. (1.13). The ejected mass from each of the 

FLASH calculations is scaled by the corresponding 0m ++   calculated for second-shock 

conditions using appropriate effλ , while the x-axis is the RHS from eq. (1.13) with β ++  

and τ ++  evaluated for second shock conditions. Thus, the diagonal represents perfect 

agreement with the model. The collapse of results from simulations with different 0kh ++  

in Figure 4.8 suggests the release of mass in double-shocked ejecta follows eq. (1.13), 
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and is explained by fitting a flycut to the bubble surface at second shock with an inferred 

effλ . 

 

FIG. 4.8. Scaled ejecta mass from all FLASH simulations plotted against the prediction 
from the mass model of [7], eq. (1.13). The 45 degree line indicates perfect agreement. 
 
4.3 Comparison with the experiments 

In this section, we describe our results from FLASH simulations and comparison with the 

recent campaign of double-shocked, high-explosive (HE) experiments [18,17] conducted 

at the Los Alamos National Laboratory. Details of the experiment are reviewed only 

briefly here, and we refer the reader to [18,17] for additional information. A schematic of 

the two-shockwave package used in [18,17] is shown in Figure 4.9 (a), and includes a 

machined Sn target that is exposed to explosive loading generated by a HE PBX 9501 

package coupled to a layer of TNT. The triggered detonation of the composite booster 

generates a shockwave incident on the target surface, while a reflected component is 
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returned from an anvil as the second shock. The experimental design allows for the 

ability to isolate rarefaction waves from the first and second shock impact events, so that 

the target releases to zero pressure in each case. Furthermore, the strength of the shocks 

can be controlled through the composition of the booster package to achieve pressures 

above or below melt. The time interval between shocks may also be manipulated by 

altering the thickness of the composite booster. Results from three shots at different first-

shock pressures were reported in [18], but we choose to compare data from our 

hydrodynamic simulations with their highest-pressure shot (# 1756). This experimental 

run produced a shock pressure of 26.4 GPa [18], above the onset of the melt-on-release 

pressure for Sn which is estimated to be ~ 19.5 GPa [52-54], so that the ejecta is 

comprised of a mixed phase of liquid and solid Sn. The experiments employed circular 

Sn targets with a diameter ~ 94 mm, thickness ~ 4 mm and were machined with grooves 

that may be characterized by a dominant wavelength λ  ~ 80 μm and amplitude 0h  ~ 1.5 

μm ( )0 0.12kh −
 . The experimental diagnostic package included a network of 

strategically positioned lithium-niobate (LN) piezoelectric probes and laser Doppler 

velocimetry (LDV) probes. The LDV probes report free-surface velocity measurements, 

while the LN piezo probes were utilized for ejecta mass measurements.  
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FIG. 4.9. (a) Schematic of the recent HE experiments conducted at LANL [18,17], with 
modifications to generate second shock, and (b) the scaled free-surface velocity from 
FLASH simulations. 
 

Our approach to matching the experimental conditions is based on matching the inferred 

shock strengths for the first and second shocks reported in [18], as well as the scaled 

perturbation amplitudes on the target surfaces prior to SI1 and SI2. The free surface 

velocities U +∆ ( U ++∆ ) after the first (second) shock for experimental shot 1756 is 

reported from LDV measurements to be 1.85 (0.5) mm/μs in [18] (Table 2). Applying the 

Rankine-Hugoniot relations in the ejecta limit [25], the post-shock particle velocity 3u +  

may be estimated from 
3

~ 2U
u

+

+

 ∆
 
 

. Finally, the incident shock velocities ( iW −  and iW −− ) 

and corresponding Mach numbers used in the simulations are obtained from a ‘Us-Up’ 

relationship that relates the shock and particle velocities [45]. In our simulations, we 

match the experimental Mach numbers for the first and second shocks thus estimated. All 

other flow and material parameters are initialized using the methodology outlined in 

Chapter 2 and validated extensively for ejecta conditions in [7,25].  
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The perturbation amplitude at second shock was estimated for the experiments [18] from 

the measured ejecta and free-surface velocities and the estimated second shock speeds. 

The detailed analysis was carried out by [18] and involves using the nonlinear spike 

model [9] described in eq. (1.5) to project the measured spike velocities back in time to 

an initial undulation amplitude that must have existed at the time of second shock to 

source ejecta at that velocity. This inversion of eq. (1.5) leads to an expression for the 

scaled initial amplitude at second shock given by: 

                  ( ) ( ) ( )
2

0 0

1 2
4 3 4 0.

1

i

sp

U
W

kh kh
V U

U

++

−−
−− −−

++ +

++

 ∆−   + + =
 − ∆

−  ∆  

   (4.3) 

In the experiments [18,17], U ++∆  and spV ++  were obtained from LDV and Ln (from 

measured mass-velocity distributions) probes respectively. The incident second shock 

speed was estimated independently using detailed CTH simulations. The FLASH 

simulations reported below were designed by choosing a time interval (∆t) between 

shocks such that the interface at second shock had the same scaled amplitude ( )0kh −−  as 

the experimental estimate (for the same second shock strength). However, note that there 

may be an important distinction between the experiments and simulations in the evolution 

of the interface leading to second shock. In the experiments, much of the ejecta generated 

from the first shock might have detached from the original interface likely due to surface 

tension-driven breakup, leaving behind an interface with 0 ~ 0.5kh −−  estimated from 

measured spike velocities (while some of this material may be recollected by the 

advancing spikes before second shock, thus complicating the picture even further). In 
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contrast, ejecta stay attached to the surface in the FLASH simulations, which did not 

include surface tension. We overcome this difference in first-shock interface evolution 

between experiments and simulations, by choosing t
τ +

∆  (~ 1.1) so that the scaled 

interface amplitudes at the time of second shock are comparable (in contrast, the 

experiments had ~ 140t
τ +

∆ ). Since our main focus in this work is the generation of 

second shock ejecta, our use of different values of t
τ +

∆  in the simulation to achieve the 

same initial condition for second shock as the experiment is justified. Finally, we note the 

precise shape and amplitude of the perturbations at second shock in the experiments are 

not known from current measurements. We have attempted to overcome this gap in our 

knowledge of the experimental conditions through the analysis described above.  

In Figure 4.9 (b), we plot free-surface velocities from a baseline unperturbed simulation 

( )0 0kh − = . The velocities in each case are scaled with the sound speed  in the 

respective media. The corresponding experimental values obtained using LDV probes 

[18] are 
0

0.7088 0.004U
C

+∆
±  for the first shock, and 

0

0.9 0.079U
C

++∆
±  for the 

second shock in fair agreement with simulation results with Figure 4.9 (b). The 

agreement of the scaled velocities from FLASH (Figure 4.9 (b)) with experimental data is 

encouraging and serves to validate our strategy of performing simulations in which the 

shock strengths are matched with their experimental or application counterparts. The 

scaled bubble and spike velocities are shown in Figures 4.10 (a) and (b) and are plotted 
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against the scaled time 2SIt t
τ ++

−
. The saturated spike velocities from FLASH following 

both shock events are in excellent agreement with the experimentally reported values 

shown in dashed lines (Figure 4.10 (b)). Note that both the experimental and simulation 

values are within 10 -15 % of eqs. (1.3), and (1.5). While the HE experiments do not 

directly report time-dependent data on bubble velocities, we compare bubble-tip 

velocities from FLASH with eq. (1.3) in Figure 4.10 (a). Following the first shock, we 

obtain a peak bubble velocity of 
0

~ 1.08 FLASH
bu MBV V+ + , while eq. (1.8) predicts 

0

0
0.98

FLASH
NLbu

MB bu
V

FV

+
+

+ =  , for an initial groove amplitude of 0 0.12kh − =  on the Sn 

target surface. Similarly, for second shock conditions we obtain 
0

~ 0.9FLASH
bu MBV V++ ++  

which is consistent with the theoretical value of 0

0
0.92

WB
NLbu

MB bu
V

FV

++
++

++ =   for a 

scaled bubble amplitude prior to second shock of 0.5bukh −−
 . Also, the time dependent 

bubble velocity history predicted by equation (1.3) (dashed line in Figure 4.10 (a)) is 

captured accurately by our simulations of experimental conditions. 
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FIG. 4.10 Time evolution of scaled (a) bubble and (b) spike velocities from case 4. 
Simulation data is compared with prediction from ejecta model of [9] summarized eqs. 
(1.3), (1.5), and (1.8). and experimental data from [18]. 
 

The ejected mass from case 4 is plotted in Figure 4.11 and compared with the cumulative 

areal mass reported in the experiment [18]. In Figure 4.11 (a), we compare the ejecta 

mass with the model eq. (1.13) for both sinusoidal and flycut shapes with the effective 

wavelengths effλ  consistently evaluated for each shape. As observed in §4.2, the 

correction to effλ  corresponding to a flycut accounts for the additional missing area (and 

mass), and improves the agreement with the model relative to the sinusoid. In Figure 4.11 

(b), we scale ejected mass from FLASH and experiments with 0
2
3

m ++ , where 0m ++  is 

evaluated for second-shock conditions. For FLASH simulations, this means effλ  for 

flycut modifies 0m ++  to ( )0 flycut
m ++

  of ~ 0.85 g/cm2 from a baseline value of ( )0 sine
m ++  of 

~ 0.76 g/cm2 for the corresponding sinusoid. For the HE experiments following the 
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second shock, [18] report an ejected mass of 4 mg/cm2 from two of the LN probes 

employed, while a third probe reported a value of 12 mg/cm2 (the reported values are 

accurate to within 25%±  , while the higher value may be attributed to contribution from a 

recompaction event associated with the first shock [18]). Based on these bounds, and 

evaluating 0
2
3

m ++  ~ 4 mg/cm2 for experimental conditions, we estimate the scaled mass 

from [18] to lie between ~1 and ~3 in Figure 4.11 (b). 

FIG. 4.11 (a) Ejected mass from case 4 compared with predictions from mass model of 
[7] evaluated for sine and flycut profiles. (b) Scaled ejecta mass from case 4, compared 
with data from the experiments of [18]. 
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CHAPTER 5: NUMERICAL STUDY OF BUBBLE AND SPIKE VELOCITIES IN 
SHOCK-DRIVEN LIQUID METALS 

 
 

In this Chapter, we evaluate eqs. (1.3) – (1.5) (Chapter 1) by comparing with an extensive 

simulation database using FLASH, with different initial amplitudes and shapes. We find 

for bubbles, eq. (1.3) accurately captures growth rate prediction from the simulations, 

when used with the nonlinear bubble growth rate reduction from eq. (1.7). However, for 

spikes eq. (1.5) provides an upper bound corresponding to the linear limit, and 

overpredicts the simulation data even when V0 is corrected with eq. (1.6) for finite 

amplitudes. This is because nonlinearity limits both the initial growth rate (V0) and the 

asymptotic spike velocity (through the curvature). Instead, we suggest a more complete 

expression for spikes should be eq. (1.4), but with the initial spike velocity corrected by 

the nonlinear correction factor from eq. (1.6) thus giving:  

    0
0

0

1( ) 3 .
3 1

NL MB
sp sp

khV t F V
kh

+
=

+
      (5.1) 

Eq. (5.1) includes the effects of nonlinearity on the initial growth ( )NL
spF , compressibility 

( )CF  and the initial curvature, all of which are assumed to act independently of each 

other. The asymptotic spike velocities affect ejected mass through parameter β as detailed 

in Chapter 1. Using spike model of [34], we arrive at eq. (1.14) for β. We rewriting that 

equation here for completeness: 
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11 .
3

NL
KM bu

NL
sp

F
F

β = +        (5.2) 

However, if nonlinear effects due to curvature are included, the asymptotic spike velocity 

is given by the proposed expression in (eq. 5.1), leading to the modified parameter β , 

0

0

11 .
13

3 1

NL
bu

NL
sp

F
Fkh

kh

β = +
+
+

       (5.3) 

Of course, in the limit of 0 0,kh →  KMβ β→ as expected.  

Similarly, if we use the spike velocity from the empirical model of [25] in eq. (1.13), the 

following modified expression for GDβ is obtained: 

2 0

00

11 .11
13 1

NL
GD bu

sp
bui

F
kh

khM kh

β
φ φ

= +
+

++

     (5.4) 

In §5.4, we compare KMβ , β , and GDβ  from eqs. (5.2-5.4) above with results from 

numerical simulations.  

5.1 Extension to non-sinusoidal shapes 

As shown in our recent work [7,28], when ejecta are sourced from non-sinusoidal 

perturbations, it is the longest perturbation wavelength and corresponding amplitude that 

are responsible for most of the resulting ejecta mass. Thus, for any shape the ejecta mass 

from eq. (1.13) can be applied by replacing λ with an effective wavelength
0

sh
eff

A
h

λ = , 

where shA  is the missing area associated with the perturbation cutout and 0h  is the 
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perturbation amplitude. Simulations using continuum hydrodynamics and molecular 

dynamics confirmed this hypothesis, and showed [7] that eq. (1.13) can be extended to 

arbitrary shapes, when the effective wavelength of the equivalent sinusoid is used. In 

[28], this approach was extended to doubly-shocked ejecta, where the nonlinear bubble 

surface prior to second shock was approximated with a flycut profile. Using the effective 

wavelength for a flycut in eq. (1.13) predicted ejecta areal masses in agreement with 

FLASH simulations and HE experimental data [18]. Since, ejecta masses depend directly 

on the bubble velocity through eq. (1.11), and indirectly on the spike velocity through eq. 

(1.12), we expect the velocities from these models to collapse when scaled with λeff. For 

bubbles, we may thus write  

( )
( )0

,
1 /

WB
bu effWB

bu
eff

V
V t

t τ
=

+
          (5.5) 

where ( )0
WB

bu eff
V  is initial peak bubble growth rate from model of [9] (eq. (1.8)) evaluated 

using effλ  of the concerned shape, and 
( )03eff WB

bu eff
V

λτ
π

= . Similarly, the asymptotic 

spike velocity from eq. (5.1) must be evaluated as 

   ( ) ( ) ( )
( )

0
0

0

1
( ) 3 ,

3 1
effNL MB

sp sp eff eff
eff

kh
V t F V

kh

+
=

+
     (5.6) 

where the subscript ‘eff’ indicates that term be computed with the effective wavelength 

effλ  associated with the shape. Finally, the ejecta areal mass from eq. (1.13) is rewritten 

for an arbitrary shape as 
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0,

1
2( ) ln .
3 1

eff eff
eff

eff eff

t

m t m t
β τ

β τ

 + 
 = ∆ + 
 

      (5.7) 

We verify equations (5.5-5.7) in § 5.3-5.4, by comparing with FLASH simulations 

initialized using Sinusoidal, Gaussian, Flycut and Chevron profiles. 

5.2 Initial amplitude variation (Sinusoidal interfaces)  

We first present results from ejecta simulations using FLASH for baseline conditions 

characterized by a sinusoidal initial interface with different perturbation amplitudes 

( )0 1/ 8,  2kh − = , and at Ma = 2.5. We compare bubble and spike development from each 

case with corresponding model predictions from Chapter 1. Variations from this baseline 

are explored in § 5.3 - § 5.4.  

Contours of the density field from the simulation with 0 1/ 8kh − =  are shown in figs. 5.1 

(a) – (f). The individual panels correspond to different scaled times ( ) /SIt t τ− , where SIt  

is the time at which the incident shock impacts the interface. The white dashed line in 

each image shows the location of the corresponding (unperturbed) free-surface as a 

reference, and was obtained separately from 1D simulations. Even at the strong shock 

conditions investigated here, the post-shock Atwood number A+ remains ~ -1, while the 

post-shock amplitude 0h +  is substantially altered from its pre-shock value ( )0h −  through 

the effects of compressibility and phase inversion. For example, the incident planar shock 

in fig. 5.1 (a) (denoted by the high density region in white) compresses the perturbation 

amplitude from its pre-shock value of 0 1/ 8kh − =  to a post-shock value of 0 0.02kh + = . 
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The corresponding compressibility factor is 0

0

~ 0.16h
h

+

− , in agreement with the theoretical 

estimate given by 1 ~ 0.16C

i

UF
W
∆

= − . In addition to the shock compression, the 

interface also undergoes a phase inversion driven by the negative RM growth rate 

associated with A < 0.  

Remnants of the reflected rarefaction for this heavy--> light problem are clearly visible in 

figs. 5.1 (b) – (c). The rarefaction fan decompresses the heavy fluid from its initial 

density ( )Aρ  of 8.93 g/cc to an eventual release density of ( )relρ  of 7.57 g/cc. 

Nonlinearities eventually appear by ( ) /SIt t τ−  ~2.8 in Fig. 5.1(d), evidenced by the 

appearance of asymmetric bubble and spike structures. In particular, bubbles are 

parabolic in shape and eventually flatten (Figs 5.1(e)-(f)), while spikes tend to develop in 

to long and projected jets. We terminate the FLASH simulations at late times, when the 

ejecta span a few mesh cells across the jet, and are susceptible to numerical dissipation.  
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FIG. 5.1. Density contour images from FLASH simulations at different scaled times for 
an initially sinusoidal interface (kh0=1/8). 
 

Fig. 5.2 is a plot of the streamwise profiles of the planar-averaged mass fraction of fluid 

A (<YA>) and the scaled centerline velocity 
sp

V
V

 
  
 

 extracted from the 0 1/ 8kh − =  

simulation. The sharp drop-off observed in the mass fraction profiles near the location 

where the scaled velocity reaches a maximum, suggests the spike tips may be tracked 

robustly through a mass fraction threshold value of ~ 1%. The streamwise profiles serve 

to illustrate the internal structure of the ejecta, and show the significant asymmetry 

between bubble and spike features at this late time ( )( )/ 13.5SIt t τ− = .  
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FIG. 5.2. Late time (t/τ=13.5) x-profiles of the planar-averaged mass fraction (<YA>), 
and the centerline scaled velocity (V/Vsp) from FLASH simulation with kh0=1/8.  
 

To validate models in Chapter 2, we extract bubble and spike amplitudes and ejecta areal 

mass density from FLASH datafields using the procedure outlined in [7,28]. Following 

[7], the location of the bubble tip is identified as the x-position where the planar averaged 

(in y-) density falls below 90% of the release density relρ . To determine the bubble 

amplitudes, the free surface location is required and obtained from enforcing mass 

conservation across the interface: 
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( )( ) ( )
( )

( ) ( )

( ) ,
fs

bu fs

x t

rel
x t x t

m t x dx x dxρ ρ ρ
∞

= − =∫ ∫      (5.8) 

In eq. (5.8), ,bu fsx x are the bubble and free-surface positions, while •   refers to planar-

averaging. The free-surface location fsx   is then iteratively calculated from eq. (5.8). We 

also use eq. (5.8) to evaluate the time-dependent ejecta mass, ( )m t   from our 

simulations. Finally, the spike positions spx   are computed as the x-location where the y-

averaged mass fraction of the heavy fluid reaches a threshold value of 1 %. The 

bubble/spike amplitudes are directly obtained as ℎ𝑏𝑏𝑏𝑏/𝑠𝑠𝑠𝑠 = �𝑥𝑥𝑏𝑏𝑏𝑏/𝑠𝑠𝑠𝑠 − 𝑥𝑥𝑓𝑓𝑠𝑠�. 

The time evolution of bubble and spike amplitudes thus obtained are shown in figs. 5.3 

(a) – (b), while corresponding velocities are plotted in fig. 5.3 (c) as a function of the 

scaled time. To indicate the extent of nonlinearity at any time, we plot scaled amplitudes 

khbu/sp, where ‘k’ is the perturbation wavenumber. As the bubble tip flattens, the 

saturation of the amplitude is evident in fig. 5.3 (a) consistent with the curvature 

approaching |khbu|~2. Spikes, on the other hand acquire a terminal velocity that is 

unabated in the presence of minimal amounts of viscous drag (numerical) encountered in 

the simulations. The corresponding velocities are shown in Fig. 5.3(c), and are scaled 

using the linear growth rate estimate from the Meyer-Blewett [35] model valid for A < 0. 

Since the initial amplitude 0 1/ 8 1kh = <<   , the instability is initialized in the linear 

regime, and the nonlinear growth rate reduction factors for both bubbles and spikes are 

close to unity ( )~ 0.98, ~ 0.996NL NL
bu spF F . This is evident in Fig. 5.3(c), where short-
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lived peaks near ( ) / ~ 0SIt t τ−  signifying the initial growth rates approach ~ 0
MBV  in 

agreement with eq. (1.8) for both bubbles and spikes. 

For ( ) / 1SIt t τ− >> , bubble asymptotics closely follow the 
0

1

buV kt
 trend line decay 

predicted by eq. (1.3) (Fig. 5.3c), when the initial bubble velocity 0buV  is evaluated 

consistently using the model of [9] (eq. 1.8). The asymptotic spike velocity is constant, 

but dependent on the initial perturbation amplitude through nonlinearities as well as the 

initial spike curvature as discussed earlier. From the simulations, we find that for 

( ) / 1SIt t τ− > , spikes average a velocity of 𝑉𝑉𝑠𝑠𝑠𝑠 𝑉𝑉0𝑀𝑀𝑀𝑀
� ~ 1.6 ± 0.1 between the upper bound 

of √3 given by eq. (1.5) and the prediction from eq. (5.1) of ~ 1.56. Thus, eq. (1.5) is an 

upper bound for spike velocities that is realized in the limit of vanishing initial 

amplitudes, so that the spike curvature also vanishes. Already, at kh0 = 1/8, this condition 

is violated as the simulation approaches the prediction of eq. (5.1) at late times. We also 

plot the empirical model of [25] in fig. 5.3 (c), and find that it overpredicts the simulation 

significantly. In fact, eq. 1.9 yields a value of 𝑉𝑉𝑠𝑠𝑠𝑠 𝑉𝑉0𝑀𝑀𝑀𝑀
�  ~1.9, even higher than the upper 

bound set by eq. (1.5). This is due to the choice of the model parameter spφ = 2.63 in eq. 

(1.9), to fit experimental and simulation data at higher amplitudes. However, this leads to 

discrepancies at kh0 --> 0, with the model predicting a scaled spike velocity of 2.625.  
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FIG. 5.3. Time evolution of scaled (a) bubble and (b) spike amplitudes, and (c) 
corresponding absolute scaled velocities (Vbu/sp/V0

MB
) from FLASH simulations and 

comparison with models. Data from kh0=1/8 sinusoidal case. 
 

 

We now test these models at large initial amplitudes using FLASH simulation data at 

0kh − = 2. In Fig. 5.4(a-f), we plot density contour images from the FLASH simulation at 

scaled times extending from -1.35 to 32.5. The Mach 2.5 incident shock compresses the 

interface amplitude from its initial value to a post-shock value of 0 0.3kh + = , so that 0

0

h
h

+

−

is in agreement with 1 ~0.159C

i

UF
W
∆

= − . The phase inversion observed in fig. .5.4 is 

indirect [51] and due to the RM initial growth rate being negative. At the large initial 
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amplitudes, complex secondary features are observed on the bubble surface (Fig. 5.4(d-

f)), and are attributed to the additional vorticity deposited at the interface due to the 

increased misalignment between the shock and the initial interface. The increased 

vorticity deposited on the original interface also manifests on the spike tip through the 

appearance of the additional material at late times. These features have been 

independently observed in recent target experiments [9] through pRad imagery. 

 

FIG. 5.4. Density contour images from FLASH simulations at different scaled times for 
initially sinusoidal interface (kh0=2). Dashed line is free surface. 
 
 

Amplitudes and velocities from the large-amplitude FLASH calculation are shown in fig. 

5.5, and are scaled as before. Following the initial phase inversion at ( ) / 5SIt t τ− = , 

bubbles quickly saturate to a constant amplitude while spikes stay terminal. At such large 

initial amplitudes, the initial bubble growth rate is significantly compromised resulting in 

a peak value of 𝑉𝑉𝑏𝑏𝑏𝑏 𝑉𝑉0𝑀𝑀𝑀𝑀
�  ~ 0.8, before the initiation of the late-time decay. Thus, the peak 

growth rate reduction agrees with the prediction from the nonlinear correction 
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~ 0.75NL
buF . Once again, the asymptotic bubble velocity decay in fig. 5.5(c) is explained 

by the model of [36], with this value of NL
buF . For spikes, the initial growth rate 

reduction due to nonlinearity is significant, and given by eq. (1.6) to be NL
spF ~0.5. 

However, additional mitigation of spike velocity occurs through the effect of nonlinearity 

on curvature and is evaluated as 0

0

13 ~ 1.13
3 1
kh
kh

+
+

, significantly lower than the √3 upper 

bound from eq. (1.5). These two factors are combined in eq. (5.1), which predicts a 

scaled spike growth rate of ~ 0.57 in good agreement with the reported value of ~ 0.5 

from FLASH simulations (obtained by averaging for ( ) / 1SIt t τ− >  as before). Note that 

even when eq. (1.5) is evaluated using V0 from eq. (1.8), it still predicts a scaled growth 

rate of ~ 0.86 much higher than the observed simulation values in fig. 5.5 (c), 

highlighting the importance of the curvature effects at large amplitudes. The empirical 

model of [25] predicts a scaled spike velocity of ~ 0.6. 
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FIG. 5.5. Time evolution of scaled (a) bubble and (b) spike amplitudes, and (c) 
corresponding absolute scaled velocities (Vbu/sp/V0

MB
) from FLASH simulations and 

comparison with models. Data from kh0=2 sinusoidal case. 
 

In our simulations, we are also able to measure the initial growth rates associated with 

spikes and bubbles immediately after shock impact. We plot these growth rates scaled by 

the MB growth rate formula as a function of the non-dimensional initial amplitudes (kh0) 

in fig. 5.6. We are thus able to compare FLASH data for 𝑉𝑉0,𝑏𝑏𝑏𝑏/𝑠𝑠𝑠𝑠

𝑉𝑉𝑀𝑀𝑀𝑀
 directly with the 

nonlinear correction factors for bubbles and spikes from eqs. (1.6-1.7). Fig. 5.6 shows 

excellent agreement between the simulations and the empirical fits to the Pade 

approximants of [39] suggested by [40] and [9]. 
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FIG. 5.6. Nonlinear factors for bubble and spike (Fbu/sp

NL
) embodied in eqs. (1.6-1.7) 

plotted against scaled initial amplitude (kh0), and comparison with data from FLASH 
simulations. 
 

Thus, the amplitude variation study establishes the importance of accounting for 

nonlinear effects on both V0 (the initial growth rate), and the asymptotic velocity 

(through curvature). When the curvature effects are ignored (eq. 1.5), the models 

overpredict the simulations, while eq. (1.5) serves as an upper bound in the ideal limit of 

vanishing initial amplitudes. Due to the particular choice of the fitting parameter, the 

empirical model of  [25] performs better at large initial amplitudes, but poorly as kh0 -> 0. 

We now examine the validity of these ideas for ejecta that are sourced from non-

sinusoidal shapes. 
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5.3 Non-sinusoidal Shapes 

Shape effects are important in interpreting experimental results [18,17] from target 

experiments, where the free surface has been shocked more than once. Following the 

incident shock, the interface assumes a distinctly non-sinusoidal shape through the effect 

of higher harmonics as nonlinearities become dominant. In a recent study [28], it was 

shown that for second shock the interface presents a flycut profile, and the experimental 

measurements of areal mass densities [18,17] (from piezo probes) can be explained by 

properly accounting for the corresponding missing area in the source model of [7]. As 

shown in [7], this can be accomplished by defining the effective wavelength of an 

equivalent sinusoid that has the same missing area as the profile under consideration. In 

this section, we first extend this idea to the velocity models discussed above, before 

examining the implications to the mass models in § 5.4.  

Table 5.1 provides a summary of the shapes studied using FLASH, along with the initial 

amplitudes and perturbation wavelengths in each case. The initial interface perturbation 

forms for the shapes listed in Table 5.1 are provided below (the sinusoidal form is 

repeated here for reference):  

Sinusoid: 0( ) cos(2 / )h y h yπ λ= ,     (5.9)  

Chevron: 0
0

4( ) hh y y h
λ

= − ,     (5.10) 

Gaussian: 2 2
0( ) 2 exp( y / 2 )h y h c= − ,    (5.11) 
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Flycut: 

0

2
2

0

0

( )                                                0 -
2

       - - - -                -
2 2 2

                                                      
2

h y h y b

R h R y b y b

h b y

λ

λ λ λ

λ λ

= ≤ ≤

 = ≤ ≤ + 
 

= + ≤ ≤

. (5.12)  

For the Gaussian function, the standard deviation c was chosen to be ~ 0.2832 cm in 

FLASH. The flycut profile in eq. (5.12) is characterized by R which represents the radius 

of the fly-cutter tool and b which signifies the intersection of the truncated circle with the 

free surface and is related to the radius: 2 2
0- ( - 2 )b R R h= . In table 5.1, we also indicate 

the missing area associated with each shape as the gray, shaded region along with the 

corresponding numerical estimate.  

TABLE 5.1. Interface shapes investigated using FLASH (λ=1 cm) simulations (kh0=1/8, 
0.5, 1 and 2). 
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The corresponding expressions for the missing areas Ash for the above shapes are: 

Sinusoid: 0shA h λ= ,       (5.13) 

Chevron: 0shA h λ= ,       (5.14) 

Gaussian: 0
/ 22 2  
2shA h c erf

c
λλ π

   = −    
   

   (5.15) 

Flycut: 

( )2
0 0

2
0 0

1

2                               2

     2 (2 ) cos             2

 sin .

shA R b R h R h

R b h R bR R h
bwith
R

θ

θ θ

θ −

= − − >

= + − + <

 =  
 

 (5.16) 

From eqs. (5.13-5.16), the effective wavelengths (
0

sh
eff

A
h

λ = ) for Sine, Chevron and 

Gaussian shapes are independent of the corresponding initial perturbation amplitude. In 

contrast, the effective wavelength for the flycut (eq. 5.16) profile retains a dependence on 

h0 (Table 1). Furthermore, the missing area associated with the flycut depends on the 

relationship between the radius of the flycutter tool and the groove size as seen in eq. 

(5.16). For R>2h0, the flycut profile consists entirely of a truncated circle; When 02R h< , 

the flycut assumes a ‘U’ shape and the missing area is comprised of a truncated circle and 

a rectangle of area 2𝑏𝑏((2ℎ0 − 𝑅𝑅) + 𝑅𝑅 cos𝜃𝜃). Thus, the behavior of bubbles and spikes 

will be fundamentally different at low and high initial amplitudes, when seeded from a 

flycut function.  
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For the Gaussian function, eq. (5.11) suggests the free surface lies entirely to one side of 

the perturbation function, since h(y) is always > 0. As a result, the actual amplitude that is 

relevant to RM instability growth is '
0h  (measured as distance from peak-to-valley), and 

is related to h0 through ( )2

0 0 2

/ 2
' 1 exp ~ 0.016 

2
h h cm

c
λ  −

 = −  
    

. This results in 

effective wavelength effλ =0.88 cm for Gaussian shape. For the same h0, the flycut has ~ 

50% smaller area than the corresponding sinusoid resulting in effλ = 0.5 cm.  

The panels in fig. 5.7 correspond to snapshots of density contours from FLASH 

simulations at 0 1/ 8kh =  and with sine (a), Chevron (b), Gaussian (c) and Flycut (d) 

shapes respectively. As before, the dotted white line in each image shows the location of 

the unperturbed free surface. Consistent with the missing areas listed in table 1, the sine 

and Chevron profiles source identical bubble and spike structures. The effective 

wavelength for a Gaussian profile (0.88 cm) is close to the sine and Chevron functions (1 

cm), and thus yields qualitatively similar bubble and spike structures with a phase shift of 

π  radians (Fig. 5.7(c)). From table 1, the flycut profile has a smaller effective 

wavelength ( effλ = 0.5 cm), such that the wavenumber effk  is twice of that of the 

corresponding sinusoid. This leads to higher initial growth rates by a factor ~2 relative to 

the baseline cases. For the 0 1/ 8kh =  simulation, the flycut had 2b/λ=0.37, which is the 

fractional length of the perturbation responsible for generating the baroclinic torque 

leading to spike growth. The remainder of the perturbation interface is a flat free surface. 
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As a result, the vorticity is concentrated within the narrow cavity leading to more 

aggressive spike growth in fig. 5.7 (d).  

 

FIG. 5.7. Density contour images from FLASH simulations (kh0=1/8) for (a) Sinusoidal 
(upper panel), (b) Chevron (2nd panel), (c) Gaussian (3rd panel), and (d) Flycut (lower 
panel) at different scaled times. Dashed line is free surface. 
 

In Figs. 5.8(a-b), we plot bubble and spike amplitudes for all the shapes with 0 1/ 8kh = . 

From fig. 5.8 (a), for any given time the bubble amplitude clearly scales with the initial 

missing area, and thus .effλ  Spikes achieve a constant terminal velocity in each case (fig. 

5.8 (b)) that is proportional to 0effk h . For example, the largest spike velocity is observed 

for the flycut profile which had the highest effective perturbation wavenumber (keff ~ 

12.57 cm-1). The corresponding scaled velocities for bubbles and spikes are shown in 

figs. 5.8 (c) – (d) respectively, where they are compared with the asymptotic models 

which have now been evaluated with keff. When scaled with ( )0bu eff
V  (eq. 1.8 evaluated 
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with keff) and plotted against / efft τ , bubble velocities from all shapes collapse in fig. 5.8 

(c). We also plot the bubble decay model of [36]  in fig. 5.8 (c), which shows excellent 

agreement with simulation data for all shapes if the effective wavenumber is used as in 

eq. (5.5). We scale spike velocities in fig. 5.8 (d) with the RHS of eq. (5.6) to eliminate 

the explicit dependence on ( )0 eff
kh , which results in a collapse of all the data. At late 

time, all the shapes produce scaled spike velocities close to unity, in excellent agreement 

with eq. (5.6).  

 

FIG. 5.8. Time evolution of scaled (a) bubble, and (b) spike amplitudes, and (c) bubble, 
and (d) spike velocities from FLASH simulations for all shapes with kh0=1/8. Bubble 
velocities are scaled using eq. 1.8 [9] which is corrected for λeff of each shape. Spike 
velocities for different shapes are scaled using the asymptotic expression (eq. (5.6)). 
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The shape study is extended to higher initial amplitudes ( 0 2kh = ) in figs. 5.9 (a) – (d). 

Note that for flycut, effλ  and effk  are dependent on 0kh , so that at these large initial 

amplitudes, the flycut profile has ~44% additional missing area than the corresponding 

sinusoid (Table 1). This results in effλ ~ 1.44 cm (higher than the sinusoid), while effk ~ 

4.36 cm-1 (~30% less than corresponding sinusoid). Hence, the relative trend from fig. 5.8 

is now reversed, with bubbles from the flycut outpacing those from other shapes, while 

spikes lag. This can be explained in terms of the ratio 2b/λ now evaluating to ~0.82 for 

kh0 = 2, much higher than the corresponding value obtained at smaller amplitudes. Thus, 

the circular arc now occupies most of the perturbation surface, and is no longer 

concentrated at the center as in the kh0 = 1/8 case leading to lower baroclinic vorticity 

and spike growth rates. Scaling bubble velocities as before in fig. 5.9(c) collapses the 

data, and produces an average that agrees closely with the model eq. (5.5) which has been 

evaluated using the effective wavelength. When spike velocities are scaled with eq. (5.6), 

the data from all shapes studied here collapse to a value ~ 1. The disagreement with the 

empirical model from  [25] is larger and averages to ~ 20 %. Finally, as expected eq. 

(1.5) when evaluated with the effective wavelength significantly overpredicts the 

simulation data.  
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FIG. 5.9. Time evolution of scaled (a) bubble, and (b) spike amplitudes, and (c) bubble, 
and (d) spike velocities from FLASH simulations for all shapes with kh0=2. Bubble 
velocities are scaled using eq. 1.8 [9] which is corrected for λeff of each shape. Spike 
velocities for different shapes are scaled using the asymptotic expression (eq. (5.6)). 
 

We summarize these results for spikes in fig. 5.10 by plotting the asymptotic spike 

velocity from all the simulations scaled by the MB growth rate, and against the effective 

initial amplitude 0effk h  for each case. Note that 0
MBV  (eq. 1.2) must also be computed 

consistently for non-sinusoidal shapes using the appropriate effλ . At finite amplitudes, 

both the empirical model and eq. (5.1) agree with data from FLASH and SPaSM. At 

small initial amplitudes, the model of [25]  significantly overpredicts the ejecta velocities. 

The gray line in fig. 5.10 is from eq. (1.5), with V0 calculated as suggested by [9] and 
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given by eq. (1.8). For all the cases included here, this model represents an upper bound 

that is violated for finite values of the initial amplitude.  

 

FIG. 5.10. Summary of simulations: asymptotic spike velocity (Vsp/V0

MB
) from FLASH 

simulations (solid symbols), SPaSM simulations (open symbols) and models (lines) for 
all shapes plotted against initial amplitude (keffh0). 
 
5.4 Ejected mass per unit area 

The initial bubble velocity and the asymptotic spike velocity influence the ejecta mass in 

eq. (1.13) through the parameter β (eq. 1.13). The simulations discussed in § 5.2 - 5.3 

show bubble velocities are accurately described by eq. (1.3) [36], with the appropriate 

reduction factor 𝐹𝐹𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛  for the initial growth rate. We evaluate the ejecta areal mass by first 

computing β corresponding to the spike velocity models given in eqs. (1.5), (5.1) and 
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(1.9) (We refer to these as βKM, β, and βGD respectively). This is shown in fig. 5.11, 

where we plot β from the numerical simulations with different initial amplitudes and 

shapes, and compare with eqs. (5.2) – (5.4). The large differences in spike velocities 

between eq. (1.5) and eq. (1.9) as 0 0kh →   do not lead to large variations in β in that 

limit. For vanishing initial amplitudes, (𝐹𝐹𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛 ,𝐹𝐹𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛) approach ~ 1, so that eqs. (5.2) and (5.3) 

both give 1( , ) 1
3

KMβ β → +   in excellent agreement with our simulation data at 

kh0=1/16 and kh0=1/8 data. Using the empirical expression for 𝑉𝑉𝑠𝑠𝑠𝑠𝐺𝐺𝐺𝐺, eq. (1.9) gives 

1 11 1
2.625

GD

sp

β
φ

→ + = +   in reasonable agreement with the simulations and the other 

models. For kh0 < 2, the simulation data are closer to eqs. (5.3-5.4) than eq. (5.2). For kh0 

>>1, the model predictions for β are divergent; In that limit 0
3~
2

NL
bu

NL
sp

F kh
F

 , so that β from 

eqs. (5.2) and (5.3) approach 0
31

2
kh+  and 0

31
2

kh+  respectively. When eq. (5.4) is 

evaluated for kh0 >>1, we obtain 1 6 3 3.8GD bu
i

sp

M φβ
φ

→ + =   for Mi = 2.5, independent 

of kh0. FLASH data obtained at kh0 = 4 lies closer to βKM, than to β obtained from eq. 

(5.3). At all other amplitudes, the simulation data are closest to β calculated from eq. 

(5.3).  

With the exception of the simulation data at kh0 = 4, FLASH and SPaSM results for β are 

in excellent agreement with eq. (5.3). In fig. 5.12, we now compare the time-dependent 

ejecta masses from eq. (5.7) evaluated with β from eq. (5.3), and our simulation results at 
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kh0 = 1. The areal mass density is scaled using 0,
2
3 effm  corresponding to each shape, 

while the logarithmic term from eq. (5.7) is used as the abscissa. The observed collapse 

for all shapes from the simulations, and the alignment with the 45° degree reference line 

suggests agreement with eq. (5.7).  

 

FIG. 5.11. Plot of parameter beta (β) as a function of initial amplitude (kh0) from 
simulations and models. 
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FIG. 5.12. Scaled ejected mass per unit area from: (a) FLASH simulations, (b) SPaSM 
simulations [7] with kh0=1 for all shapes studied in this work. Dashed 45-degree line 
indicates model prediction evaluated using modified expression of β (eq. 5.3). 
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CHAPTER 6: SUMMARY AND CONCLUSIONS 
 
 

We describe an approach in which continuum simulations using ideal gases can be used 

to capture key aspects of ejecta growth associated with the Richtmyer-Meshkov 

instability. The approach exploits the analogy between the Rankine-Hugoniot jump 

conditions for ideal gases and the linear relationship between the shock velocity and 

particle velocity governing shocked metals. Such simulations with γ-law fluids have been 

successful in accurately predicting the velocity and mass of ejecta for different shapes 

[7], and in excellent agreement with experiments. We define a conceptual fluid with the 

same density as that of metal, and find that it reproduces the hydrodynamic response of 

shocked metals to within 5% over a wide range of particle velocities (0-5 km/s). We use 

the astrophysical FLASH code, developed at the University of Chicago to model 

Richtmyer-Meshkov (RM) instability in metal-air configuration ( )1A → −  to mimic 

ejecta production in shocked metals. The details of the numerical setup using FLASH are 

provided in Chapter 2. 

In Chapter 3, we present results from FLASH simulations and the comparison with 

recently proposed model to predict ejected mass per unit area [7] for any arbitrary shape. 

Two variants for the magnitude of the ejected mass per unit area have been considered 

and compared with detailed simulations using FLASH hydrodynamics code. These two 

model variants both account reasonably well for the magnitude and time dependence of 

the ejected mass. One (method I) incorporates local shape through an effective 
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wavelength, λeff, defined by the local geometry of the surface defect structure. A second 

(method II) incorporates shape through the first coefficient of the Fourier expansion 

giving an effective amplitude. Both methods assume that the late time bubble 

development is dominated by the longest wavelength, an assumption that is corroborated 

by the simulation results presented here. The model also accounts for the time dependent 

shape of the ingrowing bubble which gives rise to a reduction in ejected mass in the form 

of a pre-factor of 2/3.  

In a departure from most numerical studies of the RM instability, we have investigated 

the formation of ejecta from two shocks originating in the heavy fluid in Chapter 4. The 

saturated bubble surface from the first shock serves as the initial condition for the second 

shock, while the corresponding missing area of the bubble can be used to estimate the 

mass eventually ejected from spikes. Our analysis of first- and second-shock results 

builds extensively on a recent model that predicts bubble and spike velocities under 

ejecta conditions [9], as well as a model for ejecta mass [7]. The mass model is valid in 

principle for any shape and relates the time dependent mass to an effective wavelength 

associated with each shape. We have verified these models by comparing with velocities 

and mass predictions from our numerical simulations for first and second shock ejections. 

However, we find the agreement with the models is improved if the bubble surface just 

before the second shock impact is treated as a flycut profile with consistent geometric 

parameters that correspond to the wavelength, amplitude and radius of such a cutout. 

From these parameters, an effective wavelength effλ  may be defined, which when used 

in eq. (1.13) successfully predicts the ejected mass from twice-shocked surfaces.  
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We test these ideas by comparing results from FLASH simulations with data from recent 

experiments involving a two-shockwave tool [18,17] at LANL. The experiments reported 

ejecta velocities and mass at different shock strengths using a combination of LDV and 

Ln piezoelectric probes. The highest pressure experiments from the LANL campaign had 

shock pressures that exceeded Pmelt for Sn, so that the shocked metal is comprised of a 

mixed liquid-solid phase. Our FLASH model of that experimental shot matched the 

strengths of the first and second shocks, as well as the reported values of perturbation 

amplitudes of the interface prior to the shock events. This strategy appears to have merit, 

as predicted values of the ejecta velocity from our simulations are in good agreement 

with the experiment, and the models reviewed in this work (when the models are 

evaluated with effλ ), while the ejecta mass is slightly overpredicted. The experiments do 

not directly report bubble velocities, but we find the simulation values are in very good 

agreement with the model.  

We note the comparison of ejecta mass between FLASH and the experiments [18] is 

complicated by several factors. For instance, the experiments likely experience a 

recompaction event of cavitated material from the first shock, so that the upper 

experimental bound reported in fig. 4.11 (b) includes some contribution from this 

phenomenon (while the lower bound may be indicative of a pure RM contribution). 

While the precise extent of the contribution of the recompaction process to ( )EXPTm t  is 

not clear, it appears from fig. 4.11 (b) the simulations are near the upper limit of the 

measured mass from experimental second shock. There are several factors that could 

contribute to this modest discrepancy in ( )m t  (but not the spike velocities) between 
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FLASH and the experiments. The use of high explosives in the experiments result in a 

Taylor wave shock, while the numerical simulations use a supported shock. Previous 

studies [10,12,15] have shown for shock strengths above a critical value (~ 230 kbar for 

Sn), the jetting factors (
( )( )

A d

m tR
Vρ

→ ∞
Θ ≡ ; dV  is the initial defect volume) for supported 

and unsupported shocks diverge – ( )R Θ  saturates for unsupported shocks, while 

increasing linearly with shock strength for supported shocks [19]. Data is unavailable for 

the exact experimental shock strength of ~ 26.4 GPa, but a linear interpolation of 

available data in fig. 16 of [19] suggests we should expect an increase of ~ 45 % when 

using a supported shock. Applying this correction to 
0

( )
2
3

m t

m ++ 
 
 

 from FLASH in fig. 

4.11 (b) suggests a downward revision to ~ 2.06. A detailed investigation of the effect of 

shock profile [55-58,38,59-61] is planned in future studies. 

A second effect is the presence of viscosity in the experiments, which is excluded from 

the FLASH simulations to allow a direct comparison with eq. (1.13) which is inviscid. 

For Sn above melt (T ~ 550 K), we obtain SNµ  ~ 1.6 mPa-s and SNν  ~ 2.24e-7 m2/s from 

[62]. The solution to potential flow model augmented by viscosity of [63] suggests 

bubble velocities are affected by viscosity, but only logarithmically and according to                                

( )0
0

32( ) ln 1 1 ,
3 4

RM
KM t

bu
Vh t h e

k k
γ

ν

+
+ − 

= + + − 
 

                 (6.1) 

where γ  is 22 kν . The corresponding reduction in bubble growth rate will be  

( )
0( ) ,

1

RM
KM

bu t t

VV t
e B eγ γ

+
+ =

+ −
                     (6.2) 
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with 03 .
4

RMVB
kν

+

=  Evaluating eq. (6.2) for experimental conditions (t = 8e-6 s, γ  = 2.8e3 s-

1, B = 9.021e3), we find the viscous bubble growth rate is reduced from the inviscid value 

by 10%. We expect the difference in ejecta masses between viscous and inviscid cases to 

be even smaller for the experimental conditions.  

Velocities associated with bubble and spike features are critical to understanding the 

properties and quantity of ejecta that is generated when a metallic free surface is loaded 

by a shock wave. The time dependent behavior of the bubble, culminating in its eventual 

saturation determine the ejecta mass. Similarly, the spike velocities affect the ejecta 

transport process, but also the timescale of the problem via parameter β as shown recently 

in [7], and in Chapter 5. Fortunately, bubble and spike velocities in such applications are 

still explained by RM-based phenomenology, and we can rely on the extensive suite of 

linear and nonlinear models that are available. These models [36,9] suggest an expression 

for bubble velocities at 1A → −  derived from potential flow approximations, summarized 

here in eq. (1.3). For spikes, existing models [38,9] have acknowledged the importance of 

nonlinearity in modifying the initial growth rates. However, as shown by the potential 

flow model of Zhang [33], the late-time spike velocities are also affected by nonlinearity 

through the curvature term. To successfully explain spike behavior at large initial 

amplitudes, both effects must be included as shown here in eq. (5.1).  

A related issue is the dependence of ejecta properties on the shape of the initial cutout 

from which the ejecta are sourced. This issue gains salience in experiments where the 

free surface is shocked multiple times, such that the perturbation forms that are presented 
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for subsequent shocks are distinctly non-sinusoidal (and often nonlinear). Any successful 

model for bubble or spike velocities must also be able to predict ejecta from such non-

sinusoidal shapes. In a recent paper [7], it was hypothesized that for any shape the largest 

wavelength in the Fourier spectrum determines most of the ejecta mass, and this effect 

can be captured by replacing the wavelength of that shape with the effective wavelength 

of a sine wave with the same missing area.  

We have performed several continuum hydrodynamics simulations to test the above 

ideas, and develop insights in to the behavior of bubbles and spikes associated with the 

ejecta problem. By varying both the initial amplitudes and the shapes, we have tested the 

models for conditions that are relevant to target experiments. The simulations were 

performed assuming conditions above melt, and thus strength effects are not relevant to 

our study. The simulations suggest bubble and spike initial velocities are affected by the 

scaled perturbation amplitudes through eq. (1.8). According to data from the simulations, 

the asymptotic bubble velocity satisfies the model of  [36] for all cases investigated here. 

Spikes assume a terminal velocity that is dependent on the initial RM growth rate (which 

could itself be affected by the initial amplitude), but also the curvature which could be 

written in terms of kh0. Accounting for both effects through eq. (5.1) provides the best 

agreement with simulation data across the range of conditions investigated here. The 

empirical model in eq. (1.9) fails in the 0 0kh →  limit, but matches simulation results for 

finite amplitudes due to the choice of tuning parameters. Similarly, eq. (1.5) does not 

include curvature effects and must be interpreted as an upper bound for spike velocities. 

We also extend eq. (5.1) to incorporate shape effects and find good agreement with 
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simulation results for all initial amplitudes. Finally, the recently proposed source model  

[7] agrees well with ejecta areal mass from the simulations, when evaluated with these 

expressions for bubble and spike velocities. 
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