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ABSTRACT

YUEMENG LI. Spectral Analysis of Directed Graphs using Matrix Perturbation Theory.
(Under the direction of DR. AIDONG LU and DR. XINTAO WU)

The spectral space of the adjacency matrix contains important structural information of

a given network (graph), where such information can be leveraged in developing a variety

of algorithms in applications such as graph partition, structural hierarchy discovery, and

anomaly detection. Although many prominent works have laid the foundation for studying

the graph spectra, it is still challenging to analyze the spectral space properties for directed

graphs due to possible complex valued decompositions. Matrix factorization techniques

such as Laplacian and normalized Laplacian have been widely adopted to study the associ-

ated spectral spaces, but network structural properties may not be well preserved in those

spectral spaces due to transformations.

In this dissertation work, we explore the adjacency eigenspace of directed graphs using

matrix perturbation theory and examine the relationships between graph structures and the

spectral projection patterns. We study how to detect dominant structures such as clusters or

anomalous nodes by establishing a connection between the connectivity of nodes and the

geometric relationships in the adjacency eigenspace. We leverage selected key results from

perturbation theory, linear algebra and graph theory as our tools to derive theoretical results

that help to elaborate observed graph spectral projection patterns. In order to validate

our theoretical results, novel algorithms including spectral clustering for both signed and

unsigned networks, asymmetry analysis for network dominance, and anomaly analysis for

streaming network data are developed and tested on both synthetic and real datasets. The
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empirical evaluation results suggest that our algorithms performs better when compared

with existing state-of-the-art methods.
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CHAPTER 1: INTRODUCTION

1.1 Analysis of Online Social Networks

Social networks are constructed by the relationships between individuals, so that in-

formation or attributes associated with individuals can flow within those networks. The

ties between individuals are invisible but rich information about the population involved in

such social networks can be extracted and studied. According to the book “Social Network

Analysis” [100], social network analysis was first introduced in sociology and then used in

many other research fields. It focuses on studying and extracting the properties of the rela-

tionships between objects; differently, conventional data mining approaches focus more on

the aspect of identifying the labels or properties of individuals.

Although social networks have been systematically studied since early 1930s, it was

not until recently that graph theory based approaches have become principle methods for

analyzing such networks [99]. Due to the fact that any given network can be translated

into a graph of certain type, graph theory based approaches could be used to formulate

complicated mathematical models to depict the properties of social networks. Therefore,

graph theory has gradually became the dominant mathematical tool in analyzing social

network related problems.

With the advance of internet technologies, online social networks such as Twitter, Face-

book and LinkedIn have been flourishing and prosperous for the past two decades. Due
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to the sizes of such networks, the vast amount of data generated from them drew atten-

tions of researchers from various fields of studies such as data analytics, statistics, social

science, behaviour science and others. As a result, many real world applications use the

data from online social networks to perform various types of researches such as fraud de-

tection [22, 88, 135], marketing [20, 104, 119], health [15, 113], link prediction [68, 97],

visualization [124] and web mining [74, 75].

As new challenges emerge, traditional data mining approaches need to be improved

and new methods need to be proposed in order to cope with them. Although many ideas

and algorithms have been developed to solve relevant problems of analyzing online social

networks, there are still areas that remain obscure and many open problems waiting to be

solved. In addition, advanced and noval methods are still needed to push the theoretical

research forward and improve the applications based on the theoretical results.

1.2 Spectral Graph Analysis and its Applications

According to [14], Leonhard Euler’s paper on the Seven Bridges of Königsberg in 1736

was considered to be the first paper in the history in graph theory. Then Cauchy [37] and

L’Huillier [64] studied edges and vertices and generalized their properties, so the branch of

mathematics known as topology began to emerge. The term “graph” was first introduced by

Sylvester in 1878, since when it becomes a standard terminology in scientific researches.

The very same author also proposed the Sylvester equation problem in linear algebra re-

garding the linear operators related to the spectral properties of adjacency matrices, which

is essential to the matrix perturbations theories [12]. Since graph theory as a mathematical

tool could model very complex structures of networks, social science adopted it to build
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models for solving social network related problems [43, 93].

Spectral graph theory studies the relationships of the properties of a graph with respect

to the eigenpairs of its associated matrices such as adjacency matrix, Laplacian matrix or

normalized Laplacian matrix [24]. Due to the keen connections of the adjacency matrices,

graphs and networks, it is shown by a large quantity of research works that the network

properties could be well preserved in a reduced dimension of the eigenspace of its associ-

ated matrix. As a result, such an advantage makes the spectral analysis of graphs relatively

easy by reducing the exploration space significantly. Among the spectral analysis meth-

ods, Laplacian based methods have been the most widely used. Since the Laplacian matrix

of the graph is a direct transformation of its associated incidence matrix, the geometric

connectivity of the graph is preserved. Therefore, there are many variants of this method

in recent literatures focusing on different types of graphs such as undirected, directed or

signed. On the other hand, adjacency matrix based approaches have only shown their ca-

pabilities in the spectral graph analysis recently, leaving room for improvements in the

future.

When compared with conventional data mining approaches, spectral graph analysis tends

to identify more relationship based structural properties of the links, other than causality

results of class labels of nodes. As a result, spectral methods excel at tasks such as image

segmentation, community detection and visualization. However, as real world network data

grow more and more complex, where the associated graphs could have mixed properties

(directed weighted graphs and directed signed graphs), primitive spectral graph analysis

methods could no longer handle them properly. Therefore, either improved methods or

noval ideas are needed to further address those issues.
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1.3 Problems Encountered

Since most of the online social network data collected form directed networks, the asso-

ciated adjacency matrices are asymmetric. As the eigenvalues of the asymmetric adjacency

matrix may not be real and the eigenvectors may not form orthronormal basis naturally,

such networks become difficult to analyze directly. Furthermore, networks such as Epin-

ion [63] and Slashdot Zoo [59] contain even signed information, which further complicates

the analysis process. As a result, many conventional spectral methods become incapable

of handling such network data. In order to solve the issues, the simplest approach is to

ignore the edge direction information, treat such networks as undirected and apply the

spectral methods used for undirected graph. However, the results produced may no longer

be what should be contained in the original graph. Later on, methods based on Laplacian

transformation and its variants began to emerge and became the predominant direction for

analyzing directed graphs according to the survey [71]. Soon after, the most prominent

work in spectral clustering of directed signed graphs [60] proposed the signed Laplacian

approach. However, Laplacian or normalized Laplacian based approaches tend to separate

negatively connected vertices rather than group positively connected vertices [23]. This

causes the clustering process to produce more disputing clusters for the network than those

it should have. The authors of a later work [140] proposed to use a balanced normalized

Laplacian approach to solve this problem.

To summarize, the adjacency matrix of a directed network is difficult to analyze due

to the existence of non-real eigenpairs; the undirected signed networks have the so called

balance issue, which causes the spectral clustering process to produce unbalanced clusters;
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for directed signed networks, both issues present. Those problems are what we try to

address in this dissertation work.

1.4 Motivations and Contributions

The spectral space of the adjacency matrix for a given network contains key geomet-

ric information related to its underlying structure. However, such a space does not gain

much attention until recently. Also, matrix perturbation theory studies the changes to the

eigenpairs of a matrix when its entries change. It was shown in the works [131–133] that

observed networks could be modeled as perturbations from a network with certain simple

structures. Therefore, matrix perturbation theory could be used as a tool to analyze the

spectral space properties of the given network. The works justified the existence a direct

relationship of the geometric phenomena in the adjacency eigenspace with the underlying

network structure. However, all the relevant results concern only undirected graphs, but it

is foreseeable that similar properties should exist in the adjacency eigenspace of directed

networks.

Although the adjacency eigenspaces of directed graphs have not been well studied be-

fore, we propose to use the very same mathematical tool to analyze such graphs and take

the first step in this area. However, problems described above will make the analysis more

difficult when compared with the undirected cases. After establishing the framework for

directed unsigned graphs, it is further extended to directed signed graphs to completely

describe adjacency spectral properties of the entire set of directed networks. We also take

a different approach to study directed networks by analyzing the asymmetries of the in-

formation contained in the networks through analyzing the Singular Value Decomposition
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(SVD) spectral spaces of their skew symmetric decomposition. As a result, dominance

relationships could be extracted from such spectral spaces. Last but not least, we use the

adjacency eigenspace properties to analyze the anomalies of dynamic graphs. With care-

ful modeling and rigorous statistical inferences, we demonstrate how individual’s anomaly

measures could be influenced by the interactions between each other. To summarize, our

contributions are:

1. We have explored the adjacency eigenspace of directed unsigned graphs and provided

theoretical explanations for spectral phenomena in such spaces.

2. We have developed a spectral clustering based community detection algorithm for di-

rected unsigned graphs and conducted empirical evaluations on synthetic and Twitter

streaming data.

3. We have explored the adjacency eigenspace of directed signed graphs and provided

theoretical explanations for spectral phenomena in such space. This step generalized

the theoretical results for all directed graphs.

4. We have proposed a spectral clustering based community detection algorithm for di-

rected signed graphs and conducted researches on synthetic and Sampson’s, Slashdot

Zoo, Wikisigned and Epinion datasets.

5. We have studied the asymmetry information captured in the skew symmetric decom-

position and proposed a scoring method for measuring network dominance relation-

ships. It could be used to detect the organizational hierarchy of the given relationship

network. The method has been tested on synthetic data and world trade data of year
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2014.

6. We have analyzed dynamic temporal network data using Vector Autoregressive

(VAR) model for fraud or anomaly detection and analysis.

1.5 Thesis Organization

Given that the vast majority of Online Social Network (OSN) data today are directed

or even signed directed, existing approaches could no longer be adequate to fully extract

needed information from them. In this dissertation work we propose to study several topics

related to directed graphs generated from OSN data.

The first step is to build a theoretical framework for directed unsigned graphs. We pro-

pose to use matrix perturbation theory to analyze the spectral coordinate changes in the per-

turbed Perron Frobenius simple invariant subspaces. The observed network could be per-

ceived as departures from a K-block network structure where each cluster possesses the Per-

ron Frobenius property according to the structure based cluster definition. We derive math-

ematical approximations for spectral coordinates of observed graphs using the unperturbed

copy. A spectral clustering based community detection method, Augmented ADJCluster,

is produced and tested on various synthetic and real datasets.

In the second step, we extend the above framework into directed signed graphs to com-

plete the theories for spectral analysis on directed graphs in general. We adopt the same

mathematical tools to deal with the existence and absence of Perron Frobenius proper-

ties for clusters with negative entries. Since signed components may not be structurally

balanced and may not have the Perron Frobenius properties, we propose a way to utilize

complex spectral radii of clusters to overcome this issue. A spectral clustering algorithm
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called General ADJCluster is introduced and tested on synthetic and real datasets.

In the next step, we study the asymmetric information contained in the skew symmetric

matrices, which belong to a special case of directed signed graphs. Due to the unique order

preserving nature exhibited in the SVD spectral space of the skew symmetric form of any

directed graph, we propose a scoring method to measure the dominance/submissiveness

status of nodes, which could be used to analyze the underlying organizational hierarchies

of directed networks. The method is also tested on both synthetic and real datasets.

In the last step, we apply our graph spectral analysis framework on the fraud and anomaly

detection/analysis for dynamic OSN data. We build node anomaly metric time series data

from the adjacency spectral features of the network snapshots. Then, we use the VAR

method to model the interactions of time series data. The Granger causality test based

anomaly analysis Algorithm OSN rVAR Granger is introduced, and several case studies

based on a real and labeled streaming dataset are included to demonstrate its efficacy.

This dissertation is organized as follows:

• Chapter 2 contains preliminary background information of graph theory, linear alge-

bra and matrix perturbation theories related to our works.

• Chapter 3 introduces how the observed directed unsigned graphs could be modeled

as perturbations from networks with isolated clusters. The adjacency eigenspaces of

such graphs are studied.

• Chapter 4 extends the framework in chapter 3 into directed signed graphs. Spec-

tral behaviours under perturbations are studied in further detail to handle the more

complicated issues associated with directed signed graphs.
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• Chapter 5 studies the spectral properties of the SVD of the skew symmetric decom-

position of relationship networks.

• Chapter 6 explores the spectral space of temporal network data using the restricted

VAR model and analyzes the endogenous and exogenous influences to a node’s

anomaly measures using Granger causality test.

• Chapter 7 presents the conclusion and future works.



CHAPTER 2: BACKGROUND INFORMATION

2.1 Preliminaries

In this study, we focus on directed graphs without self-loops. A directed graph G(V,E)

can be represented as the adjacency matrix An×n with aij > 0 if there exists a positive edge

pointing from node Vi to node Vj , aij < 0 if there exists a negative edge pointing from

node Vi to node Vj , and aij = 0 otherwise. The information provided in this chapter are

for general directed signed and weighted graphs. The symbols and definitions are given in

Table 1.

Table 1: Symbols and Definitions

A Adjacency matrix of a graph
P Permutation matrix
Ã Perturbed matrix of A
L(L) The set of eigenvalues of L
<(X) An invariant subspace of A spanned

by a basis X
ρ(A) The spectral radius of A
(q1, · · · , qn) An orthonormal basis of A
(λ1, · · · , λn) Eigenvalues of A
(x1, · · · ,xn) Eigenvectors of A
AH Conjugate transpose of A
Unitary A is unitary if A−1 = AH

2.1.1 Eigenspace Projection

Eigenspace projection is a method to project nodes in the spectral subspace formed by

a set of eigenvectors. When chosen correctly, it will reveal the node-cluster relations of

the underlying network structure. In order to perform the eigenspace projection, we need
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to make sure that the eigenvectors forming the spectral space are linearly independent,

otherwise the eigenspace will not be of full rank. We adopt the eigenspace projection

method as in the work [132]. An illustration of the projection method is given as Equation

(1). The eigenvector xi is represented as a column vector. For undirected graphs, the

eigenvectors xi (i = 1, · · · , K) corresponding to the K largest real eigenvalues contain

the most topological information of the corresponding K communities of the graph in the

spectral space. The K-dimensional spectral space is spanned by (x1, · · ·xK). When a

node u is projected in the K-dimensional subspace with xi as the basis, the row vector

αu = (x1u, x2u, · · · , xKu) are its coordinates in this spectral subspace. For directed graphs

in this study, the chosen K eigenvectors corresponding to the Perron Frobebius simple

invariant subspace will be used to perform the projections.

x1 xi xK xn

↓

αu →



x11 · · · xi1 · · · xK1

...
...

...

x1u · · · xiu · · · xKu
...

...
...

x1n · · · xin · · · xKn

· · · xn1

...

· · · xnu

...

· · · xnn



(1)

2.1.2 Perturbation Theory for Square Matrices

Spectral perturbation studies the change of the eigenpairs when the graph is perturbed.

It is an excellent mathematical tool for analyzing the influence of changes to the graph
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spectra. We use it to estimate the spectral projections after perturbation and verify various

phenomena in the adjacency eigenspace. For a square matrix A with a perturbation E, the

matrix after perturbation can be written as Ã = A + E. Let λi be an eigenvalue of A with

its eigenvector xi. For the perturbed matrix, λ̃i and x̃i denote the perturbed eigenpairs.

When the matrix perturbation theory is applied to analyze the spectral properties of di-

rected graphs, the most difficult problem is that the perturbed eigenvectors cannot be esti-

mated using simple linear combinations of other eigenvectors, since the eigenvectors do not

form orthonormal basis naturally. This problem was solved by working with spectral res-

olutions and using orthogonal reduction to block triangular. Therefore, the estimations for

perturbed eigenvectors can be expressed by the spectral resolution of A with respect to its

simple invariant subspaces. We reference the relevant definitions and theorems from [109]

as follows:

Lemma 1. Let the columns of X be linearly independent and let columns of Y span

<(X)⊥. Then <(X) is an invariant subspace of A if and only if Y HAX = 0. In this

case <(Y ) is an invariant subspace of AH .

Lemma 2. Let <(X) be an invariant subspace of A, columns of X form an orthonormal

basis for <(X), and (X, Y ) be unitary. Then the decomposition ofA has the reduced form:

(X, Y )HA(X, Y ) =

 L1 H

0 L2

 , (2)

where L1 = XHAX , L2 = Y HAY , AX = XL1 and H = XHAY . Furthermore,

eigenvalues of L1 are the eigenvalues of A associated with <(X). The rest eigenvalues of

A are those of L2.
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Definition 1. Let <(X) be an invariant subspace of A, and let (2) be its reduced form with

respect to the unitary matrix (X, Y ). Denote L(L) as the set of the eigenvalues of L. Then

<(X) is a simple invariant subspace if L(L1) ∩ L(L2) = ∅.

With the above definition and lemmas, under the assumption of the simple invariant sub-

space, the approximations of perturbed eigenvectors are given by Theorem 2.7 in chapter

V of [109] as follows:

Lemma 3. Let Ã = A + E, (x1, · · · ,xn) be a basis of A and denote X = (x1, · · · ,xK)

and Y = (xK+1, · · · ,xn). Suppose that (X, Y ) is unitary, and suppose that <(X) is

a simple invariant subspace of A so that it has the reduced form as Equation (2). For

i ∈ (1, · · · , K), the perturbed eigenvectors x̃i can be approximated as:

x̃i ≈ xi + Y (λiI − L2)−1Y HExi, (3)

when the following conditions hold:

1. δ = inf‖T‖=1 ‖THT‖2 − ‖XHEX‖2 − ‖Y HEY ‖2 > 0, where H = XHAY and

ti ≈ (λiI − L2)−1Y HExi for column vectors in T .

2. γ = ‖Y HEX‖2 <
1
2
δ.

2.1.3 Perron-Frobenius Eigenpair

For the strongly connected component C, the following lemma shows the relationship

between the connectedness and reducibility of a graph.

Lemma 4. [123] Let Ac be the adjacency matrix representation of a component C, then

C is strongly connected iff Ac is irreducible (cannot be reduced into the form of Equation

(4)).
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PAcP
−1 =


Ac1 U

. . .

0 Acn

 , (4)

Furthermore, we introduce the Perron-Frobenius theorem for non-negative irreducible

components.

Lemma 5. Chapter 8 of [73]. Let C be an irreducible and non-negative c × c matrix

corresponding to a strongly connected component. Let λ1, · · · , λc be its (real or complex)

eigenvalues. Then its spectral radius ρ(C) is defined as:

ρ(C)
def
= max

p
(|λp|). (5)

It is called the Perron-Frobenius eigenvalue of C and the corresponding eigenvector is

called the Perron-Frobenious eigenvector. The following properties hold:

1. The spectral radius ρ(C) is a positive real number and it is a simple eigenvalue of C.

2. The only eigenvector that has all positive components is the one associated with

ρ(C). All the other eigenvectors have mixed signed components.

Lemmas 4 and 5 simply suggest that there exists a bijective mapping from the set of

communities to the set of spectral radii of all the communities. Therefore, if the network

has a clear community structure, we can identify the underlying community structure by

analyzing its spectral projection in the subspace spanned by Perron-Frobenius eigenvec-

tors. This selection could essentially avoid the complex valued eigenpairs in asymmetric

adjacency matrices.
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2.2 Skew Symmetric Decomposition

2.2.1 Singular Value Decomposition

Let X denote an m×n matrix of real-valued data and rank r. Without loss of generality,

we assume m ≥ n. The singular value decomposition of X is

X = UΣV T , (6)

where U is an m× n matrix, Σ is an n× n diagonal matrix, and V is an n× n matrix. The

columns of U are called the left singular vectors and form an orthonormal basis. In other

words, UUT = Im×m. The columns of V are called the right singular vectors and we have

V V T = In×n. The diagonal matrix Σ = diag(σ1, · · · , σn) contains the singular values

and successive singular values are monotone decreasing. Furthermore, we have σk > 0 for

k = 1, · · · , r, and σk = 0 for k = r + 1, · · · , n.

When most or all of the variance is associated with the first few singular values, a rel-

atively small number of spectral dimensions associated with those singular values can be

used to provide an acceptably accurate depiction of the structure. According to Eckart-

Young theorem, SVD can produce a low rank approximation of the given matrix with

the least Frobenius norm difference under a given constrain rank [108]. In other words,

Xk = UkΣkV
T
k is the closest rank-k matrix to X and Xk minimizes the sum of squares of

differences of the elements of X and Xk.

2.2.2 SVD of Skew Symmetric Matrices

For a directed weighted graph where n nodes and m edges, its adjacency matrix X is

an n × n asymmetric matrix. According to [41], the adjacency matrix X can have the
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following decomposition: X = Y + Z, where Y = 1
2
(X + XT ) and Z = 1

2
(X − XT ).

The symmetric matrix Y has each entry yi,j = 1
2
(xi,j + xj,i) that captures the proximity of

the pair of objects i and j. Y can be analyzed by using any method that handles symmetric

adjacency matrix. Therefore, the pattern of the linkages and degree centralities of nodes

can be well studied just by looking into Y . The matrix Z is a skew-symmetric matrix,

i.e., its negative equals its transpose (ZT = −Z). The matrix Z has each entry zi,j =

1
2
(xi,j−xj,i) that captures the asymmetry or the extent to which object i dominates other j.

Therefore, we can use the asymmetry information in the skew symmetric part Z to study

the dominance/submissiveness relationships for a given network.

Theorem 1. The singular decomposition of a real skew-symmetric matrix Z has the form

Z = UΣJUT , whereU is orthogonal, Σ is non-negative matrix of singular values arranged

in non-increasing order along the diagonal and the singular values occur in equal pairs.

Corresponding to each pair, the matrix J has a 2× 2 skew-symmetric orthogonal diagonal

block of the form, J =

 0 1

−1 0

.

It is clear that the singular value decomposition of skew symmetric matrices has the same

pre- and post-vectors, apart from possible changes of sign and permutation. Because of the

balance between positive and negative cell values associated with skew-symmetry, the first

dimension is associated with exactly the same amount of variance in the original data as

is the second. Actually, every two successive singular values, σ2k−1 and σ2k, are the same

and the corresponding two successive singular vectors, u2k−1 and u2k, need to be treated

as as units. The successive two-dimensional space formed by u2k−1 and u2k is termed as

the k-th bimension. The decreasing pairs of singular values impose a natural ordering on
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the bimensions in decreasing order of importance.

2.2.3 Spectral Projection of Skew Symmetric Matrices

For SVD, we can generally project each node as a coordinate in the space formed by

the scaled singular vectors. All rows of the singular vector matrix scaled by the squared

root of singular values, UΣ1/2, are plotted. In particular, the p-th row vector of UΣ1/2,

(Up1σ
1/2
1 , · · · , Uprσ1/2

r ), denotes the spectral coordinate of node p in the spectral space

formed by the first r singular vectors.

For a skew symmetric matrix, each two successive singular vectors share the same singu-

lar value and need to be treated as a unit for projection. According to the canonical analysis

of asymmetry [40], we need to project nodes to each bimension. Hence, the projection of

node p in the first bimension is (Up,1σ
1/2
1 , Up,2σ

1/2
2 ), its projection in the second bimension

is (Up,3σ
1/2
3 , Up,4σ

1/2
4 ), and so on.

The spectral coordinates of two nodes then capture the asymmetry between them. How-

ever, the conventional Euclidean distance is no longer appropriate. As suggested by the

work [41], the amount of asymmetry between objects p and q should be represented by the

area of the triangle enclosing point p, point q, and the origin o. As a matter of fact, we use

the area formed with the objects and the origin to measure the difference of two objects in

a 2-dimensional planar space. This coincides with the Euclidean distance in the Euclidean

space. Note that the work [92] adopted the same idea to quantify the differences between

the projections of two nodes in the planar space. However, they only used skew symmetry

to analyze the asymmetry of geological successions, where the difference of objects was

treated as non-directional. In our work, we will address the direction issues associated with
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the asymmetry problems.

Another key property of SVD is that the ordering relationships of each pair of individuals

are preserved in the spectral projection space. The work [33] demonstrated that SVD can

be used to uncover organizational hierarchies from the skew symmetric part Z of a total or-

dering matrix constructed from the original matrix. Therefore, the spectral space produced

by SVD could capture the dominance relationships for a given network that have total or

partial ordering relationships such as orders, votes, prestige ranks. The mathematic proper-

ties of skew symmetry have been studied in the works [17,31,118]. The works [96,136] in

the field of image processing also studied its geometric properties. However, those works

did not investigate its spectral properties.



CHAPTER 3: SPECTRAL PROPERTIES OF DIRECTED UNSIGNED GRAPHS

The eigenspace of the adjacency matrix of a graph possesses important information

about the network structure. However, analyzing the spectral space properties for directed

unsigned graphs (DUGs) is challenging due to complex valued decompositions. In this

chapter, we explore the adjacency eigenspaces of directed unsigned graphs. With the aid

of the graph perturbation theory, we emphasize on deriving rigorous mathematical results

to explain several phenomena related to the eigenspace projection patterns that are unique

for DUGs. Furthermore, we relax the community structure assumption and generalize the

theories to the perturbed Perron-Frobenius simple invariant subspace so that the theories

can adapt to a much broader range of network structural types. We also develop a graph

partitioning algorithm and test it on both synthetic and real data sets to demonstrate its

potential.

3.1 Analysis of Spectral Spaces of Directed Unsigned Graphs

For many non-random graphs generated from online social networks, economic net-

works or biological networks, there usually exist clusters (communities) formed by indi-

viduals. Identifying such structures can help us better understand properties of those net-

works. Researchers have developed approaches and algorithms to deal with the clustering

in DUGs [9,25,53,62,72,76,79,122,141,142] because relationships in many networks are

asymmetric. Refer to [71] for a recent survey. Roughly speaking, they can be classified into
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two categories. In the first category, DUGs are converted into an undirected ones, either

unipartite or bipartite, where edge direction is preserved, e.g., via edge weights of the pro-

duced unipartite graph [95] or edges in the produced bipartite graph [143]. Clustering al-

gorithms for undirected weighted graphs are then applied. Methods in the second category

are mainly based on the idea of extending clustering objective functions and methodologies

to DUGs. In those approaches, the graph clustering is expressed as an optimization prob-

lem and the desired clustering properties are captured in the modified objective criterion.

For example, researchers developed the directed versions of modularity [53, 62, 83], the

objective function of weighed cuts in DUGs [72], and the spectral graph clustering based

on the Laplacian matrix of the DUGs [25, 142]. However, it is unclear to what extent the

information about the directionality of the edges is retained by these approaches.

In this chapter, we study whether we can directly analyze the spectral properties of the

adjacency matrix of the underlying DUGs instead of transforming the DUGs to undirected

or developing the directed versions of the objective criterion used in graph clustering. When

the concern is with DUGs, one main difficulty for spectral clustering is to deal with the

complex values for eigenpairs associated with the asymmetric adjacency matrix. The prob-

lem of how to select a set of eigenvectors to produce a meaningful partition result becomes

very complicated. Furthermore, the other major difficulty associated with analyzing the

spectral spaces of asymmetric adjacency matrices is that the eigenvectors do not form an

orthonormal basis naturally. This complicates the process of analyzing the behaviors of

nodes in the spectral space. Although the authors in the work [132] demonstrated that the

geometric properties of nodes with respect to the communities in the spectral spaces can be

described perfectly using the matrix perturbation theory for undirected graphs, the situation
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would be much more complicated for DUGs.

We conduct theoretical analysis to address the above difficulties by leveraging the spec-

tral graph perturbation theory. The spectral graph perturbation focuses on analyzing the

changes in the spectral space of a graph after new edges are added or deleted. We provide

a theoretical analysis of the properties of the eigenspace for DUGs and develop a method

to circumvent the issue of complex eigenpairs. Our analysis utilizes the connectedness

property of the components of a network to screen out irrelevant eigenpairs and thus elim-

inating the need for dealing with complex eigenpairs. We demonstrate how to derive the

approximations of the eigenvectors by leveraging the constructed orthonormal basis when

treating the graph as a perturbation from a block matrix. Furthermore, the derived theories

are generalized to perturbed Perron-Frobenius simple invariant subspace. The significance

of such a spectral subspace is that it is a real subspace with some unique properties that

contains all the spectral clustering information of a graph.

Spectral clustering based partition algorithms require one to find a correct set of eigen-

vectors for spectral projection. This leads to the search for a set of eigenvectors that

can capture the structural information in the spectral domain. Objective optimization ap-

proaches such as modularity maximization [81], modified versions for DUGs in [62, 83],

and some variants [72, 103] were proven to be effective in partitioning graphs with clear

community structures according to the density based criterion, but those approaches could

not fully suffice as the objective for studying structural properties of DUGs according to the

pattern based criterion [71,98]. The pattern based criterion should take priority in defining

community structures. Therefore, we first make the assumption that a community should

be a strongly connected component. In the later sections, we relax this assumption to a
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group of nodes with a strongly connected core component and show that this relaxation is

valid both by observations and in theory. Based on our theoretical analysis, we develop

a novel graph partitioning algorithm that could deal with DUGs without clear community

structures. There is one interesting observation that the overlapping of communities can

be detected by adjusting the objective function in the algorithm if the eigenvectors are se-

lected according to the proposed method. The algorithm is validated with synthetic data

and a streamed dataset from Twitter.

To summarize, in this chapter, we provide a thorough analysis of the properties of the

spectral space for DUGs, propose a method to deal with the issue of complex eigenpairs

by selecting a spectral subspace spanned by a unique set of real eigenvectors, use ma-

trix perturbation theory to rigorously prove that the perturbed Perron-Frobenius invariant

subspace can indeed capture the structural properties of any given DUGs in the spectral

domain, develop an algorithm to partition DUGs without transforming the adjacency ma-

trices or modifying the objective functions, and test the algorithm on various synthetic and

real data sets to demonstrate its potential.

3.2 Modeling Observed Graphs As Perturbations

We assume that the observed graph Ã of a network has K communities namely C1, · · · ,

CK . According to the pattern based criterion, we make the assumption that each community

Ci in a directed graph should be a relatively dense strongly connected component 1. This

assumption makes an easy starting point to study directed graphs and will be relaxed in

later sections.
1A component is strongly connected if there exists a path for any nodes Vi to Vj of the component.
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Formally, any observed directed graph Ã containing multiple communities with the

above defined community structure can be regarded as the perturbation form the diago-

nal block form of A as:

Ã = A+ E =


A1 0

. . .

0 AK

+ E, (7)

where A contains the communities Ais and E contains the edges connecting Ais.

3.2.1 Disconnected Communities in Directed Unsigned Networks

Given an unsigned network with K disconnected communities C1, · · · , CK , and its ad-

jacency matrix is expressed in the form of Equation (7). We have the following results:

Lemma 6. For an adjacency matrix A of a graph with K disconnected communities in the

form of Equation (7). For i = 1, · · · , K, the following results hold:

1. The K Perron-Frobenius eigenvalues λCis corresponding to communities Cis are

real, positive, simple eigenvalues, and are also the eigenvalues of A.

2. Furthermore, let xCi be the Perron-Frobenius eigenvectors of communities, the

eigenvectors x = (x1, · · · ,xK) ofA corresponding to λCis are the only eigenvectors

whose non-zero components are all positive, all the entries of x are real valued and
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have the following form:

(x1,x2, · · · ,xK) =



xC1 0 · · · 0

0 xC2 · · · 0

...
... . . . ...

0 0 · · · xCK


.

3. There is only one location of the row vector αu that has a non-zero value with the

form:

αu = (0, · · · , 0,xiu, 0, · · · , 0). (8)

The location of xiu indicates the community which node u belongs to and the value

of xiu denotes the influence of node u to that community.

Since the matrix A is of diagonal block form, the eigenvectors of A will be of the same

form corresponding to each block and the eigenvalues of A will be the union of those of

Ais. The results follow from applying Lemma 4 and Lemma 5. If we perform the spectral

projection as Equation (1) using this set of eigenvectors, nodes from different communities

will form orthogonal lines (The cosine value of any two nodes from different communities

will be 0). In the next part, we will demonstrate how the node spectral projections behave

when the Perron-Frobenius spectral subspace is perturbed.

3.2.2 Observations in Perturbed Spectral Space for Directed Unsigned Graphs

To illustrate various phenomena in the perturbed Perron-Frobenius spectral subspace for

unsigned graphs, we generated a toy graph with 25 nodes containing 3 communities: C1,

C2 and C3. C1 contains nodes labeled 1 to 8, 14 and 15. C2 is an isolated community
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that contains nodes labeled 16 to 25. C3 contains nodes 10, 12 and 13 with nodes 9 and

11 as leaf nodes. The graph is shown in Figure 1, where dashed lines represent the added

cross-community edges.

Figure 1: Perturbed Graph

In order to thoroughly examine the spectral properties of nodes, we first added an edge

from node 10 in C3 to node 5 in C1, then replaced it with a reverse edge, and finally

added an undirected edge. The changes to the original isolated components are treated as

as perturbations.

Figure 2 demonstrates the cross sectional spectral projections for communities C1 and

C3 before and after perturbations. When we look into this Perron-Frobenius spectral sub-

space, before the perturbation, the nodes form straight lines according to the communities

they belong to and the coordinates of nodes from different communities form orthogonal

lines, as shown in Figure 2(a). After we added one edge from node 10 in C3 to node 5 in

C1, it can be observed clearly from Figure 2(b) that the spectral coordinates of the nodes in

the two communities connected by the edge have changed. However, different from those

in undirected graphs as demonstrated in [132], the nodes in the community C3 with an

out-going edge are leaning towards the community (C1) that the edge is pointing to. On
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Figure 2: Spectral Coordinates of Nodes under Perturbation

the other hand, the spectral coordinates of nodes in the community (C1) with an incoming

edge still lie on their original axis but their values on that axis have changed. This phenom-

ena can also be observed in Figure 2(c) when we added a directed edge from node 5 in C1

to node 10 in C3. When an undirected edge (5 � 10) is added, Figure 2(d) resembles the

combination of Figure 2(b) and Figure 2(c).

As observed in Figure 2, the signs of components of some eigenvectors have flipped.

Such phenomena can be caused partly by the eigen-decomposition method and partly by

the structure of the given graph. However, in this example the first cause is the reason and

it will not affect the partition results in general. Detailed analyses of the second cause will

be presented in Section 3.3.5. In the example given, the adjacency eigenspace revealed the
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direction of the flow of information (from unperturbed to perturbed). Therefore, analyzing

the adjacency eigenspace of a directed graph can reveal more about the structure changes

due to the addition or deletion of directed edges such as following a Tweet, voting for a

person or malicious attacks on a community.

Table 2: Eigenvectors Before and After Perturbation

no edge edge 5→ 10 edge 10→ 5 edges 5 � 10
node x1 x2 x3 x̃1 x̃3 x̃1 x̃3 x̃1 x̃3

5 -0.2346 0.0000 0.0000 0.2281 0.0000 -0.2346 -0.0499 -0.2835 0.0513
6 -0.2666 0.0000 0.0000 0.2592 0.0000 -0.2666 0.1081 -0.2439 -0.1222
7 -0.1210 0.0000 0.0000 0.1177 0.0000 -0.1210 -0.0499 -0.1390 0.0468
8 -0.2563 0.0000 0.0000 0.2491 0.0000 -0.2563 0.0748 -0.2328 -0.0930
9 0.0000 0.0000 0.4932 0.1254 0.4932 0.0000 -0.4738 -0.1336 0.4857

10 0.0000 0.0000 0.1644 0.1364 0.1644 0.0000 -0.1579 -0.1575 0.1941
11 0.0000 0.0000 0.8220 0.1198 0.8220 0.0000 -0.7896 -0.1219 0.7518

Some of the subtle changes of spectral coordinates mentioned above may be difficult

to observe from the figures directly, so we provide the spectral coordinates corresponding

to the related nodes before and after the perturbations in Table 2, where irrelevant nodes

are omitted to save space. In the next step, we will present our theoretical studies of the

spectral analysis for DUGs.

3.3 Perturbed Eigenspace

As discussed in Section 2.1.2, the set of eigenvectors from DUGs do not form orthonor-

mal basis naturally. The perturbation theory, introduced in Lemma 3 requires the simple

invariant subspace to produce a similarity reduction of the asymmetric adjacency matrix.

Hence, in order to give explicit approximations explaining the spectral projection patterns

observed, we need to find a unitary orthonormal basis that satisfies the conditions in Lemma

1 and Definition 1 to achieve the orthonormal reduction for a given asymmetric matrix. It

is important to emphasize that such process is not needed for undirected graphs because
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the eigenvectors form orhtonormal basis naturally.

3.3.1 Orhtonormal Basis Construction

The following proposition sets up such a basis by using the Gram-Schmidt process.

Proposition 1. Let Λ = diag(λ1, · · · , λn) be the eigenvalues for Ã, and x = (x1, · · · ,xn)

be the eigenvectors. Assume that all the eigenvectors are linearly independent, and, without

loss of generality, let σ = (q1, · · · , qn) be an orthonormal basis formed by Gram-Schmidt

process. Suppose that there exist K eigenvectors xi = qi for i ∈ (1, · · · , n) that are

part of this orthonormal basis and relabel their indices as (q1, · · · , qK) along with the

corresponding eigenvalues. Denote X = (q1, · · · , qK) and Q as the rest of the orthonrmal

basis. If λ1, · · · , λK are simple, then the following results hold:

1. (X,Q)H = (X,Q)−1 is unitary. QHAX = 0, thus <(X) is a simple invariant

subspace of A.

2. A can be reduced to a block triangular form:

(X,Q)HA(X,Q) =

 L1 H

0 L2

 , (9)

where L1 = XHAX , L2 = QHAQ is upper triangular, AX = XL1 and H =

XHAQ. The eigenvalues of L1 are the eigenvalues of A associated with <(X). The

rest eigenvalues of A are those of L2.

Proof. For (1), since (X,Q) is the orthonormal basis formed by Gram-Schmidt process, so

(X,Q)H = (xi, Q)−1 is unitary.
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For (2), Since X are eigenvectors of A, then QHAxi = QHλixi = λi0 = 0 for each

i ∈ (1, · · · , K). Since λis are simple eigenvalues, then L(L1) ∩ L(L2) = ∅. By Lemma 1

and Definition 1,<(X) is a simple invariant subspace ofA. By Lemma 2,A can be reduced

to a block triangular form in Equation (2). Hence, Equation (9) holds. By the method how

(X,Q) was formed, due to the mechanism of Gram-Schmidt process, we have (X,Q)R =

x where R and R−1 is strick upper triangular. Hence, (X,Q)HA(X,Q) = RΛR−1 is the

result of the orthonormal reduction and is upper triangular, then so is L2. The last part is

from Lemma 2.

By item 2 of Proposition 1, the orthornormal reduction results in an upper triangular

matrix. In the symmetric case, the result is a diagonal matrix containing only eigenvec-

tors, since the eigenvectors diagonalize the matrix. In the next section, we will give the

approximations for the perturbed Perron-Frobenius eigenvectors corresponding to the K

communities that span the K dimensional subspace. The approximations will be used to

explain several phenomena in this particular subspace.

3.3.2 Approximation

When we treat the observed graph as the perturbed graph from Equation (7), we are able

to 1) use Lemma 5, Lemma 6 and Proposition 1 to show the Perron-Frobenius eigenvectors

(x1, · · · ,xK) form a simple invariant subspace; and 2) use the perturbation theory shown

in Lemma 3 to derive the approximation of the perturbed Perron-Frobenius subspace.

Theorem 2. Let the observed graph be Ã = A+E with K communities and the perturba-

tion E denotes the edges connecting communities C1, · · · , CK . Assume that E satisfies the

conditions in Lemma 3. Let (x1, · · · ,xK) be the relabeled Perron-Frobenius eigenvectors
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of A for all communities, and Q be the rest of the orthronormal basis constructed using

Proposition 1. Then (x1, · · · ,xK) is a simple invariant subspace of A, and the perturbed

Perron-Frobenius spectral space for Ã can be approximated as:

(x̃1, · · · , x̃K) ≈ (x1, · · · ,xK) +∇E(
x1

λ1

, · · · , xK
λK

). (10)

where ∇ = Q(I − L2

λi
)−1QH .

Proof. Let the Perron-Frobinues eigenvectors be (x1, · · · ,xK). Noticing that this set of

eigenvectors are orthogonal before the perturbation occurs, so if we construct an unitary

orthonormal basis as in Proposition 1, those eigenvectors are part of the unitary orthonormal

basis and qi = xi for i ∈ (1, · · · , K), where the indexes are relabeled to correspond to each

community.

By Lemma 5, all eigenvalues corresponding to such a spectral subspace are simple. By

Definition 1 and Proposition 1, (x1, · · · ,xK) is a simple invariant subspace of A.

By Proposition 1, Q is the rest of the orthonormal basis. Therefore, by applying Lemma

3, each of the perturbed Perron-Frobenius eigenvectors can be approximated as:

x̃i ≈ xi +∇Exi
λi
,

where∇ = Q(I − L2

λi
)−1QH .

Putting K columns together, the approximation of such a perturbed spectral space are:

(x̃1, · · · , x̃K) ≈ (x1, · · · ,xK) +∇E(
x1

λ1

, · · · , xK
λK

).

When spectral projection is performed on the subspace spanned by the eigenvectors
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corresponding to the K Perron-Frobenius eigenvalues, we can use Theorem 2 to derive

the approximation of spectral coordinate of αu using the following simplified result that

only takes into account of the influences of neighboring nodes from other communities.

Since the edge direction indicates the flow of information, we define the outer community

neighbours of a node u ∈ Ci to be any node v /∈ Ci that has an edge pointing to u.

Theorem 3. For node u ∈ Ci, let Γju denote its set of neighbors in Cj for j ∈ (1, · · · , K).

The simplified spectral coordinates αu can be approximated as:

αu ≈ xiuIi +
(∑n

j=1∇uj

∑
v∈Γ1

u

ejvx1v
λ1

, · · · ,
∑n

j=1∇uj

∑
v∈ΓKu

ejvxKv
λK

)
, (11)

where Ii is the i-th row of a K-by-K identity matrix, ejv is the (j, v) entry of E and ∇ is

defined in Theorem 2.

Proof. By Theorem 2, the perturbed spectral space have the form:

(x̃1, · · · , x̃K) ≈ (x1, · · · ,xK) +∇E(
x1

λ1

, · · · , xK
λK

).

Then, by Lemma 6,and Equation (8), the spectral coordinate of node u can be simplified

by only considering the influences by neighbours from other communities:

αu ≈ xiu(0, · · · , 1i, · · · , 0)

+

(
n∑
j=1

∇uj

∑
v∈C1

ejvx1v

λ1

, · · · ,
n∑
j=1

∇uj

∑
v∈CK

ejvxKv
λK

)

≈ xiuIi

+

 n∑
j=1

∇uj

∑
v∈Γ1

u

ejvx1v

λ1

, · · · ,
n∑
j=1

∇uj

∑
v∈ΓKu

ejvxKv
λK

 ,

where Ii is the i-th row of a K-by-K identity matrix.
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The entry
∑n

j=1∇uj

∑
v∈Γiu

ejvxiv
λi

in the i-th column position of the spectral coordinate

in Equation (11) is responsible for determining the influence of the perturbation to the cur-

rent community members. For general perturbation, the perturbation could occur inside

the community or even onto the node itself. Therefore, for the spectral coordinates of node

u, this term will be 0 only when the perturbation does not appear on the column positions

of E corresponding to the community which the node u belongs to. On the other hand,

if perturbations occur inside the column positions of E corresponding to the community

where the node u is, the values of αiu(∀u ∈ Ci) will be altered. This phenomenon is rea-

sonable, since all members in a community are strongly connected. Hence, the perturbation

influence affects the entire community.

3.3.3 Inference

With Theorem 3, we can make the following analysis and explain some of the phenom-

ena observed from Figure 2 and Table 2. Before the perturbation, when the adjacency

matrix A is of the diagonal block form, the second part of right hand side of Equation

(11) will be 0, so nodes from the community Ci will lie on line Ii. Since Ii · Im = 0

for i 6= m, the nodes from different communities lie on different orthogonal lines. After

the matrix is perturbed, suppose that the perturbation happens on the Cm region of the vth

column of E, then Exi = 0, since the Cm region of xi = 0 by Equation (8). Then the

coordinates of all the nodes in Ci with respect to the two-dimensional subspace become

(xiu,
∑n

j=1∇uj

∑
v∈Γmu

ejvxmv
λm

) for u ∈ Ci. Likewise, the coordinates of the nodes in Cm

are: (0,xmw +
∑n

j=1∇wj

∑
v∈Γmu

ejvxmv
λm

) for w ∈ Cm. The dot products of any two rows

are not 0, so the projections of nodes do not form strict orthogonal lines. Due to the sum of
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the product of scalar ∇ij and the remaining terms, the spectral projections of all the nodes

u of the same community Ci will deviate from the original line at different rates depending

on the values in∇.

The following is an example with a graph of two communities to illustrate the above

proposition. Suppose nodes u and v are from community C1 and C2 respectively, the

perturbation matrix E adds an edge from u to v as u → v. Then the spectral coordinates

for nodes u and v in the two dimensional space would be: x1u ∇u1
euv
λ2
x2v

0 x2v +∇v1
euv
λ2
x2v

 . (12)

This result coincides precisely with the observed pattern in the case in which and edge

is added from node 10 to node 5 in Figure 2 and the data shown in Table 2. Therefore,

we have confirmed using matrix perturbation theory that the spectral space spanned by per-

turbed Perron-Frobenius eigenvectors in observed graphs can indeed capture the underlying

community structures.

3.3.4 Core of a Community

At the beginning of this chapter, we made the assumption that communities are strongly

connected components. However, this requirement is unrealistic in real-world applications

because nodes within one community may not be strongly connected. In our illustrative

example as shown in Figure 2 and Table 2, nodes 9 and 11 were not members of any

strongly connected component, but they could still be clustered into the strongly connected

component which they point directly to with edges. Our theoretical result based on the

matrix perturbation can be extended to a general case.



34

Theorem 4. Suppose that a community has a large strongly connected core and a small

portion of leaf nodes which all have edges pointing to the members in the core. Let the leaf

edges be a perturbation matrix E and treat the core as A. If the norm of E satisfies the

conditions in Lemma 3, the leaf nodes will have values in the corresponding locations of

the perturbed Perron-Frobenius eigenvector of A. Hence all the nodes can be clustered ac-

cording to their correlations with communities in the perturbed Perron-Frobenius spectral

subspace.

Proof. Since the norm of E satisfies the conditions in Lemma 3. All the nodes will

have values in the corresponding positions of the perturbed Perron-Frobenius eigenvectors.

Therefore, nodes can be clustered according to the their corresponding eigenvectors in the

perturbed Perron-Frobenius spectral subspace. Apply Theorem 3 and consider Equation

(12). The spectral coordinates for leaf node u pointing to node v in community 2 are:

 0 ∇uu
euv
λ2
x2v

0 x2v +∇vu
euv
λ2
x2v

 . (13)

we get the coordinates on the community j ∈ (1, · · · , K) for any such leaf nodes u as

∇uu
euv
λj
xjv. If one leaf node points to multiple communities,it will be clustered to the one

with the most edge weight. This is equivalent as the eigenvector centrality.

Based on this theorem, we can replace the original assumption that all communities are

strongly connected components with a weaker one: if all communities have strongly con-

nected cores, all nodes can be assigned to communities based on the geometric relationships

in the spectral space spanned by the perturbed Perron-Frobenius eigenvectors.
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3.3.5 Perturbation Influences to Eigenvectors

In general, when ‖E‖2 is small, nodes from the same community form a cluster to-

wards a fitted line by using the spectral projection method according to our theories above.

Therefore, nodes can be clustered in the spectral space based on their spectral coordi-

nates when ‖E‖ is small, but the clustering results would degrade as ‖E‖ grows. When a

larger community points an edge to a smaller community, the Perron-Frobenius eigenvec-

tor corresponding to the smaller community will be altered tremendously, since the inflow

perturbation from the eigenvector corresponding to the larger spectral radius completely

dominates the perturbed eigenvectors of the smaller community.

Recall the fourth case in Figure 2, two communities were joined by an undirected edge to

become one single strongly connected component. In this case, the perturbed eigenvectors

corresponding to the larger spectral radius will become the Perron-Frobenius eigenvector of

the newly formed strongly connected component, thus it will be strictly positive. However,

the Perron-Frobenius eigenvector corresponding to the smaller community will be mixed

signed. Our following corollary explains mathematically why some observed sign changes

in eigenvectors.

Corollary 1. The sign changes in perturbed eigenvectors x̃i are influenced by the corre-

sponding spectral radius λj of the neighbouring community Cj . There are two cases:

1. The values in x̃i remain same signed when λi � λj .

2. The values in x̃i will be mixed signed when λi ≤ λj .

Proof. A simplified mathematical representation for this phenomena can be explained by



36

using Equation (12).The perturbed eigenvector of it can be approximated as:

x̃i ≈ xi +Q(I − L2

λi
)−1QHE

xi
λi
.

Since the diagonal elements of L2 corresponds to spectral radii of neighbouring commu-

nities according to Proposition 1, then the term (I − L2

λi
)−1 would be determined by the

incoming influences from other communities.

In the first case, when λi � λj , the perturbation will have minimal influence, thus the

values in x̃i will not be perturbed too much and will keep their original signs.

In the later case, the perturbation results will be completely dominated by the incoming

influence, so (I − L2

λi
) will contain all negative values on its diagonal. Therefore, most of

the locations in x̃i corresponding to those of nodes in Cj will have different signed values.

This caused the values of x̃i to be mixed signed.

3.4 Algorithm

According to Theorem 3, we have qi = xi for i ∈ (1, · · · , K), so (x1, · · · ,xK) are part

of the orthornormal basis. Then by Lemma 5 and Definition 1, (x1, · · · ,xK) is a simple

invariant subspace. Hence, all the results derived for observed graphs can be generalized

into the perturbed spectral space from the simple invariant subspace spanned by the Perron-

Frobenius eigenvectors. By combining the results with Perron-Frobenius Theorem, this

particular simple invariant subspace has many unique properties before perturbations: it

is real valued, values in each column vector are same signed with small or no incoming

perturbations, and its dimension equals the number of the communities. Furthermore, it

contains the some of the most important topological information of a given graph, since
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the partition in this spectral space maximizes the modularity score under same assumptions

in [81, 83] and their variants.

With all the observations and theoretical results, a spectral clustering algorithm follows

immediately, as shown in Algorithm 1. Our algorithm includes the following major steps:

diagonalization of the adjacency matrix; normalization of the eigenvectors; selecting the

initial set of eigenvectors with same signed components whose corresponding eigenvalues

are real valued, positive and amongst the largest real positive eigenvalues of the adjacency

matrix; projection of the nodes onto a unit sphere; clustering the nodes according to their

location on the unit sphere using K-means; screen all the potential eigenpairs based on the

modularity to find meaningful partitions.

As discussed previously, there are several factors that can affect the signs of the the

components of the perturbed eigenvectors. Therefore, the initial set of eigenpairs may not

include all the perturbed Perron-Frobenius eigenvectors. As a result, we need to search

through all the real eigenvectors to select the ones that could increase the modularity. This

process will cross validate all the newly added eigenvectors with the selected set of per-

turbed Perron-Frobenius ones. As a result, it would reduce the workload while avoid-

ing producing a partition that deviates from the true structure by selecting non-Perron-

Frobenius eigenvectors in the beginning. Since the communities in DUGs are not defined

by the density based criterion, maximizing modularity could no longer suffice as the ob-

jective. Ideally, we could use a combination of objective functions to determine the com-

munities, but due to limited space, we will only test modularity with a tuning factor α.

The rationale behind this approach is: although adding some eigenvector to partition the

graph reduces the overall modularity by an insignificant amount, this partition could still be
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meaningful. As it turns out in our empirical evaluation, this approach can detect overlaps

of communities if used properly.

Algorithm 1 Augmented-AdjCluster: Simple Invariant Subspace Based Spectral Clustering
for DUGs
Input: A, τ, α
Output: clustering result CL

1: Compute eigenvectors of A corresponding to the largest τ real eigenvalues, and denote
this set as E and their eigenvalues Λ;

2: Normalize the eigenvectors ᾱu = αu
‖αu‖ ;

3: C ← eigenvectors from E with same signed components;
4: S ← Cardinality(C);
5: M ← 0;
6: for each c ∈ ∅ ∪ E \ C do
7: Apply k-means algorithm on C ∪ c to get clustering result R;
8: Compute the Modularity scores Mtemp;
9: if Mtemp ≥ αM (α ∈ [0, 1] adjusts the objective function) then

10: S ← S + 1;
11: C ← C ∪ c;
12: CL← R;
13: M ←Mtemp;
14: end if
15: end for
16: Return S and clustering result CL;

3.5 Empirical Evaluation

In this evaluation, we mainly compare our algorithm Aug Adj with several representa-

tive spectral clustering methods. In particular, we compare with the random walk based

Normalized cut (Ncut) [142], the random walk based Laplacian method (Lap) [72], the

adjacency matrix based method using symmetrization (AdjCl) [132], and the SVD based

method which works on the eigenspace associated with AHA and AAH (SpokeEn) [91]

on synthetic graphs under various conditions. Note that both Ncut and Lap are spectral

clustering methods for DUGs and the transition matrices used there are based on the clas-

sic PageRank method. In our evaluation, we set the default damping factor 0.85 in the
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PageRank when calculating the transition matrices used in Ncut and Lap.

3.5.1 Synthetic Data

The synthetic graphs are generated based on 8 strongly connected components, C0, · · · ,

C7, each with 18, 28, 74, 120, 194, 268, 240 and 314 nodes respectively. The densities

(defined as the number of edges divided by the square of the number of nodes) of these

components are: 0.4722, 0.4235, 0.3629, 0.3435, 0.3280, 0.3202, 0.3218, and 0.3178,

respectively. We set α = 0.9 in our Aug Adj algorithm and set τ (the number of eigen-pairs

to search for) as 10.

We generate five synthetic graphs, each of which is composed of 7 components. Synth-1

contains 7 isolated components C0, C2, · · · , C7 with no inter-cluster edges. Synth-2 con-

tains 7 isolated componentsC1, · · · , C7 with no inter-cluster edges. The difference between

Synth-1 and Synth-2 is that we purposely include a tiny component with 18 nodes (C0) in

Synth-1, which is used to demonstrate the existence of eigen-gaps would not be a reliable

criteria alone to determine the eigenvectors used for clustering. Synth-3 is generated by

adding inter-community edges with probabilities 0.1 between all pairs of components for

both incoming and outgoing directions to Synth-2. Synth-4 is by increasing the probability

between C6 and C7 to 0.27 whereas Synth-5 is generated by increasing the probability be-

tween C6 and C7 to 0.5. The clustering results are shown in Table 3, where Det indicates

the number of clusters detected, M is the modularity, and Acc is the accuracy.

For Synth-1, we find that by using the naive symmetrization with AdjCl algorithm, only

6 clusters are detected. This is because the spectral radius corresponding to the perturbed

Perron-Frobenius eigenvector of C0 does not fall in the range of the largest 10 eigenvalues.
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Table 3: Synthetic Data Results

Synth-1 Synth-2 Synth-3 Synth-4 Synth-5
Method Det Acc M Det Acc M Det Acc M Det Acc M Det Acc M

Lap 7 1.000 0.761 7 1.000 0.762 6 0.801 0.362 6 0.806 0.390 6 0.806 0.356
Ncut 7 1.000 0.761 7 1.000 0.762 7 0.995 0.419 6 0.802 0.384 6 0.806 0.356

SpokeEn 6 0.985 0.760 6 0.997 0.761 6 0.977 0.469 4 0.724 0.380 5 0.784 0.355
AdjCl 6 0.985 0.760 7 1.000 0.762 7 1.000 0.472 4 0.724 0.380 5 0.784 0.355

Aug Adj 7 1.000 0.761 7 1.000 0.762 7 1.000 0.472 7 0.997 0.364 6 0.806 0.356

If τ is increased to 15, the algorithm detects this eigen-pair and then can correctly identify

7 clusters. SpokeEn can only detect 6 clusters even if τ = 50, which indicates that it is

more susceptible to noises in the spectral space. To test our hypothesis, we increase the size

of the smallest component in Synth-2. We can see AdjCl successfully identifies the correct

number of components and assigns the corresponding nodes correctly to their components

for Synth-2 with τ = 10. However, SpokeEn fails again to detect 7 communities in this

setting even if τ is increased to 50.

For Synth-3, the results are very stable for all the methods with different symmetriza-

tion techniques. In this setup, the densities of inter-community edges are smaller than

those of inner-community edges, so most algorithms can find 7 components. The Lap and

SpokeEn detected 6 components. It is possible that the weighted symmetrization assigned

some boundary nodes to incorrect clusters. Adjacency based methods outperform the other

methods due to correct selection of eigenvectors for a well conditioned adjacency matrix.

For Synth-4, components C6 and C7 are on the verge of merging together. Our Aug Adj

algorithm identifies 7 clusters and assigns most nodes correctly. We also find, when we set

α = 1, our algorithm only detects 6 clusters with modularity 0.390 and accuracy of 0.806.

This result suggests that, based on an adjusted objective function, our method can detected

overlapping communities. For Synth-5, components C6 and C7 are merged together due to
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dense inter-cluster edges. Lap, Ncut and our method correctly report 6 components, while

the other methods report 5.

From the above results, we have some consistent observations: methods based on matrix

transformations tend to introduce both redundant information and noises that will cause

graph partitions to be inaccurate; when the community sizes are not well balanced, naive

symmetrization could fail to detect small communities in the adjacency eigenspace. These

observations coincide with our discussions in previous sections. The results for Synth-4

lead to the speculation that the down tuned significance requirement for objective functions

could lead our method to detect certain hidden structures of components. This could po-

tentially be useful for studying micro-structures of components or overlapping problems of

communities. Due to the flexibility of the objective for our algorithm, it has many potential

uses for analyzing both local and global structures of a network.

3.5.2 Twitter Data

To show that the proposed algorithm is scalable and robust, we tested it on a large twitter

data set. The retweet data was collected from 2013.10.23 to 2013.12.16 by using Twitter’s

public API. In order to have a denser graph, we removed those nodes with less than 1

incoming edge. The resulting network graph contains 5176820 nodes. The density of the

reduced graph is 8.394× 10−7. As a result, we have a directed weighted adjacency matrix

that is a good fit to test our algorithm.

We chose τ = 25 and α = 1 as the input. Ideally, we would like set τ as a large value,

but it would be too time and space consuming. Therefore, we only consider the eigenpairs

that correspond to the largest τ eigenvalues, since they represent those clusters with nodes
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that are more influential to the network by having more incoming and out going edges. Our

method then will screen out the eigenpairs that either are not corresponding to the spectral

radii or do not contribute significant enough to the modularity measure.

The graph was partitioned into 16 clusters with M = 0.347. Figure 3 shows the nodes

distribution across the clusters. Cluster 1 is the smallest with only 15 nodes. Cluster 8 is

the largest and has 1855961 nodes. By checking the eigenvector corresponding to cluster 1

and the edges connecting those nodes, we confirmed that this cluster is indeed an isolated

component with a nonnegative eigenvector, which coincides precisely with our theoretical

assumption. Hence, the results demonstrated that the Aug Adj method can detect clusters

regardless of their sizes even in a very large graph by avoiding noises introduced by eigen-

vectors that are not Perron-Frobenius.
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Figure 4: Modularities

Figure 4 shows the modularities of various combinations of eigenvectors. The x-axis

shows the indexes of eigenvectors tested by our algorithm. The initial indexes of eigenvec-

tor candidates are: S0 = {1, 2, 3, 4, 7, 8, 10, 11, 13, 14, 15, 23}, whose modularity is indi-

cated by the triangle. Based on our theory, those eigenpairs corresponds to the perturbed



43

Perron-Frobenius simple invariant subspace. In on our algorithm, if the modularity score

Mi ≥Mi−1, then the i-th eigenvector will be added to the candidate set. Therefore, further

analyses included {6, 16, 17, 19}, whose modularities are indicated as circles in Figure 4.

On the other hand, eigenvectors {5, 9, 12, 18, 20, 21, 22, 24, 25} indicated by squares were

removed, since they do not improve partition results.

Due to the mechanism of how the eigenvectors are selected, our algorithm can potentially

reduce the time needed to optimize objective functions by only testing a subset of the real

eigenvectors. As a result, computational time can be reduced, since the initial set S0 do

not need to be tested. In the worst case when S0 is empty, our method will degrade to

Modularity based method in [79] and its variants.

3.6 Summary

In this chapter, the properties of the adjacency eigenspaces of DUGs were studied. We

started our work by learning from the observations in the Perron-Frobenius eigenspaces.

Then we began the theoretical work from networks with disconnected communities by

making the assumption that each community should be a strongly connected component.

By using the matrix perturbation theory, we constructed an orthonormal basis contain-

ing the Perron-Frobenius eigenvectors corresponding to all communities to achieve the

orthornormal reduction of the adjacency matrices of DUGs and described mathematically

how the projections of nodes would behave in the perturbed Perron-Frobenius simple in-

variant subspace of an observed graph. Then, we extended our theories by replacing the

original assumption of community structures with a weaker one that only requires a com-

munity to have a strongly connected core component, so that they can be used to study the
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networks without clear community structures. A spectral clustering algorithm was devel-

oped and compared with other representative methods within the same domain on various

synthetic data sets. The scalability and robustness of our algorithm was tested on a large

Twitter data set.

For future works, the theories and algorithms can be extended to analyze various graph

related problems including but not limited to: studying the microstructure of a community,

analyzing the changes of the macrostructure of a network, and detecting network anoma-

lies.

The preliminary results of this chapter were published in [65].



CHAPTER 4: SPECTRAL PROPERTIES OF DIRECTED SIGNED GRAPHS

As introduced in the previous chapter, the adjacency eigenspace of a directed unsigned

network contains key information of its underlying structure. However, there has been no

study on spectral analysis of the adjacency matrices of directed signed graphs (DSGs). In

this chapter, we derive theoretical approximations of spectral projections from DSGs using

matrix perturbation theory. We use the derived theoretical results to study the influences

of negative intra cluster and inter cluster directed edges on node spectral projections. We

then develop a spectral clustering based graph partition algorithm, SC-DSG, and conduct

evaluations on both synthetic and real datasets. Both theoretical analysis and empirical

evaluation demonstrate the effectiveness of the proposed algorithm.

4.1 Analysis of Directed Signed Graphs

In social networks, relationships between two individuals are often directed, such as

Twitter following, phone calls, and voting. Directed graphs are used to capture asymmet-

ric relationships between individuals. Relationships could have more than two status like

presence or absence of a trust/friendship between two individuals. For example, they could

also be negative to express distrust or dislike. Signed networks are used for this purpose.

Spectral properties for Laplacian and its variants of the DUGs have been studied in the past

(refer to the surveys [8,71,101]) and spectral analysis of signed undirected graphs have also

been studied [138]. For example, [58] used spectral properties of signed graphs for link pre-
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diction. [117] extended the modularity metric for unsigned graphs to the signed modularity

for signed graphs. [60] studied the spectral properties of signed normalized Laplacian trans-

formation from the original signed adjacency matrix and developed methods for spectral

clustering, link prediction and graph structure visualization.

However, spectral analysis of the adjacency eigenspaces of DSGs has not been studied.

In the ideal case of DSGs, all the intra community edges are positive and all the inter com-

munity edges are negative since the members within one community tend to hold the same

opinion towards each other while members from different communities tend to dispute.

However, in real world datasets such as Epinion, negative links are also present within

communities and some positive links are present between communities.

It was shown in [132] and [65] that matrix perturbation theories can be used as a pow-

erful tool for explaining the effects of inter community edges on the spectral projection

behaviours of the given adjacency matrix directly. The former work provided theoreti-

cal results for undirected graphs, while the later work conducted theoretical analysis for

DUGs. [131] analyzed the K-balanced undirected signed graphs by using matrix pertur-

bation approach. [128] analyzed the effects of negative edges on the spectral properties of

signed and dispute networks. However, the influences of negative edges to the spectral

properties of DSGs remain unclear, so many problems in this domain are still open.

The core idea of applying the matrix perturbation theories on spectral graph analysis is

to model the observed graph (with K communities) as the perturbation of intra-community

edges on a K-block graph (with K disconnected communities) and study how the spec-

tral space formed by leading eigenvectors as well as node projections in the space are

changed before and after perturbation. However, when applying the matrix perturbation
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theories on DSGs, one main difficulty is to deal with the complex eigenpairs associated

with the asymmetric adjacency matrix. In the previous chapter and also in the work [65],

we utilized the strong-connectedness property of the communities and the real Perron-

Frobenius eigenvalue and eigenvector of each community, thus eliminating the need for

dealing with complex eigenpairs. However, when the graphs have negative intra cluster

edges, the Perron-Frobenuius eigenpairs may not exist and the eigenpair corresponding to

the spectral radius may not be real any more. In this chapter, we propose to handle the inter

cluster and intra cluster negative entries of DSGs.

We apply matrix perturbation theories to derive several key theoretical results for an-

alyzing negative inter cluster edges. Our key results can answer the following important

questions:

• How will the negative inter cluster edges affect the spectral projections of each node?

• Will negatively linked nodes be pushed away from each other, while positively linked

nodes be pulled towards each other like those in undirected signed graphs?

• What is the role of the directionality of an edge on node spectral coordinates?

• Why can spectral projection be used for spectral clustering?

For negative intra cluster perturbation, we study how to deal with complex eigenpairs

for DSGs. We explain why negative edges change real eigenpairs to complex eigenpairs.

These questions are crucial in identifying the spectral properties of cluster relationships and

developing spectral clustering algorithm for DSGs. Our algorithm deals with the correct

selection of complex eigenpairs based on Perron-Frobenius properties, splits of complex
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valued eigenvectors into real and imaginary parts, projects nodes into the spectral sub-

space, and applies k-means algorithm to find clusters. Our theoretical analysis based on

matrix perturbation rigorously demonstrates that the perturbed Perron-Frobenius invari-

ant subspace can indeed capture the structural properties of DSGs in the spectral domain.

We emphasize that our algorithm directly identifies clusters of DSGs in the spectral space

without transforming the adjacency matrices or modifying the objective functions. We con-

duct evaluations on several synthetic datasets and real networks and compare the accuracy

results with several state-of-the-art spectral clustering methods. Results demonstrate the

effectiveness of the proposed method.

4.2 Spectral Analysis of DSGs

4.2.1 Perturbation

A directed signed graph with n nodes can be represented as its adjacency matrix Ãn×n

with Ãij = 1 (-1) if there exists a positive (negative) edge pointing from node vi to node vj

and Ãij = 0 otherwise. Since Ãij and Ãji may not have the same value, Ã is asymmetric.

The spectral decomposition of Ã takes the form Ã =
∑

i λixix
T
i . All the eigenvalues are

are assumed to be in descending order in magnitude. Formally, let Λ = (λ1, · · · , λn) be

the eigenvalues of matrix Ã, then ρ(Ã) = max(|Λ|) is called the spectral radius of Ã.

We perform the spectral projections as shown in Equation (1). The basis of the spectral

space are formed by eigenvectors of the given adjacency matrix. The spectral space is

of full rank n, when all the eigenvectors are linearly independent. In most applications,

only the first K eigenpairs contain major topological information. The row vector αu =

(x1u, x2u, · · · , xKu) is the coordinate of node u in the spectral space. However, when
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negative edges are included in DSGs, the eigenpairs could be complex.

For DSGs, negative edges could exist within communities and between communities.

We treat the negative edges within each cluster as intra cluster perturbation and treat both

positive and negative inter cluster edges as inter cluster perturbation. Formally, we have

Ã = A+ E =


A1 0

. . .

0 AK

+ EI + EO (14)

where A is a K-block matrix and each diagonal component Ai is nonnegative, EI is a

K-block matrix corresponding to intra cluster perturbation and each diagonal component

Ei contains negative intra cluster edges, and EO contains both positive and negative inter

cluster edges. For each cluster Ci, itsAi is a nonnegative matrix and those entries with zero

denote the absence of edges. Based on Perron-Frobenius theorem [86], for a non-negative

square matrix, the largest eigenvalue (called Perron-Frobenius eigenvalue) is real and non-

negative and the associated eigenvector (called Perron-Frobenius eigenvector) is unique and

nonnegative. If we choose xCi to be the Perron-Frobenius eigenvectors of corresponding

communities, then this spectral projection space satisfies the properties described in Lemma

6. We present our theoretical results to explain howEO andEI affect the associated spectral

projection behaviour in Sections 4.2.2 and 4.2.3 respectively .

4.2.2 Spectral Analysis of Inter Cluster Perturbation

In this case, our model is simplified as Ã = A + EO. We studied in [65] and Chapter 3

the spectral properties of directed unsigned graphs based on the matrix perturbation theo-

ries [109] and works [107, 108]. Because the eigenvectors of asymmetric matrices do not
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form an orthonormal basis naturally, we developed a method of constructing orthonormal

basis and derived the approximations of the eigenvectors when treating the graph as a per-

turbation from a block matrix. The derived theories in [65] can be generalized to DSGs

setting although although EO contains both positive and negative inter cluster edges. This

is because both Ai is nonnegative, thus having the Perron-Frobenius simple invariant sub-

space. We focus on how positive and negative edges in EO affect the spectral coordinates.

To be consistent, in the remaining part of Section 4.2.2, E denotes EO.

The results of perturbed spectral space from Theorem 2 and the results of the spectral

approximation from Theorem 3 from the previous chapter still hold true for DSGs, since

they are derived for general graph pertrubations.

However, the work [65] associated with the previous chapter only gave the above ap-

proximation formula and did not examine how the node spectral coordinates change under

perturbation of inter cluster edges. This is because the entry
∑n

j=1∇uj

∑
v∈Γiu

ejvxiv
λi

in the

i-th column position of the spectral coordinate in Equation (11) is very complicate com-

pared with that of undirected graphs and hence it is difficult to determine the influence of

the perturbation. In this chapter, we propose a solution by decomposing the perturbation

into each edge and explicitly quantifying how one single inter cluster edge u→ v changes

the spectral coordinates of u and v.

Without loss of generality, suppose nodes u and v are from community C1 and C2 re-

spectively, there is a directed edge from u to v, u→ v, which could be positive or negative.

Before the edge added, the spectral coordinates for nodes u and v in the two dimensional

space are

 x1u 0

0 x2v

 . After the edge added, from Theorem 3, the spectral coordinates
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are

 x1u ∇u1
euv
λ2
x2v

0 x2v +∇v1
euv
λ2
x2v

 .

Our next theorem shows that the change of spectral coordinates depends on both the

Perron-Frobenius eigenvalue of the node’s community and the edge directionality.

Theorem 5. Denote (λ1,x1) and (λ2,x2) as the Perron-Frobenius eigenpair of C1 and C2

respectively. Nodes u and v are from community C1 and C2 respectively.

1. When u→ v is positive,

(a) If λ1 > λ2, node u has a clockwise rotation while node v stays on its original

axis.

(b) If λ1 < λ2, node u stays on its original axis while node v has a clockwise

rotation.

2. When u→ v is negative,

(a) If λ1 > λ2, node u has an anti-clockwise rotation while node v stays on its

original axis.

(b) If λ1 < λ2, node u stays on its original axis while node v has an anti-clockwise

rotation.

Proof. For 1(a), node v has spectral coordinate (0, x2v + ∇v1
euv
λ2
x2v). Therefore, node

v will stay on its original axis. On the other hand, node u has spectral coordinate

(x1u,∇u1
euv
λ2
x2v). The angle β of the spectral coordinate vector of node u with the x1

axis will be arctan(
∇u1 euvλ2 x2v

x1u
). The top part ∇u1 ∗ 1

λ2
takes the full form as (Y (λ2I −

L2)−1Y H)u1 as in Theorem 2. The diagonal of L2 are the other eigenvectors of A by the
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construction process. Furthermore, L2 itself is upper triangular by Schur’s Theorem. Then

the diagonal entries of (λ2I−L2)−1 becomes (λ2−λ1, λ2−λ3, · · · , λ2−λn)−1. If we divide

∇ by the term (λ2− λ1)−1 and relabel it as∇∗, then the spectral coordinates of u becomes

(xiu, (λ2− λ1)−1∇∗u1euvx2v). Then the angle β becomes arctan(
(λ2−λ1)−1∇∗u1euvx2v

x1u
). Since

λ2 − λ1 < 0, β will be a negative angle, which indicates that node u will rotate clockwise

to the fourth quadrant.

For 1(b), if λ1 < λ2, by relabeling ∇∗ if necessary, the angle β takes the same equation

as arctan(
(λ2−λ1)−1∇∗u1euvx2v

x1u
). Since λ1 < λ2, β will be a positive angle, which indicates

that node u will rotate counter-clockwise and the vector will remain in the first quadrant.

For 2(a), euv < 0 and λ1 > λ2. By relabeling ∇∗ if necessary, the angle β takes the

same equation as arctan(
(λ2−λ1)−1∇∗u1euvx2v

x1u
). Since λ1 > λ2, then (λ2 − λ1)−1euv will

be positive, which indicates that node u will rotate counter-clockwise and the vector will

remain in the first quadrant.

For 2(b), euv < 0 and λ1 < λ2. (λ2 − λ1)−1euv will be negative, which indicates that

node u will rotate clockwise and the vector will be in the fourth quadrant.

Illustrative Example. Figure 5 shows a toy graph where different edge types will be added

between nodes 8 and 25. Figure 6 illustrates the rotations with respect of perturbation edge

directions and signs in the spectral space. The triangles represent nodes from cluster C1,

labeled with 1-8 and 15 in Figure 5, while the crosses represent nodes from cluster C2,

labeled with 16-25. Node 8 is marked with green and node 25 is marked with magenta in

order to separate from other nodes. The Perron Frobenius eigenvalue is 1.8839 for cluster
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Figure 5: Example graph with 3 communities, where node 8 and 25 are connected by
negative or positive edges.

C1 and 1.7284 for cluster C2, so that λ1 > λ2. The sub-figures on the left hand side

correspond to positive perturbation, with edge 8→25, 8←25 , and 8↔25, and those on

the right side correspond to the negative perturbation respectively. All the observations

match our results in Theorem 5. For example, Figure 6(a) shows node 8 and other nodes

in C1 rotate clockwisely while node 25 and other nodes in C2 stay on the original line

with a positive edge 8→25, matching our result 1(a) in Theorem 5. Similarly, Figure 6(b)

shows node 8 and other C1 nodes rotate anti-clockwisely with a negative edge 8→25,

matching our result 2(a) in Theorem 5. Figures 6(c) and 6(d) show the effect due to edge

directionality. Figures 6(e) and 6(f) show the combined effects of both directions.

4.2.3 Spectral Analysis of Intra Cluster Perturbation

In general, the subgraph for each cluster is treated as an intra cluster perturbation from

a nonnegative subgraph Ai such that Ãi = Ai + Ei, with Ei containing all negative intra

cluster edges. The intra cluster perturbation Ãi = Ai +Ei where Ei containing all negative

intra cluster edges can be treated as a transition from a nonnegative graph Ai with the
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(f) Adding 8↔25 negative

Figure 6: Spectral Coordinates of Nodes under Perturbation with Positive or Negative
Edges

Perron Frobenius property into a signed graph with uncertain properties. Depending on

the amount and locations of negative edges added, the Perron Frobenius property may not

hold.

Definition 2. The characteristic polynomial of a n by n matrix A takes the general form:

F (λ) = a1 ∗ λn + a2 ∗ λn−1 + · · ·+ an ∗ λ+ an+1, (15)

where the roots for F (λ) = 0 will be the eigenvalues of A.

Those negative entries within clusters may cause those Perron roots for their charac-

teristic polynomials to change drastically and the corresponding eigenvectors and spectral

projections will also change accordingly. Since the coefficients of the polynomial in Equa-

tion (15) are determined by the determinant |A − λ ∗ I|det, which is calculated iteratively

with the entries of A, the polynomial itself could be either increasing, decreasing, concave

or convex. Therefore, the resulting eigenvalues and eigenvectors could be complex. How-
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ever, we do not have any explicit results to show how small the negative entries should be

and/or where those negative entries should locate in order for a graph to retain the Perron

Frobenius property.

The theoretical results of graph theories pertaining the spectral properties of general

signed graphs are relatively scarce. From the first proposition of the Perron Frobenius

theorem for nonnegative irreducible square matrices in 1912 [35] to the recent works

[34,86,137] that extended the result into eventually irreducible nonnegative directed graphs

a few decades ago, many problems related to signed graphs remain open. There are some

works on studying the relationship between graph topology and complex eigenpairs in ap-

plied mathematics and linear algebra. The authors in the work [57] pointed out that three

properties can be read off the complex eigenvalues: whether a graph is nearly acyclic,

whether a graph is nearly symmetric, and whether a graph is nearly bipartite. If a di-

rected graph is acyclic, its adjacency matrix is nilpotent and therefore all its eigenvalues

are zero [26]. The complex eigenvalue plot can therefore serve as a test for networks that

are nearly acyclic. When a directed network is symmetric, the adjacency matrix A is sym-

metric and all its eigenvalues are real. As a result, a directed network close to symmetric

has complex eigenvalues near the real line. Additionally, the eigenvalues of an undirected

bipartite signed graph are symmetric around the imaginary axis, so the amount of symmet-

ric along the imaginary axis can serve as an indicator for bipartivity.

4.2.4 Spectral Clustering Algorithm for DSGs

The results from Section 4.2.2 described how node spectral coordinates are changed due

to inter cluster perturbation, while the results from Section 4.2.3 described the potential
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complex eigenpairs due to negative intra cluster perturbation. With the two results com-

bined, we present our spectral clustering based graph partition algorithm, SC-DSG, for

DSGs.

Algorithm 2 SC-DSG: Spectral Clustering for DSGs
Input: A, τ
Output: cluster result K, CL

1: Compute eigenvectors of A corresponding to the τ largest eigenvalues in modulii and
choose only eigenvectors with positive real part of eigenvalues, denote the set D;

2: Normalize the eigenvectors ᾱu = αu
‖αu‖ ;

3: C ← real eigenvectors from the set D with same signed components;
4: K ← Cardinality(C), M ← − inf;
5: for each c ∈ D \ C do
6: if c is complex then
7: c← split into [Re(c), Im(c)]
8: end if
9: Apply k-means algorithm on C ∪ c to get clustering result CLtemp of K clusters;

10: Compute the signed modularity score Mtemp;
11: if Mtemp ≥M then
12: C ← C ∪ c, M ←Mtemp;
13: K ← K + 1, CL← CLtemp;
14: end if
15: end for
16: Return number of clusters K and clustering result CL;

Algorithm 2 includes the following major steps: computing eigenvectors of the adja-

cency matrix; normalization of the eigenvectors; selecting the initial set of eigenvectors

with same signed components; splitting complex eigenvectors into real and imaginary

parts; projection of the nodes onto a unit sphere; clustering the nodes according to their

location on the unit sphere using the classic k-means clustering algorithm; screen all the

potential eigenpairs based on the signed modularity to find meaningful partitions.

Spectral clustering based partition algorithms require one to find a correct set of eigen-

vectors for spectral projection. This leads to the search for a set of eigenvectors that can
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capture the structural information in the spectral domain. Our algorithm uses the stepwise

forward strategy to find a set of eigenvectors. Eigenvectors are ordered according to the

modulii of eigenvalues and only eigenpairs with positive real part are chosen for spectral

clustering. We exploit Perro-Frobenius properties and include the candidate eigen-pairs

based on whether they can help increase the signed modularity [7],

Qs =
1

2m

∑
i,j∈V

(Aij −
d+
i d

+
j

2m
+
d−i d

−
j

2m
)δ(C(i), C(j)), (16)

where d+
i (d−i ) denotes the node i’s positive (negative) degree and C(i) denotes the node

i’s community.

A key step is to deal with potentially complex eigenvectors. Our algorithm uses eigen-

vectors corresponding to the spectral radii of each component. However, due to negative

intra cluster perturbations, the eigenpairs may not be real anymore. The k-means cluster-

ing used in most of the spectral based clustering methods could not produce meaningful

results in the coordinate space of Cn, since the Euclidean distance of two complex coordi-

nates with only imaginary part will be negative. In our algorithm, we split each complex

eigenvector into the real and imaginary parts. As a result, the complex spectral coordinate

space is transformed to the real space that combines both real and imaginary parts. We

emphasize that both real and imaginary parts contain information for clustering, as shown

in our theoretical analysis and experimental results. It is worth pointing out that we may

use some distance functions defined over complex-valued vectors rather than split. After

determining the eigenvectors, we project nodes into the spectral space and then apply the

k-means method.

Our algorithm is developed rigorously based on our theoretical results. Our Theorem 5
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shows the change of spectral coordinates depends on the Perron-Frobenius eigenvalues of

the communities and the sign and directionality of the inter-cluster edge, which lays out

the theoretical foundation of spectral clustering algorithm. The spectral analysis of intra-

cluster perturbation shows why the Perron-Frobenius eigenpair may have complex values,

which provides theoretical justification of its split into real and imagery parts in algorithm.

The calculation of the eigenvectors of an n × n matrix takes in general a number of

operations O(n3), which is almost inapplicable for large networks. However, in our frame-

work, we only need to calculate the first K eigen-pairs, which can be determined by ex-

amining the eigen-gaps [109]. Furthermore, adjacency matrices in our context are usually

sparse. Therefore, the Arnoldi/Lanczos algorithm [39], which generally needs O(n) rather

than O(n2) floating point operations at each iteration, can be applied to calculate the most

significant eigenpairs. In our implementation, we conduct eigen decomposition using Mat-

lab’s eigs() function where the Arnoldi/Lanczos algorithm is realized through the APPACK

package.

4.3 Empirical Evaluation

4.3.1 Baseline Algorithms

We compare our SC-DSG with the following state-of-the-art baseline algorithms: 1)

The Augmented ADJ (AugAdj) [65] is an adjacency based spectral clustering method for

directed unsigned graph; 2) UniAdj [128] is an adjacency based spectral clustering method

for signed undirected graphs; 3) The signed normalized cut (SNcut) [60] is an improved

version of the signed Laplacian method where weighting schemes are adjusted to form

better partitions; 4) SC-DSG-M is a variant of SC-DSG and only uses the modulii of the
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eigenvector entries as spectral coordinates; and 5) SC-DSG-Re is another variant of SC-

DSG and only uses the real part of the eigenvector entries as spectral coordinates. The

two variants of SC-DSG are used to demonstrate the usefulness of incorporating the whole

complex eigenvectors in the clustering. AugAdj can be used to deal with the DSGs as it

ignores the use of any complex eigenpairs. Both UniAdj and SNcut require symmetric

adjacency matrices as input. In our experiment, we build the symmetrized versions of the

original directed graphs by the following process: Aij = Aji = −1 if eitherAij = −1 or

Aji = −1, Aij = Aji = 1 if either Aij = 1 or Aji = 1, and Aij = Aji = 0 otherwise.

We limit the search for each method to 50 eigenpairs. Signed modularity, DBI and average

angle between clusters in the spectral projection space are reported in addition to accuracy.

Table 4: Statistics of synthetic data and partition quality

Dataset Edge/+ratio/−ratio
k DBI Q Angle ACCURACY(%)

Intra Inter SC-SDG SC-DSG-M SC-DSG-Re AugAdj UniAdj SNCut
Syn-1 67653/0.4/0 144283/0.2/0 5 0.1745 0.2770 89.3◦ 100 100 100 100 100 100
Syn-2 67588/0.4/0 144335/0.1/0.1 5 0.4711 1.9141 92.2◦ 100 100 100 100 100 100
Syn-3 67545/0.4/0 144362/0/0.2 5 0.0926 -1.0798 90.1◦ 100 100 100 100 100 100
Syn-4 67618/0.4/0 400420/0.7/0 4 1.9774 0.0321 76.5◦ 72.9 68.3 68.8 70.3 71.9 62
Syn-5 80749/0.4/0.08 144294/0.2/0 5 0.4290 0.2221 87.9◦ 100 100 100 100 100 100
Syn-6 81019/0.4/0.08 144372/0/0.2 5 0.3827 0.4442 89.1◦ 100 100 100 100 100 100
Syn-7 80789/0.4/0.08 438193/0.4/0 4 1.4309 0.0776 82.0◦ 92 92 92 92 92 89.9

Syn-8 101002/0.4/0.16 144220/0.2/0 5 1.9958 0.0749 76.8◦ 67.5 62.9 62.9 62.9 62.9 65.1
Syn-9 127448/0.4/0.36 144283/0.1/0.1 5 2.9701 -0.2260 82.4◦ 59.3 57.1 58.9 n/a 55.1 56

4.3.2 Synthetic Data

We generate 9 synthetic graphs. Each graph has 5 clusters with 240,220,200,180 and 160

nodes. The edges for Syn-1 to Syn-9 are generated using uniform random distribution. The

column “Intra” of table 4 shows the number of intra cluster edges as well as the positive and

negative densities. In particular, the x/y/z means that there are x intra cluster edges and

the density of positive (negative) edges is y× 100 (z× 100) percent. Similarly, the column

“Inter” shows the corresponding statistics for inter cluster edges. The negative edges for

both intra and inter clusters are injected into the 5-block graph so that the perturbed graphs
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possess desired structural properties.

For Syn-1 to Syn-4, there are 40% positive edges but no negative edges within clusters.

The inter cluster positive edge density of Syn-1 is 0.2 and there is no negative inter cluster

edge. All the methods achieved 100% accuracy. The average cluster angle is close to 90

degrees. In Syn-2, half of the inter cluster edges from Syn-1 are converted into negative

edges. The perturbed Perron Frobenius invariant subspace contains the real eigenvectors

corresponding to the spectral radii of the clusters. The average angle between clusters is

92.2 degrees. In Syn-3, all the inter cluster edges are negative. All methods achieve 100

percent accuracy and the average angle is 90.1 degrees. In Syn-4, the inter cluster positive

edge density is increased to 0.7 without the inter cluster negative edge. In this setting, all

methods report 4 clusters, where the accuracies drop to around 60 to 70 percent. Since we

have dense inter cluster connections, the results are expected.

For Syn-5, Syn-6 and Syn-7, the positive (negative) intra cluster edge density is 0.4

(0.08). For Syn-5, the positive inter cluster density is 0.2 with no negative inter cluster

edge. All methods achieve 100 percent accuracy. For Syn-6, the negative inter cluster edge

density is 0.2. Since the inter cluster contains only negative edges, all methods still achieve

100 percent accuracy. For Syn-7, more positive inter cluster edges are added. The partition

accuracy drops. Same as Syn-4, only 4 clusters are detected. Our SC-DSG achieves the

best accuracy.

For Syn-8, the negative intra cluster perturbation is doubled to 0.16. The positive intra

cluster edge density remains as 0.4. The positive inter cluster edge density is set to be 0.2.

The accuracy values drop by over 20 percent for all methods. There exist some complex

eigenvalues whose modulii equal the spectral radius. For Syn-9, the negative intra cluster
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edge density is further increased to 0.36. Both the positive and negative inter cluster density

is 0.1. This is the most complex case for DSGs. With no surprise, all clustering methods

perform poorly, with SC-DSG achieving the best accuracy (59.3%).

To summarize, when under small inter cluster perturbations (as the cases for Syn-1 to

Syn-3, Syn-5 and Syn-6), as long as clusters satisfy the Perron Frobenius property, all

methods perform the same, since the correct perturbed Perron Frobenius simple invariant

subspace is captured by all methods. As demonstrated in Syn-4 and Syn-7, dense inter

cluster edges cause clusters to merge, so the clustering accuracies decrease. As demon-

strated in Syn-8 and Syn-9, when the Perron Frobenius property begins to disappear, the

clustering accuracy will decrease more. In all cases, SC-DSG achieves the best accuracy.

4.3.3 Real Data

Table 5: Real Data Statistics and Results

Algorithm
NETWORK STATISTICS SIGNED MODULARITY/CLUSTERS

Nodes +Edges -Edges SC-DSG AugAdj UniAdj SNCut
Sampson’s 18 97 87 2.52/3 1.4200/2 -0.8757/15 -1.0503/11
Slashdot 79120 370234 117517 0.16/6 0.1512/4 0.155/5 0.1072/22

Wikisigned 138592 650653 89744 0.1734/5 0.0785/3 0.0848/5 0.0789/37
Epinion 131828 717667 123705 0.3416/5 0.337/6 -0.174/5 0.2595/13

In this section we conduct our empirical experiments on four real DSGs, Sampson’s,

Wikisigned, Slashdot Zoo and Epinion. Sampson’s work [94] contains the opinions of 18

trainee monks about their relationships towards each other during the period of time when

the clique fell apart. Each monk was asked to rate others from 1 to 3 based on like or

dislike. Later on, the responses were converted into an binary signed adjacency matrix.

Slashdot [59] is a technology news site where users can mark others as “friend” or “foe”

and influence scores seen by them. Therefore, the entire network could be seen as a trust
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network. Wikisigned [1] contains interactions between the users of the English Wikipedia

that have edited pages about politics. Each interaction, such as text editing, reverts, restores

and votes are given a positive or negative value. Epinion [63] is an online product rating

website. The users can choose to trust or distrust others and self vote is allowed. As a

result, the network could be viewed as a trustworthy relationship network.

Table 5 shows the graph statistics, the signed modularity and number of clusters reported

by each method. We see that our method achieves the best signed modularity value for all

four datasets. We observe that the eigenvector associated with cluster 6 is complex for

Slashdot, the eigenvector associated with cluster 4 is complex, all the others are real. Note

that we cannot report accuracy because of no ground truth about these four datasets.

4.4 Related Work

There is a large literature on spectral analysis of the graph Laplacian or normal matrix

for unsigned networks with various applications such as spectral clustering and graph visu-

alization. Refer to the survey [125]. These spectral clustering methods exploit a basic fact

in spectral graph theory that the number of connected components in an undirected graph

is equal to the multiplicity of the eigenvalue zero in the Laplacian matrix of the graph. In

spectral analysis of the Laplacian matrix or the normal matrix, the coordinates are arranged

to make the sum of all the distance between two nodes smallest. In their projection spaces,

closely related nodes are pulled together to form clusters. Several works (e.g., [10, 61, 89])

have applied matrix perturbation theory to analyze spectral techniques and gave theoreti-

cal justification. In [61], the authors provided a theoretical explanation why the bottom k

eigenvectors of the Laplacian matrix can be used for graph partition. Different from the
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Laplacian matrix or normal matrix, the properties of the adjacency eigenspace have only

received attentions in some recent work including the EigenSpoke pattern [91] of sparse

graphs and the orthogonal line pattern [132–134] for k-block networks.

Mining signed network attracts increasing attention [115]. Research works [21, 51, 60]

are based on balance theory [44] which can be viewed as a model of likes and dislikes.

For example, in [51], the authors showed that the stability of sentiments is equivalent to

k-balanced graphs. The authors in [131] conducted the spectral analysis of approximate

k-balanced signed graphs by applying matrix perturbation. However, their results are only

applicable for a special type of signed networks, i.e., k-balanced networks where nega-

tive connections only exist across communities and positive connections only exist inside

communities. In [63], the authors studied signed networks based on status theory where

a positive directed link indicates that the creator of the link views the recipient as having

higher status and a negative directed link indicates that the recipient is viewed as having

lower status. Researchers also extended some of those existing measures and clustering

algorithms for unsigned graphs to signed graphs. Several notable works include the ex-

tension of modularity on signed graphs [117], the spectral clustering based on the signed

graph Laplacian [60]. However, they failed to clearly relate the structures in signed graphs

with patterns in the spectral space.

Researchers have developed approaches and algorithms to deal with the clustering in

directed graphs because relationships in many networks are asymmetric. Refer to [71]

for a recent survey. Roughly speaking, they can be classified into two categories. In the

first category, the directed graph is converted into an undirected one, either unipartite or

bipartite, where edge direction is preserved, e.g., via edge weights of the produced unipar-
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tite graph [95] or edges in the produced bipartite graph [143]. Clustering algorithms for

undirected weighted graphs are then applied. Methods in the second category are mainly

based on the idea of extending clustering objective functions and methodologies to directed

networks. In those approaches, the graph clustering is expressed as an optimization prob-

lem and the desired clustering properties are captured in the modified objective criterion.

For example, researchers developed the directed versions of modularity [83], the objec-

tive function of weighed cuts in directed graphs [72], and the spectral graph clustering

based on the Laplacian matrix of the directed graphs [25, 142]. However, it is unclear to

what extent the information about the directionality of the edges is retained by these ap-

proaches. In [65], we studied to directly analyze the spectral properties of the adjacency

matrix of the underlying directed network. When the concern is with directed graphs, one

main difficulty for spectral clustering is to deal with the complex values for eigenpairs

associated with the asymmetric adjacency matrix. The approach utilizes the connected-

ness property of the components of a network to screen out irrelevant eigenpairs and the

Perron-Frobenius eigenpairs are all real, thus eliminating the need for dealing with com-

plex eigenpairs. However, that approach cannot be used for DSGs because the perturbed

Perron-Frobenius eigenpairs are complex valued.

4.5 Summary

In this chapter, we conducted spectral analysis of DSGs. Spectral methods have been

successfully adopted in solving graph or network structure related problems. However,

most work focus on spectral analysis of undirected unsigned graphs or transform under-

lying directed graphs into symmetric matrices like Laplacian. To our best knowledge, our
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work is the first to study the complex-valued eigenvalues/eigenvectors for clustering DSGs.

By using matrix perturbation theory, we derived the approximations of the spectral coor-

dinates of nodes in the spectral projection space formed by perturbed Perron Frobenius

invariant subspace and explained the effects of added intra and inter cluster edges to the

spectral coordinates. A spectral clustering algorithm for DSGs, SC-DSG, was proposed

according to the theoretical results and was tested on both synthetic and real datasets. The

results demonstrated the effectiveness of the algorithm.

Many future research topics could be built upon our current theoretical framework, such

as fraud detection, dynamic network analysis, and signed network embedding. We will

also study the scalability of our algorithm. We would emphasize that our algorithm has the

same bottleneck, the eigen decomposition, as all other spectral clustering methods.

Repeatability. Our software together with the datasets used in this chapter are available at

https://github.com/gnemeuyil/DSG.

The preliminary results of this chapter is published in [66].



CHAPTER 5: SOCIAL NETWORK DOMINANCE BASED ON ANALYSIS OF
ASYMMETRY

We focus on analysis of dominance, power, influence—that by definition asymmetric—

between pairs of individuals in social networks. We conduct dominance analysis based on

the canonical analysis of asymmetry that decomposes a square asymmetric matrix into two

parts, a symmetric one and a skew-symmetric one, and then applies the SVD on the skew-

symmetric part. Each individual node can be projected as one 2-dimensional point based

on its row values at each pair of successive singular vectors. The asymmetric relationship

between two individuals can then be captured by areas of triangles formed from the two

points and the origin in each 2-dimensional space. We quantify node dominance (submis-

sive) score based on the relative position of the node’s coordinate from coordinates of all

other nodes it dominates (subdues) in the projected singular vector spaces. We conduct

dominance/submissiveness analysis for several representative networks including perfect

linear orderings, networks with tree structure, and networks with random graphs and ex-

amine the departures of a real social network from those representative graphs. Empirical

evaluations demonstrate the effectiveness of the proposed approach. The theoretical results

in this chapter works for both DUGs and DSGs, so when directed graphs are mentioned,

they represent general directed graphs.
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5.1 Analyzing the Dominance Structure of Network

For undirected networks, researches have developed various measures to indicate the

structure and characteristics of the network from different perspectives. Various properties

including its size, density, power-law degree distributions, average distance, small-world

phenomenon, clustering coefficient, randomness, community structures etc. have been dis-

covered [27, 77, 110, 134]. For directed networks, researchers have developed methods to

discover underlying community structure, authority ranks of individual nodes, and direc-

tions of information flow among clusters [9, 25, 53, 62, 72, 76, 79, 122, 141, 142] because

relationships in many networks are asymmetric.

In directed social networks, each individual node tends to contain some amount of dom-

inance and some amount of submissiveness. Consider an organizational network where

each node denotes an individual and an edge between two nodes denotes a reporting-to re-

lation between two individuals, the hierarchical level of an individual is determined by two

scores: dominance score in terms of both how many others he dominates and who those

others are, and submissiveness score in terms of both how may others dominate him and

who those others are. The amount of dominance versus submissiveness at the node level can

clearly affect various properties of a social network. Although dominance/submissiveness

relationships play an important role in understanding the geometry and topology of social

networks, very few studies have formally investigated this issue.

In this chapter, we first develop measures of dominance and submissiveness for each

node. Our measures are derived from the canonical analysis of asymmetry originally devel-

oped in [40]. The analysis of asymmetry approach decomposes a square asymmetric matrix
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X into two parts, a symmetric one, 1
2
(X + XT ), and a skew-symmetric one, 1

2
(X −XT ),

and then applies the SVD on the skew-symmetric part. After the SVD, each individual

node can be projected as one 2-dimensional point based on its row values at each pair

of successive singular vectors. The asymmetric relationship between two individuals can

then be captured by areas of triangles formed from the two points and the origin in each

2-dimensional space. In our work, we quantify node dominance (submissiveness) score

based on the relative position of the node’s coordinate from coordinates of all other nodes

it dominates (subdues) in the projected singular vector spaces. The position of each indi-

vidual is determined in terms of both of how many others it dominates and how important

those others are. Each individual’s position is determined by taking the total pattern into

account. We define the authority score of a node by subtracting its submissiveness score

from its dominance score. We compare our proposed authority score measure with some

traditional measures such as PageRank.

We examine the use of the canonical analysis of asymmetry for several representative

types of networks including perfect linear orderings, networks with tree structure, and net-

works with random graphs. It was well known that the projected points form a perfect

arc around the origin for a network with a linear order among all individual nodes [40].

However, there are no study of the distribution of dominance/submissiveness scores of

other representative graphs. For a given social network, it may lie between the network

with perfect linear orderings, network with tree structure, and random graph. To determine

whether a general social network is similar to one representative graph, we propose the

use of Kolmogorov-Smirnov test. We also develop relative dominance (submissiveness)

measures to quantify its departure from the representative graph. The empirical evaluation



69

over a global products and goods trade data show the effectiveness of our approach.

5.2 Dominance Framework

In this chapter, we assume the edges in the observed graph X are homogenous and rep-

resent the same type of relationship across the entire network. Depending on the problems

being studied, each entry Xi,j could be binary, denoting the presence/absence of a directed

relationship like phone call from individuals i to j, or weighted, capturing the quantity of

the directed relationship like the number of phone calls from individuals i to j.

5.2.1 Node Dominance/Submissiveness Measures

For any pair of individuals p and q, we propose the use of asymmetry to quantify the

dominance/submissiveness between nodes p and q. Based on the canonical analysis of

asymmetry [40], the spectral coordinate of each node can be viewed as projections in a

set of bimensions. The number of bimensions K can be justified by the adequacy of the

retained singular values expressed as a proportion of the sum-of-squares of all the singular

values.

In the k-th bimension, the spectral coordinate of p is (Up,2k−1σ
1/2
2k−1, Up,2kσ

1/2
2k ). Note that

σ2k−1 = σ2k for each k. We use −→pk (−→qk ) to denote the vector from the origin to node p’s

(q’s) spectral coordinate in the k-th bimension. The asymmetry between nodes p and q is

defined as:

d(p, q) =
1

2

K∑
k=1

‖−→pk ×−→qk‖ (17)

=
1

2

K∑
k=1

|Up,2k−1 × Uq,2k − Up,2k × Uq,2k−1| × σ2k−1.

Note that 1
2
‖−→pk × −→qk‖ is the area of the triangle formed by the spectral coordinates of p, q
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and the origin in the k-th bimension. The value of d(p, q) is simply the sum of the triangle

areas in K bimensions.

When studying issues such as power, influence, dominance in social networks, we need

to distinguish between senders and receivers. In some situations, such as being nominated

as officer by students, or being the targets of advice-seeking among colleagues, receivers

often occupy superior positions in a network, as opposed to the senders who often take

lower positions. However, in some other situations, the reverse is true that the senders

occupy superior positions, and receivers less lofty situations. For example, in international

trade, the nations that send large quantity of goods to other countries are in economically

more dominant position than the receiving nations. Recall in the skew-symmetric matrix,

zp,q = 1
2
(xp,q − xq,p). Hence, zp,q < 0 means the dominance of p over q in the former

scenario whereas zp,q > 0 means the dominance of p over q in the latter scenario.

In a given network, any node can be viewed as an individual that resides in some tier

of the hierarchy system. Therefore, by calculating the asymmetry between p and all its

dominated neighbours, we define the dominance score of node p as:

DSp =
∑
q∈Dp

d(p, q), (18)

where Dp contains all nodes q dominated by node p. Similarly, we define the submissive-

ness score of node p as:

SSp =
∑
q′∈Sp

d(p, q′), (19)

where Sp contains all nodes q′ dominating node p.

Dominance/submissiveness measures can be used to describe the position of the orga-
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nizational hierarchy or the authority among individuals in a given network. For example,

if an individual has high Dp and low Sp, he would reside on a relatively high tier of the

organizational hierarchy or have high authority score. We hence define the authority score

of node p as:

Γp = DSp − SSp =
∑
q∈Dp

d(p, q)−
∑
q′∈Sp

d(p, q′). (20)

5.2.2 Graph Dominance Analysis

We start our analysis from some representative networks including graphs with perfect

linear orderings, graphs with tree structure, and random graphs. For a given social network,

it may lie between the graph with perfect linear orderings, that with tree structure, and

random graph. We develop relative measures to quantify the departures of a general social

network from those special graphs in terms of dominance/submissiveness relationships.

Graph with Perfect Linear Ordering. A total linear ordering is a binary relation that is

reflexive, antisymmetric, transitive and total. For such an ordering, as a simplest example,

one individual p in some sense dominates everyone, then the next q dominates everyone

but p, and so on, until the last individual is dominated by all the other individuals. Formula

(21) shows a linear order matrix according to the hierarchy of a network organization. In

this example, Xi,j = 1 if node i dominates node j, otherwise Xi,j = 0. No two individuals
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(d) Random graph

Figure 7: Spectral Projection of the First Bimension for 15-node Graphs

have the same rank in the organizational hierarchy.

X =



0 1 1 · · · 1

0 0 1 · · · 1

0 0 0
. . . 1

0 0 0 · · · 0


. (21)

Figure 7(a) shows the spectral projection for an illustrative example with 15 nodes fol-

lowing Formula (21). According to the work [40, 41], when the skew-symmetric matrix

derived form a linear dominance matrix is subjected to SVD, the points are equidistant

from one another and they are all arranged on an arc of a circle that is centered at the
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origin. That circle has a radius of 2
√

(σ1/n) where n is the number of points in the lin-

ear order. In particular, the first pair of singular values are σ1 = σ2 = 1/2tan{ (n−1)π
2n
}.

When the perfect linear ordering network structure exists, the projections lie on an arc and

equally divide the half circle. Therefore, each node dominates the immediate next one by

δ = 0.5∗R∗|sin(180/n)|, whereR is the radius of the circle that equals to the length of the

vector. We then haveDSi =
∑n−1

j=i δ∗j. Similarly, we have SSi =
∑i−1

j=1 δ∗(i−j). Hence

we have Γi =
∑n−1

j=i δ ∗ j −
∑i−1

j=1 δ ∗ (i− j). However, for other types of reprensentative

graphs, we do not have explicit formula for the dominance score.

Graph with a Hidden Complete Binary Tree Structure. A tiered organizational hierar-

chy can be represented by a tree with the root node representing the highest authority and

the leaf nodes representing the lowest authority. The dominance network is constructed as:

Xi,j = 1 for all nodes j in the subtree with node i as its root. Figure 7(b) shows the spectral

projection of the skew symmetric part of a 15-node graph with a complete binary tree 2

hierarchical structure. This example simulates an organization with 1 CEO, 2 department

managers, 4 group leaders, and 8 employees. The CEO, department managers, group lead-

ers, and employees form four tiers of the hierarchy. We can see all the projections fall on

one side of the half circle and orient sequentially along a curve. As the tier gets lower, the

projections get closer to the origin. The plot accurately indicates that the network contains

four tiers. Node 1 has the highest degree, thus is the most distant from the origin. It belongs

to the first tier. Nodes 2 and 3 reside on the second tier. Nodes 4 to 7 are on the third tier.

Nodes 8 to 15 form the fourth tier, thus are the closest to the origin.

2A binary tree is complete if all levels except possibly the last are completely full, and the last level has
all its nodes to the left side.
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Tree Graph. When the observed graph itself has the tree structure, Figure 7(c) shows its

projection. The dominance direction is counter clockwise in this plot. Node 1 dominates 2

and 3. Since the angle of vectors formed by nodes 2 and 3 is 0, there is not any dominance

relationship between them. The next tier of the hierarchy contains nodes 4 to 7 that overlap

on the same spot in the plot. This indicates that those nodes have the same authority status.

Nodes 8 to 15 locate on the bottom of the hierarchy and have the same authority status, so

their projections overlap as well. Another important observation is that node 1 and nodes

4 to 7 form 180 degree angles, which clearly captures the non-dominance relationship

between them in the tree graph. The same is also true for nodes 2 and 3 with nodes 8 to 15.

Random Graph. Figure 7(d) demonstrates the case for a random graph. The graph is

generated with repeated Bernoulli sampling of probability 0.467 on a 15 by 15 matrix. The

resulting graph contains the same number of edges as that with perfect linear ordering. It is

clear that the projections do not follow any pattern and scatter around the origin. However,

it is worth noting that node 14 has the highest in-degree, which explains its largest distance

to the origin.

5.2.3 Departure from Representative Graphs

For a graph with n nodes, we can calculate the authority score of each node following

Equation (20). The network authority information can be described using the vector
−→
Γ =

(Γ1, · · · ,Γn). Figure 8 shows the bar plots of sorted authority scores for the same examples

from Figures 7(a), 7(b), 7(c), and 7(d). The x-axis for each plot shows the indices of nodes

and the y-axis shows the authority score. As shown in Figure 8(a), the plot of the linear

ordered network resembles the cosine function. This is because the dominance scores are



75

proportional to the length of arcs between individuals. The plots from Figure 8(b) and 8(c)

suggest that the corresponding graphs contain clear tiered hierarchies. The plot of authority

scores of a random graph just follows some unknown polynomial, as shown in Figure 8(d).
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Figure 8: Authority Score of Each Node from 4 Representative Graphs

Distribution of authority scores from a given network can be compared with those of

representative networks such as tree, linear, or random. Based on comparison, we can

determine whether a given graph has the same organizational structure of one representative

graph. In general, we can conduct tests with the Pareto Q-Q plot [55] to check whether

the authority scores of a network follows a particular distribution. A Q-Q plot is used to

compare the shapes of distributions, providing a graphical view of how properties such as

location, scale, and skewness are similar or different in the two distributions. Moreover, we
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can calculate the similarity between the observed graph G with a representative graph GB

as:

S(G,GB) = (
−→
Γ ·
−→
ΓB)/(‖

−→
Γ ‖ ∗ ‖

−→
ΓB‖). (22)

Since the spectral projections are permutation invariant, the calculated scores
−→
Γ of a

given network can be sorted from highest to lowest according to those of the representative

scores. As vectors are scaled to unit length in cosine similarity, scalings of vectors by edge

weights do not change the results.

For all the above experiments, comparisons with baseline structures such as binary tree

or linear ordering are primarily used to find out what type of organizational structure the

given network has. If two networks have similar dominance score distributions, they expect

to have similar organizational structures. Hence our results can be used to check whether

several networks under study are organized similarly. Our method provides a means of de-

termining the similarity of two networks in terms of organizational structure (i.e., compar-

ing their dominance score distributions) as it is often difficult to directly construct synthetic

graphs that match a real network with some given organizational structure.

5.2.4 Comparison with PageRank and Similar Methods

The PageRank algorithm [87] is also solely based on the link structure. PageRank inter-

prets a hyperlink from page v to page u as a vote (or endorsement), by page v for page u.

A page is important if it is pointed (or endorsed) by other important pages. The PageRank

is formally defined as:

R(u) =
1− d
N

+ d
∑
v∈Bu

R(v)

Nv

, (23)
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where u represents a Web page,N is the number of pages,Bu is the set of pages pointing to

u, R(u) andR(v) are rank score of page u and v respectively, Nv is the number of out-links

from v, and d is a damping factor that is usually set to 0.85. In PageRank, the importance

of page u is roughly captured by the sum of the PageRank scores of all pages that point to

u. Since a page may point to many other pages, its prestige score should be shared. Hence,

in the equation, the rank score of a page v, is evenly divided among its outgoing links.

PageRank outputs a steady-state probability distribution vector where each value repre-

sents the possibility that a person would randomly visit the corresponding Web page. In

other words, each value indicates the importance rank of the corresponding web page.

PageRank method uses random walk modeled in Markov chain to predict the eigenvec-

tor centrality measures. It gives high scores to inflow sinks and marks them as prestige

individuals. Our dominance/submissiveness metrics based on skew symmetry measure the

asymmetric in/out flow of information based on the given network connection. The pair-

wise dominance relations and ordering information are considered, so individuals will be

segregated into tiers. Those two methods serve different purposes in scoring nodes for a

given network. Therefore, PageRank weights more globally from the entire network. while

our method weights more on local structures.

It is worth pointing out that many other metrics based on the link structure have been

proposed. For example, HITS [54] is an dynamic iterative algorithm based on web links.

HITS first expands the list of relevant pages returned by a search engine and then calculates

both hub and authority scores simultaneously. Simply speaking, an authority is a page with

many in-links, which suggests the page may have authoritative content on some topic and

thus many users trust it and thus link to it. A hub is a page with many out-links. A page
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with a high hub score often serves as an organizer of the information on a particular topic

and points to many good authority pages on the topic. There are two types of measures,

centrality and prestige, for measuring node importance in directed networks. Centrality

measures such as degree centrality, closeness centrality, and betweenness centrality only

exploit the out-links whereas prestige measures such as degree prestige, proximity prestige

and rank prestige only utilize the in-links. Our approach based on analysis of asymmetry

removes those unnecessary information contained in the symmetric part of the network and

purely uses directional information contained in the asymmetric part. Hence, it expects

to more accurately capture the network dominance structure. Furthermore, our method

combines information from multiple bimensions rather than only the first eigenvector used

in PageRank and HITS.

5.3 Empirical Evaluation

The evaluation is performed on a global goods and products trade dataset. The data was

collected from United Nations Comtrade Database website. The dataset contains trades

among 233 countries and/or trade entities. The trade values were recorded in US dollars

for comparison. A trade matrix was generated with the complete export data of year 2014.

The reason for choosing 2014 data is that 2015 data was not as complete, since some

countries or trade zones did not report their trade volume with each country to the database

at the time of collecting the data. As a result, there are 20522 trade records globally after

putting the data into a matrix. The density of the resulting matrix is 0.378, which is quite

dense. Upon studying the global export or import relationships, we could identify top tier

countries that are leading the consumption or production perspective of the global economy.
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Depending on the different aspects and relationships that can be extracted or constructed

from the dataset, many factors influencing the global trade can be analyzed in detail.

5.3.1 Relationship Network Analysis for Trade Data

The trade network data is converted to skew symmetric form and subjected to SVD. The

original trade matrix A contains import information for each column, where Aij indicates

the amount of goods and products in US dollar that country i exported to country j in 2014.

Table 6: Top 10 Countries

Rank Authority PageRank
1 United States United Kingdom
2 India Germany
3 Saudi Arabia Belgium
4 Iran Netherland
5 Russian Federation Switzerland
6 Bangladesh France
7 Iraq Thailand
8 United Arab Emirates United States
9 Vietnam Italy
10 Kenya Sweden

The cut off parameter for selecting singular values is set to be 0.8. We get a total of

14 singular vectors for calculating the authority scores. The top 10 countries from the

authority score and PageRank score results are shown in Table 6. The plots for score results

of top 20 countries from our approach and PageRank are also included in Figure 9(a) and

Figure 9(b) respectively. The X-axis shows country name labels in ISO country codes. As

shown in Figure 9(a), our method shows that USA is the only country that significantly

dominates the entire network. It simply indicates that USA is the country that imports a

lot more goods and products from around the globe than all the other countries. This result

further implies that USA has a very large trade deficit according to the meaning captured

by skew symmetry, since the import amount is much bigger than its export amount. This is

confirmed from the raw data, where USA has more than 5.5 × 1011 dollars trade deficit in
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the goods and products category. We also observe in Figure 9(a) that the other few countries

following USA are India, Saudi Arabia, Iran and Russian Federation. These results could

indicate that those countries contain the markets that dominate others in driving imports of

the global economy.

There could be several factors that would cause a country to rank higher in the import au-

thority rank, but we will only name a few of them. First, countries that are not self sufficient

in natural resources need to import them from others. Second, products are imported if a

country does not have the complete supply chains required to manufacture them. Third, it is

not cost efficient to manufacture the products locally when compared with imported items.

There are other important factors such as political issues and trade agreements which will

not be discussed here. If we try to categorize the top 10 counties according to the 3 factors

mentioned, we will see that United States belong to the first and third. India, Bangladesh,

Vietnam and Kenya belong to all three. Saudi Arabia, Iran, Russian Federation, Iraq and

United Arab Emirates belong to the second and third. In terms of trade, those countries

import products from more partners than those they export to. In terms of supply chains,

United States buys products and natural resources; India, Bangladesh and Vietnam manu-

facture some products but also buy products that the do not make while import resources;

Saudi Arabia, Iran, Russian Federation, Iraq and United Arab Emirates are selling resources

and buying products. Therefore, authority scores ranked those countries high in the import

network.

As observed in Figure 9(b), the PageRank scores on the other hand comprehend the same

network quite differently. Due to the nature of this method, it seems edge degrees connected

to nodes are more favoured, since the top ranked countries are those with highest degrees.
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Figure 9: Bar Plot of Sorted Dominance Scores vs PageRank Results

Many countries with similar numbers of edge degrees are ranked the same according to the

scores despite the fact that the edges contain drastically different weights. For example,

USA has a trade volume almost 3 times bigger than that of Belgium, but they are ranked

the same. In reality, it is very anti-intuitive that those two countries are ranked at the

same level. However, if we treat the links in the matrix as the preferences of goods and

products flow, the random walk based approach such as PageRank could make a little more

sense. Nevertheless, we observe that the PageRank scores do not vary much among top 20

countries compared with authority scores. This observation suggests that PageRank may

not be an appropriate method to characterize the dominance relationships in terms of goods

and products import, but such relationships can be correctly captured by our method.

In this evaluation, the trade data collected only contains products and goods category, but

our method could be applied to various perspectives of many other datasets. For example,

the surplus or deficit relationships constructed by calculating the absolute difference of

import and export amount, the trade data of specific type of goods including agricultural

products, crude oil or iron ore, trade data of services could all be possible candidates.
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However, due to limited space, we cannot demonstrate our method on each one of those.

As a general rule, as long as the relationship matrix can be constructed with a clear meaning

from the given network, our method could depict the dominance structure of individuals.

5.3.2 Inference

In this section, an empirical evaluations on import data is conducted to demonstrate

how our proposed method can be used to study organizational structures and relationship

structures. When certain organizational structure is suspected to exist for a network, we

can study the dominance score distribution, which can be used to test against our null

hypothesis. When the actual dominance relationship from the raw data is of interest, our

method can correctly capture it as long as the the constructed matrix itself represents a clear

meaning and contains homogenous links. Furthermore, several networks or the snapshots

of the same network at different time can be tested side by side to compare and contrast. A

potential application could be the study of the authority scores’ distribution changes of trade

datasets over multiple years. In all, our method could have many empirical applications in

studying the relationship structures of network datasets. The Q-Q plot of import authority

scores against Cauchy(0.6, 0.32) distribution is shown in Figure 10(a), while the empirical

probability distribution function with kernel smoothing of the scores is estimated as in

Figure 10(b). The bandwidth of the smoothing parameter in the kernel is 0.05. At the

first glance, the estimated PDF resembles that of a normal distribution, but it has very fat

tails and leptokurtosis. Therefore, after cross validations with several other distributions,

Cauchy(0.6, 0.32) is our best fit.
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Figure 10: Q-Q Plot of Trade Dominance and Estimated Empirical Probability
Distribution

5.4 Summary

We have conducted dominance analysis based on the canonical analysis of asymme-

try and developed the node’s authority score metric which combines its dominance and

submissiveness. We conducted authority analysis for several representative networks and

presented approaches of measuring the departures of a real social network from the repre-

sentative ones. We emphasize this is first study of the distribution of authority scores of

representative graphs. We compare our proposed authority score measure with PageRank

score. The empirical evaluation on a global goods and products trade dataset demonstrated

the effectiveness of the proposed approach.

In this chapter, we assume the edges in the observed graph are homogenous, i.e., they

represent the same type of relationship (flow or email communications) across the entire

network. We emphasize many real networks do not satisfy this assumption. For exam-

ple, the corporate email data contains different types of emails, e.g., announcing meetings,

administrative issues, legal issues, and even pure personal matters. The observed links in
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the incidence matrices and may not contain the full information about the given dataset, so

they may not necessarily indicate the dominance relationships between individuals. How

to identify the organizational hierarchies or calculate the authority scores using the ob-

served data could be a challenging problem and worth further investigations. In addition,

if streaming data is to be collected, the analysis of the dynamic changes of the dominance

structures could also be a topic worth studying.

The preliminary results of this chapter were published in [67].



CHAPTER 6: ANOMALY DETECTION IN DYNAMIC GRAPHS

Identifying vandal users or attackers hidden in dynamic OSN data was shown to be

a challenging problem. In this chapter, we develop an automatic spectral-analysis-based

attack/anomaly detection approach using a novel combination of the graph spectral features

and the restricted Vector Autoregressive (rVAR) model. Our approach utilizes the time

series modeling method on the non-randomness metric derived from the graph spectral

features to capture the abnormal activities and interactions of individuals.

In this chapter, we demonstrate how to utilize Granger causality test on the fitted rVAR

model to identify causal relationships of user activities, which could be further translated to

endogenous and/or exogenous influences for each individual’s anomaly measures. We also

develop an algorithm that could provide causal analysis of the anomaly measures of users

from given network data. Case studies of different scenarios are presented to demonstrate

the efficacy of the proposed methods and procedures on a labeled WikiSigned dataset.

6.1 Anomaly Detection

Anomalies and outliers refer to data points that behave differently from predefined nor-

mal behaviours. Anomaly and outlier detections focus on different aspects of the data, but

are related. Some common types of anomalies include point anomalies, contextual anoma-

lies [106], and collective anomalies for sequence data [46], graph data [85] and spatial

data [102].
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A number of surveys [4,11,13,45,90] have studied extensively on these topics. For appli-

cations of anomaly detection, there are cyber-intrusion detection, fraud detection, medical

anomaly detection, industrial damage detection, textual anomaly detection, and many oth-

ers. Some common techniques for detecting anomalies include classification based meth-

ods, clustering based methods, nearest neighbor based methods, statistical methods, and

spectral analysis methods. Depending on the availability of the labels, anomaly detection

techniques can operate as supervised, semi-supervised, and unsupervised approaches.

Node connection pattern based graph anomaly detection was studied early in several

works [36, 85, 111]. On the other hand, spectral graph analysis has been shown to have

important applications in solving network related problems such as clustering [28, 29, 65,

78, 80, 82, 125], anomaly detection [3, 19, 50, 130, 135], and link prediction [6, 58, 60, 114].

Detecting anomalies in a network under the dynamic setting belongs to sequential

anomaly detection, where a detection method tries to find abnormal observations from

sequential data. Most OSN streaming data were collected as sequential data, which could

form event sequence data, such as system call data [126] or numerical time-series data [18].

User activities are usually complicated in large streaming OSN data. When opposing opin-

ions collide and similar opinions mingle, it is difficult to depict the human to human inter-

actions as simple graphs. As the streaming network data build up, modeling the associated

graphs as weighted or even signed graphs could capture the changes of the intensity and the

underlying meanings of the user interactions more accurately. In this chapter, we propose

a method based on the weighted signed graphs, so that it covers a wider range of research

targets.

There have been plenty of works studying the spectral properties of dynamic network
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data such as incremental spectral clustering [84], Nystrm low rank approximation [139],

and matrix sketching [69], but there are still many open problems in the application of

anomaly detection on dynamic graphs. Graph spectral analysis has been shown to be an

effective tool for anomaly detection in computer network traffic data. In [105], the au-

thors derived a threshold based on the anomaly metric from the spectral features of the

robust Principal Component Analysis (rPCA) for classification. Similarly, the authors in

the work [50] proposed a threshold based on the anomaly metric derived from the principal

eigenpairs of the associated adjacency matrix to classify individuals. In another work [112],

the authors proposed using compact matrix decomposition (CMD) to compute the sparse

low rank approximations of the adjacency matrix. The approximation error of CMD and

the observed matrix was used to quantify the anomaly.

Although the works [50, 105, 112] used spectral analysis based methods for anomaly

detection on time series data, there are two major shortcomings. First, instead of using

statistical modeling approach to analyze the underlying structural correlations of the time

series data systematically, each of the works only derived a threshold to evaluate the data

points at each time frame individually. In many scenarios, categorizing data into different

contexts and analyzing whether a particular piece of data is anomalous under its associ-

ated context is not straightforward. The other drawback is that, the methods proposed in

those works lacked the ability to analyze the endogenous and/or exogenous causes for the

observed anomalies. Since most relationship graphs are generated from the interaction in-

formation of the streaming OSN data, such interactions could cause the observed anomaly

metrics to be correlated thus more complicated than network traffic data. Therefore, both

endogenous and exogenous influences in the observed time series data need to be analyzed
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simultaneously so that the underlying casual relationships could be identified.

There exist extensive literatures on the applications of time series analysis methods such

as Autoregressive (AR) model [32], Autoregressive Moving Average (ARMA) model [2,

120], VAR model [70] and Vector Autoregressive Integrated Moving Average (VARIMA)

model [16,121] in the research of outlier detection. However, their applications in anomaly

detection in streaming OSN data have been relatively scarce. In this chapter, we propose to

use the rVAR model to simulate the interactions and correlations of the observed anomaly

measures of nodes, since it is a relatively simple multivariate time series analysis technique

that could be used to evaluate correlated variables simultaneously. In addition, the fitted

model could serve as the input for the subsequent casuality analysis process.

Casuality analysis methods such as Granger causality [42] and conditional Granger

causality index (CGCI) [38] for multivariate time series models were proven to be very

useful for identifying casual relationships amongst variables. Therefore, we adopt them to

analyze the fitted rVAR model and identify both endogenous and exogenous influences in

the observed anomaly measures for each node.

To summarize this chapter, we incorporate the dynamic spectral features from the steam-

ing network data with the rVAR model to develop an automatic fraud/attack analysis

method. As for the explanatory and response variables, we propose to use the modified

anomaly metric based on the node non-randomness measure derived from the adjacency

spectral coordinates from the works [134] and [135], which could quantify how randomly

nodes link to each other. We then propose to use the Granger causality analysis to identify

the causal relationships amongst individuals. We also develop an algorithm based on the

proposed anomaly analysis procedures. Furthermore, several case studies on a partial Wik-
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iSigned dataset are conducted to demonstrate how the Granger causality analysis could be

used to interpret the fitted rVAR model.

Our contributions are as follows.

• We propose to use a statistical modeling approach (rVAR model) to analyze the struc-

tural correlations of the node anomaly measures.

• We propose to use Granger causality to identify the endogenous and/or exogenous

influences of node anomalies.

• We derive an algorithm for anomaly analysis from streaming OSN data.

• We present case studies using the proposed algorithm on a real dataset.

6.2 Background Information

We model a dynamic network dataset as a sequence of graphs along the time dimension

as Gt, where t = 1, · · · , T . Each graph could be viewed as a snapshot of the network at

time t. Hence, if we treat each snapshot at time t as a perturbation from the previous time

t−1, the associated adjacency matrix can be written as At = At−1 +Et, where Et contains

the changes between two adjacent snapshots of Gt−1 and Gt. There are three challenges in-

volved in identifying dynamic attacks. The first challenge is to identify the correct snapshot

time windows when the suspicious activities occur. The second challenge is to distinguish

anomalies due to attacks and significant changes due to regular user activities. The third

challenge is to identify the endogenous and/or endogenous sources of the causes for the

anomalies. Therefore, the task for detecting anomalies could be achieved by addressing the

above challenges.
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Dynamic networks focus on cognitive and social processes of users and can model the

addition and removal of relations and interactions in OSNs. The dynamic changes of user

activities are assumed to follow some particular probabilistic model such as the random

walk or preferential attachment. When the perturbation Et contains changes that deviate

from the expected statistics under the assumed probabilistic model of normal behaviors,

such events could be captured and treated as suspicious. The rVAR model could be used

to analyze the underlying correlations amongst individual’s anomaly measures and make

subsequent casuality inferences.

6.2.1 Graph Spectral Projections

The eigenvalues (λ1, · · · , λn) of a given adjacency matrix A are assumed to be in de-

scending order when real. The corresponding eigenvectors (v1, · · · ,vn) are sorted accord-

ingly. The spectral decomposition of A takes the form A =
∑

i λiviv
′
i. Many survey

works [8, 24, 71, 98, 101] stated that the algebraic properties of the adjacency matrix are

closely related to the underlying graph connectivity. Therefore, when the nodes are pro-

jected into the associated spectral space spanned by the chosen eigenvectors, such proper-

ties could be used to analyze the graph structure related problems. In this chapter, we use

the adjacency eigenspace for the spectral projections as shown in the works [132] and [65].
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v1 vi vK vn

↓

αu →



v11 · · · vi1 · · · vK1

...
...

...

v1u · · · viu · · · vKu
...

...
...

v1n · · · vin · · · vKn

· · · vn1

...

· · · vnu

...

· · · vnn



(24)

For a given network, the spectral coordinates of nodes derived from the adjacency

eigenspace are illustrated in Equation (24) (To avoid confusion and abuse of notation, the

spectral coordinates are introduced again here with different notations). If we assume that

the eigenvectors are sorted so that the first K eigenvectors correspond to the ones that form

the perturbed Perron Frobenius simple invariant subspace as in work [65], the row vector

αu = (v1u,v2u, · · · ,vKu) is the spectral coordinates used for the projection of node u.

There are other spectral projection methods such as Laplacian, Normalized Laplacian,

or SVD that use factorized adjacency matrices. However, it would be easier to derive

suspiciousness metric from the adjacency spectral coordinates, since they are not adjusted

or balanced specifically for clustering and segmentation purposes as in the other methods.

6.2.2 Non-randomness Measure

We choose the node non-randomness metric from the work [134] as the input variables

in the VAR model. The node non-randomness is derived from the spectral coordinates to

quantify how random a node is in terms of its connections. The measure was shown to

identify random link attacks in the static spectral space in the work [135]. In this chapter,
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we adapt the measure in the dynamic spectral space and use it to identify anomalies such as

random link attacks in streaming OSN data. The edge and node non-randomness measures

are defined as:

1. The edge non-randomness R(w, u):

R(w, u) =
K∑
i=1

viwviu = αwα
′
u = ‖αw‖2‖αu‖2 cos(αw,αu), (25)

where viw is the w-th entries of the i-th chosen eigenvector, up to K eigenvectors.

2. The node non-randomness R(w):

Rw =
∑

u∈Γ(w)

R(w, u), (26)

where Γ(w) denotes the set of neighbor nodes of w.

This metric was shown to be effective in identifying random link attacks in static simple

graphs. For directed signed graphs, according to the theoretical results from Theorem 3,

Theorem 5 and the error bound analysis in [129], the edge nonrandomness metric could re-

main the same, but with an approximated error term O(Et
λi
vi). When the inter cluster edges

(must satisfy the assumptions of the theorems) are treated as perturbations, the changes

in Perron Frobenius eigenvectors corresponding to clusters are bounded, so the error term

associated with the edge nonrandomness metric should be bounded as well. Therefore, we

could conclude that the metric works for directed graphs in general. However, for weighted

graphs, the node nonrandomness metric needs to be further adjusted. In this chapter, we

will modify this metric in subsection 6.3.2.
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6.2.3 Vector Autoregression

Vector Autoregressive model is a time series analysis approach for analyzing multivariate

data. It tires to capture the changes and interferences of multiple variables over time, where

each variable is explained by the lagged values of itself and those of other variables. The

following Equation (27) shows the general form of a n-variable VAR model with lag p:



x1,t

...

xn,t


=



c1

...

cn


+

p∑
i=1



β11,i · · · β1n,i

... . . . ...

βn1,i · · · βnn,i





x1,t−i

...

xn,t−i


+



ε1,t

...

εn,t


. (27)

It can be written in a vector form as:

Xt = c+

p∑
i=1

βiXt−i + εt ≡ Π′Zt + εt, (28)

where Xt = (x1,t, · · · , xn,t)′, εt = (ε1,t, · · · , εn,t)′, c = (c1, · · · , cn)′ is the vec-

tor of constants, βis are the matrices of parameters as shown in Equation (27), Z ′t =

(1n×1, X
′
t−1, · · · , X ′t−p), and Π′ = (c,β1, · · · ,βp).

The maximum likelihood estimate (MLE) of αi has a reduced form as:

β̂i = Π̂′Gi, (29)

where Π̂′ = (
T∑

t=p+1

XtZ
′
t)(

T∑
t=p+1

ZtZ
′
t)
−1, and Gi is a (np+ 1)×n matrix with value 1 from

row (i− 1)n+ 2 to row in+ 1 and value 0 in other rows.

The parameters of the model could be estimated using the multivariate least squares

(MLS) approach, which is the multivariate version of the ordinary least squares (OLS)

method. Since each individual model is evaluated using the same set of explanatory vari-
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ables, MLS estimator is equivalent to applying the OLS method to each model separately.

When the error terms are assumed to be multivariate normally distributed, the MLS esti-

mator is equivalent to the conditional maximum likelihood estimator (MLE) as shown in

Equation (29). The OLS for the i-th model seeks to minimize the sum of squared errors

(SSE),
∑T

t=p+1 ε̂
2
i,t, with the objective function:

arg min
α

(SSEi) = arg min
α

(ε̂′iε̂i), (30)

where ε̂i = (ε̂i,p+1, · · · , ε̂i,T )′ for any i = 1, · · · , n.

Upon solving the objective function for each model and consolidating the results into the

vector form, we get the reduced form for the estimators as in Equation (29).

In order for the estimators to be accurate and the subsequent statistical inferences to be

reliable, the following assumptions are generally made for the VAR model:

• Linearity: The regression model is linear in parameters.

• Exogeneity: The conditional mean of residuals given the information of explanatory

variables is zero, E(εi|X1, · · · , Xn) = 0.

• Homoscedasticity: The conditional variance of residuals given the information of

explanatory variables is a constant, var(εi|X1, · · · , Xn) = σi.

• No multicollinearity: The matrix of explanatory variables has full column rank.

• Normality: The conditional distribution of residuals given the information of ex-

planatory variables is normal.

In order for the estimators of the VAR model parameters to exist, it is required that np <
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T , where n is the number of variables, p is the lag chosen, and T is the observation length.

In the ideal condition, np should be much smaller than T so that the estimations could

be reliable. In applications, time series data could be nonstationary, but for multivariate

time series analysis, we could still obtain correct regression results as long as the series

entering the model are cointegrated. This issue is handled in section 6.4. For large and

complex streaming network data, all the above assumptions may not strictly hold. Carefully

reformatting and cleaning the streaming data could partially solve the problems, but those

methods are not our focus, so we assume those conditions to hold true.

6.3 Methodology

6.3.1 Overview

Depending on the content of the given streaming OSN data, the relationship network for

individuals could be changing constantly. The first step of our anomaly detection method

is to build network snapshots. As shown in Figure 11, depending on the data content, edges

could be built directly or indirectly such as interpreted from individuals’ actions towards

some common objects. As more data are being streamed in, the network graph will change

accordingly. As a result, the associated adjacency matrices could represent signed and

weighted graphs as shown in the last row. In this example, the edge weight between nodes

u and v changes from −1 through 0 to 1. Therefore, the resulting network could be signed

and weighted.

After obtaining the adjacency matrices of the network snapshots, we can construct time

series of the anomaly metric for each node at each time. In this section, we modify the

nonrandomness measure and use this new metric to form the time series data from network
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Depending on the context of the given network data, links representing the relationships 

between nodes could be established based on each individual's behavior. The relationships 

amongst individuals could be direct(Friend or foe such as Epinion network) or 

interpreted(opinions towards topics or pages such as Wikipedia edits) from the data. The 

interpreted case from a dynamic streaming scenario will be shown below. 
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Figure 11: Graph snapshots can be built from the streaming OSN data.

snapshots. Such time series data could allow us to explore the correlation and causality of

node activities along the time dimension using multivariate time series analysis techniques

such as the VAR model. The fitted model could then be used for causality analysis of the

interactions of node behaviors.

6.3.2 Adjusted Node Nonrandomness Measure

For signed and weighted graphs, the node nonrandomness measure in section 6.2.2 may

no longer be accurate, since the degree of a node can exceed n or be negative. In order for

the measure to work, we propose the following adjusted node nonrandomness:

Result 1. Let w be a node and Γ(w) be its neighbors from a signed graph. The adjusted

node nonrandomness measure is

Řw =

∑
u∈Γ(w) R(w, u)∑
v 6=w 1[Aw,v 6=0]

, (31)

where R(w, u) is the edge nonrandomness and A is the adjacency matrix.
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This modification normalizes the node nonrandomness metric by its number of connec-

tions, since the edge nonrandomness metric holds true for directed signed and weighted

graphs with an error term. If the node nonrandomness metric is normalized as shown

above, the error term will shrink as well. As a result, the new metric could better approxi-

mate the true metric than the old metric would do. However, the approximation error still

exists. In order to construct a more sophisticated node nonrandomness measure for signed

and weighted graphs, works based on the probabilistic modeling of the graph edge weight

distributions are needed, which is out of the scope of our work.

Under the dynamic OSN setting, the past behaviours of nodes and their correlated ones

could be incorporated in a rVAR model, so the influences of suspicious activities such as

random link attacks could be studied through multiple snapshots of the network to provide

an analysis over the time dimension. For a given node w, it will have a sequence of ob-

served node nonrandomness measures (Řw,1, · · · , Řw,T ) based on network snapshots. The

observed values could change according to how the node and its neighbors act. By fitting

the time series of any selected set of nodes into an rVAR model, we can identify the causal

and dependency relationships amongst individuals’ suspiciousness measures.

Due to the possible existence of various types of anomalies for a given dataset, it would

be better to derive different types of metrics as explanatory variable for different scenarios

such as coordinated attacks focusing one group, targeted attacks focusing on specific nodes,

synchronized attacks on random groups and more. Such an approach could make the sta-

tistical inferences on the casual relationships much cleaner, since each type of explanatory

variables can be used to analyze some specific aspect of the network properties or detect a

specific type of anomaly.
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6.3.3 Event Based Time Series

For large streaming OSN data, individual activities tend to be sparse, so the time series

data formed by nonrandomness measures could have activities of mixed frequencies. If

network snapshots were taken at time intervals of some fixed length, we may miss activities

of nodes that are only active for a short period of time or very sparsely. As a result, the

assumptions made earlier for the VAR model may not be met strictly. Therefore, how to

construct reliable time series sequences from the steaming data becomes a critical issue.

The network activities captured at different time could be modeled by matrix perturba-

tions, where At = At−1 + Et. If we take snapshots at each time when activities (captured

by Et) are observed in the network, then an event based time series data could be con-

structed. This format could capture all the activities of the network and transform them

into a uniformly spaced observations along the adjusted time dimension. As a result, the

reformatted time series data could address the mixed frequency problem for observed data,

which could cause the VAR model to be fitted incorrectly. There are other approaches to

handle such an issue, but the event based snapshots approach is very easy to implement and

it could capture all the activities happened in the network. Therefore, it is chosen to format

the observed node anomaly metric data captured at each event. It is possible that several

individuals are active in the same time, so all such activities are recorded into a singleEt. If

we construct the network snapshots accordingly and calculate the node anomaly measures

(Řw,1, · · · , Řw,T ) for each node, the calculation results will become a set of event based

time series data.
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6.3.4 Variable and Model Selection

Due to the large sizes and long time spans of streaming OSN data, the observed time

series data tend to cause the VAR model to have a large number of explanatory variables.

Such datasets could cause the model to overfit. Hence, it is necessary for us to utilize some

variable and model selection methods to obtain reliable and efficient estimation results.

In this subsection, we will explore the rVAR model and the Least Absolute Shrink-

age and Selection Operator (LASSO). rVAR uses prior knowledge to regulate the parame-

ters. LASSO uses information criterion as the model fitting quality control measure. Once

the parameters are identified as statistically significant to the model, the parameters with

greater absolute values indicate that the corresponding explanatory variables explain more

of the response variable.

After the model fitting process, the features of the fitted model could be extracted for the

classification purpose. In addition, causality analysis could also be conducted to reveal the

causal relationships from the variables.

LASSO [116] is a special case of the Least Angle Regression (LAR) [30]. It uses pe-

nalized regression techniques to control the total number of nonzero parameters entering a

regression model. Since the estimations of any VAR model could be treated as a sequence

of OLS on each variable when the residuals are assumed to be multivariate normally dis-

tributed, the model for each individual (node) could be adjusted one by one using LASSO.

This procedure is the same as VAR-LASSO [47]. The objective function for LASSO in

Equation (32) is a penalized version of Equation (30) such that
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arg min
α∈Rp
{ 1

N
‖Xt − Π′Zt‖2

2 + λ‖β‖1}, (32)

where λ needs to be cross validated. The quality of the LASSO result could be inferred

from Cp score, which is a validation process based on Akaike Information Criterion (AIC)

[5], where Cp = −2L + 2(n + 2np) with L as the log-likelihood values. The best fitted

model should have the lowest Cp score which can be negative for negative valued data.

LASSO could not perform well when there are a large amount of candidate variables, since

it is time consuming to use cross validation procedures to find the optimal value for λ.

The rVAR method could take a binary restriction matrix ṙ and remove variables corre-

sponding to the zero locations. The vector form of the rVAR(P) model is:

Xt = Π′(ṙ � Zt) + εt, (33)

where ṙ′ = (1n×1, r
′
1, · · · , r′P ).

When analyzing the network data, the restriction matrix could be the concatenation of

any matrix representing the desired node connectivity such as 1-step or 2-step neighbor

connectivity matrix at a specific lag. In applications, At, which is the most recent observed

adjacency matrix for a given rVAR model, could be used as rps for p ∈ (1, · · · , P ). The

only drawback is that some previously unconnected nodes could be included in the model

for some certain lags. However, as long as the number of added variables are small, those

extra variables would not influence the model too much. Therefore, during the rVAR model

estimation process, only the variables representing connected nodes could have nonzero

parameters. As a result, the restricted model based on the network connectivity could
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greatly reduce the ambiguities caused by correlated variables representing disconnected

nodes, reduce the number of variables entering the model and reduce the risk of having

rank deficient data.

The most important reasons why this model is a better choice are that we have the

complete prior knowledge of the network connectivity at any previous time and that dis-

connected nodes should not have any casual relationships among them. The first reason

guarantees the existence of all the Ats, while the second can assure that the chosen vari-

ables entering the rVAR model would make sense in terms of the associated network struc-

tures. Furthermore, we could avoid the uncertainties such as computational complexities

and finding the optimal λ induced by using LASSO like methods when choosing variables.

Therefore, in this chapter, we propose to build a rVAR model for each node with its close

neighbors, since it would also be beneficial for the causality analysis.

6.3.5 Causal Analysis with Granger Causality

After fitting the rVAR model on each individual and its neighbors, the dependencies

and casual relationships of their anomaly measures could be analyzed. The concept of

causality analysis for time series data was introduced by Wiener [127] and later formulated

by Granger [42]. The classical Granger causality test is an F test to validate if by adding

an extra explanatory variable could better explain the current response variable. That is, for

models:

Model 1: yt = αyt−1 + εt (34)

Model 2: yt = αyt−1 + βxt−1 + εt, (35)
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the hypothesis H0 : β = 0 and H1 : β 6= 0, are tested against each other. Then, the

F-statistics

F =
(RSS1 −RSS2)/(p2 − p1)

RSS2/(T − 1− p2)
∼ F(p2 − p1, T − 1− p2),

where RSSi and pi are the residual sum of squares and the number of parameters of model

i respectively, has a F-distribution with (p2− p1, T − 1− p2) degrees of freedom if the null

hypothesis holds.

When H1 holds, it simply suggests that Xt−1 “Granger causes” Yt, which means that

it helps forecast Yt, but it does not conclude that Xt−1 causes Yt. Under such conditions,

a completely unrelated variable X may help forecast Y even if it does not cause/relate to

Y . In this case, we have E(Yt|Yt−1, Xt−1) 6= E(Yt|Yt−1), where Xt−1 could help explain

Yt in the model. Such a result could cause confusions when analyzing the fitted rVAR

model for any large streaming data. Due to the possible nonstationarity of time series

data mentioned in subsection 6.2.3, many variables could Granger cause others even if the

corresponding nodes are not connected (directly or indirectly) in the associated relationship

network. However, with the help of rVAR model, such risks are greatly reduced, since

nodes that are not connected are excluded from the model.

Two adaptations of Granger causality test for multivariate regressions are stepwise for-

ward selection and stepwise backward elimination of the explanatory variables. In both

cases, each variable’s lagged terms are tested one by one using the models in Equations

(34) and (35). Both methods will use np tests in total, which are time consuming but can

provide more specific casuality analysis for each individual at each lag.

Another adaptation for multivariate regressions such as the rVAR model called condi-
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tional Granger causality index was proposed in the work [38]. It can be used to analyze the

dependencies of multiple time series. For models:

Model 1: Xi,t =
n∑
k 6=j

(βik,1Xk,t−1 + · · ·+ βik,pXk,t−p) + εi,t (36)

Model 2: Xi,t =
n∑
k=1

(βik,1Xk,t−1 + · · ·+ βik,pXk,t−p) + εi,t, (37)

the residual variances σ̂2
1 of model 1 and σ̂2

2 of model 2 are compared to quantify the causal

effect from Xj to Xi as

CGCIXj→Xi = ln
σ̂2

1

σ̂2
2

. (38)

The index value is close to zero when Xj does not Granger cause Xi. Its statistical signifi-

cance is evaluated using the following F-statistics

FCGCI =
(RSS1 −RSS2)/p

RSS2/(T − p− p2)
∼ F(p, T − p− p2),

where p is the number of lags, T is the observation length, and p2 is the number of param-

eters in model 2. The casual effects based on all the past lags of a selected explanatory

variable Xj,t−1, · · · , Xj,t−p are tested to see whether they Granger cause the response vari-

able.

Based on the causality analysis results, the sources of endogenous and exogenous causes

for each node’s anomaly measures could be identified. Therefore, we can distinguish

whether the node itself is anomalous or it is caused by adjacent neighbors’s behaviours.

For spectral graph analyses on streaming network data, since nodes’ spectral coordinates

are constantly influenced by their neighbors’ activities, it is crucial for us to correctly iden-

tify the source causes affecting their anomaly measures. Several case studies are conducted
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in section 6.5 to demonstrate how such analyses could be used to reveal the causal relation-

ships of node anomaly measures.

6.3.6 Completeness of Conditional Information

As mentioned in the previous two subsections, a rVAR model needs to be built for each

target node with its close neighbors before the casuality analysis could be performed. The

main reason for this choice is that we need to have complete conditional information for

building the multivariate model for the target node.

If the target node w has n1 1-step neighbors, then the resulting rVAR(p) model will

produce n1 + 1 multivariate AR models, one for each node. Let Γ(w) denote the set of the

1-step neighbors of w. The fitted restricted multivariate AR model rV AR(p)w of node w is

equivalent as the conditional expectation E(w|Γ(w)). By looking at the model rV AR(p)u

of any node u from Γ(w), unless all of the nodes from Γ(u) are also in Γ(w), Γ(w) could

not provide complete conditional information for node u as Γ(u) does. The direct result

from this scenario is that the model rV AR(p)u is not based on the complete conditional

information. Any subsequent statistical inferences such as casuality analysis and variable

selections may be inaccurate.

By building the rVAR(p) model for each target node with its directly connected neigh-

bors, we are able to capture all the influences from exogenous sources for it. This complete

information set of nodes is analogous to the Markov blanket concept such that

Pr(w|∂w, u) = Pr(w|∂w), (39)

where w and u are distinct nodes in a Bayesian network, and ∂w is the Markove blanket
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of w. ∂w is the set containing node w’s parent nodes, child nodes, and its children’s other

parent nodes. Although nodes in a Bayesian network are connected by directed links, ∂w

contains the complete knowledge for predicting the behavior of w. All other nodes that are

not in ∂w are conditionally independent with node w when given ∂w.

For general networks, graph perturbation theories tell us that the node spectral projec-

tions could be perturbed by activities of neighbors m-step away. Therefore, it is still possi-

ble for the rVAR model to capture the exogenous influences from k-step neighbors. How-

ever, all the influences need to be passed to the target node form its 1-step neighbors and

we need have a cutoff point to limit the number of parameters entering the rVAR model.

Hence, the 1-step neighbors are used as the default choice in our experiments. In case

where additional studies of the multi-step neighbors are of interest, the model could be

extended accordingly. The case studies in Section 6.5 could serve as examples on how to

deal with those two cases.

6.4 Algorithm

In this subsection, we propose our algorithm for applying rVAR method on streaming

OSN data for anomaly detection in two functions shown in Algorithm 3 and Algorithm 4.

The algorithm takes threes steps to complete the task. Firstly, the node nonrandomness

measures are calculated from the spectral coordinates at each snapshot of the network.

Secondly, for each target node, the chosen neighbors are incorporated to fit the rVAR(p)

model. Johansen cointegration test from the work [52] is also performed at this step to

prevent spurious regression in case where the associated time series data are integrated.

Lastly, either stepwise backward elimination Granger causality analysis or CGCI method
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Algorithm 3 OSN rV AR Granger: Anomaly analysis of the streaming OSN data us-
ing stepwise backward elimination Ganger casuality/CGCI on the rVAR model of node
nonrandomness measures
Input: (A1, · · · , AT ), n, T,K, p,m,Arg
Output: B,B Ind
I/O: The inputs are the adjacency matrices (A1, · · · , AT ), size of the users n, observation length T , number of the eigenpairs K, lag p, number of the steps of neighbors m,

causality analysis methodArg. The outputs are parameters for fitted rVAR modelsB, and causality indicatorsB Ind

1: for t from 1 to T do
2: Compute eigenvectors (v1, · · · , vK) of At corresponding to the largest K eigenval-

ues (λ1, · · · , λK);
3: for w from 1 to n do
4: Calculate the node nonrandomness score normalized by its number of connections

Řw,t = Rw,t∑
u6=w 1[Awu,t 6=0]

;
5: end for
6: end for
7: for w from 1 to n do
8: S ← w ∪ Γ(w)m;
9: for u from the m−step neighbor set Γ(w)m do

10: Perform Johansen cointegration test on the time series Řw,· and Řu,·;
11: if not cointegrated then
12: S ← S \ u;
13: end if
14: end for
15: Fit rVAR(p) model on the restricted set of nodes S with their corresponding time

series Řs,·, where s ∈ S;
16: Extract Bw ← (β′w,1, · · · , β′w,p);
17: B Indw ← Granger Causality(Bw, Ř, S, Arg);
18: end for
19: Return B;
20: Return B Ind;

could be used to perform Granger casuality analysis of the node nonrandomness time series.

For Algorithm 3, in lines 1-6, we calculate the node nonrandomness for each node at each

network snapshot. In lines 9-14, we remove the observations that are not cointegrated with

the target node. In lines 7-18, we fit rVAR model for each node in line 16 and evaluate its

Granger causality in line 17, where Algorithm 4 is called. For Algorithm 4, depending on

the Granger causality method used, either stepwise backward elimination Granger causality
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analysis is used in lines 1-10, or CGCI method is used in lines 11-20. The significance

of the calculated F-statistic is determined by looking up the F-statistic table, where it is

common to choose 0.05 alpha level.

Algorithm 4 Granger Causality: Granger causality analysis for the multivariate AR
model of a given node w
Input: Bw, Ř, S, Arg
Output: B Indw

1: if Arg==“Stepwise backward elimination” then
2: B Ind← 0
3: for Each β ∈ Bw do
4: Get Pβ , the p-value for the F-statistic from the Granger causality test;
5: if β is significant then
6: B Indw,β = 1;
7: end if
8: end for
9: Return B Indw;

10: end if
11: if Arg==“CGCI” then
12: B Ind← 0
13: for Each s ∈ S do
14: Get PCGCIs→w , the p-value for the F-statistic from the CGCI;
15: if CGCIs→w is significant then
16: B Indw,s = 1;
17: end if
18: end for
19: Return B Indw;
20: end if

CGCI can provide a faster analysis by checking all the lags of a given variable together,

but stepwise backward elimination Granger analysis could provide the most detailed anal-

ysis for each variable at each lag. The final outputs of the algorithm are two cell arrays, B

which contains the parameters for the rVAR model of all nodes and B Ind which contains

the corresponding indicators based on the causality analysis. Further inferences could be

conducted based on the causality analysis results. In the next section, we demonstrate our
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algorithm on a real dataset and visualize some of the results.

6.5 Empirical Evaluation

In this section, we conduct evaluations using a partial UMDWikipedia dataset from [56].

The original dataset contains 770,040 edits of Wikipedia pages made by both vandal and

benign users between January 01, 2013 and July 31, 2014. Since user edits were recorded

with precision to seconds, we convert the time stamp into Matlab date numbers which

starts from January 00, 0000 for easier arrangement of the time series data. We use the

Black list DB and White list DB files which contain 17,027 vandal users and 160,651 edits

and 16,549 benign users with 609,389 edits respectively. For our study, we keep only

edits on the “Article” page type. Since we focus on analyzing the dynamic interactions of

the user behaviors, only pages edited by more than 3 unique users and users editing more

than 3 unique pages are kept. After cleaning the data, we have 17,733 edits and 805 users

spanning over 10,451 unique event times, where there are 456 benign users and 349 vandal

users. The associated relationship network is interpreted using the same method as the

example presented in Figure 11. This is a labeled dataset that can form a dynamic signed

and weighted network representing user interactions.

In this section, we use this partial dataset to investigate several case studies to demon-

strate how Granger causality analysis can help us identify the causes for the observed

anomaly measures. We use the rVAR(5), which is the rVAR model of lag 5, on 1-step

neighbors for all the case study examples unless further specified. More lags could better

capture the causality influences, but more computational time is needed. For the case stud-

ies, we use 5 time events as the interval to build the time series data, so we have 2,091 time
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frames.

6.5.1 Case Study 1

The target node is 7 and its 1-step neighbors are 48, 232, 281 and 378. The node anomaly

measure variables are relabeled as X1 to X5 respectively. The adjusted model using step-

wise backward elimination multivariate Granger causality analysis method is

X1,t = 0.288X1,t−1

+ 0.443X1,t−3

− 0.648X1,t−4 + 0.56X3,t−4

+ 0.467X1,t−5 − 0.186X3,t−5,

(40)

where c = 0.00007 is not significant with t-statistic value of 1.1679. The parameter

vector and the associated significance indicators from Granger casuality results are shown

in Figure 12(a) and Figure 12(b). For the parameter vector figures in this section, each row

represents the parameters for all the variables of a certain lag and each column represents

the parameters of all the lags for a certain variable. For the causality indicators figures,

each shaded location suggests that the corresponding column variable Granger causes the

row variable.

The Granger causality significance indicator grid based on the F-statistics is shown in

Figure 12(b). It suggests that the lag 4 and 5 terms of the variable representing node 232

(X3) are exogenous sources of influence towards node 7 (X1). On the other hand, the

parameter vector for node 232 (X3) is shown in Figure 12(c). The associated significance

indicator grid is shown in Figure 12(d). The causality result suggests that node 7 is also an

exogenous source of cause for the anomaly measures of node 232. Therefore, the anomaly
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(d) Causality indicators

Figure 12: (a) The parameters of all 5 lags for the rVAR model of node 7. (b) The anomaly
measures of node 232 Granger cause those of node 7. (c) The parameters for the rVAR

model of node 232. (d) The anomaly measures of node 7 Granger cause those of node 232.

measures of node 7 and node 232 are closely correlated.

By checking the original data, we find that user Jodosma7 builds an edge of weight 3

with user Bnseagreen232 through times 735256.505 (January 22, 2013 12:07:12. All the

other time stamps could be converted to this format), 735256.507 and 735296.924 on the

page titled “Dhani Matang Dev”. Furthermore, none of the edits made by user 7 and user

232 were reverted. Therefore, both users are considered normal users who have edited the

same page. The labels for both users are benign.
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6.5.2 Case Study 2

In this case study, we look at user SegaKing2479, who has 2 neighbors, 30 and 666.

The adjusted model using stepwise backward elimination multivariate Granger causality

analysis method is

X1,t = 0.478X1,t−1 − 0.085X3,t−1

+ 0.134X1,t−2

+ 0.235X1,t−3

− 0.122X1,t−4 + 0.108X3,t−4

+ 0.218X1,t−5,

(41)

where c = 0.00003 is not significant with t-statistic of −0.27542.

The parameters and Granger causality significance indicators of the fitted rVAR model

for users 9 (X1) and 666 (X3) are shown in Figure 14. We can see that the causal relation-

ship is one directional from user 666 to user 9. Both users edited the page titled “Sega”.

By checking the edit history, we find that all of the edits of user 666 were reverted, but

only part of edits of user 9 were reverted. Hence, we conclude that the activities of user 66

are abnormal and they influenced the anomaly measures of user 9, while user 9 could be a

benign user. The label for user 666 is vandal and the label for user 9 is benign.

6.5.3 Case Study 3

The target node is 466 and its 1-step neighbors are 67, 312, 330, 421, 563, 605 and 683.

The node anomaly measure variables are relabeled as X1 to X8 respectively. The adjusted

model using stepwise backward elimination multivariate Granger causality analysis method
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(d) Causality indicators

Figure 13: (a) The parameters of all 5 lags for the rVAR model of node 9. (b) The
anomaly measures of node 666 Granger cause those of node 9. (c) The parameters for the

rVAR model of node 666. (d) The anomaly measures of node 9 do not Granger cause
those of node 666.

is

X1,t = 0.562X1,t−1 − 0.396X7,t−1

+ 0.603X7,t−2

− 0.572X7,t−3

+ 0.517X1,t−4 − 0.231X6,t−4 − 0.387X7,t−4 − 0.229X8,t−4

+ 0.119X1,t−5 + 0.014X6,t−5 − 0.114X7,t−5 + 0.083X8,t−5,

(42)
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where c = 0.033 is significant with t-statistic value of 2.3034. The parameter vector and

the associated from Granger casuality indicators are shown in Figures 14(a) and 14(b).
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Figure 14: (a) The parameters of all 5 lags for the rVAR model of node 466. (b) The
anomaly measures of node 605 Granger cause those of node 466. (c) The parameters for

the rVAR model of node 605. (d) The anomaly measures of node 466 Granger cause those
of node 605.

In this example, both users Grobelaar0811466 (X1) and Bobcalderon605 (X7) edited the

page titled “Sofia Vergara” together. An edge of weight 4 was built between two users

through times 735308.6021, 735308.6025, 735355.0022 and 735355.0029. The casuality

analysis suggests that the activities of user 563 Granger cause the anomaly measures of
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user 466.
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Figure 15: (a) The parameters of all 5 lags for the rVAR model of node 563. (b) Node 466
is an exogenous source of influence to the anomaly measures of node 563.

By looking at the model and Granger Causality results for node 605 in Figure 14(c) and

Figure 14(d), we notice that the causal relationship between user 466 and user 605 is bidi-

rectional and conclude that they have a relatively close relationship. By further checking

the edit history of both users, we find that all 7 edits of user 466 and all 5 edits of user 605

were reverted, which indicate that both users could be vandals with very high probability.

Combining all the observations with the causality analysis results, we suspect that user 466

and user 605 may have attacked the page collaboratively. The labels for both users are

vandal.

As shown in Figure 15(a) and Figure 15(b), another neighbor, user Themaxandpeter563

also has similar causality results with node 466 as node 605 does. Node 466 and node 563

edited two pages titled “Fulham F.C.” and “Dynamo (magician)” together. According to

the edit history, all of the edits made by user 563 were reverted. According to all the above

results, we suspect that all 3 users 466, 563 and 605 were collaborating their attacks on
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Wikipedia pages.

6.5.4 Case Study 4

In this case study, we look at the rVAR(2) model of node 466 with its 2-step neigh-

bors. Node 466 has 7 1-step neighbors and 115 2-step neighbors. The meaning for 2-step

neighbors in this particular dataset is that those nodes edited some pages together with the

1-step neighbors of the target node. For any relatively well connected graph, the number

of 2-step neighbors tends to grow very large. As mentioned before, fitting a rVAR model

on a large number of variables requires more computational power and may have rank de-

ficiency problems. After the rank test, only 73 neighbors and the target have time series

data that are not linearly dependent. The Johansen cointegration test suggests that all 73

neighbors’ time series are cointegrated with the target node’s time series. The rVAR model

parameters and Granger causality indicators are shown in Figure 16(a) and Figure 16(b).
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(b) Causality indicators

Figure 16: (a) The parameters of 2 lags for the rVAR model of node 466 with its 2-step
neighbors. (b) The associated Granger causality indicators.

As more variables entering the model, we can see that the causality analysis results

become more complicated. Since the model contains more variables, only a few lags could
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be incorporated to make the computational time manageable. The results indicate that the

majority of exogenous causal influences come from the 2-step neighbors. However, the

weights of the influences of any 2-step neighbors should be significantly lowered to reflect

their weaker conductivities (in terms of distances) with node 466 than those of the 1-step

neighbors. Node 605 is the only 1-step neighbor appearing in the indicator figure, while

node 563 and 683 are not captured with the model of lag 2. An important issue is that, if

the number of variables entering the model increases, the chance for the model to be overfit

will also increase. Therefore, in applications, the number of variables and the size of the

lag need to be chosen carefully to prevent overfitting a model and to save computational

resources.

6.6 Summary

We have presented a noval approach for modeling the correlations of the node anomaly

measures calculated from the spectral features of the dynamic graph generated from a given

streaming OSN data by using rVAR model. We have also proposed to use the stepwise

backward elimination Granger casuality method to analyze the casual relationships of node

activities from the fitted rVAR model. To our knowledge, this is the first work to system-

atically analyze the graph spectrum based anomaly metric time series data simultaneously

using a multivariate statistical modeling tool. This is also the first work to use a strict statis-

tical inference method for identifying the endogenous and/or exogenous sources of casual

influence of node interactions in dynamic graphs. As demonstrated in the case studies,

by quantifying the randomness of node activities into the node nonrandomness measures

and analyzing the resulting time series data, the proposed method could help us identify



117

different activity patterns such as collaborative attacks, benign users sharing a common in-

terest, and benign users being attacked by vandals. The analysis results from the presented

algorithm are visualized to make them easier for users to interpret.

For future works, we could explore the features of the fitted rVAR model and Granger

causality results so that they could be used to construct a supervised or unsupervised learn-

ing method for node classification. Since the method proposed in this chapter is modular-

ized where different types of anomaly metrics could be plug in to analyze different anomaly

behaviors, we will explore different anomaly metrics under different scenarios for a more

extensive coverage of anomaly detection. Another important direction is to derive a more

sophisticated node nonrandomness measures for the directed signed and weighted graphs

using rigorous probabilistic modeling approaches rather than the node weight adjusted ver-

sion used in this chapter.



CHAPTER 7: CONCLUSION AND FUTURE WORK

7.1 Conclusion

Although the adjacency eigenspace captures rich information about the structure infor-

mation and node behaviours of a given network, it has not received sufficient attention.

The primary reason is that it is challenging to handle complex eigenpairs introduced by the

asymmetries of such network data. The asymmetries further cause the non-orthogonormal

eigen decompositions of the adjacency matrices, which make studies in such eigenspaces

very challenging. In this dissertation work, we proposed a matrix perturbation based the-

oretical framework and used it to explain several phenomena observed in the adjacency

eigenspaces for directed unsigned graphs in Chapter 3 and directed signed graphs in Chap-

ter 4. This framework could serve as a tool to handle the issues caused by the asymme-

tries of directed networks in general. Based on these theoretical results, we proposed two

algorithms Augmented ADJCluster and General ADJCluster that could detect clusters in

directed unsigned and directed signed networks respectively. The later algorithm could

reduce naturally to the former one for directed unsigned graphs.

We also studied the asymmetric information captured by SVD spectral space of the skew

symmetric graphs in Chapter 5. Both dominance and submissiveness score measures were

proposed to depict the organizational hierarchy of any relationship network. We developed

an algorithm that could evaluate the dominance structures of a given network. We also
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proposed to use probability distributions of the network dominance structures to compare

organizational hierarchies of different relationship networks.

For the anomaly detection and analysis of OSN data, based on the spectral analysis

results from all earlier chapters, we proposed in Chapter 6 to use the modified node non-

randomness metric derived from the spectral coordinates of the adjacency eigenspaces as

the time series data to quantify the changes of the node anomalies. Then, we used rVAR

method to model the interactions amongst the individual nodes. The fitted rVAR model

could be analyzed using Granger casuality method or CGCI method to identify the endoge-

nous and exogenous sources of anomaly influences. Rather than deriving a threshold at

each snapshot of the network as most existing spectral analysis based anomaly detection

methods, we studied the anomalies of the entire network simultaneously and systematically

as a whole.

The algorithms developed in these chapters were evaluated alongside many state-of-the-

art methods. We evaluated them on synthetic data with various structural properties and

sizes. In addition, many real dataset such as Sampson’s, Slashdot Zoo, Wikisigned, Twitter

streaming data, Epinion and World Trade 2014 data were analyzed using our algorithms.

7.2 Future Work

There are still many unexplored aspects of the graph adjacency eigenspace.

For graph theory related topics, there are two important problems. First, further knowl-

edge of signed adjacency matrices outside of the set of Perron Frobenius property is still

needed. Second, the geometric meanings of complex eigenpairs in relation to graph struc-

tures are still unclear. Those two problems have caused some major challenges for under-
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standing the eigenspace properties of the adjacency matrices for directed graphs, especially

directed signed graphs. As the number of negative entries increases for a given directed

signed graph, the adjacency matrix deviates further from the Perron Frobenius property,

but the threshold for which the leading real eigenpair corresponding to a connected clus-

ter vanishes is still unknown. Additional works in these topics using set theory and group

theory may be needed to fill in the gaps.

For matrix perturbation theory, there are two topics that could be explored in next step.

First, the theoretical framework for describing spectral behaviours of graphs with large

perturbations is still absent. Since all current theoretical studies of matrix perturbations

are limited to small perturbations, it is unclear how the derived theoretical results will

change when the perturbations increase. It is helpful to figure out whether the increase in

perturbations will cause the theoretical results to fail or will just increase the errors of the

approximations. Second, spectral analysis of DUGs and DSGs presented in Chapters 3-4

could work well for asymmetric weighted graphs in principle. Hence, we can extend the

current works to study the spectral properties of directed weighted graphs.

For studying dynamic graphs, there are still many topics that could be explored. First, a

complete extension of the node nonrandomness metric into signed weighted graphs could

be helpful. Second, deriving a confidence bound from the probabilistic distributions of

the anomalous nodes and normal nodes could better aid us to distinguish whether a node

is normal or abnormal. Third, logistic regression or similar techniques could be used to

provide classifiers using the features extracted from the Granger causality analysis results

based on the fitted rVAR model.

For data mining in large streaming datasets, the scalability of the algorithms introduced
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in this work could be further explored. For our current studies, we focused on networks

within the million-size scale. With the help of a distributed processing system such as

Hadoop, we could explore the possibility to parallelize our algorithms so that networks of

the billion-size scale could be studied.

Our theoretical results of spectral analysis of directed graphs could be applied to other

tasks in addition to community partition, organization hierarchy, and fraud detection. One

particular direction of our future work is to extend the spectral analysis based visualization

of undirected graphs [48, 49] to directed graphs.
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