
PARALLEL COMPUTING FOR MARKOV CHAINS WITH ISLANDS AND
PORTS

by

Amod Jung Basnet

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Applied Mathematics

Charlotte

2017

Approved by:

Dr. Isaac M. Sonin

Dr. Michael Grabchak

Dr. Jaya Bishwal

Dr. Arun Ravindran

ii

c©2017
Amod Jung Basnet

ALL RIGHTS RESERVED

iii

ABSTRACT

AMOD JUNG BASNET. Parallel computing for Markov chains with islands and
ports. (Under the direction of DR. ISAAC M. SONIN)

We present recursive algorithms to calculate invariant distributions and fundamen-

tal matrices of Markov chains specified by the “Islands & Ports” (IP) model. The

state space of the IP model can be partitioned into “islands” and “ports”. An island

is a group of states with potentially many connections inside of the island but a rela-

tively small number of connections between islands. The states connecting different

islands are called “ports”. Our algorithm is developed in the framework of the “state

reduction approach” but the special structure of the state space allows computations

to be performed in parallel.

iv

ACKNOWLEDGMENTS

First and foremost, I am grateful to Dr. Isaac M. Sonin without whose guidance this

thesis would not have been possible. The algorithms presented in this thesis are only

possible because of his expertise in the field, his willingness to let me use his published

works, his insightful approach to problem solving, and his joy for discovery. I am

incredibly humbled to collaborate with him and contribute in every way possible. This

thesis is an embodiment of his passion for academia and his dedication to mentorship,

even during difficult times.

I would like to thank my committee members Dr. Jaya Bishwal, Dr. Michael

Grabchak, and Dr. Arun Ravindran for their remarks and helpful discussions. In

particular, I am thankful to my committee members for their feedback during our

presentation at the probability seminar. I also wish to thank Dr. Wei Cai, and his

research group, for warmly receiving us at their weekly seminar.

v

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES viii

CHAPTER 1: INTRODUCTION 1

1. Motivation . 1

2. The Islands and Ports (IP) Model 3

3. Layout of the Dissertation 6

CHAPTER 2: The State Reduction Approach 9

4. State Reduction (SR) . 10

5. Order Count . 16

6. Grassman, Taskar and Heyman/Sheskin (GTH/S) Algorithm 17

CHAPTER 3: The IP Model: The Invariant Distribution 19

7. The Invariant Distribution π 19

8. SR Approach for the IP Model 20

9. Main Results: The IP Algorithm 22

10. Performance Evaluation . 31

11. Numerical Example . 33

12. Applications: Nearly Uncoupled MCs; Perturbation Estimates 37

CHAPTER 4: The IP Model: The Fundamental Matrix 45

13. Fundamental Matrix N . 45

14. The FUNDQ Algorithm . 49

15. Order Count for the FUNDQ Algorithm 53

vi

16. Numerical Example . 54

17. Application: The Fundamental Matrix for the IP Model 55

18. Numerical Example . 63

CHAPTER 5: Conclusion 68

REFERENCES 70

APPENDIX 73

vii

LIST OF FIGURES

FIGURE 1: An example of an IP model with 3 islands. 4

FIGURE 2: Summary of the three stages of the IP Algorithm for an
example when k = 2.

23

FIGURE 3: Summary of Stage 1 of the IP Algorithm: State reduction
and calculation of P ∗ for the case k = 2.

27

FIGURE 4: IP Algorithm: Transition matrices P1 and P2 for the case
k = 2.

28

FIGURE 5: Parallel features of the IP algorithm. 29

FIGURE 6: An example of redistribution of small probabilities (1 state
case).

39

FIGURE 7: An example of redistribution of small probabilities (2 states
case).

40

FIGURE 8: Censored MCs. 47

FIGURE 9: IP Fund Algorithm: Representation of the state space for the
IP model as an example for the case when k = 2.

57

FIGURE 10: IP Fund Algorithm: Summary of Stages 1 and 2 of an
example for the case when k = 2.

59

FIGURE 11: IP Fund Algorithm: An example of the decomposition of
matrix N for the case k = 2.

61

viii

LIST OF TABLES

TABLE 1: Transition matrix P . 33

TABLE 2: Transition matrix P ∗. 34

TABLE 3: Transition matrices for models M1,M2, and M3. 36

TABLE 4: Matrices P1 and N1. 54

TABLE 5: Fundamental matrix N4 for Q4. 54

TABLE 6: Insertion of states 3, 1 and 6. 55

TABLE 7: Matrices P and Q (dotted in red). 64

TABLE 8: Fundamental matrix N(F1(bronze), F2(sky blue), and F3(light
green)).

65

TABLE 9: Substochastic matrix Q∗. 65

TABLE 10: Fundamental matrix N∗. 65

TABLE 11: Insertion of state 4. 66

TABLE 12: Insertion of state 7. 66

TABLE 13: Insertion of state 8. 66

TABLE 14: Insertion of state 11. 67

TABLE 15: Insertion of state 12. 67

CHAPTER 1: INTRODUCTION

1 Motivation

Discrete Time Markov Chains (DTMCs), or simply Markov Chains (MCs), are

used to model various systems of interest. Recently there has been a growing interest

in the study of MCs with “large” and “very large” state spaces. These MCs appear

in applications such as Web search, genetic modeling, and queueing theory. The state

spaces of such MCs may have thousands, and even millions of states. For example,

in population genetics, the so-called Wright-Fisher model involves transition matrices

that can be of size (2N + 1)× (2N + 1), N ∈ [20, 1000] (see e.g. [22]). In Web search,

Google’s PageRank algorithm uses a n× n transition matrix, P , to rank Web pages.

The transition matrix is given by P = cM + (1− c)U, where U = 1
n
eeT is a uniform

matrix, e is a vector of all ones, c ∈ (0, 1), and M is the hyperlink matrix (see e.g.

[17, 2]). According to Google, c = 0.85, which is the probability that a surfer jumps to

a random page. The matrix, P , is an example of a very large ergodic MC with billions

of Web pages as nodes. The PageRank vector, π, is the invariant distribution of the

MC specified by the matrix P . The entries of the vector, π, approximates the long

run probability that a random surfer visits a particular Web page. In other words,

it ranks the Web pages based on the surfer’s random behavior. A survey of various

other modifications like updating and accelerating the calculation of the PageRank

2

vector can be found, for example, in [17]. Google uses the power method to compute

π and claims that the method converges after about 50 iterations. Because the MC

described by P is ergodic, power method ensures that P converges to a limiting

matrix, A = eπT , almost surely.

Although we can use classical methods, like the power method, to analyze large

MCs, such methods may be inefficient for large state spaces. As an alternative, we

can develop methods that exploit specific structures that may be present in the state

spaces. For example, we can partition the state spaces of some MCs into “clusters”.

These are groups of states such that states inside each group have strong connections,

but each group is only weakly connected to other groups. In such cases, we can use

cluster-based methods to calculate various characteristics of these MCs. In the cluster-

based approach, we calculate the “local” characteristics of each cluster first, and then

use them to approximate the“global” characteristics for the whole chain (see e.g.

[19]). In the literature, MCs with such structure are said to be “nearly uncoupled”1

and the cluster-based approach is also called the aggregation/disaggregation (AD)

approach. Here, we refer to a Markov model that specifies nearly uncoupled MCs as

the “nearly uncoupled model”.

Following this approach, numerous algorithms have been proposed to approximate

the invariant distribution, π (see e.g. [6, 7]). A similar approach is also taken in the

so-called the BlockRank algorithm — a modified version of the PageRank algorithm

to compute the PageRank vector — developed after experiments indicated clustering

of Web pages in the form of “hosts” (see e.g. [14]). A host page is a Web page

1These MCs are also known as Nearly Completely Decomposable (NCD) MCs.

3

inside of which a large number of other Web pages sit. Such pages include university

domains like www.uncc.edu, the IBM domain, and various news sites. Variants of the

AD approach to compute the PageRank vector, for example, the partial aggregation

method (PAM), fast two-stage algorithm (FTSA) and others, are summarized in [2].

In addition, the effect of analytic perturbation on the PageRank vector can also be

found, for example, in [2, 1, 3].

To apply cluster-based methods, clusters must first be identified in the state spaces.

There are many methods to identify clusters for MCs (see e.g. [18, 20]). However, they

are not always accurate and only give an approximate number of clusters, yet these

cluster-based methods provide a convenient way to analyze a large MC. Moreover,

calculations can be done even faster if we can take advantage of parallel computing.

By “parallel computing” we mean using multiple processors to perform calculations

involving, in our case, a large transition matrix.

2 The Islands and Ports (IP) Model

In this thesis, we study finite, ergodic Markov models with large “state spaces”.

Let M = (S, P) be a Markov model. Here, S is the state space and P is the transition

matrix. The state space is finite and discrete, S = {1, 2, . . . , n}, n < ∞, and it can

be partitioned into k disjoint “islands”, Li, so that S =
⋃k
i=1 Li. Each island, Li, is

also a disjoint union of “interior” states, Ri, and “ports”, Ti, i.e. Li = Ri

⋃
Ti. We

allow transitions between two states to occur only if these states belong to the same

island or to ports, i.e. if p(i, j) > 0, then either i, j ∈ Lr or i ∈ Ts, j ∈ Tr, for some

1 ≤ r, s ≤ k. Let T be the union of all ports, T =
⋃k
j=1 Tj and |T | = t. We assume

4

that t is of the same order as the size of the biggest island and, for simplicity, we

assume that t = |Li| = m, 1 ≤ i ≤ k. Figure 1 below is an example for the case when

k = 3.

Island 1 (𝐿1) Island 2 (𝐿2)

Island 3 (𝐿3)

Ports

Interior states

Figure 1: An example of an IP model with 3 islands.

The configuration of states in our model as “islands” and “ports” is a special type

of clustering that can be found in the state spaces of many Markov models describing

many real scenarios. For example, if we consider trading zones as islands and large

ports — limited in number— as ports, then we can use our model to analyze trade

routes of modern day tankers or large container ships. We can also apply our model to

study interactions between international and multinational agencies. Such agencies

have many local branches (in countries, regions, etc.) but interactions across agencies

only occur through the central governing bodies. In fact, our model can be used to

describe any multi-layered, diversified organization (e.g. financial networks such as

banks) because communication channels in such organizations tend to be structured

in a similar way. In order to emphasize this unique configuration of states in the state

space of our model, we refer to such a model as the “Islands & Ports” (IP) model.

5

The parallel feature of this algorithm also allows making external changes inside of

an island without significantly affecting the calculations in other islands. For example,

we can adjust transition probabilities of states inside each island or change the number

of states in each island. Parallel features of the algorithm are also preserved even if

we introduce new islands into our model. In this sense, updating our algorithm to

new information is relatively easy.

Our model is different from the nearly decoupled model that we mentioned before.

In our model, transitions between two islands can occur only through the ports.

Unlike the transitions in nearly decoupled MCs, transitions between any two islands

in our models are certainly more restrictive but these transitions do not have to be

weak. This means that the islands Li and Lj, i 6= j, in our model can be strongly

or weakly linked to each other. In this sense, our model is quite general. If all the

transitions between islands are close to zero, then the IP model reduces to a nearly

uncoupled model.

Our main objective is to develop algorithms to calculate essential characteristics

for MCs specified by the IP model. The characteristics we are interested in are given

by the invariant distribution, π, and the fundamental matrix, N . Both of these

characteristics are important in applications. We already know that the distribution,

π, gives the long run probability distribution of a MC. The entries of the matrix, N ,

gives the expected number of visits to states inside a certain (nonabsorbing) subset

of the state space before exiting it at some finite time. By taking advantage of the

assumptions we made about the state space in our model, our algorithms allow most

of the calculations involved in computing these characteristics to be performed in

6

parallel.

3 Layout of the Dissertation

The outline of the dissertation is as follows: In Chapter 2, we present some prelim-

inary results. In particular, we discuss the so-called State Reduction (SR) approach.

The SR approach is the building block in all our algorithms. In Chapter 3, we discuss

the IP model and develop a three-stage recursive algorithm to calculate π for this

model. We refer to our algorithm as the IP algorithm.

(Algorithm 1: The IP algorithm) This is a recursive algorithm that calculates

π in three stages. Even though it is a sequential algorithm, calculations for the

most expensive stages — stages 1 and 3 of the algorithm can be done in parallel.

This algorithm has time complexity, as per our argument, of order (n
k
)3, where k is

the total number of islands and n is the total number of states in the model. In

comparison, solving for π using the GTH/S algorithm, which is the most accurate

(direct) algorithm, has time complexity of order n3.

There exists a rich literature on relatively new algorithms to compute π for nearly

uncoupled MCs (see e.g. [16, 33, 6]). To our knowledge, none of these algorithms

allow parallel computing to the extent our IP algorithm does. In addition, most of

these methods are iterative whereas our algorithm gives exact results.

Because transition probabilities in our model are more restrictive than that in

the nearly uncoupled models, we also discuss the possibility of extending our results

to approximate invariant distributions for the nearly uncoupled MCs. For this, we

perform some preliminary simulations with our model. We also discuss the effect

7

of our approximations using previously known bounds. These bounds appear in the

perturbation theory of stochastic matrices. To elaborate this further, the invariant

distributions of MCs under perturbations have been rigorously studied since the early

1960s. These perturbations include linear perturbations (see e.g. [24, 11, 5]) as well

as analytical perturbations (see e.g. [3]). Under linear perturbations, most bounds

for π include the so-called fundamental matrix, V , for ergodic MCs. A comparison

of the bounds for linear perturbations can also be found, for example, in [5]. Our

approximations of the nearly uncoupled model only includes a simple case of linear

perturbation.

There are many algorithms to calculate the matrix V (see e.g. [13, 30, 10]). How-

ever, the fundamental matrix, N , for transient MCs are not studied as extensively.

One of the reason why this is so may be due to the fact that calculation of N is

simpler. The calculation of N involves a matrix inversion. If the state space is large,

inversion is computationally expensive. There are few recursive algorithms proposed

to calculate such matrices; (see e.g. [12]).

In Chapter 4, we develop an algorithm to compute N for any substochastic matrix

Q. We name this algorithm the FUNDQ algorithm.

(Algorithm 2: The FUNDQ algorithm) This recursive algorithm consists of two

stages: In the forward stage, we apply the SR approach to eliminate a subset of

states from the matrix Q. The backward stage involves computing a sequence of

fundamental matrices using the recursive formula given in Proposition 4.6. The time

complexity of this algorithm is approximately of order k(n2) + (n − k)3, 1 ≤ k < n,

where n is the number of states in the subset being considered.

8

We also apply the FUNDQ algorithm to develop another algorithm to calculate the

fundamental matrix N defined for a specific substochastic matrix Q in the IP model.

(Algorithm 3: The IP FUND algorithm) This is a recursive algorithm which has a

similar three stage structure as that in the IP algorithm. The calculations in stages

1 and 3 of the algorithm can also be done in parallel.

Additionally, we also discuss another set of fundamental matrices, N(1), N(2), . . . , N(k),

where k is the number of islands in the IP model, that result, without any extra cal-

culations, from the IP algorithm in Chapter 3. In the Appendix, we give some proofs

to the (previously published) lemmas and propositions we use in this thesis. We also

provide pseudo-codes to the three algorithms that we present in Chapters 3 and 4 in

the Appendix.

CHAPTER 2: THE STATE REDUCTION APPROACH

Let M = (S, P) be a homogeneous, ergodic Markov model, where S = {1, 2, . . . , n},

n ≤ ∞, is the discrete state space, and P is the transition matrix. In this chapter,

we discuss the state reduction (SR) approach. This approach was first used in the

GTH/S algorithm (see section 6) to compute π for model M . Since then, it has been

used to recursively calculate many important characteristics of MCs. It served as

the building block in many algorithms such as those used to calculate fundamental

matrices of transient MCs (see e.g. [12]) and for ergodic MCs (see e.g. [30]), in

matrix-analytic methods for block-structured matrices (see e.g. [34, 8]), to solve

optimal stopping problems (see e.g. [26, 31, 32]; [28, 29]), and to calculate mean

passage times (see e.g. [13]). The SR approach also serves as the building block

in our algorithms in Chapters 3 and 4. Our discussion of the SR approach in this

chapter is similar to that given in [27] and [29]. The SR approach has a two-stage

structure:

1. (Forward stage) Let MC (Zn) be specified by model M . And let D ⊆ S.

Then we can obtain another MC (Yn) (see Lemma 2.1) from the model M by

eliminating set D from S. The path of the MC (Yn) coincides with that of the

original MC (Zn) in remaining set S \D. The MC (Yn) is called a censored MC

specified by the D-reduced model MD = (S \ D,PD), where the matrix PD is

10

the new transition matrix for model MD.

The concept of censored MCs is an insightful idea of Kolmogorov and Doëblin.

According to this idea, the censored chain observed in the subset of the original

state space is still a MC. The states that do not belong to the observation

set of the censored MC are said to be eliminated. One can calculate various

characteristics for MC (Yn).

2. (Backward stage) States that were previously eliminated from set D in the

forward stage are “inserted” or “restored”. Using results calculated for the

censored MC (Yn), one can also calculate the characteristics of the original MC

(Zn).

4 State Reduction (SR)

Let MC (Zn) be a S-valued MC specified by model M with some initial distribution

µ0. If we let D ⊆ S, C = S \D, we can decompose matrix P as the first matrix below

P =


(D) (C)

Q T

R K

, PD =


(D) (C)

0 NT

0 PD

, WD =


(D) (C)

QN NT

RN PD

, (2.1)

where the substochastic matrices Q := {p(x, y) : x, y ∈ D}, T := {p(x, y) : x ∈ D, y ∈

C}, R := {p(x, y) : x ∈ C, y ∈ D}, and K := {p(x, y) : x, y ∈ C} describe transitions

inside of set D, from sets D to C, from sets C to D, and inside of set C, respectively.

Let τ0 = 0 and τn+1 = min{n > τn : Zn ∈ C}. Then τ0, τ1, τ2, . . . are the times of

the zero, the first, the second, and so on, visits to set C. Let Z0 ∈ C and consider

11

the random sequence (Yn = Zτn). According to Lemma 2.1, (Yn) is a censored MC

specified by model MD = (C,PD). The transition matrix PD is calculated using

formula (2.2).

Lemma 2.1 follows from the strong Markov property and standard probabilistic

reasoning. We credit this Lemma to the works of Kolmogorov and Doëblin (see e.g.

[27]).

Lemma 2.1. (SR Lemma)

The random sequence (Yn) is a Markov chain in model MD = (C,PD), where the

transition matrix PD = {p(x, y) : x, y ∈ C} is given by the formula

PD = K +RU = K +RNT. (2.2)

Remark 2.2. The matrix U = NDT (see Lemma 4.2 Chapter 4) is a matrix of the

distribution of the MC (Zn) at the time of the first exit τ1 to C, and ND ≡ N is the

fundamental matrix of the sub-stochastic matrix Q. The matrix PD is also known as

the stochastic complement of K in P (see e.g. [19]).

A proof based on probability theory is given, for example, in [15]. An algebraic

proof of Lemma 2.1 can be found, for example, in [19].

We can represent the matrix PD in formula (2.2) as

pD(x, y) = p(x, y) +
∑
j∈D

p(x, j)Pj(Zτ1 = y), (2.3)

where τ1 = min{n > 0 : Zn ∈ C}. In formula (2.2), the matrix N can be calculated

as N =
∑∞

n=0Q
n = (I −Q)−1, where I is a |Q| × |Q| identity matrix. In Chapter 4,

12

we discuss the calculation of matrix N in greater detail.

Instead of calculating the matrix PD by eliminating D in one step, thus requiring

a matrix inversion to calculate N , we can, instead, eliminate it in |D| steps by elimi-

nating one state z ∈ D at a time. To elaborate this further, let us assume that set D

only consists of one non-absorbing point z. In this case, each column of the matrix

PD = P{z} in (2.2) can be written as

p{z}(x, ·) = p(x, ·) + p(x, z)n(z)p(z, ·), x ∈ C, (2.4)

where n(z) = 1/(1− p(z, z)) is the one-dimensional fundamental matrix. Here, n(z)

gives the expected number of visits to state z by MC (Zn) before exiting this state at

time τ1 to C. We say that the matrix P{z} is obtained from matrix P in one iteration.

If |D| = d, then we can eliminate one state from D in each iteration using (2.4) and

obtain PD in d iterations. The matrix PD describes the behavior of the censored MC

(Yn) with values only in set C.

For calculations, it is more convenient to have the initial and the reduced stochastic

matrices of equal full size. For this, the matrix PD is extended in [28, 29] to the full

size |S| × |S| stochastic matrix PD (second matrix in (2.1)) by assuming that the

MC (Yn) can have initial points in D. But after one step, it will jump to C and will

remain in C. Equivalently, if Z0 ∈ D, then the MC (Zn) will exit at time τ1, and for

all n > τ1, it will remain in C as D is eliminated. Thus, pD(z, z) = 0, for all z ∈ D.

But for z ∈ D and y ∈ C, using the first equality in formula (2.2), we obtain

pD(z, y) = p(z, y) +
∑
z′∈D

p(z, z′)u(z′, y). (2.5)

13

By noting that U = NT , in matrix form, the right hand side of (2.5) equals T+QU =

T + QNT = (I + QN)T = NT, where the last equality follows from equation (4.4)

Chapter 4. For x, y ∈ C, the corresponding distribution is given by the submatrix

PD.

To obtain the matrix PD in d iterations, we apply formula (2.4) to the full size

matrices. Thus, if we denote the initial matrix P as P1 and the matrix obtained after

eliminating one state {z} as P2, then the columns of matrix P2 can be written as

p2(·, z) = 0, p2(·, y) = p1(·, y) + p1(·, z)
p1(z, y)

1− p1(z, z)
, y 6= z. (2.6)

To distinguish between the matrices in models MD and MD, we introduce the follow-

ing notation: matrices in reduced models are denoted by subscripts, i.e., MD, PD, ND

and so on; whereas matrices in full size model are denoted with superscripts, i.e.

MD, PD, ND and so on.

For computations, we prefer to calculate another full (nonstochastic) matrix WD

(third matrix in (2.1)). Before we explain why we do this, let us first explain how the

matrix WD is calculated and how it compares with previously discussed matrices PD

and PD.

w2(·, y) = p1(·, y) + p1(·, z)
p1(z, y)

1− p1(z, z)
, y 6= z. (2.7)

The matrix WD is calculated by using the elimination formula given in (2.7) by

applying formula (2.6) to all states, including all the states that were previously

eliminated. According to (2.7) if we let W1 = P , then we obtain matrix W2 after

eliminating one state z from the initial matrix W1. Note that the column correspond-

14

ing to z is now non-zero.

If we let D = {1, 2, . . . , k, . . . , d} ⊆ S. The matrix WD is obtained after eliminating

set D in d iterations. In each iteration, we apply formula (2.7) to the previous matrix

starting with W1 = P . Let matrix Wk be the full matrix obtained after eliminating

first k states from set D, then using formula (2.7), the columns of matrix Wk+1 can

be calculated as

wk+1(·, y) = wk(·, y) + wk(·, z)
wk(z, y)

1− wk(z, z)
, y 6= z. (2.8)

Although the form of the matrix WD given in (2.1) is quite transparent, proving it is

quite difficult. Formula (2.7) and the interpretation of the nonzero columns in WD

is given in [28, 29]. By the definition of the matrices WD and PD, their columns for

y /∈ D coincide but the matrix PD has zero columns for y ∈ D.

From our discussion thus far, we can eliminate D and obtain the stochastic matrix,

PD, for the censored MC directly using (2.2). We can also calculate matrix PD and

obtain PD ⊂ PD corresponding to states in S \ D. Instead, we prefer to calculate

matrix WD and obtain PD ⊂ WD. Note that PD ⊂ PD ⊂ WD.

P1 =⇒ P2 =⇒ · · ·Pd =⇒ Pd+1 = PD (stochastic), (2.9)

P ′1 =⇒ P ′2 =⇒ · · ·P ′d =⇒ P ′d+1 = PD (stochastic), (2.10)

W1 = P1 =⇒ W2 =⇒ · · ·Wd =⇒ Wd+1 = WD (nonstochastic), (2.11)

where the (d + 1)th matrix is the matrix obtained after D is completely eliminated,

in d iterations, from the state space S. The matrices P ′ and W are full matrices

calculated using (2.6) and (2.7), respectively.

15

Remark 2.3. Unless otherwise stated, all of our calculations involve full matrices W

given in (2.11). That is, the stochastic matrix for the non-eliminated states can be

obtained as a submatrix of these W matrices. We obtain the matrix PD from WD

which is the submatrix in WD corresponding to states in S \D.

We now explain why we prefer to use full matrices W in our calculations. In the

two-stage structure of the SR approach, the forward stage involves the elimination

of a set of states, say D, from S. As explained before, the matrix PD is a stochastic

matrix describing transitions in the reduced model MD. The idea of the forward stage

of the SR approach is straightforward — it allows for dimension reduction, that is,

we reduce the matrix P into a smaller stochastic matrix PD. We perform calculations

using this matrix PD. Sometimes, it is the characteristics of the original MC (Zn)

that we are interested in. This requires inserting states that were eliminated in the

forward stage. In particular, we want to restore any of the eliminated states, in

any order, without taking into account the order in which that state was eliminated

during the forward stage. This can be achieved, starting with the matrix WD and

using the “insertion” formula (2.12) given by Lemma 2.4.

Lemma 2.4. [28, 29] If the matrix Wk+1 is obtained from matrix Wk by the elimi-

nation formula (2.8), then the matrix Wk can be obtained from matrix Wk+1 by

wk(·, y) = wk+1(·, y)− wk+1(·, z)
wk+1(z, y)

1 + wk+1(z, z)
, y ∈ S. (2.12)

To distinguish between the matrices obtained in the forward stage by applying formula

(2.8) and the matrices calculated in the backward stage by applying formula (2.12),

16

we denote the latter as matrix Ŵ . As a consequence of the insertion formula (2.12),

we obtain

Ŵ1 = W1 = P1 ⇐= Ŵ2 ⇐= · · · ⇐= Ŵd+1 = WD, (2.13)

where the full matrix Ŵ , other than WD and W1, in (2.11) and (2.13) need not be

the same because the order of elimination and insertion can vary.

The following Lemma follows from Lemma 2.1. It was also proved in [15].

Lemma 2.5. Let π = (π1 π2 ...πs...πn)T be the invariant distribution of the original

MC (Zn). Let |C| = s and let π̄C = (π̄1 π̄2 .. π̄s)
T be the invariant distribution for

MC (Yn). Then

π̄i =
πi∑
i∈C πi

and π̄CPD = π̄C , i = 1, 2, . . . , s. (2.14)

In the next section, we do a straightforward analysis of the time complexity for the

calculation of matrices PD in (2.9), WD in (2.11), and Ŵ in (2.13).

5 Order Count

Let us suppose P be a n× n matrix.

(Calculation of matrix PD) Each step of the state elimination for the sequence

given in (2.9) requires (n− 1)2 additions, 1 subtraction, (n2− 1) multiplications, and

1 division, so eliminating n states requires n3 − 2n2 + 2n additions and subtractions,

n3 divisions, and multiplications. If we count only multiplication and divisions, the

time complexity is of order n3.

(Calculation of matrix WD) Each step of the state reduction from the sequence

17

given in (2.11) requires n2 additions, 1 subtraction, n2 multiplications, and 1 division.

Thus, for n steps, the time complexity is also of order n3.

(Calculation of matrix Ŵ1) Each step of the state insertion for the sequence in

(2.13) requires 1 addition, n2 subtractions, n2 multiplications, and 1 division. The

insertion of n states requires n3 +n additions and subtractions, n3 +n multiplications

and divisions. If we only count the multiplications and divisions, then the complexity

is also of order n3 .

6 Grassman, Taskar and Heyman/Sheskin (GTH/S) Algorithm

We now discuss the GTH/S proposed, independently, by Grassman, Taskar and

Heyman [9], and by Sheskin in 1985 [25], to calculate π for a n× n transition matrix

P of an ergodic model. The distribution πT = [π1 π2 . . . πn] is the solution of the

linear system

πT = πTP, and
n∑
i=1

πi = 1. (2.15)

This algorithm is based on the SR approach. In the forward stage of the GTH/S

algorithm, we calculate a sequence of stochastic matrices P1, P2, ..., and Pn, by elim-

inating one state from P in each iteration using Lemma 2.1. The elimination of a

state at the jth step, 1 < j ≤ n, corresponds to a transformation of the initial MC

to a censored MC with transition matrix, Pj. The censored MC is the original MC

observed only in the set that is not eliminated. As a result, every matrix, Pj, in

this sequence has dimension one less than the previous matrix, Pj−1. After n − 1

states are eliminated, the last matrix, Pn, has a single state with a trivial invariant

18

distribution, πn = {1}. In the backward stage, a sequence of invariant distributions,

πi, for i = n− 1, . . . , 2, 1, is calculated in the reverse order.

P = P1 =⇒ P2 =⇒ · · ·Ps · · · =⇒ Pn−1 =⇒ Pn = {1}, (2.16)

π = π1 ⇐= π2 ⇐= · · · πs · · · ⇐= πn−1 ⇐= πn = {1}.

We apply the GTH/S algorithm for modified transition matrices in different stages

of our algorithm in Chapter 3. This algorithm involves approximately 2
3
n3 + 2n2 − 8

3

operations. It has been shown to be more stable and accurate [21]. A pseudo-code

presented by Sheskin [25] is given in the Appendix.

CHAPTER 3: THE IP MODEL: THE INVARIANT DISTRIBUTION

7 The Invariant Distribution π

Let M = (S, P) be an IP model where S =
∑k

i=1 Li, and Li = Ri + Ti. Here, we

use + to denote a union of disjoint sets. Also, let T denote a disjoint union of all ports,

T =
∑k

j=1 Tj, and |T | = t. We have also assumed that t ≤ (the size of the biggest island).

For simplicity, we assume that t = |Li| = m, 1 ≤ i ≤ k.

Our main goal is to present the IP algorithm which is used to compute π for the

IP model. The main advantage of this algorithm, due to the unique features of the

state space, is that most of the calculations solving for π are performed in parallel.

Note that the possibility of parallel calculations in our model is not obvious. The

invariant distribution on each island depends on transition probabilities on all of the

other islands, even when transitions between islands are weak.

The invariant distribution, π, for any ergodic MC, with a n× n transition matrix

P , is calculated by solving the linear system

πT = πTP ⇐⇒ πT (I − P) = 0, (3.1)

where πT = [π1 π2 . . . πn] satisfying
∑n

i=1 πi = 1, πi > 0, and I is a n×n identity ma-

trix. There are many direct and iterative methods to solve (3.1). Some direct methods

include the GTH/S algorithm, the LU factorization (with some adjustment), and it-

erative methods include the Gauss-Seidel, the Jacobi method, the power method,

20

and other hybrid schemes (see e.g. [33, 23]). Algorithms to calculate π for nearly

uncoupled MCs include iterative schemes such the KMS algorithm in [16] and the

KMS-GTH/S hybrid algorithm in [6].

8 SR Approach for the IP Model

We now present the recursive formula used in the backward stage of the GTH/S

algorithm. We state this formula in the form given as Lemma 1 in [27].

Lemma 3.1. Let M1 = (S1, P1) be an ergodic Markov model, S2 = S1 \ {z}, and

M2 = (S2, P2) be z-reduced Markov model. Let S2 and state z communicate in model

M1, i.e., there are states i, j ∈ S2 such that p1(i, z) > 0 and p1(z, j) > 0 . If the

invariant distribution π2(·) exists in model M2, the invariant distribution π1(·) also

exists in M1 and can be calculated by formulas

(i) π1(y) = α1π2(y), for all y ∈ S2, and α1 = 1− π1(z), (3.2)

(ii) π1(z) = β1
∑
y∈S2

π2(y)p1(y, z) = β1R1, (3.3)

where α1 = 1
1+n1R1

, n1 ≡ n1(z) = 1
1−p1(z,z) and R1 ≡ R1(z) =

∑
y∈S2

π2(y)p1(y, z).

We make some useful remarks based on our results so far.

Remark 3.2. Both Lemma 2.5 and Lemma 3.1 imply that invariant distributions

of states in the reduced model are proportional to their distributions in the original

model. However, Lemma 3.1 gives an explicit recursive formula that relates any two

consecutive distributions in (2.16). This is particularly useful for calculations.

Remark 3.3. Instead of a single state {z}, now suppose we eliminate a set D ⊂ S1

from model M1 = (S1, P1) to obtain model M2 = (S2, P2), where S2 = S1 \ D

21

and P2 is given by formula (2.2). Lemma 3.1 implies that π1(y) = eπ2(y) for all

y ∈ S2 and for some scalar e > 0. Similarly, if L ⊆ S2, then π1(L) = eπ2(L), where

πi(L) =
∑

x∈L πi(x), i = 1, 2. We can use Lemma 2.5 to show that e =
∑

x∈S2
π1(x).

We will apply Remark 3.3 in the extension step of Stage 3 of our algorithm.

Remark 3.4. Suppose that we know the invariant distribution πs in (2.16) for some

stochastic matrix Ps, 1 ≤ s ≤ k, calculated after s− 1 iterations of the initial matrix

P . Using Lemma 3.1, we can also recursively calculate the invariant distributions

πj, 1 ≤ j < s, in the backward stage of the GTH/S algorithm starting with the

distribution πs.

The following lemma follows directly from Lemma 2.1.

Lemma 3.5. Let Markov model M1 = (S1, P1) be given. Suppose S2 = S1 \ {z},

and let M2 = (S2, P2) be the z-reduced model obtained from model M1 where P2 is

obtained by formula (2.4). Now suppose p1(i, z) = 0 or p1(z, j) = 0 for i, j ∈ S2,

then p2(i, j) = p1(i, j) in model M2, i.e. elimination of state z does not change the

probabilities between states i and j in M2.

Proof. The proof follows from formula (2.4) applied to x = i, y = j, and z = z.

Remark 3.6. Suppose D ⊂ S1 and one of p1(i, z) = 0 or p1(z, j) = 0 for all z ∈ D,

then repeated application of Lemma 3.5 for states z ∈ D results in pD(i, j) = p1(i, j)

for such states j ∈ S1\D in model MD. That is, set D can also be eliminated without

affecting the probabilities for state i ∈ S2 and some states j ∈ S2.

Lemma 3.5 and Remark 3.6 will play an important role in Stages 1 and 3 of the IP

algorithm in the next section.

22

9 Main Results: The IP Algorithm

The IP algorithm consists of three main stages. The third stage involves two steps.

Without going into detail, we first outline the three stages of the IP algorithm:

(Stage 1) In the first stage, we apply the SR approach to eliminate the interior

states, Ri, from each island Li, 1 ≤ i ≤ k. By Lemma 3.5 and Remark 3.6, this

can be done in parallel for each island Li. The elimination of interior states,⋃k
i=1Ri, results in the model, M∗ = (T, P ∗), for the ports T ; see Figure 2a.

(Stage 2) In the second stage, we calculate the invariant distribution, π∗, for

model M∗. Any direct method can be used for this calculation. We use the

GTH/S algorithm to calculate π∗ in our numerical example; see Figure 2b.

(Stage 3. step 1.) In the third stage, we consider models, Mi = (L∗i , P
∗
i), for

augmented islands, L∗i = Ri ∪ T, 1 ≤ i ≤ k. Using the distribution π∗ obtained

in the second stage, we calculate the invariant distribution , π(i), for each model

Mi separately, and in parallel; see Figure 2c.

Remark 3.7. Note that the notation π(j) only refers to the invariant distribu-

tion of model Mj and not that of the individual states in Mj. For example,

π(j)(x) refers to the invariant distribution of state x ∈ L∗j .

For each model Mi, we calculate the coefficients, wi and λi, which are given by

wi = π(i)(Ri) and λi =
wi

1− wi
, i = 1, 2, . . . , k, (3.4)

where π(i)(Ri) =
∑

y∈Ri
π(i)(y).

23

𝑳𝟏
𝑳𝟐

𝑻𝟏 𝑻𝟐
𝑹𝟏 𝑹𝟐

(a) Stage 1. Elimination of R1 and R2.

𝑻𝟏 𝑻𝟐

𝑻

𝝅∗

(b) Stage 2. Model M∗ with invariant distribution π∗.

𝑳𝟏
∗ 𝑳𝟐

∗

𝑻𝟏 𝑻𝟐

𝑹𝟏
𝑹𝟐

𝝅(𝟏) 𝝅(𝟐)𝝅∗

(c) Stage 3. step 1. Calculation of π(1) and π(2) for models M1 and M2,
respectively.

Figure 2: Summary of the three stages of the IP Algorithm for an example when
k = 2.

(Stage 3. step 2. (Extension step)) Finally, we use the distributions, π(i), 1 ≤

i ≤ k, to calculate the distribution π for model M . According to Remark 3.3,

the invariant distribution of Li inside model Mi, 1 ≤ i ≤ k, is proportional to

its distribution w.r.t. model M , that is,

π(Li) = eiπ(i)(Li), i = 1, 2, . . . , k, (3.5)

where ei = π(L∗i) =
∑

y∈L∗i
π(y). If the coefficients ei were known, we could

24

directly use formula (3.5) to calculate distribution π(Li) in each model Mi, 1 ≤

i ≤ k, but they are not known. Our main result, Theorem 1, gives an explicit

formula (3.7) to calculate these unknown coefficients ei, 1 ≤ i ≤ k.

Theorem 1. The invariant distribution of each state y ∈ L∗i is given by the

formula

π(y) = eiπ(i)(y), i = 1, 2, . . . , k, (3.6)

where coefficients ei are given by

ei =
1 + λi

1 +
∑

j λj
, i = 1, 2, . . . , k. (3.7)

We give a proof of Theorem 1 at the end of this section.

Remark 3.8. Since T =
⋃k
i=1 Ti, formula (3.6) in Theorem 1 implies that any one of

the islands could be used to find the distribution on T because e1π(1)(x) = e2π(2)(x) =

· · · = ekπ(k)(x) for all x ∈ T . These equalities follow from (3.5) written for L∗i . It is

easy to check that π = [π(1) π(2) . . . π(s) . . . π(n)], s ∈ S, is a probability distribution.

We now discuss each stages of the IP algorithm in greater detail.

Stage 1

Consider an IP model M = (S, P) with the state space S =
∑k

i=1 Li and transition

matrix P . Let us first represent the stochastic matrix, P , as a union of blocks by

ignoring the blocks that are always zero. Here, by a union of blocks we mean a

collection of submatrices of a matrix. We will use such a representation for our

matrices to make our discussion easy to follow. Figure 3a shows the representation

25

for P in (3.8) below.

P =
(k⋃
i=1

Pi

)
∪
(k⋃

i,j=1

i 6=j

Tij

)
, Pi =

 Pi0i0 Pi0i

Pii0 Pii

 , P ∗ =
(k⋃
i=1

P ∗ii

)
∪
(k⋃

i,j=1

i 6=j

Tij

)
.

(3.8)

In (3.8) above, the block Pi := {p(x, y), x, y ∈ Li} and the block Tij := {p(x, y), x ∈

Ti, y ∈ Tj, i 6= j}. As in (2.1), we decompose each block Pi as the second matrix in

(3.8), where submatrices Pi0i0 := {p(x, y), x, y ∈ Ri}, Pi0i := {p(x, y), x ∈ Ri, y ∈

Ti}, Pii := {p(x, y), x, y ∈ Ti}, and Pii0 := {p(x, y), x ∈ Ti, y ∈ Ri}.

Now let R =
∑k

i=1Ri be the collection of all interior states, T =
∑k

i=1 Ti be the

collection of all ports of model M , and S = R + T . In stage 1, we eliminate R from

S to obtain a reduced model M∗ = (T, P ∗) for the ports T . The matrix P ∗ can also

be represented as the third matrix in (3.8) where P ∗ii := {p∗(x, y), x, y ∈ Ti} is the

block with new probabilities for the ports, Ti calculated using formula (2.2) from the

block Pi after Ri is eliminated. It is given by

P ∗ii = Pii + Pii0Ni0Pi0i, i = 1, 2, . . . , k. (3.9)

We have used the notation ‘∗’ in block Pii of matrix P ∗ in (3.8) to indicate that the

elimination of R =
⋃k
i=1Ri affects only the blocks Pii but blocks Tij are not affected

for i 6= j, 1 ≤ i, j ≤ k. According to Lemma 3.9, blocks P ∗ii, 1 ≤ i ≤ k, in matrix P ∗,

can be calculated in parallel.

Lemma 3.9. The block P ∗ii for each island Li can be calculated in parallel from block

Pi, 1 ≤ i ≤ k,.

Proof. First, recall that we mentioned earlier that the IP model is ergodic. This

26

implies that there are states x ∈ Ri and y ∈ Ti such that p(x, y) > 0 in each island

Li, 1 ≤ i ≤ k. Then according to Lemma 2.1 from Chapter 2, eliminating R from S

affects probabilities of the remaining states in the ports T , Ti ⊂ Li, 1 ≤ i ≤ k. Since

Li ∩ Lj = ∅ and p(x, y) = 0 for all x ∈ Li and y ∈ Rj, i 6= j, 1 ≤ j ≤ k, Lemma

3.5 and Remark 3.6 from section 8 imply that the elimination of interior states, Rj,

from islands Lj, j 6= i, 1 ≤ j ≤ k, has no effect on the probabilities of states in island

Li. As a result, only the elimination of Ri affects the block Pii in Pi in (3.8). Thus

the elimination of R can be done by eliminating Ri from the block Pi for island Li,

separately and in parallel. This is illustrated in Figure 3b.

However, blocks Tij remain unchanged because interior states in each island, Li,

do not communicate with the ports, Tj, from other islands, i.e. p(i, j) = 0 for i ∈

Ri, j ∈ Tj, j 6= i, 1 ≤ j ≤ k. By aggregating P ∗ii and Tij for i 6= j, 1 ≤ i, j ≤ k, we

obtain the matrix P ∗. This is illustrated in Figure 3c for the case when k = 2.

Stage 2

Let us consider a model M∗ = (T, P ∗) for the ports T . The transition matrix P ∗

was obtained at the end of stage 1. In stage 2, we calculate the invariant distribution,

π∗, for model M∗. For this calculation, we can use the GTH/S algorithm or any other

direct method. Applying the GTH/S algorithm (as we do in our numerical example)

has the complexity of order 2
3
m3, where |T | = |Li| = m, 1 ≤ i ≤ k.

Stage 3

(Step 1) In this stage, we first consider “augmented islands” L∗i , 1 ≤ i ≤ k, which

are obtained by enlarging each island Li to include all ports, i.e. L∗i = Ri ∪ T . Let

27

R1 T1 T2 R2

R1

T1

T2

R2

 𝑇12

 𝑇21

0 0

0

0

0

𝑃1

0

 𝑃11

 𝑃22

𝑃2 (a) Transition matrix P .

R1 T1 T2 R2

R1

T1

T2

R2

 𝑇12

 𝑇21

0 0

0

0

0 0

 𝑃11
∗

 𝑃22
∗

× ×

×

×

× ×

(b) Parallel elimination of R1 and R2 in
blocks P1 and P2.

T1 T2

T1

T2

𝑃11
∗ 𝑇12

 𝑇21

𝑃22
∗

𝑃∗

(c) P ∗ for model M∗.

Figure 3: Summary of Stage 1 of the IP Algorithm: State reduction and calculation
of P ∗ for the case k = 2.

us define new models, Mi = (L∗i , P
∗
i), 1 ≤ i ≤ k, with state space L∗i and transition

matrix P ∗i . Although the state space L∗i of each model Mi, 1 ≤ i ≤ k, includes T , i.e.

T =
⋂k
i=1 L

∗
i , each Mi is a separate model with its own transition matrix P ∗i . The

matrix P ∗i for model M∗
i can be calculated from the initial matrix P by eliminating

all states outside of L∗i . That is, we eliminate
⋃k
j=1Rj, j 6= i from S. However, let

us show that the matrix P ∗i can be obtained from Stage 1 without any additional

calculation. Indeed, by ignoring the parts that are always zero, the matrix P ∗i can

28

also be represented as

P ∗i = Pi ∪
(k⋃

j=1

j 6=i

P ∗jj

)
∪
(k⋃

i,j=1

i 6=j

Tij

)
, i = 1, 2, . . . , k. (3.10)

Blocks P ∗jj, 1 ≤ j ≤ k, j 6= i, were calculated in stage 1 and blocks Pi and Tij can

be obtained directly from the original matrix P . Figures (4a) and (4b) show how

matrices P ∗1 and P ∗2 are obtained for case k = 2.

R1 T1 T2

R1

T1

T2

𝑇12

𝑇21

0

𝑃22
∗ 0

𝑃1

(a) P ∗1 for model M1.

R2 T1 T2

R2

T1

T2

 𝑇12

 𝑇21

0 𝑃11
∗

0

𝑃2

(b) P ∗2 for model M2.

Figure 4: IP Algorithm: Transition matrices P1 and P2 for the case k = 2.

The block form in (3.10) of matrix P ∗i also follows directly from Lemma 3.5 and

Remark 3.6 which implies that the elimination of the interior states, Rj, from matrix

P in (3.8) only affects the block, Pjj, inside the block Pj of each island Lj, 1 ≤ j ≤ k.

As we discussed in Stage 1, we indicate this change by updating Pjj to P ∗jj.

According to Remark 3.4 in Section 8, the invariant distribution, π, in (2.16) can

be calculated from the distribution, πs, of an intermediate stochastic matrix, Ps, 1 ≤

s ≤ n. From the discussion in Chapter 1, the matrix, Ps, is the transition matrix of a

reduced model, Ms, after eliminating states {1, 2, 3, . . . , s− 1} from the initial model

M1 = (S1, P1). This fact leads to Lemma 3.10.

29

Lemma 3.10. The calculation of the invariant distribution, π(i), of each model

Mi, 1 ≤ i ≤ k, can be done in parallel.

Proof. For each i ∈ {1, 2, . . . , k}, let Mi = (L∗i , P
∗
i) be the initial model. If we

eliminate just the interior states, Ri ⊂ L∗i = Li + T , from Mi, we obtain a reduced

model for the ports T only. The model we obtain is the model M∗, which was

introduced in Stage 2. In other words, the model M∗ is an Ri-reduced model of the

model Mi. Because T =
⋂k
i=1 L

∗
i , the model M∗ is also an Ri-reduced model of every

model Mi, 1 ≤ i ≤ k. Given that the model M∗ is a common model for each separate

model Mi, 1 ≤ i ≤ k, we can start with the distribution, π∗, and use Lemma 3.1 to

recursively compute π(i) for each model Mi in parallel.

This concludes the discussion of the three stages of the IP algorithm. In Figure 5a,

we summarize Stages 1 and 2 of the IP algorithm; in Figure 5b we illustrate Stage 3

(step 1) of the algorithm.

𝑀1

𝑒𝑙
𝑖𝑚

𝑖𝑛
𝑎

𝑡𝑒
 𝑅

3

𝑀𝑘

𝑀4

(a) Parallel elimination of interior states
Ri from Mi to obtain a common model

M∗, 1 ≤ i ≤ k.

𝜋(4)

𝜋(1) 𝜋(𝑘)

(b) Parallel calculation of π(i) from
common distribution π∗, 1 ≤ i ≤ k.

Figure 5: Parallel features of the IP algorithm.

(Step 2)In the extension step, we now use distributions π(i), 1 ≤ i ≤ k, calculated

30

in Stage 3 (step 1), to compute the actual distribution, π, for model M using formulas

(3.6) and (3.7) from Theorem 1.

Proof of Theorem 1: Let us first introduce the coefficients ri = π(Ri) and t = π(T).

Notice that proportionality in (3.5) also holds for the interior states Ri ⊂ L∗i ,

π(Ri) = eiπ(i)(Ri) i.e. ri = eiwi, i = 1, 2, . . . , k. (3.11)

Since L∗i = Ri ∪ T and S =
∑k

i=1Ri ∪ T , we have the equalities

ri = ei − t, (3.12)

k∑
i=1

ri + t = 1. (3.13)

We substitute (3.12) into (3.13) to get Σi(ei − t) + t = Σiei − (k − 1)t = 1. Hence,

t =

∑
i ei − 1

k − 1
. (3.14)

We substitute (3.14) for t in (3.12) to obtain ri = ei − (
∑

i ei − 1)/(k − 1). By the

second equality in (3.11)

ei −
∑

i ei − 1

k − 1
= eiwi,

ei(1− wi)(k − 1) =
∑
i

ei − 1. (3.15)

Let e =
∑

i ei and λi = wi/(1 − wi), or equivalently, 1 − wi = 1/(1 + λi). Thus, λi

gives the ratio of the probability mass of interior states Ri to that of ports T in each

model Mi, 1 ≤ i ≤ k. Equation (3.15) can be simplified to

ei =
(e− 1)(1 + λi)

k − 1
. (3.16)

31

If we sum (3.16) over all i, 1 ≤ i ≤ k, we obtain

e =
e− 1

k − 1

∑
i

(1 + λi) = (e− 1)λ, (3.17)

where we let λ =
∑

i(1 + λi)/(k − 1). Equation (3.17) can be rearranged to give

e− 1 = 1/(λ− 1). Then, we can simplify (3.16) as

ei =
(1 + λi)

(λ− 1)(k − 1)
. (3.18)

We use the expression for λ to obtain

(k − 1)(λ− 1) = (k − 1)

(∑
i(1 + λi)

k − 1
− 1

)
= (k − 1)

(
k +

∑
i λi

k − 1
− 1

)
= 1 +

∑
i

λi.

(3.19)

Substitution of the expression (3.19) in the equality (3.18) gives

ei =
1 + λi

(k − 1)(λ− 1)
=

1 + λi
1 +

∑
i λi

, (3.20)

with λi = wi/(1 − wi). The expression in (3.6) follows by applying formula (3.5) to

the augmented island L∗i .

We include a pseudo-code in the Appendix (2).

10 Performance Evaluation

Let us assume that there are n states, k islands, and n/k states in each island. If

we let m be the number of ports, then there are (n/k − m) interior states in each

island.

(Stage 1) In stage 1, we eliminate (n/k−m) states from each island Li, 1 ≤ i ≤ k.

32

For each Li, calculation of sequences of matrices, W
(i)
Ri

, requires approximately

(n/k−m)((n/k)2+1) additions and subtractions, (n/k−m)((n/k)2+1) divisions

and multiplications; for a total of k islands, it requires approximately 2k(n/k−

m)((n/k)2 + 1) operations.

(Stage 2) For T = km ports, the GTH/S algorithm requires 2/3(km)3+2(km)2−

8/3 operations while computing π for model M∗.

(Stage 3) (i) The calculation of each matrix Ŵ (i), when restoring the interior

states Ri for each model Mi, 1 ≤ i ≤ k, requires approximately the same number

of operations as in the calculation of matrix W
(i)
Ri

in Stage 1. (ii) Each step in the

calculation of π(i) using formulas (3.2)and (3.3) involves approximately (n/k −

m) additions, (n/k−m) multiplications, 1 subtraction, and 2 divisions for each

model. This results in a total count of 2k(n/k−m)2+3(n/k−m) after n/k−m

states are restored. (iii) The calculation of wi in (3.4) involves performing

n/k − m additions; calculation of λi requires 1 division and 1 subtraction for

each island. (iv) Finally, the calculation of ei, 1 ≤ i ≤ k, in (3.7) requires 3k+ 2

additions and k divisions; calculation of π involves n multiplications.

We assume that the total number of ports t ' n/k (size of the biggest island). If we

suppose that there are an equal number of ports, m, in each Li, i.e. m = n/k2, then

an approximate total count for the IP algorithm is given by

Total count '
(

4k +
2

3

)(n
k

)3
' n3

k2
= mn2.

In fact, since calculations are performed in parallel, we only need to consider the time

33

complexity for one island, thus, the time complexity of the IP algorithm is of the

order (n
k
)3.

11 Numerical Example

We consider a Markov model with the state space S = {1, 2, . . . , 12} and consisting

of three islands: L1 = {T1 = (1, 2)} ∪ {R1 = (3, 4)}, L2 = {T2 = (5, 6)} ∪ {R2 =

(7, 8)}, and L3 = {T3 = (9, 10)} ∪ {R3 = (11, 12)}. Further we assume that based

on this partition of S, the transition matrix P can be rearranged as in Table 1. All

calculations were performed in MATLAB with a tolerance of 10−7.

Table 1: Transition matrix P .

 (3) (4) (1) (2) (5) (6) (9) (10) (7) (8) (11) (12)

(3) 10 9 48 33 0 0 0 0 0 0 0 0
(4) 20 16 11 53 0 0 0 0 0 0 0 0

(1) 20 17 7 10 9 5 20 12 0 0 0 0
(2) 11 20 13 2 7 15 11 21 0 0 0 0
(5) 0 0 20 4 7 8 23 10 18 10 0 0
(6) 0 0 3 10 20 14 7 13 16 17 0 0
(9) 0 0 33 10 10 30 2 5 0 0 10 0

(10) 0 0 7 13 25 15 5 13 0 0 10 12
(7) 0 0 0 0 30 20 0 0 3 47 0 0
(8) 0 0 0 0 43 10 0 0 26 21 0 0

(11) 0 0 0 0 0 0 30 10 0 0 40 20
(12) 0 0 0 0 0 0 10 40 0 0 30 20

𝑇2

Transition Matrix (P)

𝑇3

(
1

100
) ×

𝑅1 𝑅2
𝑇

𝑅3

𝑇1

(Stage 1) We eliminate the interior states R1 = {3, 4} from L1, states R2 = {7, 8}

from L2, and states R3 = {11, 12} from L3 in parallel. After this elimination,

the states that remain in L1, L2, and L3 are ports T1 = {1, 2}, T2 = {3, 4}, and

T3 = {11, 12}, respectively. This elimination changes blocks P11 to P ∗11, P22 to P ∗22,

34

and P33 to P ∗33 but blocks Tij, i 6= j, i, j = 1, 2, 3, are unchanged. By aggregating these

blocks, we obtain the stochastic matrix P ∗. The matrix P ∗ is given as Table 2.

Table 2: Transition matrix P ∗.

 (3) (4) (1) (2) (5) (6) (9) (10) (7) (8) (11) (12)

(3) 0 0 0 0 0 0 0 0 0 0 0 0
(4) 0 0 0 0 0 0 0 0 0 0 0 0

(1) 0 0 640/2821 2578/8233 9/100 5/100 20/100 12/100 0 0 0 0
(2) 0 0 843/3449 725/3363 7/100 15/100 11/100 21/100 0 0 0 0
(5) 0 0 20/100 4/100 747/2771 471/2936 23/100 10/100 0 0 0 0
(6) 0 0 3/100 10/100 281/639 341/1481 7/100 13/100 0 0 0 0
(9) 0 0 33/100 10/100 10/100 30/100 43/525 37/420 0 0 0 0

(10) 0 0 7/100 13/100 25/100 15/100 13/84 103/420 0 0 0 0

(7) 0 0 0 0 0 0 0 0 0 0 0 0
(8) 0 0 0 0 0 0 0 0 0 0 0 0

(11) 0 0 0 0 0 0 0 0 0 0 0 0
(12) 0 0 0 0 0 0 0 0 0 0 0 0

Transition Matrix (P)

𝑅1 𝑇 𝑅2 𝑅3

(Stage 2) The invariant distribution, π∗, for model M∗ = (T, P ∗) is given by

π∗ =

[(1) (2) (5) (6) (9) (10)

438
2393

, 183
1237

, 317
1522

, 544
3209

, 359
2442

, 440
3051

]
.

Here, we used the GTH/S algorithm for this calculation.

(Stage 3) We consider three augmented islands: L∗1 = {1, 2, 3, 4, 5, 6, 9, 10}, L∗2 =

{1, 2, 5, 6, 7, 8, 9, 10}, and L∗3 = {1, 2, 5, 6, 9, 10, 11, 12}. For these, we consider three

Markov models M1 = (L∗1, P
∗
1), M2 = (L∗2, P

∗
2), and M3 = (L∗3, P

∗
3). Matrices P ∗1 , P

∗
2 ,

and P ∗3 are given in Table 3 for models M1, M2, and M3, respectively.

Using formulas (3.2) and (3.3) in Lemma 3.1, we compute the invariant distribution

35

π(1) for model M1 (only states 1, 2, 3, 4) which are given by

π(1) =

[(1) (2) (3) (4)

320
2023

, 213
1666

, 387
5843

, 119
1711

]
.

The distributions π(2) and π(3) for models M1 (only states 5, 6, 7, 8) and M2 (only

states 9, 10, 11, 12) are calculated in a similar way, which gives

π(2) =

[(5) (6) (7) (8)

300
1759

, 265
1909

, 431
5301

, 119
1192

]
, π(3) =

[(9) (10) (11) (12)

306
2303

, 186
1427

, 254
4143

, 79
2265

]
.

Using formula (3.4), we calculate the coefficients w = (w1, w2, w3) and λ = (λ1, λ2, λ3)

for models M1,M2, and M3, which are given by

w =

(
691

5089
,
121

668
,
618

6425

)
, λ =

(
691

4398
,
121

547
,
618

5807

)
.

We use formula (3.7) in Theorem 1 to calculate the coefficients e = (e1, e2, e3)

e =

(
611

784
,
1177

1431
,
3372

4525

)
.

We can verify that the above coefficients are correct by calculating ei =

π(Ri)/π(i)(Ri).

Finally, we calculate π using formula (3.6),

π =

[(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

438
3553

, 138
1385

, 67
1298

, 325
5996

; 171
1219

, 269
2356

, 495
7402

, 325
3958

; 241
2434

281
2893

197
4312

137
5271

]
.

36

Table 3: Transition matrices for models M1,M2, and M3.

 (3) (4) (1) (2) (5) (6) (9) (10)

(3) 10/100 9/100 48/100 33/100 0 0 0 0
(4) 20/100 16/100 11/100 53/100 0 0 0 0

(1) 20/100 17/100 7/100 10/100 9/100 5/100 20/100 12/100
(2) 11/100 20/100 13/100 2/100 7/100 15/100 11/100 21/100

(5) 0 0 20/100 4/100 747/2771 471/2936 23/100 10/100
(6) 0 0 3/100 10/100 281/639 341/1481 7/100 13/100

(9) 0 0 33/100 10/100 10/100 30/100 43/525 37/420
(10) 0 0 7/100 13/100 25/100 15/100 13/84 103/420

Transition Matrix (P)

𝑅1 𝑇

(a) Transition matrix P ∗1 .

 (1) (2) (5) (6) (7) (8) (9) (10)

(1) 640/2821 2578/8233 9/100 5/100 0 0 20/100 12/100
(2) 843/3449 725/3363 7/100 15/100 0 0 11/100 21/100

(5) 20/100 4/100 7/100 8/100 18/100 10/100 23/100 10/100
(6) 3/100 10/100 20/100 14/100 16/100 17/100 7/100 13/100
(7) 0 0 30/100 20/100 3/100 47/100 0 0
(8) 0 0 43/100 10/100 26/100 21/100 0 0

(9) 33/100 10/100 10/100 30/100 0 0 43/525 37/420
(10) 7/100 13/100 25/100 15/100 0 0 13/84 103/420

Transition Matrix (P)

𝑇 𝑅2

(b) Transition matrix P ∗2 .

 (1) (2) (5) (6) (9) (10) (11) (12)

(1) 640/2821 2578/8233 9/100 5/100 20/100 12/100 0 0
(2) 843/3449 725/3363 7/100 15/100 11/100 21/100 0 0

(5) 20/100 4/100 747/2771 471/2936 23/100 10/100 0 0
(6) 3/100 10/100 281/639 341/1481 7/100 13/100 0 0

(9) 33/100 10/100 10/100 30/100 2/100 5/100 10/100 0
(10) 7/100 13/100 25/100 15/100 5/100 13/100 10/100 12/100
(11) 0 0 0 0 30/100 10/100 40/100 20/100
(12) 0 0 0 0 10/100 40/100 30/100 20/100

Transition Matrix (P)

𝑇 𝑅3

(c) Transition matrix P ∗3 .

37

12 Applications: Nearly Uncoupled MCs; Perturbation Estimates

As we mentioned in Chapter 1, transitions between states in the IP model are

more restrictive than that in the nearly uncoupled (ergodic) Markov model. Most of

the applications discussed in Chapter 1 are examples of the nearly uncoupled MCs.

In this section, we will discuss the possibilities of considering the IP model as an

approximation of a nearly uncoupled Markov model. We will show that such an

approximation can be understood in the sense of perturbation applied to a stochastic

matrix.

Assume that M1 = (S1, P1) is a nearly uncoupled model. Let S1 =
∑k

i=1 Li, |S1| =

n, and Li = Ri + Ti. For simplicity, suppose that most of the transitions between

clusters Li and Lj, i 6= j, occur only through some states in Ti, but assume that

there are also small transitions between some states i ∈ Ri and j ∈ Rj, i 6= j, 1 ≤

i, j ≤ k, i.e. 0 < p1(i, j) ≤ ε, for some ε close to zero. In this simple case, we

can obtain another model, M2 = (S2, P2), from model M1 by redistributing these

small probabilities, p1(i, j), i 6= j, i ∈ Ri, j ∈ Rj, back to each island Li, 1 ≤ i ≤ k.

Then, M2 can be thought of as a new model resulting after some perturbation is

applied to the original model M1. Most importantly, M2 is now an IP model. Before

we discuss the perturbation theory of stochastic matrices and present some known

results, we investigate, for this example, the following three ways to redistribute small

probabilities in M1:

(a) Let εi =
∑

j p1(i, j). Then we can divert probabilities p1(i, j), i ∈ Ri, j ∈

{R1, R2, . . . , Rj}, i 6= j, back to the state of origin, i.e. p2(i, i) = p1(i, i) + εi.

38

All other probabilities remain the same. Now there are no small transitions

between the islands other than through state i.

(b) Let |Ti| = ti be the number of ports in the island Li. We can also distribute εi

evenly to the ports Ti, i.e. p2(i, j) = p1(i, j) + εi/ti, j ∈ Ti.

(c) Similar to (b) but we can also redistribute εi evenly to all states in Li, 1 ≤ i ≤ k.

Let π1 and π2 be the invariant distributions for models M1 and M2 respectively.

Let us define the total relative error as

Total relative error =
n∑
i=1

∣∣∣∣π1(i)− π2(i)π1(i)

∣∣∣∣× 100 (3.21)

We performed a simple simulation for an example with 2 clusters to examine if (a), (b)

or (c) is the best method for the redistribution of small probabilities. Note that there

many other ways of such redistribution in addition to the three ways we propose.

Our example consists of clusters, L1 = {1, 2, 3, 4} and L2 = {5, 6, 7, 8, 9}, with most

interactions occurring through states T1 = {3, 4} and T2 = {5, 6} respectively. All

calculations were performed using the GTH/S algorithm.

Simulation 1. Consider state 1→ 7 in the model M1 with a randomly generated

stochastic matrix P1
3. Let p1(1, 7) = ε, where ε ∈ uniform[0, εmax]. All other tran-

sitions between L1 and L2 occur through T1 and T2. For the model M2, we tested

method (a) where we divert ε back to p1(1, 1), i.e. p2(1, 1) = p1(1, 1) + ε. We cal-

culate π2 and compute the total relative error; then we tested method (b) where we

let p2(1, j) = p1(1, j) + ε/2, j ∈ T1; finally in method (c), p2(i, j) = p1(i, j) + ε/4, if

3For each simulation we generate a new matrix P1

39

i, j ∈ L1. By varying εmax, we plotted the total relative errors for 20 simulations4.

For the case of one small transition, as we increase εmax in Figures 6a–6d, we see

that the total relative error increases as expected, but method (b) gives the lowest

total relative error.

0 5 10 15 20

No. of simulations

0

1

2

3

4

5

6

7

8

9

T
ot

al
 R

el
at

iv
e

E
rr

or
 %

#10 -3 Tot. Rel. Error for max.epsilon= 0.000010

back to state
To ports
evenly distribute

(a) ε = unif[0, 0.00001].

0 5 10 15 20

No. of simulations

0

0.02

0.04

0.06

0.08

0.1

0.12

T
ot

al
 R

el
at

iv
e

E
rr

or
 %

Tot. Rel. Error for max.epsilon= 0.000100

back to state
To ports
evenly distribute

(b) ε = unif[0, 0.0001].

0 5 10 15 20

No. of simulations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
ot

al
 R

el
at

iv
e

E
rr

or
 %

Tot. Rel. Error for max.epsilon= 0.001000

back to state
To ports
evenly distribute

(c) ε = unif[0, 0.001].

0 5 10 15 20

No. of simulations

0

1

2

3

4

5

6

7

8

T
ot

al
 R

el
at

iv
e

E
rr

or
 %

Tot. Rel. Error for max.epsilon= 0.010000

back to state
To ports
evenly distribute

(d) ε = unif[0, 0.01].

Figure 6: An example of redistribution of small probabilities (1 state case).

Simulation 2. We now consider the case when p1(1, 7) = ε1, p1(8, 2) = ε2, where

4Pattern is similar for N = 100 or larger. We chose N = 20 so that it is easy to see the pattern.

40

ε1, ε2 ∈ unif[0, εmax]. We calculate the total relative error using method (a) where

p2(1, 1) = p1(1, 1)+ε1, p2(8, 8) = p1(8, 8)+ε2; and we repeat with (b) where p2(1, j) =

p1(1, j) + ε1/2, j ∈ T1 and p2(8, j) = p1(8, j) + ε2/2, j ∈ T2; in method (c) p2(i, j) =

p1(i, j) + ε1/4, if i, j ∈ L1 and p2(i, j) = p1(i, j) + ε2/5, if i, j ∈ L2.

0 5 10 15 20

No. of simulations

0

1

2

3

4

5

6

7

T
ot

al
 R

el
at

iv
e

E
rr

or
 %

#10 -3Tot. Rel. Error for max.epsilon= 0.000010

back to state
To ports
evenly distribute

(a) ε = unif[0, 0.00001].

0 5 10 15 20

No. of simulations

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

T
ot

al
 R

el
at

iv
e

E
rr

or
 %

Tot. Rel. Error for max.epsilon= 0.000100

back to state
To ports
evenly distribute

(b) ε = unif[0, 0.0001].

0 5 10 15 20

No. of simulations

0

0.1

0.2

0.3

0.4

0.5

0.6

T
ot

al
 R

el
at

iv
e

E
rr

or
 %

Tot. Rel. Error for max.epsilon= 0.001000

back to state
To ports
evenly distribute

(c) ε = unif[0, 0.001].

0 5 10 15 20

No. of simulations

0

1

2

3

4

5

6

7

T
ot

al
 R

el
at

iv
e

E
rr

or
 %

Tot. Rel. Error for max.epsilon= 0.010000

back to state
To ports
evenly distribute

(d) ε = unif[0, 0.01].

Figure 7: An example of redistribution of small probabilities (2 states case).

In Figure 7a we can see that the total relative error is small when ε1 and ε2 are

small. For the case with 2 states, we can see that redistributing small transitions

41

evenly among all states in each island consistently gives the lowest relative error. Of

course, this must be tested for large state spaces with more states participating in

such transitions. From Figures 6 and 7, we can see that the total relative error is

about 6% if ε1, ε2 ∈ unif[0, 0.01]. For small transitions, the IP model may not be a

bad approximation of the original model. We may choose to use method (b) or (c)

for the redistribution of small probabilities.

Perturbation Estimates

In this section, we give a brief survey of the perturbation theory of stochastic

matrices. Although we do not present any new results, we use existing results to

understand the redistribution of small transitions, which was discussed in the pre-

vious section. In Chapter 1, we also mentioned that the effect of perturbation on

the invariant distributions of stochastic matrices have been rigorously studied in the

literature. This is particularly relevant to our discussion. First, we mention the two

types of perturbations that have been mostly studied:

Linear perturbation: A perturbation of this type is of the form P2 = P1 +E, where

E is a matrix such that each row sum,
∑

j e(i, j) = 0 and the norm ||E|| is small

relative to 1. Both matrices P1 and P2 are stochastic. The matrix P2 is also referred

to as the perturbed matrix.

Analytic perturbation: A matrix P0 is said to be analytically perturbed if the

perturbation is in the form of power series

P (ε) = P0 + εP1 + ε2P2 + . . . , (3.22)

42

where the coefficient matrices Pk, k = 1, 2, . . . , are known and ε ∈ [0, εmax]. The above

series is assumed to converge in some non-empty neighborhood of ε = 0. If the matrix

coefficients, P2 = P3 = · · · = 0, then the linear perturbation is a special case of the

analytical perturbation in (3.22). Various numerical methods to solve perturbation

of type (3.22) can be found in [3]. Our discussion only involves the case of linear

perturbation.

Let us consider the case of linear perturbation, P2 = P1 + E, where P2 and P1 are

stochastic matrices, and E is some small perturbation applied to P1. Let π1 and π2

be the invariant distributions for matrices P1 and P2, respectively. Then, we have the

following norm-wise perturbation bounds

||π2 − π1|| ≤ k||E||, (3.23)

where k is a condition number. The number k is different under different norms. A

comparison of all the condition numbers is given in [5]. We state the bound given in

[4]. This bound states that sensitivity to perturbation can be measured using mean

passage times.

Theorem 2. [4]

||π2 − π1||∞ ≤
1

2
max
j

[
maxi 6=j mij

rj

]
||∆P ||∞ (3.24)

where mij =
vjj−vij
πj

, r(j) = 1
πj

, ∆P = P2 − P1, and V is the fundamental matrix of

matrix P1.

Notice that when we redistribute small probabilities back to each island according

to method (b) or (c), we form another stochastic matrix that is slightly perturbed. We

43

may use the bound given by Theorem 2 to estimate a bound for our approximation.

Let P2 be obtained from P1 by directing all small transitions of the interior states

according to (b) or (c). For both the cases, it is easy to see that ∆P = P2 − P1, row

sums of ∆P = 0, and ||∆P ||∞ ≤ 2εmax. Here, εmax = max{ε1, ε2, . . . , εi, . . . , εk} and

εi =
∑

j p1(i, j), i 6= j, i ∈ Ri, j ∈ Rj, 1 ≤ i, j ≤ k.

Then, the bound in (3.24) gives

||π2 − π1||∞ ≤ εmax max
j

[
maxi 6=j mij

rj

]
. (3.25)

There is also an explicit formula to calculate π1, in terms of π2, using the famous

theorem by Schweitzer (1968)[24].

Theorem 3. [24] Let (Z1
n) and (Z2

n) be two irreducible MCs defined on the same state

space S with transition matrices P1 and P2 = P1 +E, where E is some perturbation.

Suppose π1 and π2 are the invariant distributions of MCs (Z1
n) and (Z2

n), respectively.

And let V1 be the fundamental matrix of P1 (defined in (3.28)). Then

πT2 = πT1 (I − EV1)−1 and πT2 − πT1 = πT2 EV1. (3.26)

It is also possible to give another bound to the error given by (3.26).

Corollary 3.11. [24] Under the conditions of Theorem 3,

||π2 − π1||1 ≤ ||E||∞||V1||∞. (3.27)

Proof. Using πT2 − πT1 = πT2 EV1, we can see that ||π2 − π1||1 = ||(πT2 EV1)T ||1 ≤

||V T
1 ||1||ET ||1 = ||V ||∞||E||∞.

In the context of our discussion, for small E = ∆P , it may be possible to use the

44

invariant distribution, π2, of the perturbed model, M2, which is also an IP model,

to approximate the actual distribution, π1, of model M1. Note that this bound

still requires the calculation of the fundamental matrix, Z1, for an ergodic MC (Z1
n)

specified by model M1. The fundamental matrix, Z1, is given by

V1 = (I − P1 − A)−1, (3.28)

where I = |P1| × |P1| identity matrix, A = limn→∞ P
n = eπT1 is the limiting matrix

of P and e is vector of size |P1| × 1. We may also use the algorithm given in [30] to

calculate V1. Even though we present an algorithm to calculate matrix, N , which is

a fundamental matrix of a substochastic matrix, it could be interesting to investigate

if we can calculate V1 for the IP model, in parallel.

CHAPTER 4: THE IP MODEL: THE FUNDAMENTAL MATRIX

13 Fundamental Matrix N

Let M = (S, P) be a homogeneous Markov model, where S is discrete, finite, and

P is the transition matrix. Let (Zn) be a MC specified by the model M with an

initial distribution µ0. If the MC (Zn) is ergodic (irreducible, aperiodic, and positive

recurrent), then the fundamental matrix V is defined as

V = (I − P − A)−1, (4.1)

where I = |P1| × |P1| is an identity matrix and A = limn→∞ P
n = eπT is the limiting

matrix of P . The entries of V := {n(x, y) : x, y ∈ S} give the expected number of

visits of the MC (Zn) to a state y from a state x. A recursive algorithm to compute

V , based on the SR approach, is given in [30].

In some cases, one might be interested in calculating the expected number of visits

of the MC (Zn) to states inside some non-empty and non-absorbing subset D ⊆ S

before the time of the first exit to S \ D. Let C = S \ D and D = {1, 2, . . . , k}

be the enumeration of states in D. Let Z0 ∈ D and define the first passage time

τ = min{n > 0 : Zn ∈ C}.

Definition 1. The expected number of visits of the MC (Zn) to y ∈ D from x ∈ D

46

before the time of the first exit τ to C is given by

n(x, y) := E
[τ−1∑
n=0

1{Zn=y}|Z0 = x
]

=
∞∑
n=0

(Q)nxy, x, y ∈ D. (4.2)

In matrix form, equation (4.2) can be written as

N =
∞∑
n=0

Qn, (4.3)

where Q := {p(x, y) : x, y ∈ D} is the transition probability matrix for states in

D. The matrix N is also referred to as the fundamental matrix of the substochastic

matrix Q.

Lemma 4.1. The fundamental matrix N satisfies the equalities

(a) N = I +QN (b) N = I +NQ. (4.4)

According to (4.4) we have

N = (I −Q)−1
(by 4.3)

=
∞∑
n=0

Qn. (4.5)

The inverse and the sum in (4.5) exist. Probabilistically, C can be thought of as

an absorbing state and the MC (Zn), which gets absorbed in C at time τ , is then

a transient MC. As a result, each state y ∈ D is visited only finitely many times.

Hence the sum in (4.5) converges and the middle equality follows from (4.4). Using

results from linear algebra, it can also be shown that the spectral radius, σ, of any

substochastic matrix Q is less than 1, i.e. σ(Q) < 1, and this implies that
∑∞

n=0Q
n

converges and is equal to (I −Q)−1 (see e.g. [23]).

Lemma 4.2. The distribution of the MC (Zn) at the time of the first exit τ to C is

47

given by U = NT .

D

G

𝒙

𝒚

(a) Initial model M1 = (S1, P1).

D

G

𝒙

𝒚

(b) Censored model M2 = (S2, P2).

Figure 8: Censored MCs.

Let (Z1
n) be a MC specified by model M1 = (S1, P1). And let D ⊆ S1, G ⊆ S1,

G ∩ D = ∅, and S2 = S1 \ D. A sample path of the original MC, (Z1
n), is shown in

Figure 8a. Let τ0 = 0, Z1
0 ∈ S2 \ G, and τn+1 = min{n > τn : Z1

n ∈ S2}. By Lemma

2.1, (Z2
n) = (Z1

τn) is a censored MC specified by the reduced-model M2 = (S2, P2).

The sample path for the reduced MC,(Z2
n), is shown in Figure 8b. Notice that the

visits to D, which was eliminated, are censored.

Define the Markov times τ (i) := min{n : Zi
n ∈ G} for i = 1, 2. Let the matrix

N1 := {n1(x, y) : x, y ∈ S1 \ G} be the fundamental matrix of MC (Z1
n) and N2 :=

{n2(x, y) : x, y ∈ S2 \ G} be the fundamental matrix of the censored MC (Z2
n).

Then the entries of matrices N1 and N2 give the expected number of visits inside

S1 \ G and S2 \ G by MCs (Z1
n) and (Z2

n) before the time τ (1) and τ (2) to set G,

respectively. By Lemma 4.2, the distributions at time τ (i) for MCs (Zi
n) are given by

Ui = NiTi, i = 1, 2, where Ti = {pi(x, y), x ∈ Si \G, y ∈ G}.

The following Proposition is due to Sonin [31]. It states that the characteristics

48

given by matrices N and U are invariant under censoring.

Proposition 4.3. [31] Let M1 = (S1, P1) be a Markov model. And let G ⊂ S1, G ∩

D = ∅, D ⊂ S1, and S2 = S1 \ D. Let M2 = (S2, P2) be a D-reduced Markov

model. Let N1 and N2 be the fundamental matrices for MCs (Z1
n) and (Z2

n) defined

for S1 \G and S2 \G, respectively. Then the elements of matrices U1, N1 of model M1

restricted to model M2 coincide with the corresponding elements of matrices U2, N2,

i.e., uG1 (x, y) = uG2 (x, y), x ∈ S2 \G, y ∈ G and nG1 (x, y) = nG2 (x, y), x, y ∈ S2 \G.

According to Proposition 4.3, the distributions uG2 (x, y), y ∈ G, of MC (Z2
n) at the

time of the first visit to G and the expected number of visits to y from x given by

nG2 (x, y) are the same as that of MC (Z1
n) for those states x and y that remain in

model M2. This property holds true for any finite number of repeated eliminations,

provided that state, x, remains in the state space in the calculation of uG(x, y), y ∈ G.

Let D = {1, 2, . . . , k− 1, k} be the enumeration of states in D. If we eliminate states

1, 2, . . . , k − 1 from D, then for state k, Proposition 4.3 implies

uG1 (k, y) = uG2 (k, y) = · · ·uk−1kG(k, y) = pk(k, y)/sk, y ∈ G,

nG1 (k, k) = nG2 (k, k) = · · ·nGk−1(k, k) = nk = 1/ (1− pk(k, k)) .

Our goal in this chapter is to develop the FUNDQ algorithm to compute the fun-

damental matrix N . We will apply the SR approach, use the identities given by (4.4),

and the results of Proposition 4.3 to develop this algorithm.

49

14 The FUNDQ Algorithm

Let M = (S, P) be a model and suppose P is a r × r transition matrix. Let

M1 = (S1, Q1) be the substochastic model, where S1 ⊂ S is a non-absorbing set,

n < r, and Q1 = {p(x, y) : x, y ∈ S1} ⊂ P is a n × n substochastic matrix for S1.

Let N1 be the fundamental matrix of matrix Q1. There is an algorithm presented by

[12] to compute N1, which was also developed in the framework of the SR approach

. This algorithm has the time complexity of order n3. In comparison, the FUNDQ

algorithm, we develop in the next two sections, has the time complexity of order

k(n2) + (n − k)3, 1 ≤ k < n. Because this algorithm is a recursive algorithm, it

consists of two stages — a forward stage and a backward stage. In the forward stage,

we apply the SR approach on Q1 to eliminate states from S1 to obtain a smaller

substochastic matrix Qs, 1 ≤ s < n. We calculate the fundamental matrix, Ns, for

this matrix Qs. In the backward stage, starting with the matrix, Ns, we recursively

compute a sequence of fundamental matrices by inserting states that were previously

eliminated during the forward stage, and calculate the matrix N1 for Q1.

We now describe these two stages of the algorithm in detail.

Stage 1. Forward Stage

In this stage, we apply Lemma 2.1 Chapter 2 on the substochastic matrix Q1,

instead of the stochastic matrix P1, to eliminate states s ∈ S1, 1 ≤ s < n, in n − 1

iterations, to obtain a matrix Qn

Q1 =⇒ Q2 · · · =⇒ Qk · · · =⇒ Qn = {pn(n, n)}, (4.6)

50

where the matrix Qn = {n} has only one state (also see Remark 4.4). We calculate

the fundamental matrix, Nn, for Qn, which is given by

Nn =
1

1− pn(n, n)
.

Remark 4.4. Lemma 2.1 Chapter 2 gives formula (2.2) to calculate the transition

matrix for a censored MC. However, formula (2.2) can also be applied to a substochas-

tic matrix Q. Let D0 ⊆ S1, then the matrix Q can also be decomposed as

Q =


(D0) (S1\D0)

A T

R K

.

We can calculate the matrix Q0, which describes transitions inside of S1 \D0, by

eliminating D0 using formula (2.2)

Q0 = K +RND0T,

where ND0 = (I − A)−1 is the fundamental matrix for the substochastic matrix A.

Stage 2. Backward Stage

In the backward stage of the FUNDQ algorithm, we apply formulas given by Propo-

sition 4.6 to recursively calculate a sequence of matrices

N1 ⇐= N2 · · · ⇐= Nk · · · ⇐= Nn. (4.7)

In each iteration, using Proposition 4.6, we insert a state s ∈ S1 that was eliminated

during the forward stage, and compute the sequence in (4.7). Thus, the matrix Nk in

51

(4.7) represents the fundamental matrix for previously inserted states {k+ 1, . . . , n−

1, n}, including the state k that is inserted at this step.

Remark 4.5. As in Remark 3.4 Chapter 3, it is also possible to eliminate states

{1, 2, . . . , k − 1} ⊂ S1, k < n, and compute matrix Nk = (I − Qk)
−1. Then we can

recursively calculate matrix N1 starting from Nk in k − 1 iterations.

Remark 4.5 will be useful in the algorithm to calculate the fundamental matrix for

the IP model later in this chapter.

Note that Proposition 4.6 gives formulas for one-step recursive calculation of ma-

trices in (4.7). The sequence in (4.7) can be calculated from the repeated application

of Proposition 4.6 for each previously eliminated state s ∈ S1.

Proposition 4.6. Let M = (S, P) be a Markov model and suppose M1 =

(S1, Q1), S1 ⊆ S,Q1 ⊆ P , be the substochastic model. Let N1 be the fundamental

matrix for Q1. Assume, for simplicity, state z ∈ S1 is eliminated from Q1 and it is

located in position (1,1), which we denote by A1. Then the matrices Q1 and N1 can

be represented as below:

Q1 =

 A1 T1

R1 K1

, N1 =

 u1 n1

m1 N2

. (4.8)

The entries of matrix N1 are given by

n1 =
1

sz
(T1 ·N2), m1 =

1

sz
(N2 ·R1), u1 =

1

sz
(1 + n1 ·R1), (4.9)

where sz = 1 − p1(z, z) and N2 = (I − Q2)
−1 is the fundamental matrix for the

52

substochastic matrix Q2 = K1 + 1
sz

(R1 ·T1) obtained from matrix Q1 after eliminating

{z}.

We also give a pseudo-code (3) for the FUNDQ algorithm in the Appendix.

Proof of Proposition 4.6:

Suppose state z ∈ S1 is eliminated. Then the row vector n1 can be obtained from

the equality (4.4)(a)

n1(z, y) = p1(z, z)n1(z, y) +
∑

x∈S1\{z}

p1(z, x)n1(x, y), y 6= z, y ∈ S1. (4.10)

Proposition 4.3 implies that even after the elimination of state z, n1(x, y) = n2(x, y)

for all x, y ∈ S1\{z}. We simplify (4.10) to obtain

n1(z, y) =
1

sz

∑
x∈S1\{z}

p1(z, x)n2(x, y), (4.11)

which, in matrix form, is n1 = 1
sz

(T1 ·N2).

From the equality (4.4) (b), the zth column in matrix N2 is given by

n1(x, z) = 1z(x) + n1(x, z)p1(z, z) +
∑
y∈S1\z

n1(x, y)p1(y, z), x ∈ S1.

Solving for n1(x, z), we obtain

n1(x, z) =
1

sz

(
1z(x) +

∑
y∈S1\{z}

n1(x, y)p1(y, z)
)
. (4.12)

By proposition (4.3) and noting x 6= z, 1z(x) = 0, (4.12) can be written (we name it

53

m1) as

m1(x, z) =
1

sz

(∑
y∈D\{z}

n2(x, y)p1(y, z)
)
.

In matrix form, this is m1 = 1
sz

(N2 ·R1). To calculate u1, we make use of the above

results. If we replace z for x in equation (4.12)

u1(z, z) =
1

sz

(
1 +

∑
y∈S1\{z}

n1(z, y)p1(y, z)
)
.

Replacing the equality for n1(z, y) from equation (4.11), we obtain

u1(z, z) =
1

sz

[
1 +

1

sz

∑
y∈S1\{z}

(∑
x∈S1\{z}

p1(z, x)n2(x, y)
)
p1(y, z)

]
. (4.13)

In matrix form, we can write (4.13) as u1 = 1
sz

(
1 + 1

sz
((T1 ·N2) ·R1)

)
=

1
sz

(1 + n1 ·R1), where we used the equality for n1 in the last equality.

15 Order Count for the FUNDQ Algorithm

Let Q1 be n×n matrix. The calculation of N1 using matrix inversion has the time

complexity of order n3. Let D = {1, 2, . . . , k} ⊂ S1, k < n, be the eliminated set (see

Remark 4.5). In the FUNDQ algorithm,

(i) The calculation of W (and Ŵ) matrices in k iterations requires approximately

2k(n2 + 1) operations.

(ii) The calculation of the matrix Nk+1 has the complexity of order (n− k)3. In

each step, the calculation of n and m vectors requires approximately (n − k)2

multiplications, (n − k)(n − k − 1) additions, and 1 division. The calculation

54

of u requires about (n − k)2 multiplications and (n − k − 1) additions; in k

iterations, the calculation of n, m, and u requires 3k(n− k)2 + n operations.

The total count for our algorithm is approximately 4k(n2 + 1) + (n− k)3 + 3k(n−

k)2 + n. So, the time complexity is approximately of order k(n2) + (n− k)3.

16 Numerical Example

Consider a transition matrix P1 given in Table 4. In this example, state 7 is

absorbing. The submatrix in the square box is the matrix Q1 and the matrix N1 is

calculated directly using the (first) formula in (4.5). All the numbers are rounded off

to 4 decimal places.

Table 4: Matrices P1 and N1.

 [1] [2] [3] [4] [5] [6] [7]

[1] 0 0.4 0 0 0 0 0.6
[2] 0.6 0 0.4 0 0 0 0
[3] 0 0.6 0 0.4 0 0 0
[4] 0 0 0.6 0 0.4 0 0
[5] 0 0 0 0.6 0 0.4 0
[6] 0 0 0 0 0.6 0 0.4

[7] 0 0 0 0 0 0 1

 [1] [2] [3] [4] [5] [6]

[1] 1.6149 1.0248 0.6313 0.3691 0.1943 0.0777
[2] 1.5372 2.5619 1.5784 0.9228 0.4857 0.1943
[3] 1.4206 2.3677 2.9990 1.7533 0.9228 0.3691
[4] 1.2457 2.0763 2.6299 2.9990 1.5784 0.6314
[5] 0.9835 1.6391 2.0763 2.3677 2.5619 1.0248
[6] 0.5901 0.9835 1.2457 1.4206 1.5372 1.6149

𝑁1 =
𝑃1 =

,

We apply the FUNDQ algorithm for matrix Q1. In the forward stage, we eliminate

states 1, 3 and 6. This results into the matrix Q4 of size 3 × 3 which describes

transitions for states 2, 4, and 5. The fundamental matrix for Q4 is given by N4 =

(I −Q4)
−1.

Table 5: Fundamental matrix N4 for Q4.

 [2] [4] [5]

[2] 0.48 0.16 0
[4] 0.36 0.24 0.40
[5] 0 0.60 0.24

 [2] [4] [5]

[2] 2.5619 0.9228 0.4857

[4] 2.0763 2.9990 1.5784

[5] 1.6391 2.3677 2.5619

𝑄4 = 𝑁4 =

55

In the backward stage, we insert states 3, 1, and 6 (in this order) to obtain the

matrices N3, N2, and N1, shown in Table 6 respectively. We use a full-size 6 × 6

matrix (same size as the matrix Q1) to show states that are restored.

Table 6: Insertion of states 3, 1 and 6.

 [1] [2] [3] [4] [5] [6]

[1] 0 0 0 0 0 0
[2] 0 2.5619 0 0.9228 0.4857 0
[3] 0 0 0 0 0 0
[4] 0 2.0763 0 2.9990 1.5784 0
[5] 0 1.6391 0 2.3677 2.5619 0
[6] 0 0 0 0 0 0

 [1] [2] [3] [4] [5] [6]

[1] 0 0 0 0 0 0
[2] 0 2.5619 1.5784 0.9228 0.4857 0
[3] 0 2.3677 2.9990 1.7533 0.9228 0
[4] 0 2.0763 2.6299 2.9990 1.5784 0
[5] 0 1.6391 2.0763 2.3677 2.5619 0
[6] 0 0 0 0 0 0

 [1] [2] [3] [4] [5] [6]

[1] 1.6149 1.0248 0.6314 0.3691 0.1943 0
[2] 1.5372 2.5619 1.5784 0.9228 0.4857 0
[3] 1.4206 2.3677 2.9990 1.7533 0.9228 0
[4] 1.2457 2.0763 2.6299 2.9990 1.5784 0
[5] 0.9835 1.6391 2.0763 2.3677 2.5619 0
[6] 0 0 0 0 0 0

 [1] [2] [3] [4] [5] [6]

[1] 1.6149 1.0248 0.6314 0.3691 0.1943 0.0777
[2] 1.5372 2.5619 1.5784 0.9228 0.4857 0.1943
[3] 1.4206 2.3677 2.9990 1.7533 0.9228 0.3691
[4] 1.2457 2.0763 2.6299 2.9990 1.5784 0.6314
[5] 0.9835 1.6391 2.0763 2.3677 2.5619 1.0248
[6] 0.5901 0.9835 1.2457 1.4206 1.5372 1.6149

𝑁4 𝑁3

𝑁2 𝑁1

17 Application: The Fundamental Matrix for the IP Model

(a) The fundamental matrices obtained from W matrices

In this section, we discuss the fundamental matrix, N , given by the equality (4.4)

in the context of the IP model. Note that a fundamental matrix, N , appears in the

block form (2.1) of the full matrix W in Chapter 2. Also recall that (see Remark 2.3

in Chapter 2) we perform all our calculations with the W matrices. To see why this

is relevant to our discussion, recall that in Stage 1 of the IP algorithm in Chapter

3, we eliminated the interior states, Ri, from each island Li, 1 ≤ i ≤ k. To elaborate

on this further, let matrix W (i), 1 ≤ i ≤ k, denote the full matrix corresponding to

56

the ith island. To calculate the block P ∗ii in matrix P ∗ in (3.8), we let W
(i)
1 = Pi and

eliminate states in Ri using formula (2.8) to obtain matrix W
(i)
Ri

. As in (2.1), we can

represent the matrix W
(i)
Ri

as

W
(i)
Ri

=

 W
(i)
11 W

(i)
12

W
(i)
21 W

(i)
22

 =

 Pi0i0Ni NiPi0i

Pii0Ni P ∗ii

 , (4.14)

where the submatrices Pi0i0 , Pi0i, Pii0 and P ∗ii, were defined in the second matrix in

(3.8). Then, the block P ∗ii is obtained from the matrix W
(i)
Ri

in (4.14), i.e. W
(i)
22 = P ∗ii.

All the other blocks P ∗jj are calculated from the matrices W
(j)
Rj
, 1 ≤ j ≤ k, in a similar

manner.

Let τ i = min(n > 0, Zn ∈ Ti), 1 ≤ i ≤ k, denote the first passage time for some

MC (Zn), specified by the IP model M , to Ti from some state in Ri, 1 ≤ i ≤ k. And

let us introduce the fundamental matrices Ni := {ni(x, y) : x, y ∈ Ri}, 1 ≤ i ≤ k. For

each i = 1, 2, . . . , k, the entries of Ni give the expected number of visits of MC (Zn)

to the interior states, Ri, before the time, τ i, to the ports, Ti, in island Li. To obtain

Ni from W
(i)
Ri

, we recall that the equality (4.4) in Chapter 3 implies that the matrix

Ni satisfies

Ni = I + Pi0i0Ni = I +W
(i)
11 , (4.15)

where I is an |Ri| × |Ri| identity matrix. Using the submatrix W
(i)
11 from matrix W

(i)
Ri

in (4.14), we can calculate Ni using formula (4.15) for Ri, 1 ≤ i ≤ k. That is, for

57

x, y ∈ Ri,

ni(x, y) =


1 +W

(i)
11 (x, x), if x = y,

W
(i)
11 (x, y), otherwise.

Most importantly, we do not require any additional calculations to compute Ni, 1 ≤

i ≤ k, because they can be directly obtained from the W matrices, as we described

above, which were obtained when we calculated π in Chapter 3.

(b) The IP Fund Algorithm

In this section, we present another algorithm to calculate a fundamental matrix

for the case we formulate below. For this, we will make use of Proposition 4.6 of the

FUNDQ algorithm.

Let M = (S, P) be an IP model. Let Di be the set of non-absorbing states in each

island Li, 1 ≤ i ≤ k. Let Q ⊂ P be the substochastic matrix for states in S \ D,

where D =
⋃k
i=1Di. For simplicity, we assume that Di ⊂ Ri and Di ∩ Ti = ∅ for all

1 ≤ i ≤ k. Let Ci = Ri \Di and Si = Li \Di = Ci + Ti. We can easily visualize our

formulation by considering the case when k = 2 as shown in Figure 9.

𝐶1
𝐶2

𝑇1 𝑇2

𝐿1 𝐿2

𝐷1

𝐷2

Figure 9: IP Fund Algorithm: Representation of the state space for the IP model as
an example for the case when k = 2.

Following our representation of a matrix in (3.8) Chapter 3, the matrix Q may also

58

be represented as a union of blocks, ignoring the parts of Q that are always zero.

Q =
(k⋃
i=1

Qi

)
∪
(k⋃

i,j=1

i 6=j

Tij

)
, i, j = 1, 2, . . . , k, (4.16)

where Qi := {p(x, y), x, y ∈ Si} and block Tij := {p(x, y), x ∈ Ti, y ∈ Tj}. The

fundamental matrix N = (I −Q)−1 gives the expected number of visits inside S \D

by some MC (Zn) specified by the IP model, before the time of the first exit τ0 to

D, i.e. τ0 = min{n > 0 : Zn ∈ D}, Z0 ∈ S \D. A matrix representation for the case

when k = 2 is also shown in Figure 10a.

The algorithm to calculate N for the case described above consists of three stages.

We describe each stage in detail.

Stage 1

For each Si, 1 ≤ i ≤ k, we eliminate Ci from the block, Qi, to obtain a smaller

block Q∗ii. After
⋃k
i=1Ci is eliminated from Q, that is, Ci have been eliminated from

all Si, 1 ≤ i ≤ k, we obtain the matrix Q∗. This matrix can also be represented as

Q∗ =
(k⋃
i=1

Q∗ii

)
∪
(k⋃

i,j=1

i 6=j

Tij

)
, (4.17)

where Q∗ii := {p∗(x, y) : x, y ∈ Ti}. The matrix, Q∗, is the substochastic matrix for

the ports T .

Remark 4.7. According to Lemma 3.5 and Remark 3.6 in Chapter 3, the elimination

of interior states in Ci only affects the block Qi, which results in block Q∗ii. Thus,

we can also calculate each block Q∗ii, 1 ≤ i ≤ k, in parallel. The substochastic

matrix, Q∗, can be computed by aggregating block, Q∗ii, and the unchanged block

59

Tij, i 6= j, 1 ≤ i, j ≤ k. See Figures 10a and 10b for an example for the case when

k = 2.

 𝑄22

 𝑄1

T1 T2

C1

T1

𝐶2

𝐷1

𝐷2

𝐷1 𝐶1 𝐶2 𝐷2

T2

R1 R2

 𝑄11

 𝑇12

 𝑇21

0 0

0

0

0 0

 𝑄2

(a) Substochastic matrix Q (in red), D1

and D2 are absorbing.

C1 T1 T2 C2

C1

T1

T2

C2

 𝑇12

 𝑇21

0 0

0

0

0 0

 𝑄11
∗

 𝑄22
∗

× ×

×

×

× ×

(b) Parallel elimination of blocks C1 and
C2.

T1 T2

T1

T2

𝑁∗

(c) Matrix N∗.

Figure 10: IP Fund Algorithm: Summary of Stages 1 and 2 of an example for the
case when k = 2.

Stage 2

In this stage, using the substochastic matrix, Q, calculated in Stage 1 we calculate

the fundamental matrix, N∗ = (I − Q∗)−1, for T . This can be done either using

matrix inversion or by applying the FUNDQ algorithm to Q∗ (see Figure (10c).

60

Stage 3

Let us represent the matrix N in terms of row-blocks

N = [F1 F2 . . . Fi . . . Fk]
T , (4.18)

where each row block Fi := [N(i, 1) . . . N(i, i) N(i, i+ 1) . . . N(i, k)], 1 ≤ i ≤ k, each

block N(i, i) := {n(x, y) : x ∈ Si, y ∈ Ci + T}, and N(i, j) := {n(x, y) : x ∈ Si, y ∈

Cj}, i 6= j, 1 ≤ i, j ≤ k. We have illustrated this representation in Figure 11b.

We may also represent each row block Fi as

Fi = N(i, i) ∪
(k⋃

j=1

i 6=j

N(i, j)
)
, i = 1, 2, . . . , k.

Now let us define the block Ni := {n(x, y) : x, y ∈ Ci + T}. Note that N(ii) ⊂ Ni.

Because of the structure of the IP model and previous results, we have the following

result.

Lemma 4.8. Each block Ni, 1 ≤ i ≤ k, can be computed in parallel.

Proof. Because N∗ =
⋂k
i=1Ni, the proof follows by replacing N2 with N∗ in Proposi-

tion 4.6 and recursively inserting eliminated states x ∈ Ci for each island Li, 1 ≤ i ≤ k

separately (also see Fig.(11a). The calculation of the block, Ni, does not depend on

the calculation of the block, Nj, j 6= i, because states in Ci do not communicate with

states in Cj, 1 ≤ j ≤ k. Since elimination can be done in parallel, insertion, which is

a reverse operation, can also be done in parallel.

We now discuss how blocks N(i, j), i 6= j, 1 ≤ i, j ≤ k, can be computed. Let

us assume that the first state to be restored is the state z ∈ Cj. According to the

61

T1 T2

T1

T2

𝑁∗

C1

C2

T1

T2

𝐒𝟏

𝐒𝟐

𝐍𝟏

𝐍𝟐

(a) Calculation of blocks N1 and N2 in
parallel.

T1 T2

T1

𝑁(1,1)

C1

C2

T2

𝐅𝟏

𝐅𝟐

C1

𝑁(1,2)

𝑁(2,1)

𝑁(2,2)

C2

(b) Row block decomposition of matrix
N .

Figure 11: IP Fund Algorithm: An example of the decomposition of matrix N for
the case k = 2.

equality (4.4)(b), the expected number of visits from x ∈ Si to z ∈ Cj, j 6= i, is simply

the expected number of visits to j ∈ Tj from x, and then, transitioning from j to z

with probability p(j, y), i.e. n(x, z) =
∑

j∈Tj n(x, j)p(j, z), x ∈ Si. After state z is

restored, we repeat the same argument. That is, we insert z′ ∈ Cj, then expected

number of visits from x ∈ Si to z′ ∈ Cj is now the expected number of visits to

Tj
⋃
{z}, and then transitioning to z′.

Now suppose blocks N(i, i), 1 ≤ i ≤ k, were computed using Lemma 4.8, then let

block N(Tj) := {n(x, y) : x ∈ Si, y ∈ Tj} be the part of the block, N(i, i), which

gives the expected number of visits to the ports, Tj, from states in Si, i 6= j. Also,

let z
(j)
1 , z

(j)
2 , .., z

(j)
cj , be the enumeration of states in Cj, |Cj| = cj, in some (arbitrary)

order of insertion. Then each column of the block N(i, j) can be calculated in an

iterative manner using Lemma 4.9.

62

Lemma 4.9. Let N1
j = N(Tj). Then the sth column of block N(i, j), given by ms,

can be calculated for s = 1, 2, 3, . . . , cj,

(i) ms = 1
sz

(
N s
j ·R(j)

s

)
where sz = 1− p(z(j)s , z

(j)
s),

(ii) N s+1
j = [N s

j ms],

where R(j)
s = {p(x, zs) : x ∈ Ci ∪ (z

(j)
1 , z

(j)
2 , . . . , z

(j)
s−1)} is the insertion probability

vector of state z
(j)
s state in Cj ⊂ Lj, i.e., when {z(j)s+1, z

(j)
s+2, .., z

(j)
cj } are still eliminated

from Cj.

Proof. The proof follows from Proposition 4.6 by repeating the calculation of vectors

mz for z ∈ {z(j)1 , z
(j)
2 , .., z

(j)
cj }.

In Lemma 4.9, we can see that the calculation of the block, N(i, j), requires know-

ing the probability vectors, R(j)
s , for each inserted state z

(j)
s , 1 ≤ s ≤ cj . In

particular, this requires communication between all of the islands, i.e. probabil-

ity vector R(j)
s is the vector of state z

(j)
s from set Cj ⊂ Lj obtained after states,

z
(j)
1 , z

(j)
2 , .., z

(j)
s−1(and z

(j)
s , z

(j)
s+1, .., z

(j)
cj , yet to be insterted), have been restored from

the block Cj. We suggest a way to obtain the vectors R(j)
s without any further

calculations. But this requires storing a total of c1 + c2 + · · ·+ cj vectors from all the

islands, and therefore, can take up lots of memory.

Let z
(i)
1 , z

(i)
2 , .., z

(i)
ci be the order of elimination of states from set Ci ⊂ Li, |Ci| =

ci, 1 ≤ i ≤ k. After each state is eliminated from block Qi in (4.16), we obtain a

sequence of matrices

Qi = Q
(i)
1 → Q

(i)
2 → . . . Q(i)

s · · · → Q(i)
ci
, i = 1, 2, . . . , k. (4.19)

63

If we store the vector, R
(i)
s , which is the vector corresponding to the state z

(i)
s ∈ Ci, 1 ≤

s ≤ ci
5, while eliminating Ci from matrix Qi in Stage 1, we obtain the sequence

R
(i)
1 → R

(i)
2 → . . .R(i)

s · · · → R(i)
ci
, i = 1, 2, . . . , k.

Then, for each block N(i, j), i 6= j, we can simply insert the states in Cj in the same

order as we eliminated them in Stage 1 using the probability vectors R(i)
s , 1 ≤ s ≤ ci.

In this way, we can now apply Lemma 4.9 to calculate the block N(i, j), i 6= j, by

calculating the vectors

m1 →m2 · · · →mci . (4.20)

After calculating all of the blocks, N(i, j), j 6= i, j = 1, 2, . . . , k, we aggregate these

blocks, together with the block, N(i, i), we then obtain the row block F (i), i =

1, 2, . . . , k; and finally, we obtain the matrix N according to the representation in

(4.18).

We give a pseudo-code (4) in the Appendix.

18 Numerical Example

Consider an IP model M = (S, P) with the state space consisting of 14 states, i.e.

S = {1, 2, 3, . . . , 11, 12, 13, 14}, and the transition matrix P is given in Table 7. Let

L1 = {1, 2, 3, 4}, L2 = {5, 6, 7, 8}, and L3 = {9, 10, 11, 12, 13, 14}, be the three islands

of this model with ports T1 = {1, 2}, T2 = {5, 6}, and T3 = {9, 10}, respectively. Let

D = {3, 13, 14} where D1 = {3}, D2 = ∅, and D3 = {13, 14}. Define the Markov

5It will be easier to see this if we let Qi to be the matrix Q1 in Proposition 4.6, then R
(i)
s is the

vector R1 corresponding to state z
(i)
s , say, WLOG is z1.

64

time τ = min{n > 0 : Zn ∈ D}. Let Z0 ∈ S \ D. In this case, we are interested in

the expected number of visits to states in islands R1 \D1, R2, and R3 \D3 by a MC

before the time τ .

Table 7: Matrices P and Q (dotted in red).

 3 4 1 2 5 6 9 10 7 8 11 12 13 14

3 10 35 30 25 0 0 0 0 0 0 0 0 0 0
4 20 26 10 44 0 0 0 0 0 0 0 0 0 0

1 20 10 10 10 10 10 20 20 0 0 0 0 0 0
2 23 16 15 4 7 20 10 5 0 0 0 0 0 0
5 0 0 7 13 10 13 19 10 18 10 0 0 0 0
6 0 0 20 10 7 24 5 10 13 11 0 0 0 0
9 0 0 31 10 10 8 8 9 0 0 10 3 5 6

10 0 0 3 18 17 5 5 11 0 0 19 12 2 8
7 0 0 0 0 27 11 0 0 22 40 0 0 0 0
8 0 0 0 0 34 26 0 0 23 17 0 0 0 0

11 0 0 0 0 0 0 21 10 0 0 20 18 1 30
12 0 0 0 0 0 0 15 30 0 0 20 10 20 5

13 0 0 0 0 0 0 7 13 0 0 19 20 11 30
14 0 0 0 0 0 0 15 40 0 0 3 16 21 5

𝑇3 𝑇1
𝑅1

𝑇2
𝑅2 𝑅3

𝑇

1

100

To make our calculations easy to follow, we arrange the substochastic matrix Q :=

{p(x, y) : x, y ∈ S \D} (dotted in red) which is shown in Table 7. The fundamental

matrix N for the matrix Q obtained directly by using formula (4.5) is also given in

Table 8.

65

Table 8: Fundamental matrix N(F1(bronze), F2(sky blue), and F3(light green)).

 4 1 2 5 6 9 10 7 8 11 12
 1.7264 0.8483 1.2045 0.6730 0.8276 0.5930 0.4572 0.4074 0.3871 0.2136 0.1234

 0.4534 1.9546 0.8754 0.9603 1.0512 0.9175 0.6871 0.5502 0.5202 0.3247 0.1871

 0.5278 0.9825 1.8268 0.9136 1.1530 0.7889 0.6127 0.5601 0.5328 0.2854 0.1651

 0.4075 1.2247 1.1191 2.5237 1.6116 1.1843 0.9162 1.1699 1.0814 0.4274 0.2471

 0.4196 1.3452 1.0997 1.4805 2.7370 1.0489 0.9196 1.1160 1.0789 0.4094 0.2395

 0.3463 1.1765 0.8664 1.0066 1.0697 1.8949 0.7467 0.5690 0.5373 0.4788 0.2585

 0.3068 0.8377 0.8954 1.0389 0.9920 0.8523 1.7852 0.5604 0.5267 0.6286 0.3922

 0.4117 1.2671 1.1123 2.1569 2.0073 1.1367 0.9174 2.6453 1.8008 0.4211 0.2444

 0.4124 1.2742 1.1111 2.0953 2.0738 1.1287 0.9176 1.5619 2.4848 0.4200 0.2440

 0.1740 0.5479 0.4621 0.5366 0.5466 0.7778 0.6116 0.2977 0.2805 1.5993 0.4273

 0.1986 0.5970 0.5456 0.6333 0.6304 0.7728 0.8554 0.3478 0.3275 0.6447 1.3799

𝑇3 𝑇1
𝑅1

𝑇2
𝑅2 𝑅3

𝑇

In this example, we will only calculate the row block F1. The calculation of the

other blocks is similar.

In stage 1, we eliminate states {4}, {7, 8}, and {11, 12} (in this order) to calculate

matrix Q∗ for the ports T . We also store the probability vectors, R
(i)
s , for every

eliminated state z
(i)
s ∈ Ci for 1 ≤ i ≤ k. The matrix Q∗ is shown in Table 9.

In stage 2, using formula (4.5), we compute the matrix, N∗, for Q∗, which is given

in Table 10.

Table 9: Substochastic matrix Q∗.

 1 2 5 6 9 10

 0.1135 0.1595 0.1000 0.1000 0.2000 0.1000

 0.1716 0.1351 0.0700 0.2000 0.1000 0.0500

 0.0700 0.1300 0.2756 0.2344 0.1900 0.1000

 0.2000 0.1000 0.2191 0.3309 0.0500 0.1000

 0.3100 0.1000 0.1000 0.0800 0.1187 0.1225

 0.0300 0.1800 0.1700 0.0500 0.1384 0.1956

Table 10: Fundamental matrix N∗.

1 2 5 6 9 10

1.9546 0.8754 0.9603 1.0512 0.9175 0.6871
0.9825 1.8268 0.9136 1.1530 0.7889 0.6127
1.2247 1.1191 2.5237 1.6116 1.1843 0.9162
1.3452 1.0997 1.4805 2.7370 1.0489 0.9196
1.1765 0.8664 1.0066 1.0697 1.8949 0.7467
0.8377 0.8954 1.0389 0.9920 0.8523 1.7852

Then we use Lemma 4.8 to compute the block N(1, 1) first which is given in Table

66

11.

Table 11: Insertion of state 4.

4 1 2 5 6 9 10 7 8 11 12

1.7264 0.8483 1.2045 0.6730 0.8276 0.5930 0.4572 0 0 0 0

0.4534 1.9546 0.8754 0.9603 1.0512 0.9175 0.6871 0 0 0 0

0.5278 0.9825 1.8268 0.9136 1.1530 0.7889 0.6127 0 0 0 0

We now calculate the block N(1, 2) using Lemma 4.9. For this, we first insert state

7 from C2 ⊂ R2. The vector, R7,2, in Table 12 represents the probability of transition

from states 5 and 6 to the inserted state 7.

Table 12: Insertion of state 7.

4 1 2 5 6 9 10 7 8 11 12

1.7264 0.8483 1.2045 0.6730 0.8276 0.5930 0.4572 0.4074 0 0 0

0.4534 1.9546 0.8754 0.9603 1.0512 0.9175 0.6871 0.5502 0 0 0

0.5278 0.9825 1.8268 0.9136 1.1530 0.7889 0.6127 0.5601 0 0 0

p(7,7) 0.3308

 𝑹𝟕
𝟐

p(5,7) 0.2077

p(6,7) 0.1605

Similarly, we insert state 8 to obtain Table 13.

Table 13: Insertion of state 8.

4 1 2 5 6 9 10 7 8 11 12

1.7264 0.8483 1.2045 0.6730 0.8276 0.5930 0.4572 0.4074 0.3871 0 0

0.4534 1.9546 0.8754 0.9603 1.0512 0.9175 0.6871 0.5502 0.5202 0 0

0.5278 0.9825 1.8268 0.9136 1.1530 0.7889 0.6127 0.5601 0.5328 0 0

p(8,8) 0.17

 𝑹𝟖
𝟐

p(5,8) 0.1

p(6,8) 0.11

P(7,8) 0.4

67

To calculate the block, N(1, 3), we insert states 11 and 12 from C3 ⊂ R3. In Table

14, we first insert state 11.

Table 14: Insertion of state 11.

 𝑹𝟏𝟏
𝟑

p(9,11) 0.1067

p(10,11) 0.2167

p(11,11) 0.24

4 1 2 5 6 9 10 7 8 11 12

1.7264 0.8483 1.2045 0.6730 0.8276 0.5930 0.4572 0.4074 0.3871 0.2136 0

0.4534 1.9546 0.8754 0.9603 1.0512 0.9175 0.6871 0.5502 0.5202 0.3247 0

0.5278 0.9825 1.8268 0.9136 1.1530 0.7889 0.6127 0.5601 0.5328 0.2854 0

Finally, we insert state 12 in Table 15 and aggregating N(1, 1), N(1, 2) and N(1, 3),

we have calculated the block F1.

Table 15: Insertion of state 12.

4 1 2 5 6 9 10 7 8 11 12

1.7264 0.8483 1.2045 0.6730 0.8276 0.5930 0.4572 0.4074 0.3871 0.2136 0.1234

0.4534 1.9546 0.8754 0.9603 1.0512 0.9175 0.6871 0.5502 0.5202 0.3247 0.1871

0.5278 0.9825 1.8268 0.9136 1.1530 0.7889 0.6127 0.5601 0.5328 0.2854 0.1651

p(12,12) 0.10

 𝑹𝟏𝟐
𝟑

p(9,12) 0.03

p(10,12) 0.12

p(11,12) 0.18

CHAPTER 5: CONCLUSION

If our Markov model follows the state space configuration (or clustering) of the

IP model, then the algorithms we presented in this thesis have an advantage over

other direct and iterative methods. Because our algorithms give exact results, the

accuracy of our results are superior to any other iterative methods. For any IP Markov

model, large or small, it makes no difference whether we test our algorithm on a large

model or a small model. In this case, the numerical examples given in this thesis

are sufficient. The key issue is actually identifying the number of clusters within the

state space itself. Finding the number of clusters, in any field of research, is not a

trivial problem. It is well-known that such problems are classified as NP hard. We

consider two possible cases where our approach can be useful.

Let us assume that we know the exact number of clusters in our matrix but they are

not ordered cleanly in blocks (as we assumed in Chapter 3). In this case, because the

number of clusters is known a priori, it is simply a permutation problem to identify

which states belong to which clusters. We claim that one can simply use K-means

clustering algorithm to group states into clusters.

The second case deals with the possibility of using the IP model as an approxima-

tion of the nearly decomposable structure that can be found in transition matrices

of many Markov models , for example, in the Web. We can use the approximation

method discussed in Chapter 3 section 12 where we can use εmax as a tuning param-

69

eter to transform a block structure with many small transitions to an IP model by

redistributing small probabilities back to islands. Although the resulting IP model

is an approximation of the original model, we can take advantage of the possibility

of parallel computing that is feasible for the IP model and that our algorithms allow

for. In this case, we lose the precision in our results but we still benefit from parallel

computing. Thus, the results in this thesis can be extended to approximate transition

matrices of nearly decoupled Markov models. For this, we can begin by studying the

effect of the fine turning parameter εmax.

70

REFERENCES

[1] K. Avrachenkov, N. Litvak, and K. S. Pham. A singular perturbation approach
for choosing the PageRank damping factor. Internet Mathematics, 5(1-2):47–69,
2008.

[2] K. Avrachenkov, D. Nemirovsky, and K. S. Pham. A survey on distributed ap-
proaches to graph based reputation measures. In The proceedings of the 2nd inter-
national conference on Performance evaluation methodologies and tools, page 82.
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering), 2007.

[3] K. E. Avrachenkov, J. A. Filar, and P. G. Howlett. Analytic perturbation theory
and its applications, volume 135. SIAM, 2013.

[4] G. E. Cho and C. D. Meyer. Markov chain sensitivity measured by mean first
passage times. Linear Algebra and its Applications, 316(1-3):21–28, 2000.

[5] G. E. Cho and C. D. Meyer. Comparison of perturbation bounds for the sta-
tionary distribution of a markov chain. Linear Algebra and its Applications,
335(1-3):137–150, 2001.

[6] T. Dayar and W. J. Stewart. On the effects of using the Grassmann-Taksar-
Heyman method in iterative aggregation-disaggregation. SIAM Journal on Sci-
entific Computing, 17(1):287–303, 1996.

[7] A. Gambin and P. Pokarowski. A new combinatorial algorithm for large Markov
chains. In Computer Algebra in Scientific Computing CASC 2001, pages 195–211.
Springer, 2001.

[8] W. K. Grassmann and D. A. Stanford. Matrix analytic methods. In Computa-
tional probability, pages 153–203. Springer, 2000.

[9] W. K. Grassmann, M. I. Taksar, and D. P. Heyman. Regenerative analysis and
steady state distributions for Markov chains. Operations Research, 33(5):1107–
1116, 1985.

[10] R. Hassin and M. Haviv. Mean passage times and nearly uncoupled markov
chains. SIAM Journal on Discrete Mathematics, 5(3):386–397, 1992.

[11] M. Haviv and L. Van der Heyden. Perturbation bounds for the stationary proba-
bilities of a finite markov chain. Advances in Applied Probability, 16(04):804–818,
1984.

[12] D. P. Heyman. Accurate computation of the fundamental matrix of a markov
chain. SIAM journal on matrix analysis and applications, 16(3):954–963, 1995.

71

[13] J. J. Hunter. Accurate calculations of stationary distributions and mean first
passage times in markov renewal processes and markov chains. Special Matrices,
4(1):151–175, 2016.

[14] S. Kamvar, T. Haveliwala, C. Manning, and G. Golub. Exploiting the block
structure of the web for computing PageRank. Stanford University Technical
Report, 2003.

[15] J. G. Kemeny and J. L. Snell. Finite Markov chains: With a New Appendix
“Generalization of a Fundamental Matrix”. Springer-Verlag New York, 1976.

[16] J. Koury, D. McAllister, and W. J. Stewart. Iterative methods for computing sta-
tionary distributions of nearly completely decomposable Markov chains. SIAM
Journal on Algebraic Discrete Methods, 5(2):164–186, 1984.

[17] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond: The Science
of Search Engine Rankings. Princeton University Press, 2011.

[18] N. Liu and W. J. Stewart. Markov chains and spectral clustering. In Performance
Evaluation of Computer and Communication Systems. Milestones and Future
Challenges, pages 87–98. Springer, 2011.

[19] C. D. Meyer. Stochastic complementation, uncoupling Markov chains, and the
theory of nearly reducible systems. SIAM Review, 31(2):240–272, 1989.

[20] C. D. Meyer and C. D. Wessell. Stochastic data clustering. SIAM Journal on
Matrix Analysis and Applications, 33(4):1214–1236, 2012.

[21] C. A. O’Cinneide. Entrywise perturbation theory and error analysis for Markov
chains. Numerische Mathematik, 65(1):109–120, 1993.

[22] K. Reichel, V. Bahier, C. Midoux, N. Parisey, J.-P. Masson, and S. Stoeckel.
Interpretation and approximation tools for big, dense Markov chain transition
matrices in population genetics. Algorithms for Molecular Biology, 10(1):1, 2015.

[23] Y. Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[24] P. J. Schweitzer. Perturbation theory and finite markov chains. Journal of
Applied Probability, 5(02):401–413, 1968.

[25] T. J. Sheskin. A Markov chain partitioning algorithm for computing steady state
probabilities. Operations Research, 33(1):228–235, 1985.

[26] I. Sonin. The elimination algorithm for the problem of optimal stopping. Math-
ematical Methods of Operations Research, 49(1):111–123, 1999.

[27] I. Sonin. The state reduction and related algorithms and their applications to
the study of Markov chains, graph theory, and the optimal stopping problem.
Advances in Mathematics, 145(2):159–188, 1999.

72

[28] I. Sonin and C. Steinberg. Continue, quit, restart probability model. Annals of
Operations Research, 241(1-2):295–318, 2012,2016.

[29] I. Sonin and C. Steinberg. Elimination and insertion operations for finite Markov
chains. In Modern Trends in Controlled Stochastic Processes: Theory and Ap-
plications . The University of Liverpool, 2015.

[30] I. Sonin and J. Thornton. Recursive algorithm for the fundamental/group inverse
matrix of a Markov chain from an explicit formula. SIAM Journal on Matrix
Analysis and Applications, 23(1):209–224, 2001.

[31] I. M. Sonin. The optimal stopping of a Markov chain and recursive solution of
Poisson and Bellman equations. In From Stochastic Calculus to Mathematical
Finance: The Shiryaev Festschrift, pages 609–621. Springer Berlin Heidelberg,
2006.

[32] I. M. Sonin. A generalized Gittins index for a Markov chain and its recursive
calculation. Statistics & Probability Letters, 78(12):1526–1533, 2008.

[33] W. J. Stewart. Probability, Markov Chains, Queues, and Simulation: The Math-
ematical Basis of Performance Modeling. Princeton University Press, 2009.

[34] Y. Q. Zhao. Censoring technique in studying block-structured markov chains.
Advances in Algorithmic Methods for Stochastic Models, 417:433, 2000.

APPENDIX

Proofs

Proof of Lemma 2.5: We need to show that π̃C is the invariant distribution of PD.

Let π = (πD, πC) be the stationary distribution for D and C respectively. From the

relation (2.15), we have

[πD πC]

 Q T

R K

 = [πD πC], (5.1)

Therefore, we have

πD = πDQ+ πCR, (5.2)

and

πC = πDT + πCK. (5.3)

Solving these system of equations, we obtain

πD = πCR(I −Q)−1 = πCRND. (5.4)

Substituting equation (5.4) in (5.3), we obtain

πC = πCRNDT + πCK = πC(K +RNDT) = πCPD, (5.5)

74

where the last equality follows from Lemma 2.1. Normalizing πC by
∑

i∈C πi, we

obtain π̄C = π̄CPD. Since the invariant distributions of ergodic MCs are unique, πC

is the invariant distribution of PD.

Proof of Lemma 2.4: If we apply formula (2.8) for x = z, we obtain the equality

wk+1(z, y) =
wk(z, y)

(1− wk(z, z))
, (5.6)

wk+1(z, y)(1− wk(z, z)) = wk(z, y). (5.7)

We replace wk+1(z, y) given by (5.6) in formula (2.8) and solve for wk(·, y) to obtain

wk(·, y) = wk+1(·, y)− wk(·, z)wk+1(z, y), y ∈ S. (5.8)

Now we applying formula (5.8) for y = z gives

wk(·, z) =
wk+1(·, z)

(1 + wk+1(z, z))
. (5.9)

By substituting formula (5.9) for wk(·, z) in (2.8), we obtain insertion formula (2.12).

Proof of Lemma 3.1: (a) Since π(S1) = 1 and π(S1) =
∑

y∈S1
π1(y) = π1(z) +∑

y∈S2
π1(y). Let α1 =

∑
y∈S2

π1(y), then π1(z) = 1 − α1. The equality π1(y) =

α1π2(y), y ∈ S2 follows from Lemma 2.5. To prove formula (3.3), we consider the

balance equation at z,

π1(z) =
∑
y∈S1

π1(y)p1(y, z),

=
∑
y∈S2

π1(y)p1(y, z) + π1(z)p1(z, z), y 6= z,

75

=
1

1− p1(z, z)

(∑
y∈S2

π1(y)p1(y, z)
)
,

(by 3.2)
= α1

1

s1(z)

(∑
y∈S2

π2(y)p1(y, z)
)
, where s1(z) = 1− p1(z, z),

= α1
R1(z)

s1(z)
,

(by 3.2)
= (1− π1(z))

R1

s1(z)
,

=
R1(z)

R1(z) + s1(z)
, (5.10)

= β1R1.

Identity for α1 can easily be derived from (3.2),

α1 = 1− s1(z)

R1(z)

(by 5.10)
=

s1
R1 + s1

.

Proof of Lemma 4.1: The proof for equality (a) follows from Definition 1 by condi-

tioning on an initial transition to some intermediate state z ∈ D, z 6= y, and counting

the first visit as 1 if x = y,

n(x, y) = E
[τ−1∑
n=0

1{Zn=y}|Z0 = x
]
, (5.11)

= 1x(y) +
τ−1∑
n=0

∑
z∈D

P (Zn = y|Z1 = z, Z0 = x)p(x, z),

= 1x(y) +
∑
z∈D

p(x, z)E
[τ−1∑
n=0

1{Zn=y}|Z1 = z
]
,

= 1x(y) +
∑
z∈D

p(x, z)n(z, y).

In matrix form the last equation can be written as N = I +QN .

76

Equality (b) can be proved, in a similar way, by conditioning on the time of the

last exit to y,

n(x, y) = E
[τ−1∑
n=0

1{Zn=y}|Z0 = x
]
,

= 1x(y) +
τ−1∑
n=0

∑
z∈D

P (Zn = y|Zn−1 = z, Z0 = x)P (Zn−1 = z|Z0 = x),

= 1x(y) +
∑
z∈D

p(z, y)
τ−1∑
n=0

P (Zn−1 = z|Z0 = x),

= 1x(y) +
∑
z∈D

p(z, y)E
[τ−1∑
n=0

1{Zn−1=z}|Z0 = x
]
,

= 1x(y) +
∑
z∈D

n(x, z)p(z, y).

In matrix form, the last equation can be written as N = I +NQ.

Remark 5.1. It is also possible to prove the equalities in (4.4) algebraically. Starting

with (4.3) N = I +Q+Q2 + · · · and left multiplication by Q gives QN = Q(I +Q+

Q2 + · · ·) = Q+Q2 +Q3 + · · · = (I +Q+Q2 + · · ·)Q = NQ.

Proof of Lemma 4.2: For any state x ∈ D and y ∈ C, MC (Zn) can either transition

to C in one step, in which case τ = 1, or can transition to state z ∈ D, so,

u(x, y) = P (Zτ = y|Z0 = x),

= P (Zτ = y, τ = 1|Z0 = x) + P (Zτ = y, τ > 1|Z0 = x),

= p(x, y) +
∑
z∈D

p(Zτ = y, τ > 1|Z1 = z)p(x, z),

= p(x, y) +
∑
z∈D

u(z, y)p(x, z).

77

In matrix form, the last equation is U = T +QU = (I −Q)−1T
(by 4.5)

= NT .

Proof of Proposition 4.3: Let x, y ∈ S2 \G. And let

V
(i)
(x,y) =

τ (i)−1∑
n=0

1{Zn=y|Zn=x}

be the number of visits of MC (Zi
n), i = 1, 2, to state y from state x. Notice that

the elimination of set D only reduces the length visits to y but number of visits

V
(1)
(x,y) = V

(2)
(x,y) for MCs (Z1

n) and (Z2
n), respectively. Let τD = τ (1) − τ (2). We now

need to show n1(x, y) = n2(x, y). By definition 1, expectation under the probability

distribution P1 gives

n1(x, y) = E1
[τ (1)−1∑

n=0

1{Z1
n=y}|Z0 = x

]
,

=
τ (2)−1∑
n=0

P1(Z
1
n = y|Z0 = x) +

∑
z∈D

P1(Z
1
τD = y|Z1 = z)p1(x, z),

=
τ (2)−1∑
n=0

P2(Z
2
n = y|Z0 = x) = E2

[τ (2)−1∑
n=0

1{Z2
n=y}|Z0 = x

]
= n2(x, y),

where the second last equality follows because the probability distribution P2 = K +

RU as defined in Lemma 2.1 and V
(1)
(x,y) = V

(2)
(x,y). Proof of uG1 (x, y) = uG2 (x, y) follows

from Lemma 4.2 for all x ∈ S1 \G and y ∈ G since p1(x, y) = p2(x, y).

78

Algorithms

Algorithm 1 The GTH/S Algorithm

1: procedure (Forward Stage)

2: for i = r, r − 1...2 do . Assume P is r × r matrix

3: P2 ← . . . Pi · · · ← Pr−1 ← Pr . |P2| = 2 (two states)

4: end for

5: end procedure

6: procedure (Backward Stage)

7: a2 = (1− p22)−1p12a1 ← aTPr−1 = aT . aT = [a1 a2]

8: k2 ← (1− p22)−1p22
9: for j = 3, 4.....r do

10: Compute kj = (1− pjj)−1(p1j +
∑r−1

i=2 pijki)

11: end for

12: Compute the normalization condition a1 = (1 +
∑r

i=2 ki)

13: for i=1,2.....r do

14: ai = kia1 . a is the stationary vector

15: end for

16: end procedure

79

Algorithm 2 The IP Algorithm

1: procedure (Stage 1)
2: for i, j = 1, 2...k, i 6= j do
3: P ∗ii ← Pi . eliminate set Ri from Li
4: Pij ← P . Obtain (unchanged) blocks Pij
5: end for
6: Obtain matrix P ∗ . Obtain model M∗ = (T, P ∗)
7: end procedure
8: procedure (Stage 2)
9: π∗ ← P ∗ . invariant distribution for model M∗

10: end procedure
11: procedure (Stage 3)(step 1)
12: for i = 1, 2...k, do
13: πi ← P ∗i . invariant distribution for model Mi = (L∗i , P

∗
i)

14: λi ← wi ← πi . coefficients for model Mi

15: end for
16: end procedure
17: procedure (Stage 3)(step 2)
18: for i = 1, 2...k do
19: ei ← λ = {λ1, λ2, . . . , λk} . ei = π(L∗i)
20: π ← ei . invariant distribution for model M = (S, P)
21: end for
22: end procedure

Algorithm 3 The FUNDQ Algorithm

1: Let S1 = {1, 2, . . . , k − 1, k, . . . , n}.
2: procedure (Stage 1. Forward Stage)

3: Wk ← . . .W2 ← W1 = Q1 . (eliminate states (1, 2, . . . , k − 1))

4: Nk ← Qk ← Wk . Nk = (I −Qk)
−1

5: end procedure

6: procedure (Stage 2. Backward Stage)

7: N1 ← N2 ← . . . Nk−1 ← Nk . (insert states (1, 2, . . . , k − 1))

8: end procedure

80

Algorithm 4 The IP FUND Algorithm

1: procedure (Stage 1)

2: for i = 1, 2, ...k do

3: Q∗ii ← Qi, store {R(i)
1 ,R

(i)
2 , . . . ,R

(i)
ci
}

4: Obtain matrix Q∗ . Q∗ is substochastic matrix for T

5: end for

6: end procedure

7: procedure (Stage 2)

8: N∗ ← Q∗ . N∗ = (I −Q∗)−1

9: end procedure

10: procedure (Stage 3)

11: for i = 1, 2, ...k do

12: N(i, i)← Ni ← N∗ . N(i, i) ⊂ Ni

13: for j = 1, 2, . . . , k, j 6= i, do

14: N(i, j)←m1 ←m2 · · · ←mci .← N(i, i)

15: end for

16: Compute Fi . Fi is a row block of matrix N for island Li

17: end for

18: Obtain matrix N

19: end procedure

