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ABSTRACT 
 
 

HILDA VARSHOCHI. The turbulent reacting Richtmyer-Meshkov Instability: A new 
canonical problem in non-premixed combustion. (Under the direction of DR. PRAVEEN 

RAMAPRABHU) 
 
 

We describe detailed high-resolution numerical simulations of a class of shock- 

induced reactive turbulent mixing layers, where the scalar mixing, flow dynamics and 

combustion properties are driven by the Richtmyer-Meshkov (RM) instability. The 3D 

high-resolution, numerical simulations of a reacting RM turbulent mixing layer were 

performed with the astrophysical FLASH code, with modifications to describe chemical 

reactions and heat release relevant to combustion applications. In the numerical 

simulations, a Mach 1.58 shock traverses a diffuse, corrugated material interface separating 

Hydrogen at 1000 K and Oxygen at 300 K, so that local  misalignments between pressure 

and density gradients induce baroclinic vorticity at the contact line. We study the evolution 

of the interface and the flame as the resulting RM instability grows through linear, 

nonlinear and turbulent stages. We develop a detailed understanding of  the effects of heat 

release and combustion on the underlying flow properties by comparing our results with a 

baseline non-reacting RM flow. The shock-driven instability growth enhances mixing at 

the interface, thus creating the conditions for efficient burning at the flame site. Conversely, 

the presence of the flame has a profound effect on the instability growth rates through the 

action of associated combustion waves and heat release at the site of burning. We document 

the properties of the instability (growth rates, molecular mixing fraction) and the flame 

(fluctuations of mixture fraction, temperature, scalar dissipation rate) as well as the nature 

of the coupling between the two. We find the 
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incident shock energizes the flow, increases the scalar dissipation rate, while decreasing 

the Damkohler number. In contrast, the subsequent nonlinear decay of the instability is 

accompanied by an increase in the Damkohler number. We provide simple models that link 

the scalar dissipation rate and other flame-critical quantities to easily measured RM 

instability properties such as the integral mix width and the molecular mixing parameter. 

Our findings are relevant to supernovae detonation, knocking in IC engines and scramjet 

performance, while the underlying flow problem defined here represents a novel canonical 

framework to understand the broader class of non-premixed turbulent flames. 
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CHAPTER 1:  INTRODUCTION 
 

 

The Richtmyer-Meshkov (RM) instability refers to the unbounded growth of 

perturbations at a material interface between different gases, when such an interface is 

impulsively accelerated [1-3]. The impulsive acceleration could be provided by an 

incident shock, such that the perturbation growth is driven by the deposition of baroclinic 

vorticity at the interface due to local misalignments between the shock and the interface 

[4-6]. As a result, the ensuing perturbation growth proceeds through linear[1,7] , 

nonlinear [8,9], and turbulent [10] stages. The eventual turbulent state in such flows may 

either be profoundly detrimental to design objectives in applications such as Inertial 

Confinement Fusion [11], or if properly manipulated could benefit the performance of 

devices such as Scramjet engines [12]. In the latter application, the instability-driven 

turbulent mixing between fuel and oxidizer streams can be rate-limiting to the 

combustion process. Thus, the flow affects the flame and vice-versa. In his review of 

turbulent mixing, Dimotakis [12,13] proposed a hierarchy of mixing processes extending 

from passive scalar (Level 1) to so-called Level 3 mixing, where the flow dynamics and 

active scalar mixing are intimately coupled. Such a direct coupling between flow and 

non-premixed flame dynamics suggests two opportunities: (i) In a carefully defined 

problem configuration, essential flame properties may be characterized in terms of RM 
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flow properties which are easier to measure without the use of expensive laser 

diagnostics. Such an understanding can point the way to the design of experiments in 

which measurements of integral quantities such as the turbulent mixing width may be 

related to combustion properties. (ii) Insights in to the coupling between flame and flow 

characteristics in the context of non-premixed RM combustion can lead to control 

strategies that achieve a desired combustion state by employing ‘designer’ initial 

conditions. In this work, we tackle the first issue by defining and studying a novel RM 

flame configuration, which we believe will lead to insights in to the broader class of 

turbulent, non-premixed flames.  

The role of RM-driven mixing in shaping the evolution of a spherical flame 

bubble has been investigated extensively through experiments and numerical simulations. 

Early efforts include the experiments of Markstein [14] who investigated the interaction 

of a planar incident shock with a spherical flame bubble. The experiments suggested a 

link between the baroclinic vorticity deposition from shock impact and the subsequent 

development of a chaotic flame through instability. RM-driven mixing was investigated 

theoretically by Picone [6] in the context of shock interaction with a cylindrical flame 

region. The problem has also received attention in several numerical studies including the 

study of shock-flamelet interactions [15-17], shock interactions with cylindrical jet 

flames [18], and DDT in shock-bubble configurations [19]. Haehn et al.[20] reported 

results from an experimental study in which an incident shockwave is focused by a 

spherical bubble containing a premixed composition of H2, O2 and Xe. The shock 

focusing by the spherical gas lens creates a local hot spot that triggers ignition, followed 

by burning that envelopes the bubble region. While these efforts have led to significant 
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insight into the interaction of a planar shock with a cylindrical or spherical flame/bubble, 

they represent an idealization of RM-driven combustion in applications which 

predominantly feature a material interface subjected to random perturbations. The 

requirement to model controlled initial perturbations has led to recent numerical 

simulation studies in which shocks accelerate planar premixed flames subjected to well-

defined initial conditions. For instance, Khokhlov et al. [21] investigated the growth of a 

sinusoidally perturbed, premixed flame upon shock impingement, and found the energy 

release from combustion scaled with the RM driven interfacial surface growth. In this 

work, we have explored for the first time the relationship between RM-driven flow 

properties and flame characteristics in a non-premixed setting with well-defined initial 

conditions – a flat interface with imposed perturbations.  

Thus, our objectives in this work are threefold: 1- To investigate the effect of 

reactions on RM integral quantities such as mixing width and molecular mixing 

parameter, 2- To evaluate the self-similarity of turbulent flow under the influence of 

combustion heat release 3- To propose simple models to estimate turbulent flow 

quantities (such as mixture fraction and mean scalar dissipation rate) purely in terms of 

RM integral parameters.  

We briefly review the phenomenology of non-reacting RM, before a detailed 

discussion of its reacting counterpart that is the centerpiece of this work. When a sharp 

interface between different gases is impulsively accelerated by a shock, perturbations of 

wavelength  and initial amplitude ℎ଴ will grow according to  

ℎሶ
଴ = ݇Δܷ ܣℎ,        (1.1) 
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where ݐܣ =
ఘమିఘభ

ఘమାఘభ
 is the Atwood number characterizing the density discrepancy between 

the gases and U is the jump velocity acquired by the interface as a result of the shock 

contact. Equation (1.1) was obtained by treating the acceleration from the shock as an 

impulse function [1], and integrating the resulting perturbation equations. However, the 

applicability of the so-called impulsive model is limited by two factors: Eq. (1.1) is valid 

only in the limit of weak shocks and vanishingly small perturbations. The former shortfall 

was addressed by Richtmyer [1] himself by numerically solving the linearized 

hydrodynamic equations. The latter concern implicates many RM experiments [2,22-26], 

since they typically violate ݇ℎ଴ ≪ 1 where ݇ =  
ଶగ

ఒ
 is the wavenumber of imposed 

perturbations.  

When large initial amplitudes are present at the interface, the peak growth rate is a 

fraction of the prediction from eq. (1.1) (or the more extensive linear theory). 

Furthermore, at large A perturbations become asymmetric, so that it is useful to 

differentiate bubbles of light fluid penetrating the heavy, from spikes of the heavy fluid 

traveling in the opposite direction. Several models have been proposed to describe the 

growth rate attenuation due to nonlinearity [27,28], with varying degrees of success in 

predicting experimental/simulation results. When a spectrum of modes is present at the 

initial interface, the flow evolves in to turbulence through a combination of bubble 

competition and merger mechanisms [29,30]. The resulting flow is self-similar, while 

there is strong evidence the aggregate mixing width follows the power law: 

ܹ = ଴ܹ(ݐ −  ଴)ఏ.         (1.2)ݐ



5 
 

Experiments [31] and numerical simulations [32] suggest the power law exponent 

depends weakly on the Atwood number, and varies from 0.1 to 1.  

The rest of this document is structured as follows: In chapter 2, we describe the 

problem configuration investigated here and provide the details of the numerical 

techniques employed. We provide insight to RMI driven non-premixed combustion by 

analyzing results of two simple configurations in chapter 3. Turbulent flow properties in 

RM driven flows are presented in chapter 4. Chapter 5 section 1 is a discussion of 1D 

flame dynamics, while the self-similar behavior of non-premixed RM flames is discussed 

in § 5.2. The effect of flame presence on the evolution of the turbulent RM mixing layer 

is presented in § 5.3. We continue chapter 5 by proving power-law analysis of mixing 

width in 5.4 and a discussion on molecular mixing width and intensity of segregation in 

5.5.  In chapter 6, we propose a simple model for mixture fraction variances ݖᇱଶ, and 

mean scalar dissipation rate ( ߯) in terms of RM integral quantities. Lastly, some 

concluding thoughts are presented in chapter7. 

 

 

 

 

 

 

 

 

  



 

 

 

 

CHAPTER 2:  NUMERICAL METHODS AND PROBLEM SETUP 
 

 

In this chapter we briefly describe the FLASH code along with capabilities relevant to 

the problem studied here. We also describe the problem configuration, initial conditions 

and boundary conditions employed.  

 

2.1 FLASH Code Description  

The simulations described in this work were performed using the massively 

parallel astrophysical FLASH code [33,34], with modifications by Attal et al. [35] that 

included several capabilities relevant to the description of combustion applications. 

FLASH uses the directionally split, Piecewise Parabolic Method (PPM) [36], to solve the 

compressible Euler equations. The Equation of State (EOS) unit in FLASH was modified 

[35] to handle multiple species, each with temperature-dependent properties, and can be 

invoked in three distinct modes using different pairs of thermodynamic input properties: 

density-temperature, density-pressure and, density-internal energy.  

2.2 Hydrodynamics Unite: 

The compressible Euler equations (2.1) – (2.3) are solved in the Hydro unit [33]: 

ௗఘ

ௗ௧
+  ∇. (ܸߩ) = 0,         (2.1) 
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ௗఘ௏

ௗ௧
+  ∇. (ܸܸߩ) + ∇ܲ =  (2.2)        ,݃ߩ

ௗఘா

ௗ௧
+  ∇. ሾ(ܧߩ + ܲ)ܸሿ = .ܸߩ ݃       (2.3) 

where g, ߩ, V, P and E are the gravitational acceleration, density, velocity, pressure and 

the total energy per unit mass, respectively. The internal energy (݁) is obtained separately 

from equation (2.4),  

ௗఘ௘

ௗ௧
+ ∇. ሾ(݁ߩ + ܲ)ܸሿ − ܸ. ∇ܲ = 0.       (2.4) 

In multi species mixtures, conservation equation (2.5) is applied on each species.  

డఘ௒೔

డ௧
+  ∇. ߩ) ௜ܻܸ) = 0         (2.5) 

where ௜ܻ is the mass fraction of the ith species. 

Finally, pressure is computed using an ideal gas equation of state (§ 2.3). 

The matrix of Euler equations, is handled and solved using directionally split 

Piecewise Parabolic Method (PPM) [36] in FLASH. PPM is an extension to second order 

of the first order Godunov method [37]. 

2.3 Equation of State (EOS) Unit 

For the simulations reported herein, the EOS unit was invoked in density-pressure 

mode, so that the temperature of the mixture is computed first based on the mixture 

molecular weight using the equation: 

ܶ =  
஺ೌೡ೒௉

ோఘ
,           (2.6) 
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where ܴ is the universal gas constant and ܣ௔௩௚ is the mixture’s average atomic mass. 

 :௜ and mole fraction ௜ܻ according toܣ ௔௩௚ is calculated from each species atomic massܣ

ଵ

஺ೌೡ೒
=  ∑ ௒೔

஺೔
௜ ,          (2.7) 

where, subscript ݅ stands for individual species. The adiabatic index of each species is 

then calculated as a function of temperature [38]: 

஼೛೔

ோ
=  ܽଵ + ܽଶܶ + ܽଷܶଶ + ܽସܶଷ + ܽହܶସ , ܶ >  (a-2.8)    ܭ 1000

஼೛೔

ோ
=  ଼ܽ + ܽଽܶ + ܽଵ଴ܶଶ + ܽଵଵܶଷ + ܽଵଶܶସ , ܶ >  (b-2.8)    ܭ 1000

where ଼ܽ −  ଼ܽ are thermodynamic polynomial coefficients of species ݅ [38] 

The mixture adiabatic index is calculated according to: 

௔௩௚ߛ =  1 + ቀ ௔ܹ௩௚ ∑ ௜ܹ
ே
௜

௒೔

ఊ೔ିଵ
ቁ

ିଵ
,       (2.9) 

where ௜ܹ, ௜ܻ and, ߛ௜ are the molecular weight, mass fraction and adiabatic index of each 

species, while ܯ௔௩௚ is the average molecular weight of the mixture. Finally, the internal 

energy is computed using the following equation: 

݁ =
ோ்

஺ೌೡ೒൫ଵିఊೌೡ೒൯
.         (2.10) 

2.4 Viscosity and Thermal Conductivity 

The diffusion of mass, momentum and heat are captured in FLASH through 

associated fluxes imposed on the cell boundaries. The flux-based diffusion solver is an 

indirect method to account for diffusion effects, that does not operate on the primary 

variables, instead updating the fluxes due to diffusion heat, mass and momentum [33]. 
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We implement the semi empirical method presented by Wilke [39] to compute viscosity 

of the gas mixture, ߤ௠௜௫, as shown in eq. (2.11): 

௠௜௫ߤ =  ∑ ఓ೔௑೔

∑ ௑೔ ః೔ೕ
ಿ
ೕసభ

ே
௜ୀଵ          (2.11-a) 

and 

௜௝ߔ  =  
ଵ

√଼
൬1 +

஺೔

஺ೕ
൰

ି
భ
మ

൭1 + ൬
ఓ೔

ఓೕ
൰

భ
మ

൬
஺೔

஺ೕ
൰

భ
ర
൱

ଶ

,      (2.11-b) 

where dynamic viscosity of each species,  ߤ௜, is determined as a function of temperature 

in the form of a polynomial curve fit with 8 coefficients [40]: 

݈݊ ௜ =  ܾଵ݈݊ ܶ +
௕మ

்
+

௕య

்మ + ܾସ, ܶ >  (a-2.12)      ܭ1000

௜ߤ݈݊ =  ܾହ݈݊ ܶ +
௕ల

்
+

௕ళ

்మ + ଼ܾ, ܶ <  (b-2.12)     .ܭ1000

In the same manner, thermal diffusivity of pure elements is computed from a 

polynomial curve fit with 8 coefficients: 

௜ߣ݈݊ =  ܿଵ݈݊ ܶ +
௖మ

்
+

௖య

்మ + ܿସ, ܶ >  (a-2.13)      ܭ1000

௜ߣ݈݊ =  ܿହ݈݊ ܶ +
௖ల

்
+

௖ళ

்మ + ଼ܿ, ܶ <  (b-2.13)     .ܭ1000

The multi-species mixture conductivity is the result of combination averaging of 

single species thermal diffusivities: 

௠௜௫ߣ =  
ଵ

ଶ
൬∑ ௜ܺ௜ߣ + ቀ∑ ௑೔

ఒ೔

ே
௜ୀଵ ቁ

ିଵ
ே
௜ୀଵ ൰.     (2.14) 
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Finally, assuming unity Lewis number , the mixture mass diffusivity is computed 

from eq (2.15): 

௠௜௫ܦ =  
ఒ೘೔ೣ

ఘ௖೛௅௘
.          (2.15) 

2.5 Reaction Mechanism 

We use a detailed 9 species, 19-step reaction mechanism attributed to[41] to 

describe H2-O2 reaction kinetics in FLASH. The forward reaction rates are given by the 

Arrhenius equation: 

݇௙௝ = ି݁ ఈିܶܣ
ಶ೒
೅ೃ  ,         (2.16) 

where ܣ is the pre-exponential factor, ߙ is the temperature index and ܧ௚ is the activation 

energy. To compute the backward reaction rates (݇௕௝), we first calculate the equilibrium 

constants (ܭ௖) as a function of the species concentration, and corresponding changes in 

the Gibbs free energy (Δ்ܩ) due to changes in temperature[42]:  

௖ܭ = ቀ
ோ்

௉
ቁ  ି∆జ݁ቀ

౴ಸ೅
ೃ೅

ቁ          (2.17)  

In eq. (2.17), ∆߭ is the change in the mole number between reactants and products. The 

backward reaction rates are then obtained from: 

݇௕௝ =
௞೑ೕ

௄೎
.          (2.18) 

The resulting system of N number of ODEs (governing N species) is solved using 

an implicit Bader-Deuflhard [43] scheme in FLASH in conjunction with a MA28 linear 

algebra package [44]. Finally, the energy generated over each time step dt is computed 

using 
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݁௚ =  ∑
௛೑೔

஺ೕ

ே
ଵ  ( ௧ܻ − ௜ܻ೟శ ∆೟

),         (2.19)  

where hfi is the heat of formation and Yi,t and Yi,t+dt are mass fractions of the ith species at 

times t and t+dt respectively. For a detailed summary of modifications to FLASH and 

validation efforts, we refer the reader to [35]. 

2.6 Problem Setup 

We study the interaction of a Mach 1.58 shock with an initially diffuse, 

multimode interface between Hydrogen and Oxygen in the numerical shock tube 

configuration shown in fig. 1(a). The concentration of hydrogen over the interface 

thickness varies as 

ுܻమ
=  

ଵ

ଶ
ቀ√గ൫௫ିௌ(௬,௭)൯ ݂ܿݎ݁

௅ ଵଶ଼⁄
ቁ,         (2.20) 

where ܵ(ݕ, ,ݕ) are the x-heights of perturbations on the interface at each (ݖ  coordinate (ݖ

and ܮ is the shock tube width. The shock originates in the light fluid (H2) at x = xs and 

crosses the interface to the heavy fluid (O2), depositing baroclinic vorticity at the contact 

line in the process. Due to the impedance mismatch between the gases, the shock-

interface interaction results in a transmitted shock in O2 (traveling at Wt ≈ 1.09 ݁5 cm/s), 

and a reflected shock in the light gas (with velocity Wr ≈ 0.77݁5  cm/s). For these 

conditions, the jump velocity U acquired by the interface following the shock 

interaction is ~ 7.1 ݁4 cm/s, in good agreement with predictions from the Rankine-

Hugoniot conditions [45]. We impose a corresponding negative particle velocity (=-U) 

throughout the computational domain, so that following the shock impact, the interface 

traverse is arrested. This allows us to extend our simulations to very late (self-similar) 
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times, without resorting to a large aspect ratio computational domain. The O2 and H2 

streams are initialized at 300K and 1000 K respectively, so that the corresponding pre-

shock Atwood number (At 
ఘೀమି ఘಹమ

ఘೀమାఘಹమ
) is 0.65. Density compression by the shock 

modifies the Atwood number to a post-shock value of 0.66 and is consistent with the 

estimate from Rankine-Hugoniot equations [45]. In our reacting RM simulations, density 

changes in the flame region due to ignition further modifies the maximum Atwood 

number to ~ 0.78 between Oxygen (ߩைమ
=  1.06 ݁ − 3 ݃ ܿ ଷ⁄ ) and flame (ߩ௙௟ = 1.36݁ −

4 ݃ ܿ ଷ⁄ ) region.   

The 3D numerical shock tube is shown in figure (1a) and has a square cross-

section with dimensions 6 cm x 6 cm along the lateral (y-z) directions. In the direction of 

shock propagation (x-), the shock tube has a length of 9 cm (aspect ratio = 1.5) for all 

simulations reported here. Periodic boundary conditions were used along the lateral 

walls, while outflow conditions were implemented at the inlet and outlet surfaces to 

permit the reflected and transmitted shock waves to exit without acoustic reflections. We 

characterize the growth of the mixing layer by tracking the evolution of the mixture 

fraction (܈) defined as [46]:  

Z =  
బ.ఱ ೋಹ

ೈಹ
ା(௓ೀ,೚ೣି௓ೀ) ௐೀ⁄

బ.ఱ ೋಹ,೑ೠ
ೈಹ

ା
ೋೀ,೚ೣ

ೈೀ

,        (2.21-a) 

where, 

ܼை = ைܹ ൬2
௒ೀమ

ௐೀమ
+

௒ೀ

ௐೀ
+

௒ಹమೀ

ௐಹమೀ
+

௒ೀಹ

ௐೀಹ
+ 2

௒ಹೀమ

ௐಹೀమ
+ 2

௒ಹమೀమ

ௐಹమೀమ
൰   (2.21-b) 

and 
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ܼு = ுܹ ൬2
௒ಹమ

ௐಹమ
+

௒ಹ

ௐಹ
+ 2

௒ಹమೀ

ௐಹమೀ
+

௒ೀಹ

ௐೀಹ
+

௒ಹೀమ

ௐಹೀమ
+ 2

௒ಹమೀమ

ௐಹమೀమ
൰.  (2.21-c) 

In this notation, ௜ܹ and ௜ܻ are the molecular weights and mass fractions of species 

݅, while ܼு,௙௨ and ܼை,௢௫ are the values of ܼு and ܼை within the pure fuel and oxidizer 

streams. In our study, ܼு =  ܼை = 1.0, so that the fuel and oxidizer streams are free from 

dilution. In contrast with other scalar quantities that experience fluctuations and rapid 

gradient changes, the mixture fraction defined in eq. (2.21) satisfies monotonicity across 

the mixing zone for both reacting and non-reacting flows and thus provides a consistent 

basis to compare the two. As a result, we use the planar (y-z) average of the mixture 

fraction <Z> to compare the properties of the reacting and non-reacting RM flows and to 

diagnose the growth of the mixing layer in each case. 

The initial material interface between the fuel and oxidizer is perturbed according 

to the multimode function prescribed by [47] where the perturbation amplitudes are 

specified according to: 

ℎ ൫ݕ, ,ݖ ݐ  = 0൯ = 

∑ ൛ܽ௞ ൯ݕ൫݇௬ݏ݋ܿ ((ݖ௭݇)ݏ݋ܿ + ܾ௞ ൯ݕ൫݇௬݊݅ݏ ((ݖ௭݇)ݏ݋ܿ +௞೤௞೥

ܿ௞ ൯ݕ൫݇௬ݏ݋ܿ ((ݖ௭݇)݊݅ݏ + ݀௞ ൯ݕ൫݇௬݊݅ݏ  ൟ     (2.22)((ݖ௭݇)݊݅ݏ

Note that ܽ௞, ܾ௞, ܿ௞ and ݀௞ are modal amplitudes specified as random functions, 

but with energy concentrated in modes 8 – 16. Additionally, a random phase is added to 

each term to avoid concentrated peaks and valleys in the perturbation function. The rms 

amplitude of the perturbation was specified to be ≈ ௠௜௡ߣ0.1 = 0.0375 ܿ݉, to ensure 

every mode in the initial conditions evolves first with a linear growth rate (i.e. kh0 << 1). 
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Figure1 (b) shows the initial interface with the imposed perturbation field h(y,z) from eq. 

(2.22). The simulations were performed with Adaptive Mesh Refinement (AMR) with 

resolution equivalent to a uniform mesh of 256 (448) zones/L in all directions for the 

non-reacting (reacting) simulations. At this mesh resolution, the shortest waves in the 

initial condition wavepacket (min) would be resolved with 32 zones spanning the 

wavelength. A detailed discussion and justification of the grid resources employed in our 

simulations is presented in the appendix. 
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Figure 2.1: (a) Problem configuration employed in FLASH simulations of multi-mode 

reacting and non-reacting RM Instability and (b) initial mixture fraction perturbation field 

imposed on the interface.  

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 



 

 

 

 

CHAPTER 3: SIMPLE CONFIGURATIONS OF SHOCK DRIVEN NON-
PREMIXED COMBUSTION 

 

In this chapter, we analyze simpler configurations of shock driven non-premixed 

combustion with the objective of providing some insight into the phenomena. The 

analysis in this chapter was performed on simulations that were carried out by [35,48- 

and reported therein. First, we describe shock-driven combustion of an H2 bubble in 

air[35]. In the second problem we study the results of simulation [48] of the interaction of 

a shock wave with a sinusoidal interface between H2 and O2.  

3.1 Shock-Bubble Interaction: Configuration 

A spherical hydrogen bubble moves toward and interacts with a stationary planar 

shock wave of Mach number 2. The problem configuration is according to [49] and is 

shown schematically in figure 3.1. The physical domain for this 2D problem consists of a 

rectangular domain of dimensions 3cm by 1.5 cm. The H2 bubble diameter is 0.5 cm 

while the stationary shock wave is located at x = 0.7. The hydrogen bubble approaches 

the shock with an ambient velocity Uu= 1.24e5 cm/s. The initial distance between the 

bubble surface and the shock is 0.2 mm, the pre-shock temperature and pressure specified 

to be 1000 K and 1 atm respectively, for both air and the hydrogen bubble. The shocked 

air on the left side of the domain is initialized with ambient velocity of US= 4.3e4 cm/s, 
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temperature of 1565 K and pressure of 4.4 atm. The mass fraction for H2 bubble as a 

function of radius is specified by [41]: 

  ுܻమ
=  

ଵ

ଶ
ቂ1 + ℎ݊ܽݐ ቀ

௥೎ି௥

ௌ
ቁቃ (3.1) 

ݎ =  ඥ(ݔ − ଴)ଶݔ + ݕ) −  ଴)ଶ  (3.2)ݕ

where S represents the sharpness of the interface, rc is the bubble radius and (x0, y0) 

determine the location of the bubble center. As stated in [35], S was chosen to be 3, 

which yields a value of 2.5e-2 cm for the initial interface thickness. As a result of the 

interaction between the shock wave and the bubble, shock waves travel towards the right 

outlet boundary at x=3 cm. Both inlet and outlet boundary conditions are set as outflow 

surfaces. Numerical mass diffusion and implicit thermal and viscous diffusion were used 

in this simulation [35]. The implicit diffusion solver was employed over a uniform grid 

with 1280x640 zones resolution. Viscosity and thermal conductivity were calculated 

using combination averaging formulas given in [50].  Combustion of hydrogen and 

oxygen has been modeled by detailed chemistry involving 9 species and 19 step 

reversible reaction mechanisms [41]. 

3.2 Shock-Bubble Interaction: Discussion  

Figure (3.2) shows contours of Temperature, H2O mass fraction and magnitude of 

vorticity at different times. In fig. 3.2 (a), the shock has just hit the bubble and 

compressed the interface. Temperature increases at points of shock impact, while the 

mass fraction of H2O is insignificant at this stage, since there has been insufficient 

mixing and combustion up to this point in the simulation. Thus, temperature increases are 

confined to localized regions within the computational domain. At t = 10 μs, (fig. 3.2 



18 
 

(b)), a large portion of H2 has traveled into the shocked region; the temperature has 

reached about 2000 K in the reaction zone (the narrow C-shaped region), where H2O is 

being produced as a result of combustion. The magnitude of H2O mass fraction and 

vorticity is still small compared to their values at late times. At t = 20 μs (fig. 3.2 (c)), 

there is significant vorticity accompanying high values of H2O mass and a large reaction 

zone, that is visible from the temperature contours. At t = 40 μs, large areas of mixing are 

visible, but the peaks of each quantity decrease. This occurs due to the limited amount of 

fuel (H2), in the domain, the mass fraction of which is constantly decreasing so that by t = 

40 μs, the fuel is completely used up. Fig. 3.3 shows the pressure field and ܻ2ܪ  at t = 3.5 

μs. The pressure distribution on the dashed line is shown in Fig. 3.4. The figure shows the 

pressure distribution along y = 0 cm, from FLASH and the results presented in [41], and 

shows very good agreement between our simulations and those of [41]. In the figure, the 

transmitted shock wave can be seen as a local maximum value at x ~ 0.43 cm. The local 

peak at x ~ 0.55 cm is associated with the reflected shock, returning from the left side of 

the compressed bubble, while the local maximum at x ~ 0.7 cm shows the reflected shock 

wave coming from H2-Air interface on the right side of the compressed bubble.  In fig 

3.5, we plot the time evolution of the integral heat release rate, total circulation within the 

domain, and the rate at which total mass of H2O inside the computational domain is 

changing. All quantities have been scaled to fit within the same plot. The total mass of 

H2O within the domain is calculated by 

ுమைܯ ≡ ׬ ுܻమை(3.3)         ܸ݀ߩ 

where, ܻ2ܱܪ and ߩ are the mass fraction of H2O and density. Similarly the integral heat 

release rate is defined according to 



19 
 

ܥ ≡ ׬
ழ௘೒வ

∆௧

ஶ
଴

 (3.4)         ݔ݀

where, ݁݃ is the heat added per unit mass due to combustion over a simulation timestep 

 and <∙> indicates planar averaging along the y - direction. Finally, the total , ݐ∆

circulation within the domain is defined using equation (3.5). 

Γ =  ∬ ሬ߱ሬԦ.
஺

 Ԧ          (3.5)ܣ

Here, ሬ߱ሬԦ is the vorticity vector and ܣԦ is the area vector normal to the plane. The rate at 

which total mass of H2O inside the computational domain is changing is given by 

ሶܯ ுమை ≡
∆ெಹమೀ

∆௧
.         (3.6) 

 Fig. 3.5 shows the onset of circulation within the domain coincides with the 

arrival of the shock at t = 1.5 μs. This process is driven by the deposition of baroclinic 

vorticity by the incident shock. Following the initial increase the circulation is nearly 

constant for this flow. The integral heat release rate and the rate of formation of product 

ሶܯ) ுమை) closely track the progress of combustion within the domain. Both quantities 

report an initial increase around t ≈ 6 µs, by which time the entire bubble has been 

engulfed by the shock. Peak values of the quantities are achieved at t ≈ 15 µs, following 

which C and  ܯሶ ுమை decay owing to the depletion of available fuel in the domain. In 

contrast, the total mass of H2O in the domain increases monotonically in these 

simulations by [35], as expected. 

From plotting the integral properties directly against each other, it is possible to 

draw conclusions on the extent of correlation between them. In fig. 3.6 we plot the 

integral heat release rate against the rate of formation of H2O. Both quantities reflect the 
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progress of combustion in the flow and are in a sense, markers of that process, thereby 

exhibiting a strong correlation. In contrast, the correlation between the total circulation 

and integral heat release rate (fig. 3.7) or the rate of formation of H2O (fig. 3.8) appear 

weak. This follows from the trend in fig. 3.7, where the combustion lags the deposition of 

circulation within the flow. The onset of combustion in fig. 3.7 occurs after significant 

circulation has been deposited by the shock, resulting in mixing process that culminates 

in combustion.  

3.3 Single-Mode Reacting  RM: Configuration  

Here the material interface is specified as a single-mode, sinusoidal function.  

When a shock wave passes through a perturbed interface between two fluids with 

different densities, the perturbations grow. The problem considered by [35], consists of a 

2D shock tube with an aspect ratio of 6.  The shock tube has outflow boundary conditions 

at x=0 cm and reflecting boundary conditions at x=36 cm. Periodic boundary conditions 

are applied at the lateral boundaries. Reflecting boundaries at x=36 cm will cause a 

reflecting shock which hits the burning interface resulting in increase in mixing and 

combustion efficiency. Hydrogen is the light fluid (at 300 K), and is separated from air 

(at 1650K) by a diffuse interface. Initial values for density of hydrogen and oxygen are 

8.0e-5 g/cm3 and 2.4e-4 g/cm3, resulting in an Atwood number of 0.5. The incident 

shock has a Mach number of 1.2 and a pressure ratio of 1.51. The shock is initially 

located immediately next to the interface in the hydrogen gas and travels toward the 

interface, where the initial interface location is defined by: 

௜ݔ =  +
∆

ଶ
+ ℎ଴ ቂ1 − ݏ݋ܿ ቀ

ଶగ௬

ఒ
ቁቃ       (3.7) 
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where ݔ௦ is the initial location of the shock, h0 is the initial amplitude and λ is the 

wavelength. In our simulation λ = 6 cm, and h0 = 0.2/k, where k is the wavenumber (k = 

2π/λ). The mixture fraction is calculated according to the following formulation: 

ܼ =
଼௒ಹమି௒ೀమାଵ

ଽ
         (3.8) 

where, ுܻమ
and ைܻమ

are the hydrogen and oxygen mass fractions. The mixture fraction is 

assumed to vary as an error function defined over a thickness equal to two times the 

amplitude, 

(ݔ)ܼ =
ଵ

ଶ
ቄ1 − ݂ݎ݁ ቂ(ݔ − (௜ݔ

ௐ

ସ
ቃቅ       (3.9) 

where,  ܹ is a scaling factor defined by: 

ܹ = 2ሾ݁ି݂ݎଵ(1 −  ሿ        (3.10)(ߝ

This definition of mixture fraction ensures a continuous function and is a reliable 

parameter to compare reacting and non-reacting RMI. While mass fraction can become 

discontinuous across the interface, the mixture fraction changes in a monotonic manner. 

A schematic of the problem setup is shown in figure 3.9. 

3.4 Single-Mode Reacting  RM: Discussion  

Figure 3.10 exhibits the time evolution of temperature, H2O mass fraction and 

magnitude of vorticity contours for the reacting single mode Richtmyer Meshkov 

Instability. Contours  are plotted at t = (a) 3.5 ms, (b) 0.6 ms, (c) 1 ms and (d) 2.1 ms. 

Reshock occurs at t = 0.6 ms, when the interface is already  in the nonlinear regime. 

Following reshock, phase inversion can be seen between images (b) and (c). As depicted 

in fig. 3.11, all three integral flow quantities of interest follow same trend.  The highest 
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temperature occurs in the region of the highest H2O mass fraction where the magnitude of 

vorticity is the largest as well.  

The time evolution of ܯுమை, ܯሶ ுమை, C and ߁ are shown in fig. 3.11 for the data 

from single-mode reacting RM simulation of [35]. Following the initial shock, these 

quantities exhibit gradual growth until t≈0.6ms, when reshock occurs. Following the 

interaction of the reflected shock with the already nonlinear interface, the mixing and 

combustion is significantly enhanced within the domain. The lag between the total 

circulation deposition and the quantities associated with combustion is reduced in this 

case (compared to fig. 3.5), since the circulation deposition along the entire interface 

occurs instantaneously, thus immediately triggering combustion and heat release all along 

the interface. 

A plot of integral H2O production rate versus the integral heat release rate 

displays nearly-perfect correlation as anticipated. Due to the localized deposition of 

circulation, the entire interface ignites at the same time, and immediately upon shock 

passage. This ignition, results in improved correlation between each of the combustion 

quantities (C and ܯሶ ுమை in fig. 3.13 and 3.14 respectively) and total circulation in the 

domain. In each plot, the inset shows data points associated with the first shock. 
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Figure 3.1: Schematic of the problem setup for the reacting shock-bubble simulation. 
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Figure 3.2: Time evolution of Temperature, H2O mass fraction and magnitude of vorticity 

from 2D simulations of a shock-bubble flame. Images are realized at t = (a) 1.5 μs, (b) 10 

μs, (c) 20 μs and (d) 40 μs. 

 

Figure 3.3: Contours of Pressure and ࡴࢅ૛ࡻ at t = 3.5 μs after shock incidence 
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Figure 3.4: Pressure across y =0.0 cm, at t = 3.5 μs in the shock bubble interaction from 
FLASH and Billet [41] 
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Figure 3.5: Total mass of H2O (ࡴࡹ૛1 ,ࡻe-4 g), Integral heat release rate(1 ,࡯e13 erg/s), 
total circulation inside the domain (1 ,ࢣe5 cm2/s), and Integral H2O addition rate (ܯሶ ுమை, 
1e-1 g/s) versus t (ms) 
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Figure 3.6: Integral H2O addition rate (ܯሶ ுమை, 1e-1g/s) versus Integral heat release rate (࡯, 
1e13 erg/s) 

 

Figure 3.7: Integral heat release rate (1 ,࡯e13 erg/s) versus total circulation inside the 
domain (1 ,ࢣe5 cm2/s) 
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Figure 3.8: Integral H2O production rate (ܯሶ ுమை, 1e-1 g/s) versus total circulation inside 
the domain (1 ,ࢣe5 cm2/s) 

 

 

 

 

 

Figure 3.9: Schematic of the problem setup for Single mode RMI Simulation. 
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Figure 3.10: Time evolution of Temperature, H2O mass fraction and magnitude of 
vorticity from 2D simulation of a single mode perturbed, reacting interface. At t = (a) 
0.35 ms, (b) 0.6 ms, (c) 1 ms and (d) 2.1 ms 
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Figure 3.11: Total mass of H2O (ࡴࡹ૛1 ,ࡻe-3 g), Integral heat release rate (1 ,࡯e15 erg/s), 
total circulation inside the domain (1 ,ࢣe5 cm2/s) and, Integral H2O addition rate (ܯሶ ுమை, 
g/s) versus t (ms) 
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Figure 3.12: Integral H2O production rate (ܯሶ ுమை, g/s) versus Integral heat release rate (࡯, 
1e15 erg/s) 

 

Figure 3.13: Integral heat release rate (1 ,ܥe15 erg/s) versus total magnitude of vorticity 
within the domain (1 ,߁e5 cm2/s) 
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Figure 3.14: Integral H2O addition rate (ܯሶ ுమை, g/s) versus total magnitude of vorticity 
within the domain (1 ,߁e5 cm2/s) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 4: REACTING AND NON-REACTING TURBULENT FLOW 
PROPERTIES 

 

In this chapter, we study the effect of combustion heat release in forming 

hydrodynamic instabilities in the flow by analyzing the unperturbed interface behavior. 

Then, we discuss methods to compute the Reynolds number in RM driven flows and 

apply them to our problem.  

 

4.1 Unperturbed (1D) Interface Dynamics 

Before describing the complex, spatiotemporal behavior of the turbulent reacting 

RM, we briefly discuss the shock and interface dynamics of the 1D unperturbed reacting 

flow in this section. The 1D flow configuration is similar to the problem setup outlined in 

§ 2.6, but with (ak,bk,ck,dk) = 0.0 in eq. (2.22) so that the mixture fraction interface is 

unperturbed. In figures 4.1 (a) and (b), we plot cross-stream (x-) profiles of scaled density 

∗ߩ) =  
ఘିఘ೗

ఘ೓ିఘ೗
), temperature (ܶ∗ =

்ି்೗

்೓ି்೗
) and pressure (݌∗ =

௣ି௣೗

௣೓ି௣೗
) at different 

dimensional times of interest (the dimensionless time ߬, is defined as ߬ ≡ ାΔܷܣݐ ⁄௠௜௡ߣ  

[32]). Immediately following ignition, figure 4.1 (a) shows the presence of the incipient 

flame in the form of modest increases in the local temperature and pressure at ߬ = 1.3. 

The transmitted shock and rarefaction fan are also visible in the cross-stream pressure 

profiles at these early times, fig. 4.1 (a). Figure 4.1 (b) is realized at ߬ = 2.5, and shows 
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the reaction zone following ignition is marked by a substantial region with ρ* < 0. Thus, 

the reacting RM experiences a net increase in the effective Atwood number near the 

flame surface – the presence of the intervening reaction zone results in an effective 

Atwood number of ~ -0.78 between pure O2 and the combustion products, while the 

interface between the combustion products and pure H2 is characterized by A ~ 0.29. By 

 ≈ 2.5, significant burning has occurred (enabled by diffusion) and is accompanied by 

substantial local heat release and temperature rise. The reaction zone is highlighted by the 

presence of an active third layer of gases (products) with a density of 0.75e-3 g/cm3 and 

temperature of 3050 K. The maximum temperature of 3050 K obtained in the flame 

region (x|Z=0.11) is in good agreement with the adiabatic flame temperature of 3173 K for 

H2-O2 flames [51,52]. The sudden temperature increase resulting from ignition gives rise 

to a weak pressure wave seen in figure 4.1 (b). The pressure peak associated with this 

combustion wave is ~1.83e6 dyn/cm2, and generates a local pressure jump 

௣೎೚೘್ೠೞ೟೔೚೙

௣ೞ೓೚   ೝ೐೒೔೚೙
~ 1.12 that splinters in to two daughter waves. These waves travel with 

sonic velocity away from the flame and towards the fuel and oxidizer streams 

respectively. Thus, in addition to the shock-driven RM growth, the reacting mixing layer 

is also processed by short-lived pressure waves that impose a phase of variable 

acceleration RT instability [53,54] on the growth of the mixing layer (§5.1). We find the 

interface acceleration associated with the passage of the combustion waves in our 

simulations satisfies ݃(ݐ) ∝ = ௔, with aݐ −1.31. Kuranz et al. [55] report a= -1.2 for a 

blast wave driven interface acceleration in a 2D experiment on the OMEGA laser. In 

2015 Attal, et al. [48] calculated a = -1.8, where the blast wave was generated through 

combustion wave at an interface separating oxygen and hydrogen. 
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4.2 Reynolds Number of RMI Flows 

In RM turbulence, the Reynolds number (Re) is of particular importance since it 

indicates the presence of turbulent flow [56]. In numerical simulations, knowledge of the 

expected Reynolds number may be used in determining the required grid resolution to 

resolve the corresponding Kolmogorov scales (Appendix A). From [13], an outer scale 

Reynolds number > 10000, implies turbulence levels beyond the mixing transition. For 

RMI (and RTI) the outerscale Reynolds number may be defined as: 

ܴ݁ =  
ௐௐሶ

ఔ
,           (4.1) 

where ܹ is the mixing width thickness, ሶܹ  is the mixing width growth rate and ߥ is the 

kinematic viscosity of the mixture. Recently, Weber at al. found Re calculated using eq. 

(4.1) associated with Mach numbers 1.6 and 2.2 to exceed 10e4 [56]. Similarly, Olson et 

al. [57] calculated Re in terms of the pre-shocked conditions and velocities of the gases, 

and found the Reynolds number to vary in the range 30000 - 180000 in the light and 

heavy gases respectively [57].  

In RM flows, the Reynolds number may also be estimated based on the initial 

circulation deposited on the mixing layer due to shock passage [58]. According to this 

definition,  

ܴ݁୻ =  
୻

ఔ
,           (4.2) 

where Γ is the circulation of the vortex core and is defined by Γ = ׬ ߱ ݀ܽ
௔

 , where ߱ is 

the baroclinic vorticity and ܽ is the bounding area. For a sinusoidal perturbation, an 

estimate is provided in [59] for the initial circulation following shock incidence according 

to [59]: 

Γ଴ = ௧ݑ   ( ௥ܹ + ௧ܹ)ݐ − ) ଶݑ ௜ܹ + ௧ܹ)(4.3)      , ݐ 
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where ݑ௧ is the particle velocity behind the transmitted shock, ௥ܹ is the reflected shock 

velocity, ௧ܹ is the transmitted shock velocity, ݑଶ is the particle velocity behind the 

incident shock, ௜ܹ is the incident shock velocity, and ݐ is the shock passage time 

ݐ =  
ଶఎబ

ௐ೔
,          (4.4) 

where ߟ଴ is the initial perturbation amplitude. 

Tomkins et al. [60] compared Re from equations (4.2-4.4) and (4.1) and found 

agreement between these definitions within a factor of two. In this study, we evaluated 

Re according to eq. (4.1). Figure 4.2 shows the time evolution of Reynolds number in 

both reacting and non-reacting cases. As seen in figure 4.2, the Reynolds number reaches 

a maximum initial value of ~18000 in the non-reacting and ~23000 in the reacting case, 

above the threshold for turbulence [13,61]. Upon ignition, the mixing width in the 

reacting case experiences an expansion growth due to combustion-initiated RT instability 

(section 3.1). Thus, at early times, the reacting flow Reynolds number is higher than the 

corresponding non-reacting result. Additionally, as the flame evolves, the temperature 

increase resulting in an increase in the diffusive transport properties. For example, the 

kinematic viscosity sees an increase from ~0.76 St at ~500 K ( ~0) to ~2.6 St at ~3100 

K ( > 30) accompanied by a decrease in the Reynold number for the reacting case.  

Asymptotically, the Reynolds number trendline is consistent with the power law 

behavior associated with the mixing width. Substituting ܹ = ݐ)ܣ −  ଴)ఏ (please seeݐ

section 5.4 eq 5.3) into eq (4.1): 

ܴ݁ =  
஺మఏ(௧ି௧బ)మഇషభ

ఔ
.         (4.5) 
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From fig (4.2), Reynolds number from simulations is consistent with the power law 

decay calculated using eq (4.5). Hence eq (4.5) can be used for a priori calculations of Re 

number and other turbulent flow metrics such as Kolmogorov length scale. 
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Figure 4.1: Cross-stream profiles of scaled temperature (ܶ∗ =
்ି்೗

்೓ି்೗
), scaled pressure 

∗݌) =
௣ି௣ೠ

௣ೞି௣ೠ
) and, scaled density (ߩ∗ =  

ఘିఘ೗

ఘ೓ିఘ೗
) at (a) ߬ = 1.3 and (b) ߬ = 2.5. 

 

 

 

Figure 4.2: Reacting and non-reacting flow Reynolds number as a function of time from 

FLASH and power-law equation. 



 

 

 

 

CHAPTER 5: REACTING AND NON-REACTING TURBULENT MIXING 
FEATURES 

 

In this chapter, we present a detailed discussion on evolution of mixing zone after 

the shock impact and following ignition . We also investigate the nature of self-similarity 

in reacting case and compare with corresponding non-reacting counterpart.  

 

5.1 Evolution of Turbulent Mixing  

When the interface is perturbed with a multimode function (eq. 2.22), the shocked 

mixing layer eventually achieves a turbulent state through nonlinear interactions 

involving saturated modes. The growth and interaction of modes can drive mixing and 

create conditions for sustaining combustion through the attendant turbulent diffusion 

process. In figures 5.1 (a) – (c), we show contours of the stoichiometric surface (Z = 

11%) at early and late times from the reacting and non-reacting simulations. Following 

shock impact, the perturbations evolve through linear (fig. 5.1-a), nonlinear (fig. 5.1-b) 

and turbulent (fig. 5.1-c) stages. The slices are obtained at the mid-plane (z = 3 cm), and 

the solid white line in each frame indicates the location of the corresponding unperturbed 

interface (obtained from a separate simulation with W0 = 0).  

At early time (߬ ≈2.5; fig. 5.1 a), the reacting RM mixing layer features slightly 

larger structures on the bubble and spike fronts compared to the corresponding inert 
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mixing layer. The observed development of bubbles and spikes at larger scales is due to 

the additional growth experienced by the reacting interface due to the passage of 

combustion waves, which result in a phase of variable-g RT instability. During this phase 

of RT growth, dominant bubbles (and spikes) that have matured through nonlinear 

growth evolve with <λb/s> ~ <hb/s>, so that longer wavelengths are visible on the reacting 

front in fig. 5.1 (b). Note that the effect of combustion is more dominant on the bubble 

surface owing to its proximity to the flame sheet (<Z> = 0.11), so that the reacting bubble 

amplitude growth outpaces its inert counterpart. In contrast, spike amplitudes (figure 5.1 

(c)) from the reacting RM are in good agreement with the corresponding non-reacting 

flow at both early and late times. This is attributable to the large separation distance 

between the flame sheet and the spike surface (<Z> = 0.99), so that combustion waves 

generated at the reaction zone have attenuated significantly before crossing the spike 

front. 

Larger mixing width in the reacting case can be observed by looking at iso-

surfaces of constant mixture fraction, figure 5.2 (a)-(c). At the initial stages of turbulent 

mixing in reacting flow, thermal expansion of hot combustion products generates an RT 

instability in the mixing zone and drives bubble and spike iso-surfaces in opposite 

directions. These phenomena can be seen as a sudden growth in the reacting mixing 

width compared to the non-reacting case, figure 5.2 (b). At late-times, the effect of RT 

instability in the reacting case has faded and Kelvin-Helmotz instabilities initiated by the 

RM instability drive mixing in both cases. At this stage, in the reacting case, enhanced 

diffusive interpenetration of H2, O2 and combustion products contributes in mixing 
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behavior in the reactive flow, which results in larger structures and less interrupted iso-

surfaces in the mixing zone, fig 5.2 (c). 

5.2 Self-Similarity 

To elucidate the approach to self-similarity, we plot in figure 5.3, cross-stream 

profiles of the planar-averaged mixture fraction <Z> realized at different times against 

the scaled coordinate ࣈ : 

ࣈ ≡  
%ಭ స૞૙ࢠಬ|࢞ ି࢞

%ಭ స૚ࢠಬ|࢞ି %ૢૢ ಭ సࢠಬ|࢞
.         (5.1) 

This approach collapses cross-stream Z-profiles from both reacting and non-

reacting simulations, while anchoring the profiles at ߦ = 0 serves to highlight any 

underlying asymmetry between bubbles and spikes at these large Atwood numbers. 

Figure 5.3 (a) compares <Z> profiles of reacting and non-reacting cases at early times 

(߬ ≈ 30) and shows the effects of ignition. The non-reacting <Z> profile reflects the 

asymmetry expected at A+ = 0.66, through the appearance of greater spike penetrations 

observed at ߦ  -0.5. For the corresponding reacting profiles, the expansion of the 

interface due to its interaction with the combustion wave is evident in figure 5.3 (a) 

through longer tails associated with the bubble front. Scaled Z-profiles from both reacting 

and non-reacting simulations are plotted at late times ( > 120) in figures 5.3 (b) and (c) 

respectively. At these late times (figs. 5.3 (b) – (c)), the mixing layer appears to revert to 

self-similarity in both cases (evidenced by the collapse of Z-profiles) as the combustion-

generated pressure waves recede from the interface. Note that in spite of the appearance 

of localized regions of ρ* < 0 within the reaction zone, the mixture fraction profiles 

maintain their monotonicity, while preserving the same functional form as the non-

reacting flow. This justifies our choice of Z as a consistent variable to track the growth of 
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the extent of the mixing zone in both the reacting and non-reacting cases, thus enabling a 

direct comparison between the two. However, cross-stream profiles from the reacting RM 

simulation show slight asymmetry towards ࣈ  0.5, with the appearance of a step-like 

feature due to bubble-side stretching. This stretching appears significant near the 

stoichiometric location (Zst = 11%) due to the presence of the reaction zone. As a result, 

the high level of diffusivity in the vicinity of the flame sheet results in a nearly uniform 

distribution of H atoms, leading to a region in which Z is nearly constant. This trend is 

consistent with the observation of longer bubbles in the sliced images of Z described 

above in the context of figure 5.1 (b)-(c). 

5.3 Mixing Width 

The growth of the mixing layer can be characterized quantitatively by tracking in 

time the integral mixing width, given by [32,65] 

W(t) ≡ 6 ׬ < ܼ > (1−< ܼ   (5.2)       .ݔ݀ (<

Historically, W has been defined in terms of either the volume-fraction or mass 

fraction functions, but through the above discussion we have demonstrated the superiority 

of the mixture fraction as a diagnostic when directly comparing reacting and non-reacting 

flows. In figure 5.4 (a), we plot the evolution of the scaled integral mixing width (ܹ ଴ܹ⁄ ) 

for both the reacting and non-reacting RM mixing layers against the scaled time ; where 

଴ܹ is the initial value of mix width before shock impact. Upon shock impact ( = 0.6), 

the non-reacting mixing width evolves dominated by classical RM dynamics [3], and 

appears to satisfy W ~ τθ consistent with earlier studies [31,32].  

Following ignition, the mixing width associated with the reacting RM undergoes a 

sudden and significant expansion at  ≈ 1.5  due to the acceleration produced by the 
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combustion pressure waves. From single-mode simulations, Attal and Ramaprabhu 

demonstrated the combustion waves in such flows bear some similarity to Taylor wave 

solutions [48], but with peak pressure values dependent on the initial diffusion layer 

thickness between the fuel/oxidizer streams. Since in the current simulations, the initial 

interface diffusion thickness is negligible compared to the shortest wavelength 

ߜ) ௠௜௡ߣ = 0.125⁄ ), the pressure waves generated from combustion are correspondingly 

weak and subsonic (Mach number ≈ 0.23). By  ≈ 6 , these waves have exited the 

computational domain, so that eventually ( > 40 ) the effects of the combustion waves 

appear to be no longer important, and the mixing width resumes a power law dependence 

on time, consistent with an impulsively accelerated, but eventually decaying RM flow.  

5.4 Power-Law Analysis of Mixing Width Growth Rate 

As individual modes in the multimode wave packet attain nonlinear saturation, we 

analyze the reacting and non-reacting RM in terms of a self-similar mixing layer whose 

amplitude satisfies the power law behavior [28,32]: 

ܹ = ݐ)ܣ −  ଴)ఏ         (5.3)ݐ

Thus, we characterize the growth rate of the integral mixing width in terms of the power 

law exponent θ, and compare our results with data from extensive studies of inert RM 

turbulence in the literature [32,66,67]. Following [32], we fit simulation data from both 

the reacting and non-reacting flows to the form suggested by eq. (5.3), while the 

parameters ݐ ,ܣ଴ and ߠ may be obtained either through a nonlinear regression analysis or 

by directly evaluating the following derivative forms suggested by[32,68]: 

ߠ = ቀ1 −
ௐௐሷ

ௐሶ మ ቁ
ିଵ

,   (5.4-a) 

଴ݐ = ݐ −
(ఏିଵ)

ௐሷ
ሶܹ ,          (5.4-b) 
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ܣ =  ሶܹ (௧ି௧బ)భషഇ

ఏ
.          (5.4-c) 

Note that Clark and Zhou [67] propose an alternate representation for the power-

law form of the mix width given by 

ܹ = ଴ܹ௖ ቀ
௧ା௧బ೎

|௧బ೎|
ቁ

ఏ
,          (5.5) 

where ( ଴ܹ௖) is the mix width at ݐ଴௖, the virtual origin in time. In [67], the exponent ߠ 

was obtained by regressing W to simulation data over the range of 
ଶ

଻
< ߠ <

ଶ

ହ
. Eq. (5.5) is 

algebraically identical to eq (5.3) and the computation of ߠ using these method yielded 

similar results, so ߠ from eq (5.5) is not included in table 1. We also evaluate the power 

law exponent  using a third approach, by fitting FLASH simulation data to the RM 

growth model from [31]: 

ܹ =   ଴ܹ
ା ቀ 

(௑ ௑బ⁄ )ିଵ

ఏ
+ 1ቁ

ఏ
.        (5.6) 

In equation (5.6), ଴ܹ is the initial perturbation amplitude that seeds the RM growth, and 

may be itself be the end result of an RT growth phase resulting from the passage of the 

combustion wave through the interface. Thus, ܺ଴ is the interface location at the end of the 

RT phase, and ܺ(t) is the time-dependent interface location due to shock acceleration.  

 

Table 5.1: computation of non-reacting and reacting ߠ from power-law analysis using 

three different methods. 
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Table 5.1 lists estimates of the power law exponent  ߠ determined using the 

methods described above for both our reacting and non-reacting simulations. From table 

5.1, all three methods converge to ߠ ≈ 0.29 ±  0.006 for the non-reacting RM flow, in 

general agreement with values reported from earlier simulation and experimental studies 

[32,67,69,70]. For instance, Youngs et al. [32]reported ߠ ≈ 0.26 (0.3) for A = 0.5 (0.9) 

from high-resolution numerical simulations initialized with narrowband perturbations. 

From impulsively accelerated experiments conducted on a Linear Electric Motor (LEM), 

Dimonte and Schneider reported 0.24~ߠ, but with a weak dependence on the Atwood 

number [31]. Note that the LEM experiments experienced a short-lived RT growth, 

which was modeled through eq. (5.6) by taking the initial conditions ଴ܹ
ାas the 

bubble/spike height at the end of this phase when the test cell had traversed a distance of 

X0. Applying eq (5.5), Clark and Zhou [67] computed 0.28~ߠ from two sets of 

experiments with A = 0.22 and A = 0.48.  

When a flame is present, RM growth appears to be inhibited, with lower ߠ values 

reported in table 5.1 using the different approaches outlined above. For instance, the 

regression analysis and the method of derivatives yield θ = 0.086 and 0.079 respectively 

(table 1). For third method, we employ an approach similar to [31] when evaluating θ, by 

taking ଴ܹ = 3.37 cm as the mix width at the end of the RT expansion phase driven by the 

combustion wave (the corresponding distance traversed by the interface is evaluated as 

ܺ଴  = ׬  (ݐ)௜௡௧௘௥௙௔௖௘ݑ
௧ೃ೅

଴
 cm, where tRT signifies the end of the interface 19.91 = ݐ݀

acceleration due to RT growth). During the RT-driven expansion, the mix width grows in 

response to a time-dependent acceleration and according to ܹ =
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 ଴ܹ
ା ቀݑ௜௡௧௘௥௙௔௖௘ݐ

ଵା஼

ௐబ
శ ቁ

భ
భశ಴ +

ఉ஺௚௧మ

భ
భశ಴

ቀଵା଺஼ା
భ

భశ಴
ቁ
, where β ~ 1 2⁄  and 2~ܥ for A<<1 [31]. We 

attribute the lower values of growth rate in the presence of flame to increased diffusivities 

that result from the elevated temperatures. This is consistent with the analysis of [45] 

who considered the suppression of single-wavelength RM in the presence of viscous 

effects, and found both linear and nonlinear stages are affected (although viscous effects 

are less pronounced in the nonlinear stage, and are merely logarithmic for large ݇ℎ(ݐ).  

5.5 Molecular Mixing Fraction and Intensity of Segregation 

We plot the molecular mixing fraction Θ, defined according to [32] : 

Θ =
׬  ழ௓(ଵି௓)வௗ

ಽ
బ

׬ ழ௓வ(ଵିழ௓வ)ௗ௫
ಽ

బ

          (5.7) 

in fig. 5.4 (b) using data from our reacting and inert RM simulations. From eq. (5.7), Θ 

signifies the ratio of small-scale or molecular mixing to the large-scale entrainment-

driven stirring, and can range from 0 (completely unmixed) to 1 (uniformly mixed). 

Following shock impact and ignition, the integral mixing width dramatically increases, 

driven by the linear stages of the RM (and variable-g RT) instabilities, while the reacting 

and non-reacting flows appear to produce similar levels of atomically mixed fluid at these 

early stages. In contrast, the nonlinear saturation of modes and onset of turbulence 

( >  120 ) is marked by the molecular mixing fraction approaching asymptotic values 

of 0.926 ± 0.001  (0.873 ± 0.001) in the reacting (non-reacting simulations). Thus, heat 

addition from the reaction zone boosts diffusivity resulting in increased molecular mixing 

across the interface. As a result, the reacting RM simulations report higher saturation 

values of the atomic mix fraction, relative to the corresponding inert case. The asymptotic 

values for  are in agreement with previously reported results of Θ~0.84 ± 0.02 [32]. 
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The intensity of segregation, ܫ quantifies the extent to which the scalar Z departs 

from the corresponding planar-averaged value <Z> and is defined as [71] 

ܫ =  
ழ௭ᇱమவ

ழ௓வ(ଵିழ௓வ)
         (5.8) 

where, ݖ′ is calculated as: 

ᇱݖ = ܼ−< ܼ >.         (5.9) 

Thus, ܫ indicates the degree of inhomogeneity associated with the scalar, while (1 −  is (ܫ

a measure of uniformity at each plane within the mixing zone. The molecular mixing 

fraction  can be interpreted as an integral of (1 −  across the entire mixing width so (ܫ

that eq (5.7) can be rewritten as: 

Θ = 1 −
ழ௭ᇱమவௗ௫׬ 

ழ௓வ(ଵିழ௓வ)ௗ௫׬
.        (5.10) 

Figure 5.5 is a plot of the intensity of segregation as a function of <Z> for 

reacting and non-reacting flows at  =  300. Both cases show relatively low levels of 

segregation (ܫ < 0.16) at this stage of flow evolution, with the lowest values observed 

near the midpoint of reacting mixture fraction (0.06~ܫ). Greater levels of segregation is 

observed near the edges of the mixing layer, corresponding to the contrast between mixed 

and unmixed fluids in these regions.  
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Figure 5.1: Contours of mixture fraction at the mid-plane of the shock tube showing the 

development of turbulent flows from reacting and non-reacting simulations at (a) ߬ ≈ 2 

(b) ߬ ≈ 30 and (c) ߬ ≈ 300. 
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Figure 5.2: Iso-surfaces of mixture fraction Z from reacting and non-reacting simulations 

at (a) ߬ ≈ 2 (b) ߬ ≈ 30 and (c) ߬ ≈ 300. Dark surfaces depict iso-surfaces with Z = 0.99 

(spike side) and 0.01 (bubble side) 
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Figure 5.3: Planar-averaged mixture-fraction profiles from (a): early time ( ~ 30), (b): 

non-reacting late times ( > 100) and (c): reacting late times ( > 120) simulations 
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Figure 5.4: Time evolution of (a): scaled mixing width and (b): molecular mixing fraction 

from reacting and non-reacting simulations using FLASH. 

 

 

Figure 5.5: Intensity of segregation as a function of planar average of mixture fraction at 

 = 300 in reacting and non-reacting simulations using FLASH. 



 

 

 

 

CHAPTER 6: RMI DRIVEN FLAME STRUCTURE, FLOW/FLAME COUPLING 
AND MODELS 

 

6.1 Scalar Dissipation Rate and Reaction Progress 

In this section, we discuss the evolution of the scalar dissipation rate ߯ in a non-

premixed reacting RM flow. The scalar dissipation rate characterizes the rate of mixing 

between fuel and oxidizer at the molecular level and is defined as[72-74]  

߯ =  ଶ          (6.1)(ܼ∇)ܦ2

where Z represents the spatial gradient of the scalar and D is its diffusion coefficient. 

In this case, the scalar is mixture fraction and D is the molecular diffusivity of mixture 

fraction, which is taken as the average of molecular diffusivity of species in our 

calculation. Thus, ߯ is critical to the reaction rate in non-premixed combustion, and 

features as an input variable in several combustion models including flamelet models 

[75,76], probability density function (PDF) methods [77] and conditional moment closure 

(CMC) [78]. Using a fast chemistry model, Bilger [73,79,80]showed the existence of a 

linear relationship between the turbulent reaction rate and ߯  in non-premixed 

combustion. Using one step chemical reaction between methane and air, Mastorakos et 

al. [81,82] concluded that, regions with lower scalar dissipation rate are prone to ignition 

initiation, due to lower rates of heat and scalar loss. 
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Figs. 6.1 (a) – (d) correspond to slices of the mixture fraction, temperature, scalar 

dissipation rate and concentration of OH radicals respectively, plotted on a (y-z) plane 

where the planar-averaged mixture fraction reaches its stoichiometric value <Z> = 0.11. 

The solid lines in these figures denote the intersection of the stoichiometric surface with 

the (y-z)|<Z>=0.11 plane, and serve to identify surfaces with the highest likelihood of 

combustion. However, the actual existence of a flame at these locations depends on the 

level of scalar dissipation rate as well as the mixture fraction value, and can be identified 

through the presence of high concentrations of the OH radical (fig. 6.1-d) and enhanced 

temperature (fig. 6.1-b). For instance, regions of high OH concentrations occur where the 

stoichiometric mixture fraction iso-surfaces are highly convoluted, thus forming smaller 

structures. Such regions are associated with lower values of the scalar dissipation rate.. 

Since ߯ depends on the local strain rate, peaks in the scalar dissipation rate occur near 

mixture fraction iso-surfaces that are highly stretched. The solid lines show regions 

where high scalar dissipation rate limits the OH concentration and dashed lines show 

zones with wrinkled iso-surfaces where OH concentration is higher and scalar dissipation 

rate is very low. In figs. 6.1 (b) - (d), regions where the stoichiometric surfaces intersect 

with local peaks in ߯ also observe enhanced heat loss and reactant mass diffusion away 

from the flame front [83,84], thereby mitigating burning. 

In fig. 6.2, we plot the conditional average of the scalar dissipation rate for the 

reacting and non-reacting simulations, defined according to  ሼ߯௦௧ሽ  ≡ ሼ߯|ܼ = ܼ௦௧ሽ, where 

the averaging is performed on the stoichiometric iso-surface.. The conditional average of 

߯ is used to calculate the corresponding conditional probability density function of, 

 for both the reacting and non-reacting ࢚࢙࣑ The decay observed in .[72,77,85-89] (࢚࢙࣑)࢖
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cases, reflects the effect of mixing in smearing spatial gradients in Z, as the flow 

develops from a highly segregated initial state to a well-mixed and diffuse turbulent state. 

Heat addition in the presence of flame, further enhances diffusive mixing so that the 

decay rate for ࢚࢙࣑ is sharper in this case. Interestingly, this behavior is analogous with the 

decay of ሼ߯௦௧ሽ with the spatial coordinate in co-flowing jet flames [90-92]. Thus, the 

temporal decay of ࢚࢙࣑ in a spatially homogeneous flow such as the RM problem 

investigated here is equivalent to the corresponding spatial decay in a temporally 

homogeneous flow such as the co-flowing jet.  

A comparison between reacting and non-reacting ሼ߯௦௧ሽ is another noteworthy 

point in fig. 6.2. Early times measurements show reacting  ሼ߯௦௧ሽ to be nearly considerably 

larger than non-reacting ሼ߯௦௧ሽ. This early time enhancement can be mainly explained by 

amplified reacting diffusivity. Diffusivity is a strong function of temperature and rises 

dramatically from 0.76 ܿ݉ଶ ⁄ݏ  between H2 and O2 prior to ignition to 2.6 ܿ݉ଶ ⁄ݏ  shortly 

after the ignition. Also, according to fig. 6 (b) lower Θ୰ୣୟୡ୲୧୬୥ compared to Θ୬୭୬ି୰ୣୟୡ୲୧୬୥ 

indicates less mixture uniformity (and more segregation) in the reacting flow than non-

reacting flow, which plays a role in increasing (∇ܼ)ଶ and subsequently ሼ߯௦௧ሽ. At late  

Table 6.2: examples of ሼ߯௦௧ሽ computation in non-reacting and reacting flows at early and 

late-time
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times, the spatial gradients of Z decrease due to enhanced molecular mixing imposed by 

the enhanced mass diffusivity. Thus, the combined effect of larger values of  ܦ and 

dissipation of (∇ܼ)ଶ yields lower ሼ߯௦௧ሽ in the reacting flow at late-times. Table 6.1 

summarizes these parameters at early ( ≈ 10) and late times ( ≈ 300). 

6.2 A Model for Turbulent Fluctuations of Mixture Fraction  

In this section, we describe analysis to expand the scope of information about 

small-scale structures that can be extracted from Reynolds-averaged measurements. In 

particular, we utilize high-resolution numerical simulation results to examine the 

dependence of the variance of turbulent fluctuations of mixture fraction on turbulent flow 

integral quantities associated with RM mixing layer development. 

We define the mean < ܼ >  and the fluctuating component of mixture fraction ݖ′ 

as 

ܼ = < ܼ >  (6.2)          ′ݖ+ 

where <  > refers to averaging on the (y-z) plane., The fluctuating components of the 

mixture fraction < ଶ′ݖ > can be expressed in terms of the molecular mixing fraction Θ  

eq (5.7) which can also be defined as eq. (6.3) given by: 

Θ = 1 −
ழ௭ᇱమவௗ׬ 

ழ௓வ(ଵିழ௓வ)ௗ௫׬
 .        (6.3) 

Rearranging eq. (6.3), and differentiating with respect to x, we obtain 

< ଶ′ݖ >= (1 − Θ) < ܼ > (1−< ܼ >).      (6.4) 

Therefore, from eq. (6.4) the turbulent fluctuations associated with the mixture fraction <

ଶ′ݖ > may be modeled in terms of integral quantities such as Θ and < ܼ >, that can be 

easily measured. We will refer to eq. (6.4) as the RM model for < ଶ′ݖ >. In fig. 6.3 , we 

compare Z-profiles of < ଶ′ݖ > obtained from eq. (6.4) as well as the FLASH simulations. 
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The agreement between the RM model and FLASH data is within 10% across the mixing 

layer. However, the error increases as we approach <Z>=0 and <Z>= 1.0. This can be 

explained by evaluating the intensity of segregation I, at different values of <Z>. Since 

the RM model uses Θ, it assumes a constant mixing/segregation across the mixing width. 

Thus, in more segregated (less mixed) regions, the RM model overestimates < ଶ′ݖ > and 

vice versa. From fig (5.5), the fuel and oxidizer flows are more segregated near the edges 

of the mixing zone. Thus, in those regions, the RM model experiences greater deviation 

from the simulation results. 

6.3 A Model for Mean Scalar Dissipation Rate 

In many turbulent flow configurations of practical interest, the assumption of an 

infinitely fast chemistry is not valid, and the details of the flame/flow interaction may be 

relevant. For example, the reaction rates associated with regions of the flow that are at the 

stoichiometric mixture fraction may depend on how fast the mixture fraction field is 

modified by the turbulent flow. Thus, in finite-rate chemistry models that are based on 

the flamelet approach, the flamelet libraries are generated not only based on the 

distribution of the mixture fraction, but also depend on the scalar dissipation rate 

distribution. In this section, we extend the RM model to express the Reynolds average of 

߯ in terms of RM-global quantities.  

The Scalar dissipation rate given in eq (6.1) is the rate of decay of mixture 

fraction fluctuations, estimated by the variance < ଶ′ݖ >. Therefore, scalar dissipation rate 

acts on scalar fluctuations the same way that turbulent dissipation ߝ, eq (6.5) acts on 

fluctuations of velocity, estimated by ݇ eq (6.6): 

< ߝ >= ߥ ∑ ൬<
డ௨೔

డ௫ೕ
+

డ௨ೕ

డ௫೔
>൰

ଶ

௜,௝ , ݅ = 1,2,3 ݆ = 1,2,3    (6.5) 
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< ݁݇ݐ > =  
ଵ

ଶ
∑ < ௜ݑ

ᇱଶ >௜ , ݅ = 1,2,3       (6.6) 

where ݁݇ݐ is the turbulent kinetic energy, ߝ is the corresponding dissipation rate of 

turbulent kinetic energy [93-95], ߥ is kinematic viscosity and ݅ and ݆ are spatial 

directions. This analogy suggests that the rate of dissipation of < ଶ′ݖ > by ߯  denoted by 

scalar dissipation time scale ߬௦, eq (6.8) is proportional to the rate of dissipation of ݇ 

through ߝ denoted by turbulent dissipation time scale, ߬௧, eq (6.7). We can write the 

turbulent dissipation time scale as, 

߬௧ =
ழ௧௞௘வ

ழఌவ
.          (6.7) 

Similarly, we can the write scalar dissipation time scale using 

߬௦ =
ழఞவ

ழ௭ᇱమவ
.          (6.8) 

The expression for the mean scalar dissipation rate is often obtained based on this 

proportionality [96,97]. Using the relationship ߬௧ = ܿ߬௦, where c is a constant, we obtain 

for the mean scalar dissipation rate,  

< ߯ >= ܿ
ఌ

௧௞௘
 < ଶ′ݖ >.        (6.9) 

In eq. (6.9), ܿ is in the order of unity [72,74] and depends on several factors including the 

turbulent flow conditions. Model constant ܿ has been reported to lie in the range 1.5  c  

3 [98], although these estimates were based on Z and ߯ obtained through Favre-

averaging. From comparing eq. (6.9) with FLASH data, we obtain ܿ ≈ 2.35 within the 

range of previously reported values.  

Combining eqs. (6.9) and (6.4), we can obtain a simple expression for < ߯ > entirely in 

terms of integral quantities associated with the RM flow:  

< ߯ > =  ܿ
ఌ

௞
< ଶ′ݖ > ≡ ܿ

ఌ

௞
(1 − Θ) < ܼ > (1−< ܼ >).     (6.10) 
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Fig 6.4 compares Z-profiles of < ߯ > from FLASH and the RM model embodied 

in eq. (6.10), and shows the agreement across <Z> lies within 10%. The disagreement 

observed near the flame zone in fig. 5.4 is due to higher values of the turbulent energy 

dissipation rate ߝ in that region, due to higher viscosity (~3.7 ܿ݉ଶ ⁄ݏ ) near the flame 

compared to lower viscosity far from the flame (~0.7 ܿ݉ଶ ⁄ݏ ) which leads to an increase 

in 
ఌ

௞
. Hence the RM model appears to overestimate < ߯ > in the flame neighborhood. 

6.4 Ignition and Quenching 

In this section, we discuss ignition, flame evolution and quenching through the 

behavior of the probability distribution functions of temperature in the RM flow. Fig. 6.5 

(a) shows the temperature distribution on a plane with <Z> = 0.11 plotted at ߬ ≈ 0 

(before shock passage), and at ߬ ≈ 1 (immediately after shock passage). Two distinctive 

peaks are visible at ߬ ≈ 0 corresponding to T= 300 K and T = 1000 K, and represent the 

initial temperatures associated with unmixed H2 and O2 respectively. At ߬ ≈ 1, the 

dominant temperature peak corresponding to ܶ ≈ 1400 indicates the commencement of 

ignition. However, from fig. 6.5 (a), it is evident the reactions have not proceeded to 

completion [72,99,100] since the observed temperatures are lower than the adiabatic 

flame temperature for H2 and O2 combustion (~ 3200 K). Fig 6.5-(b) shows the 

corresponding temperature distributions at ߬ ≈ 30 and ߬ ≈ 300. Note that the peak at 

ܶ ≈ 1500 (߬ ≈ 30) signifies a region where the combustion reactions have not 

proceeded to completion. Additionally, a smaller peak is observed corresponding to the 

flame temperature and represents the flame region. At late-time (߬ ≈ 300), the flame has 

spread significantly on the <Z> = 0.11 plane, so that the temperature distribution exhibits 

a sizeable peak near the flame temperature.  
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Figs. 6.6 (a)-(b) and 6.7 (a)-(b) depict the effect of the scalar dissipation rate on 

promoting or quenching the flame [83,101-103]. In fig. 6.6 (a)-(b), we show the 

concentration of OH as a function of the mixture fraction computed on the plane with 

<Z> = 0.11 at times ߬ ≈ 1, ߬ ≈ 30 and ߬ ≈ 300. Following the shock interaction (fig 6.6 

(a)), the OH concentration peaks near ߯ ≈ 1000 K. At this stage of evolution, the 

gradients of the mixture fraction are sharp, so that the mixing zone experiences high 

values of scalar dissipation rate. As a result, the presence of OH molecules are more 

likely, due to transport by the turbulent flow field, rather than from a complete 

combustion process. The distribution of OH molecules at ߬ ≈ 30 in fig 6.6 (a) shows a 

distinct maximum at ߯ < ߯ ଵ, followed by a sharp drop forିݏ 100 >  ଵ. Hence, theିݏ 100

results suggest that for ߯ >  ଵ, the turbulent flow does not allow adequate time forିݏ 100

the reaction to complete, causing the flame to extinguish at ߯ >  ଵ. For the reactingିݏ 100

RM flow, we define the Damkohler number as 

ܽܦ =  
ఛ೑

ఛ೎
 ,           (6.11) 

where ߬௙ =
ଵ

ఞೞ೟
 is the flow or mixing time scale and ߬௖ is the chemical reaction time scale. 

߬௖ can be taken as the time required for a complete reaction and is ~ 2.4 ݁ −  in our ݏ 4

simulation. Therefore, from figs. 6.6-(a)-(b), the RM flame tends to show local extinction 

zones at regions with ܽܦ~ < ቀ
଴.଴ଵ

଴.଴଴଴ଶସ
ቁ ~ 4. 

Fig. 6.7 shows evolution of probability of existence of unignited or quenched cells 

on the plane with <Z>=0.11. These cells are marked as cells with temperatures lower 

than 3000 K. Then, we calculate the probability of having an unignited or quenched cell 

ܶ)݌ <  :as (ܭ3000
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ܶ)݌  < (ܭ3000 ≡
ே௨௠௕௘௥ ௢௙ ௖௘௟௟ ௪௜௧௛ ்ழଷ଴଴଴௄ ௢௡ ௧௛௘ ௣௟௔௡௘ழ௓வୀ଴.ଵଵ

்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௖௘௟௟ ௢௡ ௧௛௘ ௣௟௔௡௘ழ௓வୀ଴.ଵଵ
.   (6.12) 

A sharp drop in ݌(ܶ <  can be observed during the non-linear stage of (ܭ3000

mixing in the flow as it decreases from 0.98 at ߬ ≈ 10 to 0.68 at ߬ ≈ 120. At the onset of 

fully turbulent flow at ߬ > ܶ)݌ ,120 <  continues to decline at a lower rate and (ܭ3000

appears to approach an asymptotic value of 0.64 at late-times, fig 6.7. This decreasing 

behavior in the number of unignited/quenched cells is consistent can be explained by 

recalling. In fig 4.2 for instance, the Reynolds number drops from ~22500 at ߬ ≈ 10 to 

~1600 at ߬ ≈ 120. This reduction in Re is accompanied by a reduction of turbulent 

intensity. Similarly, in fig 5.2 the scalar dissipation rate is reduced from ~103 at early-

times to ~101 at ߬ ≈ 120, indicating a decrease in turbulent mixing and the turbulent 

time scales of the flow. These findings indicate that, although some level of mixing is 

essential to turbulent non-premixed combustion, lower rates of mixing and smaller 

turbulent mixing time scales allow reactions to reach completion and promote 

combustion. 
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Figure 6.1 : Sliced view of (a): mixture fraction (b): Temperature, (c): scalar dissipation 

rate and (d): OH concentration on the plane of <Z> = 0.11. Solid lines show Z=0.11 
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Figure 6.2: Time evolution of the conditional mean scalar dissipation rate in reacting and 

non-reacting flows.   
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Figure 6.3: Profile of < ଶ′ݖ > from FLASH simulations and the RM model as a function 

of <Z> at ߬ = 300 . 

                   

Figure 6.4: Profile of< ߯ > from FLASH simulations and the RM model as a function of 

<Z> at ߬ = 300  
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Figure 6.5: Probability distribution function of Temperature on the plane <Z> = 0.11 at  

(a) ߬ = 0 and ߬ = 1 and (b) ߬ = 30 and ߬ = 300. 

 

 

Figure 6.6: Profiles of OH concentration  ( ைܻு) as a function of the scalar dissipation rate 

߯  on the plane <Z> = 0.11 at  (a) ߬ = 1 and ߬ = 30 and (b) ߬ = 300. 
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Figure 6.7: Probability of existence of unignited or quenched cells (3000>࣎K) on the 

plane of <Z> = 0.11 over time.  

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 7: SUMMAR AND CONCLUSIONS 
 

 

In this work, we defined a novel configuration for non-premixed flames, where a 

Mach 1.58 shock wave passes through the interface between fuel (hydrogen) and oxidizer 

(oxygen). The misalignment between the pressure gradient and density gradient deposits 

baroclinic vorticity on the fuel/oxidizer interface, while perturbations present at the 

interface evolve through the Richtmyer Meshkov Instability (RMI). The resultant mixing 

accompanied by the shock heating ignites the local mixture, leading to the formation of a 

non-premixed flame.  

The problem was investigated numerically using the astrophysical FLASH code, 

which utilizes the Piecewise Parabolic Method for advection, while a detailed model with 

9 species and 19 steps was used to capture the reaction chemistry. Viscosity and thermal 

diffusivity of the mixture were calculated as functions of the species concentration and 

temperature through detailed models (eq. (2.9) - eq. (2.14)). Mass diffusivity is then 

obtained through the assumption of a Lewis number of ~1. The numerical resolution 

employed is sufficient to capture the Kolmogorov length scale at late times. 

Power-law analysis: Both reacting and non-reacting RMI driven turbulent flows 

exhibit self-similar behavior at late times. We characterize the self-similar growth of the 

mixing layer using a power law form ܹ = ݐ)ܣ −  ଴)ఏ. The non-reacting RMI mixingݐ
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width was found to evolve with 0.29~ߠ, in agreement with previously reported values 

[32,67,70]. In the reacting case, ignition is followed by a sudden increase in temperature, 

with an accompanying decrease in density. Pressure waves from ignition drive a variable-

g RT instability that expands the mixing zone, and affects the growth of the mixing layer. 

Thus, at early times the reacting mixing width experiences a considerable enhancement 

compared to its non-reacting counterpart. Eventually, the higher temperatures increase 

the diffusivity of the mixing layer, so that the late time growth rates are suppressed 

relative to the inert case. Our simulations show that reacting mixing width appears to 

grow with 0.09~ߠ at late times. 

In non-premixed combustion with infinitely fast chemistry, the entire flame 

structure can be calculated based on the mixture fraction distribution. This distribution is 

usually modeled based on the mean mixture fraction (which can be easily measured or 

estimated), and from the variance of the mixture fraction fluctuations (which are not 

readily available through modeling or measurements). In this study, we proposed a model 

to estimate variance of mixture fraction fluctuations using RM integral quantities such as 

mean of the mixture fraction and the molecular mixing parameter, which would be easy 

to measure in experiments.. The so-called RM model for mixture fraction fluctuations <

ଶ′ݖ >  was validated with results from high resolution FLASH simulation. It is shown 

that the predicted < ଶ′ݖ > from the RM model is in agreement with  values from FLASH 

to within 10% away from the edges of the mixing layer. 

When the flame dynamics are governed by finite rate chemistry, flow/flame 

interactions play an important role in defining the flame structure. Indeed in such 

situations, flame properties also depend on the scalar dissipation rate. Thus, we extend 
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our proposed RM model for < ଶ′ݖ >  to estimate the mean value of the scalar dissipation 

rate < ߯ >. We apply a commonly used analogy in turbulent mixing that relates the 

turbulent kinetic energy dissipation rate to the scalar dissipation rate. Our results show 

agreement between the RM model for < ߯ > and the FLASH simulation data. However, 

the model loses accuracy near the flame, due to considerably enhanced viscosity.  

Finally, we discuss the effect of shock passage and high Reynolds flows on 

ignition and quenching in shock driven non-premixed combustion. Our findings show 

that following shock incidence, during the linear and non-linear stages of mixing, the 

flame sheet experiences additional quenching. At this stage of the flow, the large initial 

Reynolds numbers (~ 104) and scalar dissipation rate (~ 102) prevent ignition from 

spreading. As a result, unignited zones are observed at the stoichiometric sheet. On the 

onset of fully turbulent mixing, both the Reynolds number and the scalar dissipation rate 

experience significant reduction. These effects increase the Damkohler number and allow 

additional regions on the flame sheet to reach complete combustion. 
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APPENDIX A-1: KOLMOGOROV LENGTH SCALE 
  

In order to resolve the turbulent flow, the grid resolution has to adequately resolve 

the Kolmogorov length scales of the flow [61,93,104]. The Kolmogorov length scale, ߟ 

can be computed according to [93] : 

ߟ = ܹܴ݁ି
య
ర           

 (1-A) 

Note that ߟ can be computed a priori by invoking the anticipated power law 

behavior of W. By substituting eq (4.5) and (5.3) into eq (1-A), we get  

ߟ = ቊܣ ቀ
ఏ

ఔ
ቁ

య
మ ݐ) − ଴)ఏିݐ

య
మቋ

ି
భ
మ

.        

 (2-A) 

Fig (1-A) shows 
ఎ

∆
  for both reacting and non-reacting simulations as a function of 

time using FLASH as well as eq (2-A), where ∆ is the computational grid size. Thus, 

results from FLASH are consistent with the exponential decay calculated using 

derivatives of power-law expression at late-times. From fig (1-A), a grid spacing of 

଺

ସସ଼
 ܿ݉ should resolve the Kolmogorov length scales of the reacting flow, since for ߬ >
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70 the value of 
ఎ

∆
 exceeds 1. In the non-reacting case, for ߬ > 230, 

ఎ

∆
 asymptotically 

reaches 0.5.  

 

Figure 1A: Ratio of the Kolmogorov length scale to the simulation grid size for reacting 

and non-reacting cases as a function of turbulent flow time scale from FLASH and 

power-law derivatives.

 


