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ABSTRACT 
 
 

BOSHU RU. Identifying serendipitous drug usages from patient-reported medication 
outcomes on social media. (Under the direction of DR. LIXIA YAO.)  

 
 

Drug repositioning has prominent advantages of lower safety risk and development 

cost than developing new drugs. It has attracted broad interests from the biomedical 

community. In the past decades, computational approaches have examined biological, 

chemical, literature, and electronic health record data for systematic drug repositioning. 

But due to the limitations of these data sources, neither of them alone appear sufficient 

for drug repositioning research. In recent years, more and more patients go to social 

media to report and discuss their medication outcomes. Of these reports, we noticed 

mentions of serendipitous drug usages, which we hypothesize to be new, independent 

data to study drug repositioning, in the sense of complementing other existing data 

sources to identifying and validating drug repositioning hypotheses.  

In our first work, we examined medication outcome information available on four 

social media sites, namely WebMD, PatientsLikeMe, YouTube, and Twitter. We found 

the patient health forum of WebMD the best social media site for our research in terms of 

data availability and quality, but colloquial patient language is challenging for computers 

to process. In the second phase of dissertation, we explored state-of-the-art natural 

language processing (NLP) and machine learning methods to identify mentions of 

serendipitous drug usages in social media text. We curated a gold-standard dataset based 

on filtered drug reviews from WebMD. Among 15,714 sentences in total, our annotators 

manually identified 447 sentences mentioning novel desirable drug usages that were not 

listed as known drug indications by WebMD and thus were considered serendipitous drug 
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usages. We constructed features using NLP methods and medical knowledge. Then we 

built SVM, random forest, AdaBoost.M1, and deep learning models and evaluated their 

prediction power on serendipitous drug usages. Our best model (AdaBoost.M1) achieved 

an AUC score of 0.937 on the independent test dataset, with the precision equal to 0.811 

and the recall equal to 0.476. Our models predicted several serendipitous drug usages, 

including metformin and bupropion for obesity, tramadol for depression and ondansetron 

for irritable bowel syndrome with diarrhea, which were also supported by evidences from 

scientific literature. These results demonstrated that patient-reported medication 

outcomes on social media are complementary to other data sources for drug repositioning. 

NLP and machine learning methods make this new data source feasible to use. In the end, 

we implemented NLP and machine learning methods explored in this dissertation to an 

open source software application for users without intensive NLP and machine learning 

skills to extract serendipitous drug usages mentioned in social media text.  
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CHAPTER 1: INTRODUCTION 

1.1 Background  

Drugs are chemical substances developed to treat or prevent diseases or improve 

the health status of human body. The development of a new drug includes discovery, 

design, clinical trials, and registration phases. It typically costs hundreds of millions of 

dollars and takes 10 to 17 years in total, with an average success rate of less than 10% [1]. 

Sometimes after a drug hits the market, it may be found useful to treat medical conditions 

other than what it is initially designed for. This strategy is known as drug repositioning or 

drug repurposing [2]. As opposed to the development of a new drug, repositioning a drug 

already in the market or in the late phases of development can save a considerable 

amount of time and financial resource, because the repositioned drug already passed 

several preclinical tests in animal models and safety tests on human volunteers in the 

Phase I clinical trials. Therefore, repositioning drugs are more available to patients of 

currently not properly treated diseases and more cost-effective to pharmaceutical 

companies [3]. A well-known example is sildenafil that was originally developed to treat 

angina. After the clinical trials on angina became futile, the clinical team found that some 

patients were reluctant to return the medicine because of the desirable side effect of 

erection [4]. This serendipitous finding inspired the team to explore the possibility of 

resurrecting the drug to treat erectile dysfunction and finally brought to the world the blue 

pill that are used by millions of men today [1].  

Attracted by legendary stories like this, the biomedical community have examined 

various computational drug repositioning approaches in the past decades, using 

biomedical, literature, and electronic health record (EHR) data. But each of these data 
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sources has its own limitations, such as the limited capability to be translated to human 

patients, and thus has showed high false positive rates during predictions (See 1.2.1).  

More recently, the fast expansion of social media generated a large amount of data. 

Many people write online to share their medication experience. As the data is generated 

from real patients, the translational hurdle from cell-line or animal model to human is 

bypassed. In this sense, social media data may be used to enrich or validate the drug 

repositioning signals generated from other existing data sources. For example, if a new 

drug usage is suggested by chemical or biological data, and we observe similar 

serendipitous drug usage from social media data, we would be much more confident 

about this repositioning opportunity and expect the chance of false positive discovery be 

much lower. However, how to use social media data for drug repositioning purpose has 

not been thoroughly investigated yet. Therefore, we proposed this dissertation study to 

design an information system that could automatically identify serendipitous drug usages, 

the important clues for drug repositioning, in social media data. The success of this 

system will be a valuable resource to the biomedical community and will contribute to 

the identification of new drug repositioning ideas. 

1.2 Related work 

This study complements existing computational methods for the drug repositioning 

and extends other medication outcome studies that utilized social media. This section 

gives a detailed discussion of the related work. 

1.2.1 Computational drug repositioning methods  

In the past decades, various computational methods have been developed to 

systematically generate more drug-repositioning hypotheses [2]. The basic idea is to mine 
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chemical, biological, or clinical data for drug similarity, disease comorbidity, or drug-

disease associations that imply repositioning opportunities [2, 5]. For instance, Keiser et 

al. compared chemical structure similarities among 3,665 drugs and 1,400 protein targets 

to discover unanticipated drug-target associations and implicated the potential role of 

Fabahistin, an allergy drug, in treating Alzheimer’s disease [6]. Sanseau et al. 

investigated data from genome-wide association studies to systematically identify 

alternative indications for existing drugs and suggested repositioning denosumab, which 

was approved to treat osteoporosis, for Crohn's disease [7]. Hu et al. created a drug-

disease network by mining the gene-expression profiles in GEO datasbase and the 

Connectivity Map project [8]. By analyzing topological characteristics of this network, 

they inferred the effects of cancer and AIDS drugs for Huntington's disease. Wren et al. 

constructed a network of biomedical entities including genes, diseases/phenotypes, and 

chemical compounds from MEDLINE [9], and computationally identified novel 

relationships between those biomedical entities in scientific publications [10]. One such 

relationship they found and validated in the rodent model was between chlorpromazine 

and cardiac hypertrophy. Nevertheless, Gottlieb et al. designed an algorithm called 

PREDICT, to discover novel drug-disease associations from OMIM, DrugBank, 

DailyMed, and Drugs.com [11]. This algorithm predicted 27% of drug-disease 

associations in clinical trials registered with clinicaltrial.gov.  

Although these computational methods have demonstrated their promise, they often 

face the issue of high false positive rates [2, 12]. One primary reason is sharing similar 

chemical structures or co-occurring in the same publication does not always imply 

medical relevance. Also, ignoring the context (e.g., whether the similarity or validation is 
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observed in experiments on molecular, cell line, or animal models) might impact their 

capability to be translated to human beings.  

In addition to exploring novel ways of forming repositioning ideas, researchers 

recently began to validate drug-repositioning hypotheses in the EHR data. For example, 

Khatri et al. retrospectively analyzed the EHR data of 2,515 renal transplant patients at 

the University Hospitals Leuven to confirm the beneficial effects of atorvastatin on graft 

survival [13]. Xu et al. verified that metformin, a common drug for type 2 diabetes, is 

associated with improved cancer survival rate by analyzing the patients’ EHR data from 

Vanderbilt University Medical Center and Mayo Clinic [14]. These proof-of-concept 

studies have also witnessed several limitations, due to the nature of EHR data: (1) EHR 

systems do not record the causal relationships between events (e.g., drugs and side effects) 

as they were mostly designed for clinical operation and patient management instead of 

research. Whether a statistical association is causal needs to be verified through temporal 

analysis with a lot of assumptions. Therefore, the models become disease and/or drug 

specific and remain difficult to be generalized and automated in a large scale. (2) A 

significant amount of valuable information, such as the description of medication 

outcomes, is stored in clinicians’ notes in the free-text format [3]. Mining these notes 

requires advanced natural language processing techniques and presents patient privacy 

issues. (3) In the US, data from a single provider's EHR system only provide an 

incomplete piece of patient care [14]. Integrating EHR data from multiple providers may 

be a solution, but currently encounters legal and technical challenges, as discussed in 

depth by Jensen et al [15].  
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Due to these limitations, neither EHR, nor any of scientific literature, biological, 

and chemical data alone appears sufficient for systematically generating ideas for drug 

repositioning research. We need to identify additional data sources that contain patient 

medication history and outcomes, as well as develop advanced data integration methods 

to identify synergistic signals from multiple sources. 

1.2.2 Medication outcome studies using social media data 

In the last decade or so, social media data has increased exponentially in the 

volume. People today not only post their travel pictures but also share and discuss their 

experience with diseases and drugs on social media websites, such as WebMD, 

PatientsLikeMe, Twitter, and YouTube [16]. Such data directly describes drug-disease 

associations in real human patients and bypasses the translational hurdle from cell-line or 

animal model to human, thus they have led to increased research interests. For example, 

Yang et al. mined drug and adverse-reaction associations in the drug-related discussions 

on the MedHelp forum using the ADR lexicon generated from the Consumer Health 

Vocabulary (CHV) [17] and various metrics for evaluating associations [18]. They found 

that two ADR signal measures, namely leverage [19] and PRR, achieved better accuracy 

than the others when dealing with that their social media dataset. Yates et al. generated 

an ADR synonym set specifically for breast cancer patients from the United Medical 

Language System (UMLS), and used it to extract ADRs in the breast cancer drug reviews 

that they crawled from Askpatient.com, Drugs.com, and Drugratingz.com [20]. Instead of 

collecting available social media data, Knezevic et al. created a Facebook group for 

people to report their ADR experiences [21]. The group quickly attracted 973 Facebook 

users in the first 7 months. Moreover, 2% of the users reported ADRs, which is much 
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higher than the reporting ratio of several spontaneous reporting systems, demonstrating 

that social media is a highly sensitive instrument for ADR reporting. Powell et al. 

investigated the MedDRA Preferred Terms that appeared on Twitter and Facebook and 

found 26% of the posts contained useful information for post-marketing drug safety 

surveillance [22]. However, these studies relied on one single platform of social media or 

focused narrowly on specific ADR signals, leaving the potential use of social media for 

studying other aspects of medication outcomes, such as serendipitous drug usages 

unexamined. 

Based on the recent research in computational repositioning methods and the 

efforts to use social media for medication studies, we believe that: (1) Additional data 

source, such as patient-reported medication history and outcomes can be helpful for 

generating and validating drug repositioning ideas. (2) The potential and possible solution 

of using social media for drug repositioning purposes needs to be further investigated.  

1.3 Overview of this dissertation 

This dissertation is organized in four parts. In Chapter 2, we surveyed four social 

media sites to identify best data source and challenges of mining medication outcome 

information [16]. In Chapter 3, we curated a gold-standard dataset based on filtered drug 

reviews from WebMD and built a natural language processing and machine learning 

pipeline to identify serendipitous drug usages in patient forum data. In Chapter 4, we 

applied cutting-edge word embedding and deep learning methods and discussed their 

performance in the context of this dissertation. In Chapter 5, we documented how we 

designed and implemented an open source software application based on natural 

language processing and machine learning methods explored in this dissertation work. 
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CHAPTER 2: A CONTENT ANALYSIS OF PATIENT-REPORTED MEDICATION 

OUTCOMES ON SOCIAL MEDIA 

2.1 Background  

According to a survey in 2013 [23], 30% of adults were willing to share their health 

information on social media. If we also take those early adopters more than a decade ago 

into account, social media should have accumulated huge amounts of health data. But 

how big are the data? What is the quality of those data? Are there any differences among 

data from different social media sites? 

In this section, we compared and evaluated four major representative social media 

platforms, in terms of data coverage and quality. We examined what kinds of medication 

outcomes were discussed and investigated the characteristics of the informal written 

languages used online. Such work is necessary for us to have thorough understanding of 

patient-reported medication outcomes on social media, before we developed a 

computational system later to identify serendipitous drug usages from this new data 

source. 

2.2 Methodology 

2.2.1 Data collection 

We selected four representative chronic diseases, namely asthma, rheumatoid arthritis, 

type 2 diabetes and cystic fibrosis. The former three are common diseases, which are 

expected to have a lot of patient reviews on social media; whereas, cystic fibrosis is a rare 

disease and is expected to have much less data available. For each of these diseases, we 

picked two to three commonly prescribed drugs to be studied. In total we got 11 disease-

drug pairs (See Table 1). We did not pick severe disabling diseases or acute conditions, 
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because patients with those diseases probably are not able to write online or lack of long 

and sustainable interests to write online.  

The social media sites we surveyed include WebMD, PatientsLikeMe, YouTube 

and Twitter. Figure 1 demonstrates what a typical user review is like on each site. The 

former two sites are specialized in exchanging medical and health information, while the 

latter are two of the largest social network sites in the US. For WebMD and 

PatientsLikeMe, we collected the drug reviews from the drug and treatment category 

pages (URLs: http://www.webmd.com/drugs/index-drugs.aspx and 

https://www.patientslikeme.com/treatments). For YouTube and Twitter, we searched 

disease and drug names using their search APIs, and then parsed the retrieved comments 

using the JavaScript scraper written by us. To ensure the completeness of the results, 

Table 1: List of diseases and drugs 

Disease-Drug Pair Alternative Drug Names 

Asthma 

Albuterol Ventolin, Salbutamol 

Ipratropium Atrovent, Apovent, Ipraxa, Aerovent, Rinatec 

Prednisone Deltasone, Prednicot, Rayos, Sterapred 

Cystic 
Fibrosis 

Azithromycin Zithromax, Sumamed, Zmax, Azaste 

Ivacaftor Kalydeco 

Rheumatoid 
Arthritis 

Meloxicam Mobic 

Prednisone Deltasone, Prednicot, Rayos, Sterapred 

Sulfasalazine Azulfidine, Salazopyrin 

Type 2 
Diabetes 

Bromocriptine Parlodel, Cycloset, Bagren, Pravidel 

Insulin Levemir, NovoLog, Lantus, Afrezza, Apidra,HumaLog, 
Humulin, Novolin, KwikPen 

Metformin Fortamet, Glucophage, Glumetza 
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disease and drug synonyms were also used to form the search queries. The alternative 

drug names were listed in the Table 1. Alternative disease names were found in UMLS. 

In this way we collected all the publically visible data published by October 1, 2014 on 

all four sites. Facebook was included in our initial evaluation but got dropped out of our 

final analysis, because most Facebook users discuss about personal medication 

experiences in private group setting. 

2.2.2 Data preprocessing and indexing  

The data we collected contained structured data and free-text comments. Structured 

data can be the user ratings on WebMD and PatientsLikeMe. WebMD uses a standard 

five-point rating system for users to rate on effectiveness, ease of use, and overall 

satisfaction. PatientsLikeMe asks users to choose one from several preset options - such 

as Major, Moderate, and Slight - to describe the drug's effectiveness, side effects, 

adherence, and burden. To make the data from these two sites comparable, we 

 

Figure 1: Examples of the drug reviews posted on WebMD, PatientsLikeMe, YouTube,  
and Twitter 
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proportionally converted the rating values from PatientsLikeMe into the five-point 

system. For all the free-text reviews, we used Apache Lucene, a free open source 

information retrieval software to index them (http://lucene.apache.org/core/4_10_0/) 

based on the following medication outcome lexicon. 

2.2.3 Medication outcome lexicon and categorization 

We built a medication outcome lexicon to identify the related terms in social media. 

Our lexicon consists of four vocabularies representing four major medication-outcome 

categories: effectiveness, side effects, adherence, and cost. The vocabularies for 

effectiveness, adherence, and cost were manually collected from the WebMD corpus, as 

there are no existing terminologies. The vocabulary for side effects was extracted from 

the Consumer Health Vocabulary, but we used UMLS to limit the semantic types of those 

terms to Disease or Syndrome, Finding, Sign or Symptom, Neoplastic Process, Injury or 

Poisoning, and Mental or Behavioral Dysfunction. For terms in each vocabulary, we 

searched them in the indexed documents. If a match was found, the review post was 

tagged to the related medication outcome category. It is not uncommon for a review post 

to be indexed by multiple terms and assigned to multiple medication outcome categories. 

2.2.4 Sentiment analysis 

In order to understand how social media users felt about their medication 

experiences, we used Deeply Moving, a free tool developed by the Stanford NLP group 

[24] for sentiment analysis. Deeply Moving parsed each sentence in the input document 

into a tree structure, with each leaf node representing a word used in the original text. 

Then it used a pre-trained Recursive Neural Tensor Network model on a corpus of movie 

reviews, to annotate the input sentence with one of five sentiment tags: Very Negative, 
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Negative, Neutral, Positive and Very Positive. We summarized the distribution of 

sentiment tags in different medication outcome categories for all four social media sites. 

2.3 Results  

2.3.1 Summary of data  

We collected 2,567 reviews from WebMD, 796 reviews from PatientsLikeMe, 

42,544 comments from YouTube, and 39,127 posts from Twitter. The significantly 

higher numbers for YouTube and Twitter may be due to the fact that they target much 

bigger user populations of broader interests. Another possible reason is that unlike 

WebMD and PatientsLikeMe, YouTube and Twitter do not compile and edit the 

published contents unless they are against the law or their company policies. Table 2 

Table 2: Summary of drug reviews on social media sites 

Social Media 
and Metrics 
 

 
 
Diseases and Drugs 

WebMD PatientsLikeMe YouTube Twitter 
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Asthma 

Albuterol 3.87 4.39 3.55 112 4.06 2.08 4.01 4.29 137 2859 11381 
Ipratropium 4.17 4.17 3.75 12 4.13 1.33 4 3.95 8 140 271 
Prednisone 4.00 3.92 3.32 367 4.19 2.89 4.68 4.17 48 8569 971 

Cystic 
Fibrosis 

Azithromycin - - - - 2.91 1.73 4.55 4.65 11 31 90 
Ivacaftor - - - - - - - - - 818 5060 

Rheumatoid 
Arthritis 

Meloxicam 3.39 4.18 3.11 202 3.20 1.89 4.47 4.6 15 558 67 
Prednisone 4.11 4.31 3.61 229 4.03 3.20 4.68 4.17 63 10064 670 

Sulfasalazine 3.19 3.28 3.17 65 2.44 3.03 4.45 3.98 77 581 53 

Type 2 
Diabetes 

Bromocriptine 2.23 3.08 2.15 13 - - - - - 29 214 
Insulin 3.50 4.22 3.35 265 4.21 1.60 4.73 4.2 106 11401 16308 

Metformin 3.29 3.91 2.93 1302 3.69 2.30 4.41 4.17 331 7504 4042 
Weighted Average: 3.52 4.00 3.14 - 3.74 2.32 4.42 4.18 - - - 

* The average drug adherence and burden (cost) ratings on PatientsLikeMe may not be disease 
specific. In case that a drug has multiple indications, the adherence and burden ratings are 
consolidated across all indications. 
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summarized the counts of user entries we collected on each site for each disease-drug pair. 

It is found with no surprise that the prevalence of a disease impacts its popularity on 

social media. For instance, cystic fibrosis is a rare disease that affects approximately 

30,000 people in the United States [25]. Consequently, we found zero reviews about its 

treatment on WebMD (It is also possible that WebMD does not include azithromycin and 

ivacaftor as treatment for systic fibrosis), 11 reviews for azithromycin on PatientsLikeMe 

and limited posts on YouTube and Twitter. On the contrary, thousands of posts talked 

about type 2 diabetes, which affects more than 29 million people in the United States 

alone [26]. Table 2 also showed the average patient ratings on WebMD and 

PatientsLikeMe. The Pearson’s correlation coefficient between two sites is 0.728 for the 

effectiveness rating and 0.759 for the adherence (approximately equivalent to ease of use) 

rating, which demonstrates that the ratings on these sites are quite consistent. In addition 

to this, 79.4% of reviews on WedMD come with free-text comments. The number for 

PatientsLikeMe, however, is only 2.8%. The design of their drug review forms might 

account for this difference. WebMD encourages users to write their medication 

experiences in their own language. PatientsLikeMe, on the other hand, promotes users to 

fill out a standardized questionnaire with many multiple-choice questions; users might 

skip the optional free-text field at the very end of the questionnaire.  

2.3.2 Data quality by sites 

To evaluate what patients really wrote about, we manually reviewed all the reviews 

on WebMD and PatientsLikeMe, and 500 randomly selected posts from both YouTube 

and Twitter. We found that almost all the comments on WebMD and PatientsLikeMe 

described patients’ experiences with drugs. By contrast, only 9.4% of the YouTube 
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comments discussed drug-related personal experiences. About 23.2% posts were about 

disease or drug- related knowledge or commercials. The rest 67.4% of the posts were 

simply spams or discussions on completely irrelevant topics. On Twitter, only 1.6% of 

the tweets wrote about drug-related personal experiences, 93% of the sampled tweets 

were mentioning of disease education articles, drug related news and commercials, 

research publication announcement, and patient recruitment notices. The rest 5.4% tweets 

were talking about completely irrelevant topics. Overall speaking, WebMD has the 

patient reviews of the highest quality among four, followed by PatientsLikeMe. The 

social media giants, particularly YouTube and Twitter, are dubiously mature sources for 

studying medication outcomes unless the precision of information retrieval could be 

significantly improved. In case that large sample size is needed, WebMD, 

PatientsLikeMe and other medicine-focused social media sites, can be combined. 

2.3.3 Types of medication outcomes discussed on social media  

We then looked at what specific topics social media users talked about and with 

what attitudes using Lucene and Deeply Moving (See 2.2). These analyses were 

conducted on sentence level because patients often address more than one medication 

outcome in a review. Figure 2 summarized our findings. Side effects were the most 

frequently mentioned outcome on all four sites, followed by the effectiveness and 

adherence. Patients seem not very sensitive about the cost, presumably because most 

people have pharmacy coverage in their health plans. But it is hard to infer if patients 

care more about drugs’ side effects than effectiveness based on the sentence counts 

because the numbers could be complicated by the psychological effect of negativity bias 

[27], a notion that, even when of equal intensity, negative things have stronger impact on 
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a person’s impression and evaluation than positive things. Table 3 gives a few examples 

of user comments on drug effectiveness, side effects, adherence and cost. Figure 2 also 

illustrated the sentiment score that Deeply Moving [24] assigned to all the sentences in 

user reviews. The color overlay inside each bar tells the relative ratios of five sentiments, 

from very negative, negative, neutral to positive and very positive, in each medication 

outcome category for all four social media sites. The negative sentiment dominated 

patients’ discussion on effectiveness, side effects, adherence and cost across all four sites. 

This is, again, common to user reviews in many other fields, due to negativity bias [28]. 

Second to that are neutral and positive sentiments. Extreme sentiments, either very 

positive or very negative, were rare. However, the weighted average of numerical ratings 

for all medication outcome types but side effects (Bottom row of Table 2) were higher 

 

Figure 2: Summary of the sentiments associated with medication outcome types 
(The numbers for PatientsLikeMe and WebMD are very small, so we adjust the scale marks for these 
two sites for better visibility.) 
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than 3.0 (neural). Possible explanations are either Deeply Moving was inaccurate for drug 

reviews, or patients used negative language and relatively large space to comment on side 

effects. But when they did the rating, they accepted the common fact that all drugs have 

side effects.  

 

 

Table 3: Examples of medication outcome contents on social media sites 
Content 

Type Example Source 

Effectiveness 

day 001 - not so bad so far, but really only 18 hours in. Asthma acting up a 
little. Taking Advair. Need to refill Albuterol script. Twitter 

Only been on it for 8 days but I noticed relief from pain right away. 
However, yesterday I was more short of breath than usual and my blood 
pressure was high, tightness in my chest so I will stop taking it to see if that 
stops. 

WebMD 

Side effects 

make sure it is plain claritin. not claritin D or anything else. Plain claritin 
has loratadine. that is fine but anything else can kill it. the regular claritin 
has no side effects. 

YouTube 
Bubble gut to me is extreme gas... Very extreme gas, be careful for the first 
few weeks of use. Don't put yourself in situations like elevators or long car 
rides before your body adjust to the med. 

Adherence 

It is so very easy to use and the needle is tiny and does not hurt at all. WebMD 
They divide pills down to easier to take portions or fine tune the dose to 
better fit the patient. Have you ever tried to use a breakfast drink with the 
pills? Sometimes it helps pills slide down MOBETTA! 

YouTube 

Cost 

Private insurance pays for young Shan 's `miracle drug'; Kelsa can't afford 
it. Twitter 

Being so close to Mexico allowed me to get my inhalers cheaper and 
quicker. WebMD 

Disease 
comorbidity 

& 
repositioning 

Doctor prescribed this after I stopped taking Plaquenel due to stomach 
upset. In addition to RA I have a history of IBS, sensitive stomach and I 
have tolerated this medication well. It has greatly improved my IBS while 
moderately improving my RA pain. Ony side effect is feeling full, thirsty 
and ocassional gut pain.  

WebMD 
Personal side effect: Very sensitive to sun. This clears up my bronchial 
spasms so quickly and as a bonus, it clears up my eczema! I have asked 
my doctor to prescribe it regularly for my skin condition and he says there 
are too many side effects. too bad. It is a wonder drug. I was able to breathe 
very well. 
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During our manual review, we noticed some interesting cases where the patients 

reported that some drugs unexpectedly helped with their comorbid conditions (See Table 

3). For example, a couple of sulfasalazine users reported that their irritable bowel 

syndrome (IBS) symptoms were alleviated when taking this medicine for treating 

rheumatoid arthritis. This is possible because recent research and clinical trials found that 

sulfasalazine was able to relieve the diarrhea and abnormal pain that IBS patients often 

suffer from, act by stimulating CD73-dependent adenosine production [25]. We also 

found asthma patients on prednisone reported that the drug improved their eczema 

condition. Further literature search led us to find that prednisone has been linked to 

reducing the flare in atopic, seborrheic, and urticarial dermatitis, although only a few 

clinical studies have formally evaluated these off-label indications [29]. Such examples 

illustrated the potential value of social media data for studying the biological mechanisms 

of disease comorbidity and drug action, and repositioning existing drugs for new 

indications.  

2.3.4 Challenges of analyzing the human language on social media 

We also noticed that some usages of the written language on social media might be 

challenging for computers to process (See Table 4). First of all, informal writing 

conventions, typos and improper punctuation are widespread on social media websites. 

Special lexicon is needed to automatically recognize and correct those usages in social 

media data. Secondly, emoticons (i.e., ":o(" and "=0)"), exclamation marks, and uppercases 

give strong hints of the feelings, attitudes and opinions of the users. However, most text 

mining tools today do not capture those emoticons, extra exclamations marks, or 
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uppercases [30]. Thirdly, sarcasm detection is a particularly difficult data mining task and 

one possible solution is suggested by Tsur et al. for online product reviews [31]. 

Nevertheless, in many cases people did not provide direct opinions about a drug but 

instead compared it to other drugs. For example, a type 2 diabetes patient described his 

experience with metformin by comparing it to the glumetza treatment (See Table 4, the 

1st example). In another case, corticosteroid was used in a YouTube comment to refer 

prednisone (See Table 4, the 7th example). The former concept is a drug class, of which 

the latter is a specific drug. While such comparisons are extremely useful information to 

Table 4: Examples of the reviews challenging for processing 

Challenge Type Examples Source 

Comparative 
sentiment 

Hugely intolerable diarrhea on a daily and nightly basis. The 
glumetza delivery solution is a bit better WebMD 

That being said, the only advantage Symbicort has over Advair is 
fometrol is faster acting. The LABA in Advair is matched in 
potency for the dosage in fometerol. 

YouTube 

Sarcasm 

Quit taking it last week and I feel great. So I guess it worked by 
showing me how much worse I could feel. I'm still stiff and sore, 
but at least I don't feel like c***. 

WebMD 

2 sick monkeys... Asthma and colds don't go well together. 
Albuterol does provide some comedy relief though #hypersilliness. 
Prayers welcomed 

Twitter 

Informal language 
usage 

im taking 75 mg of prednisone high dose b/c of my kidneys and im 
concerned because im experiencing a lot of hair loss is this 
temporary or permanent??? My doctor will put me on a lower doses 
soon will that help with hair loss?? 

YouTube 

NPR coverage of Kalydeco from this am ! Twitter 

Pronoun and 
semantic 

referencing 

Corticosteroids (a class of chemicals including Prednisone) causes 
too many collateral damage. The higher the dosage the more 
resistant your body becomes with insulin. Man I hate this 
medication (Prednisone), but is life saving to a certain extent.  

YouTube 

Emoticon 

Muscle cramps, massive gastrointestinal upset. Who ever said this 
was the best drug for me to be taking was mad! The cure is worse 
than the illness! Apparently it will get easier the longer I take it. I've 
seen improvments but still can't leave the house at times :o( WebMD 
... I haven't had weight gain..(pls, I hope that doesn't change 
=0)...lost 17 pounds in 2 months..however, began high protein, 
lowfat eating plan at same 
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comparative effectiveness research, identifying the pronoun reference and semantic 

reference within a sentence or cross multiple sentences is still not properly solved. The 

ontology based reasoning will be needed for the machine to extract the valuable 

information from the patients’ reviews correctly. 

2.4 Discussion 

In this work, we surveyed four major social media sites, namely WebMD, 

PatientsLikeMe, YouTube and Twitter to better understand if patients reported and 

discussed their personal medication experiences on social media and what the contents 

are like. By comparing the results for four carefully selected chronic conditions and 11 

drugs, we found that in addition to consistent ratings, patients did share their feedback on 

effectiveness, side effects, adherence, and cost of drugs in a responsible way. YouTube 

and Twitters retrieved much more data. But specialized medicine-focused websites such 

as WebMD and PatientsLikeMe maintained the higher data quality.  

Patients talked mostly about side effects, followed by effectiveness and adherence. 

They were not very sensitive to cost. In spite of the negative tones patients used on side 

effects, patients gave neural to positive ratings for effectiveness, adherence and cost for 

all 11 drugs. In addition, some patients even reported unexpected desirable indications, or 

serendipitous usage, which could be clinical evidences to study the mechanisms of drug 

actions and to identify novel opportunities for drug repositioning.   

However, our findings need to be considered with the following factors taken into 

account: (1) Our lexicon for effectiveness, adherence and cost was created from all the 

patients’ reviews we found from WebMD. It could be incomplete and lowered the recall 

of our information retrieval from the other three sites. (2) The sentiment analysis tool, 
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Deeply Moving, was trained on movie reviews. Considering the entertainment nature of 

movies and life-saving nature of drugs, our sentiment analysis results could be inaccurate 

and are worth further investigation. (3) As a preliminary study, we only surveyed 11 

disease-drug pairs on four publicly accessible sites. The situations for acute conditions, 

severe disabling diseases, and private discussion sites might be different from what we 

observed in our results. 

Despite of these limitations, this study suggests that social media, particularly the 

medicine-focused social media sites, is a promising data source. It is complementary to 

spontaneous reporting systems and EHR systems for understanding patient-reported 

medication outcomes. The serendipitous drug usages mentioned by patients are import 

clue for forming and validating drug repositioning hypotheses. If a drug and its 

serendipitous usage were observed to occur together from not only social media, but also 

EHR systems and spontaneous reporting systems, we should expect the chance of false 

positive discovery be much lower than the cases where the co-occurrences were found 

from only one or two data sources. To fully unlock the value of social media data for 

medication outcomes research, we build a natural language processing and machine 

learning pipeline in next chapter to mine social media for serendipitous drug usages.  
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CHAPTER 3: USING MACHINE LEARNING METHODS TO IDENTIFY 

SERENDIPITOUS DRUG USAGES IN PATIENT FORUM DATA 

3.1 Background 

In the second work, we build a computational pipeline based on machine learning 

methods to capture the serendipitous drug usages on the patient forum published by 

WebMD, which was reported to have high quality patient-reported medication outcome 

data. We expect this an extremely difficult machine learning task because: (1) User 

comments on patient forum are unstructured and informal human language prevalent with 

typographic errors and chat slangs. It is unclear how to construct meaningful features 

with prediction power; (2) the mentioning of serendipitous drug usages by nature is very 

rare. Based on our experience with the drug reviews on WebMD, the chance of finding a 

serendipitous drug usage in user posts is less than 3% (See 3.2). Therefore, we caution 

the audience that our objective in this work is not to build a perfect pipeline or a high-

performance classifier, but to perform a feasibility check and identify major technical 

hurdles in the entire workflow. 

3.2 Methodology 

To identify serendipitous drug usages in patient forum data, we built the entire 

computational pipeline, which includes data collection, data filtering, human annotation, 

feature construction and selection, data preprocessing, machine learning model training 

and evaluation, as illustrated in Figure 3. Each module was built using standard tools and 

methods and was further described below.  
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3.2.1 Data collection 

We started by collecting drug reviews posted by anonymous users on the patient 

forum hosted by WebMD. WebMD is a reputable health care website that exchanges 

disease and treatment information among patients and healthcare providers. In its patient 

forum, after filling the basic demographic information including gender and age group, 

users are allowed to rate drugs in terms of effectiveness, ease of use, overall satisfaction, 

and post additional comments about their medication experience (See Figure 4). We 

chose it based on two considerations: (1) With over 13 years’ history of operation and on 

average over 150 million unique visits per month, WebMD contains a large volume of 

drug reviews that is highly desirable for conducting systematic studies. (2) The quality of 

drug reviews was reported to be superior to many other social media platforms in the 

previous study [16]. Spam reviews, commercial advertisements, or information irrelevant 

to drugs or diseases are rare, probably thanks to their forum modulators. We downloaded 

a total number of 197,883 user reviews on 5,351 drugs by the date of March 29, 2015. 

Then, we used Stanford CoreNLP [32] to break down each free-text comment into 

Figure 3: A workflow to identify serendipitous drug usages in patient forum data 
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sentences, which is the standard unit for natural language processing and text mining 

analysis.  

3.2.2 Gold standard dataset for serendipitous drug usages 

In machine learning and statistics, gold standard, or accurately classified ground 

truth data is highly desirable, but always difficult to obtain for supervised learning tasks. 

For identifying serendipitous drug usages, it would be ideal if a database of drug usages 

approved globally or customarily used off-label were readily available as the benchmark 

for known drug usages. The professional team at WebMD has published monographs to 

introduce each drug, including information on drug use, side effects, interactions, 

overdose, etc. We thus used such data as the benchmark for known drug usages in this 

work. We assume a drug use is serendipitous if the user mentioned improvement of his or 

her condition or symptom that was not listed in the drug's known indications according to 

WebMD (See the examples in Figure 4). Otherwise, we set the mentioned drug use to be 

non-serendipitous. Below we explain in more details how we applied this principal to 

Figure 4: Examples of serendipitous drug usage mention on WebMD 

In the example on the left, a patient reported that his irritable bowel syndrome (IBS) 
symptoms were alleviated when taking sulfasalazine to treat rheumatoid arthritis. In the 
example on the right, an asthma patient taking prednisone reported the improvement of 
her eczema. 
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semi-automatically prepare our gold standard dataset for serendipitous drug usages. 

3.2.3 Data filtering 

Three filters were designed to reduce the number of drug review sentences to a 

number more manageable for human annotation. Firstly, we identified and removed 

review sentences that did not mention any disease or symptom at all, because these 

sentences have no chance to be related to serendipitous drug usages. To do this, we 

selected the UMLS concepts in English and with the semantic types equal to Disease or 

Syndrome, Finding, Injury or Poisoning, Mental or Behavioral Dysfunction, Neoplastic 

Process, or Sign or Symptom and used them to approximate medical concepts that could 

be related to serendipitous drug usages. We then used MetaMap [33] to identify these 

medical concepts in each review sentence. Next, for sentences that did mention any of 

those concepts, we used SNOMED CT [34] to determine whether the mentioned concept 

is semantically identical or similar to the drug's known indications listed on WebMD. 

Mathematically SNOMED CT is a directed acrylic graph model for medical 

terminologies. Medical concepts are connected by defined relationships, such as is-a, 

associated with, and due to. The semantic similarity between two concepts was usually 

measured by the length of the shortest path between them in the graph [35, 36].  If the 

medical concept mentioned in a review sentence was more than three steps away from the 

known indications of the drug, we assumed the mentioned medical concept was more 

likely to be an unanticipated outcome for the drug and kept the sentence in the dataset for 

the third filter. Otherwise, we excluded the sentence from further evaluation, as it was 

more likely to be related to the drug’s known usage rather than serendipitous usage we 

were looking for. In the third step, we used the sentiment analysis tool, Deeply Moving 
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[24] offered by the Stanford Natural Language Processing Group to assess the sentiment 

of each sentence where unanticipated medical concept occurred. We filtered out all 

sentences with Very Negative, Negative, or Neutral sentiment and only kept those with 

Positive or Very Positive sentiments because serendipitous drug usages are unexpected 

but desirable outcomes to patients. Negative sentiment is more likely to be associated 

with undesirable side effects or potential drug safety concerns. After these three filtering 

steps, 15,714 drug review sentences remained for human annotation.  

3.2.4 Human annotation 

One public health professional and one health informatics professional with master 

degrees, independently reviewed the 15,714 sentences and annotated whether each 

sentence was a true mention of serendipitous drug usage based on the benchmark dataset 

of known drug usages defined by WebMD. That is, they labeled a drug use to be 

serendipitous if the user mentioned an improved condition or symptom that was not listed 

in the drug's known indications according to WebMD. Otherwise, they assigned the 

mentioned drug use to be non-serendipitous. In case that the annotators did not agree with 

each other, they discussed and assigned a final label together. Six months later, the two 

professionals reviewed their annotation again to avoid possible human errors. In total, 

447 or 2.8% of sentences were annotated to contain true serendipitous drug usage 

mentions. The rest 15,267 sentences were annotated to contain no serendipitous drug 

usage mentions. This dataset was used throughout the study as the gold standard dataset 

to train and evaluate various machine learning models. 
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3.2.5 Feature construction and selection 

Feature construction and selection is an important part of data mining analysis, in 

which the data is processed and presented in a way understandable by machine learning 

algorithms. The original drug reviews downloaded from WebMD website come with 11 

features, including patients’ ratings of drug effectiveness, ease of use, overall satisfaction, 

and the number of people who thought the review is helpful (See Table 5).  

In the data-filtering step, we created four more features, which are (1) whether the 

sentence contains negation, (2) the UMLS semantic types of mentioned medical concepts; 

(3) the SNOMED CT-based semantic distance between a drug's known indication and the 

medical concept the user mentioned in a review sentence; (4) the sentiment score of the 

review sentence.  

Prior knowledge in drug discovery and development also tells that some therapeutic 

areas, such as neurological disorders, bacteria infection, and cancers are more likely to 

have “dirty” drugs, which bind to many different molecular targets in human body, and 

tend to have a wide range of effects [37-39]. Therefore, drugs used in those therapeutic 

areas have higher chance to be repositioned. We manually selected 155 drug usages from 

those therapeutic areas and used them as binary features, which hopefully capture useful 

information and improve machine learning predictions of serendipitous drug usages.  

We also adopted a commonly used text-mining method, n-gram [40], to generate 

more textual features. An n-gram is a contiguous sequence of n words from a given text 

and it captures the pattern about how people use word combination in their 

communication. We used the tm package in R [41] to do this. After the steps of 

punctuation and stop words removal, word stemming, and rare words pruning, we 
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extracted 3,264 unigrams, 10,064 bigrams, and 5,058 trigrams. For each n-gram, we 

calculated the information gain [42] to assess its differentiating power between true and 

false classes in Weka [43]. We excluded n-grams whose information gain equals zero and 

kept 177 n-grams with positive information gain (namely 64 unigrams, 73 bigrams, and 

40 trigrams) as additional textual features. In total, 347 features were constructed for the 

machine learning classification, as summarized in Table 5. 

 

 

Table 5: List of the features constructed for the annotated datasets 

Name Data Type Source 
Original Features obtained from the Patient Forum 

User rating of effectiveness Numerical WebMD 
User rating of ease of use Numerical WebMD 
User rating of overall satisfaction Numerical WebMD 
Number of users who felt the review was helpful Numerical WebMD 
Number of reviews for the drug Numerical WebMD 
The day of review Categorical WebMD 
The hour of review Categorical WebMD 
User's role (e.g., Patient, Caregiver) Categorical WebMD 
User's gender Categorical WebMD 
User’s age group Categorical WebMD 
The time on the drug (e.g., less than 1 month, 1 to 6 months, 6 
months to 1 year) Categorical WebMD 

Additional Features 
Whether the sentence contains negation Binary MetaMap 
Semantic types of medical concepts mentioned in the sentence Categorical MetaMap 
Semantic distance between the mentioned medical concept and the 
drug’s known indications in SNOMED CT Numerical SNOMED 

Sentiment score  Numerical Deeply 
Moving 

Therapeutic areas (155) Binary Self-
constructed 

N-grams extracted from drug review sentences (177) Binary Self-
constructed 
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3.2.6 Data preprocessing 

We normalized the data by linearly re-scaling all numerical features to the range of 

[-1, 1]. Such processing is necessary for support vector machine (SVM) to ensure no 

features dominate the classification just because of their order of magnitude, as SVM 

calculates the Euclidean distances between support vectors and the separation hyperplane 

in high-dimensional space [44]. Then we split the 15,714 annotated sentences into 

training, validation, and test datasets, according to their post dates. Sixty percent of them, 

or 9,429 sentences posted between September 18, 2007 and December 07, 2010, were 

used as the training dataset to build machine learning models. Twenty percent of the data, 

or 3,142 sentences posted between December 08, 2010 and October 11, 2012 were used 

as the validation dataset to tune the model parameters. The remaining 20% of data, or 

3,143 sentences that were posted between October 12, 2012 and March 26, 2015, were 

held as the independent test dataset. The proportion of serendipitous drug usages in the 

three datasets was between 2.0% and 3.2%. This arrangement is essential to pick up the 

models that could generalize on future and unseen data and minimize the bias led by 

overfitting. 

3.2.7 Machine learning models 

We selected three state-of-art machine learning algorithms, namely SVM [45], 

random forest [46] and AdaBoost.M1 [47] to build the prediction models. The 

implementation was based on Weka (version 3.7) [43] and LibSVM library [48]. For 

SVM, we used the radial basis function (RBF) kernel and conducted a grid search to find 

the optimal parameters including C and gamma (γ). For random forest, we empirically set 

the number of trees to be 500 and iteratively searched for the optimal value for number of 
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features. For AdaBoost.M1, we selected the decision tree built by C4.5 algorithm [49] as 

the weak learner and obtained the optimal value for number of iterations through an 

iterative search.  

As the chance of finding a serendipitous drug usage (positive class) is rare and the 

vast majority of the drug reviews posted by users do not mention any serendipitous 

usages (negative class), we were facing an imbalanced dataset problem. Therefore, we 

used the oversampling technique [50-52] to generate another training dataset where the 

proportion of positive class was increased from 2.8% to 20%. Afterward, we tried the 

same machine learning algorithms on the oversampled training dataset, and compared the 

prediction results side-by-side with those from the original, imbalanced training dataset. 

3.2.8 Evaluation 

We were cautious about choosing appropriate performance evaluation metrics 

because of the imbalanced dataset problem. Of commonly used metrics, accuracy is most 

vulnerable to imbalanced dataset since a model could achieve high accuracy simply by 

assigning all instances into the majority class. Instead we used a combination of three 

commonly used metrics, namely precision, recall, and area under the receiver operating 

characteristic curve (also known as AUC score) [53], to evaluate the performance of 

various prediction models on the independent test dataset.  

In addition, we manually reviewed 10% of instances in the test dataset that were 

predicted to be serendipitous drug usages and searched through the scientific literature to 

check if these predictions based purely on machine learning methods can replicate the 

discoveries from biomedical scientific community. This serves as another verification on 
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whether machine learning methods alone can potentially predict completely new 

serendipitous drug usages. 

3.3 Results 

3.3.1 Model parameters  

We used AUC score to tune the model parameters on the validation dataset. In case 

that the AUC scores of two models were really close, we chose the parameter and model 

that yielded higher precision. This is because end users (e.g., pharmaceutical scientist) are 

more sensitive to cases that were predicted to be the under-presented and rare events, 

which are serendipitous drug usages in this work, when they evaluate the performance of 

any kind of machine learning based predictive models. For SVM models, the optimal 

value of gamma (γ), the width of RBF kernel was 0.001 without oversampling and 0.1 

with oversampling. The optimal value of C, which controls the trade-off between model 

complexity and ratio of misclassified instances, was equal to 380 without oversampling 

and 0.1 with oversampling. For random forest models, the number of features decides the 

maximum number of features used by each decision tree in the forest, which was found to 

be 243 without oversampling and 84 with oversampling at the best performance on 

validation dataset. For AdaBoost.M1, the number of iterations specifies how many times 

the weak learner will be trained to minimize the training error. Its optimal value equaled 

36 without oversampling and 58 with oversampling. 

3.3.2 Model performance metrics 

We evaluated the performance of six prediction models, namely SVM, random 

forest and AdaBoost.M1 with and without oversampling, on independent test dataset. The 

results were summarized in Table 6. The highest AUC score (0.937) was achieved from 
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the AdaBoost.M1 model, whereas the lowest score (0.893) was from the SVM with 

oversampling. On the whole, AUC scores for all models were higher than 0.89, 

demonstrating the promise of machine learning models for identifying serendipitous drug 

usages from patient forums. 

The precision of random forest and AdaBoost.M1 models with and without 

oversampling, and the SVM model without oversampling were between 0.758 and 0.857, 

with the highest precision achieved on the random forest model without oversampling. 

However, the precision for the SVM model with oversampling was 0.474, which was 

significantly lower than the other models. The recall of all models was less than 0.50. 

This means more than 50% of serendipitous usages were not identified. Obtaining either 

low recall or low precision remains a common challenge for making predictions from 

extremely imbalanced datasets like ours [50]. In many cases, it becomes a compromise 

depending on the application and the users’ need. In our experiment, after we increased 

the proportion of the positive class to 20% by oversampling, the recall of SVM and 

random forest models increased slightly; but the precision and the AUC score decreased. 

Oversampling seemed ineffective on AdaBoost.M1 models. The AUC score, precision 

Table 6: Model performance in terms of AUC score, precision, and recall 

Model 
Test dataset 10-fold cross validation 

AUC Precision Recall AUC Precision Recall 
SVM 0.900 0.758 0.397 0.926 0.817 0.539 
SVM - Oversampling 0.893 0.474 0.429 0.932 0.470 0.620 
Random Forest 0.926 0.857 0.381 0.935 0.840 0.506 
Random Forest - Oversampling 0.915 0.781 0.397 0.944 0.866 0.530 
AdaBoost.M1 0.937 0.811 0.476 0.949 0.791 0.575 
AdaBoost.M1 - Oversampling 0.934 0.800 0.444 0.950 0.769 0.559 
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and recall for AdaBoost.M1 with oversampling all decreased, compared to the metrics on 

AdaBoost.M1 models without oversampling. 

In order to compare our results directly with some other drug-repositioning studies, 

we also conducted a 10-fold cross validation by combining training, validation and 

testing datasets together. It seems that both recall and AUC scores from the 10-fold cross 

validation were better than what were observed on the independent test set. Our AUC 

scores were close to the same scores reported by the drug-repositioning algorithm of 

PREDICT [11], which were also from a 10-fold cross validation. 

3.3.3 Review of predictions 

For the 10% of instances in the test dataset that were predicted to be serendipitous 

drug usages, we conducted a search in literature and clinical trials to provide a closer 

verification of our prediction models. Table 7 summarizes the analysis. We also 

presented the condensed evidences in literature and/or clinical trial below, for each 

instance. 

Metformin and obesity: A patient reported weight loss while taking metformin, a 

type 2 diabetes drug. Actually in the past two decades, metformin's effectiveness and 

safety for treating obesity in adult and child patients have been clinically examined in 

dozens of clinical trials and meta-analyses studies with promising results [54-58]. 

According to a literature review published in 2016 [54], one possible explanation is that 

metformin could increase the body’s insulin sensitivity, which helps obese patients (who 

typically develop resistance to insulin) to reduce their craving for carbohydrates and to 

reduce the glucose stored in their adipose tissue. Other explanations include that 

metformin may enhance energy metabolism by accelerating the phosphorylation of the 
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AMP-activated protein kinase system, or it may cause appetite loss by correcting the 

sensitivity and resistance of leptin [54]. 

Painkiller and depression: When tramadol was taken for back pain, a patient 

found it also helpful with his depression and anxiety. Tramadol is an opioid medication, 

which have been long used for the psychotherapeutic benefits [59]. Tetsunaga et al. have 

demonstrated tramadol's efficacy in reducing depression levels among lower back pain 

patients with depression in an 8-week clinical trial. The self-reported depression scale of 

patients in the tramadol group was 6.5 points lower than the control group [60]. Similarly 

the combinatory therapy of acetaminophen and oxycodone, another painkiller, was 

reported to have antidepressant effect too [61]. 

Bupropion and obesity: In the specific comment, the patient reported that 

Bupropion, an anti-depressant, helped him to lose weight. The weight loss effect of 

bupropion might be attributed to increased dopamine concentration in the brain, which 

leads to suppressed appetite and reduced food intake [62]. This serendipitous drug usage 

was also supported by several clinical trials [63-65]. 

Ondansetron and irritable bowel syndrome with diarrhea: Ondansetron is a 

medication for nausea and vomiting. Sometimes it causes the side effect of constipation 

in patients. Interestingly, this patient also had irritable bowel syndrome with diarrhea and 

thus ondansetron helped to regulate that. This serendipitous usage actually highlights the 

justification of personalized medicine and has been tested in a recent clinical trial [66]. 
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Table 7: Examples of serendipitous drug usages predicted by the models 
True positive examples 

Drug Known 
indications 

Serendipitou
s 

usage 
Example 

SV
M

 
SV

M
-O

ve
rs

am
pl

in
g 

R
an

do
m

 F
or

es
t 

R
F-

O
ve

rs
am

pl
in

g*  
A

da
B

oo
st

 
A

da
- O

ve
rs

am
pl

in
g*  

L
ite

ra
tu

re
 e

vi
de

nc
e 

Metformin 

Type 2 
Diabetes 
Mellitus, 

Polycystic 
Ovary 

Syndrome, 
etc. 

Obesity I feel AWFUL most of the day, 
but the weight loss is great. x x x x x x 

[54 
- 

58] 

Tramadol Pain Depression, 
anxiety 

It also has helped with my 
depression and anxiety. x x   x x [60] 

Acetaminophen 
& oxycodone Pain Depression 

While taking for pain I have 
also found it relieves my major 
depression and actually gives 
me the energy and a clear mind 
to do things. 

x x x  x  [61] 

Bupropion 

Depression, 
attention 
deficit  & 

hyperactivity 
disorder 

Obesity 

I had energy and experienced 
needed weight loss and was 
very pleased, as I did not do 
well on SSRI or SNRIs. 

x x  x x x 
[62 

- 
65] 

Ondansetron Vomiting 

Irritable 
bowel 

syndrome 
with 

diarrhea 

A lot of people have trouble 
with the constipation that 
comes with it, but since I have 
IBS-D (irritable bowel 
syndrome with diarrhea), it has 
actually regulated me . 

    x x [66] 

Desvenlafaxine Depression Lack of 
energy 

I have had a very positive 
mood and energy change, 
while also experiencing much 
less anxiety. 

x x x x x   

False positive examples 

5-HTP Anxiety, 
depression 

Thyroid 
Diseases, 
Obesity 

i have Hoshimitos thyroid 
disease and keeping stress 
levels down is extremely 
important for many reasons but 
also for weight loss. 

 x  x    

Cyclobenzapri
ne Muscle spasm Pain 

While taking this medication 
for neck stiffness and pain; I 
discovered it also helped with 
other muscle spasms. 

 x      
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Desvenlafaxin and lack of energy: In the last case, anti-depressant desvenlafaxine 

was reported to boost energy. Strictly speaking, lack of energy is not a disease but a 

symptom. With limited information on the patient's physical and psychological 

conditions before and after medication, it remains unclear whether the energy boost effect 

was due to changes in the neural system or was purely a natural reflection of more 

positive moods after the patient took the anti-depressant medicine. We did not find any 

scientific literature discussing the energy boost effect of desvenlafaxine. So this case 

could represent either a new serendipitous drug use or a promiscuous drug usage. 

False positive predictions: Besides the true positive examples, we also found two 

cases where some of our models made false positive predictions due to difficult language 

expression and terminology flaw (See Table 7). The first example is 5-HTP, an over-the-

counter drug for anxiety and depression. One patient commented that stress relief brought 

by this drug was important to her Hashimito's thyroid disease and weight loss. Although 

Hashimoto's disease and weight loss were mentioned, the patient did not imply the 5-

HTP can treat Hashimoto’s disease or control weight. But SVM and random forest 

models with over-sampling became confused by the subtle semantic difference. In the 

second case, a patient taking cyclobenzaprine for neck stiffness and pain said the drug 

also helped with other muscle spasms. Pain, neck stiffness and muscle spasms are really 

close medical concepts. We found that this false positive prediction was actually due to 

imperfect terminology mapping. 

3.4 Discussion 

In this very first effort to identify serendipitous drug usages from online patient 

forum, we designed an entire computational pipeline. This feasibility study enabled us to 
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thoroughly examine the technical hurdles in the entire workflow and answer the question 

if patient-reported medication outcome data on social media is worthwhile to explore for 

drug repositioning research. The best-performing model was built from AdaBoost.M1 

method without oversampling, which had precision equal to 0.811, recall equal to 0.476 

and AUC score equal to 0.937 on independent test data. The 10-fold cross validation 

results are also comparable to existing drug-repositioning method [11]. Therefore, we are 

more confident in applying machine learning methods to identify serendipitous drug 

usages from online patient forum data. More specifically, we have addressed the 

following tasks in this work:  

Previously, there was no annotated social media dataset available for the purpose of 

identifying serendipitous drug usages. We spent a considerable amount of time and effort 

to collect, filter and annotate 15,714 drug review sentences from the WebMD patient 

forum site. This annotated dataset is comprehensive enough to cover not only easy 

instances, but also challenging ones for machine learning prediction, as shown in Table 7. 

It can be used as the gold standard for current and future research in drug repositioning.  

In addition, the drug reviews posted on patient forum are unstructured and in an 

informal human language, which is prevalent with typographic errors and chat slangs. 

These reviews need to be transformed to a representation of feature vectors before 

machine learning algorithms could comprehend. We used patients’ demographic 

information, ratings of drug effectiveness, ease of use, and overall satisfaction from the 

patient forum. We calculated negation, the sentiment score for each sentence, and the 

semantic similarity between the unexpected medication outcome mentioned in a review 

sentence and the known drug indications based on SNOMED CT. We also leveraged our 
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known knowledge on dirty drugs, and extracted informative n-gram features based on 

information gain. The results from this feasibility study showed that these features are 

useful to predict serendipitous drug usages. For example, dirty drugs for neurological 

conditions did show up predominantly in the results. But these features seemed not 

sufficient to predict all serendipitous drug usages correctly. As shown in the false positive 

examples of Table 7, the n-grams such as also, also help, and also for were often 

associated with true serendipitous drug usages, but could occur in false positive cases too. 

Current medical terminology mapping tools (i.e., MetaMap) could be the performance-

limiting step in cases like pain and muscle spasm, despite the close connection of these 

two concepts from the perspective of medicine. Future efforts are needed to improve 

terminology mapping accuracy, for example, using more sophisticated terminology 

mapping tools such as DNorm [67].  

Thirdly, the data are extremely imbalanced between two classes (2.8% vs. 97.2%) 

because serendipitous drug usages are rare events by nature. Such imbalance inevitably 

impedes the performance of machine learning algorithms. We tried to increase the 

proportion of serendipitous usages in the training dataset to 20%, using the random 

oversampling method [50]. We have also tried two other methods, namely synthetic 

minority over-sampling technique [68] and under-sampling [52], but their performance 

was inferior to that of random oversampling and not shown here. More robust machine 

learning algorithms that are less sensitive to imbalanced data or robust sampling methods 

will be desirable to further improve serendipitous drug usage predictions. 

Last but not least, we acknowledge that as an emerging data source, online patient 

forums have limitations too. Many patients who write drug reviews online lack of basic 
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medical knowledge. Their description of the medication experience can be ambiguous, 

hyperbolic or inaccurate. Also, important contextual information, such as co-prescribed 

drugs, may be missed in the review. Without a comparison between an experiment group 

and a control group, serendipitous drug usages extracted from patient forums need to be 

further verified for drug repositioning opportunities by integrating with existing data 

sources, such as EHR and scientific literature. 
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CHAPTER 4: DEEP LEARNING FOR PREDICTING SERENDIPITOUS DRUG 

USAGES IN SOCIAL MEDIA TEXT 

4.1 Background 

In previous chapters, we surveyed patient-reported medication outcome 

information on social media and found that patients do report serendipitous drug usages 

on social media, which can be important clues to generate and validate drug repositioning 

hypotheses (Chapter 2). To systematically identify these mentions in patient forum data, 

we curated a gold-standard dataset based on the filtered drug reviews from WebMD and 

built a computational pipeline of machine learning and text mining modules to predict 

serendipitous drug usages (Chapter 3). Our models achieved AUC scores that are 

comparable to the existing drug repositioning methods [11]. Many instances predicted to 

be serendipitous drug usages are also supported by the scientific literature.  

Recently, deep learning methods became popular in the data mining community 

and have achieved great progresses in computer vision research. This encouraged some 

researchers to apply deep learning models that was designed for vision analysis (e.g., 

Convolutional Neural Network) to text classification tasks. These works often redesigned 

deep learning models to fit on several well-known annotated text mining datasets, such as 

rotten tomato movie reviews, news articles, and product reviews, and usually reported 

that deep learning models outperformed traditional machine learning models such as 

SVM and logistic regression [69, 70]. However, none of the datasets used in these studies 

are extremely imbalanced between classes – which often happens in social media data. In 

this chapter, we investigate deep learning methods in the context of identifying 

serendipitous drug usages in patient forum data. We introduced word embedding as a 
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new method to construct machine learning features from social media text and then 

designed four deep learning models to predict true mentions of serendipitous drug usages.  

4.2 Method 

4.2.1 Feature construction using word embedding 

A word embedding is a matrix that represents words as dense vectors in a high-

dimensional vector space, as illustrated in Figure 5. It was extracted from a neural 

network that was trained on large unannotated text corpus [71-73]. Studies shown that in 

the vector space of a word embedding, words with syntax and semantic relations tend to 

be close to each other [72, 74, 75].  

 
Figure 5: A word embedding implemented in Python  

Among models to generate word embedding [71, 72, 75], Word2Vec is very 

popular in recent text mining research and competitions [76, 77]. It is a shadow neural 

network of an input layer, a projection layer, and an output layer [72]. Word2Vec has two 

forms, namely continuous bag-of-words (CBOW) and skip-gram (Figure 6). The CBOW 

takes a number of words as input (or condition) to predict the probability for target word 

wt to appear among these words, the skip-gram takes the word wt as input to predict the 

probability for other words to surround it. The context window parameter defines how 

many words before or after the target word are considered as ‘appear among’ or 

emb = { 
‘drug’:  [-0.137818,-0.131454, 0.063686,...,-0.119478], 
‘also’ :  [ 0.123257,-0.013544, 0.030601,..., 0.039448],  
... 
‘help’:  [ 0.047297, 0.119153, -0.001935,...,-0.127605] 
} 
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‘surrounded by’. The projection layer contains d neurons, which defines the dimension 

for word vectors. The word embedding consists of the weights for connections between 

the words and projection neurons. While training the model, these weights were adjusted 

by backpropagation according to actual probabilities of words observed in the text corpus.  

 

Figure 6: Word2Vec models – from Mikolov et al.(2013) [72]  

In this study, we implemented a word embedding from all drug review sentences 

that we collected from WebMD, using the Word2Vec model from the Gensim Python 

library [78]. We removed non-English characters, converted all letters to lower case, and 

stemmed words to its basic form. We chose CBOW as it is suggested by Gensim for most 

text mining tasks. Of model configuration, we set the dimension of word vectors – d to be 

200 and specified the context window size to be 50, because over 99% of sentences in the 

WebMD corpus are shorter than 50 words (Table 8). For other options, we adopted the 

default configuration of the Gensim library. The resulting WebMD word embedding 

contains 67,659 word vectors with the dimension of 200.  
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Table 8: Number of words per sentence 

Quantile 5% 25% 50% 75% 95% 99% 
Number of words per sentence 5 9 13 19 33 50 

After obtaining the word embedding, the next step is constructing machine 

learning features from sentences. There are three common methods to compose sentence 

vectors from the word embedding. The first method is based on vector aggregation. It 

sums up the vectors of words in a sentence and optionally divides the aggregated vector 

by the length (number of words) of the sentence [77]. The sentence vector has the same 

dimensionality as each word vector, making it convenient to use with most classification 

models. The second method adopts clustering [79]. Since semantically related words in a 

word embedding tend to close to each other, they can be grouped to k clusters using 

algorithms such as K-Means. Then, we can represent a sentence as a vector of k 

dimensions, with the value in each dimension equals to the count of words belonging to a 

cluster. The clustering method encodes the semantic information in a sentence, but the 

computational cost of clustering is expensive. The third method stacks word vectors to a 

sentence matrix. For a sentence S of i words w1, w2, …, wi, it stacks word vectors vw1, 

vw2, …, vwi, each has d dimensions, to form a i x d dimension matrix (Figure 7). This 

approach appeared in recent text mining that utilized deep learning models [70, 80-82]. 
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Figure 7: Sentence as concatenation of word vectors 

Comparing three word embedding based feature construction methods, the 

aggregation and clustering methods construct dense sentence vectors with fixed size but 

lose the sequential pattern between words; the stacking method preserves the sequential 

pattern, but the sentence matrixes are in various sizes. In this study, we chose the stacking 

approach because certain word sequences (e.g., ‘it also helps’) are important for 

identifying true serendipitous drug usage mentions. To unify the shape of matrixes, we 

limited the number of word vectors to be 50 for each sentence by padding zeros for 

shorter sentences and trimming excessive words from longer sentences.  

4.2.2 Deep Learning Models 

In recent years, deep learning models achieved remarkable results in data mining 

tasks such as image classification and self-driving vehicle [83-85]. Among deep learning 

models, convolutional neural networks (CNN) is one of the most successful models. 

CNN utilizes convolution filters to learn patterns in the data at different levels of 

abstraction. It could handle different transformations of the data to generalize. Although 
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CNN is popular in computer vision research, emerging research shown that it also 

achieved outstanding performance in text classification tasks [80, 81, 85]. Inspiring by 

promising results of these studies, we advanced to apply CNN models in identifying 

serendipitous drug usages from patient health forums. We began with the CNN model 

from Kim (2014) [80] and revised the architecture incrementally to explore a design 

adaptive to our text mining task. 

CNN: The CNN static model in Kim (2014) [80] transformed the input sentence to 

a matrix using the stacking approach that we mentioned in the feature construction 

section. The model used the word embedding from Google to generate feature vector for 

texts. It contained paralleled convolution filters of three different sizes, followed by max 

pooling filters, and concatenated outputs to a fully connected layer of neurons to make 

the prediction.  

Our first model adopted these designs with our WebMD word embedding features 

(Figure 8). The convolution filters were trained to protrude informative patterns in a sub 

area of the input data. Each filter is designed to enhance part of the input signal that 

matches a specific pattern by raising some values in the input vector. As the number of 

filters increase, each filter will focus on a more specific pattern. The kernel size (k) of 

filter determines the magnitude of the sub area – in the case of text, that is the number of 

continuous words in a sentence. By mixing convolution filters of three continuous sizes 

(k-1, k, and k+1), the network can learn patterns in the sentence at three different scales. 

This mechanism is similar to combining n-gram features of different scales (e.g., unigram, 

bigram, and trigram) in feature construction. For the sake of convenience, we created 

same number of filters for each kernel size. The max pooling filter scan through outputs 
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of convolution filters and preserve only the max value in each area. This operation 

washes out information that is less relevant to the classification task and reduces the 

dimensionality of features extracted by convolution filters. The output was further 

processed by one layer of fully-connected neurons (‘Dense 0’) before submitted to a 

single neuron (‘Prediction’) to make the prediction. Additionally, we inserted one 

Dropout layer (‘Dropout 0’) after embedding matrix and another one (‘Dropout 1’) before 

the prediction neuron. Dropout layer randomly intercepts output of previous neurons to 

next layer to prevent overfitting. We referred this model as the CNN model and fitted it 

on our annotated dataset.  

 

Figure 8: The CNN model for text classification – based on Kim (2014) [80] 

CNN with non-text embedding: The CNN model takes only sentences as inputs, 

but our annotated dataset also includes non-text features extracted from original drug 

reviews, drug knowledge, and information filtering tools. To utilize all available 

information for making predictions, we added these non-text features to the CNN model 
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by appending them as an additional word vector to the sentence embedding matrix in the 

CNN model (Figure 9). This design applies convolution filters to both text and non-text 

features. To keep the non-text feature vector in the alignment with the sentence matrix, 

we transformed all nominal type features to the binary type, resulting a feature vector of 

195 dimension. Then we padded five zeros at the end of the vector to match the 

dimensionality of the sentence embedding matrix. The other model components remain 

unchanged.  

 

Figure 9: CNN with non-text feature embedding model 

Paralleled CNN and Fully Connected Neural Network (FCN): Our third model 

applied different types of neural network to text and non-text features. For text features, 

we adopted the architecture of the CNN model but removed the prediction layer. For non-

text features, we designed a neural network of three fully connected layers (‘Dense 1-3’), 

with each layer containing half of neurons of the previous one. At the end, we combined 
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outputs from text features and non-text features together to an additional layer of fully 

connected neurons (‘Dense 4’) and another dropout layer (‘Dropout 2’) before making 

the prediction (Figure 10).  

 

  Figure 10: Paralleled CNN and FCN model 

Paralleled CNN-LSTM and FCN: By far, we utilized convolution filters to 

extract signals from social media texts. Though convolution filters are good at dealing 

with data in the matrix or grid representation, they can only capture sequential patterns in 

a local area and inevitably ignore long-range dependencies between words of a sentence 

[86]. To solve this problem, Hochreiter et al. introduced the Long Short Term Memory 

networks (LSTM) [87-89]. LSTM is a special type of recurrent neural network. It 

contains a chain of repeating neural networks units. The number of units determines the 

length of sequence – the number of words in our case – for the LSTM network to process. 

Whiling processing sequential data, LSTM network leverages four information gates to 
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decide how much new information to add to and old information to remove from the 

information flow [88]. LSTM emerged in recent text mining research works [70, 90]. In 

the fourth model, we adopted Zhou et al. (2015) approach [70] by adding LSTM behind 

the max pooling filters of the third model (Figure 11). In the new model, convolution and 

max pooling filters extract the most discriminative local patterns and continuously feed 

the signals to LSTM, which concentrates on learning the sequential patterns in the 

information flow.  

 

Figure 11: Parallel CNN-LSTM and FCN model 
 

4.2.3 Model Implementation 

Platform: We implemented our deep learning models on a Google Cloud virtual 

machine that equips six CPUs, 20 GB memory, and one slice of NVIDIA Tesla K80 GPU. 

The software environment consists of Ubuntu 16 Linux System, Python 3.6.2, Keras 
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2.0.8 – a famous deep learning library for Python [91], and Tensorflow 1.3.0 math library 

[92] for high efficiency neural network computing. 

Model configuration: We chose rectified linear unit (ReLU) [93] as the activation 

function for all neural network layers except the prediction layer. ReLU computes the 

function of relu(x)=max(x,0). It does not saturate (the gradients do not diminish when x 

approaches positive infinity) and is less computationally expensive than functions that 

involve the exponential calculation, making it popular in recent deep learning research. 

For prediction layer, we chose the sigmoid function: sigmoid(z)=1/(1+e-z), which takes a 

real value input to an output in the range from 0 to 1 [94]. We selected Adam as the 

kernel optimizer [95] and binary cross entropy as the loss function [96]. We split 15,714 

instances in the annotated dataset into training, validation, and testing parts, in the same 

way we mentioned in the Chapter 3.  

Hyper parameter tuning: Hyper parameters are configurations that impacts the 

model’s behavior in machine learning tasks. Their values cannot be directly estimated 

from data [97]. They are often specified by the user based on heuristics techniques such 

as rules of thumb and conventions. In practice, people often tune hyper parameters to 

improve the model’s performance for each specific machine learning problem. For our 

deep learning models, the hyper parameters we tuned include the kernel size of 

convolution filters, the number of convolution filters, the size of pooling window for Max 

Pooling filters, the number of neurons for each Dense layer, the drop ratio for each 

Dropout layer, the constant parameter of the l2 kernel regularizer [98] for the prediction 

neuron, and the number of units for the LSTM layer. We also searched for the best 

method to initialize the weights of neural network, among six commonly used initializers: 
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random uniform, random normal, Xavier uniform, Xavier normal, He uniform, and He 

normal [94, 99]. Moreover, neural networks are sensitive to imbalanced data. Keras 

provides a cost sensitive learning solution by allowing us to specify the importance of 

each class in the class weights configuration. To fully leverage this feature, we treat class 

weights as an additional hyper parameter to tune.  

We fit models on training dataset with different hyper parameter sets and track 

these models’ performance on the validation dataset. We used Hyperas [100], a Keras 

wrapper for famous parameter tuning library of Hyperopt [101]. Unlike grid search, 

Hyperas does not exhaustively search the entire hyper parameter space for the optimal set. 

Instead, it leverages search algorithms such as random search and Tree of Parzen 

Estimators [102] and advanced parallel computing methods to partially search the 

parameter space for a relatively good parameter setting. It is widely adopted in deep 

learning research and application because the search space for hyper parameters are often 

too big for grid search method to complete in reasonable amount of time. We used 

Precision-Recall score as the optimization target for Hyperas. The score equals to the area 

under the Precision-Recall curve, which can be plotted based on the model’s precision 

and recall at different classification thresholds. To our knowledge, recent deep learning 

research often used the accuracy score as the target to optimize model parameters [83, 84, 

90]. However, the datasets used by these studies are not as imbalanced as ours. For highly 

imbalanced datasets, Precision-Recall score is more informative on model performance 

than AUC, accuracy, precision, and recall [103]. 
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Evaluation: We adopted AUC, precision, and recall to assess the performance of 

our models on testing dataset and compared models in terms of machine learning 

performance metrics and model complexity. 

4.3 Results 

4.3.1 Hyper parameters 

Using Hyperas and the validation dataset, we tuned hyper parameters for each 

model and list the results in Table 9. We cautiously warn that the listed values can be 

sub-optimal because Hyperas only partially search the parameter space and determines 

the optimal value by the optimization algorithm and the loss function. We note that 

kernel size of convolution filters is higher for CNN and CNN w. non-text embedding 

models than the other two models. This reflects associations between the function of 

convolution filter, the characteristic of input data, and the structure of model. In deep 

learning models, convolution filters are used primarily to extract informative patterns 

from local area of a matrix. Its kernel size determines the scale of the local area, which is 

the continuous number words in our case. Since 75% of sentences in WebMD dataset 

contain less than 19 words and 50% less than 13 words (Table 8). For CNN and CNN w. 

non-text embedding models, the optimal kernel sizes need to be larger (11 to 16 words) to 

cover sufficient number of words in each sentence. The kernel size for Paralleled CNN-

LSTM and FCN model is the smallest. This might attribute to the existence of LSTM 

layers. LSTM can learn patterns from word sequence. With LSTM to recognize patterns 

in the length of 40 words, CNN filters can focus on patterns in much smaller (5 to 7 

words) local area.  
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Table 9: Hyper parameters by model 

 CNN 
CNN w. 
non-text 

embedding 

Paralleled 
CNN and 

FCN 

Paralleled 
CNN-

LSTM and 
FCN 

Conv kernel sizes (k-1, k, k+1) 11,12,13 14,15,16 7,8,9 5,6,7 
# of Conv filters per kernel size 32 64 256 64 
# of units per LSTM -- -- -- 40 
Size of MaxPooling filter 4 5 5 2 

# of 
neurons 

Dense_0 128 32 32 256 
Dense_1 -- -- 256 256 
Dense_2* -- -- 128 128 
Dense_3* -- -- 64 64 
Dense_4 -- -- 128 128 

Dropout 
rate 

Dropout_0 0.8639 0.0875 0.5300 0.5045 
Dropout_1 0.5319 0.4911 0.1961 0.4131 
Dropout_2 -- -- 0.0625 0.1119 

l2 constant 9.3467 6.1523 3.0267 2.2294 

Initialization method He uniform Random 
uniform He uniform He normal 

Class weights (neg : pos) 1:29.8666 1:16.5773 1:25.7443 1:14.1905 
* The number of neurons for Dense_2 and Dense_3 are designed to be half and quarter of Dense_1 

Additionally, values for the class weights parameter reflect the difference between 

models in the strength of imbalance correction. Comparing CNN and CNN w. non-text 

embedding models, the former demands the data to be more balanced to achieve its best 

performance. We may indicate the introduction of non-text feature improve the tolerance 

of CNN to imbalanced data. Similarly, we may also suggest adding LSTM improved the 

tolerance of Paralleled CNN and FCN model.  

We are curious on the how much did hyper parameter tuning impact the 

performance of models. Table 10 lists the minimum, average, and maximum AUC, 

Precision, and Recall of models on validation dataset with different sets of hyper 

parameters. The wide spread between best and worst parameter sets in all machine 
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learning performance metrics indicate the need of tuning hyper parameters for deep 

learning models.  

Table 10: Impact of hyper parameters 

  CNN 
CNN w. non-

text 
embedding 

Paralleled 
CNN and FCN 

Paralleled 
CNN-LSTM 

and FCN 

AUC 
Min 0.556 0.230 0.695 0.654 
Avg 0.843 0.844 0.827 0.803 
Max 0.908 0.897 0.908 0.894 

Precision 
Min 0 0 0 0 
Avg 0.151 0.454 0.501 0.421 
Max 0.333 1.0 1.0 0.769 

Recall 
Min 0 0 0 0 
Avg 0.239 0.142 0.331 0.363 
Max 0.746 0.524 0.476 0.730 

4.3.3 Model evaluation 

We evaluated deep learning models in terms of AUC, Precision, Recall, and 

Precision-Recall scores on the test dataset and set true serendipitous usage as the positive 

class. Table 11 summaries the results. The highest AUC score (0.919) is from CNN 

model. The lowest score (0.815) is from the Paralleled CNN and FCN model. The 

precision of deep learning models spread widely between 0.156 to 0.735, with Paralleled 

CNN and FCN model achieving the highest precision and CNN model the lowest. The 

recall of deep learning models ranges from 0.317 to 0.683. CNN and Paralleled CNN-

LSTM and FCN models are better than CNN w. non-text embedding and CNN. Model 

performance metrics indicate introducing non-text features can greatly improve the 

precision of models and relieve model from overfitting issue. Additionally, FCN are more 

suitable to process non-text features for our study. This might because the vector of non-

text features is much sparser than the word embedding vector. The stacked layers of FCN 
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with decreasing number of neurons actually reduce the dimensionality and sparsity of the 

vector, which usually improve machine learning results.  

Table 11: Model performance on testing dataset 

 AUC Precision Recall 

CNN  0.919 0.156 0.683 

CNN w. non-text embedding 0.866 0.606 0.317 

Paralleled CNN and FCN 0.815 0.735 0.397 

Paralleled CNN-LSTM and FCN 0.865 0.659 0.460 

Besides performance matrices, complexity is also important to select deep 

learning models. Table 12 compare the input dimensions, number of three types of neural 

network filters, and total number of weights for each model. The number of weights can 

quantify the complexity of deep learning models, as more complex models have more 

connections between neurons and require more weights to learn in the training process. 

Among our models, CNN and Paralleled CNN-LSTM and FCN model have significantly 

less number of weights to train than the other two models. Considering both performance 

metrics and complexity, we conclude Paralleled CNN-LSTM and FCN model is the best 

of the four. 

Comparing to models that we explored in Chapter 3, none of our deep learning 

models exceed the AdaBoost.M1 model in any of AUC, Precision, and Recall. While 

recall of Paralleled CNN-LSTM and FCN model (0.46) is very close to AdaBoost.M1 

(0.476), precision is lower (0.659 vs. 0.811). Though it is difficult to determine the reason 

behind that, we cautiously suggest two factors to consider. First, deep learning models are 

much more complex by the number of trainable weights (Table 12). Weights determine 

the importance of each connection between neurons of a neural network. Their role is 
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equivalent to the support vectors of SVM and the trees in the random forest. Typical deep 

learning models connect hundreds to thousands of neurons, causing the number of 

weights far proceeds the number of equivalent components in other models.  The large 

number of weights requires big volume of data to train. In our experiment, although we 

had 15,714 annotated sentences, we only have 447 in positive class, which can be 

insufficient for CNN and LSTM filters. We expect deep learning models to exceed 

current performance should more annotated data – especially positive cases – become 

available. Secondly, we used grid search – a complete search – to find optimal hyper 

parameter sets for SVM, random forest, and AdaBoost.M1 models. A complete search in 

parameter space has greater chance to reach optimal point than partial search approach 

that Hyperas utlized. In other words, there can exist another set of hyper parameters, with 

which the deep learning models may perform better than AdaBoost.M1. However, the 

large number of hyper parameters makes grid-search too computationally expensive for 

deep learning models.  

Table 12: Model complexity 

 CNN CNN w. non-
text embedding 

Paralleled 
CNN and FCN 

Paralleled 
CNN-LSTM 

and FCN 
Input dimensions 10,000 10,200 10,195 10,195 
# of CNN filters 96 192 768 192 
# of FCN filters 128 32 480 480 
# of LSTM filters -- -- -- 120 
# of weights to train 345,889 658,113 1,532,833 446,561 

4.4 Discussion 

The success of deep learning methods in computer vision research attracted 

researchers and data scientists to apply models such as CNN and CNN-LSTM models in 
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recent text mining research [69, 70, 80-82]. Though deep learning models were reported 

to exceed baseline models such as SVM and random forest in several recent publications 

[70, 81, 82], these comparisons were often based on annotated text corpus such as 

sentiments of movie reviews and categories of news article. Comparing to drug review 

comments on social media, these data are well balanced and have relatively less domain 

specific context. Moreover, detailed explanation of how convolution filters work on text 

data is missing in these works. In this dissertation, we redesigned CNN and CNN-LSTM 

models to include context information associated with medication outcomes and 

discussed the impacts of different model components and configurations on text data. We 

evaluated deep learning models of different structures in identifying serendipitous drug 

usages in social media text. The results indicate that domain specific context – the non-

text features in our case – are important to prevent model from overfitting. Hyper 

parameters, amount of annotated data and the balance between classes are important to 

the performance of deep learning models. However, these findings and indications need 

to be justified by following limitations. First, the total number of sentences in positive 

class might be insufficient to fully leverage the power of deep learning models. Secondly, 

we adopted some model designs and configurations directly from previous research 

without rigorously testing them with alternatives. Additionally, we did not apply our 

models on commonly used text corpus to verify if indications we made on our data also 

stand elsewhere. 
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CHAPTER 5: AN OPEN SOURCE SOFTWARE APPLICATION FOR MINING 

SERENDIPITOUS DRUG USAGES IN SOCIAL MEDIA TEXT 

5.1 Background 

In Chapter 3 and 4, we investigated state-of-the-art NLP and machine learning 

methods to identify serendipitous drug usages mentioned in social media text. The 

promising results encouraged us to share our prediction models with more users who are 

interested in this topic. In the research, we leveraged NLP and machine learning software 

packages, and medical ontologies, including Stanford CoreNLP [32] for sentence 

boundary detection, text tokenization, and sentiment analysis, MetaMap [33] for 

recognizing and normalizing disease and symptom mentions in the text, SNOMED CT 

[34] for measuring the semantic similarity between different medical concepts, and Weka 

[43], Scikit-learn [104], and Keras [91] libraries for various machine learning algorithms. 

In our knowledge discovery research work, these tools were integrated in a manually-

supervised, step-by-step, and ad-hoc way to provide best agility to frequent changes of 

research requirements, it is difficult for people with limited knowledge and experience of 

these tools and our project to use. Therefore, we implemented the Serendipity – an open 

source software application that ensembles the NLP and machine learning methods we 

had explored to detect serendipitous drug usages from social media text.  

To our knowledge, companies such as Treato [105] have created social media text 

analysis tools for healthcare stakeholders. However, these tools focus on medication 

effectiveness and side effects rather than serendipitous usages. They provide information 

retrieval and analytics functions but keep technical details as business secrets.  Their 

commercial licenses also restrict how researchers and software developers could use the 
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tool. We hope by developing this open-source software application, social media based 

serendipitous drug usage detection could receive more attentions from drug discovery 

and development and informatics communities. In this chapter, we document the design 

and implementation of Serendipity at multiple abstraction levels. 

5.2 Design overview 

We set the following principles in designing: (1) the user should be able to use the 

application on drug review texts collected from all kinds of social media website; (2) the 

application should provide functions covering major NLP and machine learning methods 

available in this dissertation; (3) the application only uses programming language, 

libraries, and third party software that is distributed under the open source license; (4) the 

deployment of application should minimize the computational power required for the end 

users’ computer.  

We adopted the design pattern of Model-View-Controller (MVC) [106]  and 

implemented the software as a client-server architecture application using Flask – a light 

weight Python framework for web development [107]. The view layer provides HTML 

pages and RESTful web services [108] to interact with users, the model layer provides 

NLP and machine learning functions, and the controller layer coordinates information 

flow between the view and model layers. 

5.3 User and system interaction 

Scientists in drug discovery and development: We recognize scientists with 

drug discovery and development knowledge but limited computer programming skills as 

one type of users. We assume they will more likely access our system through a graphic 

user interface (GUI) such as a web browser. Figure 12 illustrates the interaction between 
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a drug discovery and development scientist and the system. While the user interacts with 

the system, he or she will provide system a text file containing one or more user posts 

along with a drug name. The GUI will map the drug name to a drug ID if it exists in our 

database and then pass the social media text and drug ID to the controller. The controller 

then passes the input from GUI to the model layer. After the processing with NLP and 

machine learning functions is complete, the controller generates a HTML page to 

visualize the NLP and serendipity prediction results in the GUI.  

 

Figure 12: Interaction between a scientist in drug discovery and development  
and the system 

 

Software developers: The second type of users are software developers who have 

computer programming skills but limited knowledge and experience with NLP and 
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machine learning. For these users, we provide a RESTful web interface that takes social 

media posts and drug ID from the user as inputs. The controller passes the input to the 

model layer for NLP and machine learning prediction and returns results in the JavaScript 

Object Notation (JSON) format, which is structured and commonly adopted for 

exchanging data between software applications. The overview of interaction is illustrated 

in Figure 13.  

 

Figure 13: Interaction between software developer user and the system 
 

5.4 Architecture and system components 

We designed our system based on the MVC pattern [106] and client-server 

architecture [109]. The major components of the system include GUI, RESTful web 
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interface, NLP module, machine learning module, and controller. Several functions of the 

system depend on external APIs, libraries, and tools, including Stanford CoreNLP [32], 

MetaMap [33], Scikit-learn [104], and Keras [91]. The overview of the architecture is 

illustrated in Figure 14.  

 

Figure 14: Overview of Serendipity system 

GUI and RESTful web interface: These two user interfaces collect social media 

posts and the drug ID from the user. They are client side components of the system. The 

GUI askes the user to select the drug from a dropdown list and convert user choice to 

drug ID in our database at backend. Alternatively, the user can enter part of the drug’s 

name and the GUI will interactively narrow down the list. For RESTful web interface, it 

receives drug ID directly from the user along with social media posts through HTTP 



61 
 

 

request. After receiving analytics results from the report, the GUI visualizes results as a 

HTML page and the RESTful web interface returns results in the JSON format.  

Controller: The controller coordinates between user interfaces and analytics 

modules. As a server side component, it renders data between client-side components and 

analytics models. After completing the request from GUI or RESTful web interface, it 

will continue running as a background service to wait for the next request.  

Model - NLP module: After receiving social media posts and the drug ID from 

the controller, the NLP module passes the social media text to the Sentiment_by_sentence 

function, which connects Stanford CoreNLP server to split social media text to sentences 

and calculate the sentiment score for each sentence. Then, sentences are passed to 

Tag_disease_symptoms function, which connects MetaMap server to map diseases and 

symptoms mentioned in each sentence to UMLS concepts. In the next, UMLS concepts 

associated with known indications of the drug are retrieved from the SQLite database 

[110], and get_semantic_distance function calculates the semantic distance between 

UMLS concepts found by MetaMap and these associated with the drug’s known 

indications. Besides extracting semantic information, another task of NLP module is to 

generate features for each sentence. This is completed by text_to_word_embedding and 

text_to_ngram functions. In the end, sentiment score, UMLS concepts and associated 

information from MetaMap, drug’s therapeutic areas (Section 3.2.5), and semantic 

distances are combined as non-text features for machine learning analysis. They were 

sent back to controller along with word embedding and n-gram features.  

Model - Machine learning module: This module initializes five pre-trained 

prediction models, namely SVM, random forest, AdaBoost.M1, Paralleled CNN and 
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FCN, and Paralleled CNN-LSTM and FCN. These modules were built and trained using 

Scikit-learn [104] and Keras 2.0.8 [91] Python machine learning libraries. After receiving 

feature vector for a sentence from the Controller, each of the five models predicts the 

probability of mentioning serendipitous usages. The module calculates the average of the 

probabilities from five models and returns it to controller as the serendipity likelihood 

score.   

5.5 Implementation 

We implemented Serendipity in Python 3.6, Flask web development framework, 

and supporting libraries such as Scikit-learn and Keras. We also included MetaMap Web 

API and Stanford CoreNLP program in the software package.  

We built the GUI in HTML5, which is a markup language to create web pages 

compatible with most recent computer operating systems and web browsers [111]. The 

GUI contains two web pages. The web_gui.html page (Figure 15 top) provides a text box 

for user to paste drug reviews from social media, an input box for users to enter the ID or 

name of the drug associated with the reviews. The input box also embeds a drop-down 

list which automatically suggests options when the user types drug name or ID. At the 

bottom of the page are a ‘Submit’ button to submit input data for analysis and a ‘Reset’ 

button to clear all current inputs so the user could enter new inputs. The report.html page 

(Figure 15 bottom) displays each sentence from user as a paragraph in ‘Social media 

comments’ window and highlights disease and symptoms that are different from drug’s  
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Figure 15: Graphic user interface 
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Figure 16: Example of input and output in RESTful interface 

 
 
 
 
 
 
 
 

HTTP request: 
localhost:5000/serendipity/api?d_id=5073&u_text=In%20addition%2
0to%20RA%20I%20have%20a%20history%20of%20IBS%20,%20sensitive%20
stomach%20and%20I%20have%20tolerated%20this%20medication%20well
%20. 
--------------------------------------------------------------- 
{ 
  "common_use": "Rheumatoid Arthritis,...,Scleroderma", 
  "drug_name": "Sulfasalazine oral", 
  "sentence": [ 

{ 
  "sentiment": 0.5, 
  "text": "In addition to RA I have a history of IBS , 
sensitive stomach and I have tolerated this medication 
well .", 

      "concept": [ 
        { 
          "cui": "C0022104", 
          "distance": -0.6, 
          "location": "38/3", 
          "min distance": true, 
          "negation": "0", 
          "pos": "noun", 
          "preferred term": "Irritable Bowel Syndrome", 
          "semantic type": "dsyn", 
          "trigger": "IBS" 
        }, 
        { 
          "cui": "C2004062", 
          "distance": 1.0, 
          "location": "27/7", 
          "min distance": false, 
          "negation": "0", 
          "pos": "noun", 
          "preferred term": "History of previous events", 
          "semantic type": "fndg", 
          "trigger": "history" 
        } 
      ], 
      "prediction": [ 
        { 
          "average": 0.06308634944375545, 
          "model_ada": 0.18457321392843803, 
          "model_rf": 0.0, 
          "model_svm": 0.004685834402828326 
        } 
      ]  

} 
  ] 

Figure 1: Example of analytics results in JSON 
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Known indications in the bold font and displays the serendipity likelihood score predicted 

by models in the superscript. When the user clicks a highlighted word, the ‘Details’ 

window on the mid-right side of the page displays the UMLS mapping information and 

serendipity likelihood score for the disease or symptom. The ‘Summary’ window on the 

lower-right side lists all highlighted diseases and symptoms in the decreasing order of 

serendipity likelihood score. When the user clicked a highlighted item in ‘Summary’ 

window, the ‘Social media comments’ window will focus and highlight the item in the 

social media text. The report page also shows known indications of the drug, so the user 

could verify the predictions by their own pharmacy knowledge.  

For RESTful interface, we built a Python program that listens HTTP request for 

two input arguments – social media text (u_text) and drug ID (d_id). The program will 

return analytics results in the JSON format (Figure 16). 

We implemented the controller and the machine learning module with Python and 

its libraries. The controller utilized the Flask 0.12.2 framework to handle web service 

requests and responses. For the NLP module, get_semantic_distance, 

text_to_word_embedding, and text_to_ngram functions were developed in Python. The 

Sentiment_by_sentence function connects to the web interface of Stanford CoreNLP Java 

software that is running on the local computer. The Tag_disease_symptoms function calls 

a Java program to access the MetaMap service provided by the National Library of 

Medicine (NLM). We chose MetaMap service from the NLM because the terminology 

mapping tool requires 16 GB storage space to install on local machine, which occupies 

too much computing resource on the end user’s computer. However, to use MetaMap 

service from NLM, the user needs a NLM account and have a stable internet connection.  



66 
 

 

5.6 Discussion 

We implemented an open source application for mining serendipitous drug usages 

in social media. The application utilized natural language processing and machine 

learning methods explored in this dissertation work. The efforts we have taken are just 

the beginning of developing a software. The next step is to more specifically identify 

users and generate business or real-world use cases – for both user studies and potential 

customer interviews should proceed. We cautiously hypothesize two potential real world 

uses, without further validation.  

A smart dashboard for clinical experts to annotate social media reflections. The 

mentions of serendipitous drug usages on social media can be potential clues to generate 

or validate drug repositioning hypotheses. Yet, such mentions need to be verified by 

clinical experts to exclude cases where the patient inaccurately described the medical 

events happened to him or her. Our analytics system and GUI could prioritize potential 

serendipitous usage mentions for clinical experts to verify, so that they could more 

effectively process patient reflections collected from social media.   

An API for patient health forums to annotate user posts. After a user submitted a 

drug review post, the patient forums could pass the comments to Serendipity RESTful 

API. If the serendipitous usage likelihood score is higher than a threshold, the patient 

forum may pop additional questions for the user to verify if he or she indicated the drug 

also improves his or her comorbid condition. With only a few more seconds spent by 

each user, the patient forum could effectively collect annotated data for serendipitous 

drug usages. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

In the past decade, a critical mass of patient-reported medication outcomes data has 

been accumulated on social media. Many discussions in social media sites mention 

serendipitous drug usages, which could be useful hints for drug repositioning researchers 

– in the sense of complementing other data sources to generate or validate repositioning 

hypotheses. Comparing to traditional data sources such as EHR, claims, FAERS, and 

surveys, social media data contain a large volume of information voluntarily contributed 

by patients not limited to one geographic location or healthcare provider. Yet, the 

colloquial language makes social media data difficult for computers to understand the 

semantic contents. Moreover, inaccuracy in self-reported outcomes and the missing of 

contextual information such as co-prescribed drugs introduce noises.  

This dissertation responded to these challenges by exploring natural language 

processing (NLP) and machine learning methods to detect discussions of serendipitous 

drug usages in social media posts, which is otherwise difficult to collect and analyze.  

We started with a content analysis on the discussions of four diseases and 11 drugs 

on WebMD, PatientsLikeMe, YouTube (video comments), and Twitter [16]. We found 

patient health forums like WebMD the best social media data source for patient-reported 

medication outcomes in terms of data quality and we manually identified several drug 

reviews mentioning serendipitous usages.  

Then, we explored NLP and machine learning methods to identify serendipitous 

drug usages from patient health forum. We designed information filters that leverages 

biomedical named entity recognition and normalization tool (MetaMap [33]), sentiment 
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analyzer (Stanford CoreNLP [32]), and medical ontology (SNOMED CT [34]) to extract 

potential serendipitous drug usages from social media text. We curated the first gold 

standard dataset for predicting serendipitous drug usages, which consists 447 sentences 

from WebMD that mentioned serendipitous drug usages and 15,267 sentences that did 

not. Then, we applied n-grams and machine learning algorithms, namely SVM, random 

forest, and AdaBoost.M1, as well as medical knowledge in the feature construction and 

modeling process. Our best model had AUC=0.937, Precision=0.811, Recall=0.476. 

Several predictions, including metformin and bupropion for obesity, tramadol for 

depression, and ondansetron for irritable bowel syndrome with diarrhea, are also 

supported by recent biomedical research publications.  

Afterward, we explored deep learning models for the same prediction task. We 

constructed four deep learning models, using three types of neural networks – 

Convolutional Neural Network (CNN), Fully-connected Neural Network (FCN), and 

Long Short Term Memory network (LSTM). We examined model configuration, hyper 

parameters, prediction power, and complexity. The results show adding context 

information such as drug therapeutic areas to machine learning features is helpful to 

prevent models from overfitting. But deep learning models may not outperform 

traditional models in the presence of extremely imbalanced data.  

In the end, we implemented an open source application for scientists in drug 

discovery and development and software developers to utilize most of this dissertation 

work without advanced NLP and machine learning skills. The application takes social 

media posts and the drug name as inputs and returns NLP and machine learning 

prediction results either in an interactive report page, or in a JSON format file. By 
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leveraging web technology of HTML5 and RESTful API, the application minimizes the 

need of configuration and computation power from the user.  

This dissertation represents only our initial exploration of mining patient-reported 

medication outcomes in social media to identify serendipitous drug usages. Our work has 

several limitations that leave possibilities for further research, as discussed in the 

following:  

We used MetaMap to identify disease and symptoms in social media text and map 

them to standard medical terminology. However, MetaMap and many other tools 

currently available to use, are designed either for clinical text or scientific literature, 

whose writing style is formal and the description of outcomes is more accurate than 

patient-reported medication outcomes in the social media. In our empirical study 

(Chapter 3), we found the current tools can be the performance limiting step due to the 

lack of customization for social media data. We believe more powerful named entity 

recognition and normalization tools specialized in social media text could be expected to 

improve the performance of the current system and is under development in the lab. 

Construction of machine learning features from social media text also requires 

further efforts. We explored commonly used text mining methods, such as n-grams and 

word embedding in the current research. More sophisticated text features, such as part-of-

speech, sentence syntactic structure (shallow parsing tree), and semantic topics retrieved 

from topic modeling might worth further investigation [112-114].  

Lack of true serendipitous drug usage cases in the gold standard data remains an 

obstacle for improving the performance of machine learning models, despite efforts we 

took such as data sampling and cost sensitive learning methods. We will identify more 
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positive serendipitous drug usage cases from social media and re-evaluate the 

performance of our models.  

Last but not least, the software application we developed is only a prototype. We 

have not conducted user review and test to identify more specific user group, generate 

business use cases, and evaluate the utility of this tool to scientists in drug discovery and 

development and software developers. In addition, the platform, architecture, distribution 

methods are subject to further investigation in terms of security and scalability. These 

steps are necessary to complete the software development cycle before we can release it. 
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