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ABSTRACT

MATTHEW W. JOHNSON. Exploring the visualization of student behavior in
Interactive Learning Environments. (Under the direction of DR. TIFFANY

BARNES)

My research combines Interactive Learning Environments (ILE), Educational Data

Mining (EDM) and Information Visualization (Info-Vis) to inform analysts, educators

and researchers about user behavior in software, specifically in CBEs, which include

intelligent tutoring systems, computer aided instruction tools, and educational games.

InVis is a novel visualization technique and tool I created for exploring, navigating,

and understanding user interaction data. InVis reads in user-interaction data logged

from students using educational systems and constructs an Interaction Network from

those logs. Using this data InVis provides an interactive environment to allow in-

structors and education researchers to navigate and explore to build new insights and

discoveries about student learning.

I conducted a three-point user study, which included a quantitative task analysis,

qualitative feedback, and a validated usability survey. Through this study, I show that

creating an Interaction Network and visualizing it with InVis is an effective means

of providing information to users about student behavior. In addition to this, I also

provide four use-cases describing how InVis has been used to confirm hypotheses and

debug software tutors.

A major challenge in visualizing and exploring the Interaction Network is network’s

complexity, there are too many nodes and edges presented to understand the data

efficiently. In a typical Interaction Network for twenty students, it is common to have
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hundreds of nodes, which to make sense of, has proven to be too many. I present

a network reduction method, based on edge frequencies, which lowers the number

of edges and nodes by roughly 90% while maintaining the most important elements

of the Interaction Network. Next, I compare the results of this method with three

alternative approaches and show our reduction method produces the preferred results.

I also present an ordering detection method for identifying solution path redundancy

because of student action orders. This method reduces the number of nodes and edges

further and advances the resulting network towards the structure of a simple graph.

Understanding the successful student solutions is only a portion of the behaviors

we are interested in as researchers and educators using computer based educational

systems, student difficulties are also important. To address areas of student difficulty,

I present three different methods and two visual representations to draw the attention

of the user to nodes where students had difficulty. Those methods include presenting

the nodes with the highest number of successful students, the nodes with the highest

number of failing students, and the expected difficulty of each state. Combined with

a visual representation, these methods can draw the focus of users to potentially

important nodes, which contain areas of difficulty for students. Lastly, I present the

latest version of the InVis tool, which is a platform for investigating student behavior

in computer based educational systems. Through the continued use of this tool, new

researchers can investigate many new hypotheses, research questions and student

behaviors, with the potential to facilitate a wide range of new discoveries.
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CHAPTER 1: INTRODUCTION

The National Academy of Engineers, in 2008, declared the advancement of person-

alized learning as a Grand Challenge[46]. The increasing use of the web in education

and learning management systems is rapidly increasing the amount of data that can

be brought to bear on this important challenge. As of 2010, the PSLC DataShop,

a repository for educational data, had collected logs from over 42,000 students from

different tutors with a wide range of topics, from algebra to Chinese[35]. However,

such large data-sets can be unwieldy, and deciding just how to use them to improve

learning is a challenge as illustrated by the emergence of the new field and confer-

ence on Educational Data Mining. These data sets have the potential to provide

invaluable insights into student learning and how it might be better supported or

improved. However, there are few tools beyond those supplied by the PSLC that

allow researchers and educators to investigate, explore, and understand how students

solve problems in particular learning environments.

One way to achieve the goal of providing personalized learning is to improve Inter-

active Learning Environment (ILE) tools to adapt to individual learners in the way

that intelligent tutoring systems (ITSs) do. The goal of this research is to provide

tools that will allow researchers to better understand student learning and identify

areas where CBE systems can be improved. These tools will focus on interactive
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visualization of educational data collected from students during problem-solving in

ILEs.

My first research question is: Can we build a visualization of problem-solving data

that will allow instructors and researchers to better understand student behavior and

learning?

To address this question, we developed InVis, a non-domain specific, interactive

visualization tool to explore and navigate Interaction Networks. InVis is not guaran-

teed to work in all domains, but rather is not limited to a single domain. The focus

of InVis and the related research is on multi-step, problem solving, particularly for

STEM fields, science, technology, engineering and math, where problems can easily be

modelled as a state-transition diagram with a clear problem start and problem goal.

Interaction Networks are the data structure we use to represent the steps students

take in problem solving. I demonstrate the use of InVis for visualizing and exploring

student problem-solving data with a triangulated approach user study that includes a

validated usability study, a quantitative task-analysis, and qualitative feedback. Re-

sults show users could successfully use InVis to investigate student behavior, generate

and confirm hypotheses, and gain insights into ILE design. I demonstrate the appli-

cation of InVis through three case studies that illustrate the insights that InVis can

provide about student behavior. I show how educators generated hypotheses about

students from the data, and then used the tool to confirm or reject those hypotheses.

This work is a first step towards allowing researchers to examine tutor data, and

is intended to help inform decision making for educators and tutor developers, it is

also likely be helpful to researchers studying ILE systems. There are many types of
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ILE tutors, many of which are built with scaffolding in mind. Although a system

providing insight about any type of tutor would be wonderful, the focus of InVis is

on tutors addressing open-ended problem solving. I define open-ended problems as

tutor-problems which require multiple steps to solve the problem and have one or

more ways to solve the problem. Furthermore, InVis is most useful when a tutoring

systems ‘state’ can be clearly defined, and students will have solution overlap, which

I will in chapter 3.

The initial design of InVis provided a much needed, non-domain specific view

of computer tutor data; however, it did not provide users with a good summary or

sense of the overall student problem-solving skills or methods. The user-study showed

that providing interactive elements for exploring and navigating Interaction Networks

alone are not sufficient to support the understanding of these large, complex networks

representing student behavior. The major drawback to this initial design is that the

number of states increases with the number of students and the number of actions they

perform. The state space of some solutions can become very large; for 23 students

for a single logic problem, 662 nodes were generated to populate the Interaction

Network. When viewing 100 or more students at a time, meaningful tasks become too

difficult and tedious to perform, hindering one’s ability to understand student problem

solving approaches quickly or effectively. In such cases, the Interaction Network is

too verbose, and instructors and researchers need better ways to see an overview of

the data to better direct their exploration.

My second research question is: Can we leverage network analysis, sequential pat-

tern mining and other data mining techniques to identify important characteristics
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and the underlying structure of the solution space represented by the Interaction

Network?

To address this question, I extend the functionalities of InVis and incorporate

three novel concepts with respect to the Interaction Network. I present a strategy

reduction algorithm and an ordering consolidation approach that can be performed

on the Interaction Network to better focus on the underlying structure of the solution

space. These two methods when combined offer a great deal of network size and order

reduction, preserve the most common actions and solution-paths, reduce redundant

information, draw attention to the important features, and help advance the resulting

network towards a simple graph. This manages the complexity and presentation of

the student data-driven solution space, in the form of the Interaction Network, and

facilitates a greater ability to identify interesting student problem-solving behavior.

The third approach is a state difficulty detector. The theory behind this concept

is founded in problem difficulty from classical test theory. InVis has three different

methods for displaying state difficulty: we present the states to the user in order of

goal-frequency, failure-frequency, as well as expected difficulty on a per state basis.

The difficulty detector combined with a difficulty view, where visual characteristics of

the presentation are adjusted to facilitate the view, allow users to quickly investigate

where students faced difficulty. This type of information provides educators with

visual identity of the challenges students faced and focus can be directed to regions of

the solution-space where the student data provides evidence of those challenges. In

combination with systems like the Hint Factory [55], educators can more efficiently

generate well-crafted hints to the regions where students exhibit the highest rates of
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difficulty.

The research questions asked are directed at finding ways to help instructors and

researchers gain an overview of general student behavior while solving a single prob-

lem. Specifically, InVis will support instructor and researcher exploration of problem-

solving data by providing the following tools to:

• Identify common strategies students used to solve problems.

• Identify areas of difficulty for students.

• Provide a general overview while allowing users to explore interesting student

behavior in more detail.

We support these tasks through a usable interface that helps instructors and re-

searchers focus on important information at a higher level, while still allowing detailed

inspection of interesting cases. This functionality is based on Interaction Network

data. The approach is not specific to any single tutor or domain, but may not work

for all domains, I describe our attempts with five different data-sets. Tutor devel-

opment and interactive learning environment construction are long, complex tasks

and their continued refinement is important as this field continues to move forward.

Student data visualization can aid in these processes and going forward will likely be

an important part in focusing on developmental efforts which should provide maximal

impact on educational efforts.



CHAPTER 2: RELATED WORK

It takes 100-1,000 hours of development time to build one hour of Intelligent Tu-

toring System content [44]. On the other hand, Interactive Learning Environments

(ILE) are increasing by the day. However, many of these environments lack intelli-

gent features that extend them from being a ILE tool into an Intelligent Tutoring

System(ITS). An ITS is a sub-type of Interactive learning environment, which usu-

ally requires some level of personalization or ’intelligence’ most often implemented

through student modelling. Generating the intelligence, with tools like CTAT [37],

is a long and difficult process, requiring a high level of expertise. By improving au-

tomated, non-domain specific methods for offering insight, we can make significant

improvements in the area of personalized learning.

The three areas we will address in this related work section are Interactive Learning

Environments (ILE), Educational Data Mining (EDM) and Information Visualization

(Info-Vis). Each one of these areas plays a role in my contribution, leveraging portions

of each field in which they are most effective. John Stamper’s Markov Decision Process

(MDP) graph is the leading inspiration for this work, showing that a graph of tutor-

log states can be used for improving tutor interventions. An intervention in this sense

is any activity, technique or method for the purpose of teaching a topic. Stamper was

able to use the tutor-log graph of states in order to create the Hint Factory [55], a
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domain independent method of generating context-sensitive hints for users.

This Related Work chapter is presented in three sections. In the Hint Factory

section, I present an overview of Stamper’s work and how it lays the foundation

for ours. Next, in section 2.3 and section 2.4 I present the Deep Thought logic

tutor and BeadLoom Game, two different CBEs whose log data I have used for

analysis. Following those CBE systems, in section 2.5 I review related visualizations

for educational data.

2.1 The Hint Factory

The Hint Factory is an end-to-end approach that builds a domain model from

student problem-solving data, creates an MDP on that model, and uses the MDP to

automatically generate context-sensitive, individualized, hints upon student request.

The Hint Factory approach begins by building a student solution graph of all student

attempts for a particular problem. Each state in the graph is like a snapshot of the

the problem-solving attempt (from the tutor log), and transitions between states are

the actions students take to perform the next problem-solving step. The student

solution graph can help us better understand student problem-solving behavior, and

build better interventions to improve the tutor or learning. However, student solution

graphs, even for simple logic problems, can contain thousands of nodes, for example

our 2009 data set for problem 3.5 of Deep Thought has 1375 states for 190 students,

making it difficult to build good human understanding. The primary cause of this

difficulty is related to complexity of the of graph, with so many nodes and edges,

even with basic interaction tools, they are too large to effectively navigate and gain



8

insight from.

The hint factory has been extensively applied to the Deep Thought propositional

logic proof tutor [7, 55]. Deep Thought stores student data in a transactional database,

like many CBEs represented in the Datashop, a data-repository for CBE-log data [35].

These actions can be used to describe the state of a tutor, or in other words a snap-

shot of what a student has done so far in a particular tutor or problem. Typically

the start state is the problem definition; in Deep Thought, this is defined as the set

of premises supplied when the problem is first loaded, along with the conclusion to

be derived.

Next, Deep Thought logs student actions as they select logic statements and apply

logic axioms to combine them to derive the desired conclusion. The student may

select some premise and apply an action, like simplification, and a log-transaction

is recorded. The result of that action creates a new state, which would include the

newly generated logic statement.

After the student has solved the problem, the history of their transitions is recorded

as a sequence of state-action pairs. The hint factory uses a dataset (typically from

one or more classes of students) to generate a graph that includes all of the states and

actions. Later when a new student is using the tutor, and requests a hint, the system

compares the student’s current state to all the states available in the hint factory

and finds a match. Once a match is found, the hint factory looks at the set of next

states, and finds the state which is best to move to next, which is done through a

Markov Decision Process (MDP), as described in Stamper’s work [56, 7, 9, 8]. Once

the next desired state is determined, a hint that guides the student to that next state



9

is presented, and this creates a contextualized hint for the student.

The contextualized hint from the hint factory, is the intelligence of the Intelligent

Tutoring System, and is also considered adaptive feedback or personalized learning,

because it is unique to the particular student’s problem-solving context when they

request a hint. Essentially the hint factory looks at the current solution provided by

the student and matches that solution to a previously completed solution from past

student data. The hint is based on the past student’s next state, providing a hint

based on the next state the current student should work towards. Stamper, et al.

showed that students solving logic problems in the Deep Thought tutor were three

times less likely to drop out from ever using the tutor again, when they received hints

using the Hint Factory [7]. Hint students spent a similar amount of time in the tutor

but were able to complete more problems, and hint students were less likely to drop

out, a significant advantage.

The major contribution of Stamper, Barnes, and Croy’s work is that hint generation

is fast and purely data-driven. Most hints in ILEs are hand-generated by experts,

such as those for the geometry tutor [36], the Andes physics tutor [30], and even

a domain-independent tutor, The Help Tutor[52] a tutor for help-seeking behavior

in any cognitive tutor. Help-seeking behavior in this sense, is the act of requesting

help when you need it, an important skill for learners. The downside to manually

generating hints is that it requires an expert in the field, and can be expensive in

terms of resources, particularly the expert’s time. Not only must the expert be a

domain expert, but typically an expert in ITS development as well, as most systems

lack an intuitive interface. This means it is not easy to alter ILEs, though CTAT aims



10

at alleviating some of these authoring costs. CTAT, the Cognitive Tutor Authoring

Tool, which allows teachers to author hints they would like to provide given specified

student responses to questions [37]. Though CTAT provides an important service,

the Hint Factory addresses an important problem, converting a Computer Aided

Instruction tool into an Intelligent Tutoring System, through data-driven means, as

was done with the Deep Thought Logic Tutor. An important advantage of this

approach is that it reduces ITS development costs, allowing more CBE systems to

incorporate personalized tutoring.

A major limitation of the Hint Factory is that it is difficult to build understanding of

the state-space that is generated from the data. The Hint Factory’s focus is generating

a hint for most states, that provides guidance to a new state closer to the goal.

However, without InVis, educators, researchers and ILE developers cannot see that

rich state-space. InVis provides a means of looking at how students explored the

solution space of a problem. Through visualizing the data and solution-space we

should be able to understand the most common strategies of our population, while

also identifying states where students experience high failure rates. The purpose

of our work is to provide a method of letting developers, educators and researchers

explore, visualize and understand their users’ data through visualization and data

analysis.

2.2 Problem Solving Environments

The focus of InVis is open-ended problem-solving environments. For this work, we

define open-ended problem solving environments as tutors where students can apply
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one of many different actions and must use many actions in order to solve a single

problem, as in the Deep Thought tutor [21]. Other examples include tutors from

ASSISTments [60], and games like the BeadLoom Game [15, 14].

This is an important distinction as there are other types of ILE systems which

rely heavily on scaffolding and knowledge tracing [18]. Scaffolding in problems have

had clear pedagogical benefits [48]. The idea of scaffolding comes from the idea that

educators should provide the information necessary for the learner to move forward

step by step beyond their current knowledge [16]. Though scaffolding has been shown

to be successful, there could be benefit in providing open-ended problem solving

environments.

In scaffolding and knowledge tracing systems, typically each question is associated

to a skill or set of skills, a student is required to answer a single question at a time,

much like a multiple choice test. InVis is not designed to visualize data from these

types of systems, because typically the solution space is small, or as in the case of

multiple choice, the smallest possible space. That is, for a single problem, there is

only one action, choose the answer, and the answer is either correct or incorrect.

InVis is designed to explore the open-ended problem-solving environments, which

means there are multiple actions required to solve the problem, and different solutions

for solving the problem. With more open environments, students have a larger state-

space to explore for solutions, consider the multiple ways to calculate a mathematical

problem, or programming a program.

Additionally, open problem-solving tutors may have an important role in educa-

tion. Bloom’s taxonomy of learning domains is a categorization of tasks in which
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domains higher in the taxonomy cannot be performed until the lower domains have

been mastered, suggesting greater intellectual skills [13]. Open problem-solving based

tutors may encourage learning in higher levels of Bloom’s cognitive domain.

By developing InVis in such a way that its techniques not specific to a single

domain, we can allow the visualization of data from a wide range of tutors, like the

ones mentioned above. This will allow us to identify common strategies, subgoals,

and areas of difficulty in a number of tutors. Furthermore, InVis users will be able

to explore and navigate the solution-spaces generated from student data in a wide

range of domains.

The way InVis works is through the visualization of the Interaction Network, which

in short is the solution space of states generated from transactional logs of students

performing actions in a tutor. The complete details are covered in section 2.6. Before

I explain the Interaction Network in detail, let us first look at two different tutors

and how they work, so it will be more clear how we transform their log-data into the

Interaction Networks.

2.3 The Deep Thought Tutor

The Deep Thought (DT) logic tutor is a propositional logic tutor developed by

Marvin Croy at the University of North Carolina at Charlotte. Dr. Croy has been

collecting DT data for over a decade, and the problems are of the appropriate open-

ended nature. We collaborate with Dr. Croy to build new features and test our

hypotheses with DT [20].

Deep Thought is an Intelligent Tutoring System for propositional logic for perform-
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Figure 1: The Deep Thought tutor, on the left we have the start of the problem.
The start premises are at the top, the goal is derive B. On the right the student has
simplified the premise ¬D ∧ E to ¬D.

Figure 2: In the left image, the student has selected A ∨ D and ¬D and applied
the Disjunctive Syllogism axiom, deriving A. In the right image, the student has
selected two more logic statements and applied Modus Ponens to produce B ∧ C.

ing first-order logic proofs [21]. Students are given a set of premises and a conclusion;

students must use basic logic axioms to prove the conclusion. As the student works

through the proof, the tutor records each interaction.

For example, a student starts at state A ∨ D,A → (B ∧ C),¬D ∧ E, where each

premise is separated by a comma. The student performs the interaction SIMP (¬D∧

E), applying the simplification rule of logic to the premise ¬D ∧ E and derives ¬D.

This leads to the resulting-state of A ∨D,A→ (B ∧ C),¬D ∧ E,¬D.

Errors are actions performed by students that are illegal operations of logic and
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Figure 3: The student then applies the simplification axiom to B ∧C to derive the
goal, B.

Table 1: Actions and Conditions for Deep Thought Problem shown in figures 1-3.

Action PreCondition PostCondition
SIMP ¬D ∧ E ¬D
DS A ∨D, ¬D A
MP A→ (B ∧ C), A B ∧ C
SIMP B ∧ C B

the tutor; when they are detected the tutor saves the error and returns DT to its

prior state. For example: The student is in state A ∨D,A→ (B ∧ C),¬D ∧ E,¬D.

The student performs the interaction SIMP (A∨D) in an attempt to derive A. The

resulting state would remain A∨D,A→ (B ∧C),¬D∧E,¬D, and the log-file saves

this action as an error.

In 2008, John Stamper augmented the Deep Thought tutor with the Hint Factory

to provide automatically generated hints [7]. This addition to Deep Thought enabled

the tutor to provide context-sensitive feedback to users. That is, depending on the

state of the user, when a hint was requested the hint-factory process was executed

and the corresponding hint provided.
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Table 2: Actions Available in the BLG

Action Parameters
Draw Point X, Y
Draw Line X1, Y1, X2, Y2
Draw Rectangle X1, Y1, X2, Y2
Draw Triangle X1, Y1, X2, Y2, X3, Y3
Linear Iteration X, Y, Length, +beads, rows, dir.
Triangle Iteration X, Y, stepHeight, +beads, rows, dir.
Undo Returns to previous step

2.3.1 Working Backwards

Deep Thought allows students to work both forward and backwards in the logic

domain to solve problems [22]. Working backwards allows a student to select the

goal premise and use actions to change the conclusion by adding (unjustified) propo-

sitions. When a proposition is ‘unjustified’, the student must derive ways to prove

that statement. Students can solve a problem completely by just working forward,

working backward, or a hybrid approach working in both directions, Deep Thought

offers a diverse set of problem solving strategies. Deep Thought is a rich environment

that allows us to explore general ways to learn from diverse problem-solving behavior.

2.4 BeadLoom Game

The BeadLoom Game is a Interactive Learning Environment (ILE) game that

provides an open-environment to students to practice plotting with the Cartesian

coordinate system [15, 14].The BeadLoom Game(BLG) [14] is a game-based extension

of the Virtual BeadLoom (VBL), an online tool to teach math using Native American

cultural beadwork practices. The BLG and the original VBL were developed for

teaching middle school students.
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Figure 4: The BeadLoom Game Interface: the goal of the game is to create the
pattern on the left using as few moves as possible. Here the player has started by
using the rectangle tool to create the first part of the pattern. Next a player might
choose the color blue, and draw a blue rectangle, by entering the coordinates in the
panel in the bottom right.

The BeadLoom Game added game elements to VBL to increase motivation and

learning [14]. In the BLG, players place beads in a 41x41 Cartesian grid using six

different tools, shown in Table 2, and can also use an undo command. All actions take

a color parameter; there are 12 different colors available. The loom starts empty and

once beads are added they cannot be removed unless players use the undo action.

However, beads can be overwritten by future actions. The goal of the game is to

create a specific image with the given tools. Figure 4 shows an example from the

BLG. In this image the player is attempting to draw the image on the left; the player

has started by drawing a red rectangle using the rectangle tool. The goal of the

BeadLoom Game is to solve each puzzle in the fewest moves possible. An example

sequence is shown in table 3.
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Table 3: Example Play Sequence

Start-State Action Result-State

rectangle(-5 1 5 11)

rectangle(1 -5 11 5)

rectangle(-5 -11 5 -1)

rectangle(-11 -5 -6 5)

rectangle(-5 -5 -1 0)

2.5 Visualization & Interactive Learning Environments

Student tutor-log data sets are large, representing hundreds of problem attempts

with hundreds of problem states. Interactive Learning Environments(ILE) has the

potential to allow teachers to see how students are solving problems, but educational

data mining tools require “good visualization facilities to make their results meaning-

ful to educators and e-learning designers” [53]. Instructors are not necessarily savvy

with graphs, spreadsheets, or statistics, so they need support in navigating these

large domain models to learn about student behavior. One approach of providing

that accessibility and exploration of the data is through data visualization.

Ben-Naim and colleagues [11] have developed an authoring tool, called the Solution

Trace Graph, that allows teachers to create simulators for science and explore small

graphs of student actions in the simulator. However, this visualization is restricted to
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teacher-created states, where teachers label a step in the simulator as one of interest.

This is useful to let teachers see how many students enter their pre-defined interesting

states, but imposes a significant limitation by not letting students provide the states

through their actions. Since their approach is not fully derived from student data, it

is subject to the expert blind spot. The expert blind spot is the idea that expertise

in a subject area may make someone blind to the learning processes and instructional

needs of novice students, and are unaware of having such a blind spot [45]. Also

by definition it does not facilitate exploration of student generated data, meaning

it is less likely their users will discover surprising insights from the data, since the

educator had a role in creating the data that is captured. In addition their tool is

specific to their tutors built through their Adaptive eLearning Platform (AeLP), so

large, diverse data sets from other tutors are not supported. However their team

does state that the inclusion of this tool and the Solution Trace Graphs has “greatly

enhanced and simplified...the development of eLearning content.” [12].

CourseVis is another visualization that produces graphical representations of stu-

dent tracking data collected by a Content Management System, and helps teachers

gain an understanding of how students are behaving in their online courses. In Cour-

seVis, the focus is on the behavior of a student over the course of an entire semester.

CourseVis supports some techniques to view student performance but the focus is on

visualizing knowledge components and assessment performance, not problem-solving

behavior as in our work [40]. The focus of InVis is how a group of students solved a

specific problem, whereas CourseVis focuses on how student knowledge evolves over

many problems throughout the course of a semester.



19

VisMod provides students with a visualization tool for representing and interact-

ing with their own student-model, thereby helping students to develop their meta-

cognitive skills [62]. VisMod focuses on the visualization of a Bayesian Belief Net-

work, which is related to Bayesian Knowledge Tracing. The focus of this tool is to

investigate what the students think about their own behavior, but does not provide

instructors a view of all the student data.

TADA-Ed, Tool for Advanced Data Analysis for Education, is a tool designed for

mining educational data generated from digital tutors, the focus is on visualizing the

results of several data-mining techniques, such as k-means clustering and decision

trees applied to educational data [41]. TADA-Ed focuses on the relevance of student

actions, the evaluation of correctness and, if applicable, the type of mistake made.

This is important and very useful but does not provide users a way to interact visually,

directly with student data on solving open environment problems. Their tool is

focused on the visualization of scaffolded problem tutors, not open-ended problems

with large solution spaces. Their visualization applies data-mining techniques to data

based on correctness and incorrectness, not on paths to the solution like InVis.

Our work is unique among these visualization tools in its focus on visualizing stu-

dent behavior while solving a single problem. The work by Ben-Naim visualizes data

at the problem level of granularity, but is domain dependent. Their visualization tool

is built specifically for the tutoring systems that they are also developing, while we

provide a domain independent approach. A domain independent approach offers a

much wider range of system coverage, but potentially at the risk of offering lower

specificity. By building a visualization tool specific for certain tutors one can poten-
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tially create powerful visualization techniques specific to the input data. The problem

is that the techniques and visualization itself are restricted to a specific set of tutors,

thus limiting tutor coverage.

2.5.1 Visualization of Game Log Data

Intelligent Tutoring Systems and video games are similar in that both incorporate

rapid feedback loops and scaffolding techniques [6]. Recent research has looked for

ways to leverage the ITS and video game communities for future learning environ-

ments [51]. Typically an intelligent tutoring system is designed to provide a unique

educational experience for each student. To provide this personalized experience, in-

telligent tutors map student behavior to a student model and from the interactions

logged by the user, map a user to some student model and use the model to build in-

telligent support for the student. These same techniques could also be used in games

to tune player experiences.

There have been a few explorations of using visualization for games, which can be

extended to educational games. Noobler uses visualization to enhance the quality

of the “spectator mode” for multiplayer first-person shooters, incorporating many

different visualization techniques to show a more complete overview of the action

taking place in the game [32]. Dixit and Youngblood created a tool to visualize

player logs to understand how a player navigates a 3D environment [24]. In these

examples and others the challenge is providing an overview of the action that takes

place in 3D space, and so the visualization tools themselves are much more focused

on spatial and temporal visualizations, which is different from our focus.
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In games research, Andersen analyzed game data to create game “states” - snap-

shots of what’s been done in a game, and applied different metrics to game data to

assign a value to each of these states [3]. Using these values, Andersen created a

dissimilarity matrix, which stores the difference, or distance, between each state-pair,

and then used classical multidimensional scaling to project those relative distances

to 2D space. This approach works well for visualizing state similarity, but does little

to show the overall behavior of the players. It also does not present the information

in a way that visually preserves sequence information.

2.6 Interaction Network

The Interaction Network is a data structure for combining a large set of transac-

tional data into a single graph that represents all interactions in an interface. This

representation allows us to leverage network analysis techniques to better understand

software-user log-data. The Interaction Network is comprised of three main compo-

nents: states, actions, and cases. We attach additional information, such as student,

aggregate, and derived data to nodes and edges.

We model a solution attempt as a sequence of states (vertices) and actions (edges).

We use case to refer to a single student’s data for a problem. (Note that students

may attempt problems more than once, resulting in more than one solution attempt

for a single case). We create the Interaction Network for a problem by conjoining the

set of all of its solution attempts (cases). We use state to describe the state of the

software environment, representing enough information so the program’s state could

be regenerated in the interface. Of course, the state is specific to the domain being
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Figure 5: An example of a small Interaction Network.

visualized, more on this below. We use actions to describe user interactions and their

relevant parameters. We also store the set of all cases that visited any particular

state-vertex or action-edge, allowing us to count frequencies and connect case-specific

information to the Interaction Network. This representation results in a connected,

directed, labeled multigraph with states as vertices, directed action edges to connect

the states, and cases that provide additional information about states and edges. (See

figure 5.)

This representation allows us to build an Interaction Network model from any

system that logs interactions in state, action, resulting-state tuples. The state-

action-state tuple is the most important part of the system’s logging. However,

we recommend logging other features including the time spent on each step, any
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Figure 6: The same Interaction Network, presented in two different ways, un-ordered
(left) and ordered (right). By preserving the order, the right side representation,
treats states ACB and ABC as two distinct states, as opposed to the ordered states,
where those two states are presented as equivalent.

feedback messages given to the user, and information about the problem (such as a

problem ID). Frequency information, as well as information about related cases, is

embedded into the edges and vertices. This results in a network graph which shows

the interactions of a large number of students in a relatively small space.

To build the Interaction Network for a particular problem we combine the inter-

action sequences, or solution attempts, from each case into a single aggregate graph.

States are combined when they are considered equal. Aggregating the states and

actions adds frequency information based on which students visit which states, and

this frequency allows us to provide context to the solution space. Mainstream solu-

tions and strategies will have higher frequencies, while uncommon or outlier behaviors

should be identifiable since their nodes and edges will have very low frequencies.

In different tutors and interfaces, two states could be considered equal as long as

the screen looks the same, or all the same actions have been performed, regardless of

order, but in other cases, states arrived at by taking the same actions in a different

order could be considered distinct. InVis will handle either case, as shown in Figure

6.

Before visualizing a data set, we can ask whether order matters for a particular
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problem-solving domain. For example, in the Deep Thought data should the state A,B

be distinct from the state B,A? An order-matters approach results in more distinct

program states, and thus more vertices. However, preserving the order of statements

derived increases the information of the visualization by making the order of steps

a student takes more obvious. By contrast, an un-ordered approach reduces the

number of states and reduces the size of the overall network. While the un-ordered

graph provides a more generalized view, it can be visually more difficult to follow the

precise steps of an individual case, due to the graph-layout applied to the network. For

our work with BeadLoom Game data and Deep Thought data, we use an un-ordered

state-description, with the goal of reducing the number of states in the network in

mind.

For the intelligent tutoring system community, we encourage the use of logging

standards such as the PSLC’s Datashop[35]. We recommend preservation of the

action’s parameters and results, since they are useful for labeling the visualization.

One final characteristic of the Interaction Network relates to the method for han-

dling tutor-based errors. These types of errors are actions performed within the

targeted tutor but are invalid actions within the tutor. A simple example of such an

error would be like making an invalid move with a Chess piece in the game of chess,

like moving a pawn three spaces. There are different display options which can be

used in the interaction network and those are shown in figures 7-9. The choice of

display method is left to the user, when defining their states and preparing the data

to be read into InVis.
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Figure 7: Errors shown as hanging vertices.

Figure 8: Error is shown as a self-loop, showing that the action did not result in a
change in state.

Figure 9: Error is shown as a distinct error state.

2.6.1 Interaction Networks: A Formal Description

In sequential problem solving environments, a solution path describes a sequence of

state changes from a starting position towards a desired end position. For this work

we will only consider discrete time environments with deterministic state transitions.

The reason for this is due to the inherent difficulty with defining a state for a task

like writing a novel. To best leverage the Interaction Network it is useful for student

solutions, when the same to be considered so, such that the solutions will contain

appropriate overlap. This overlap in states among student solutions gives states their

frequency. An Interaction Network is a data structure designed to concisely describe

the information contained in a large number of such sequences. Interaction Networks

provide a structure on which to perform data mining, and are also useful for visually

displaying information.

An interaction network is based on individual student-tutor interactions, as recorded
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in the log file of the tutoring environment. We define an interaction, I, as a 5-tuple

I = (St, A., St+1, U, I), where

• St is the state at step t

• As is the action performed on St

• St+1 is the resulting state after A has been performed

• U is the unique case ID responsible for this interaction

• I is a set of additional information about the interaction. For example, Itime

would return a value for how long this interaction took. Included here are Ierror,

which stores the error value, and Igoal, which is true if this action resulted in a

goal state.

A case represents all the information about an individual user in a particular tu-

toring system. All interactions are associated with some case. A case is represented

by the ordered pair c = (U, I), where

• U is a unique identifier

• I is a set of additional information about the individual. For example, Ipretest

would return a value for this case’s pretest score.

The interaction network for a problem P is:

INP = (C, S,A, t, s, S0, G, IA,M), where

• C is a set of cases.



27

• S is the set of observed tutor program states

• A is the set of observed actions, which connect two states

• s : A→ S and t : A→ S are two maps indicating the source and target states

of an action

• S0 is the starting state of the problem

• G is the set of goal states

• IA : A→ I is a map to the source set of Interactions

• M is the set of maps, which allow the lookup of relevant state, action, and case

information. For example: MFreq : S → Frequency will map from the state x

to the frequency value for that state.

A single solution attempt is modeled as an ordered sequence of interactions. A

case refers to an individual student’s data, and could be combined with any additional

student-specific information, such as test scores. An interaction network for a problem

is created by conjoining the set of all the solution attempt graphs into a single graph.

State describes the state of the software environment, with enough information so

the program’s state could be regenerated in the interface. Actions refer to user

interactions and their relevant parameters. States and actions also make reference to

all cases associated with them, allowing frequency counts and viewing case-specific

information in the interaction network visualization. Pre and post conditions, an idea

borrowed from the Strips problem solver[27], store which element of the problem was
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Figure 10: A visualization of an Interaction Network from the Deep Thought data
set. Red edges are errors (incorrect actions), edge width depicts frequency, green
squares are goal states.

used to facilitate the current action, and what has changed, respectively. In the Deep

Thought tutor a simple example is, the premise A∧B simplify B, where A∧B is the

pre-condition, simplify is the action, and B is the post-condition of this interaction.

The Interaction Network is a connected, directed, labeled multi-graph with states

as vertices, actions as directed-edges to connect the states, student details provide

additional information about states and edges. The Interaction Network stores the set

of all students who visited any particular state-vertex or action-edge, allowing us to

count frequencies and connect other information, like test scores or hint usage values,

to the Interaction Network representation. A detailed description of the Interaction
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Network is provided in previous work [25]. An example Interaction Network for the

problem 1.3 data set is provided in figure 10, note the size of the full network and the

likely inherent difficulty involved with following a student or multiple students’ paths

from start to finish. In figure 11 I have plotted the growth of an Interaction Network

for problem 3-5.

Figure 11: Along the X-axis there are he number of students which were randomly
sampled. Along the Y-axis are the number of each respective element of the Interac-
tion Network. Interactions refers to number of transactions from the data-log. The
sample for each student count was taken 500 times and these are the average values.
As we would expect, the transactions continue to grow, while the nodes and edges
grow at a slower rate, because multiple transactions can represent the same node or
edge.

The Interaction Network has proven to be an effective data structure for storing

transactional data from tutors and lends itself to a variety of data mining techniques.

We have applied network community detection [31] to cluster the network and provide

some meaningful hierarchical structure to the otherwise overly verbose and cluttered

network [42], but work is needed to present useful summarizations of the Interaction
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Networks to users. For the first step we will take a look at methods of displaying and

interacting with the Interaction Network, in the next chapter.

2.6.2 State Spaces for Various Tutors

The InVis team attempted to visualize tutoring data for, in total, five different

tutoring systems. From the information we were provided for each of these tutors we

had a variety of different results, based on a number of factors, so I will review those

results here. The five systems we worked with, in order to load their data into an

Interaction Network include: The Deep Thought logic tutor, the BeadLoom Game,

Stoichiometry tutor [1], Algebra [36], and Novice Programming tutor [33].

The greatest success was achieved with data from the Deep Thought tutor and the

BeadLoom Game, throughout this document majority of the examples are provided

from these tutors and as a result we will not focus on those systems here. However,

the relative success with those systems was is likely due to the following factors: first

we had access to the tutor and respective developers of both systems which made

understanding the state space significantly easier and to greater detail. Next, we were

provided with a significant amount of data, in the thousands and tens-of-thousands of

transactions, covering hundreds of students. Lastly, generating the respective states

for the space was relatively simple. In the case of the BeadLoom Game, the state

was defined as the configuration and color of the beads in the loom. Simply a 41x41

two dimensional array with one of twelve colors for each value. The construction of

the state for Deep Thought was slightly more complicated but still relatively simple

and is described below.
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In Deep Thought the state was defined in two parts. First we collected each derived

element from the tutor, which was a set of roman characters. The root state, was

the set of premises which defines the problem and was provided to the student. For

example: K→M, Z→R, ¬(K→R). The conclusion students are tasked with deriving is

M ∧¬Z. The resulting state description for this state, which is also the problem root,

is: K→M,Z→R,¬(K→R)/M∧¬Z. The slash ‘/’ separates elements of the solution

derived working forwards and working backwards. Within each respective portion,

i.e. before the slash and after the slash, elements are ordered lexicographically. This

lexicographical ordering is what causes the generation of bubbles described in section

4.5. The effects of this ordering are also depicted in a simple example in figure 6.

Due to the innate structure of the BeadLoom Game state space, this type of ordering

was not necessary.

2.7 Chapter Summary

The Hint Factory [7, 9, 56] has provided us with the inspiration and starting point

for investigating the visualization of solution spaces for Intelligent Tutoring Systems

(ITSs) and Computer Based Education (CBE) tools. The Deep Thought logic tutor

[21, 22] and the BeadLoom Game [15, 14] can provide us with input data from dras-

tically different domain areas. Although there are some tools for visualizing student-

related data, visualizing the Interaction Network is novel and unique. A limitation

of the Interaction Network is ones ability to define an appropriate state for which

the network will depict along with transitions, we reviewed five different attempts

and discussed some of the reasons why we felt we had success or failure with those
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systems.



CHAPTER 3: INVIS USABILITY STUDY

In the Related Work chapter we discussed the difficulty of understanding how a

student worked a problem in a tutor based on transaction logs alone. I argue for the

need for visualization tools of computer based tutor logs, to make this information

more easily understood and accessible to educators and researchers. These visual-

ization tools will enable educators, researchers and developers to better leverage an

important advantage Computer Based Education has over traditional methods, which

is the record of how students solved problems in a tutor. To this end I led a team

to develop InVis, a visualization tool for providing insights about student behavior

in tutors. As with many visualization tools, our goal is to provide new discoveries

and insights into our domain, which is the behavior of students using an Intelligent

Tutoring System.

InVis was developed to be a domain independent approach to providing an informa-

tion visualization solution for Intelligent Tutoring system logs, to better understand

student behavior. Once our first version of the tool was completed, we conducted

a three pronged visualization study to evaluate the effectiveness and usefulness of

InVis. Our evaluation addresses the first of my research questions.

Research Question: Can we use visualization techniques to allow people to under-

stand, and gain insights from, the interactions that are being performed by students,
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from their transactional log-data, using the Interaction-Network?

I introduce InVis, a novel visualization technique and tool for exploring, navigating,

and understanding user interaction data. InVis creates an interaction network from

student-interaction data extracted from large numbers of students using educational

systems, and enables instructors to inspect the steps students take during problem-

solving. Here I present the InVis tool and demonstrate that it is an effective tool

for providing instructors with useful and meaningful insights to how students solve

problems.

InVis allows educators to explore the novel Interaction Network which represents

the interactions students perform in problem-solving environments. InVis displays

student behavior across an entire class, enabling educators to develop insights from

common strategies and mistakes that groups of students apply in a software tutoring

environment. While this work will concentrate on data from computer-aided instruc-

tional environments, I have also used InVis for exploring user interactions in games

as discussed in section 3.1.7.4. If done well, visualizing problem-solving interaction

logs can provide insight into how users solve problems, as well as what errors they

encounter; and provide more information than a purely summative approach.

3.1 InVis: Interaction Visualization Usability Study

Our “triangulated evaluation” is inspired by Plaisant’s aptly named paper, the

“Challenges of Visualization Evaluation”, where she described the difficulties of per-

forming evaluations with tools that can “answer questions you didn’t know you had.”

[47]. Since there is no single proven technique for visualization evaluation, Plaisant
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recommends using several complementary methods that can mitigate the weaknesses

of single techniques used alone. Our guidelines review shows how InVis adheres to

commonly accepted visualization guidelines. In the case-studies, educators were able

to generate and confirm hypotheses, and discover insights into their data. As shown

below, the results of the usability study showed that educators were able to complete

tasks at 85% accuracy with minimal training time.

We used three methods of evaluation: 1) a guidelines review, where we compare

InVis to the commonly accepted visualization guidelines; 2) a set of case-study like

success stories with expert users, and 3) a summative usability study, where educators

explored data from a university-level logic tutor using guided tasks and completed

a validated usability scale, and reflected on their experience through a qualitative

survey.

3.1.1 Visual Representation & Graph Layout

A graph is a natural representation for our Interaction Network model. However,

there are still a wide variety of graph layouts, and the primary visualization view

should be one that is easiest for the novice user to understand. InVis uses a tree-like

graph layout to present Interaction Networks. The root node is the starting state,

the problem “givens”, and is placed at the top of the view, with student interactions

branching downward. This layout makes it easy to follow the individual solution-

paths of a student, as the vertex depth effectively preserves the number of steps in

the solution-attempt.

State vertices can be labeled with the entire state description, or just the result
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of the latest interaction, since the path of sequential states should reveal the entire

state description. If they exist in the data, goal states are represented with a different

color and shape, a green rectangle shown in figure. Each edge is labeled by its action,

but not its parameters, to minimize textual clutter for readability. Edge thickness is

determined by the frequency of observed interactions, with most-frequent edges being

thickest. InVis uses JUNG [61] to efficiently place nodes in a graph layout.

3.1.2 Modeling Program States

We have successfully built interaction networks from a variety of sequence-oriented

interaction data. Here we describe two systems and concentrate on how we modeled

the state description.

3.1.2.1 BeadLoom Game States

Previously in section 2.4 I described the the BeadLoom Game (BLG) and its fea-

tures that increase motivation and learning [14]. In the BeadLoom Game, players

place beads in a 41x41 Cartesian grid using six different tools, as well as an undo

command. All actions take a color, one of 12 different options as a parameter. The

loom starts empty and once beads are added they cannot be removed, aside from the

undo action. However, beads can be overwritten by future actions. The goal of the

game is to create a target image with the tools available.

In order to gain a better understanding of the BLG data, we used InVis to explore

player solutions. The state representation is a 41x41 array containing the 12 color

values. Actions are represented by the six bead-placement tools and their parameters.

We also store the set of all cases that visited any particular state-vertex or action-edge.
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We use an image depicting the player’s state as the state label. The BLG does not

have error data, meaning users cannot submit invalid parameters as actions. However,

users are able to undo previous actions, which we can interpret as an unintended

action.

3.1.2.2 Deep Thought Logic Tutor States

For a complete description of how states are generated in The Deep Thought logic

tutor, refer to section 2.3, here I will briefly summarize our approach. The tutor

provides a set of premises and a conclusion. We model the application of rules as the

actions, and the state is the conjoined set of each premise and derived proposition.

Here is a simple example:

A student starts at state A∨D,A→ (B ∧C),¬D ∧E, where each premise is sep-

arated by a comma. The student performs the interaction SIMP (¬D∧E), applying

the simplification rule of logic to the premise ¬D ∧E and derives ¬D. This leads to

the resulting-state of A ∨D,A → (B ∧ C),¬D ∧ E,¬D. This example is described

in section 2.3 with related images in figures 1 - 3.

3.1.3 Design of the Visualization

Here we address the design of the interactive visualization, implemented in the

software tool we call InVis. The tool was designed with the visual information-seeking

mantra [54] as our guide. Shneiderman states from his own extensive experience that

an effective visualization contains those elements, and Cairns has shown the large

number of applications where it has been used to guide visualization design [19]. Thus

we feel this to be a reasonable approach to developing such an interactive visualization.
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Figure 12: An example screen shot of the default view in InVis.

Note our visualization is just one method for designing an interactive tool for exploring

Interaction Networks, and later we provide evidence that it is effective at its goal,

but many different types of implementations for exploring Interaction Networks are

likely to exist.

Referring to figure 12 we will explain the major features of InVis.

1. Frequency filters allow the user to filter edges and nodes based on the fre-

quency. The filter removes nodes or edges based on the range. Frequency

is a useful metric for investigating the behavior of a large number of users.

Nodes and edges with high frequency identify common behaviors, while low

frequency nodes represent less common behaviors. Because frequency is an in-

tuitive domain-independent metric we choose to add this filter to the default
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view.

2. The selection filters allow users to select states, actions, or cases by entering

a search string; the user can select to match with contains or direct match.

This provides an easy measure to select large numbers of specific states, and is

especially powerful when combined with the subgraph extraction feature.

3. Graph controls allow users to create subgraphs, which are then loaded into a

separate tab. The user can also remove the hanging error nodes from the current

graph, if they are interested in correct behaviors more than errors. Creating

a subgraph, copies all of the currently selected nodes to a new tab (in the

interface) and re-applies the graph-layout to the subgraph. This can be used

to clear up clutter. By first selecting desired states, edges, or cases with the

selection filters, and then generating a subgraph, a wide range of options for

exploring the data is possible. An example of the subgraph generation is shown

in figure 13.

4. The Interaction Network is displayed here. This panel has mouse controls for

panning, zooming, and selecting, controlled by right-click, mouse-wheel, and

left-click respectively. Multiple graphs or subgraphs can be loaded at once,

each placed in a separate tab.

5. A mini-map helps users stay oriented even in large data sets and provides con-

text for the user. The mini-map provides a white box which represents the

current view of the main visualization panel described above, and updates as
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Figure 13: Left) The user has selected several nodes. By constructing a sub-graph,
InVis presents the selected nodes in a new tab, shown on the Right. Below is an
example of the mini-map, with the white box representing the view frame of the left
hand image. Note the size of the graph when visualizing 170 students.

the user pans and zooms.

6. In figure 12 the interaction network is shown using the default graph layout;

however, there are several layouts available via this drop down menu.

7. Additional information about the states, actions, and cases are available here.

Users are able to view the complete state of the node, as well as a list of all

case IDs that visited the state or edge. Other information, such as tutor hint

messages or test scores can also be displayed here.

3.1.3.1 Guidelines Review

Our visualization was designed with the visual information-seeking mantra in mind.

InVis supports functionality for overview, zooming and filtering, details on demand,

viewing relationships, and extraction. In this section, we describe why each element
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is important to viewing interaction networks, how each element was included and

supported, and improvements that can be made. Craft and Cairns state that many

other developers cite the mantra as their guiding source for the development of their

visualization but often forgo explaining how and where they used it [19]. We use this

evaluation to find strengths and weaknesses in our approach, and confirm we have an

implementation based on these guiding principles.

Overview First The hierarchical graph offers an overview representation of the

students’ behavior as they work through a single problem. Combined with the edge

width representing frequency, we provide a quick understanding of student behavior

trends. In addition the mini-map consistently orients the user within the context they

are working, always providing an overview for the user to reference as they navigate

the Interaction Network graph.

Zoom and Filter Zooming and filtering on the interaction network means users can

focus on specific behaviors they are interested in. Zooming is not only physically

zooming in on the graph-layout, but also zooming in on students who performed a

specific action, or visited a particular state. Zoom and filter are supported through a

variety of filter and selection tools which allow manipulation based on states, student-

IDs and actions. Additionally selection combined with creating subgraphs allows for

alternative approaches for filtering and zooming. While the mouse wheel allows the

user to zoom on the graph layout, frequency-based filters allow users to focus on either

common trends or atypical behaviors exhibited by the students. Identifying common

sequences in the interaction network could help identify subgoals to problems and is

one main improvement that we explore in chapter 4.
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Detail on Demand The details tab is where the user can find specific information

regarding a state, action or student. Details are available in a set of tabs, displaying

text information about the selected node. These details include cases that visited

the node, the frequency of the state, actions leading to or from the node, whether

the state is a goal or error state, and the description of the state. These details are

the finest granularity we can provide from the log data. One improvement for details

is to provide aggregate user statistics that describe the current graph or selected

subgraph, for example number of error states, total number of states, number of

actions, or average number of actions per student.

View Relationships To “relate” in our InVis tool is to compare behaviors between

students and to compare sub-graphs of the Interaction Network. Students can be

compared to other students by selecting their nodes via the student selection tool

and generating sub-graphs. Sub-graphs allow users to compare, at once, all the times

a specific action was used by all the students. Viewing the sub-graphs resulting from

selecting two frequent paths let a user view how two different strategies were applied

to solving the problem. Viewing relationships is supported through the selection and

filtering tools combined with creating new sub-graphs in separate tabs. An example

of this type of comparison is shown in figure 13. Multiple problems can be loaded

into separate tabs and problems can be compared, as well as Interaction Networks for

groups of students. Much of the Interaction Network maintains its sequential struc-

ture, as students performed actions in order, so it is possible to do slight comparison

between similar approaches, but a desirable improvement for comparing could be to

allow users to more easily compare strategies between students. In chapter 4 we apply
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different mining techniques to help users find these strategies automatically.

History Shneiderman notes that history of InVis user actions is the most often

ignored element due to its high cost of development and is rare in prototypes [54]. In

our prototype interface this feature is weakly supported. In InVis, when users edit

the main graph in significant ways, such as filtering vertices, the new graph is placed

in a new tab. Users are able to keep track of each in the tabbed interface. This allows

some measure of preserving the history of the user actions. However, this could be

improved further by allowing users to undo and redo actions such as selection even

when they do not generate new subgraphs.

Extract Sharing one’s findings about student behavior is important, particularly

for teachers, so challenging issues for students can be addressed. In InVis users can

save the image of the visualization panel so that it can be shared. Teachers can show

the sequence of steps to their students and highlight situations where errors were

common. Though not currently supported, an improved sharing between colleagues

could be supported by saving the current layouts, subgraphs, and graph annotations,

so they can be stored and shared with others easily and they too can interact with

the data via InVis. By extension this would also facilitate the convenience of being

able to save one’s work and making it available at a later time.

3.1.4 InVis Usability Study

One goal of InVis is to make complex interaction data accessible to non-expert

users. To test the usability of InVis we created a quantitative task-based test as a

measure of summative usability testing. We developed 15 tasks based on the proposi-
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tional logic tutor interaction data. These questions were designed based on common

use-cases, and cover the range of features in the tool. A list of these types of ques-

tions is provided in table 4, and were created to address activities that are in line

with the focus of the tool, namely general behaviors, and outlier behavior. We ran

a user study consisting of three sections, a quantitative portion, usability portion

and qualitative portion, each supporting different types of evidence that the tool is

effective at allowing users to make discoveries about their data.

3.1.4.1 InVis quantitative task-based survey

The quantitative survey presents 15 questions that represent tasks of finding or

summarizing data from the tutor logs, and the questions were generated to have just

one answer each, with no more than 5 minutes spent per task. We evaluated the

usefulness of InVis in performing the required tasks by measuring how well users

were able to answer these quantitative questions. Table 4 highlights the 15 questions

as a representative sample of the nature of the tasks.

To evaluate the usability of InVis, we used the validated CSUQ survey written

by James Lewis at IBM [39]. CSUQ stands for The Computer System Usability

Questionnaire, and is divided into four scores, an Overall CSUQ score, a SYSUSE,

INFOQUAL, and INTERQUAL scores. SYSUSE stands for system use, INFOQUAL

is information quality and INTERQUAL is interface quality. Questions 9, 10 and 11

from his survey CSUQ were removed because they were deemed irrelevant to InVis

because it does not contain any error messages. One difference between Lewis’ survey

and ours was in our CSUQ, the score has high scores being preferable rather than
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low scores; Strongly Agree is equal to seven instead of one. Our overall CSUQ score

was 4.65.

To determine how well InVis met user expectations for data exploration, users were

asked to complete a qualitative survey where they could provide open ended responses

directed towards functionality that they would like to see available in future versions

of the tool.

We ran a user study with seven participants to determine the level of usability

of InVis for understanding interaction networks representing data from the Deep

Thought logic tutor described above. All teaching material was conducted in the

classroom, and the Deep Thought logic tutor is strictly used for conducting homework.

The students were given a set of premises, [(A→ B), (C → D),¬(A→ D)], and were

tasked with generating a first-order logic proof for the conclusion of B ∧ ¬C. To

prepare the data for the study, we duplicated or removed students to ensure each

task-question had a single correct answer, necessary since some of the questions were

based on state or edge frequency. In total there were 17 students and 186 interactions

were selected for this study. The original data-set was from the Proof Solver tutor,

problem 1-3 with 73 students, and 1866 interactions.

Of the seven participants, we met with four individually and they used our com-

puter with InVis with the target dataset loaded. The participants were all university

educators for logic courses, who have used the Deep Thought logic tutor as part of

their course. The data set was from the logic tutor, but not from the professor’s

courses specifically. We gave them a brief overview of how the tool worked, how to

zoom, pan and select. We also demonstrated how to generate a subgraph (using a
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GUI button), as well as how to use the selection tools (where selection criteria are

entered in text boxes). The demonstration lasted 5–10 minutes. The other three

participants were emailed a 2.5 page description of how the interactive elements of

the tool works. This document served as the resource for the 5–10 minute demonstra-

tion. These three participants conducted the study by themselves, as I sent the InVis

software and appropriate dataset to the participants via email. They were instructed

to contact us if any issues arose that they felt were unintended or prevented them

from conducting the study. If any task took more than five minutes, they were asked

to stop and move to the next one. Participants were instructed not to ask how to

complete any of the tasks. After the quantitative section was complete they were

asked to do the usability survey then the qualitative survey.

3.1.5 InVis User Study Results

In this section we report on the results of our 7 participants using InVis to perform

15 tasks on the Deep Thought logic tutor dataset. We report the results in three

sections: task performance, usability survey results, and open-ended qualitative feed-

back.

3.1.5.1 Task Performance Results

The participants completed 85% of the tasks successfully (M = 12.71, SD = 2.66).

From the questions in table 4 the most commonly missed questions were Q4 with 64%

success and Q6 with 71% success. Participants spent an average of about 43 minutes

on the quantitative survey, with a standard deviation of 19.95 minutes, based on

survey start and end times. However, the participants reported they felt that tasks
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Table 4: Task Performance Instrument

Q1 Find the shortest correct solution-path to this
problem.

Q2 How many students found the shortest solution-
path(s)?

Q3 Find the most frequent solution-path to this prob-
lem.

Q4 Find the error(s) with the highest frequency and
write the State ID(s).

Q5 Write the state ID to a state, after which no stu-
dents reach the goal. (Non-error state).

Q6 Write the state ID of the state that leads to the
most unique errors?

Q7 Write the action-label and the corresponding final
state ID for the last action of student X?

Q8 How many unique solutions lead to the goal?
Q9 After filtering nodes and edges to frequency 5 and

greater, how many complete solution paths exist?
Q10 What is the state-ID(s) of the state(s) with MDP

Value 14?
Q11 What is the student ID of the student(s) with

longest solution to the goal?
Q12 Who are the students on the node with the fol-

lowing node label: –a*-d (note the label is: minus
minus a * minus d)

Q13 From the starting state, the root of the tree, how
many unique actions did students perform?

Q14 Highlight the node with node-label: ¬¬A∧¬D and
select the sub-tree, then build a sub-graph. How
many error nodes exist in this sub graph?

Q15 Answer yes or no, did student 81 find a goal solu-
tion?
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took an average of 23 minutes, with a standard deviation of 13 minutes, meaning

participants felt it took less time to complete the tasks than the time spent with the

survey open. This could potentially be explained if the internet participants were not

solely focused on the study.

3.1.5.2 Usability Survey Results

To evaluate the relationship between the task performance and usability we sub-

mitted the results to a bivariate correlation analysis. Task performance strongly

correlated(M = 12.71, SD = 2.70), r = 0.87, n = 7, p = 0.01, with the overall usabil-

ity survey (M = 4.65, SD = 1.89). The r-squared value was 0.76, which means that

76% of the variance in the quantitative skills test-scores is accounted for by variance

in usability scores. We examined the three subsections of the usability survey. Task

performance strongly correlated with the Sysuse score (M = 4.84, SD = 2.04, r =

0.78, n = 7, p = 0.04), the Infoqual score (M = 4.54, SD = 1.98, r = 0.90, n = 7, p <

0.01); and the Interqual score (M = 4.39, SD = 1.70, r = 0.96, n = 7, p < 0.01).

These results provide evidence for the validity of using the task performance test as

a measure of the visualization quality. This provides insight into what functionalities

the developers should focus on in future development of InVis. We cannot make

strong causal inferences between the quantitative test and the usability scale; were

participants able to complete the skills test because InVis was usable, or did they

report that it was usable because they were able to complete the tasks? The fact that

85% of the tasks were correctly completed, with little time spent on training, provides

evidence that our technique is usable by our target population. The questions that
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Figure 14: This is a general example, without details, of how the two examples
regarding errors would be represented. On the left we have six errors, each with
one frequency. On the right we have a single error with eight frequency. The error
example on the left has more unique errors, while the right example has more errors.
This ambiguity in the questions could be causing some of the difficulties.

were most commonly missed, were tasks related to understanding the most frequent

error, and the state from which the most unique errors were made. This highlights a

potential problem with the current error-state representation; which seems to make it

difficult to distinguish unique errors from frequent errors, a simple example is shown

in figure 14.

3.1.5.3 Qualitative Results

In the open-ended survey questions we asked participants about specific ways to

improve InVis. Here we will mention some of the most important suggestions from

participant utterances during InVis usage and from the survey.

Two issues regarding the graph layout were raised. Participants felt the layout

would be more intuitive and easy to navigate if it were possible to order the layout

along the breadth (x-axis). By applying a more informed layout to the graph, we

could order the states in some manner along the X-axis, for example by making the

most frequent path on the left, and the least frequent on the right.

The second issue raised was in regard to strategies, sub-strategies and ordered

states. Participants mentioned they would like the layout to group or cluster ap-
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proaches based on similar strategies. If two students each have nine identical steps,

but the first step in each approach is different, then the layout does not necessarily

put the states from these two approaches close to one another. When looking at a

hundred or more students, this makes understanding the number of strategies difficult

to understand. A graph layout which places similar paths next to one another could

provide a more intuitive visualization of the Interaction Network.

All participants reported that they would like to use InVis to augment their un-

derstanding of current classes’ behavior and learning. This underscores the need for

visualization tools that help instructors explore and understand student behaviors in

software tutors. One participant’s response summarizes our findings: “The tool pro-

vides a sense of how broadly varying students are in their approaches, how many get

stuck, and how many make similar mistakes.” This statement is a good representation

of the kinds of insights InVis was designed to help detect.

3.1.6 InVis User Study Conclusions

The main contribution of the study reported in this chapter is the implementation

and evaluation of InVis, a tool for the interactive visualization of problem-solving

data. The use of InVis in three case studies and in our usability study showed that

the use of interactive visualization techniques combined with an interaction network

model in InVis allows users to explore and gain insight from interaction-log data. We

performed a user study on InVis to show that users can successfully complete relevant

tasks, and paired these results with a standardized method for testing the usability

of a software tool. Users were able to explore the data from an entire class and were
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able to confirm some of the hypotheses they had about students, which was a primary

goal. This is the first step in creating a domain independent visualization tool for

understanding student behavior in software tutors, and these results informed our

further research to improve InVis.

This study has a few limitations, first users were provided the data to investigate,

and were tasked with a specific set of challenges. This was useful to determine whether

or InVis is useful for completing those tasks, tasks which we felt were important,

but does not address open exploration by users. Next the data set our users were

navigating was small, with only 17 students worth of data, so similar success may

not be true for larger data-sets for example 200 students. This limitation in fact

is one of the reasons we built the study with a small data-set in mind, and also to

provide tasks that contained only a single correct answer, so that task-success could

be evaluated. Lastly, there seems to be a misconception between unique errors and

error frequency which should be addressed in future versions of the tool. It seems a

high number of unique errors, takes up more screen space and may lead our users to

believe that some particular state, the left image in figure 14.

3.1.7 Case Studies and Success Stories

Plaisant comments on the usefulness of case studies and success stories in her work,

“The Challenge of Information Visualization Evaluation” [47]. Case studies provide

useful information from experts and can help address whether a user was able to

find answers to questions they did not know they had. As mentioned by Plaisant,

evaluation of tools meant to discover features which you did not know existed is
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difficult. Tory and Moller offer some support for ways in which this can be done [59];

and argue that expert reviews are useful because they can identify aspects of systems

which non-experts may not recognize. In order for tools like InVis to be adopted

it is important to have success stories so that the early majority will adopt the tool

[47]; for this reason we provide four InVis success stories. These success stories also

test InVis’ ability to be used as a tool for exploration, one of the limitations of the

previously described study.

We met with the developers of two separate propositional logic tutors. Both de-

velopers are university professors of logic and have extensive knowledge about the

actions their tutors provide and how their tutors log data. We modeled their logic

tutor data and provided each with InVis. We observed as they used the visualization

tool to explore their tutor log-data. We also met with the developers of an educational

game and visualized student-player data in a similar way.

3.1.7.1 Case One: Common Student Mistakes

We visualized data from Deep Thought[21] and interviewed the professor respon-

sible for its development. We met for one hour and had him explore data from the

tutor and inform us of different insights he was able to discover and hypotheses he

generated and confirmed from using InVis.

We prepared a data set of thirty students, representing a classroom of students. The

professor noticed a student had performed addition rather than conjunction in order

to derive A ∧ B, which is an incorrect application of the rule. After he recognized

this, he mentioned that it was a common mistake made by students; this was his
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Figure 15: Eight out of nine applications of the addition rule were errors, denoted
by the red octagon nodes. Five of nine of these actions would have been correct had
students used conjunction, evidenced by the fact students enter B∧¬C as the derived
data. In our case study, the user generated and confirmed this hypothesis through
the support of data visualized in InVis.

hypothesis. He then used the action selector and entered ADD which selected all

instances of students performing the ADD action in his logic tutor. Next he built a

sub-graph, moving all those actions and their corresponding nodes to a new tab. Last,

he was able to confirm his hypothesis; the data showed that eight of nine applications

of the addition rule (ADD) were errors, five of which would have been correct had

the student performed conjunction (CONJ) instead. See figure 15 for the subgraph

generated by the process. With the same hypothesis in mind, a larger separate data

set of Deep Thought tutor data was loaded, this time with 170 students. The larger

dataset was made up of data from eight different sections of the course, that is four

different professors who taught the course twice a year, in Fall and Spring.

Again all addition actions were selected, a sub-graph generated, and the hypothesis

confirmed. This time, 11 out of 12 applications of the addition rule were in fact errors,

and 7 of the 12 would have been correct had the students used conjunction instead.

Within minutes, our user was able to identify a hypothesis, check the data using InVis
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and confirm the hypothesis. In the second data set, the task certainly would have

been time prohibitive had he scoured the 170 student logs of the data. This shows

one example of the usefulness of being able to generate sub-graphs of the behavior

network in a separate tab for zooming and filtering purposes.

3.1.7.2 Case Two: Finding Students without Strategies

In the success story above, the user was interested in investigating a behavior

exhibited by a sub-population, the group of students who used the addition rule.

In this second case, a different professor was interested in the general behavioral

trends of students. By including frequencies on nodes and edges, we are able to

identify strategies that students perform in order to solve problems. In this case the

hypothesis was that students who change all the implications in a problem into ‘ORs’

likely had no true strategy for completely solving the problem. The reason for this is

over the years the professor has recognized students who employ this strategy often

have difficulty actually solving the problem and thus students are explicitly instructed

in class not to use this approach.

After loading that data into InVis, the professor looks for the two main strategies

performed by the students, which can be selected in InVis by searching for sequences

of frequent states. The first strategy, having the highest frequency, is the strategy she

teaches to her class. We call this most frequent strategy the professor’s strategy; the

first node in this strategy has 74 student cases. The next most common first step has

29 students, and is the start of the unfocused strategy, that is to change an implication

into an OR. Next the professor selected the first node of the professor’s strategy and
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Figure 16: This is a screen-shot from our process of checking the hypothesis regarding
the no-strategy approach. The highlighted node is the state in which afterwards many
students have no-strategy.

Table 5: Success Rates for Different Strategies

Strategy Student Count Percent of Error Nodes Success Rate
Professor Strategy 74 37% 74%
Unfocused Strategy 29 43% 59%
9 of 11 Success 11 28% 82%
7 of 11 Success 11 36% 64%

performed the select subtree action, which selected all states derived after the current

state, effectively selecting all the different variations of the professor’s strategy. Then

she created a sub-graph. The same was done for the unfocused strategy. Next she

selected all of the goal nodes of each sub-graph in turn and looked at the combined

frequency of the goal nodes for each sub-graph. For the 74 students who applied the

professor’s strategy, 55 of those students arrived at the goal, giving a 74% success

rate. For the unfocused strategy, the sub-graph has a combined goal node frequency

of 17 out of the 29 students, resulting in a 59% success rate which is noticeably

lower. In total there are 174 students, and the two strategies highlighted above are

the most common. The next two most common strategies both have frequencies of

11, each with 9 and 7 students successfully solving the problem with their respective

strategies. This suggests that the unfocused strategy approach has a particularly low

success rate.
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3.1.7.3 Debugging Tutors

One interesting application of InVis is found in the debugging of tutors. During

the previously described case studies, the Interaction Network uncovered bugs in the

tutor systems; that is, places where the recorded interactions should not have been

legal actions. This is interesting, as both of these tutors have been used for many

years and their data have been subject to extensive analysis. However, these bugs

were not discovered until their data were visualized with InVis. Viewing the entire

group of user behaviors at once improves the ability to spot ’peculiar’ or outlier

behaviors. In ProofSolver several solutions were noticeably shorter than the average,

or skipped to the goal in ‘strange’ and invalid ways. After examining the series of

actions these students performed, the professor confirmed that the interactions were

illegal and should not have been permitted in the tutor.

In the case study described in section 3.1.7.1, some students were able to reach the

goal by repeatedly performing the same action. In this case, the students were able

to use the instantiation-action inappropriately to add any proposition to the proof.

As a result of this, students could simply add items directly to the proof rather than

use the rules, allowing them to game the system and illegally solve the problem.

3.1.7.4 Case Three: BeadLoom Game

I provide an in-depth analysis of the BeadLoom Game use case with the following

dataset. We collected game log-files from a study performed on the BeadLoom Game

(BLG) in 2010. Data came from a total of 6 classes, ranging from 6th to 8th grade;

for a total of four sessions. There were 132 students, and 2,438 game-log files. The
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students were split into two groups (called A-day and B-day) and were presented

with BLG features in different orders. The A-Day students were given access to

custom puzzles (a free play option,) while B-Day students were given a competitive

game element in the form of a leader board. Due to differences in student schedules

some B-Day classes missed session three. To investigate whether or not there were

different problem solving patterns between the groups, we colored vertices based on

the percentage of students who visited each state from each group. The values were

normalized from green (A-Day) to red (B-Day.) We then loaded the data into the

InVis tool and presented it to the BeadLoom Game developers.

3.2 In-depth BeadLoom Game Case Study

Designing games is a complex task, and players are increasingly expecting highly

individualized game experiences. One common method for tuning the player experi-

ence is play-testing, where players try the game before its release, exposing glitches

in gameplay and difficulty in both surveys and game-play logs. However, effectively

using the large amount of data available from a playtest can be challenging. Larger

game companies such as Microsoft Studios have developed their own data analyt-

ics tools to understand these large complex player interaction datasets. In three

dimensional game environments, these tools act like geographic information tools,

overlaying player trace data on a game’s level maps. However, in puzzle games and

many educational games, there is a need to visualize the sequence of player behavior,

but there is no logical spatial way to overlay player behavior over the usual visual

representation of the game - except perhaps as a video. This makes it much more
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challenging to understand how, when, and where a puzzle or educational game design

may need improvement.

In this chapter, we demonstrate a more in-depth application of InVis to help de-

signers visualize sequential game states for a large number of playtesters at once.

InVis was originally designed to visualize data from intelligent tutoring systems -

software built to support learners in interactive problem solving. At the core of InVis

is the novel idea of creating a ‘solution space’ out of player behavior networks. All

game developers have an idea of a game’s state - an inventory of the current values

for all variable aspects of a game. In educational software and in puzzle games, this

state corresponds to where someone is in a problem-solving sequence - and can often

be understood by taking a simple screen-shot. In both intelligent tutoring systems

and in puzzle games, the experience can be individualized with feedback to direct

attention to mistakes, or provide hints on what might be done next.

We believe InVis can support the iterative development and testing of 2D puz-

zle and educational games, by helping designers visually analyze player behavior to

identify ways to better craft the player experience. We demonstrate how we have

used InVis to explore game-log playtest data from BeadLoom Game, a puzzle game

designed to teach math concepts. This case study shows that InVis helped develop-

ers discover surprising player behaviors, identify bugs and inefficient aspects of the

interface, and design potential algorithms for individualizing the game experience.

As with the Deep Thought tutor logs, a vertical tree layout is used to preserve the

step order of solution paths; therefore, the y-axis roughly corresponds to path length

in the number of steps. For this in-depth study with BeadLoom Game, we modified
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InVis to draw states and edges from left to right in order of most frequent, to provide

a partially meaningful x-axis. Cycles were also removed before the layout phase and

these edges were added again after the nodes’ positions have been determined. The

new ordering makes it so that the most frequent paths to the goal are easily identified,

and solution paths are easily traced. The other modification to InVis for this study

was to augment the display of nodes to allow a visual display of the puzzle state.

This made it visually easy to understand what action sequence the player has taken.

Hundreds of log-files can be visualized at one time, making it easy to see classrooms

of students and their similarities as well as identify outliers.

In InVis we focus on evaluating and representing sequences of actions and states

which closely model the behaviors of players. States retain all the details of their

dimensions, ( easily visible through the use of ‘details on demand’ features), and

provide some filtering options for focusing a user’s investigation. This allows game

designers to explore all the information and aggregate statistics gathered by their

game-logs, allowing for an effective method for gaining insights into how players

behave.

3.2.0.1 Generating the Interaction Network from BeadLoom Game Data

We used the InVis Tool to explore player solutions. The state representation is a

41x41 array containing the 12 color values from the BLG game. Actions are repre-

sented by the six available bead-placement tools, as well as the relevant parameters

for each tool. We also store the set of all cases visiting any particular state-vertex

or action-edge, to present frequency and to connect case specific information to the
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Figure 17: Each interaction in the log system is defined by a state-action-state tu-
ple. This example shows what the state-action-state would look like for the action
performed in figure 4.

Table 6: Design for the 2010 BLG study testing for ordering effects of different
gameplay modes.

A-Day B-Day
Session One Introduction Introduction
Session Two BLG BLG
Session Three Custom Puzzles Leader board
Session Four All Features All Features

network representation.

In figure 17 we show how the BLG data is translated into an Interaction Network.

Players move from a blank starting state to a state containing a red square by using

the rectangle tool.

3.2.1 BeadLoom Game Case Study

From the same data set as before, we collected game log-files from a study per-

formed on the BeadLoom Game (BLG) in 2010. Data came from a total of 6 classes,

ranging from 6th to 8th grade; for a total of four sessions. There were 132 students,

and 2,438 game-log files. The students were split into two groups (called A-day and

B-day) and were presented with BLG features in different orders, presented in table
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6. The A-Day students were given access to custom puzzles (a free play option,)

while B-Day students were given a competitive game element in the form of a leader

board. Due to differences in student schedules some B-Day classes missed session

three. These students followed an abbreviated A-Day schedule during session four.

In order to investigate whether or not there were different problem solving patterns

between the groups, we colored vertices based on the percentage of students who

visited from each group. The values were normalized from green (A-Day) to red (B-

Day.) We then loaded the data into the InVis tool and presented it to the developers

of the BeadLoom Game.

Next we met with the designer and a developer from the BeadLoom Game and

asked them to explore their log data using our visual analytics tool, InVis. We

hypothesized that InVis would:

1. Illuminate something unexpected or surprising about their data.

2. Provide insights about the behavior of their players.

3. Provide an efficient means to understand the general behavior of their players.

4. Allow observers to identify ‘strange’ or outlier behavior.

As discussed earlier, InVis supports a variety of straightforward interactions which

can be used to explore the data contained in a behavior network. Users can filter the

network based on the data they load into the vertices, edges, or aggregate data like

frequency - the number of people who visit the same state or use the same action.

The mouse provides panning, zooming, and selection, while GUI buttons provide the
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generation of sub-graphs, which can be used to further zoom and filter a behavior

network. Lastly, search options exist for finding specific players and the states and

actions they visited and used respectively.

3.2.1.1 Data Highlights

Figure 18 shows a set of students who worked on the same problem on two different

days, the first and third session of the study. By looking at the number of states we can

see a more diverse set of attempts on the first day. As mentioned before, edge width

represents frequency, green vertices are from the A-Day students and red vertices

are from B-Day; the goal has a square vertex. At the start of our investigation we

colored the vertices to see if we could discover differences but it does not seem the

classes had any significant differences between them. It is possible that the change in

the number of states over time is the visual representation of learning, which figure

18 might suggest; additional research would be necessary to determine if that is so.

What makes this interesting, is as students answer questions over time, they should

become more skilled with the knowledge components associated with the questions.

As a result the topology of Interaction Networks created from later solutions should

have fewer states suggesting fewer unnecessary actions, like what we see in figure 18.

Though outside of the scope of this research it would be interesting to see if learning,

or skill proficiency can be detected through the analysis of Interaction Networks. A

potential study of this phenomenon would be to compare solutions created by skilled

and unskilled students, then determine features which define the two solutions. Next,

have a new group of students take a skills test to assign students to a skilled and
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Figure 18: This image shows the students’ attempts from their third session on the
top, with their first session attempts on the bottom. This image suggests that as
students become more familiar with the tool they are better at solving the problem
and make fewer mistakes; thus fewer states are visited.
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Figure 19: This image shows students’ solutions to one problem, where we can recog-
nize some off-task behavior. Here we have highlighted the final state of three students
and enlarged their images. It is clear the students were not working towards the actual
goal, which is shown on the left.

unskilled group. Then use the features of the solutions to predict the skill level of the

students, the skills-test would be used to validate the prediction method. Performing

this type of study across multiple problems and multiple tutors and datasets could

address this method’s level of generalizability.

The BeadLoom Game developers were able to identify a variety of design changes

they would like to make to the game after spending roughly 20 minutes using In-

Vis. The most surprising detail the developers were interested in was the number of

students who seemed to participate in off-task behavior. Off-task behavior is easily

identified as student solution-paths with low frequency and unusual length, as well

as the visible evidence of no interest in working towards the goal state. For example,

a student may opt to draw a picture rather than solve the puzzle. This will result in
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Figure 20: Here we can see that several states look very similar to the goal image.
The goal image is in the orange box, while all other images are not recognized as
the goal. Yet many of those other attempts look very similar and in most cases are
merely off by a pixel. After using InVis, BLG developers added feedback about how
many beads were incorrect in a solution to help students see and correct errors.

a path visually jutting out of the interaction network.

In game off-task behavior was a common problem as seen in figure 19, with a

number of students foregoing the goal and designing their own images in the game

instead. Some form of this type of behavior was present in roughly 90 percent of the

puzzles solved by the students. A free-play mode is supported with the BeadLoom

Game and can be found in the custom puzzle section of the game; it is arguable that

students found the step of changing modes an unnecessary one.

Figure 20 shows an unintended flaw in the BLG: the states along the bottom of this

image are almost indistinguishable from the goal vertex. Some of those solutions are

only off by 1-2 pixels. This error seems to be due to the way the triangle tool works
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Figure 21: In this image we demonstrate how easy it is to look at errors. Each of the
states on the bottom represents a student performing an incorrect move, and then
undoing. This could perhaps be modeled by keeping track of states that are returned
to frequently.

in comparison to the triangle iteration tool within the BLG; both of these tools can

be used to create triangles, and depending on which one is used, the triangles can be

very similar. Identifying this case in the data has lead the developers to make two

design changes to the game. The new changes allow the player to see a count of how

many pixels or beads remain incorrect, as well as a pop up window to inform players

when they have successfully completed a puzzle, rather than forcing the student to

click a button on the user interface to submit their puzzle for checking. Discovering

this particular case in the data was a surprising and helpful discovery for the game’s

developers.

In figure 21 we can see a number of child states generated from a single state. The

interesting feature of this image, is most of those states have a red returning action

which represents the undo. This state, for whatever reason contained a number of

mistakes made by students, but were quickly identified by the students.
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3.2.2 BeadLoom Game Case Study Discussion

The designers were able to identify a variety of design changes they would like to

make to the game after spending roughly 20 minutes using InVis. First a design issue

regarding automatic feedback, after viewing and exploring the Behavior Network of

the BLG data, the developers recognized a number of people performed actions, even

after arriving at the goal state. In the original game users were required to click when

they were finished, however after discovering the undesirable behavior, an automated

method to detect the goal was designed so the level will end once the goal-state is

reached. There were also a number of cases where students created the goal-image,

but the whole plot was offset by 1 in some direction, so the game did not recognize

it as a correct solution, as with the Triforce in figure 20. This could be frustrating

since it is visually difficult to determine how each of these solutions in incorrect. The

proposed design change in this case, was to have a counter on the user interface which

lets the players know how many beads are still incorrect as compared to the goal.

Baker et al., analyzed how off-task behavior affects learning and they recognize two

different types of that behavior. Furthermore they show that some off-task behavior

does not affect learning gains, while other types of being off-task does [4]. Since

this time the off-task behavior is within the game, the students must still use the

coordinate tools in order to create their images, suggesting perhaps the students still

may learn about coordinate systems.

One of the goals of InVis is to facilitate the construction of behavior models by

improving the researchers’ understanding of the data. Baker et al. also created a
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model for gaming-behavior, identifying when students try to leverage the interface

so as to proceed through a software tutor’s curriculum [5]. It could be possible to

use the insights gained from InVis to help create a model for off-task behavior in the

BLG, perhaps if a solution-path has too many actions, or a bead’s color is incorrect,

the game can offer an intervention to re-direct the player to the appropriate goal, or

to another part of the game that allows them to make their own custom puzzles.

Another way to prevent excessive off-task behavior is through the use of game-

mechanics; simply put, the game itself could give each player X number of actions

they can perform. This could have two effects, one is for a simple puzzle that can be

completed in, for example just two moves - like a tutorial, the game will only allow

five actions to be performed, thus preventing a student from drawing complex images.

A second potential effect could be that students may spend more time considering

their actions and try to think of more efficient ways to reach the goal, i.e. avoid using

only the point tool which colors one bead at a time.

Another pattern discovered using InVis occurred when students performed a large

number of undo actions from particular states, such as in figure 21. These states

represent locations where the addition of real-time feedback could prove the most

valuable. The decision of when and where to add hints is an important topic in ITS

research. If players make an error early the game does not currently provide any form

of feedback. This allows players to continue down a path which is unlikely to reach

the goal. Hint feedback could be added to redirect the player once they have entered

one of these paths.

At the end of the interview, the developers were not only interested in adding the
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functionality mentioned above, but were also interested in how the Interaction Net-

work could be used as in Stamper’s Hint Factory to recognize appropriate behaviors

and provide hints when students got off-track.

3.2.3 BeadLoom Game Case Study Conclusion

In this chapter we presented the application of InVis to data from the BeadLoom

Game to understand player behavior. We were able to identify a number of interesting

situations in the log-data that helped the BeadLoom Game developers improve the

game and understand their players. By modeling the player data as a behavior

network and visualizing each state graphically in a graph layout, we were able to

display hundreds of game-logs in a concise form.

The most important results of this study were that InVis could be used to discover

useful and surprising aspects of student behavior in BLG, that its developers have

used to improve the game. Based on the feedback from BLG developers it seems that

information visualization has a place in game analytics and can be used to improve our

understanding of player behavior in games. It is particularly useful for the generation

of new hypotheses about user behavior; which when followed up with confirmation

studies will aid in the research and development of video games.

3.3 Chapter Summary

In this section we have presented two different studies conducted to determine

the effectiveness of the InVis tool for exploring and understanding student behavior

in two very distinct contexts: logic homework problems for colleges students, and

a game designed to teach math to middle school students. Plaisant inspired our
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“triangulated evaluation” from her work on the challenges of visualization evaluation

and her recommendation of using several complementary methods in order to mitigate

the weaknesses of single techniques used alone [47]. We used James Lewis’ validated

usability survey [39], a task performance test, and qualitative feedback and a set of

use cases to evaluate InVis from several perspectives. The use cases include data from

two different logic tutors, the Deep Thought Logic Tutor [21], the Proof Solver, and

an educational game, the BeadLoom Game [15, 14].

Based on the results of these studies, there are a few design adjustments we can

make to improve InVis. One of the major points of challenge was the complexity of

the Interaction Networks, which is important as I address the scalability of InVis and

its application to even larger datasets such as those in the PSLC Datashop.

The user study conducted on the InVis tool informs us of two primary aspects of the

Interaction Network and the method in which we make it accessible to our users. The

Interaction Network is an understandable representation of the user interaction-logs,

particularly the case studies where the InVis users were able to confirm hypotheses.

We also learned that though there is a great deal of information contained within the

network, there is a substantial amount information presented by displaying all the

states, and for larger data sets likely too verbose of a description. By presenting a

network, with so many nodes, it is not clear that for larger datasets with a thousand

students worth of solutions, users will be able to take away their desired information

quickly. From Shneiderman et. al [54] we can re-address the concept of overview first,

though we have provided users an overview, it seems our overview is too verbose.

From visual analytics [34] we can consider that our tool should identify what is
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important and what is not, and present the appropriate information to the user

accordingly. These findings suggest the important contributions we propose in the

following chapter. In this next section we will investigate using data mining techniques

to present overviews, guide discovery, and reduce complexity of the information we

present to InVis users.



CHAPTER 4: STRATEGY REDUCTION

4.1 Introduction

The Interaction Network can be used to store student solution data to open-ended

problems. The Interaction Network also opens a new direction of educational data

mining based on graph theory and network analysis which have gained recent popu-

larity. We present a new application of using the Interaction Network and associated

results, to provide evidence of the value of this method of storing student solution

data to open-ended problems. The application is to extract a common-solution re-

duced network for providing a clearer overview of the solutions explored by students

from tutor-log data.

One major advantage of computer based tutoring systems, is the ability to log

data showing ‘how’ students solved homework problems, including student mistakes,

an aspect not often aggregated from traditional paper based homework. However,

one major challenge facing these systems is to provide educators an efficient method

of presenting the data logged by these open-ended problem tutors, for the purpose

of exploring student solutions and errors in hopes of help students and improving

instruction.

One use of the Interaction Network is to provide a visualization tool to display

the network to educators and researchers, providing insight into how students solved
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open-ended multi-step problems. We borrow the definition of open-ended problem

solving from Becker and Shimada who define open-ended problems as, ‘... a problem

that has several or many correct answers, and several ways to the correct answer(s)’

[10]. These types of problems are often seen in Intelligent Tutoring Systems (ITS)

and similar computer based instruction, like the Deep Thought Logic Tutor [21].

One important challenge facing the Interaction Network and InVis, the tool built

for exploring those networks, is the size of the network, often resulting in thousands of

nodes and edges for roughly a hundred students worth of data. These large networks

make it difficult to retrieve a general overview of the student solutions. In this chapter,

I present an algorithm that provides a summary presentation that drastically reduces

the number of nodes in the network, and allows users to focus on the most common

approaches used by students to solve problems.

We compare the reduction of nodes and edges between our summary network and

the original, as well as other metrics, like the percent coverage of student solutions.

We also compare our approach to two alternative filtering processes to show the

benefits of our method.

Next we provide a set of domain experts with one of the problems from the Deep

Thought logic tutor and ask that they describe the different approaches students use

to solve these problems, as well as the common mistakes. We then compare the expert

provided solutions to the reduced Interaction Network to confirm whether or not our

method has appropriately captured the solution paths.

We show that the summary reduction algorithm when applied to the Interaction

Network successfully reduces the number of nodes of the Interaction Network by
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between 86 and 96 percent, while still preserving the solution traces to an average of

52 percent of the goals and 40 percent of the student action frequencies. Furthermore,

our method preserves all the solutions suggested by experts.

This work has two main contributions. First, the summary reduction algorithm

effectively reduces an Interaction Network to significantly fewer nodes while still pre-

serving the majority of solutions crafted by students. These types of reduced networks

could aid in the improvement of adaptive tutors and focusing educator efforts, mainly

by limiting the network to the most important solutions. In this way ITS develop-

ers can focus on hints and feedback needed for the highest impact areas. As well,

ITS developers and experts may become aware of common, unexpected solutions

students may apply. This could help bootstrap the development of example tracing

tutors[2], by providing common solutions derived from actual student data. Lastly,

when combined with InVis, this could provide an efficient method of understand-

ing how students solved problems in computer based systems, potentially providing

educators a way to respond to user work and mistakes in a timely manner.

4.2 Related Work

Previous research in the fields of EDM and Learning Analytics has focused on

clustering as a means to identifying interesting characteristics student groups. These

include research on social networks [58], as well as research on interaction in forums

and chat logs [17], [26]. Our work differs, as we focus on clustering different student

solutions to complex problems in order to reduce the space of student strategies.

Others have looked at reducing the state space in learning environments for purposes



75

of improving intelligent tutor efficiency and improving interpretation of the data for

use by course developers and instructors[49]. We believe the Interaction Network will

provide similar kinds of efficiencies.

The Interaction Network evolved out of work from Barnes and Stamper, and is the

basis used for the Hint Factory, an MDP-based approach for providing automatically

generated hints [55]. InVis is a visualization tool that we have been developing for

visualizing and analyzing Interaction Networks.

There has been an increase in systems that log data for open-ended problems, where

the Interaction Network can be applied. Sudol et al. describe a method of generating

a similar state space that we use here, but for the domain of programming. In

their work, they present the probability distance metric for states in programming

problems for introductory students[57]. Menzel and Le have also focused on exploring

the state-space of ’ill-defined’ domains, using a constraint based system[38]. Mitovic

explores open-ended problems in their web-based SQL tutor which is a constraint

based system, but their system has also incorporated a student model to aid users[43].

In recent years the growth and need for tools to facilitate educational data mining

has begun to grow. Tools like the EDM Work Bench [50] which is built to make

handling tutor log data simpler. TADA-Ed is a tool designed for aiding in mining

educational data generated from digital tutors. TADA-Ed’s focus is on visualizing

the results of several data-mining techniques, such as k-means clustering and deci-

sion trees applied to educational data[41]. We view InVis and the data structure it

visualizes, the Interaction Network, as a similar tool. The purpose of these tools,

to enlighten and inspire through the discoveries made from investigating your data
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from the perspective these tools facilitate. In addition we feel the Interaction Net-

work allows for growth of educational data mining for procedural problem-solving,

and also allows this community to leverage network analysis and graph based data

mining techniques.

From our experience with earlier versions of the InVis tool, large networks made

it difficult for educators and researchers to efficiently decipher the types of solutions

students are using to solve problems from the Deep Thought logic tutor. In our

previous work, users explored networks for nearly 20 students at a time. However,

our goals for the InVis tool are to make understanding student solutions efficient,

which can be achieved by viewing more students at a time. Another advantage to

looking at more students at once, is it can be easier for users to compare different

solutions, as they will not have to maintain those different solutions in their working

memory but can quickly make comparisons based on the visualization. Finally, the

visualization research community provides us with the Visual Analytics mantra, which

argues when there is too much data, visualizations should leverage the machine to

analyze the data, identify the important, and present that, rather than providing an

overview of all the data and relying on the user to filter[19].

4.3 Reduction Algorithm

As described earlier, one major challenge is that when the data sets are large and

diverse, the state space often is as well. One of the goals of InVis is to provide an

efficient understanding of common student behaviors. However, exploring networks

with thousands of nodes can be slow, and is also subject to hardware limitations.
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Figure 22: The complete Interaction Network for problem 3-5. This data sets has 192
students, 1252 nodes and 1835 edges. The light blue node at the top of the layout
represents the problem start, light green are goal states, successful completions. In
the inset box, we have re-created the root and successor nodes within distance two
to depict the hub-like structure that is created from the undo action.
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Table 7: Problem & Interaction Network Size Table

Problem Students Vertices Edges Interactions
1.1 295 1362 1853 13607
1.2 163 566 802 4978
1.3 241 978 1519 9593
1.4 234 1119 1659 9353
1.5 229 1348 1986 10749
1.6 177 1501 2149 11435
3.2 192 1459 2183 7943
3.5 192 1252 1835 7287
3.6 195 246 363 1823
3.9 177 1713 2377 7370
3.10 144 1353 1873 2733

In our experience, even professional software tools for viewing graphs start to slow

down when the node counts exceed 1500, on typical PC hardware. Table 7 shows

node counts for varying problems of Deep Thought based on student counts. Figure

22 shows the Interaction Network for problem 3-5. To address this problem we have

developed the summary reduction algorithm for reducing the network by roughly

90%, while still preserving important information.

The purpose of the summary reduction algorithm is to maximize the amount of

information we can gain from the data, while minimizing the number of nodes and

edges, to make common approaches more clear. We also want to be as close as

possible to a simple graph, since they easier to read when following the flow of state-

transitions, because they have no parallel edges; technically our graph will not be

simple since we have directed edges. Next, we want to preserve as many paths from

the problem start to the goals as possible. We would also like to provide continuity

and solution variations. Continuity in this case, implies the reduced network main-

tain complete solution paths, so the graph is understandable, as opposed to a list of
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the most frequent nodes, which means there should be no disjoint sub-graphs. By

providing depicting all the routes to similar solutions we should be able to provide

better estimations to the numbers of students who performed a particular solution.

Without the context of the progression of the states, users would be unable to under-

stand how the problems were solved. We want to provide a means for understanding

how many students solved the problem, not just which actions were most frequent.

We will use four metrics for measuring our success.

1. Vertex and Edge Reduction Rates

2. Number of Goals

3. Number of Interactions

4. Average Student Interaction Frequency per Edge

The vertex and edge reduction will inform us how well we performed at reducing

the number of states and actions. Next the goal counts will let us know how many of

the solution paths we have maintained, from start to finish. For this metric, not only

the count is important, but to maintain continuity all goals must have a path from

the start of the problem to the respective goal state. The sum of edge frequencies will

inform us of the total number of actions performed by all students, and in turn what

percent of student actions are being preserved in our reduction. Arguably, if we must

choose one of two edges with student frequencies one and ten, the ten frequency edge

is more informative for an overview because ten students performed that action, over

an action performed by a single student. Lastly, the average student frequency per

edge will give us an indicator of how important each edge is in the network.

We asked two professors with more than a decade of experience teaching logic,
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Figure 23: This histogram shows the frequency of edges, based on the number of
students who traversed that edge in the Interaction Network. This is the histogram
for the Interaction Network of problem 3.5 where there are hundreds of low frequency
edges, and few high frequency edges.

as well as two graduate students who have either taught the course or performed a

teaching assistant role, to provide us with the set of solutions they expected students

to use to solve problem 3-5. These four experts provided us with eight solutions

total, four of which differed in either the direction or actions used to solve the prob-

lem. Problem 3-5 was chosen because it has one of the larger ranges of possible

solutions in our problem set. We will use these provided solutions in comparison to

the reduced network and compare how many of those solutions are preserved in the

reduced network.

4.3.1 Summary Reduction Algorithm

The idea for the summary reduction algorithm is inspired by compression algo-

rithms. We want to identify the edges with the highest frequencies and preserve

them, then find goal states that complete those paths. The Interaction Network for

the problem 3-5 data set has 1252 nodes and 1835 edges. In figure 23 we provide



81

a histogram of the edge frequencies from the Interaction Network. The summary

reduction algorithm works by accepting three parameters, the Interaction Network

on which to act upon, the percent of desired reduction, and a growth parameter.

Prior to the reduction, we first calculate a set of values in a pre-reduction step. In

tutors which do not contain ‘undo’ or ‘delete’ actions, this step will not be necessary.

In figure 22, the blue node represents the problem start state. In the figure we can

see hub-like structure around that state and others. These states contain a number

of single actions, some with high frequencies, immediately followed by high frequency

‘undo’ or ‘delete’ actions. These artifacts, though potentially interesting, are not

what we want to preserve in our summary. For users who would like to detect these

features, sorting nodes by degree, sum of in and out edges, is most effective. To

adjust for this behavior of moving forward, followed by an undo, we calculate a table

of negative weights. For each state, an incoming action followed by an ‘undo’, will

increment a negative weight counter for the incoming action. This will be used to

devalue the frequency of these actions. Next we remove the ‘undo’ edges from the

network, this reduces the number of cycles and parallel edges presumably making the

flow of state-transitions in the Interaction Network easier to follow.

Next we calculate the adjusted edge frequencies, which are equal to an edge’s

original frequency minus the negative weight calculated in the previous step. Now,

the network is reduced using the percent reduction parameter. We aimed for an order

of magnitude reduction and so this parameter was set to 10%. For the reduction step,

we generate a new network using the edges with the top 10% of student frequencies,

and their source and target nodes. Depending on the network a set of disjoint graphs
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Figure 24: This is the reduced network for problem 3-5. This reduced network con-
tains 186 nodes (85% reduction) and 219 edges (88% reduction).

will be created, we find the roots of each disjoint graph, which are the nodes with

zero in-degree. We then calculate the shortest paths from the problem start to each

disjoint-root, and inject the necessary edges and nodes to reconstruct a connected

graph. Following this step we check the list of all goal nodes and attempt to connect

any node in the reduced graph to any of the goal nodes, again using the shortest path

in the original network. We use the growth parameter to limit the distance of the

shortest path, for this work we used a value of ten. That is, if a goal node can be

reached within ten edges, the path is added, otherwise it is ignored. As a final step,

we attempt to connect all the nodes within the reduced graph to any other node in the

reduced graph, again using shortest path. An alternative to shortest path could be to

include all paths connecting the nodes, or the path with the highest total frequency.

The shortest path provides the minimum number of edges to be added, and is what
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was chosen here. The reduced network for problem 3-5 is provided in figure 24.

4.4 Results

For each of the 11 problems we have from our dataset, we generate the Interaction

Network, the reduced Interaction Network using our algorithm described here, as well

as two other reductions described below. Next we average the values across all 11

problems and compare. From this image we can see the start of the problem at the

top of the network, with various paths leading to goal-states shown in green. In the

next section we discuss the results of table 8 and the comparisons with the other

methods of reduction.

Table 8: The average metric scores across 11 problems and 2239 problem sessions.
Original refers to the full network values. Each column is a method and its score, with
percentile comparison to the Original network in parenthesis. For vertices and edges
the percent is the amount of reduction, for goals and interactions it is the amount of
coverage or inclusion.

Shortest Greater than
Original Reduced Paths Frequency One

Vertices 1172 114 (90.26%) 238 (77.85%) 203 (81.73%)
Edges 1690 132 (92.23%) 237 (84.75%) 348 (78.33%)
Goals 38 20 (52.54%) 38 (100.00%) 12 (33.04%)
Interactions 3332 1283 (39.90 %) 1162 (36.89) 1990 (60.77%)
Avg. Edge Freq. 2.10 12.34 6.60 6.03

The experts provided eight total solutions independently, four of which differed in

either the actions or direction in which the problem was solved. All four participants

provided us the solution found in 25(b), which uses a Modus Tollens and Modus

Ponens rule. The two teaching assistants provided us with the solution found in 25(a).

One backward solution was provided, and one solution which used both disjunctive

syllogism and Modus Tollens were provided. Our reduced graph contained three out
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of the four solutions provided by experts. The fourth solution, which is a forward

disjunctive syllogism and Modus Tollens approach was not present, however a working

backward version of this solution is presented in the reduced graph. Furthermore,

when looking at the full network, only a single student solved the problem with

both a disjunctive syllogism and Modus Tollens approach, and they were working

backwards.

(a) Dys. Syl. (b) M. Tollens M. Ponens

Figure 25: Left) A solution trace for problem 3-5 using two Disjunctive Syllogisms.
The two experts did not suggest this solution, though the teaching assistants did.
Right) An alternative solution trace for problem 3-5 using Modus Ponens and Modus
Tollens.

4.4.1 Comparison

We compare with a shortest path approach and a frequency one removal approach.

The shortest path method of reduction, takes in the start state of the problem and
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the set of goal nodes for the problem. Next, Dijkstra’s shortest path algorithm[23] is

run and the result is the union of the shortest paths to each goal. The Frequency one

filter approach, simply removes all edges from the network with student frequency

one.

Figure 26: This is the problem 3-5 data set after the shortest paths reduction applied.
This network contains 383 nodes(69% reduction), and 382 edges (79% reduction).

By referring to table 8 we can see some advantages and disadvantages of each

approach. First, as expected, the shortest path approach naturally has 100% goal

coverage, that is we can see a path to every goal from the original Interaction Network.

The disadvantages of this approach is that the paths chosen do not optimize the

frequencies of edges, because the shortest path can contain many frequency one edges.

Next the overall reduction rates are half as effective as our method, leaving on average
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twice as many nodes and edges. This method preserves fewer actions performed by

students while having lower rates of reduction. The resulting shortest paths network

for problem 3-5 is shown in figure 26. One interesting aspect of our approach over

the shortest path method, is if the growth parameter is set to infinity, the path to

all goals will be preserved, though naturally reduction rates will be affected. In this

sense, our method can facilitate 100% goal coverage, if desired.

Figure 27: This is the problem 3-5 data set after the frequency one filter reduction is
applied. This filtered network contains 235 nodes(81% reduction), and 400 edges(78%
reduction).

Alternatively, the frequency one filter, maintains a higher rate of interactions, as

we would expect since fewer edges are removed. However, frequency one filtering

suffers from low rates of reduction, having double the number of nodes and triple

the number of edges on average when compared with summary reduction, while also

having lower rates of goal coverage, 33% compared to our method which achieved

52%. This method has lower reduction rates and lower goal coverage. Figure 27

shows the resulting network for problem 3-5 using the frequency one filtering process.

Finally, by comparing the average edge frequencies in table 8 we can see our method

has double the value than either of the other two approaches. This score is meaningful

because it is the average number of actions performed by students, per edge within
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the network. This means our summary reduction algorithm uses many fewer nodes

and edges to represent a significant portion of the problem goal states and student

interactions.

4.5 Ordering Detection

First, we will analyze the following problem from Deep Thought, students are given

three premises: K→M, Z→R, ¬(K→R) and tasked with deriving the solution M∧¬Z.

Deep Thought provides a visual interface to deriving conclusions in propositional logic

problems. We will discuss two common solutions to this problem; the first is as fol-

lows: perform three implications, deriving ¬K∨M, followed by ¬Z∨R, and¬(¬K∨R).

Next, the students perform DeMorgan’s to derive:¬¬K∧¬R. Following are two sim-

plifications, to derive¬¬K, and¬R, two disjunctive syllogisms, which generate M and

¬Z, the final step is to perform conjunction which results in the conclusion of M∧¬Z.

This solution is provided in figure 28(a). An alternative solution to this problem is

shown in figure 28(b). For the tutor log, each application of a rule is a single trans-

action, in practice students generally have more actions than are required to solve

the problem, partially facilitated by an available delete action. For this problem, 3-5,

there are eight or nine actions necessary to solve the problem in the above solutions.

However, the average number of actions per student is 40 for our data.

Let us look at the related Interaction network for these two solutions. For the Deep

Thought problems, we collect the actions in the order that they occurred, but then

perform lexicographical ordering on each state, which removes order from arguably

equivalent states. An example of this can be seen in figure 28(a). In this case, one
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(a) Dys. Syl. (b) M. Tollens M. Ponens

Figure 28: Left) A solution trace for problem 3-5 using two Disjunctive Syllogisms.
The two experts did not suggest this solution, though the teaching assistants did.
Right) An alternative solution trace for problem 3-5 using Modus Ponens and Modus
Tollens.

set of students has simplified for ¬¬K, while the other set simplified for ¬R. Next

we can see the students perform the reverse of their previous steps. In this sense,

we make the assumption that cognitively students are at the same ‘state’ within

the tutoring system, and do not need to be considered different. The Logic domain

makes this equivalence matching convenient but for other domains this could be

more complicated. The ‘bubble’ created by these two actions can be considered an

unordered set of actions, it is common in this domain to see even larger bubbles, as

shown in figure 28(b). This type of bubble in the Interaction Network captures some

of the diversity of solutions generated by students, so we aim to preserve them in our
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reduction method; more on this topic will be addressed in section 4.5.

4.5.1 Detection Algorithm

The bubble detection algorithm is simple. We iterate through all of the vertices

and check specifically for vertices with either in-degree or out-degree of greater than

two. These vertices populate two lists, which are potential starts and ends to an

ordering bubble. That is in order for a bubble to exist between two nodes, there must

be at least two paths between the start and ending states of a bubble. Next, we focus

specifically on bubbles of length two, because larger bubbles can be computationally

expensive. Now we iterate through the In-degree list, and calculate Dijkstra’s Shortest

Path (DSP)[23] to each node in the out-degree list. By limiting to length’s of two, we

can terminate the DSP algorithm early in processing, which has a processing time of

O(|E|+ |V |log|V |) [29].

When a bubble is detected there is a four-tuple of nodes, or sub-graph of the

structure depicted in image 29(a). The children nodes of the start of a bubble are

combined and so are the edges, an example is shown in figure 29(b).

It is possible for larger bubbles to exist as shown in figure 28(b). We do not want

to ignore these larger bubbles, as they too can be further reduced. By iteratively

running the ordering detection and combining algorithm these larger bubbles will

also be combined and reduced into a single path.

4.6 Consolidating Frequencies

We can consider for a moment an option of ordering when considering the summary

reduction and bubble detection algorithm. The options are to run the summary
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Figure 29: Left) An example of the structure created by a bubble, detected when
considering different orders to arguably the same strategy. The blue node 1 at the
top depicts the bubble-start, while the green node-4 identifies the end. Note the edges
through each respective path are the same, but simply ordered differently. Right) The
structure of the bubble after it has been combined. Note the size and shape of the
combined node are altered to depict the difference, also the labels have changed. The
edges have a larger width based on the combined frequencies of the original edges.

reduction first, followed by the bubble detection, or the reverse order. If we run

bubble detection first, we could consolidate frequencies, so the ordering will not affect

the frequency of the edges. This could be important in the summary reduction

stage, where we select the top ten percent of edges based on frequency. It would be

reasonable that by combining the frequencies of edges for the same strategy, different

edges could be selected by the edge selection portion. However in practice we see that
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this ordering has little effect on the edges selected.

The reason we see little effect of ordering on the edges selected is based in the

concept of graph flow, similar to the maximal flow problem [28]. In order to see a

diversity in paths between two nodes, each path must contain at least one student

who progressed down a particular path. So, if for example, only two students enter

a particular state i, some later state i+2 can have at most two paths between them.

To have three separate paths, state i would need at least 3 students who entered that

state. As a result, low frequency states do not have a high number of diverse paths,

by definition.

Table 9: The problem column refers to problem from the 2009 Deep Thought data-set.
Minimum Edge Frequency is the lowest frequency edge from the summary reduction
algorithm when the top 10% of edges are selected based on frequency. Insufficient
Frequency count is the number of bubbles which contain an edge that has a frequency
lower than the minimum edge frequency value. Insufficient Frequency count is the
number of edges that would not be removed if bubble detection and combining were
run first. The final column is the number of orderings detected for the data set.

Problem Minimum Edge Insufficient Frequency Number of
Frequency Bubble Count Bubbles Detected

1-1 3 0 113
1-2 2 0 3
1-3 2 0 24
1-4 2 0 23
1-5 2 0 47
1-6 2 0 39
3-2 2 0 39
3-5 2 3 123
3-6 4 4 37
3-9 2 2 29

The results are shown in table 9 and almost counter-intuitive, since it shows that

few sets of edges with even arguably low frequencies are affected by the ordering. The

main reason for this phenomenon is because many bubbles have high edge frequencies,
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as was previously discussed above. For example in the case of Problem 3-5 in the

table, there are 123 bubbles detected, yet only three of the edges in that entire set

of bubbles has frequency greater than two and are ignored in the top 10 % of edges.

Referring back to figure 27 we can see that only three out of 400 edges would differ

based on the ordering of the algorithms.

By combining the summary reduction step, followed by the bubble detection we

obtain the resulting network shown in figure 30.

Figure 30: This is the network for problem 3-5, with the summary reduction algorithm
applied, and then bubbles combined into single nodes, after five iterations. Hexagon
shaped nodes contain ‘multiple’ nodes, and have been combined to help reduce the
complexity of the Interaction Network.

4.7 Conclusions

We presented the Interaction Network data structure, which is a method for stor-

ing student solution data from open-ended multiple step problem solving domains.

We then provide an algorithm for reducing the complete Interaction Network to a

summary of the most common problem solving approaches used by students. We
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showed that the summary reduction algorithm was capable of drastically reducing

the number of vertices and edges of the Interaction Network by an average of around

90%, while still depicting more than half the of the solution paths and accounting for

40% of interactions performed by students.

4.8 Chapter Summary

The number of edges with low and often size one frequency are common but ar-

guably offer little into understanding the generalizable behaviors of student solutions.

The summary reduction approach focuses on the edges with the highest frequencies,

along with other features that help depict complete solution paths. Next I consider

the order of actions that people have performed to further reduce the Size and Order

of the resulting network and further approach identifying specific approaches stu-

dents have exhibited in their solution attempts. This work helps facilitate a concise

summary of the solutions that students have used to solve the task they are provided.



CHAPTER 5: INVIS TOOL AND STUDENT DIFFICULTY

Previous methods and features discussed have focused on removing redundant infor-

mation, focusing on student approaches and how students have progressed to problem

goals. However, there is another important aspect of problem solving which should be

addressed, which is identifying where students have faced difficulties. With summary

reduction and bubble detection the focus has been on high-frequency states of the

solution space. For difficulty detection we want to identify the states in the solution

space where students have the greatest difficulty. For this we offer three methods of

identifying states where students might be having trouble.

The challenge is that educators need to see where students are having trouble.

Although errors can be useful, these types of errors are constrained to tutor errors

and may not fully capture what is difficult in a problem. Next simple filters, or

orderings could leave the graph disjoint or provide incoherent collections that are

difficult to understand for the user. Our goal then should be to detect states with

evidence of difficulty, present them within a context of the solution network, and

display them in a readable manner.

5.1 Expected Difficulty

The foundation for our difficulty detection is based in the definition of item diffi-

culty supported by classical test theory, a heavily researched concept in the field of
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psychometrics. Item Difficulty is the number of correctly answered questions by the

population of students who have attempted the item. We have applied this to each

state that is contained in the Interaction Network. A slight variation is applied here

to treat the student population as the number of students who visit a particular state,

since not all students visit all graph states. This means the item difficulty for each

state is the number of goals reached from a particular state, divided by the number

of students visiting that state. For example, if one out of four students arrive at a

goal from a particular state, the difficulty will be equal to 0.25, while another state

could have four out of 12 students achieve a goal state, in which case it too will have

a difficulty of 0.25. The reduced network for problem 3-5 is shown in figure 31, the

level of red is based on the expected difficulty.

In this case, the network is colored based on the inverse level of difficulty. To

explain, imagine some state has ten percent success, meaning ten students enter the

state and one successfully solves the problem. This state would have a difficulty of

one over ten or 0.1. Next, we are interested in the level of error, so we subtract that

expected difficulty from 1.0 and get 0.9. This value is the percent level of failures. We

use this value to be converted to a color which is normalized by all expected difficulty

values, again the results are shown in figure 31.

The disadvantage of this approach is that states with high numbers of failures may

not be recognized. If there are two states, one with 100 students and another with

three students, with 22 and 1 failure students respectively. The expected difficulty

of these two states would be 22% and 33%, suggesting that the 1 failure student

state, should be given attention. However, if a professor has time to address only a
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Figure 31: This is the strategy reduced network from the problem 3-5 dataset. The
color corresponds to the expected difficulty for each state, which is equivalent to the
failure-count divided by the total frequency of the state.

single state, then it is arguable that priority should be given to the frequency 100

state, as addressing the misconception here may help as many as 22 students. To

address this issue we created a similar view, which is no longer normalized based on

student frequency, but is instead the absolute value of difficulty, that is the number

of students that fail from a particular state.

5.2 Absolute Value Difficulty

The absolute value method is supported through a difficulty window which is pop-

ulated with all of the states. An ordering function can be applied to the window to

focus the user’s attention to the states with highest failure rates. An example of this

window is shown in figure 32.The user can sort the nodes in terms of absolute goal

counts, or absolute failure counts. The advantage of using absolute values is educators
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Figure 32: These are the top states based on absolute failure count supplied by the
InVis tool, by selecting one of the states, the corresponding state is highlighted in the
Network Display window.

can focus on states that impact the highest numbers of students. Through this type

of approach an intervention given to the students will maximize the amount of affect

on students having difficulties successfully solving the problem being visualized.

There is one difference between the expected difficulty view show in figure 31 and

figure 33. With expected difficulty, we simply colored the vertex based on the expected

difficulty. With the absolute value view, we color each vertex based on the failure

count, but in addition to this, the node is sized on the number of people who came to

the state and reached a goal. This helps depict the overall frequency of the vertices

as well as any paths of high frequency states.
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Figure 33: This is the strategy reduced network from the problem 3-5 dataset. The
color corresponds with the fail-count of each state, that is the number of students
who visited the state but failed to arrive at a goal state. The size of the node relates
to the number of students who visited the state and later reached a goal state. As a
result, large white nodes denote highly successful states, while large red nodes show
states with a high number of failures and a high number of goals reached.



99

5.3 Conclusions

We mapped expected difficulty to the states of the Interaction Network which

provides one type of view regarding evidence of difficulty for students. However

this view alone is insufficient to describe to educators where to focus their efforts in

terms of addressing students’ challenges. A similar view based on difficulty counts,

that is the number of students which fail to reach a goal, provides an alternative

approach which highlights the states which affect the most number of students. This

visualization approach highlights areas with high potential success and high numbers

of failures for educators to focus.

5.4 Chapter Summary

Through the use of InVis I support two audiences, the first, researchers, can load

data into the InVis tool and explore a variety of aspects in regards to student solution

attempts. The next audience are educators whose students are using a computer

based educational tool. For the second audience, the set of tools developed for InVis

can provide the most common solutions and approaches demonstrated by students.

Furthermore through the use of the Difficulty Detection method, we can present to

educators the top ten difficult states in the solution space identified directly from

the students’ log data. Through the combination of these tools and methods InVis

is capable of receiving thousands of transaction logs and transforming them into a

meaningful and efficient summary of aspects, common solutions and areas of student

difficulty, that educators are interested in.



CHAPTER 6: CONCLUSIONS

Educators and researchers need to gain a better understanding of student prob-

lem solving behavior and learning. I addressed this challenge through the design,

development and testing of the InVis tool. Computer based educational tools have

the potential to improve the amount and rate at which students learn, particularly

when teachers can use data to better understand student learning. However, current

Interactive Learning Environments (ILE) tools alone are insufficient to allow deep

investigation into how students use ILE and similar educational tools. InVis provides

a means of investigating student solution attempts and provides insight into how

students are solving problems. This leverages an important benefit of ILE systems

by visually displaying the interactions students have performed, transforming verbose

unreadable interaction logs into a manageable, accessible network of nodes and edges.

6.1 InVis Usability Study

A preliminary version of the InVis tool and the Interaction Network model were

developed. Next data from the Deep Thought logic tutor, the BeadLoom Game and

other similar tutors were loaded into the tool. This provided us with one of the first

uses of an interactive tool built to explore and interact with the problem solution

spaces as explored by students. The resulting network, known as the Interaction Net-

work, served as the model for our data. The InVis tool was built to interact with the



101

Interaction Network and assist users in exploring the data. Following the development

of the prototype, we conducted a study of how logic professors navigated, explored

and interacted with logic data from the Deep Thought logic tutor. A quantitative

task analysis, qualitative feedback, and usability survey provide evidence of which

methods of interaction allowed effective investigation of the ILE log data from the

Interaction Network. In addition, we provide use cases as well as an in-depth case

study where InVis analysis improved the BeadLoom game and ultimately fostered

a re-design and re-construction through identification of important errors. We also

note that errors in other ILE systems were discovered through the visualization of

ILE log data provided by the InVis tool.

InVis and many of the interactive techniques developed proved to be effective at

exploring data; one challenge remained in dealing with large datasets. The prototype

usability study dataset contained only 18 students. This in turn had relatively few

states and actions. It became clear that to gain an understanding of large numbers of

student solutions, in the hundreds, new methods and techniques would be necessary

to properly filter and focus the users’ attention on the important aspects of the

Interaction Network. This observation is also supported by visual analytics research.

6.2 Strategy Reduction and Ordering Detection

The prototype and related analysis of its use provided important insight into the

development of the current version of InVis. The importance of interactions like

predecessor and successor selection as well as the generation of sub-graphs became

clear. InVis required new methods to filter and focus the user’s attention on the major
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features of the Interaction Network. To facilitate this, we developed two methods.

The first is Strategy Reduction. We recognize a great majority of edges have low

student frequency and many a frequency value of one. We used this observation of

the Interaction Network to develop a systematic filter to eliminate the less important

edges and states based on the student frequency. Next, the remaining states and

near-by goals were linked by algorithms for networks like Dijkstra’s shortest path to

provide a meaningful summary of common behaviors driven by the student-data. We

compare our technique of Strategy Reduction to other approaches and conclude our

method provides the preferable output.

Although the Strategy Reduction method substantially reduces the number of edges

and nodes in the Interaction Network, we recognize there still exist some redundant

information. This redundant information remains as an artifact caused by the order

of the student-performed actions. To address ordering based redundancy, I developed

an ordering detection algorithm that analyzes an Interaction Network and looks for

multiple paths between pairs of nodes. The algorithm effectively identifies where stu-

dent solution paths diverge and merge within the Interaction Network. I subsequently

developed and implemented a method of recombining the ordering artifacts into single

paths. Although the reduction in nodes and edges to the overall Interaction Network

by ordering detection is small, the method’s value is the advancement of the resulting

Interaction Network to a simple graph.
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6.3 Difficulty Detection

Not all students succeed in solving problems and addressing student challenges is an

important aspect of education. Though errors are one method of detecting difficulty,

this approach requires the tutoring system to log invalid actions applied by students.

The challenge then is developing methods of addressing student difficulty which does

not depend on error actions. By using expected difficulty from classical test theory,

based on failure rates of the entire problem, InVis provides an alternative method

of identify difficult states within the Interaction Network. This lets educators easily

identify discriminating states, that separate students between success and failure. In

addition to this, an absolute difficulty value is also calculated and presented in InVis

which takes into consideration the number of students who have suffered failure.

Through this view and related tools, users can quickly identify the states which have

the highest potential of failure. By addressing these states, the maximum number of

students could benefit, particularly if resources limit the number of states an educator

can address.

The InVis tool is a platform for new research about student learning and ILE tool

use. InVis is not a single use or single method for analyzing a specific data set.

We built InVis to provide a means through which researchers can consider, study

and conclude a wide range of research questions. InVis should provide new methods

of investigation into student learning, as well as new investigations on how to gain

insight about how students learn using computer based educational tools.
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