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ABSTRACT

HUAYU LI. Recommender Systems in Social Networking Sites. (Under the
direction of DR. YONG GE)

Social networking sites have experienced an explosion in both the number of users

and the amount of shared information in recent years. Thanks to the positioning

function in mobile devices, e.g., GPS, location-based social networks (LBSNs) be-

come a prominent representative of social networks. Thus, the rapid development

of LBSN services has stimulated the emergence of a new line of research to develop

two novel recommender systems that seek to facilitate users' location exploration and

social interaction, where we refer them to location and friend recommender systems,

respectively. Even with the help of large available user interaction data, it is chal-

lenging to produce accurate location recommendation and friend recommendation

in LBSNs by the reason of the interdependency between human mobility and social

proximity, and the heterogeneity of social link, i.e. connection between user and user,

and consumption link, i.e. connection from user to location, in the whole network.

To this end, in this dissertation, we propose di�erent approaches for these two types

of recommender systems with the characteristics observed in user behaviors to serve

LBSNs. For location recommendation, we study human mobility and exploit human

movement properties to design recommender systems in spatial, temporal, and social

aspects for helping users discover the desired locations. For friend recommendation,

a new approach is introduced to maximize the growth of both heterogeneous links

in the whole network for helping users �nd potential friends to connect with. The

performance evaluated on real-world datasets demonstrates the ability of our models

for recommender systems in LBSNs.



iv

ACKNOWLEDGEMENTS

I would like to thank all the members of my dissertation committee to their con-

sistent support, constructive criticism and valuable instruction in the course of the

dissertation.

I would like to express my deepest gratitude to my advisor, Prof. Yong Ge, for his

excellent guidance, and persistent support throughout the time of my Ph.D. study. I

am very fortunate to work under his supervision. I have bene�ted tremendously from

his feedback, ideas, and criticism on my research, writing, and presentation skills.

Furthermore, I would like to thank UNC Charlotte for providing me with such a

wonderful opportunity for my PhD study. The faculties and sta�s in UNC Charlotte

help me a lot in both course work and life.

Thanks as well to all my friends. Many of them having accompanied me for several

years. I am greatly indebted for their a�ection, their support and encouragement.

Moreover, my life would not have been possible without the support of my family. I

really appreciate their support and encouragement very much.



v

TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF TABLES x

LIST OF ABBREVIATIONS 1

CHAPTER 1: INTRODUCTION 1

1.1. Motivation 1

1.2. Contribution 4

1.3. Organization 4

CHAPTER 2: LITERATURE REVIEW 6

2.1. General Recommender Systems 6

2.2. Point-of-Interest Recommender Systems 9

2.3. Friend Recommender Systems 11

CHAPTER 3: LEARNING FROM IMPLICIT FEEDBACK 13

3.1. Introduction 13

3.2. Pairwise Ranking 15

3.3. Relaxed Ranking Model 16

3.4. Experimental Results 23

3.5. Conclusion 29

CHAPTER 4: POINT-OF-INTEREST RECOMMENDATION 30

4.1. Introduction 30

4.2. Modeling Geo-Temporal In�uence 32

4.2.1. Methodology 32



vi

4.2.2. Experimental Results 41

4.2.3. Conclusion 46

4.3. Modeling Geo-Social In�uence 47

4.3.1. Methodology 47

4.3.2. Experimental Results 58

4.3.3. Conclusion 67

4.4. Addressing Cold-Start Problem 68

4.4.1. Notation and De�nition 69

4.4.2. Recommendation Framework 72

4.4.3. Learning Potential Locations 72

4.4.4. Recommendation Models 75

4.4.5. Experimental Results 84

4.4.6. Conclusion 93

CHAPTER 5: FRIEND RECOMMENDATION 94

5.1. Introduction 94

5.2. Notation and Problem De�nition 95

5.3. Methodology 98

5.3.1. The Bi-utility of a Social Link 98

5.3.2. Model Presentation 99

5.3.3. Parameter Estimation 104

5.4. Experimental Results 106

5.4.1. Experimental Setup 106

5.4.2. Evaluation Metrics 107



vii

5.4.3. Baseline Methods 108

5.4.4. Performance Comparison 109

5.5. Conclusion 112

CHAPTER 6: CONCLUSION 113



viii

LIST OF FIGURES

FIGURE 3.1: Algorithm of Relaxed Ranking-based Factor model. 22

FIGURE 3.2: Performance comparison in terms of precision and recall on
Gowalla, Foursquare and MovieLens datasets.

28

FIGURE 4.1: (a)The graphical model of STPMF. (b) An example of a
user's historical check-ins. Red box represents a region, and each
color indicates a category.

34

FIGURE 4.2: Performance comparison in term of precision with top 5
and 10 on two data sets.

44

FIGURE 4.3: Performance comparison in term of recall with top 5 and
10 on two data sets.

45

FIGURE 4.4: Performance comparison in terms of MAP on Data 1 and
Data 2.

46

FIGURE 4.5: (a) Relationship between social friend space and user inter-
est space. (b) The x-axis is the ratio of check-ins visited by friends;
the y-axis is the number of corresponding users.

48

FIGURE 4.6: (a) An example of user's social networks and check-ins.
The circle is user and the triangle is location. The red circle is the
target user. The solid line indicates friendship and the dashed line
indicates check-in behavior. (b) An example of users checking-in the
same location and their social networks.

48

FIGURE 4.7: Probability of check-ins as a function of distance of pairwise
check-in distance (Left) and from home (Right).

50

FIGURE 4.8: Performance comparison for di�erent rating conversions on
UIPMF with di�erent dimensions.

61

FIGURE 4.9: Performance comparison for di�erent rating conversions on
PMF with di�erent dimensions.

62

FIGURE 4.10: Performance comparison for di�erent rating conversions in
terms of MAP with di�erent dimensions.

63

FIGURE 4.11: Performance comparison in terms of precision@K and re-
call@K in social friend space and user interest space.

64



ix

FIGURE 4.12: (a) ∼ (b) Cosine similarity as a function of distance be-
tween users' home locations. (c) ∼ (d) Complementary Cumulative
Distribution Function (CCDF) of cosine similarity between friends.

70

FIGURE 4.13: The user ui's social network and check-ins. 71

FIGURE 4.14: The performance comparison of standard recommendation
of basic methods in terms of precision@K and recall@K.

88

FIGURE 4.15: The performance comparison of standard recommenda-
tion of our models and other models in terms of precision@K and
recall@K.

89

FIGURE 4.16: The performance comparison of new user recommendation
in terms of Precision@K and Recall@K on Gowalla dataset (top) and
Fousquare dataset(bottom).

90

FIGURE 5.1: (a) ∼ (c) are the examples of three consecutive time win-
dows. The colors other than black indicate the newly added links.

97

FIGURE 5.2: Performance comparison for friend recommendation in
terms of RMSE on two datasets.

110

FIGURE 5.3: Performance comparison for friend recommendation in
terms of precision@K and recall@K.

111

FIGURE 5.4: Performance comparison for friend recommendation in
terms of MAP and AUC.

112



x

LIST OF TABLES

TABLE 2.1: Techniques of recommender systems classi�ed by what to
model.

9

TABLE 3.1: The statistics of data sets. 24

TABLE 3.2: Performance comparison in terms of MAP and AUC metrics.
The result is reported in percentage (%).

27

TABLE 4.1: The generative process for STPMF model. 39

TABLE 4.2: The algorithm for STPMF model. 42

TABLE 4.3: The statistics of data sets. 42

TABLE 4.4: The objective functions for the proposed two models. 52

TABLE 4.5: The statistics of data sets. 59

TABLE 4.6: Performance comparison in terms of MAP in social friend
space and user interest space.

65

TABLE 4.7: Performance comparison in terms of Precision, Recall and
MAP in the whole recommendation space.

66

TABLE 4.8: The statistics of data sets. 86

TABLE 4.9: The performance comparison of standard recommendation
of our models and baseline methods in terms of MAP.

90

TABLE 4.10: The performance comparison of new location
recommendation.

91

TABLE 4.11: The performance comparison of new user recommendation
in terms of MAP.

92

TABLE 5.1: Mathematical notations. 96

TABLE 5.2: The social features for user i and k in time window w. 101

TABLE 5.3: The optimal solutions for MBSL model. 106



xi

TABLE 5.4: The statistics of data sets. 107



CHAPTER 1: INTRODUCTION

1.1 Motivation

In the past decade, with the widespread adoption of Web 2.0 technology, social

networking sites, such as Facebook and Foursquare, have attracted a huge attention

and dramatically reshaped people's social lives [1, 2]. Smart mobile devices have pro-

vided the web users with the ability to access online services as they are on the move

and, literally, from any place where Internet connectivity is present. For example,

until 2016, there are 56.5% Facebook users that only login from the mobile device 1.

Advances in smart mobile devices and localization technologies, have fundamentally

enhanced social networking services, allowing users to share their life experiences

in the physical world via location sharing, and thus location-based social networks

(LBSNs) become prominent representatives of the class of social networks.

In LBSNs, the dimension of location brings social networks back to reality, bridg-

ing the gap between the physical world and online social networking services. Thus,

LBSN services, such as Facebook Places, Foursquare, Gowalla, and Dianping, are able

to facilitate outdoor activities for users by providing nearby locations, e.g., restau-

rants, stores, cinema theaters, in a real-time fashion, and at the same time allow users

to make friends online for sharing check-in experience with each other. A variety of

user interaction data with these LBSN services, such as checking-in at locations and

building social connection, have been accumulated, which provides unprecedented op-

portunities for developing both location and friend recommender systems [1, 2, 3, 4].

Indeed, it becomes crucial to have a personalized recommender system that is able

to learn user preferences, and based on these preferences, to automatically �lter irrel-

1https://expandedramblings.com/index.php/facebook-mobile-app-statistics/
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evant information (i.e. friends or locations in LBSNs) or suggest useful information

to this user in a timely manner. With limited human attention, �nding relevant in-

formation and knowledge from the huge amount of available information is usually

frustrating and extremely time-consuming. The suggestions provided by a recom-

mender system are aimed at e�ciently and e�ectively supporting users in various

decision-making processes, such as what locations to check-in, or what friends to

make, for enabling them to quickly locate desirable items without being overwhelmed

by irrelevant information.

To this end, in this dissertation, we provide a new family of recommender systems

with location recommendation and friend recommendation aimed at serving LBSNs 2.

Location recommender systems help users �nd their preferred locations, and friend

recommender systems help users �nd potential friends to connect with in social net-

working sites. However, location and friend recommendations in LBSNs are extremely

challenging problems, and we list here several motivating challenges:

• Implicit-feedback. Traditional recommender systems, e.g., movie recommen-

dation, allow users to provide an explicit rating for an item to express their

interests. A higher (or lower) rating explicitly indicates that the user likes (or

dislikes) the item more. Nevertheless, in LBSNs, such explicit feedback is not

always available, where the user's opinion is indirectly re�ected through the

observed user behaviors, such as check-in behavior. For example, one user is

able to realize that checking-in a certain location is a poor experience only after

visiting this location, therefore just knowing a user has visited a location does

not necessarily imply that she likes it.

• Complex nature of decision making process. The user's movement is generally

in�uenced by many di�erent kinds of factors, such as geographical location,

social friends, and time. For example, a user usually likes to prefer a nearby
2We also refer location to point-of-interest (POI).
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location rather than another one far away due to short distance. Furthermore,

friends have an important role in decision making process for users associated

with location choice. Some of the friends have positive impact on a user's check-

in at a particular location, while others may in�uence negatively. Even with the

same group of friends, two users may be a�ected by these friends in di�erent

ways. Additionally, the user's interest may change over time. For example,

one user likely chooses a restaurant next to her work place for convenience in

week days, but she possibly goes to a bar for entertainment at weekends. These

factors present another critical challenge for developing recommender systems

in LBSNs.

• Cold-start Problem. When a new item or a new user enters the system, we do

not have their historical interaction information. There is no training data for

such user or item, de�nitely leading to the failure of machine learning models.

Thus, the insu�cient interaction information prevents producing reasonable

recommendation for cold start users and items.

• Heterogeneity. There are two types of links in LBSNs: social link, connecting

user and user, and consumption link which is an interaction between user and

location and also refers to the check-in behavior. It is hard to have users build

multiple social connections and check-in at many locations at the same time. In

reality, the number of online recommended friends is limited for each individual.

It is impossible to display all potential locations and friends for users together

for the sake of the limited size of device screen, which as a result increases the

di�culty of the growth of these two heterogeneous links. For example, a friend

recommender system is capable of providing each individual with a group of

users who she might be interested in. But it cannot guarantee that she would

have more chances to check-in locations as well. Thus, how to enable these two
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types of links to grow fast together poses the key challenge to recommender

systems in LBSNs.

1.2 Contribution

In this dissertation, we focus our attention on addressing the challenges described

above for recommender systems with location recommendation and friend recommen-

dation in LBSNs. To summarize, the contributions of our research work are as follows,

which will be elaborated in each chapter:

• Propose a novel ranking-based model for general recommender systems with

implicit feedback datasets, which can be practically applied to both location

recommendation and friend recommendation in LBSNs, by relaxing pairwise

ranking into a SVM-like task where positive and negative feedbacks are sep-

arated by the soft boundaries, and design a group- and instance-level based

algorithm to ease the sampling bias for optimization process. [5].

• Propose di�erent matrix factorization models for location recommender systems

in the context of LBSNs, and model geographical in�uence, social in�uence, and

temporal e�ect observed in human movement for solving cold-start problem and

producing more accurate recommendation [6, 2, 1, 4].

• Propose a bi-utility based approach for friend recommender systems to enable

the heterogeneous links in LBSNs to grow faster together, and produce friend

recommendation by maximizing the bi-utility of each social link, i.e. the summa-

tion over corresponding social utility and potential consumption utility, which

helps users build more social connections and explore more locations at the

same time.

1.3 Organization

The remainder of this dissertation is organized as follows. We �rst discuss prior

research on recommendation techniques and give a brief literature review in Chap-
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ter 2. From Chapter 3 to Chapter 5, we study di�erent recommender systems, i.e.,

location recommendation and friend recommendation, in social networking sites. In

Chapter 3, we introduce a ranking-based method for general recommender systems

with implicit feedback datasets which can be practically applied to location and friend

recommendation. In Chapter 4, we present di�erent matrix factorization-based meth-

ods for location recommender systems by exploiting various characteristics observed

in human movement. In Chapter 5, a new bi-utility based approach is elaborated

to maximize the growth of heterogeneous links in LBSNs for friend recommendation

systems. We �nally conclude the dissertation in Chapter 6.



CHAPTER 2: LITERATURE REVIEW

Recommender systems have gained increasing popularity and attention in recent

years, and are utilized in a variety of areas, e.g., movie recommendation on NetFlix,

job recommendation on Linkedin, product recommendation on Amazon, and news

recommendation on Yahoo [7, 8, 9, 10, 11]. POI recommendation [12, 13] and friend

recommendation have become the essential tasks in location-based social network-

ing services for facilitating human life experience, which belong to sub-categories of

recommender systems. Thus, techniques of general recommender systems are also

practically applicable to both location and friend recommendation, although the per-

formance may be limited due to the speci�c characteristics of human mobility and

social structure in location-based social networking services. In the following section,

we �rst provide a literature review on general recommender systems, and then review

approaches of POI recommendation and friend recommendation.

2.1 General Recommender Systems

In this section we brie�y review some existing work on recommender systems. Ex-

isting recommendation models have mostly focused on minimizing a uniform type of

recommendation recovery loss to predict the recommendation scores. Based on the

type of losses, recommender systems can be grouped into three categories: point-

wise methods, pairwise methods, and listwise methods, where their related work is

summarized in Table 2.1.

Pointwise method, also referred to rating prediction-based method, optimizes a

loss function de�ned on absolute preference score from the user by minimizing the

point-wise (entry-wise) divergence of the reconstructed recommendation matrix from
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the original observation matrix. With the observed explicit ratings, i.e. observed

entries in matrix, probabilistic matrix factorization (PMF) minimizes the point-wise

di�erence in terms of `2 norm between the reconstructed matrix produced by the

inner product of the user and item latent representations and the input training

matrix [14, 15]. In addition to exploiting latent factor model, SVD/SVD+ [16, 17]

also capitalizes the advantage of neighborhood method to estimate the preference

score of the user on the item for the reconstructed matrix. Factorization Machines

(FM) [18, 19] is a general rating predictor by modeling all interactions between vari-

ables using factorized parameters and capable of incorporating various context in-

formation. In some other recommendation scenarios, e.g., browsing history, clicking

history, purchase history, and check-in behavior, the user's true preference scores to

items are not available. To address such implicit feedback issue, a weighted regu-

larized matrix factorization (WRMF) model has been developed in [20] to recover a

binary matrix by optimizing the loss for observed entries with large weights while

�tting the unobserved ones with small weights. Similar to this idea, one-class collab-

orative �ltering (OCCF) [21] only minimizes the loss by partial matrix with sampled

negative examples instead of the whole matrix to improve the e�ciency.

Paiwise method optimizes a loss function de�ned on relative pairwise preferences

from the user by minimizing the preference structure inconsistency between the re-

constructed recommendation matrix and the original matrix [22, 23, 24, 25, 26, 27].

The loss is low when the predicted order is correct, or in other words, when the

more relevant item in a pair is predicted to have a higher score than the less relevant

item. Bayesian personalized ranking (BPR) [28] optimizes pairwise ranking loss for

the user's preference score to the observed item over the unobserved one, which actu-

ally is equivalent to maximize area under the ROC curve (AUC). The ranking loss is

approximated by a smooth logistic function, and the optimization problem is solved

by uniformly sampling negative example with stochastic gradient descent (SGD). To
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improve the convergence rate, advanced sampling strategy [29] is designed to over-

sample the top ranked negative items. Instead of directly optimizing the loss of strict

ranking order, RankALS [30] optimizes the relative ranking order using `2 norm for

minimizing the di�erence between all pairs of the reconstructed relative orders and

the observed true relationship. In addition, RankNet [31] employs cross-entropy loss

to optimize pairwise ranking with neural networks. To care more about the top of

the ranking than the bottom in case of capacity waste in improving the order of pref-

erence score at low (poor) ranks at the expense of those at the top of the ranking,

LambdaRank [32] further manipulates the gradients by simply scaling with the size

of the change in Normalized Discounted Cumulative Gain (NDCG).

Listwise method optimizes a loss function de�ned on relative listwise preferences

from the user by minimizing the inconsistency between the predicted list and the

groundtruth list [33]. In other words, it learns to model ranked list, or to model

evaluation metrics that capture the quality of ranked list. Listwise methods can be

classi�ed into two groups. The �rst one directly optimizes the information retrieval

(IR) measures, such as NDCG [34, 35], Mean Average Precision (MAP) [36], Mean

Reciprocal Rank (MRR) [37, 38], and Graded Average Precision (GAP) [39]. Opti-

mizing IR measures directly is di�cult since they depend on the rank and are not

di�erentiable. To avoid the computational di�culty, the core idea is to �nd a smooth

proxy loss function that can be di�erentiable and used for training by approximat-

ing the �hard� version rank function with a �soft� function. The second category of

listwise algorithms de�nes loss function as an indirect way to optimize the IR evalu-

ation metrics. For instance, ListNet [40] uses the KL-divergence as a loss function by

de�ning a probability distribution. ListRank-MF [41] employs the cross entropy loss

that represents the uncertainty between training lists and output lists produced by a

matrix factorization ranking model.
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Table 2.1: Techniques of recommender systems classi�ed by what to model.

Pointwise Pairwise Listwise
PMF [14] BPR [28, 29] SoftRank [34]
SVD [16] RankALS [30] Co�Rank [35]
SVD+ [17] RankNet [31] TFMAP [36]
FM [18, 19] LambdaRank [32] CLiMF [38, 37]
WRMF [20] LambdaMART [42] GAPfm [39]

EigenRank [43] ListNet [40]
RRFM [5] RRFM [5] ListRank-MF [41]

2.2 Point-of-Interest Recommender Systems

In human mobility, user's check-in behavior is frequently a�ected by temporal ef-

fect, geographical location, and social network information. Thus, POI recommenda-

tion algorithms are classi�ed into three categories.

The �rst category focuses on modeling temporal e�ect [3, 44, 45, 46, 47]. For

example, a simple yet e�ective approach is to distinguish user's latent factors in

di�erent temporal state and then take several strategies to aggregate user check-

in preference in each temporal state [48]. Then the ranking score is produced by

the dot product of the corresponding user latent vector and location latent vector.

Multi-center Gaussian mixture distribution has been developed in [49, 50] to capture

the user's temporal preference. The author in [51] adopts the summation to fuse

user's interest for POI and graphical in�uence, where the user's interest for POI

could be learned by a User-based Collaborative Filtering extension with temporal

state. Besides, a graph-based method is proposed to learn user's preference for POIs

and then Breadth-�rst Preference Propagation is employed to search the optimal

solutions [45].

The second category throws light on modeling geographical in�uence for rec-

ommendation [4, 52, 53, 54, 45, 55, 56]. Several approaches have been developed to

incorporate geographical distance for location prediction. For example, [50] discovers

user's check-in behavior follows a two-state (i.e. home and work) mixture of Gaussian
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in geographical distance, assuming a POI that user would choose to check-in is next

to either her home or work place, and then exploits such distribution to model user

movement. Instead of employing the �xed two-center Gaussian mixture models, [57]

further adopts the multi-center Gaussian model to form the distribution of the dis-

tance between the visited location and its center for each individual user. To avoid the

di�culty of specifying a known distribution, [58] utilizes the kernel density estima-

tion (KDE) to learn personalized check-in behavior with POI's geographical location,

which is much more �exible. Furthermore, [59] further studies a mixture of adaptive

Kernel density estimates to characterize a distribution between check-in probability

and distances at di�erent spatial level in order to avoid data sparsity in individual

level for KDE. To exploit user based collaborative �ltering, the author in [60] �rst

proposes to use a power law distribution to estimate the check-in probability with

the distance of any pair of visited POIs due to the spatial clustering phenomenon ex-

hibited in LBSNs. The user's preference for one location is then predicted by a linear

model with the combination of users' interest, social friends' interests and geographi-

cal in�uence. There are some other methods based on matrix factorization to produce

more accurate recommendation. For example, [61] considers two types of geographi-

cal neighborhood characteristics: instance level and region level. In instance level, a

user's preference for one location is modeled by a combination of her preference for

this location and the nearest neighborhoods of this location. In region level, it places

a group lasso penalty to learn location-speci�c latent vectors and capture the region

e�ect. More important, [4] proposes a uni�ed approach to integrate squared error loss

and ranking error loss for solving location recommendation task by e�ectively learn-

ing �ne-grained and interpretable user interest, and adaptively modeling the missing

data. Speci�cally, each user's general interest is modeled as a mixture of her intrin-

sic and extrinsic interests, upon which we formulated the ranking constraints in our

uni�ed approach. Additionally, a self-adaptive location-oriented method is proposed
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to capture the characteristic of missing data, and is then formulated as the squared

error loss in our uni�ed optimization objective.

The third category is elaborating social information for POI recommendation

[1, 62, 63, 64, 65, 66, 2]. For example, with the intuition that users and their friends

will share the similar interests, [67] places a social regularization term to constrain

matrix factorization object functions for learning more accurate user feature vectors.

[68] proposes a geo-social correlation model to capture four types of social correlations

of users' check-in behaviors, i.e. local friends, distant friends, local non-friends and

distant non-friends. The check-in probability is measured as a combination of these

four geo-social correlations, where the corresponding coe�cients are learned by a

group of features in a logistic regression similar fashion. On the other hand, [69]

exploits local and global social relations to assist recommendations. Speci�cally, in

local context, it models the correlations between users and their friends by �tting the

similarities between them; while in global context, it utilizes the reputation of a user

in the whole social network as the weight to �t the observed ratings. The approaches

proposed in [52, 60] predict the preference of the user for the POI by collaborating

the preferences of her friends on this POI.

2.3 Friend Recommender Systems

Friend recommendation is a critical task in social networking sites that not only

helps increase the linkage inside the network and also improves the user experi-

ence [66]. One popular research direction about friend recommendation is proximity-

based method, surrogating the linkage likelihood of a potential link using the proxim-

ity between users that would be connected by the link. It can generally be grouped

into nodal proximity-based methods and structural proximity-based methods. Nodal

proximity-based methods usually measure the similarity between two social entities

using their pro�les, including demographic, geographic, and semantic characteristics

by Jaccard coe�cient, KL-divergence, cosine similarity and etc. Structural proximity-
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based methods comprise neighborhood-based structural proximity and path-based

structural proximity based methods[70, 71]. Neighborhood-based structural proxim-

ity includes Common Neighbor computed as the number of their mutual neighbors,

Adamic/Adar measure assigning less weight to more connected common neighbors,

Preferential Attachment where the linkage likelihood between social entities is highly

correlated with their neighborhood sizes, and SimRank assuming that two social

entities are similar if their neighbors are similar. Path-based structural proximity

approaches contain Katz index which measures the structural proximity between so-

cial entities using the number of paths connecting them and is weighted by their

lengths[72], random walk [73], and pagerank [71]. On the other hand, matrix factor-

ization is also employed for friend recommendation [74]. For example, [75] extends

ranking-based matrix factorization to model three di�erent status of links in signed

network. [76] optimizes log loss function for top-k recommendation by incorporating

both the latent features and explicit features of the network. The ranking score of

a potential social link between two users is produced by the summation over (1) the

score estimated by the inner product of representations in latent space, and (2) the

score predicted in a regression form with observed features.



CHAPTER 3: LEARNING FROM IMPLICIT FEEDBACK

3.1 Introduction

Recommender systems have been an important feature to recommend relevant

items to relevant users in many online communities, e.g. Amazon, Net�ix, and

Foursquare. Some online systems allow users to provide an explicit rating for an

item to express how much they like it. Nevertheless, many other recommender sys-

tems only have user's implicit feedback, such as browsing activity, purchasing history,

watching history and check-in information. As implicit feedback becomes more and

more prevalent, this type of recommender system has attracted many researchers'

attention [77]. However, implicit feedback based recommender systems su�er from

many challenges. For example, the sparseness of observed data, i.e., only a small

percentage of user-item pairs have feedbacks, increases the di�culty to learn user's

exact taste on items. Also, di�erent from explicit feedback, only positive preference

is observed in implicit feedback. In other words, we have no prior knowledge about

which items users dislike. This has been a thorny issue for learning task.

In the literature, some related work has been proposed to take advantage of im-

plicit feedback for item recommendations. For example, [20] regards user's preference

for an item as a binary value, where a user's preference for the observed item and

the unobserved one are viewed as one and zero, respectively. Then it �ts these pre-

de�ned ratings with vastly varying con�dential levels based on matrix factorization

framework. Although it assumes that a user prefers the observed items to unobserved

ones, the quadratic in the formulation weakens their instinct ranking order. There is
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no guarantee that the higher accuracy in rating prediction will result in the better

ranking e�ectiveness [78]. For instance, the true ratings for two items are {1, 0.5}.

The predicted ratings {0.4, 0.6} and {1.6, 0.6} have the same prediction accuracy.

But in fact, they lead to totally di�erent ranking orders of items. To this end, Rendle

formulates user's consuming behavior into the pairwise ranking problem, i.e., users

are much more interested in their consumed items than unconsumed ones [28]. Due

to a large number of such pairs, it only samples some negative items for the learning

procedure. However, there are two limitations. First, the pairwise ranking increases

the number of comparisons. Second, although Rendle further improves the sampling

skill by oversampling the top ranked items [29], sampling technique itself easily leads

to bias. It is likely that the sampled negative item is already ranked below the positive

one, which as a result has no contribution to the optimization.

To address these issues, in this chapter, we propose to relax the ranking model

proposed in [28] to eliminate the pairwise ranking. Speci�cally, the positive and

negative feedbacks are separated by the positive and negative boundaries. In fact, the

unobserved implicit feedback is often a mixture of negative and missed positive data,

so a slack variable is introduced to capture such characteristic, which allows some

negative feedbacks and positive feedbacks to be non-separate. Furthermore, instead

of sampling, a smooth and scalable algorithm is designed to learn model's parameters

based on group and instance level's optimization. The proposed algorithm allows to

take all the unobserved items into account for optimization, and as a result addresses

the bias caused by the sampling technique in [28, 29]. Finally, the proposed model is

evaluated with many state-of-the-art baseline models and di�erent validation metrics

on three real-world data sets. The experimental results demonstrate the superiority

of our model for tackling implicit feedback based recommendations.
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3.2 Pairwise Ranking

The recommendation task addressed in this chapter is de�ned as: given the con-

sumption behaviors of N users over M items, we aim at recommending each user

with top-K new items that she might be interested in but has never consumed be-

fore. Matrix factorization based models assume that U ∈ RD×N and V ∈ RD×M are

the user and item latent feature matrices, with column vectors ui and vj representing

the D-dimension user-speci�c and item-speci�c feature vectors of user i and item j,

respectively. The predicted preference (rating) of user i for item j, denoted as r̂ij, is

approximated by:

r̂ij = uTi vj. (3.1)

In implicit feedback datasets, only positive feedback is observed. As we lack substan-

tial evidence on which items users dislike, their preference for an unobserved item is

regarded as a mixture of negative and missing values. Along this line, [28] assumes

that each user prefers the observed items over unobserved ones. Let us denoteMo
i as

a set of items that user i has consumed andMu
i as the remaining items that she never

consumed. Then for user i, the ranking based on user's preference for an observed

item j over an unobserved item k is given by:

uTi vj > uTi vk, ∀j ∈Mo
i ∧ ∀k ∈Mu

i . (3.2)

For convenience we will henceforth refer to i as user, j as observed item, and k as

unobserved item unless stated otherwise. Eq.(3.2) models the correlation of user's

preference for each pair of observed item and unobserved one. It is actually maximiz-

ing the Area Under the ROC Curve (AUC) for matrix factorization. The optimization
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problem for pairwise ranking is formulated as follows:

max
U,V

N∑

i=1

∑

j∈Mo
i

∑

k∈Mu
i

log σ(uTi vj − uTi vk)−
λu
2
||U||2F−

N∑

i=1


λv1

2

∑

j∈Mo
i

||vj||2 +
λv2
2

∑

k∈Mu
i

||vk||2

,

where σ(x) is the sigmoid function, i.e., σ(x) = 1/(1 + e−x); || · ||F is the Frobenius

norm; || · || is Euclidean norm; and λu, λv1 and λv2 are regularization constraints. In

optimization process, sampling negative items is adopted to avoid comparing with all

unobserved items for each individual user. The optimal solution, as a result, can be

obtained by Stochastic Gradient Descent (SGD).

3.3 Relaxed Ranking Model

Method

In implicit feedback systems, user's preference for the observed item is usually

regarded as positive rating and there is no negative rating. Most research work argues

that one user's preference for the observed item is supposed to be larger than that for

any unobserved one [28, 20], which indicates the presence of ranking between positive

and negative ratings. However, computing the pairwise ranking of a user's preference

for the observed items over the unobserved ones is quite ine�cient, especially when the

user's historical data increases. To address this issue, we propose to relax the pairwise

ranking. We treat one user's preference for an item as an point, where her positive

(or negative) rating is viewed as the positive (or negative) point. Our goal is to make

all positive points reside above all negative points. Inspired by the soft margin idea

of SVM, we separate these two types of points by two di�erent boundaries. In other

words, user's preference for the observed items and unobserved ones are separated by

the boundaries. Speci�cally, user's positive rating is located on or above a boundary

represented as a numeric value r+. On the other hand, her negative rating resides
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on or below another boundary. It not only improves the e�ciency of comparisons,

but also preserves the ranking information. Along this line, we relax Eq.(3.2) for

∀j ∈Mo
i ∧ ∀k ∈Mu

i in the following:





uTi vj ≥ r+,

uTi vk ≤ r− + ξik,

(3.3)

where ξik is the slack variable for user i on the unobserved item k 1. Even though

there may be many unobserved items for a user, it does not necessarily indicate that

she dislikes them. Probably she may be just unaware of them. In other words, some of

the unobserved items might be those users are interested in, while others are actually

those they dislike. To explicitly capture this characteristic, the slack variable ξik in

Eq.(3.3) is introduced to allow the mixture of negative feedback and positive feedback

in unobserved data 2. Hence, we apply the following constraint for ξik as:

r− + ξik ≥ r+ ⇒ ξik ≥ r+ − r−. (3.4)

It is worth to note that for each user i, pairwise ranking in Eq.(3.2) needs |Mo
i | ×

|Mu
i | comparisons; but our relaxed ranking in Eq.(3.3) only requires M = |Mo

i | +

|Mu
i | comparisons. Speci�cally, when |Mo

i | = M/2, pairwise ranking needs M2/4

comparisons while relaxed ranking only requires M comparisons.

However, Eq.(3.3) is a �hard� version of optimization problem due to the strict

constraints. Thus, we make the constraints �soft� by introducing a plus function

to penalize the violated constraints. The optimization problem with the softened

1Generally, r+ and r− can be any numerical values. In the experiments, r+ and r− are set as
one and zero respectively, which is similar to [20].

2Even though the optimization error in hard boundary might lead to the overlap of negative
and positive results, we consider to explicitly model this characteristics with soft boundary in this
chapter.
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constraints is formulated as follows:

min
U,V,ξ

N∑

i=1


∑

j∈Mo
i

(
−uTi vj + r+

)
+

+
∑

k∈Mu
i

(
uTi vk − ξik − r−

)
+


+ ||Θ||, (3.5)

where (·)+ is the plus function [79], i.e., (x)+ = max(x, 0), and ||Θ|| is the regular-

ization term given by:

||Θ|| = λu
2
||U||2F +

λv
2
||V||2F + λξ

N∑

i

||ξi||1,

where λu, λv and λξ are the regularization constants, and ||ξi||1 is `1 norm of vector

ξi. More important, one reason for imposing such a vector norm on ξ is that users are

usually interested in a small percentage of unobserved items among all the remaining

unobserved ones. It is worth to note that the formulation in Eq.(3.5) is di�erent from

a pure SVM scheme: (1) We relax the pairwise ranking problem which is adaptable

for any pairwise ranking based application; (2) A novel and scalable optimization

is designed for the objective function (in the next section). (3) The slack variable

with `1 norm is introduced to capture the characteristics of unobserved data (i.e., the

mixture of positive and negative data).

Optimization

The bottleneck for the optimization problem shown in Eq.(3.5) is the calculation

of each user's ratings on all the unobserved items, which results in at least O(MND)

time complexity. Particularly, with the increase of the item number, it becomes more

and more ine�cient. As sampling negative items possibly leads to bias, in this chapter

we propose a smooth and scalable optimization algorithm to take all the unobserved

items into consideration.

First, we solve the problem in a group-based optimization. The entire item set

is randomly divided into G groups. It is worth to note that we adopt the random
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group technique in the experiments for the sake of e�cient computation. Instead

of requiring the rating on each unobserved item to reside on or below the negative

boundary, we softly make the average rating of the unobserved items in each group

locate on or below this boundary. Suppose Gh is the set of all items which belong to

group h, and Gih is the set of unobserved items for user i with group as h, then we

have the following inequality:

1

|Gih|
∑

k∈Gih
uTi vk ≤ r− + ξih,

where ξih is the slack variable for user i on group h. Let us de�ne the following

variables:

vsh ≡
∑

p∈Gh

vp, ṽsih ≡
∑

j∈Mo
i∧h(j)=h

vj, v̄ih ≡
1

|Gih|
(vsh − ṽsih), (3.6)

where h(j) is the group index of item j. In addition, the plus function is not twice

di�erentiable and can be smoothly approximated by the integral to a smooth approx-

imation of the sigmoid function [80, 81] as follows:

(x)+ ≈ p(x, α) = x+
1

α
log(1 + exp(−αx)).

In the experiments, we �nd the above approximation form is slightly better than

the logistic function. Hence, the objective function in Eq.(3.5) can be modi�ed as

follows:

L = argmin
U,V,ξ

N∑

i=1




∑

j∈Mo
i

p
(
−uTi vj + r+, α

)
+

G∑

h

p
(
uTi v̄ih − ξih − r−, α

)


+ ||Θ||,

(3.7)

where the slack variable has the constraint as ξih ≥ r+− r−. We exploit the gradient



20

descent based optimization procedure to obtain the optimal solutions for U, V and

ξ in above problem. Their gradients are given by:

∂L
∂ui

= −
∑

j∈Mo
i

p′ij(U,V, ξ)vj +
G∑

h=1

p̄′ih(U,V, ξ)v̄
i
h + λuui, (3.8)

∂L
∂vj

= −
∑

i∈N o
j

p′ij(U,V, ξ)ui +
∑

i∈Nu
j

p̄′ih(j)(U,V, ξ)ui

|Gih(j)|
+ λvvj, (3.9)

∂L
∂ξih

= −p̄′ih(U,V, ξ) + λξ, (3.10)

where N o
j is the set of users who have consumed item j and N u

j is the remaining

users who have never consumed it. One caveat is that as the constraint placed on ξ

guarantees it to be larger than 0 (i.e., its sign holds as positive), we can simply remove

the absolute value sign to obtain its gradient. Also, p′ij(U,V, ξ) and p̄
′
ih(U,V, ξ) are

de�ned as the following:

p′ij(U,V, ξ) = 1− 1/(1 + exp(α(−uTi vj + r+)),

p̄′ih(U,V, ξ) = 1− 1/(1 + exp(α(uTi v̄ih − ξih − r−))).

To e�ciently calculate the gradient of latent factor V, we rewrite Eq.(3.9) in the

following (see the next section):

∂L(U,V, ξ)

∂vj
=−

∑

i∈N o
j

p′ij(U,V, ξ)ui −
∑

i∈N o
j

ṽh(j)i(U,V, ξ)

+ ṽsh(j)(U,V, ξ) + λvvj, (3.11)

where ṽhi(U,V, ξ) and ṽsh(U,V, ξ) are de�ned as follows:

ṽhi(U,V, ξ) =
1

|Gih|
p̄′ih(U,V, ξ)ui, ṽsh(U,V, ξ) =

N∑

i=1

ṽhi(U,V, ξ).
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The algorithm detail is shown in Figure 3.1, where adaptive learning rate is used

to improve convergence rate [82]. Speci�cally, we sample a set of unobserved items

for each user to reinforce the optimization granularity. It allows us to optimize the

problem in both group and instance levels. Suppose for user i, we sample a set of

unconsumed items, denoted as A, and then select those items whose predicted ratings

are larger than its group's mean rating to learn parameters. The selected item l for

user i satis�es the following rule:

uTi vl > uTi v̄ih(l). (3.12)

Hence the objective function in Eq.(3.7) is re�ned by:

L(new) = L+
N∑

i=1

∑

q∈Ai

p(uTi vq − ξih(q) − r−, α)),

where Ai is the set of selected items that satisfy Eq.(3.12) and are unconsumed by

user i. Therefore, the gradients of U, V, and ξ can be obtained similarly as above

inference, given by:

∂L(new)(U,V, ξ)

∂ui
=
∂L(U,V, ξ)

∂ui
+
∑

q∈Ai

p̄′ih(q)(U,V, ξ)vq,

∂L(new)(U,V, ξ)

∂vj
=
∂L(U,V, ξ)

∂vj
+
∑

i∈Aj

p̄′ih(j)(U,V, ξ)ui,

∂L(new)(U,V, ξ)

∂ξih
=
∂L(U,V, ξ)

∂ξih
−
∑

q∈Aih

p̄′ih(U,V, ξ),

where Aj is the set of users who have never consumed item j and Aih is the set of

items that belong to group h and are unconsumed by user i.
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Input: Observed user-item pairs, regularization constants λu, λv and λξ,
dimension D of latent space, group number G, stop criteria τ and
maxIter, and learning rate η

Output: U(k), V(k), ξ(k)

1 Randomly initialize U(0) and V(0), k ← 1, ε←∞;

2 Randomly initialize ξ(0) and ensure ξ
(0)
ih ≥ r+ − r−;

3 Randomly divide items into G equal groups;
4 while k 6 maxIter && ε > τ do
5 Uniformly sample A unobserved items for each user i and select those

items which satisfies Eq.(3.12) to join to learn latent factors;
6 for j = 1 to M do

7 v
(k+1)
j ← v

(k)
j − η ∂L

(new)(U(k),V(k),ξ(k))
∂vj

;

8 for i = 1 to N do

9 u
(k+1)
i ← u

(k)
i − η ∂L

(new)(U(k),V(k+1),ξ(k))
∂ui

;

10 for (i, h) = (1, 1) to (N,G) do

11 ξ
(k+1)
ih ← max(r+ − r−, ξ(k)

ih − η
∂L(new)(U(k+1),V(k+1),ξ(k))

∂ξih
)

12 ∆← L(new)(U(k),V(k), ξ(k))− L(new)(U(k+1),V(k+1), ξ(k+1));

13 Update η: η ←
{

1.05η if ∆ > 0,

0.5η otherwise;

14 ε← |∆|
|L(new)(U(k),V(k),ξ(k))|

15 k ← k + 1

16 return U(k), V(k), ξ(k)

Figure 3.1: Algorithm of Relaxed Ranking-based Factor model.

Complexity Analysis

In each iteration, updating U, V and ξ dominates the major time complexity for

solving the optimal problem shown in Eq.(3.7). To update ui, the �rst term of Eq.(3.8)

requires time complexity as O(niD), where ni is the number of items that user i has

consumed. vsh is independent of i and can be pre-computed. Hence, computing

ṽsih costs O(nihD), where nih is the number of items that user i has consumed and

belong to group h, and ni =
∑

h nih. Then, the second term of updating ui needs

time complexity as O(niD+GD). Consequently, the computation of ui is performed



23

in O(niD + GD). This procedure is performed over N users, so the total time is

O(nD +NGD), where n ≡∑i ni.

In the procedure of optimizing vj, the searching direction is dependent on V(old)

obtained in the last iteration. The �rst term in Eq.(3.11) costs O(njD), where nj is

the number of users who have consumed item j. Similar to above, ṽ
(old) s
ih in Eq.(3.11)

can be pre-calculated. On the other hand, ṽhi(U,V
(old), ξ) is independent of j and

could be also pre-computed. Then ṽsh(U,V
(old), ξ) is pre-stored in the memory due to

the sum of ṽhi(U,V
(old), ξ) over all users. Hence, the second term in Eq.(3.11) costs

O(njD) time complexity. Thus, updating vj needs running time as O(njD), and the

total cost time over M items is O(nD), where n =
∑

j nj.

Similar to update user latent matrix U, for each slack variable ξih, we only need

O(D) time complexity due to the pre-computation of vsih. Totally, updating ξ over

N users and G groups costs time complexity as O(NGD).

In instance-level optimization, similar to above analysis, in the worst situation,

each iteration needs O(NAD) running time. In a summary, each iteration of our

algorithm costs O(nD + N(A + G)D) time complexity, where n is the number of

the observed entries in user-item matrix, and N(A+G)
n

is small. Therefore, the time

complexity can be approximated by O(nD). In other words, the time complexity of

each iteration for the optimization is a linear proportion to the number of observed

user-item pairs.

3.4 Experimental Results

Datasets

We use three datasets to evaluate the performance of the proposed model. The �rst

two datasets are check-in data collected from Gowalla and Foursquare. Each check-in

record in the dataset includes a user ID, a location ID, a check-in frequency and a

timestamp that she �rst time checked-in this location. As we only know user's check-

in action, these two data sets are the implicit feedback based data sets. The third



24

data set is the movie data of MovieLens, where each user provides explicit ratings, 1

to 5 stars, for some movies. As our task focuses on the implicit feedback, similar to

[28], we remove the rating score from the dataset. We utilize consuming to represent

user's checking-in or watching behavior in these three datasets. We remove those

users who have consumed less than 10 items. The detailed statistics of datasets are

reported in Table 3.1.

Table 3.1: The statistics of data sets.

Dataset #User #Item #Records Sparsity

Gowalla 52,216 98,351 2,577,336 0.0399%

Foursquare 74,343 198,161 3,501,608 0.0238%

MovieLens 6,040 3,681 1,000,179 4.4986%

As recommender system targets at recommending new items for users, we split the

training and testing as the following. In check-in data, for each user, we �rst sort

the records according to the check-in timestamp; and then select the earliest 80% to

train the model and use the next 20% as testing. In MovieLens dataset, we randomly

select 80% data as training and use the rest as testing due to the absent timestamp.

Parameter Settings

In the experiments, the regularization constants λu, λv and λξ are set as 0.01. The

number D of latent space is set as 10, the initial learning rate η is 0.001, and param-

eter α is set as 5. We divide 100 groups for three datasets. A in check-in data and

MovieLens are 150 and 400, respectively.

Evaluation Metrics

We quantitatively evaluate model performance in terms of top-K recommendation

performance, i.e., Precion@K and Recall@K, and ranking performance, i.e., MAP and
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AUC [2]. Formally, their de�nitions are shown as:

P@K =
1

N

N∑

i=1

|Si(K) ∩ Ti|
K

,MAP =
1

N

N∑

i=1

M̃i∑
j=1

p(j)× rel(j)

|Ti|
,

R@K =
1

N

N∑

i=1

|Si(K) ∩ Ti|
|Ti|

, AUC =
1

N

N∑

i=1

∑
(j,k)∈E(i)

I(r̂ij > r̂ik)

|E(i)| ,

where Si(K) is a set of top-K new items recommended to user i excluding those items

in training, and Ti is a set of items that have been consumed in the testing. M̃i is

the number of the returned items in the list of user i, p(j) is the precision of a cut-o�

rank list from 1 to j, and rel(j) is an indicator function that equals to 1 if the item is

in the testing, otherwise is 0. E(i) is de�ned as E(i) := {(j, k)|j ∈ Ti ∧ k /∈ (Ti ∪ T ti )},

where T ti is a set of items consumed by user i in the training. I(·) is a indicator

function, which equals to 1 if its argument is true and 0 otherwise.

Baseline Methods

To comprehensively demonstrate the e�ectiveness of the proposed model, named

as RRFM, we compare it with the following popular recommendation models:

• UBPR [28] models the pairwise ranking for each pair of the observed and

unobserved items, and employs SGD with uniformly sampling for optimization.

• ABPR [29] is similar to UBPR, but it over-samples the top ranked negative

items based on a context-dependent sampling schema.

• WRMF [20], treats user's rating as a binary value and �ts the ratings on the

observed and unobserved items with di�erent con�dential values.

• PMF [14] regards the rating as the dot product of user-speci�c and item-speci�c

feature factors. Logistic function is used as rating conversion method to avoid

the data's bias.

UBPR, ABPR and WRMF are all modeling both observed and unobserved data,
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while PMF only models the observed data. In the perspective of optimization, UBPR

and ABPR are both ranking based models; while WRMF and PMF are both rating

prediction-based models. The number of latent space in all baseline models is set the

same with RRFM.

Ranking Performance Comparison

The ranking performance in terms of MAP and AUC for the proposed model with

baseline models is reported in Table 3.2. We summarize the following observations.

First, the method only modeling the observed feedback (i.e., PMF), performs much

worse than those taking both observed and unobserved data into consideration (i.e.,

other four models). Speci�cally, in Gowalla data, RRFM achieves result as 95.673%

in terms of AUC while PMF only obtains 62.005%. Also, RRFM is 3.793% in terms

of MAP while PMF is 1.357%. Di�erent from explicit feedback, it is di�cult to know

user's negative preference from implicit feedback. As a result, explicit feedback based

model is di�cult to achieve better performance for implicit feedback. The result

indicates that the unobserved data also provides meaningful information and assist

to improve ranking performance.

Second, ranking-based methods (i.e., UBPR, ABPR and RRFM) are nearly better

than rating prediction-based models (i.e., WRMF and PMF), particularly in terms

of AUC metric. Ranking-based methods are modeling the ranking order of user's

positive rating over negative rating, which actually maximizes the AUC metric; while

rating prediction-based models focus on the task how to correctly predict ratings.

Although WRMF regards user's positive and negative ratings as one and zero respec-

tively, there is no guarantee for the correctness of their ranking order due to rating

prediction based loss. This explains why it has poor performance in AUC.

Third, our model is superior to others, such as that in Foursquare, RRFM outper-

forms WRMF 100.7% and 12.9% in terms of MAP and AUC, respectively; RRFM

achieves 15.2% improvement over ABPR in MAP. It happens due to two reasons.
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Table 3.2: Performance comparison in terms of MAP and AUC metrics. The result
is reported in percentage (%).

Gowalla Dataset

Metric RRFM WRMF ABPR UBPR PMF

MAP 3.793 2.634 3.169 3.080 1.357

AUC 95.673 88.748 94.732 94.642 62.005

Foursquare Dataset

MAP 2.302 1.147 1.999 1.913 0.024

AUC 95.814 84.866 94.726 94.554 61.211

MovieLens Dataset

MAP 21.108 20.528 19.659 19.512 10.159

AUC 93.795 91.743 92.417 92.372 85.685

First, we separate the positive and negative ratings by the soft boundaries, where

some of them are non-separate. It captures user's actual consuming behavior where

she does not consume an item probably due to her dislike or unawareness. Second,

we optimize the model in group and instance granularity, where group-based opti-

mization makes parameters reach their optimal solutions in a direction towards the

minimum of cost function and instance-based optimization reinforces the approxima-

tion to the exact optimization problem in Eq.(3.5). In addition, WRMF has di�erent

performance in MAP due to the much less items and much denser user-item entries

in MovieLens than check-in data.

Last, ABPR performs slightly better than UBPR. Instead of uniformly sampling

negative items, ABPR samples with an adaptive distribution. It exploits item tailed

characteristics (i.e., over-sampling the top ranked negative items) to speed up the

convergence of SGD. But with the increase of iteration, UBPR approximates to the

true optimal solution as ABPR. It is the reason why it performs similarly as ABPR.

Top-K Recommendation Performance Comparison

The top-K performance of our model versus baseline methods over three datasets

is plotted in Figure 3.2. Based on the observations, we summarize as follows:

First, RRFM outperforms all baseline methods. In particular, it has signi�cant
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Figure 3.2: Performance comparison in terms of precision and recall on Gowalla,
Foursquare and MovieLens datasets.

improvement over PMF, which contributes to the involvement of unobserved data

for modeling. Its superior performance than ABPR and UBPR is bene�cial from the

following reasons: (1) The relaxed model allows user's preference for some unobserved

items to mix with positive preference. This is based on the assumption that the unob-

served data might be actually negative or missed positive value. (2) It optimizes the

ranking problem based on the entire unobserved items with a smooth approximation,

which addresses the bias caused by ABPR and UBPR. Furthermore, RRFM obtains

much better performance than WRMF. Although WRMF also considers the ranking

of positive rating over negative one, it models the recommendation problem by �tting

the binary ratings, which cannot guarantee their actual ranking order. Hence, it does
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not perform as well as RRMF. In MovieLens, the improvement of RRFM over WRMF

is small due to that the denser observed data helps WRMF approximate to the true

optimal point.

Second, ABPR and UBPR are superior to WRMF in check-in data, while they are

a little worse than WRMF in MovieLens data. ABPR and UBPR actually optimize

the AUC metric which evaluates the ranking of one user's preference for the testing

items over the remaining unobserved items. To make user's positive ratings larger

than most of the negative ones, they might sacri�ce some top-K performance. It is

a tradeo� between the performance in AUC and top-K. Hence although they obtain

extremely superior performance in terms of AUC, it cannot guarantee that they can

also perform well in top-K performance. That's why they have poor performance in

terms of precision@K and recall@K in MovieLens dataset.

Last, ABPR, UBPR and PMF perform consistently with the ranking performance,

where ABPR is better than UBPR, and PMF performs the worst among all models.

Although the way to sample negative items has been improved, ABPR is di�cult to

make signi�cant improvements due to the limitation of sampling technique. PMF's

poor result further demonstrates the importance of modeling all data.

3.5 Conclusion

In this chapter, we propose a relaxed ranking-based algorithm for item recom-

mendation with implicit feedback, and design a smooth and scalable optimization

method for model's parameter estimation. The relaxed model not only avoids the

pairwise ranking by separating the positive feedback and negative feedback with the

soft boundaries, but also exploits the non-separate property of negative and positive

feedback to capture the characteristic of unobserved data. To evaluate our model,

we conduct extensive experiments with many baseline methods and evaluation met-

rics on the real-world data sets. The experimental results have shown our model's

e�ectiveness.



CHAPTER 4: POINT-OF-INTEREST RECOMMENDATION

4.1 Introduction

Recent years have witnessed the rapid prevalence of location-based social network

(LBSN) services such as Foursquare, Jiepang, and Facebook Places that can signi�-

cantly facilitate users' outdoor activities by providing a large number of nearby Point-

of-Interests (POIs) in a real-time fashion. A variety of user interaction data with these

LBSN services such as searching locations, providing check-in information and post-

ing tips after visiting a POI have been accumulated, which provides an unparalleled

opportunity for developing personalized POI recommender systems [1, 83, 84, 85].

Indeed, the accurate and personalized POI recommendation is a crucial demand in

LBSN services. First, given the massive locations, it is very di�cult for users to �nd

their preferred ones in an e�cient way. A personalized POI recommender system

would help users easily �nd relevant POIs without spending much time on manually

searching, particularly when a user is in a new region. Also, it is very challenging for

POI owners to deliver right POIs to various users. A personalized POI recommender

system is able to not only ease such burden, but also attract more customers with

the recommended POIs.

In the literature, recommender systems have been widely studied among various

categories, such as movie recommendation on NetFlix and product (or item) recom-

mendation on Amazon. However, it is not su�cient to directly apply these tech-

nologies on POI recommendation due to the speci�city of human mobility in LBSNs.

Hence, it is crucial to identify the unique characteristics of human mobility in LBSNs,
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which motivates us to design the speci�c and more appropriate approaches for POI

recommendation. In the following we list the prime properties:

• Geographical In�uence. In LBSNs, geographical property associated with loca-

tions plays an important role in user's choices to locations [60, 53, 2]. Due to the

restriction of human mobility, a user usually would like to prefer a nearby POI

rather than another one far away due to short distance. Furthermore, according

to the First Law of Geography, everything is related to everything else, but near

things are more related than distant things [86]. The geographically close users

may share similar interests and should have potential in�uence on check-in be-

haviors. Therefore, considering the geographical property of POIs enables us to

capture the user preferences more precisely for POI recommendation in LBSNs.

• Temporal E�ect. Human geographical movement exhibits strong temporal pat-

terns in LBSNs [48]. For example, a user regularly chooses a restaurant next

to her work place for convenience in week days, while she goes to a bar for en-

tertainment at weekends. Such temporal cyclic patterns are often observed in

check-in data and provide us a perspective to understand user mobility. Thus,

mining the temporal patterns in check-in data in terms of where a user would

like to go enables us to better model user check-in behaviors.

• Social In�uence. Online social connections o�er the user opportunities to view

her friends' historical check-in behaviors. Some of the friends have positive

impact on a user's check-in at a particular location, while others may in�uence

negatively. Hence, a user's check-ins can be highly a�ected by a group of friends.

Taking such social in�uence into account suggests its potential to design more

advanced POI recommender systems in LBSNs.

In this chapter, in order to provide more accurate and e�cient POI recommenda-

tion, we study the above properties and incorporate them into recommender systems.
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Speci�cally, we �rst model geographical property and temporal e�ect, and propose a

novel geo-temporal POI recommendation approach, which is presented in Section 4.2.

In Section 4.3, we introduce the geo-social POI recommender systems by considering

geographical in�uence and social correlations observed in human movement. In Sec-

tion 4.4, the geographical property and social in�uence are also leveraged to tackle

cold-start problems in POI recommendation.

4.2 Modeling Geo-Temporal In�uence

In this section, we study geographical in�uence and temporal e�ect for POI rec-

ommendation in LBSNs. With geographical property and temporal pattern, user's

preference is modeled from two aspects. Firstly, rich geographical information, such

as distance and business prosperity of a region, is represented as a group of features

to capture user's preference in geographical aspect. Secondly, temporal cyclic pat-

tern and location property form a check-in event, which is introduced to characterize

each individual user's check-in behavior. Then the hidden topic distribution over all

check-in events for each user is exploited to model user's taste in temporal dynamic

aspect.

4.2.1 Methodology

Let us �rst introduce the formal de�nition of Geographical Feature and Check-in

Event, and then present a general framework to incorporate geographical features

into matrix factorization and learn user preference in a more robust way. Finally, we

present the speci�c Spatial-Temporal Probabilistic Matrix Factorization (STPMF)

model and our estimation method.

4.2.1.1 De�nitions

Recent works on POI recommendation have revealed that the distance of POI has

great in�uence on user's preference for POIs [4, 60, 57, 50, 58, 59, 53]. In fact,

there are other more geographical factors that also signi�cantly a�ect user's check-
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in decision making process. For example, the business prosperity of a region where

a POI is located might a�ect user's preference. Users are likely to choose a POI

where its surrounding environment is relatively prosperous as it often indicates high-

credibility, high-quality services and crowd human activities. In addition, users are

often used to visiting a certain region with the same purposes such as shopping or

eating. In fact, this has been re�ected in many real-world check-in data, where each

POI belongs to one or more categories such as food, sights and etc. For example,

we pick up a user's historical check-ins from our data and show them in Figure 5.1,

where red marker represents category nightlife and black marker indicates category

sights. Two regions are observed: one top red box area and one bottom red box area

where there are about 2689 and 1205 services in their neighbors respectively. We can

see that: (1) She would like to go to the top region for visiting sights and prefer the

bottom region for nightlife; (2) She likes those POIs in rather prosperous regions.

Thus, a group of geographical features are de�ned as follows.

De�nition 1 (Geographical Features) Geographical features of a POI include the

business prosperity of the region where the POI is located, the distance of the POI,

and the number of user's historical POIs in this region associated with each category.

Then geographical features of POI j for user i could be represented with a multi-

dimensional vector:

fij = (prosperity(j), d(i, j), ni1, ..., niC)T , (4.1)

where prosperity(j) is the prosperity of region where POI j is located and could

be measured by the number of business services in this region. d(i, j) represents

the distance between the home of user i and POI j. nic is the number of POIs

within category c visited by user i in this region. Note that more other geographical

information could be included into fij if it is available for a particular data set.
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User's temporal preference for check-ins follows a cyclic pattern [48, 49, 50]. There-

fore, we divide the time into two parts: time slot in a day and day in a week. Specif-

ically, time slot in a day includes morning, noon, afternoon, evening and midnight.

While traditional methods simply regard each check-in as a location, we represent a

check-in event with category and temporal information as follows.

De�nition 2 (Check-in Event) A check-in event is a tuple consisting of the cate-

gory of POI, the check-in day in a week, and the check-in time slot in a day.

For example, an check-in event can be represented as 〈Restaurant, Saturday, Evening〉,

where Restaurant is the category. As can be seen, a check-in event essentially describes

what a user is doing at a particular time. In above example, it indicates that the user

is eating at a restaurant on Saturday evening.
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Figure 4.1: (a)The graphical model of STPMF. (b) An example of a user's historical
check-ins. Red box represents a region, and each color indicates a category.

4.2.1.2 The General Framework.

We propose a general framework to generate accurate POI recommendation for

N users over M locations. In reality, there are many latent factors a�ecting users'

preference for POIs. Particularly, di�erent from consuming movies, when users visit

or check-in POIs, most of them would take into account the geographical factors [60]

such as distance and region prosperity, in addition to other general factors such as
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intrinsic property of POIs. Thus, based on matrix factorization method, we propose

to model the rating (i.e. check-in frequency), denoted as r̂ij, of user i for POI j as

a combination of the general preference and the geographical preference of user i for

POI j, which is shown as:

r̂ij = uTi vj + giw
T
i fij, (4.2)

where fij represents the observed geographical features de�ned in section 4.2.1.1. wi

is the i-th user's latent preference for geographical features and is assumed to be

drawn from a Gaussian distribution with zero-mean and covariance matrix as λ−1
w IG,

where G is the dimension of geographical feature. gi is a weight indicating how much

the i-th user's check-in decision is a�ected by geographical factors. The item wT
i fij

captures the geographical e�ect on check-in decision. ui and vj are the D-dimensional

user and location speci�c latent vectors respectively, both of which are drawn from

Gaussian distribution. uTi vj is assumed to capture the i-th user's preference for the

j-th POI's other intrinsic property, such as environment, price and service, that also

a�ect the check-in decision.

Furthermore, user's general preference may change over time. Hence we argue

that user's preference characteristics may consist of two parts: stationary preference

which has nothing to do with time, and temporal preference that changes over time.

Speci�cally, the i-th user's general preference could be decomposed into stationary

preference usi and temporal preference ubi as follows:

ui = usi + ubi +4D, (4.3)

where 4D is the D-dimensional Guassian noise. In other words, ui can be regarded

to be drawn from the Gaussian distribution with usi + ubi as mean and λ−1
u ID as
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covariance matrix, which is shown in the following:

ui ∼ N (usi + ubi , λ
−1
u ID). (4.4)

We will adapt topic modeling technique to discover the temporal preference ubi based

on the de�ned check-in events, which will be discussed in details in the following

section. In addition, as mentioned in [46, 48], the location characteristics captured

with vj are inherent properties and do not change much as time goes. Therefore,

we only model the dynamics for user preference. usi is assumed to be drawn from a

Gaussian distribution while ubi is a latent vector which could have various modeling

methods according to application circumstance. We want to emphasize that the

proposed model for incorporating geographical information is di�erent from [54, 53,

60]. [53, 60] only model POI distance and [54] only considers an area's in�uence, all of

which are not able to take other more geographical factors into consideration for users'

check-in decision making process. However, the proposed framework is much more

general, and could incorporate di�erent kinds of geographical features into matrix

factorization.

4.2.1.3 The STPMF Model.

Two recent works have been proposed to incorporate temporal e�ect into matrix

factorization for improving the accuracy of recommendation [17, 48]. However, there

are some shortcomings for these two methods. First, both of them utilize multiple

user-speci�c latent vectors to model each individual's preference at di�erent temporal

state. Each temporal state usually corresponds to a time window. For example, [17]

considers each day as a di�erent temporal state. And as cyclic pattern is taken into

account, [48] regards a pair of hour and day as a temporal state. Both of them have

many di�erent temporal states for each user. As a result, the number of observed

ratings for �tting each user latent vector at each temporal state would signi�cantly
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decrease, and learning so many user-speci�c latent vectors for each individual makes

recommender systems very ine�cient. Second, both methods could not predict the

rating of one user well when the corresponding temporal state does not appear in

training set. But in fact, for the location check-in application, only a small set of

ratings per user are observed that belong to a very limited number of temporal states.

Thus these methods could not make reasonable predictions for users at new temporal

states. All these limitations motivate us to �nd a more feasible and e�ective way to

capture user's temporal preference.

If we take a close look at user's check-in records, we can �nd that there are some

underlying topics that could explain the reason why users check in POIs at particular

times. For example, users are very likely to frequently check in some similar locations

such as bars or restaurants around evening at weekend for a similar purpose such as

party. In other words, there will be many check-in events that have similar categories

and close times and often appear together in user's check-in records. And a set of

such check-in events essentially describe a purpose of check-in behavior. As each

check-in event has both category and time information, such a check-in purpose (e.g.,

party) provides a possible interpretation for the reason why users would like to check

in these POIs at a particular time. And each user will have di�erent preference for

check-in purposes.

Based on this assumption, for the user i, we analogize a check-in event lim as a

term and her historical check-ins {lim|m = 1, ...,Mi} as a document (where Mi is the

number of check-in events for user i), and then employ topic modeling to model all

observed check-ins. The learned topic will be a distribution over all check-in events.

Each individual's check-ins are a mixture over a set of interpretable topics. As a

check-in event includes check-in time, each individual's topic distribution naturally

captures her temporal preference. Consequently, we develop a speci�c method namely

Spatial-Temporal Probabilistic Matrix Factorization (STPMF) model. Its generative
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process and graphical model are shown in Table 4.1 and Figure 4.1a respectively.

In the model, φt is the distribution over check-in events for the t-th topic, and drawn

from Dirichlet(β) prior. Each check-in event lim is drawn from φ corresponding to

its hidden topic zim being drawn from the individual-speci�c mixture weights θi over

T topics. Thus, based on Eq.(4.4), we assume that the user's general preference

consists of a static one and temporal one, and is assumed to be drawn from the

Gaussian distribution with usi + Xθi as the mean vector:

ui ∼ N (usi + Xθi, λuID), (4.5)

where X is a matrix that is used to transfer user topical space into the user latent

space, and Xθi indicates user's temporal preference. Also, we place the zero-mean

spherical Gaussian prior on each entry of X.

There are three advantages to adopt this method to capture users' temporal pref-

erence: (1) The extracted topic provides a novel interpretation for a user's check-in

event; (2) The process of extracting topics from large numbers of check-in events is

a kind of dimensionality deduction. Thus, we do not need to model multiple user-

speci�c preferences at di�erent temporal states for each individual; (3) It is able to

address the prediction problem mentioned before, because each user has a di�erent

topic distribution learned in training data and not explicitly related to each speci�c

temporal state. Thus unlike [17, 48], even though one users' some temporal states

may be not observed in the training set, their learned topic distributions could be

still used as their dynamic preference for the prediction.

4.2.1.4 Parameter Estimation.

We employ the Maximum-A-Posteriori (MAP) for the parameter estimation of

STPMF model. Given the observed rating R, geographical feature f and hyperpa-

rameters, maximizing the posterior is equivalent to maximizing the log-likelihood of
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Table 4.1: The generative process for STPMF model.

1. For global context, draw each entry in matrix xij ∼ N (0, λ−1
x ).

2. For each user i,
a. Draw topic proportion θi ∼ Dir(α).
b. Draw user static preference usi ∼ N (0, λ−1

s ID).
c. Draw user general preference ui ∼ N (usi + Xθi, λ

−1
u ID).

d. Draw user graphical preference wi ∼ N (0, λ−1
w IG).

e. Draw user graphical in�uence gi ∼ N (0, λ−1
g )

f. For each check-in event lim,
i. Draw topic zim ∼ Mult(θi).
ii. Draw check-in event lim ∼ Mult(φzim).

3. For each topic t, draw φt ∼ Dir(β).
4. For each location j,

a. Draw location latent vector vj ∼ N (0, λ−1
v ID).

5. For each user-location pair (i, j),
a. Draw rating rij ∼ N (uTi vj + giw

T
i fij, λ

−1).

latent parameters. Thus, the log-likelihood is obtained as follows:

L = −λ
N∑

i

M∑

j

Iij(rij − ui
Tvj − giwT

i fij)
2

+
N∑

i

Mi∑

m

log
T∑

t=1

φt,limθit +
N∑

i

T∑

t

(αt − 1) log θit

+
T∑

t

L∑

l

(βl − 1) log φtl − || · ||2F , (4.6)

s.t. ∀k, 0 < φil, θit ≤ 1,
∑L

l=1 φil = 1,
∑T

t=1 θit = 1, where Iij is the indicator

function that is equal to 1 if the i-th user checks in the j-th location and equal to 0

otherwise. ||| · ||2F is denoted as:

|| · ||2F = λu||U−Us −Xθ||2F + λs||Us||2F

+ λv||V||2F + λw||W||2F + λx||X||2F + λg||g||2F . (4.7)

As in Eq.(4.6) the summation over t for item φt,limθit is within the log function, it

is intractable for us to estimate θ by maximizing the log-likelihood. To overcome
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this problem, We adopt the similar method proposed in [87] to obtain the relaxed

lower-bound. Speci�cally, we �rst de�ne q(zim = t) = ψimt, and then apply Jensen's

inequality. Finally, the object function with respect to θ has the following lower-

bound:

N∑

i

Mi∑

m

log
T∑

t=1

φt,limθit >=
N∑

i

Mi∑

m

T∑

t

ψimt[log θitφt,lim − logψimt],

s.t. ∀t, 0 < ψimt ≤ 1, and
T∑

t=1

ψimt = 1. (4.8)

Therefore, we can relax the object function by using Variational Inference method for

latent variable Z. The lower-bound for the object function is obtained by integrating

above equation back into Eq.(4.6):

L = −λ
N∑

i

M∑

j

Iij(rij − ui
Tvj − giwT

i fij)
2

+
N∑

i

{
Mi∑

m

T∑

t

ψimt[log θitφt,lim − logψimt]

+
T∑

t

(αt − 1) log θit}+
T∑

t

L∑

l

(βl − 1) log φtl − ||Θ||2F ,

s.t.∀k, 0 < φil, θit, ψimt ≤ 1,
L∑

l=1

φil = 1,
T∑

t=1

{θit, ψimt} = 1. (4.9)

Alternating Least Squares (ALS) is a popular optimization method leading to more

accurate parameter estimation and faster convergence. Thus, we utilize ALS method

to compute each latent variable by �xing the other variables when maximizing the

relaxed log-likelihood in Eq.(4.9). The updating equation for each variable of interest

shown in Table 4.2 is obtained by setting its gradient of the relaxed log-likelihood to

zero. However, it is di�cult to get the close-form of variable θ. Therefore, we utilize

the gradient-based searching algorithm to assist with searching its optimal solutions.
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By �xing other variables, we could obtain the object function with respect to θ as:

θ̂it = argmin
θit

{λu(ui − usi −Xθi)
T (ui − usi −Xθi)

−
∑Mi

m=1
ψimt log θit − (αt − 1)logθit},

s.t. ∀t, 0 < θit ≤ 1, and
T∑

t=1

θit = 1. (4.10)

To optimize θ, the gradient descent is employed to �nd the optimal solution with the

following gradient:

∂L(θit)

∂θit
= 2λu(Xθi + usi − ui)(X)t −

∑Mi

m=1 ψimt + αt − 1

θit
, (4.11)

where (X)t represents the t-th column in matrix X.

More details of the algorithm is shown in Table 4.2. In addition, Ci is a diagonal

matrix with λIij (j = 1, ...,M) as its diagonal elements, denoted as Ci = (λIij)
M
j=1.

Similarly, we denote Cj = (λIij)
N
i=1, Fi = (gifij)

G
j=1, Ri,\UV = (rij − uTi vj)

M
j=1, and

Ri,\Wf = (rij − giwT
i vj)

M
j=1.

4.2.2 Experimental Results

4.2.2.1 Datasets

In this section, we use two Foursquare data sets to evaluate the proposed STPMF

model: (1)Data 1 [88] contains the check-in history of users who live in the California,

ranging from December 2009 to January 2013; (2) Data 2 [89] contains the check-in

data from September 2010 to January 2011. Each check-in record in both two data

sets includes user ID, location ID and timestamp, where each location has latitude,

longitude and category information. After merging the overlapped categories, we

totally obtain 6 (or 7) di�erent kinds of categories in data 1 (or data 2). Meanwhile,

we remove users who have visited less than 5 locations and locations which are visited
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Table 4.2: The algorithm for STPMF model.

Step 1: Randomly initialize variables.
Step 2: Execute E-Step and M-Step in each iteration repeatedly until the log-
likelihood in Eq.(4.9) converges:
E-Step:

• vj = (UCjU
T + λvID)−1UCjRj,\Wf

• ui = (VCiV
T + λuID)−1[VCiRi,\Wf + λu(u

s
i + Xθi)]

• wi = (FiCiF
T
i + λwIG)−1FiCiRi,\UV

• usi = λu
λu+λs

(ui −Xθi)

• X = (λuθθ
T + λxIT )−1λu(U−Us)θT

• ψimt = θitφt,lim
Normalize ψijt.

• φtl =
∑N,Mi

i,m ψimtI(lim = l) + βl − 1
Normalize φtl.

• Update θit: Use gradient descent with constraints to �nd the optimal solution
of θit with its object function shown in Eq.(4.10) and its gradient as Eq.(4.11),
where the constraint is s.t. ∀t, 0 < θit ≤ 1, and

∑T
t=1 θit = 1.

M-Step:

• gi =
λ
∑M

j=1 Iij(rij−uT
i vj)wT

i fij

λg+λ
∑M

j=1 Iij(wT
i fij)2

Step 3: After obtaining optimal Û, V̂, Ŵ and ĝ, the predicted rating on i-th user
for j-th location is calculated by: rij = ûTi v̂j + ĝiŵ

T
i fij.

by less than 2 users. The data statistics for two data sets are reported in Table 4.3.

We can observe that Data 2 is nearly 10 times sparser than Data 1.

Table 4.3: The statistics of data sets.
Data Set #User #Location #Checkin Sparsity
Data 1 3,375 36,866 312,568 0.25%
Data 2 74,343 198,161 3,501,608 0.024%

In addition, we divide the space into a set of grids based on latitude and longitude.

Each grid is regarded as a region. In our experiment, the size of region is about

5km × 5km (i.e. 0.045 by 0.045 square degrees). We then crawl all venues for each

individual region with Foursquare API. As Foursquare API returns at most 50 venues

(locations) with a speci�ed center point and searching radius, we propose a simple
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method to crawl all venues in each region as follows. First, we get all venues in

one speci�ed region if Foursquare API returns less than 50 venues, and we end up

searching. Otherwise we further divide this region into four small areas and repeat

the above steps in each small area until each area contains less than 50 venues or

its area size is less than 100m × 100m. Second, we merge all crawled venues in the

same region according to the venue ID. We use the number of venues in each region

to indicate its prosperity degree. Moreover, in the experiments we adopt the method

[89] to locate user's home from her all historical check-ins for calculating the POI

distance.

In recommendation system, we aim to recommend those unvisited locations for

users. Thus, we split the training and testing data as follows: for each user, (1) ag-

gregating the check-ins for each individual location; (2) sorting the location according

to the �rst time that user checks in; (3) selecting the earliest 80% to train the model,

and using the next 20% as testing.

4.2.2.2 Experimental Settings

Parameters λ and α are set as 0.001 and 1.01 respectively. Meanwhile, other

parameters are speci�ed as 0.01.

4.2.2.3 Evaluation Metrics

Precision@K and Recall@K are used to quantitatively evaluate the top-K recom-

mendation performance. Meanwhile we also adopt MAP metric, mean of average pre-

cision (AP). AP is computed as APi =
∑N

j=1 p(j)×rel(j)
#relavant locations

. Precision@K and Recall@K

are calculated as Precision@K =
∑
Mi∈M

|TK(Mi)|∑
Mi∈M

|RK(Mi)| and Recall@K =
∑
Mi∈M

|TK(Mi)|
#relavant locations

,

respectively. Speci�cally, RK(Mi) are the top-K locations recommended to user i,

TK(Mi) denotes all truly relevant locations among RK(Mi),M represents the set of

locations in the testing, j is the position in the rank list, N is the number of returned

items in the list, p(j) is the precision of a cut-o� rank list from 1 to j, and rel(j) is
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(b) Precison@5 on Data 2.
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(c) Precison@10 on Data 1.
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(d) Precison@10 on Data 2.

Figure 4.2: Performance comparison in term of precision with top 5 and 10 on two
data sets.

an indicator function. The term relevant locations is de�ned as the locations in

the testing.

4.2.2.4 Baseline Methods

To demonstrate the e�ectiveness of our STPMF model, we compare it with �ve

baseline methods: (1) LRT [48] that assumes users have di�erent preference in each

temporal state and use multiple user-speci�c latent vectors for di�erent temporal

states; (2) UG [60], that considers both geographical e�ect based on power law

characteristics, and user interest based on user-based collaborative �ltering for POI

recommendation; (3) PMF [14], that assumes the user and location latent vectors to

be drawn from Gaussian distribution and estimates a user's preference on a location

as the dot product of user-speci�c and location-speci�c latent vector; (4)NMF [10], a

Bayesian non-negative matrix factorization algorithm that places exponential priors
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(a) Recall@5 on Data 1.
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(b) Recall@5 on Data 2.
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(d) Recall@10 on Data 2.

Figure 4.3: Performance comparison in term of recall with top 5 and 10 on two data
sets.

on latent vectors and utilizes the Gibbs sampler to approximate the posteriors of

latent variables; (5) UCF, user-based collaborative �ltering with Pearson correlation

as the similarity measurement.

4.2.2.5 Top-K Recommendation Performance

We will evaluate our STPMF model with the baseline methods. Speci�cally, the

topic number is set to be the same value as the latent feature number. The perfor-

mance of Precision@K, Recall@K and MAP for di�erent models on two data sets are

reported in Figure 4.2, 4.3, and 4.4. Totally, STPMF performs the best among all

methods on these three metrics; while NMF, PMF and UCF are nearly the worst. It

occurs likely because they do not model the geographical and temporal e�ects. UG is

superior than LRT speci�cally on Data 2 due to (1) Most of users would visit a nearby

location, which could be modeled with distance property. When recommending top
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Figure 4.4: Performance comparison in terms of MAP on Data 1 and Data 2.

K locations among all locations, UG would have more accurate results. (2) When

data becomes much sparser, each user's user-speci�c latent vector for each di�erent

state in LRT would be �tted by much less observed ratings. It also illustrates the

geographical e�ects play an more important role in POI recommendation. STPMF

appropriately leverages multiple geographical features to learn user's interests, as a

result it improves the recommendation accuracy. It can be observed that the perfor-

mance on data 1 is worse than the one on data 2 (which is much sparser) possibly

due to that a much smaller set of the observed data is employed to train the model

in Data 1.

4.2.3 Conclusion

In Section 4.2, we propose a novel model for POI recommendation that incorporates

both geographical in�uence and temporal e�ect into matrix factorization. We model

user's preference on a POI as the summation over her geographical preference for the

POI and her general interest in the POI. User's geographical preference is captured

by leveraging multiple geographical features. Meanwhile user's general preference is

decomposed into a static one and a dynamic one. Speci�cally, we analogize a check-in

event as a term and one user's check-ins as a document, and employ topic modeling

to model all observed check-ins. As the check-in event includes the check-in time and

each topic is characterized by a distribution over check-in events, the learned topic
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distribution naturally captures the dynamics of user's general interest. To this end,

a speci�c model namely STPMF is proposed. Finally, the experimental results on

real-world data sets demonstrate the improvements of the proposed model.

4.3 Modeling Geo-Social In�uence

In this section, we study geographical and social in�uence for POI recommendation

in LBSNs. By carefully examining the real-world check-in data, we observe that

users' check-ins mainly consist of two groups of check-ins. First, 30% of check-ins

are those that have been checked-in by direct friends. In other words, many users

like to repeat their friends' check-ins. Second, the rest of check-ins are very similar

as users' historically checked-in POIs. Therefore, we propose to divide the whole

recommendation space into two parts: social friend space and user interest space.

The social friend space refers to the set of POI candidates that users' friends have

checked-in before. The user interest space denotes the set of POI candidates that have

not been visited by their friends before, but are very similar to users' historical check-

ins. We then develop di�erent approaches to model these two spaces separately.

4.3.1 Methodology

Our goal is to recommend the new (unvisited) locations for users. Based on the

assumption that a new recommended POI for one user is either one of her friends'

historical ones or similar to her own historical ones, we divide the whole recommen-

dation space into social friend space and user interest space. In this section, we �rst

introduce the social friend space and design a new Social Friend Probabilistic Matrix

Factorization (SFPMF) model. Then we propose another novel User Interest Prob-

abilistic Matrix Factorization (UIPMF) model for user interest space. Finally, we

present the recommendation strategies and models' estimations.

Notations. Suppose there are totally N users andM locations. M denotes the set

of all locations, i.e., |M| = M . Mi then refers to the set of all locations checked-in by
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Figure 4.5: (a) Relationship between social friend space and user interest space. (b)
The x-axis is the ratio of check-ins visited by friends; the y-axis is the number of
corresponding users.
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Figure 4.6: (a) An example of user's social networks and check-ins. The circle is user
and the triangle is location. The red circle is the target user. The solid line indicates
friendship and the dashed line indicates check-in behavior. (b) An example of users
checking-in the same location and their social networks.

user i , andMcj
i the set of locations that user i checked-in before location j and have

the same category as cj. Fi is the set of all friends of user i. Ψj denotes the set of all

users who have checked-in location j. Γi represents the set of all locations checked-in

by friends of user i. The terms location and POI are used interchangeably. Friends

indicate direct friendship in Section 4.3.

4.3.1.1 Social Friend Space

In this section, we introduce the framework of SFPMF model, and present a P 3MF

model to compute the check-in preference propagation probability for users.

4.3.1.1.1 The SFPMF Framework

Many works have demonstrated the importance of social network in recommender

system [67, 62]. To examine the in�uence of friends on users' check-in behaviors, we
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depict the histogram of the ratio of check-ins that repeat friends' historical ones in

Figure 4.5b. There are two surprising observations: (1) Over 50% users like to repeat

those locations checked-in by their friends prior to their �rst check-in at them; (2)

More than 30% check-ins are those that have been visited by friends. The results

exhibit an important check-in behavior trend that users are probable to choose a

POI from a set of POIs that her friends have visited before. Therefore, we believe the

social network is a signi�cant factor that a�ects user's decision on POIs. Furthermore,

it is also crucial to recommend a new POI for one user from a collection of POIs

having been checked-in by her friends, because it is able to encourage users to have

more check-ins due to the trust to their friends and the similar POI taste as them.

The inherent characteristics of check-in data and the evident bene�t motivate us to

recommend users with their friends' historically checked-in POIs. The problem in

social friend space can be formally de�ned as:

De�nition 3 (Problem in Social Friend Space) Given a set of candidate loca-

tions Γi, i.e. {l : l ∈ (∪k∈Fi
Mk) \Mi)}, which have been checked-in by the friends

of user i but are new for her, the prediction is to �nd the location that user i would

most likely prefer to check-in at the next time.

For example, Figure 4.6a shows that the target user ui has friends {f1, f2, f3, f4}

who have checked-in locations {l1, l2, l3, l4, l5, l6}, and these locations are never visited

by the target user before. We aim to predict the probabilities of these POIs that she

would check-in and recommend the POI with the highest probability for her.

In social friend space, we assume one user would repeat a location that her friends

have checked-in before mainly due to the preference propagation in the whole social

network. For each location j, the set of visitors Ψj are regarded as check-in preference

injectors. They would likely tell their friends about this location, who might also tell

their friends, and �nally "everyone" knows. Thus, a check-in event is propagated

in the whole network in such word-of-mouth way with these visitors as the initial
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Figure 4.7: Probability of check-ins as a function of distance of pairwise check-in
distance (Left) and from home (Right).

preference injectors. For example, in Figure 4.6b, {f1, f2, u2, u3} are the visitors of

location l2 and will propagate the preference for this location in the whole network.

The target user ui may be in�uenced by f1, f2, u2 and u3 with di�erent probabilities.

Speci�cally, ui knows the location l2 from u2 likely due to (1) She hears from u2

directly although they are not friends explicitly in the online social network but they

are real friends o� line; (2) u2 tells f6, and f6 tells her then. The weight that the user

is in�uenced by the check-in event about a POI naturally determines the probability

that she prefers to check-in this POI. Based on this analysis, we propose the Social

Friend Probabilistic Matrix Factorization (SFPMF) model. Let us de�ne P I
iv as the

probability that the preference is propagated from the user v to the user i. Therefore

the probability that the user i chooses to check-in the location j is obtained by:

P S
ij = 1−

∏

v∈Ψj

(1− P I
iv). (4.12)

Note that the in�uence cannot be simply computed as the summation over all the

in�uences propagated by the initial injectors because these injectors may have corre-

lations [90].

Di�erent from traditional online product consuming, one user has a very small
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chance to go to check-in a far away location due to the limited transportation even

though she is interested in it. For instance, a user living at California would not go

to check-in a restaurant in New York for the sake of long distance. In the example

shown in Figure 4.6a, user ui has more chance to visit the locations in the left side than

those in the right side, because the locations in the left side are much closer to her.

Thus, a POI's distance signi�cantly a�ects the user's check-in decision process. Some

works [60] propose to leverage a power law distribution to model check-in probability

and distance of any pair of visited POIs based on the observation shown in Figure

4.7a. However, computing the distance of each POI with user's all historical POIs is

ine�cient, especially when the number of POIs is tremendous. To address this issue,

we �rst adopt the method in [89] to locate user's home location from her all historical

check-ins. We �nd that user's check-in probability and the distance between POI

and her home also follow a power law distribution shown in Figure 4.7b. Thus let us

de�ne the probability of a user to check-in a d-km far away POI as:

Pr(d) = a · db, (4.13)

where a and b are the parameters of power law distribution, and could be learned by

maximum likelihood estimation. Then the probability of user i to check-in location

j due to the geographical in�uence is de�ned as:

PG
ij = Pr(d(j, hi)), (4.14)

where hi is the home location of user i, and d(j, hi) indicates the distance between

the POI j and the home of user i.
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Table 4.4: The objective functions for the proposed two models.

argmin
X,Y

λz

N∑

i=1

N∑

v=1

Iiv(ziv − βxTi yv + (1− β)
∑

f∈Fv,−i

gvfx
T
i yf )

2 + λx||X||2F + λy||Y||2F (4.16)

argmin
U,V

λr

N∑

i=1

M∑

j=1

Iij(rij−αuTi vj+(1−α)
∑

l∈M
cj
i

sjlu
T
i vl)

2 +λu||U||2F +λv||V||2F (4.17)

Then Eq.(4.12) is re�ned with the geographical in�uence:

P S
ij ∝ Pr(d(j, hi))(1−

∏

v∈Ψj

(1− P I
iv)). (4.15)

Speci�cally, we further introduce a Preference Propagation Probabilistic Matrix

Factorization (P 3MF ) model to compute the probability P I
iv in the following section.

4.3.1.1.2 The P 3MF Model

Di�erent from traditional probabilistic matrix factorization [14], we construct a

user-user matrix, where each rating ziv indicates the preference propagated from user

v to user i. The observed rating ziv is a function of frequency that user i repeats the

check-ins of her friend v, which will be discussed in Section 4.3.2.4.1. Let X ∈ RZ×N

and Y ∈ RZ×N be the latent user and factor feature metrics, with column vectors xi

and yv representing the Z-dimensional user-speci�c and factor-speci�c feature vectors

of user i and user v, respectively. Speci�cally, the factor feature vector captures the

properties of user v, such as age and activity level, and the user feature vector indicates

the user's preference for corresponding properties.

The process of the preference propagation from user v to user i consists of two

parts: (1) User v in�uences user i directly; (2) The friends of user v (not including

user i if they are also friends) are in�uenced by her, and then a�ect user i. To model

this propagation process, we de�ne the predicted rating ẑiv that user i is in�uenced
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by user v as:

ẑiv = βxTi yv + (1− β)
∑

f∈Fv,−i

gvfx
T
i yf , (4.18)

where β ∈ [0, 1] is the tuning parameter to control the direct in�uence from friend v,

and Fv,−i indicates the set of friends of user v excluding user i. gvf is the information

transmission probability from user v to her friend f . As the connection between

friends is undirected, we de�ne gvf as:

gvf =
1

|Fv,−i|
.

It is worth noting that gvf is di�erent from zfv, where the latter one is the preference

propagated from user v to user f which contains both direct and indirect in�uence

ways.

The rating is assumed to be drawn from a Gaussian distribution with the mean

as shown in Eq.(4.18) and the precision as λz. We also place zero-mean spherical

Gaussian priors on user and factor feature vectors with the precision as λx and λy,

respectively. Therefore, based on a Maximum-a-Posteriori (MAP) estimation, we

obtain the objective function about X and Y in Eq.(4.16), where || · ||F denotes the

Frobenius norm, and Iiv is the indicator function that is equal to 1 if user i checks-in

a POI that her friend v checked-in before and equal to 0 otherwise.

In P 3MF model, we address the preference propagation in�uence in social network

based on user's check-in behavior. The preference propagated from user v to user i is

dependent on the in�uence of himself and her friends. Recursively, the in�uence of the

friend is further a�ected by her friends. Di�erent from [65] which focuses on modeling

the trust propagation for the user feature vector, we directly factorize the preference

propagation in�uence into latent user and factor feature vectors. In addition, the

check-in preference propagation is also a�ected by the geographical distance, i.e. the
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closer two users live physically, the more possibly they will interplay. Therefore, the

check-in preference P I
iv propagated from user v to user i is obtained based on ẑiv and

geographical in�uence in Eq.(4.14):

P I
iv ∝ Pr(d(hi, hv))g(ẑiv), (4.19)

where g(.) is logistic function to bound the value to [0, 1], and Pr(.) is the geographical

in�uence.

4.3.1.2 User Interest Space

In user interest space, we recommend users with the POIs that have not been visited

by their friends before but are similar to their own historical check-ins. Therefore,

the problem is formally de�ned as:

De�nition 4 (Problem in Social Friend Space) Given a set of candidate loca-

tions {l : l ∈ M \ (Γi ∪Mi)}, which have not been checked-in by the friends of user

i and are new for her, the prediction is to �nd the location that user i would most

likely prefer to check-in at the next time.

Probabilistic matrix factorization factorizes the observed rating into user and lo-

cation latent space, and leverages them for rating prediction [14]. Similarly we have

a user-location matrix, where the observed rating Rij is a function of frequency that

user i checked-in the location j. Let U ∈ RD×N and V ∈ RD×M be the latent user

and location feature matrices, with column vectors ui and vj representing the D-

dimensional user-speci�c and location-speci�c feature vectors of user i and location

j, respectively. In traditional PMF, it assumes user's preference for a POI is the dot

product of this user's and this POI's latent vectors. However, it ignores the strong

correlations among user's all POIs. A user may prefer to choose a POI that is very

similar to her historical ones. Therefore, we propose a User Interest Probabilistic

Matrix Factorization (UIPMF) model to characterize the user's preference for a POI
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by using her preferences for the historical POIs that have the same category as this

POI. In other words, user i has her special preference for the POI j, and at the same

time, she is also in�uenced by her historical POIs that have the same category as this

POI. Thus, the predicted rating denoted as r̂ij of user i for POI j is de�ned as:

r̂ij = αuTi vj + (1− α)
∑

l∈M
cj
i

sjlu
T
i vl, (4.20)

where α ∈ [0, 1] is the tuning parameter. The closer a pair of POIs are, the stronger

correlation should be taken into account for a user's POI decision making process.

Hence, the similarity between POI j and POI l denoted as sjl is measured by lever-

aging power law property in Eq.(4.13) and normalized as:

sjl =
Pr(d(j, l))∑

p∈M
cj
i
Pr(d(j, p))

,

where d(j, l) is the distance between POI j and POI l.

Similarly, the rating is drawn from a Gaussian distribution with the mean as shown

in Eq.(4.20) and the precision as λr. We also place zero-mean spherical Gaussian pri-

ors on user and location feature vectors with the precision as λu and λv, respectively.

Therefore, the object function is obtained through Maximum-a-Posteriori estimation

in Eq.(4.17).

As discussed earlier, the check-in decision making process of user i on POI j is

signi�cantly a�ected by the POI's geographical distance. Thus, similar to Eq.(4.15),

the probability that user i prefers to check-in POI j is given as:

PU
ij ∝ PG

ij g(r̂ij). (4.21)
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4.3.1.3 Strategies for POI Recommendations

In this section, we propose that the recommendation space could be divided into

two parts: social friend space and user interest space, and their relationship is shown

in Figure 4.5a. Evidently, these two spaces might have overlap because the POIs that

friends have checked-in are also possibly similar to users' historical check-ins. Thus,

we adopt the following two strategies for POI recommendations.

• Separated Recommendation.

We build two di�erent recommender systems. One is to adopt SFPMF model

to recommend POIs that users' friends have checked-in before. Another one

is to adopt UIPMF model to recommend POIs that have not been visited by

friends but are very similar to their historical check-ins.

• Integrated Recommendation.

We propose an Integrated Social Friend and User Interest model (ISU) to in-

tegrate SFPMF model and UIPMF model for recommendation in the whole

space. The integrated probability PR
ij that user i will check-in POI j is formally

de�ned as follows:

PR
ij = γP S

ij + (1− γ)PU
ij , (4.22)

where γ ∈ [0, 1] is the tuning parameter to align two recommendation spaces.

Speci�cally, P S
ij is computed only on the candidate POIs that user' friends have

checked-in, while PU
ij is calculated for all POIs.

4.3.1.4 Parameter Estimation

Both P 3MF model and UIPMF model are matrix factorization based models, and

their objective functions are given in Eq.(4.16) and Eq.(4.17). Alternating Least

Squares (ALS) is a popular optimization method with accurate parameter estima-

tion and fast convergence rate. Thus, we utilize ALS method to compute each latent
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variable by �xing the other variables when minimizing the object function. As two

models have similar formulations, their optimizations are also similar. The optimiza-

tion process is executed as follows:

• Randomly initialize each variable of interest.

• Update each of them with the updating equation iteratively until the object

function converges.

The Optimization for the P 3MF Model: For the simplicity of inference, we

�rst de�ne the following variables:

ỹiv = βyv + (1− β)
∑

f∈Fvi

gvfyf ,

wβ = β2 + (1− β)2
∑

f∈Fvi

g2
vf ,

z̄iv = ziv − βxTi yv − (1− β)
∑

f∈Fvi

gvfx
T
i yf ,

f(z̄iv) = βz̄iv + (1− β)
∑

f∈Fvi

gvf z̄if ,

where Fvi is the set of common friends of user v and i. Then the updating equations

for X and Y are obtained as:

xi = [λxIZ + λz

N∑

v=1

Iivỹ
i
vỹ

iT
v ]−1λz

N∑

v=1

Iivzivỹ
i
v,

yv = [λzIZ + λz

N∑

i=1

Iivwβxix
T
i ]−1λz

N∑

i=1

Iiv[f(z̄iv) + wβx
T
i yv]xi.

The Optimization for the UIPMF Model: We can obtain the similar de�ni-
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tions about ṽij, wα, r̄ij and f(r̄ij):

ṽij = αvj + (1− α)
∑

l∈M
cj
i

sjlvl,

wα = α2 + (1− α)2
∑

l∈M
cj
i

s2
jl,

r̄ij = rij − αuTi vj − (1− α)
∑

l∈M
cj
i

sjlu
T
i vl,

f(r̄ij) = αr̄ij + (1− α)
∑

l∈M
cj
i

sjlr̄il.

Then the updating equations for U and V are shown as:

ui = [λuID + λr

M∑

j=1

Iijṽ
i
jṽ

iT
j ]−1λr

M∑

j=1

Iijrijṽ
i
j,

vj = [λvID + λr

N∑

i=1

Iijwαuiu
T
i ]−1λr

N∑

i=1

Iij[f(r̄ij) + wαu
T
i vj]ui.

4.3.2 Experimental Results

In this section, we will evaluate our models with the real-world dataset.

4.3.2.1 The Experimental Setup

Dataset. In the experiments, we use Gowalla dataset [66] to evaluate the per-

formance of our models, which contains check-in data ranging from January 2009 to

August 2010. Each check-in record in the dataset includes user ID, location ID and

timestamp, where each location has latitude, longitude and category information.

Meanwhile the dataset has undirected friendship information. Speci�cally, we have

the creation timestamp for each friendship, which is di�erent from most of datasets

used in recent research works. In addition, we remove users who have visited less

than 5 locations and more than 1000 locations, and locations which are visited by

less than 5 users. The data statistics are shown in Table 4.5.
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Table 4.5: The statistics of data sets.
#User #Location #Checkin Sparsity
61,578 178,062 3,257,029 0.0297%

#Train #Test #Test (SFS)1 #Test (UIS)2

2,581,882 675,147 167,546 507,601

In recommendation system, we aim to recommend those unvisited locations for

users. Therefore, we split the training and testing data as follows: for each individual

user, (1) aggregating the check-ins for each individual location; (2) sorting the location

according to the �rst time that user checks in; (3) selecting the earliest 80% to train

the model, and using the next 20% as testing. With the dynamic information, we

use the social network at the end date of training data for both training and testing.

Speci�cally, there are on average 8.29 friends for each user, and for those users who

have friends, there are on average 556.32 locations that their friends have visited

before. The observed rating for SFPMF model is a function of frequency that user

repeats the check-ins of her friends, and we then obtain 372, 502 ratings in the training.

Experimental Settings. In the experiments, the parameter β, α and γ are set

as 0.1, 0.8, and 0.01, respectively. The parameters λt and λz are set as 0.0001 and

the other regularization parameters are set as 0.01. The dimensions of latent factors

(i.e. Z and D) in SFPMF and UIPMF models are set as the same. We discuss the

rating conversion methods for MF based models in Section 4.3.2.4.1.

4.3.2.2 Evaluation Metrics

As POI recommender system only recommends the limited POIs for users, we

quantitatively evaluate recommendation models in terms of top-K recommendation

performance i.e. Precision@K and Recall@K metrics. We also adopt MAP metric,

the mean of the average precision (AP) over all locations in the testing, to evaluate

1We select those check-ins in the test which friends have checked-in before to evaluate models in
social friend space.

2We select those check-ins in the test which friends have not checked-in before to evaluate models
in user interest space.
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models' performance. Formally, they are de�ned as:

Precision@K =
1

N

N∑

i=1

Si(K) ∩ Ti
K

,

Recall@K =
1

N

N∑

i=1

Si(K) ∩ Ti
|Ti|

,

MAP =
1

N

N∑

i=1

∑M̂i

j=1 p(j)× rel(j)
|Ti|

,

where Si(K) is a set of top-K POIs recommended to user i excluding those POIs in

the training, Ti is a set of locations that are checked-in by user i in the testing. M̂i

is the number of the returned locations in the list for user i, p(j) is the precision of

a cut-o� rank list from 1 to j, and rel(j) is an indicator function that equals to 1 if

the location is appearing in the testing, otherwise equals to 0.

4.3.2.3 Baseline Methods

To comparatively demonstrate the e�ectiveness of the proposed models, we com-

pare them with �ve recommendation models: (1) USG [60], taking geographical

in�uence, social network and user interest into account for POI recommendation; (2)

LOCABAL [69], capturing two types of social relations, i.e. the local friends and the

users with high global reputations, for recommendation based on matrix factorization;

(3) RegPMF [67], assuming that users and their friends share similar interests in

the preference and placing a social regularization term on learning latent user feature

vectors; (4) PMF [14] that assumes the user and location latent vectors to be drawn

from Gaussian distribution and estimates a user's preference for a location as the dot

product of user-speci�c and location-speci�c latent vector; (5)UC, user-based collab-

orative �ltering that adopts cosine similarity as the similarity measurement between

users.
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(b) Recall@K (10-D)
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(c) Precision@K (60-D)
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(d) Recall@K (60-D)

Figure 4.8: Performance comparison for di�erent rating conversions on UIPMF with
di�erent dimensions.

4.3.2.4 Performance Comparison

First, we evaluate di�erent rating conversion methods for MF based models, and

then compare the performance of the proposed models with baseline methods in social

friend space, user interest space and the whole recommendation space.

4.3.2.4.1 Performance Comparisons of Rating Conversion Methods

In the literature, various rating conversion methods are proposed to �t Matrix

Factorization (MF) based models for POI recommendation due to the bias of check-

in data (i.e. majority ratings are very small and small percentages of ratings are

extremely high). We formally compare the following six methods with MF based

models:

• Logistic: Logistic function 1
1+(ex)−1 is commonly used in recommendation to

map each matrix entry into [0, 1].
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Figure 4.9: Performance comparison for di�erent rating conversions on PMF with
di�erent dimensions.

• Exponential [48]: A mapping function 1
1+x−1 is used to bound each matrix

entry into [0, 1].

• Binary: It has two values: 0 and 1. The rating is assigned to 1 if user has

check-in at this POI, and assigned to 0 otherwise.

• Rescale [13]: Due to the power law distribution of user-location check-in num-

bers, we could obtain a �ve-point scale rating with check-in frequency: convert-

ing one check-in to 2, two check-ins to 3, three check-ins to 4, and four or more

check-ins to 5.

• MinMax [91]: It is de�ned as x−1
max−1

, where max is the maximum frequency

value.

• Frequency: Rating is the number of user-location check-ins.

where x is the number of user-location check-ins. It is worth to noting that for Rescale

and Frequency, we use the ratings after minus mean value to �t models; other kinds
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(b) MAP on PMF

Figure 4.10: Performance comparison for di�erent rating conversions in terms of MAP
with di�erent dimensions.

of ratings are used to �t the models directly. Due to the limited space, we only report

the performance of di�erent rating conversion methods on both UIPMF and PMF in

terms of precision@K, recall@K and MAP in Figure 4.8, Figure 4.9 and Figure 4.10.

Based on the results, we summarize as following: (1) Two models perform almost

consistent with di�erent rating conversion methods, indicating that matrix factoriza-

tion based models will have consistent performance with di�erent rating conversion

methods. (2) Frequency, MinMax and Rescale perform much worse than others, sug-

gesting the bias in check-in data would a�ect the model's performance. Even though

MinMax bounds the rating to [0, 1], many zero ratings are possible to explain its bad

performance. (3) Logistic, Exponential and Binary methods have very similar perfor-

mance and are much superior than others. It happens possibly because they constrain

the ratings in [0, 1] to avoid the large �uctuation of ratings. Surprisingly Binary per-

forms very well under this group of regularization parameters. But we observe that

this method pronely leads to over-�tting in high dimension under other parameter

settings. In the following experiments, we will adopt logistic function as rating con-

version method to �t matrix factorization based methods because it is widely used

in recommendation and obtains good performance. We only report the performance

with the latent factor dimension as 10 due to the similar performance in di�erent

dimensions.
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(a) Precison@K in social friend space
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(b) Recall@K in social friend space
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(c) Precision@K in user interest
space
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(d) Recall@K in user interest space

Figure 4.11: Performance comparison in terms of precision@K and recall@K in social
friend space and user interest space.

4.3.2.4.2 Performance Comparison in Social Friend Space

We compare our SFPMF model with the baseline methods in social friend space,

where the testing check-ins are only those that friends have visited before (see Test(SFS)

in Section 4.3.2.1). We �rst compute the probabilities for each user and her candi-

date locations with di�erent models, and then recommend the top-K locations with

the highest probabilities. The candidate locations are those that users' friends have

checked-in before. The performances in terms of Precision@K, Recall@K and MAP

are shown in Figure 4.11a, Figure 4.11b and at the top of Table 4.6.

It can be observed that all models perform consistently with di�erent metrics.

We �nd that as K increases, the precision decreases while the recall increases. To-

tally PMF has the worst performance among all methods, indicating that traditional

matrix factorization is di�cult to work well on check-in data due to the di�erence
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Table 4.6: Performance comparison in terms of MAP in social friend space and user
interest space.

Social Friend Space
SFPMF USG UC LOCABAL RegPMF PMF
0.16825 0.14947 0.11111 0.10406 0.10017 0.09689

User Interest Space
UIPMF USG UC LOCABAL RegPMF PMF
0.04538 0.02996 0.02303 0.00684 0.00666 0.00647

between user's behaviors on products consuming and check-ins. The POI decision

making process is more a�ected by social network and geographical in�uence. Both

RegPMF and LOCALBAL perform better than PMF. Their improvements indicate

that social network is a factor a�ecting the performance in POI recommender system.

Leveraging the assumption that users and their friends share similar interests does

improve the recommendation accuracy. It is surprising that UC also works well. It

is possible that users' similar interests can help to estimate more accurate ratings in

our check-in data. Although USG takes the geographical in�uence, social network

and user interest into account for recommendation, it is not as good as our SFPMF

model. It demonstrates the framework of SFPMF and the modeling approach of

user's preference propagation assist to improve the prediction accuracy. Furthermore,

it illustrates that utilizing the characteristics of social network, i.e. preference propa-

gation from one person to another, can appropriately model user's check-in decision

making process in social friend space.

4.3.2.4.3 Performance Comparison in User Interest Space

We evaluate the performance of UIPMF model versus various baseline methods

in user interest space, where the testings are excluding those that are checked-in by

friends in the testing (see Test(UIS) in Section 4.3.2.1). The performances in terms

of Precision@K, Recall@K and MAP are shown in Figure 4.11c, Figure 4.11d and at

the bottom of Table 4.6.

From the results, we can see RegPMF and LOCALBAL are only a little better
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Table 4.7: Performance comparison in terms of Precision, Recall and MAP in the
whole recommendation space.

Precision@5 Precision@8 Precision@10 Precision@15
ISU 0.06464 0.05548 0.05139 0.04414
USG 0.03651 0.03488 0.03377 0.03137
UC 0.02895 0.02744 0.02668 0.02524

LOCABAL 0.02193 0.01866 0.01735 0.01488
RegPMF 0.02142 0.01846 0.01715 0.01448
PMF 0.02129 0.01828 0.01660 0.01448

Recall@5 Recall@8 Recall@10 Recall@15 MAP
ISU 0.04784 0.06400 0.07312 0.09174 0.05379
USG 0.02916 0.04387 0.05255 0.07106 0.02847
UC 0.02330 0.03469 0.04159 0.05743 0.02427

LOCABAL 0.01426 0.01906 0.02198 0.02773 0.01231
RegPMF 0.01393 0.01891 0.02182 0.02707 0.01190
PMF 0.01389 0.01854 0.02063 0.02695 0.01170

than PMF, but they are much worse than others. It shows the traditional modeling

methods with social network fail to achieve accurate recommendations in user interest

space. In this space, since users and friends have no common check-ins in the test-

ing, social network does not work in USG model. Hence in fact USG only captures

user's interests and geographical in�uence. Its superior performance exhibits that

geographical in�uence play an important role in location recommendation. The sig-

ni�cant improvements of UIPMF compared to USG demonstrate that utilizing user's

historical interests to seek a new POI similar to previous ones, as well as exploiting

the spatial clustering phenomenon of check-in data are helpful for recommendation.

4.3.2.4.4 Performance Comparison in the Whole Recommendation Space

As social friend space and user interest space might have overlap, we can integrate

them (namely ISU) to make recommendations in the whole space. We evaluate the

performance of ISU model with baseline models in terms of precision@K, recall@K

and MAP. We do the test in the whole testing data. The performances are reported

in Table 4.7. We summarize the main results as the followings:
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• PMF performs the worst among all the models. The sparseness of data may be

one reason why it has such bad performance. UC performs better than PMF.

Although the data is very sparse, it might have the tendency in our check-in

data that similar users have similar interests in the preference of POIs. Thus,

UC achieves good performance in our check-in data.

• Both RegPMF and LOCALBAL are better than PMF. It shows social network

is helpful for location prediction. Although both of them assume users and

their friends have similar interests, they have di�erent modeling approaches.

The better performance of LOCALBAL than that of RegPMF re�ects that

considering the local and global e�ect of friends is a superior approach to utilize

social network information for recommendation.

• USG obtains a better performance than LOCALBAL, RegPMF, UC and PMF,

which indicates that both social network and geographical in�uence can bene�t

POI recommender system. However, it is worse than the proposed model pos-

sibly due to the weak connection of a new POI and one user's historical POIs.

Thus it clearly shows our models' e�ectiveness.

• ISU performs much better than other baseline models, illustrating the e�ective-

ness of (1) modeling user's repeating behaviour for her friends' historical POIs;

(2) capturing the in�uence of user's own historical check-ins on new POIs. It

also indicates that both social network and geographical in�uence contribute to

POI recommendation together.

4.3.3 Conclusion

We investigate a novel Point-of-Interest recommender system in Section 4.3. Specif-

ically, we divide the recommendation space into social friend space and user interest

space. In social friend space, the problem is formulated as recommending one user

with new POIs that her friends have checked-in before. A novel SFPMF model is

proposed to factorize the preference propagation in�uence into user and factor fea-



68

ture vectors. In user interest space, the problem is de�ned as recommending one

user with new POIs that have not been visited by her friends but are very similar

to her historical ones. Then UIPMF model is developed to capture the connection

between one user's preference for a new POI and her preference for historically visited

POIs. Finally, experimental results on a real-world dataset e�ectively demonstrate

the improvement of the proposed models over several baseline methods based on many

validation metrics.

4.4 Addressing Cold-Start Problem

In this section, we exploit geographical properties and social correlations to design

advanced and e�cient recommender systems for addressing cold-start issues in POI

recommendation on LBSNs. To mitigate data sparsity and tackle cold-start problems,

we introduce three types of friends for each user based on geo-social correlations:

social friends, location friends and neighboring friends. The social friends of a user

refer to the set of users who are socially connected with this user in LBSNs. The

location friends of a user denote the set of users who check-in the same locations as

this user does. The neighboring friends of a user are those users who are geographically

close to this user. Then we novelly incorporate their historical check-ins into matrix

factorization model with di�erent loss functions. In a nutshell, in the following section

we:

• empirically analyze the correlations between users and their three type of friends

using two check-in datasets.

• design two approaches to learn a set of locations for each individual user that

her friends have checked-in before and she is most interested in.

• develop matrix factorization based models via di�erent loss functions with the

learned potential check-ins, and correspondingly propose two scalable optimiza-

tion methods.
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• propose three di�erent recommendation strategies for standard recommenda-

tion, new location recommendation, and new user recommendation.

4.4.1 Notation and De�nition

4.4.1.1 Notation

Suppose there are N users and M locations. For convenience we will henceforth

refer to i as user, f as friend and j as the location unless stated otherwise. Suppose

there are C kinds of categories and the category of location j is denoted as cj. For

user i, Fi denotes a set of friends which will be further de�ned and explained in

Section 4.4.1.2, Mo
i is a set of locations checked-in by her, Mp

i is a set of potential

locations learned in Section 4.4.3, and Mu
i is the remaining unvisited locations. rij

is the check-in frequency of user i on location j. In addition, all column vectors are

represented by bold lower case letters, all matrices are represented by bold upper

case letters, and a numeric value is denoted by lower case letter. A predicted value

is denoted with aˆ(hat) over it. The terms location and POI are used interchangeably.

4.4.1.2 De�nition

To better understand users' check-in behaviours, we examine the check-in data

collected from Gowalla and Foursquare (Details can be found in Section 4.4.5). To

clarify the relation between the similarity of pairwise users and their physical distance,

we plot their relations in Figure 4.12a and Figure 4.12b. The physical distance of two

users refers to the distance between their home locations, and the similarity of user i

and user f is measured by cosine similarity, given by:

Simu(i, f) = (
∑

j∈Mo
i

r2
ij

∑

j∈Mo
f

r2
fj)
− 1

2

∑

j∈Mo
i∩Mo

f

rijrfj. (4.23)

Based on the observation, we �nd that the physically closer two users live, the more
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Figure 4.12: (a) ∼ (b) Cosine similarity as a function of distance between users' home
locations. (c) ∼ (d) Complementary Cumulative Distribution Function (CCDF) of
cosine similarity between friends.

similar their POI interests are. It motivates us to leverage neighboring friends, who are

physically neighbors, to learn user's interest in POIs. In addition, social friends who

build connections online share the similar interests in POI decisions [67, 57, 68, 69].

Users who check-in similar locations are treated as location friends, and also might

have similar tastes. Thus, three types of friends of user i, i.e., neighboring friends,

social friends and location friends, might a�ect her check-in activity, de�ned as:

De�nition 5 (Social Friends) The social friends of user i are the set of users who

have socially connected with her in LBSNs, which is denoted as F si .

De�nition 6 (Location Friends) Given a set of locations Mo
i , which have been

checked-in by user i, her location friends, denoted as F li , are the set of users who

have also checked-in these locations, i.e., F li =
⋃
j∈Mo

i
Ψj, where Ψj is the set of users

who also have checked-in location j.
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Figure 4.13: The user ui's social network and check-ins.

De�nition 7 (Neighboring Friends) Given the home location of user i, the neigh-

boring friends are the set of users who live physically closest to her and denoted as

Fni .

In the example of Figure 4.13, the target user ui has checked-in locations {l1, l2, l3}.

{f1, f2} are her social friends who socially connect with her online. User f3 has check-

ins at locations l2 and l5, and user f4 has check-ins at locations l3 and l4. f4 and f5

have common POIs with user ui, i.e., l2 and l3, respectively. Thus, both of them are

the location friends of user ui. In addition, f5 and f6 are the target user's neighboring

friends due to their physically short distance to her. Thus, {f1, · · · , f6} are regarded

as the friends of user i. Here, the friends of user i are de�ned as:

Fi = F si ∪ S(F li ) ∪ S(Fni ), (4.24)

where S(F li ) is the set of S most similar friends with the highest cosine similarities and

S(Fni ) is the set of S physically nearest friends with the shortest distance among their

homes3. To examine the correlation between friends, we report the complementary

cumulative distributions of their similarities in Figure 4.12c and Figure 4.12d on

Gowalla and Foursquare, respectively. There are over 5%, 20% and 40% pairs of social,

neighboring and location friends which have similarities larger than 0.2. Particularly,

the friends' correlation is much stronger in Gowalla than Foursquare. The observation

shows the importance of friends in LBSNs and motivates us to use friends' historical
3In the experiment, we set S as 10.
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check-ins to improve recommendation accuracy.

4.4.2 Recommendation Framework

The recommendation task in Section 4.4 is de�ned as: given users' historical

checked-in locations, we aim at recommending each user with top-K locations that

she might be interested in but has not visited before. We propose a two-step rec-

ommendation framework. Speci�cally, in the �rst step, we learn a set of potential

locations from three types of friends, which will be introduced in Section 4.4.3. In

the second step, we incorporate the learned potential locations of each individual

into matrix factorization model with di�erent error loss functions, which will be pre-

sented in Section 4.4.4. At last, we introduce di�erent recommendation strategies for

standard recommendation, location cold-start recommendation and user cold-start

recommendation.

4.4.3 Learning Potential Locations

Social network plays an important role in recommendations [67, 60, 68, 69]. How-

ever, only leveraging the historical locations of social friends cannot successfully model

user's preference for locations due to that it is di�cult to appropriately model the

preference of users who have no social friends, not mention to tackle user cold-start

problem (i.e., a user has never checked-in any location before). To address these

issues, we will exploit the characteristics of three types of friends: social friends,

location friends and neighboring friends. The earlier section has shown their signi�-

cance in LBSNs, i.e., friends would share the similar preferences for POIs. In other

words, users might be interested in those locations which have been checked-in by

their friends, and have a high probability to check-in them next time. However, the

extremely large number of these locations will lead to the ine�ciency of computation

with the increase of locations, and the inaccuracy of prediction with the increase of

noise. Hence, the problem in this section is to �nd the most potential locations for
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the target user, de�ned as:

De�nition 8 (Problem of Potential Locations) Given the set of locationsMf
i =

⋃
f∈Fi
Mo

f\Mo
i , that the friends of target user i have checked-in before but she never

visits, the problem is to �nd top S most potential locations that she might be interested,

denoted asMp
i .

To obtain the potential locations of each user i, we propose two methods, i.e.,

Linear Aggregation and Random Walk, to estimate the probability ppotij of this user

on each location j that her friends have checked-in. Then we rank them by the

estimated probabilities and select S locations with the highest probabilities4. The

learned potential locations will assist to make accurate recommendation in Section

4.4.4.

4.4.3.1 Linear Aggregation

In this section, we propose Linear Aggregation method, denoted as LA, to predict

the probability ppotij that user i prefers location j which has been visited by her friends.

Suppose Sim(i, f ; j) is the similarity between user i and friend f on the preference for

location j. A location is possibly checked-in by more than one friends, so we de�ne

ppotij as:

ppotij ∝ max
f∈Fj

i

{Sim(i, f ; j)},

where F ji is the set of user i's friends who have checked-in location j. The similarity

Sim(i, f ; j) incorporates two parts: (1) the similarity of user interest, and (2) the

similarity of geographical location. The similarity of user interest can be measured

by cosine similarity in Eq.(4.23). Since a user's check-in probability and the distance

from her home to the corresponding location follow a power law distribution [2], we

exploit this characteristic to model geographical similarity. Hence, we de�ne the
4In the experiments, we set S as 500.
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probability that a user checks-in a location d-km far away as the following:

PrG(d) = a · db, (4.25)

where a and b are the parameters of power law distribution and could be learned by

maximum likelihood estimation. Then the probability of user i to check-in a POI j

due to the geographical in�uence is normalized as:

pGij =
PrG(d(hi, j))

PrG(dmin)
, (4.26)

where hi is the home location of user i, and d(hi, j) indicates the distance between

the home location of user i and the POI j, and dmin is the minimum distance. The

distance could be computed by Haversine formula with latitude and longitude. Thus,

Sim(i, f ; j) is the linear aggregation of similarities on both user interest and geo-

graphical location, given by

Sim(i, f ; j) = ζ Simu(i, f) + (1− ζ) pGij,

where ζ ∈ [0, 1] is a tuning parameter to control the importance of the similarity of

user interest.

4.4.3.2 Random Walk

Random walk with restart has successfully measured the correlation between two

nodes in a graph [64, 92]. In this section, we propose a Random Walk method, denoted

as RW, to learn the probability ppotij of user i on location j which has been visited by

her friends. We construct a directed graph with two kinds of nodes: the users (i.e.,

the target user and her friends), and the locations checked-in by her and her friends.

Let y be a column vector where yi refers to the probability that the random walk is at

node i. Also let A be the column normalized transition matrix where aij denotes the
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probability that node i jumps to node j. Here we consider three types of transition

probabilities: (1) the probability between users measured by the cosine similarity in

Eq.(4.23); (2) the probability from each user to each location which is one if the user

checks-in the corresponding location and otherwise is zero; (3) the similarity between

a pair of locations (j and k) measured by the normalized power-law function which

is de�ned as the following:

SimG(j, k) =
PrG(d(j, k))

PrG(dmin)
, (4.27)

where d(j, k) is the distance between these two locations and the power law parameters

are learned with the check-in probabilities and corresponding distances of pairwise

locations. Hence, the iteration equation for updating the steady-state probability of

each node is given as follows:

y = (1− β)Ay +
β

|Mo
i ∪Mf

i |+ |Fi|+ 1
x, (4.28)

where x is the column vector of zeros with the elements corresponding to the target

user and her checked-in locations as one, and β ∈ [0, 1] is the restart probability to

return to the target user and her checked-in locations. The steady-state probability is

achieved by recursively performing Eq.(4.28) until convergence. Thus, the probability

ppotij is the steady-state probability corresponding to the location j.

4.4.4 Recommendation Models

In Section 4.4.3, for each individual user, we have learned the potential locations

from her friends' information. In this section, the learned potential locations are uti-

lized to make accurate recommendation and address user cold-start problem. Overall,

for each user i, we have her three kinds of locations: observed locationsMo
i , potential

locationsMp
i and other unobserved locationsMu

i .
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We build our recommendation models by leveraging the widely-used matrix fac-

torization techniques [14, 9, 15, 20, 6], where both user and location are mapped

into latent low-dimension spaces. Let U ∈ RD×N and V ∈ RD×M be the latent user

and location feature matrices, with column vectors ui and vj representing the D-

dimensional user-speci�c and location-speci�c feature vectors of user i and location j,

respectively. A typical prediction for the preference of user i to location j is taken by

an inner product of latent vectors, i.e., p̂ij = uTi vj, where P ∈ RN×M is the preference

matrix.

However, in LBSNs the category information of POIs a�ects user's check-in decision

making process. Users are often used to visiting those POIs which belong to the same

category due to their speci�c hobbies. For example, users who like eating would have

a much higher probability to choose a new POI relevant to food next time, but they

have much less chance to check-in a POI about sight. Thus, the preference of category

is another important factor to a�ect user's decision on a new POI. Here, we introduce

the category feature matrix Q ∈ RN×C , where each entry qic indicates the preference

of user i to category c. Hence, the preference of user i for location j is re�ned as

follows:

p̂ij = (qicj + ε)uTi vj, (4.29)

where cj is the category of location j and ε is a tuning parameter to indicate that

user has a small probability to prefer one location with another category.

Many of the recent works suppose to only model the observed rating, which is

adapted to explicit feedback datasets. However, the check-in dataset is implicit feed-

back dataset, where we do not have explicit feedback for user's preference to locations.

In other words, we lack substantial evidence on which location the user dislikes. To

address user cold start problem and tackle data sparseness problem, we propose to
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model the observed preference, potential preference and unobserved preference of

users for location, simultaneously. Let j, k, h denote the observed location, potential

location and unobserved location, respectively. The loss function of general form is

given as follows:

argmin
U,V,Q

∑

i

Ei(pij, pik, pih, p̂ij, p̂ik, p̂ih) + Θ(U,V,Q), (4.30)

∀j ∈Mo
i ,∀k ∈Mp

i ,∀h ∈Mu
i ,

where Ei(·) is the loss function for the observed, potential and unobserved preference

of user i for locations, and Θ(·) is a regularization term with `2 norm which is de�ned

as follows:

Θ(U,V,Q) =
λu
2
||U||2F +

λv
2
||V||2F +

λq
2
||Q||2F , (4.31)

where λu, λv and λq are the regularization constants. We develop two di�erent types

of models which use di�erent loss function for Ei(·), i.e., the square error based and

the ranking error based loss functions, and will be described in the next two sections,

respectively.

4.4.4.1 The Square Error based Model

In this section, we present the Augmented Square error based Matrix Factorization

(ASMF ) model constrained with the square error loss function and its optimization

method.

4.4.4.1.1 The ASMF Model

Due to the similar interests between friends, one user might have opportunity to

visit those potential locations that her friends have visited before but she never checks-

in. We treat each individual user's check-ins as an indication of positive, potential

and negative preference associated with di�erent con�dence. One user has a high
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con�dence for the positive preference to their checked-in POIs. However, she will

have a low con�dence for the potential preference to those potential locations and the

negative preference to other unvisited locations. Correspondingly, we augment the

binary preference variable pij to a ternary value as follows:

pij =





1 if j ∈Mo
i ,

α if j ∈Mp
i ,

0 otherwise,

(4.32)

where α ∈ [0, 1] is a potential preference constant, indicating user i has a probability

α to choose an unvisited location j that her friends have visited before.

Therefore, we propose the augmented square error based matrix factorization model

(ASMF ) to compute the loss Ei(·) by using the squared error loss function with the

ternary variable de�ned in Eq.(4.32), given by:

Ei(·) =
M∑

j=1

wij (pij − p̂ij)2 , (4.33)

where W is the con�dential matrix with element wij as the con�dential weight for

user i to location j, given by:

wij =





1 + γ × rij if j ∈Mo
i ,

1 otherwise,
(4.34)

where γ is the tuning parameter.
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4.4.4.1.2 The Parameter Estimation

In ASMF model, based on the Eq.(4.29), Eq.(4.30) and Eq.(4.33), the matrices U,

V, and Q are learned by minimizing the following regularized optimization problem:

L = min
U,V,Q

N∑

i=1

M∑

j=1

wij
(
pij − (qicj + ε)uTi vj

)2
+ Θ(U,V,Q), (4.35)

To solve the above optimization problem, we adopt Alternating Least Squares (ALS)

[15] optimization method due to the accurate parameter estimation and fast conver-

gence rate. We perform ALS method to compute each latent variable by �xing the

other variables when minimizing the objective function. The updating formulas with

respect to U, V and Q are given as follows:

ui = (λuID +
∑

j

wij q̃
2
icj

vjv
T
j )−1

∑

j

wij q̃icjpijvj, (4.36)

vj = (λvID +
∑

i

wij q̃
2
icj

uiu
T
i )−1

∑

i

wij q̃icjpijui, (4.37)

qic = (
∑

j∈Nc

wij(pij − ε)uTi vj)/(λq +
∑

j∈Nc

wij(u
T
i vj)

2), (4.38)

where ID is the D-dimension unit matrix, Nc is the set of locations with category

c, and q̃icj is equal to qicj + ε. The detailed algorithm is reported in Algorithm 1.

Speci�cally, we place the non-negative constraints on Q and project the negative

variables to 0 in each iteration.

Complexity Analysis. The complexity of direct computation is O(NMD2)

which is extremely ine�cient particularly with the increase of locations and users.

To improve the e�ciency, we design the following updating strategies. For updat-

ing ui, we employ the similar trick in [20], i.e.,
∑

j wij q̃
2
icj

vjv
T
j =

∑
j q̃

2
icj

vjv
T
j +

∑
j γrij q̃

2
icj

vjv
T
j . The �rst term can be written as

∑
j q̃

2
icj

vjv
T
j =

∑
c q̃

2
ic

∑
j∈Nc

vjv
T
j .

For each category c,
∑

j∈Nc
vjv

T
j is independent of i and already pre-computed, so
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Algorithm 1: ASMF Optimization
Input: W, P, λu, λv, λq, α, ε, τ , maxIter
Output: U(t), V(t), Q(t)

1 Randomly initialize U(0) and V(0), t← 1, ω ←∞
2 Initialize Q(0) by using Eq.(4.38)
3 while t 6 maxIter && ω > τ do
4 Update U(t) by using Eq.(4.36)
5 Update V(t) by using Eq.(4.37)
6 Update Q(t) by using Eq.(4.38)

7 ω ← |L(U(t),V(t),Q(t))−L(U(t−1),V(t−1),Q(t−1))|
|L(U(t−1),V(t−1),Q(t−1))|

8 t← t+ 1

9 end

10 return U(t), V(t), Q(t)

the time complexity of this term is O(CD2) and C is usually very small. The cost

time of the second term is O(niD
2), where the potential part can be pre-computed

and ni is the number of observed locations for which rij > 0. In addition, the inverse

of a D×D matrix costs O(D3). Consequently, the re-computation of ui is performed

in time O(CD2 + niD
2 + D3). This procedure is performed over each user, so the

total time is O(NCD2 + nD2 +ND3), where n is de�ned as n =
∑

i ni.

Similarly, when updating vj, we have
∑

iwij q̃
2
icj

uiu
T
i =

∑
i q̃

2
icj

uiu
T
i +
∑

i γrij q̃
2
icj

uiu
T
i .

For each category c, the �rst term is independent of j and was already pre-computed.

Thus, the total cost time over M locations is O(nD2 +MD3).

To update qic, we can rewrite the expression as
∑

j∈Nc
wij(u

T
i vj)

2 =
∑

j∈Nc
(uTi vj)

2+
∑

j∈Nc
γrij(u

T
i vj)

2. The �rst term is written as
∑

j∈Nc
(uTi vj)

2 = uTi (
∑

j∈Nc
vjv

T
j )ui,

where
∑

j∈Nc
vjv

T
j was already pre-computed, so it costs O(D2). The second term

costs O(Dnic), where nic is the number of locations for which rij > 0 and belongs to

category c. The total complexity of updating Q is O(NCD2 +Dn).

In a summary, for each iteration of optimization, the total time is O(nD2), where

n > max{M,N}D, and n > CN are usually satis�ed. In other words, the time

complexity of one optimization iteration is in linear proportion to the number of
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observed check-ins.

4.4.4.2 The Ranking Error based Model

In this section, we present the Augmented Ranking error based Matrix Factor-

ization (ARMF ) model constrained with the ranking error loss and its optimization

method.

4.4.4.2.1 The ARMF Model

In check-in dataset, we only have a user's check-in record and do not know how

much she dislikes a location. In other words, an unvisited location does not necessarily

indicate the user dislikes it. The unobserved data actually is a mixture of negative

preference for locations and missing values. It motivates us to consider a ranking error

based loss function for modeling the ranking order of user's preference for observed

locations, potential locations and unobserved locations. We assume that the user

prefers an observed location over all potential locations, and at the same time she

prefers a potential location over all other unobserved locations. Thus, for user i, the

ranking order of her preference over an observed location j ∈Mo
i , a potential location

k ∈Mp
i and an unobserved location h ∈Mu

i is given as the following:




p̂ij > p̂ik

p̂ik > p̂ih

⇒





(qicj + ε)uTi vj > (qick + ε)uTi vk

(qick + ε)uTi vk > (qich + ε)uTi vh

. (4.39)

To this end, we propose the augmented ranking error based matrix factorization

(ARMF ) to compute the loss Ei(·) by using the ranking error loss function, given by,

Ei(·) =−
∑

j∈Mo
i

∑

k∈Mp
i

lnσ(p̂ij − p̂ik)−
∑

k∈Mp
i

∑

h∈Mu
i

lnσ(p̂ik − p̂ih), (4.40)

where σ(x) = 1
1+e−x is the logistic sigmoid function which is introduced to penalize

the violated constraints in Eq.(4.39). As we can see in Eq.(4.40), the error function
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does not focus on predicting the right value, but on the ordering of the preference for

observed, potential and unobserved locations.

4.4.4.2.2 The Parameter Estimation

In ARMF model, based on the Eq.(4.29), Eq.(4.30) and Eq.(4.40), the matrices U,

V, and Q are learned by minimizing the following regularized optimization problem:

argmin
U,V,Q

−
∑

i


∑

j∈Mo
i

∑

k∈Mp
i

lnσ(p̂ij − p̂ik) +
∑

k∈Mp
i

∑

h∈Mu
i

lnσ(p̂ik − p̂ih)


+ Θ(U,V,Q).

(4.41)

As there is no close-form for each variable with ALS approach, a Stochastic Gra-

dient Descent (SGD) using the boostrap sampling with replacement algorithm is em-

ployed to solve the optimization problem in Eq.(4.41). The optimization algorithm is

iteratively performed by sampling a tuple (i, j, k, h) and updating the corresponding

variables, where i is a user, j ∈Mo
i is her observed location, k ∈Mp

i is her potential

location, and h ∈Mu
i is other unobserved location. More details of optimization are

provided in Algorithm 2. Speci�cally, we de�ne g′(x) = σ(x)− 1.

Complexity Analysis. The run time of sampling a tuple (i, j, k, h) is quite small

in each update and can be neglected. Hence, the complexity of the optimization

algorithm is O(mD), where m is the total iteration number. In the experiments, m

is proportional to the number of observed check-ins.

4.4.4.3 Incorporating Geographical In�uence

Di�erent from online product consuming, a POI's geographical distance signi�-

cantly a�ects the user's check-in decision making process. One user would have a

small probability to check-in a location far away, even though she is interested in

it. In the example shown in Figure 4.13, user ui has more chance to check-in the

locations in the left side than those in the right side. It motivates us to incorporate
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Algorithm 2: ARMF Optimization
Input: λu, λv, λq, η, maxIter
Output: U, V, Q

1 Randomly initialize U and V, Q, t← 1
2 while t 6 maxIter do
3 Randomly sample a (i, j, k, h), where i is a user, and j, k, h are her one

observed, potential, and unobserved location
4 ṽij ← (qicj + ε)vj
5 ũji ← (qicj + ε)ui
6 p̃ijk ← g′(p̂ij − p̂ik)
7 p̃ikh ← g′(p̂ik − p̂ih)
8 ui ← ui − η(p̃ijk(ṽ

i
j − ṽik) + p̃ikh(ṽ

i
k − ṽih) + λuui)

9 vj ← vj − η(p̃ijkũ
j
i + λvvj)

10 vk ← vk − η((p̃ikh − p̃ijk)ũki + λvvk)
11 vh ← vh − η(−p̃ikhũhi + λvvh)
12 qicj ← qicj − η(p̃ijku

T
i vj + λqqicj)

13 qick ← qick − η((p̃ikh − p̃ijk)uTi vk + λqqick)
14 qich ← qich − η(−p̃ikhuTi vh + λqqich)
15 t← t+ 1

16 end
17 return U, V, Q

the geographical in�uence into user's decision on POIs. Thus, the probability that

user i prefers a POI j is:

p̂ij ∝ pGij × σ(p̂ij)⇒ p̂ij ∝ pGij × σ((qicj + ε)uTi vj), (4.42)

where pGij is the geographical in�uence shown in Eq.(4.26).

4.4.4.4 Recommendation Strategies

Our goal is to recommend unvisited locations for users which they might be in-

terested in. For each individual user, we �rst predict the probability that this user

would check-in each unvisited location and then recommend the top-K locations with

the highest probabilities for her. In particular, we adopt the following strategies for

recommendation.

• Standard Recommendation. Similar to traditional recommendation, we con-
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sider to recommend the existing users with the existing locations. After learning

the model from training data, we exploit Eq.(4.42) to predict the probability that

one user prefers each unvisited location.

• New User Recommendation. When new users enter the system, we consider

to recommend them with the existing locations. First, we need to re-train the

models with these new users by leveraging the historical check-ins of their social

friends and neighboring friends. As new users do not have check-ins, they do not

have location friends but they have neighboring friends. After the latent factors are

learned, Eq.(4.42) is employed for recommendations.

• New Location Recommendation. When new locations enter the system, we

consider to recommend existed users for them. By utilizing the neighboring location

characteristics, the probability that user i checks-in a new location j is de�ned as:

p̂ij ∝ pGij × σ
(∑

l∈ψ̂j
SimG(j, l)p̂il∑

l∈ψ̂j
SimG(j, l)

)
,

where ψ̂j is the set of S nearest neighboring locations of location j in the training

data and in the experiments S is set as 10. The advantage to exploit the similarity

of neighboring locations is that we can handle new locations as soon as they are

generated in the system, without needing to re-train the model and estimate new

parameters.

4.4.5 Experimental Results

In this section, we evaluate the proposed models with baseline methods on two

real-world data sets.

4.4.5.1 Experimental Setup

Datasets. In this section, we use Gowalla and Foursquare datasets to evaluate the

performance of the proposed models. Gowalla contains check-in data ranging from

January 2009 to August 2010, and Foursquare includes the check-in data of users
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who live in California, ranging from December 2009 to June 2013. Each check-in

record in the datasets includes a user ID, a location ID and a timestamp, where each

location has latitude, longitude and category information. Totally, there are 262 and

10 categories in Gowalla and Foursquare, respectively. Also, data sets have undirected

friendship information and user's home information5.

To evaluate model's cold-start recommendation performance, for each data set, we

divide it in three steps. First, we remove those users who have visited less than 10

locations and those locations which are visited by less than 10 users. These check-ins

are used to evaluate our model's performance for standard POI recommendation. In

recommendation system, we aim to recommend those unvisited locations for users.

Therefore, we split the training and testing data as follows: for each individual user,

(1) aggregating the check-ins for each location; (2) sorting the location according to

the �rst time that the user checked-in; (3) selecting the earliest 80% to train the model

and using the next 20% as testing. Second, in the rest of check-ins (i.e., locations that

are visited by less than 10 users and not included in the training), we use those check-

ins whose locations are visited by users in the training data to evaluate the model's

performance for new location recommendation. Third, in the rest of check-ins (i.e.,

users who have visited less than 10 locations), we use those check-ins where users are

not in training data to evaluate user cold-start recommendation performance. The

data statistics are shown in Table 4.8.

Experimental Settings. In the experiments, the parameters β, λu, λv, ζ, η and

ε are set to 0.15, 0.015, 0.015, 0.5, 0.001, and 0.1, respectively. In Gowalla dataset,

α, and λq are set to 0.3 and 500. In Foursquare dataset, α and λq are set to 0.1 and

300. The latent feature dimension is set as 10.
5Our model can be applied in the general check-in datasets. The home location can be estimated

by using the existing approach in [89, 50]
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Table 4.8: The statistics of data sets.

Standard Recommendation

Data Set #User #Location #Checkin #Train #Test Sparsity

Gowalla 52,216 98,351 2,577,336 2,049,630 527,706 0.0399%

Foursquare 2,551 13,474 124,933 100,033 24,900 0.2910%

New Location Recommendation New User Recommendation

Data Set #New Location #Test #New User #Test

Gowalla 78,881 568,937 9,326 79,153

Foursquare 93,311 119,876 1,221 17,964

4.4.5.2 Evaluation Metrics

As POI recommender system only recommends the limited locations for users, we

quantitatively evaluate our models versus other models in terms of ranking perfor-

mance, i.e., Precision@K and Recall@K metrics. MAP metric, the mean of the aver-

age precision (AP) over all locations in the testing, is also adopted in the experiments

to evaluate models' performance. They are formally de�ned as follows:

Precision@K =
1

N

N∑

i=1

Si(K) ∩ Ti
K

,

Recall@K =
1

N

N∑

i=1

Si(K) ∩ Ti
|Ti|

,

MAP =
1

N

N∑

i=1

∑m̂i

j=1 p(j)× rel(j)
|Ti|

,

where Si(K) is a set of top-K unvisited locations recommended to user i excluding

those locations in the training, and Ti is a set of locations that are visited by user i

in the testing. m̂i is the number of the returned locations in the list for user i, p(j)

is the precision of a cut-o� rank list from 1 to j, and rel(j) is an indicator function

that equals to 1 if the location is visited in the testing, otherwise equals to 0.
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4.4.5.3 Baseline Methods

To comparatively demonstrate the e�ectiveness of our models, we compare them

with the following seven models:

• USG [60], which combines geographical in�uence, social network and user interest

with collaborative �ltering;

• IRenMF [61], which models geographical in�uence by incorporating neighboring

characteristics into weighted matrix factorization in both instance level and region

level;

• LOCABAL [69], which models two types of social relations: social friends and the

users with high global reputations, in the framework of matrix factorization;

• RegPMF [67], which models the in�uence of social network by placing a social

regularization constraint on learning user-speci�c feature vectors between friends;

• PMF [14], which minimizes the square error loss only using the observed check-ins

based on matrix factorization.

• WRMF [20], which minimizes the square error loss by assigning both observed and

unobserved check-ins with di�erent con�dential values based on matrix factoriza-

tion;

• BRP [28], which optimizes the ordering of the preference for the observed location

and the unobserved location.

In this section, we develop two methods to learn the potential locations for each

user (i.e., LA, RW ) and then design two loss functions: ASMF and ARMF. Thus

we consider the following combinations: ASMF + LA, ASMF + RW, ARMF +

LA, ARMF + RW, which are denoted as ASMF-LA, ASMF-RW, ARMF-LA,

ARMF-RW, respectively.
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(a) Precision@K on Gowalla
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Figure 4.14: The performance comparison of standard recommendation of basic meth-
ods in terms of precision@K and recall@K.

4.4.5.4 Performance Comparison

In this section, we evaluate the proposed models for standard recommendation,

new location and new user recommendation in terms of Precision@K, Recall@K and

MAP.

4.4.5.4.1 Performance of Standard Recommendation

The performance comparison of our models and baseline models in terms of Preci-

sion@K, Recall@K, and MAP are shown in Figure 4.14, Figure 4.15 and Table 4.9.

Modeling observed check-ins v.s. modeling all check-ins. From the results,

we can see thatWRMF and BPR almost outperform LOCABAL, RegPMF and PMF.

Even though LOCABAL and RegPMF incorporate social network into matrix factor-

ization, the sparseness of data due to only modeling the observed check-ins results in

their poor performance. Both LOCABAL and RegPMF are slightly superior to PMF.

One possible explanation is that social network assists to make more accurate recom-
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Figure 4.15: The performance comparison of standard recommendation of our models
and other models in terms of precision@K and recall@K.

mendation. Di�erent from them,WRMF not only utilizes the observed check-ins, but

also models negative preference for all unvisited locations with a low con�dence. But

BPR easily leads to bias by only sampling some unvisited locations, which explains

why it performs not good in Foursquare data set.

Our models v.s. baseline models. Our models achieve the best performance

in both data sets with all evaluation metrics, illustrating the superiority of our ap-

proaches. Although USG exploits social in�uence, geographical e�ect and user in-

terest, its simple linear combination results in the poor performance. As Gowalla

covers a much larger area than Foursquare, the clustering result is not good, leading

to the worse performance of IRenMF in Gowalla than in Foursquare. ARMF and

ASMF have di�erent performance in two datasets which is consistent with perfor-

mance of WRMF and BPR. Their similar performance in Gowalla is due to the much

more evident spatial clustering phenomenon. Two approaches to learn potential lo-
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Table 4.9: The performance comparison of standard recommendation of our models
and baseline methods in terms of MAP.

Data Set ASMF-RW ASMF-LA ARMF-RW ARMF-LA USG IRenMF

Gowalla 0.05700 0.05713 0.05715 0.05705 0.05205 0.02554

Foursquare 0.04167 0.04064 0.03857 0.03907 0.03464 0.03683

Data Set WRMF BPR LOCABAL RegPMF PMF

Gowalla 0.02470 0.03652 0.01446 0.01388 0.01357

Foursquare 0.03626 0.01923 0.02344 0.02325 0.02288

cations perform similarly. But LA is more e�cient than RW because it does not

require any matrix operation. In addition, the better performance of our models in

Gowalla than in Foursquare is for the sake of (1) the stronger correlation in Gowalla

which is re�ected in Figure 4.12c and Figure 4.12d, and (2) the more detailed cate-

gory in Gowalla than in Foursquare, where Gowalla has 262 kinds of categories while

Foursquare only has 10 di�erent categories.
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Figure 4.16: The performance comparison of new user recommendation in terms of
Precision@K and Recall@K on Gowalla dataset (top) and Fousquare dataset(bottom).
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Table 4.10: The performance comparison of new location recommendation.
P@5 P@8 P@10 R@5 R@8 R@10 MAP

Gowalla Data Set

ASMF-RW 0.08956 0.08543 0.08320 0.06032 0.08029 0.09259 0.08424

ASMF-LA 0.08967 0.08549 0.08323 0.06020 0.08035 0.09268 0.08430

ARMF-RW 0.09463 0.08946 0.08666 0.06457 0.08576 0.09822 0.08768

ARMF-LA 0.09456 0.08927 0.08643 0.06449 0.08564 0.09794 0.08766

USG 0.08632 0.07826 0.07407 0.05448 0.07645 0.08885 0.07578

IRenMF 0.00073 0.00094 0.00104 0.00033 0.00057 0.00079 0.00271

Foursquare Data Set

ASMF-RW 0.04195 0.04276 0.04171 0.00419 0.00697 0.00843 0.02036

ASMF-LA 0.04171 0.04257 0.04230 0.00411 0.00680 0.00860 0.02040

ARMF-RW 0.04061 0.04085 0.04057 0.00382 0.00664 0.00823 0.02010

ARMF-LA 0.04022 0.04000 0.04002 0.00457 0.00701 0.00856 0.02051

USG 0.03551 0.03594 0.03452 0.00268 0.00561 0.00714 0.01592

IRenMF 0.00401 0.00339 0.00314 0.00038 0.00050 0.00055 0.00346

4.4.5.4.2 Performance of New POI Recommendation

In this section, we evaluate the model performance of addressing location cold-start

issue. To recommend new locations, we predict the check-in probability for each new

location and then recommend the top-K locations with the highest probabilities. Note

that, among all the baseline methods, only USG and IRenMF can be applied here.

Since new locations are never checked-in by any users, USG is reduced to only model

the geographical in�uence. In addition, the latent location vectors for new locations

are not learned in the training, so one user's preference for a new location in IRenMF

model is actually dependent on her preferences for this location's neighborhoods. The

model performance in terms of precision, recall and MAP is shown in Table 4.10.

Based on the results, we can observe that IRenMF performs the worst among all

methods on both datasets. Although taking advantage of the similarities of neigh-

boring locations, IRenMF fails to appropriately model user's check-in behaviours.

It happens likely due to that it does not well exploit the inherent characteristics of

geographical distance. On the other hand, our models and USG utilize the power-law

distribution to capture the spatial clustering phenomenon for user's check-in activi-
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Table 4.11: The performance comparison of new user recommendation in terms of
MAP.

Data Set ASMF-RW ASMF-LA ARMF-RW ARMF-LA
Gowalla 0.05442 0.05427 0.05589 0.05562

Foursquare 0.04831 0.04836 0.03770 0.03718

Data Set AWRMF-RW AWRMF-LA ABPR-RW ABPR-LA
Gowalla 0.03021 0.02921 0.02423 0.02396

Foursquare 0.03242 0.03683 0.02971 0.02813

ties, which is based on the observation over data. Therefore, they have much better

performance than IRrenMF model in location cold-start recommendation. Also, our

models gain superior performance over USG. A possible reason is that a user's pref-

erence latent vector has been learned in the training so that her preference on the

target location's neighborhoods can be accurately predicted. However, USG only

leverages the geographical similarity between a new location and her historical POIs

as prediction. In addition, the performance of ASMF and ARMF is consistent with

earlier experimental results.

4.4.5.4.3 Performance of New User Recommendation

In this section, we evaluate model's recommendation performance for user cold-

start problem. When a new user enters the system, we do not have her historical

check-in information. As a result, her latent vector cannot be learned and all of these

baseline methods could not address this problem. The proposed models elaborate the

historical check-ins of a user's neighboring friends (and social friends if she has) to

learn her preference vector. Thus, they can be adopted to cope with user cold-start

problem. As the proposed augmenting framework could be adapted to WRMF and

BPR based models, we construct the following baseline methods with the similar loss

functions in Eq.(4.40) and Eq.(4.33): (1) WRMF+LA, denoted as AWRMF-LA; (2)

WRMF+RW, denoted as AWRMF-RW ; (3) BPR+LA, denoted as ABPR-LA; (4)

BPR+RW, denoted as ABPR-RW. The precision, recall and MAP of these models
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over two datasets are shown in Figure 4.16 and Table 4.11.

From the results, we �nd that all models have good performance to address user

cold-start problem. The augmenting approach with friends' historical check-ins signif-

icantly bene�ts the location recommendation, in particular user cold-start recommen-

dation. Meanwhile, the successful application of the augmenting strategy in WRMF

and BPR demonstrates that the proposed augmenting strategy can be easily applied

in any square error and ranking error based matrix factorization models. Moreover,

our models perform much better than the baseline approaches for the sake of exploit-

ing geographical in�uence and category information. ARMF and ASMF perform

consistently as above results. Overall, we can see that our models can handle user

cold-start problem very well.

4.4.6 Conclusion

In Section 4.4, we propose a two-step framework for POI recommendation problem,

which considers the check-in information of three types of friends, i.e., social friends,

location friends and neighboring friends. Speci�cally, in the �rst step, we design two

approaches to learn the locations that a user's friends have checked-in before and

she is most interested in. In the second step, we develop matrix factorization based

models with two di�erent error loss functions using the learned potential locations.

Speci�cally, the square error based loss extends a binary preference to a ternary

variable for the observed check-ins, potential check-ins and other unobserved check-

ins, and the ranking error based loss models the ranking of user's preference for her

visited locations, potential locations, and unvisited locations. Finally, experimental

results on two real-world data sets clearly validate the improvement of our models

over many baseline methods based on di�erent validation metrics.



CHAPTER 5: FRIEND RECOMMENDATION

5.1 Introduction

The online social network of friends and contacts has been a key of social network-

ing sites since their beginning. In recent years, the prevailing online social network

services, such as Facebook, Foursquare, Jiepang, and Dianping, provide novel ways for

people to communicate and build virtual communities [1]. These online social network

services, also named as location-based social networks (LBSNs), not only facilitate

users to build social relationship, but also provide opportunity for users to explore

their desired point-of-interests in a real-time fashion [2]. With their popularity, a large

amount of user engagement data has been accumulated through these platforms, such

as online friendship establishing and information sharing, which enables the potential

of research to work on the task of friend recommendation in LBSNs.

Friend recommendation is a crucial approach to help users discover new friends

and interesting information. Unfortunately, the heterogeneity of links in LBSNs and

the data sparsity issue possess great challenges for research work to help online users

explore new friendships. First, di�erent from pure social network which only has social

relationship between users, such as Twitter, LBSNs comprise two heterogeneous links:

social link and consumption link. A social link refers to the relationship between two

users, and a consumption link indicates a user's check-in activity at a particular

location. Actually, it is hard to have users check-in at many locations and build

multiple social connections at the same time by the reason of limited positions in

websites to show potential locations and friends for each individual user. In other

words, listing and showing all potential locations and friends to users is unrealistic, as

a result, stunting the growth of heterogeneous links in LBSNs. For example, a friend
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recommender system only suggests new friends to users to expand their social circle.

It cannot guarantee they will explore new places and have check-in activities as well.

Second, recommender systems su�er from another challenge caused by the extremely

sparse data. In real systems, there are over millions of users. However, the number

of each user's friends is usually very small. It is not su�cient to use such sparse data

to successfully train machine learning models.

Recently a variety of friend recommendation approaches have been developed [71],

however, they produce recommendation results by only maximizing the single util-

ity, i.e., social utility, without considering consumption utility. The social utility (or

consumption utility) is de�ned as the bene�t that one user gets from a newly added

social link (or consumption link). In fact, a newly added social link may lead to more

consumption links. To enable these two types of links to grow faster together, in this

chapter, we propose to make friend recommendations by maximizing the bi-utility of

social link. Maximizing the bi-utility of social link is to maximize both social utility

and consumption utility of a social link. Speci�cally, the consumption utility of a

social link for a user is de�ned as the utility of the potential new consumption links

between this user and the locations that the corresponding new friend has checked-in

before. It is modeled by the probability that she will check-in at the locations visited

by this new friend after they become friends. Social utility of a social link is the like-

lihood of the creation of such social link, which is similar to conventional approaches.

Upon these, we propose the Maximum Bi-utility of Social Links (MBSL) model for

friend recommendation in LBSNs, and design a scalable optimization algorithm to

learn optimal parameters.

5.2 Notation and Problem De�nition

Social friendship and user check-in behavior in LBSNs are inextricably intertwined.

There are two types of links: consumption link and social link. A consumption link

is de�ned as a user's check-in behavior on a location depicted by the solid line with
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Table 5.1: Mathematical notations.

Symbol Description
N the number of users
M the number of locations
W the number of time windows
i the index of user
k the index of friend
j the index of location
w the index of time window
Nw the set of users who have check-ins in time window w
twij timestamp of user i to location j in time window w
twik timestamp of user i with friend k in time window w
Mw

i the set of user i's checked-in locations in time window w
Fwi the set of user i's new friends in time window w
Hw
i the set of user i's cumulative locations by the end of w
Swi the set of user i's cumulative friends by the end of w
Vwj the set of location j's visitors by the end of w
Mi the set of all locations checked-in by user i
Fi the set of user i's all friends
Wi the set of active time windows where user i has checked-in actions

(or builds social connections)

arrow in Figure 5.1a, and a social link is a social connection between users like the

solid line in Figure 5.1a. The consumption links form a consumption network and the

social links form a social network. The network is denoted as both of social network

and consumption network.

Notations. To investigate the network's dynamic changes, we collect the network

information for W periodically consecutive time windows, where each time window

w for w = 1, · · · ,W refers to time period (tw−1, tw]. Speci�cally, we de�ne t0 = −∞.

For convenience we will henceforth refer to w as time window, i as user, k as friend

and j as location unless stated otherwise. More notations are reported in Table 5.1.

Problem De�nitions. In this chapter, we intend to explore friend recommenda-

tion task. The consumption utility (or social utility) is de�ned as the bene�t that a

user gets when she adds a consumption link (or a social link) [93]. Traditional friend
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Figure 5.1: (a) ∼ (c) are the examples of three consecutive time windows. The colors
other than black indicate the newly added links.

recommender systems only generate recommendation results by only maximizing the

single social utility. However, a newly added social link also possibly leads to more

consumption links. Di�erent from traditional approaches, we propose to make rec-

ommendation by maximizing the the bi-utility of a social link, which allows these two

types of links grow faster together in the whole network.

Speci�cally in friend recommendation problem, the consumption utility of a

social link denotes as the utility of new check-ins by the in�uence of this social link.

Friends possibly a�ect a user's check-in decision making process, which allows her to
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have more check-ins. Hence, we de�ne the bi-utility of a social link as follows:

De�nition 9 The bi-utility of a social link is the summation of its corresponding

social utility and potential consumption utility by the in�uence of this social link.

For example, during time window w1 in Figure 5.1a, we recommend u8 for new friend

u7. In the next time window w2, she makes friend with this user, which generates

the corresponding social utility. Then in w3, she checks-in location l9 due to this

newly established friendship. As her friend u7 has checked-in location l9 before, she

is possible to check-in this location by the in�uence of this friend. Therefore, the

task of friend recommendation in this chapter is to recommend the target user with

the new friend which she is interested in by maximizing the bi-utility created by this

friendship.

5.3 Methodology

We aim at recommending users with new friends by maximizing the bi-utility of

the corresponding social link so that they can not only have more friends but also

have more check-ins. We �rst de�ne the bi-utility of a social link, and then introduce

the proposed model and its parameter estimation.

5.3.1 The Bi-utility of a Social Link

In this chapter, the goal of friend recommendation is that users are able to make

more friends online and at the same time will have more check-ins by repeating friends'

historical check-ins. In other words, we want a social link to be able to generate

multiple consumption links. Di�erent from conventional recommendation methods,

this approach could make the whole network grow much more rapidly. Based on the

De�nition 9, the bi-utility rwik of a social link from user i to user k during time window

w is de�ned as:

rwik = rs(ewi = k) + rc(ewi = k), (5.1)
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where rs(ewi = k) is the social utility, and rc(ewi = k) is the consumption utility by

the in�uence of this social link and observed in the next time window w+ 1. Here we

assume the utility of a single social link is βs and the utility of a single consumption

link is αs. Hence the observed bi-utility rwik consists of two parts: (1) the social utility

and (2) the consumption utility that user i repeats user k's checked-in locations in

the next time window w + 1, which is de�ned as follows:

rwik = βs + αs
∑

j∈Mw+1
i ∧j∈Hw

k

rc(cw+1
i = j|ewi = k), (5.2)

where rc(cw+1
i = j|ewi = k) is the probability that user i checks-in location j in the

next time window w+ 1 due to that her friend k has checked-in before. Those friends

who have checked-in this location are also possible to in�uence her. For example, in

Figure 5.1b, user u1 checks-in location l4 likely due to that her friends u3 and u4 have

checked-in before and then in�uence her. We consider the time factor on modeling

the in�uence strength. Hence, we assume that (1) only the increased friendships in

time window w will a�ect the new check-in actions in the next time window w+1; (2)

the in�uence strength is exponentially damped by time. Therefore, the normalized

probability is de�ned as follows:

rc(cw+1
i = j|ewi = k) =

|tw+1
ij − twik|−β∑

o∈Fw
i
|tw+1
ij − twio|−β

, (5.3)

where β is the damping factor and Fwi is the set of user i's friends who build social

connection with user i during time window w, and have checked-in location j before.

5.3.2 Model Presentation

The predicted bi-utility r̂wik of a social connection from user i to user k at a speci�c

time twik during time window w consists of (1) the potential social utility that this

link directly generates due to the in�uence of social network and (2) the potential
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consumption utility of the check-in actions that user i repeats user k's historical

check-ins after they build connections, which are in�uenced by the whole network,

i.e., both social network and consumption network. It is de�ned as follows:

r̂wik =P (ewi = k|S̃wik, S̃wk←i)︸ ︷︷ ︸
Social Preference

(βs + αszi
∑

j∈Hw
k,/i

P (cwi = j|Hw
i ,Hw

k ,Swi ,Swk )︸ ︷︷ ︸
Check-in Preference

), (5.4)

where Hw
k,/i = {l|l ∈ Hw

k ∧ l /∈ Hw
i } is the set of locations that user k has checked-in

but user i never checked-in before the end of time window w, and S̃wk←i indicates the

set of friends that user k made before the speci�c time twik during the time window w.

P (ewi = k|S̃wik, S̃wk←i) is the probability that user i would like to make friends with user

k, which is assumed to be in�uenced by the structure of social network. In fact, after

building a new social connection, some users would like to concern about the check-in

behaviors of this friend, and then they might visit the corresponding locations; While

some others do not care about it and would not produce corresponding consumption

links. To model this kind of behavior, we introduce a variable zi ≥ 0 to indicate the

weight that user i wants to repeat her friend's checked-in locations after building a

social connection. P (cwi = j|Hw
i ,Hw

k ,Swi ,Swk ) is the probability that user i prefers

to check-in location j before the end of time window w, which is assumed to be

in�uenced by both consumption network and social network. To model their in�uence,

we decompose this probability as follows:

P (cwi = j|Hw
i ,Hw

k ,Swi ,Swk )

= rsP (cwi = j|Hw
i ,Hw

k ) + (1− rs)P (cwi = j|Swi ,Swk )

= rs P (cwi = j|Hw
i )︸ ︷︷ ︸

Personal Check-in Interest

+(1− rs)P (cwi = j|Swi ,Swk )︸ ︷︷ ︸
Social In�uence

, (5.5)

where the �rst part captures user i's personal interest in location j, which is only

dependent on her own historical check-ins, and the second part captures the social
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Table 5.2: The social features for user i and k in time window w.

Features Descriptions

Common Neighbors |Swi ∩ Swk |
Adamic/Adar

∑
z∈Swi ∩Swk

1
log |Swz |

Jaccard Similarity |Swi ∩Swk |
|Swi ∪Swk |

Cosine Similarity |Swi ∩Swk |
‖Swi ‖×‖Swk ‖

Common Ratio |Swi ∩Swk |
|Swi |×|Swk |

in�uence on user's repeating behavior. It reveals the interplay of consumption network

and social network on a consumption link's formation. γs ∈ [0, 1] is a tuning parameter

that controls the contribution of personal check-in interest and social in�uence. It

is worth to note that each part of Eq.(5.4) and Eq.(5.5) can be modeled with many

existing approaches. We will introduce how to model each of them in details in the

following sections.

5.3.2.1 Modeling Social Preference

In social network, the generation of a social link is dependent on two users' social

structures [71]. If they have similar social structures, they will have a large proba-

bility to build social connection with each other. Motivated by this, G-dimensional

observed social features between user i and k in time window w, denoted as qwik, can

be incorporated into a linear regressor pi � qwik for modeling their similarity, where pi

is the G-dimensional weight of the linear regressor for user i. It is worth to note that

here the social structure qwik is observed at the particular time twik. In the experiments,

we will use the observed features in Figure 5.2. Actually qwik is fully de�ned based on

empirical dataset, which can be extended to include other features. In addition, we

introduce another H-dimensional latent matrix X, and use xi � xk to capture other

latent similarity between user i and k [74, 75]. Formally, the probability that user i
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builds social connection with k by the reason of social structure is de�ned as follows:

P (ewi = k|S̃wik, S̃wk←i) ∝ pi � qwik + xi � xk. (5.6)

5.3.2.2 Modeling Personal Check-in Interest

We factorize the user's check-in preference into user and location latent spaces [14,

15]. Let Uw ∈ RD×|Nw| and V ∈ RD×M be the latent user and location feature

matrices, with column vectors uwi and vj representing the D-dimensional user i's

feature vector and location j's feature vector, respectively. User's preference may

change over time which is time-dependent. To capture the dynamics of a user's

interest, we introduce uwi for each time window w to indicate her corresponding

check-in preference. Hence, the check-in preference of user i for location j in time

window w is modeled as follows:

P (cwi = j|Hw
i ) ∝ uwi � vj. (5.7)

Location characteristics captured by V are inherent properties and do not change

much as time goes, so we assume location characteristics to be time-independent [68,

46]. In LBSNs, user's check-in preference in each time window is correlated with her

previous ones. In other words, Uw is dependent on each Uh for h ∈ Wi ∧ h < w.

Inspired by the autoregressive model [94, 95, 96, 97], the preference of user i in time

window w is de�ned as follows:

uwi =
∑

h<iw

ϕhwi uhi + εh, (5.8)

where h <i w is de�ned as {h|h ∈ Wi∧h < w}, and εh is the D-dimensional Gaussian

noise. ϕhwi is the temporal similarity that models the temporal correlation of user i's

check-in preferences between time window h and w. We leverage the cosine similarity
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of user's check-in behaviors to quantitatively measure the value of ϕhwi , given by:

ϕhwi =
|Mw

i ∩Mh
i |

‖Mw
i ‖ × ‖Mh

i ‖
, (5.9)

where ‖ · ‖ is the l2 norm. Speci�cally, for the testing data, we use u
|Wi|
i in her last

time window to do prediction.

5.3.2.3 Modeling Social In�uence

User i would like to repeat friend k's checked-in location j due to two factors: their

common check-ins and geographical distances. The more common check-ins they

have, the larger probability to repeat friend's check-ins she has. Also, her check-in

behavior is a�ected by geographical in�uence. For example, in Figure 5.1a, users in

the left side would have small opportunities to check-in far away locations like in the

right side. The check-in probability due to the social in�uence is de�ned as:

P (cwi = j|Swi ,Swk ) := owikj =
|Hw

i ∩Hw
k |

|Hw
i ∪Hw

k |
× Ps(d(hi, hj)), (5.10)

where we use the power-law distribution Ps(d(hi, hk)) to capture the correlation be-

tween user's check-in preference and geographical in�uence [60, 2].

The MBSL Model

Based on Eq.(5.4), Eq.(5.6), Eq.(5.7), and Eq.(5.10), we can obtain the predicted

bi-utility r̂wik that user i builds social connection with user k during time window w

as follows:

r̂wik = (pi � qwik + xi � xk)(β̃s + zi
∑

j∈Hw
k,/i

α̃s1u
w
i � vj + α̃s2o

w
ikj), (5.11)

where α̃s1 = α̃sγs, α̃s2 = α̃s(1 − γs), β̃s is the weight of social utility and α̃s is the

weight of consumption utility.
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Based on above equation, we propose the Maximum Bi-utility of Social Links

(MBSL) model for friend recommendation by taking both observed and unobserved

bi-utilities into consideration. The objective function of MBSL model is given by:

min
∑

i

∑

w∈Wi

∑

k∈F̃w
i

awik(r
w
ik − r̂wik)2 + ‖Θ‖2, s.t. ∀zi ≥ 0, (5.12)

where the unobserved bi-utility is 0, and ‖Θ‖2 is the regularization term de�ned with

λ? as regularization parameters:

‖Θ‖2 = λw
∑

i

∑
w∈Wi

‖uwi −
∑

h<iw
ϕhwi uhi ‖2 + λu‖U‖2

F

+ λv‖V‖2
F + λp‖P‖2

F + λx‖X‖2
F + λz‖z‖2. (5.13)

F̃wi is de�ned to incorporate unobserved friends given in Eq.(5.14), where F̄i is the

complementary set of Fi.

F̃wi =




Fwi ∪ F̄i if w = |Wi|,

Fwi otherwise.
(5.14)

awik is the con�dence value. The friendship is the binary data, so its de�nition with

parameter δs is given by:

awik =





1 + δs k ∈ Fwi ,

1 otherwise.

5.3.3 Parameter Estimation

In this section, we adopt Alternating Least Square (ALS) algorithm for the pa-

rameter estimation of MBSL model. The updating equation for each variable in each

iteration is given in Table 5.3. Speci�cally, F̃∗i indicates {w, k|w ∈ Wi∧k ∈ F̃wi } and
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Oj indicates {i, w, k|i ∈ Nj ∧ w ∈ Wi ∧ k ∈ F̃wi }. We place (zi)+ = max{zi, 0} for zi
to guarantee its non-negative properties. Also, we have de�ned λ̃wi and ũwi as follows,

λ̃wi = λu + λw(1 +
∑

a>iw
(ϕawi )2), (5.15)

ũwi = λw
∑

h6=iw
(ϕhwi −

∑
a>imax {w,h}

ϕhai ϕ
wa
i )uhi , (5.16)

where h 6=i w indicates h ∈ Wi ∧ h 6= w. In addition, some notations are used in the

following,

vwik =
∑

j∈Hw
k,/i

vj,

owik =
∑

j∈Hw
k,/i

owikj,

q̃wik = (βs + zir̂
cw
ik )qwik,

ũwik = α̃s1zir̂
sw
ik uwi ,

r̂vwik = rwik + ũwik � vj − r̂wik,

r̂cwik = α̃s1u
w
i � vwik + α̃s2o

w
ik,

r̂uwik = rwik − r̂swik (βs + α̃s2zio
w
ik),

r̂swik = pi � qwik + xi � xf ,

ṽwik = α̃s1gir̂
sw
ik vwik,

x̃wik = (βs + zir̂
cw
ik )xk.

Complexity Analysis. To make the optimization scalable,we utilize the sampling

method to sample m unobserved friends and pre-calculate some variables in each iter-

ation. In each iteration, the running times are O(NG3+ñmax{G2, H,D}), O(NH3+

ñmax{H2, G,D}), O(NcD
3 + ñc max{D2, G,H}), O(MD3 + ñc max{D2, G,H}), and

O(ñmax{G,H,D}), for updating variables P, X, U and V, z, respectively. ñ =

n + Nm and n is the number of observed bi-utilities. Nc is the number of users
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Table 5.3: The optimal solutions for MBSL model.

uwi = (λwi IK +
∑

k∈F̃w
i

awikṽ
w
ikṽ

wT
ik )−1(

∑

k∈F̃w
i

awikr̂
uw
ik ṽwik + ũwi ),

vj = (λuIK +
∑

i,w,k∈Oj

awikũ
w
ikũ

wT
ik )−1

∑

i,w,k∈Oj

awikr̂
vw
ik ũwik.

pi = (λpIG +
∑

w,k∈F̃∗i

awikq̃
w
ikq̃

wT
ik )−1

∑

w,k∈F̃∗i

awik(r
w
ik − r̂uwik xi � xk)q̃wik,

xi = (λxIH +
∑

w,k∈F̃∗i

awikx̃
w
ikx̃

wT
ik )−1

∑

w,k∈F̃∗i

awik(r
w
ik − r̂uwik pi � qwik)x̃wik,

zi = (λz +
∑

w,k∈F̃∗i

awikr̂
zw2
ik )−1

∑

w,k∈F̃∗i

awik(r
w
ik − βsr̂swik )r̂swik r̂

cw
ik .

whose friends have check-ins. ñc is the number of observed bi-utilities and sampled

unobserved utilities for users whose friends have check-ins, and we have ñc <= ñ. To

simplify the expression, we assume ñc ≈ ñ. Totally, each iteration costs the running

time as O(ñmax{D2, G2, H2}), where we have n > max{MD,ND,NG,NH}. In

the experiments, Nm < n is satis�ed, so the complexity is O(nmax{D2, G2, H2})

which is in linear proportion to the number of observed bi-utilities.

5.4 Experimental Results

5.4.1 Experimental Setup

Datasets. In this chapter, we use Gowalla and Dianping datasets to evaluate

the performance of the proposed models. We monthly collect user's check-in and

friendship information, where Gowalla is ranging from May to August in 2010, and

Dianping is collected from May to August in 2015 (which focus on two districts). Each

check-in record in the datasets includes a user ID, a location ID, and a timestamp,

where each location has latitude and longitude information. Each friendship also

has a creation timestamp. The friendship in Gowalla is undirected; while Dianping

is a directed social network where we focus on the relationship between users and

their followees. We remove the users who have less than 2 followees. In addition,

we calculate users' home information with their activity locations according to the
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Table 5.4: The statistics of data sets.

Dataset #User #Location #Record Sparsity

Location Recommendation
Gowalla 49,139 282,212 2,272,703 0.0164%
Dianping 40,319 2,418 280,405 0.2876%

Friend Recommendation
Gowalla 34,873 152,787 640,756 0.0527%
Dianping 33,024 2,127 144,237 0.0132%

proposed method [89]. The data statistics are shown in Table 5.4.

Experimental Settings. In the experiments, α̃s, β̃s, γs, λu, λv, λx and δs are set

as 0.5, 1, 0.5, 5, 15, 15 and 2, respectively. The other parameters are set as 0.015,

and the sampling size is 50.

5.4.2 Evaluation Metrics

Testing Methodology. Di�erent from traditional methods which use boolean

value in friend recommendation as testing rating, we calculate the de�ned bi-utility

of a social link shown in Eq.(5.2) which is used as the rating in testing data. Thus

we will use this newly labeled bi-utility of link as benchmark to evaluate the model

performance. In the experiments, αs, and βs are 1 and β is 0.3.

Evaluation Metrics. The models are quantitatively evaluated in terms of pre-

diction accuracy, top-K recommendation performance, and ranking accuracy.

Prediction Accuracy. The Root Mean Square Error (RMSE) [15, 98] is exploited

to directly measure the prediction accuracy for the unobserved bi-utilities in the

testing.

Top-K Recommendation. As recommender system only recommends the limited

friends for users, we adopt Precision@K and Recall@K metrics to evaluate model's

recommendation performance, which are de�ned as:

P@K =
1

N

N∑

i=1

Si(K) ∩ Ti
K

, R@K =
1

N

N∑

i=1

Si(K) ∩ Ti
|Ti|

,
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where Si(K) is a set of top-K new friends recommended to user i excluding those in

training, and Ti is a set of relevant friends which are de�ned as the following steps: for

each individual, (1) sorting the friends in testing according to their bi-utility values;

(2) selecting 90% ones with the maximum values.

Ranking Accuracy. To evaluate model's ranking accuracy, MAP and AUC are

adopted as measurements:

MAP =
1

N

N∑

i=1

mi∑
j=1

pi(j)× ri(j)

|Ti|
, AUC =

1

N

N∑

i=1

∑
(j,k)∈E(i)

I(r̂ij > r̂ik)

|E(i)| ,

where mi is the number of returned links in the list for user i, pi(j) is the precision

of a cut-o� rank list from 1 to j, and ri(j) is an indicator function that equals to

1 if corresponding link in position j is relevant, otherwise is 0. E(i) is de�ned as

E(i) := {j, k|j ∈ Ti ∧ k /∈ Ti ∪ T ti }, where T ti is a training data of user i. I(·) is an

indicator function which is equal to 1 if the argument is true and 0 otherwise.

5.4.3 Baseline Methods

To evaluate the performance of MBSL model, we adopt the following baseline meth-

ods: (1)PA [71], leveraging preferential attachment as similarity score and assuming

that users with more friends have a larger chance to become friends; (2)AA [71],

taking Adamic/Adar as similarity measurement which weights the common friends

by the number of their corresponding friends; (3)PMF [14], factorizing the user and

friend into user and feature latent vectors and regarding their dot product as simi-

larity score; (4)WRMF [20], assigning di�erent con�dential value for both observed

and unobserved friendship. In addition, we construct another method based on MBSL

model, which only maximizes the single social utilities (i.e., α̃s is 0) and is denoted

as MSSL.
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5.4.4 Performance Comparison

In this section, we evaluate the MBSL model with baseline methods for friend

recommendation in terms of prediction accuracy, top-K recommendation, and ranking

performance. In MBSL model, D set as 10. In the following experiments, the number

of latent vector refers to H. As the friendship's formation in LBSNs is a�ected by the

geographical in�uence, we also incorporate the power-law property into MBSL and

MSSL models by the similar multiplication operation proposed in [2].

5.4.4.1 Prediction Accuracy Comparison

Figure 5.2 shows the prediction accuracy comparison of various models in terms of

RMSE on both two datasets. As both PA and AA estimate a similarity score for a pair

of users, we do not compare them in this section. To compare the values of RMSE,

we do not consider the geographical in�uence for MBSL and MSSL model. From the

results, we can see that MBSL is the best while WRMF is the worst. WRMF models

the user's preference for observed friends and unobserved friends. As the number of

unobserved friends is much larger than the number of observed ones, it actually spends

much e�ort on optimizing the preference for the unobserved friends. It explains why it

obtains worse result in RMSE than PMF. Both MSSL and MBSL far outperform other

approaches. It illustrates that the social utilities can be more accurately modeled by

considering the social structure and the underlying similarity between a pair of users.

However, MBSL performs much better than MSSL. It indicates that only modeling

the single social utilities is hard to achieve precise prediction for the newly constructed

bi-utilities of social links. In addition, we also observe that the RMSE value is quite

smaller in Dianping data than in Gowalla data, indicating that users are more active

in Gowalla than in Dianping.
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Figure 5.2: Performance comparison for friend recommendation in terms of RMSE
on two datasets.

5.4.4.2 Top-K Recommendation Performance

To evaluate the top-K recommendation performance of the proposed model, we

compare the performance of di�erent models in terms of Presion@K and Recall@K in

Figure 5.3, where the number of latent factor is set as 10. From the results, it can be

observed that PA and AA perform the worst among all models. Although PA and AA

can achieve a good prediction in [71], they fail to make the accurate recommendation.

The major reason is that many pairs of users might have the same similarity score

which as a result is di�cult to rank them. Therefore, these two methods achieve very

poor performance. WRMF and PMF have di�erent performance in these two data

sets for the sake of di�erent sparsity degree of datasets. Both MSSL and MBSL are

much better than other baseline methods due to two reasons: (1) they incorporate

the observed social structure into modeling; (2) they sample the unobserved friends

for modeling the unobserved utilities which actually guarantees the ranking property.

The superior performance of MBSL further demonstrates that the proposed model

bene�ts recommendation accuracy. In addition, the precision value is smaller in

Dianping than in Gowalla. It happens because its data size is very small so that the

number of relevant friends for each individual is also very small.
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Figure 5.3: Performance comparison for friend recommendation in terms of preci-
sion@K and recall@K.

5.4.4.3 Ranking Performance Comparison

We show the ranking performance of the proposed model versus various baseline

methods in terms of MAP and AUC with di�erent dimension of latent factors in Figure

5.4 on both datasets. As PA and AA obtain about 0.48 for AUC in Gowalla which

is much worse than others, we do not plot the result in the �gure. The performance

is consistent with the result of other metrics compared in above section. PA and AA

perform the worst while MBSL is the best among all approaches. MBSL and MSSL

perform much better than others. It happens likely due to the sampling of unobserved

friends used to �t the unobserved utilities. The sampling method can help to not only

make a low RMSE value but also achieve a high ranking performance. It proves the

e�ectiveness of the proposed method for modeling the social utility. In addition,

MBSL achieves a better performance than MSSL. It happens due to that MBSL

is modeling the bi-utilities of social links while MSSL only models the single social
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Figure 5.4: Performance comparison for friend recommendation in terms of MAP and
AUC.

utilities. Consequently, all experimental results have proved the e�ectiveness of the

proposed models.

5.5 Conclusion

In this chapter, we propose a novel model, namely MBSL, for friend recommenda-

tion by maximizing the bi-utility of the social link aiming at enabling both social links

and consumption links to grow faster together. MBSL models the bi-utility of a so-

cial link as the summation of it social utility and the consumption utility of potential

check-in behaviors between the target user and locations that the corresponding new

friend has checked-in before. Finally, experimental results based on two real-world

data sets clearly demonstrate the improvement of our model over baseline methods

with several validation metrics.



CHAPTER 6: CONCLUSION

In this dissertation, we study two types of recommender systems in LBSNs: lo-

cation recommendation and friend recommendation, helping users to explore new

interesting information and expand their social circles. We investigate recommenda-

tion approaches from general and speci�c perspectives.

First, we propose an item recommendation approach for the general recommender

system which can be practically applied to both location and friend recommender sys-

tems, and does not require additional resource for solving implicit feedback problem.

Speci�cally, we design a scalable approach to signi�cantly reduce the comparison scale

and simultaneously preserve the pairwise ranking property by separating the positive

feedback and negative feedback with the soft boundaries.

Second, we develop task-speci�c recommender systems for location and friend rec-

ommendation accordingly by taking advantage of human mobility pattern and social

interaction nature as follows:

For location recommendation, we study various properties about user movement

observed in real-world data, including geographical in�uence, social correlation, and

temporal e�ect, upon which we design three di�erent recommendation approaches.

Firstly, a geo-temporal personalized recommendation approach is proposed to incor-

porate geographical in�uence and temporal e�ect together into latent factor models.

It models a user's preference from geographical aspect with a group of observed geo-

features, and captures the temporal dynamics of user's interest by modeling check-in

data in a unique way. Secondly, we propose a geo-social personalized recommen-

dation approach by dividing the whole recommendation space into two parts: social
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friend space and user interest space. We then develop separate models for both spaces

to recommend POIs accordingly. Thirdly, with geo-social correlation, we introduce

three types of friends for each user, i.e., social friends, location friends, and neigh-

boring friends, in LBSNs, and then develop a two-step framework to exploit these

information to improve recommendation accuracy and address cold-start issue.

For friend recommendation, we study the correlation between user's check-in behav-

ior and social relationship, and propose a novel biutility-based friend recommendation

approach to enable two heterogeneous links, i.e., social link and consumption link,

to grow faster together in LBSNs. To achieve this goal, we produce recommenda-

tion by maximizing the bi-utility of each social link, consisting of the corresponding

social utility and consumption utility. It signi�cantly overcomes the shortcoming of

traditional approaches, i.e., only considering its single utility. Speci�cally, the con-

sumption utility of a social link for a user is modeled as the potential between this

user and those locations that the corresponding new friend has checked-in before.

The social utility of a social link is modeled as the likelihood of the creation of this

link.
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