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ABSTRACT

HUSEYIN ERTURK. Limit theorems for random exponential sums and their
applications to insurance and the random energy model. (Under the direction of

DR. STANISLAV MOLCHANOV)

In this dissertation, we are mainly concerned with the sum of random exponentials,

SN(t) =

N(t)∑
i=1

etXi . Here, t, N(t) → ∞ in appropriate form and {Xi, i ≥ 1} are

independent and identically distributed random variables (i.i.d.). Our first goal is to

find the limiting distributions of SN(t) for a new class of random variables. For some

classes, such results are known (Ben Arous et al., 2003) [5].

Secondly, we apply these limit theorems to some insurance models and the random

energy model (REM) in statistical physics. Specifically for the first case, we give

the estimate of the ruin probability in terms of the empirical data. For the REM,

we present the analysis of the free energy for a new class of distribution. In some

particular cases, we prove the existence of several critical points for the free energy.

In some other cases, we prove the absence of phase transitions.

Our results give a new approach to compute the ruin probabilities of insurance

portfolios empirically when there is a sequence of insurance portfolios with a custom

growth rate of the claim amounts. The second application introduces a simple method

to drive the free energy in the case the random variables in the statistical sum can

be represented as a function of standard exponential random variables.

The technical tool of this study includes the classical limit theory for the sum of

i.i.d. random variables and different asymptotic methods like the Euler-Maclaurin

formula and Laplace method (from De Bruijn, 1981) [13].
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CHAPTER 1: INTRODUCTION

1.1 A General Summary

The main object in this paper is the partial sum of exponentials of the form

SN(t) =

N(t)∑
i=1

etXi (1)

where the sequence,

{X1, X2, ..., XN(t)}, (2)

is composed of i.i.d. random variables. First, we analyze the limiting behavior of this

object for different growth rates of N(t) when the sequence (2) is double exponentially

distributed (8). In our analysis, we show that the random exponential sum converges

to normal distribution or stable distribution under appropriate additive and multi-

plicative factors of t. After this theoretical analysis, we explore applications of the

statistical sum in insurance mathematics and statistical physics.

1.2 Two Particular Applications

The first application of the partial sum of exponentials is from insurance mathemat-

ics. Consider a portfolio consisting of N policies with individual risks {X1, ...., XN}

over a given time period and assume that the nonnegative random variables

{X1, ...., XN} are i.i.d. Here the aggregate claim amount can be calculated as U =
N∑
i=1

Xi and the risk reserve process is given by R(s) = u + βs − U where β is the
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premium rate, s is time and u is the initial reserve. One problem is to estimate the

Lundberg bounds which approximate the tail distribution of U , FU(x) = P (U > x).

This requires the solution of the Laplace equation (from Rolski et al., 1999: pp.

125-126) [12]

m(γ) = E(γX) = p−1 (3)

where p is a small constant. We assume that the solution exists and it is called

the adjustment coefficient, γ. Also, the same equation helps us to approximate the

ruin probability ψ(s) := P

(
min
s≥0

R(s) < 0

)
for appropriate p which is essential for

insurance companies (from Rolski et al., 1999: pp. 125-126 and pp. 170-171) [12].

In practical applications, γ is estimated using a statistical method and this estima-

tion utilizes the empirical Laplace transform. Hence, we replace m(γ) (3) with the

empirical Laplace transform. Also, we define p on the right hand side of the Laplace

equation as a sequence, pn. When n → ∞, pn → 0. Then, we obtain the empirical

Laplace equation:

−
mU(γn) :=

1

N(γn)

N(γn)∑
i=1

eγnUi = p−1n . (4)

It means that we have a sequence of adjustment coefficients, γn, for a sequence of

insurance portfolios, which give a sequence of Lundberg bounds to esimate ruin prob-

abilities from below and above. Our interest is to analyze the asymptotic behaviour

of γn when n is large. We make use of the exponential sum to develop this estimation

procedure. The estimation of γ has been studied by Csörgö and Teugels (1990) [6]

where the classical central limit theorem has been used. Our approach is slightly

different in the sense that we can control the growth rate of the number of individual
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risks.

Another application of this study is the REM, which was first introduced by Derrida

(1981) [2]. Eisele (1983) [7] demonstrated the phase transitions (non-analiticity) of

the free energy in the class of Weibull-type distributions. We will show similar results

for the Weibull distribution, relatively heavy-tailed distribution and relatively light-

tailed double exponential distribution using order statistics. Also, we will show that

there are several critical points for the mixed Weibull distribution.

The REM, introduced by Derrida (1981) [2], describes the system of size n with 2n

energy levels where Ei =
√
nXi and {Xi, i = 1, 2, ..., N } are i.i.d. random variables

following the N(0,1) distribution. Thermodynamics of the system is quantified by

the statistical sum, or so-called the partition function. This partition function in

Derrida’s model has the following form

Zn(β) =
N∑
i=1

eβA(n)Xi (5)

where A(n) =
√
n and β > 0 is the inverse temperature. We use the same statistical

sum with different selections of A(n). Derrida defines the free energy by the following

formula

χ(β) = lim
n→∞

logZn(β)

n

According to Derrida’s results, the free energy is quantified as

χ(β) =


β2/2 + β2

c/2, if 0 < β ≤ βc

ββc, if β ≥ βc

where βc =
√

2log2 . It is important to note that χ(β) and χ′(β) are continuous but
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χ′′(β) has a jump, which is called a third order phase transition. χ(β) is convex and

continuous. The phase transition introduces the presence of two analytic branches

in the free energy. One branch corresponds to the high temperature i.e. β =
1

kT
<

βcritical . The second branch corresponds to the low temperature i.e. β ≥ βcritical .

Derrida’s paper was extended in several directions. In Eisele (1983) [7], the results

of Derrida (1981) [2] were proven for Weibull-type distributions. Later on, Olivieri

and Picco (1984) [3] and also Pastur (1989) [4] rigorously derived the limits. The

mathematical justification of this result as well as the theory of limit theorems for

the sum Zn(β) was analyzed in detail in the mathematical paper by Bovier, Kurkova

and Löwe (2002) [1]. Ben Arous, Bogachev and Molchanov (2003) [5] extended the

results to the Weibull/Frechet-type tails. It contains the complete theory of of the

limiting distributions for the sum of the random exponentials in the case

Zn(β) =
N∑
i=1

etXi

P{Xi > a} = exp

{
−a

%L(a)

%

}
where % ≥ 1 and L(a) is a slowly varying function with additional regulatory proper-

ties (from Ben Arous et al., 2003) [5].

The technical tools in Bovier, Kurkova and Löwe (2002) [1] and Ben Arous, Bo-

gachev and Molchanov (2003) [5] are traditional Bahr-Esseen inequality (from Bahr

and Esseen, 1965) [8] and the Lyapunov fraction that are used for the proof of the

law of large numbers and the central limit theorem. Also, standard methods for the

stable distributions are utilized.
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We use the methods developed by Ben Arous, Bogachev and Molchanov (2003) [5]

for the computation of the free energy. In addition to this methodology, we develop

the new approach based on the properties of the variational series of exponential

random variables (from Feller, 1971: pp. 17-21) [11]. This approach covers the

REM outside of the Weibull-type tail and the Bahr-Esseen inequality. We analyze

four types of distributions for the REM: the Weibull, mixed Weibull, light-tailed and

heavy-tailed distribution.



CHAPTER 2: STATEMENT OF VARIABLES AND DISTRIBUTIONS

In this chapter, we state the variables and distributions that are used throughout

the whole dissertation. All of the sequence of random variables in this study are

assumed to be independent identically distributed random variables and we will refer

this term as i.i.d.

The Weibull distribution is the most commonly used distribution. The Weibull

random variable, X, follows the law

1. P (X > x) =


exp

{
−x

%

%

}
, if x ≥ 0

1, o.w.

(6)

where 1 < % <∞. Also, we make use of the mixed Weibull distribution

2. X =


X1, with prob. p and P (X1 > x) = exp

{
−x

%

%

}
(7a)

L(n) +X2, with prob. 1-p and P (X2 > x) = exp

{
−x

%

%

}
(7b)

where n is a large number and 1 < % < ∞. In the next chapter, we work on the

double exponential distribution, which has lighter tails than the Weibull distribution.

Ben Arous, Bogachev and Molchanov (2003) [5] analyze the limiting distributions of

the random exponential sum (1) when the Xi’s in the statistical sum are Weibull-type

random variables. We extend this to the double exponential random variable, which
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has the distribution function

3. P (X > x) =


exp {1− ex} , if x ≥ 0 (8a)

1, o.w. (8b)

In addition to the above distributions, we have a relatively heavy-tailed distribution.

Corresponding heavy tailed random variable is defined as a function of standard

exponential random variables. Heaviness of the tail behavior is relative to the Weibull

distribution. The standard exponential distribution and the relatively heavy-tailed

random variable are respectively expressed as

4. P (Y > x) =


exp {−x} , if x ≥ 0

1, o.w.

(9)

5. X =
1 + Y

ln(1 + Y )
. (10)

Assume that wX stands for ess supX, and P (X < wX) = 1, which means X is

finite with probability 1 and the log-tail distribution for the above distributions is

h(x) = − logP (X > x) (11)

where x ∈ R and h(x) is non-negative, non-decreasing and right-continuous. From

the above information, we can state that P (X > x) = e−h(x) such that x < wX . If h

is regularly varying at infinity with the index %, we write h ∈ R% where 1 < % < ∞.

It means that for any κ > 0 we have h(κx)/h(x)→ κ% as x→∞.

We frequently work with the Laplace transform and we require that E
[
etXi

]
<∞

for finite t. The selected distributions above satisfy this condition and a detailed

analysis for Laplace transform is given in Appendix B. We introduce the cumulant
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generating function

H(t) = logE[etX ] (12)

where H(t) is well-defined and non-decreasing for any t ≥ 0. H(t) → ∞ as t → ∞.

For the Weibull distribution,

%
′
=

%

%− 1
(13)

is being used as the exponent of the cumulant generating function with the condition

that 1 < %
′
< ∞. Note that 1 =

1

%
+

1

%′
. It is important to mention that h ∈ R%

implies H ∈ R%′ .

As a result of these definitions we express the expected value of the random expo-

nential sum (1),

E[SN(t)] =
N∑
i=1

E[etXi ] = NeH(t). (14)

For the REM, the random variables in the statistical sum (5) are expressed as a

function of exponential random variables, Y1, ..., YN (9), such that Xi = f(Yi) (10).

This enables us to express the statistical sum in a simplified form and compute the

free energy using the Euler-Maclaurin formula and the Laplace Method. The results

for the free energy depend on the structure of the distribution, which is specified by

f(Yi), and the selection of A(n). A(n) is an analytic and increasing function of n.

For the appropriate selection of A(n), we assume that there exists a p-a.s. limit for

the free energy

χ(β) := lim
n→∞

logZn(β)

n



9

Also, there are other variables that we will use for various theorems

B(t) = (λt)t (15)

A(t) =


E[SN(t)], for 1 < λ < 2 (16a)

E[SN(t)1{Y≤τ}], for λ = 1 (16b)

0, for 0 < λ < 1 . (16c)



CHAPTER 3: LIMIT THEOREMS FOR WEIBULL AND DOUBLE
EXPONENTIAL DISTRIBUTIONS

This section is devoted to the convergence of the random exponential sum (1)

when Xi’s (2) have the Weibull (6) or double exponential distribution (8). A similar

analysis has been done for the Weibull distribution by Ben Arous, Bogachev and

Molchanov (2003) [5]. We extend this to the double exponential distribution. We

look for the range of the exponential rate, λ, on N(t) that gives the necessary and

sufficient conditions for the existence of the law of large numbers (LLN), central

limit theorem (CLT) and convergence to the stable distribution. Before starting our

theorems, we specify the growth rate of N(t). In this chapter, Case 1 refers to the

Weibull distribution (6) and Case 2 refers to the double exponential distribution (8).

When Xi’s have the Weibull-type distribution,

N(t) = eλH(t) (17)

is being used as the growth rate. H(t) is the cumulant generating function introduced

in (12). The asymptotic of H(t), H0(t), can be found in Appendix A. When Xi’s have

the double exponential distribution (8), the growth rate is

N(t) = eλt. (18)
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We first prove Lemma 1 which is then used in the proof of the LLN and CLT. In later

sections, we prove the LLN, CLT and convergence to the stable distribution.

3.1 Main Lemma

Lemma 1. Consider the function

vλ(x) := λ(x− 1)− (x%
′
− x) x ≥ 1

if λ > λb (λb = λ1 = %
′ − 1 for Case 1) then there exists x0 > 1 such that vλ(x) > 0

for all x ∈ (1, x0).

Proof. Note that vλ(1) = 0 and v
′

λ(x) = λ − (%
′
x%
′−1 − 1) so v

′

λ(1) = λ − (%
′ − 1) =

λ − λb > 0 where λb = λ1 for Case 1. Based on the Taylor’s formula, vλ(x) > 0 for

all x > 1 sufficiently close to 1.

3.2 Main Theorems

Theorem 2. The Law of large numbers (LLN) for different growth rates of N(t),

SN(t)

E[SN(t)]

p→ 1. (19)

1. Assume that Xi’s (2) in the statistical sum (5) have the Weibull distribution (6).

If λ > %
′ − 1 = λ1 (17), the LLN holds.

2. Assume that Xi’s (2) in the statistical sum (5) have the double exponential distri-

bution (8). If λ > 1 (18), the LLN holds.

Proof. Set

S∗N(t) =
SN(t)

E[SN(t)]
=

1

N

N∑
i=1

etxi−H(t)
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It is sufficient to show that limt→∞E |S∗N(t)− 1|r = 0 for some r > 1. We first derive

E|S∗N(t)− 1|r = E

∣∣∣∣∣
∑N

i=1 e
txi−H(t)

N
− 1

∣∣∣∣∣
r

= E

∣∣∣∣∣
∑N

i=1 e
txi−H(t) − 1

N

∣∣∣∣∣
r

= N−rE

∣∣∣∣∣
N∑
i=1

etxi−H(t) − 1

∣∣∣∣∣
r

.

Using the Bahr-Esseen inequality (from Bahr and Esseen, 1965) [8] and

(x+ 1)r ≤ 2r−1(xr + 1) where (x > 0, r ≥ 1), we get

N−rE

∣∣∣∣∣
N∑
i=1

etxi−H(t) − 1

∣∣∣∣∣
r

≤ 2N−r
N∑
i=1

E
∣∣etxi−H(t) − 1

∣∣r
≤ 2N1−rE

∣∣etxi−H(t) + 1
∣∣r ≤ 2N1−r2r−1E

∣∣ertxi−rH(t) + 1
∣∣

= 2rN1−reH(rt)−rH(t) + 2rN1−r. (20)

Case 1: Using H ∈ R%′ and Appendix A,

lim inf
t→∞

[
(r − 1) log(N)

H(t)
− H(rt)

H(t)
+ r

]
= λ(r − 1)−

(
r%
′

− r
)

= vλ(r).

By Lemma 1, we can choose r > 1 such that vλ(r) > 0 when λ > λ1 =
%
′

%
= %

′ − 1

and this implies that the right hand side converges to 0.

Case 2: For the double exponential distribution, we use the Bahr-Esseen inequality

(from Bahr and Esseen, 1965) [8] to obtain

E |S∗N(t)− 1|r < 2rN1−reH(rt)−rH(t) + 2rN1−r.

The Cumulant generating function H(t) of the double exponential distribution has

an asymptotic equivalent of

H(t) = t ln(t)− t+
ln t

2
+ o(1)
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(Refer to Appendix B for details). Only the first two terms play a role in the proof

of the LLN. Using the substitution r = 1 + ε and the limit ε→ 0+, we must have

(r − 1) log(N)−H(rt) + rH(t) ∼= ε log(N)− (1 + ε)εt+ ε/2(ln t− 1) > 0

for the existence of the LLN which implies that

logN

t
= λ > 1.

Theorem 3. The CLT for different growth rates of N(t),

SN(t)− E[SN(t)]

(V ar[SN(t)])1/2
d→ N(0, 1). (21)

1. Assume that Xi’s (2) in the statistical sum (5) have the Weibull distribution (6).

If λ > 2%
′ %
′

%
= λ2 (17), the CLT holds.

2. Assume that Xi’s (2) in the statistical sum (5) have the double exponential distri-

bution (8). If λ > 2 (18), the CLT holds.

Proof. Suppose that etX1 , etX2 , ... is a sequence of independent random variables, each

with a finite expected value and variance. We know from Lemma 4.1 in Ben Arous et

al. (2003) [5] that V ar(etXi) ∼= eH(2t) for the Weibull distribution. This asymptotics

also holds for the double exponential distribution, which can be proven using the

same steps of Lemma 4.1 [5]. Define

s2n =

N(t)∑
i=1

V ar(etXi) ∼= N(t)eH(2t)
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If for some δ > 0, the Lyapunov’s condition

lim
t→∞

1

s2+δn

N(t)∑
i=1

E
[∣∣etXi − E (etXi)∣∣2+δ] = 0

is satisfied, then
SN(t)− E[SN(t)]

V ar[SN(t)]1/2
converges to the standard normal distribution.

Using the Lyapunov’s condition and the inequality, (x + 1)r ≤ 2r−1(xr + 1) where

(x > 0, r ≥ 1), we obtain

1

s2+δn

N(t)∑
i=1

E[|etXi − E(etXi)|2+δ]

∼= N(t)−δ/2 exp{H(t)(2 + δ)} exp{−H(2t)(1 + δ/2)}E

[∣∣∣∣ etXieH(t)
− 1

∣∣∣∣2+δ
]

≤ exp {− ln(N(t))δ/2 +H(t)(2 + δ)−H(2t)(1 + δ/2)}E

[(
etXi

eH(t)
+ 1

)2+δ
]

≤ 21+δ exp {− ln(N(t))δ/2 +H(t)(2 + δ)−H(2t)(1 + δ/2)}
[
E

[
et(2+δ)Xi

eH(t)(2+δ)

]
+ 1

]
= 21+δ exp {− ln(N(t))δ/2−H(2t)(1 + δ/2) +H(t(2 + δ))} (1 + o(1)). (22)

Case 1: Using H ∈ R%′ and the substitution r = 1 + δ/2,

lim inf
t→∞

[
ln(N(t))δ/2

H(t)
+
H(2t)(1 + δ/2)

H(t)
− H(t(2 + δ))

H(t)

]
∼= 2%

′
[
λ

2%
′ (r − 1)− (r%

′

− r)
]

= 2%
′

v
λ/2%

′ (r)

for small δ. By Lemma 1, we can choose r > 1 such that v
λ/2%

′ (r) > 0 when λ/2%
′
>

λ1 =
%
′

%
and this implies that the CLT holds if λ > λ2 = 2%

′ %
′

%
.

Case 2: We make use of the inequality that we obtained in (22) and we derive

1

s2+δn

N(t)∑
i=1

E
[∣∣etXi − E (etXi)∣∣2+δ]

≤ 2r−1 exp {− ln(N(t))δ/2−H(2t)(1 + δ/2) +H(t(2 + δ))} (1 + o(1))



15

where H(t) for the double exponential distribution has an asymptotic equivalent of

H0(t) = t ln(t)− t. Then, the requirement for the CLT is the following condition

lim inf
t→∞
δ→0+

[ln(N(t))δ/2 +H(2t)(1 + δ/2)−H(t(2 + δ))] > 0

This inequality implies that we have the CLT if

lim inf
t→∞

ln(N)

t
= λ > lim inf

δ→0+

ln(1 + δ/2)

δ/2
(2 + δ) = 2

Theorem 4. Conditions for Convergence to an Infinitely Divisible Distribution

We use the theorem about the weak convergence of sums of independent random vari-

ables from Ben Arous et al. (2003) [5] which is also given in a similar form in the

book of Petrov (1978) [9]. Suppose that

Yi(t) =
etXi

B(t)
(23)

is a sequence of i.i.d. random variables where B(t) is a multiplicative factor. Ad-

ditionally, we define A(t) as an additive factor. Both A(t) and B(t) are increasing

function of t such that A(t), B(t) → ∞ as t → ∞. According to classical theorems

on weak convergence of sums of independent random variables, in order that

S∗N(t) =

N(t)∑
i=1

Yi(t)−
A(t)

B(t)
(24)

converges to an infinitely divisible law with characteristic function

φ(u) = exp

{
iau− σ2u2

2
+

∫
|x|>0

(
eiux − 1− iux

1 + x2

)
dL(x)

}
, (25)
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it is necessary and sufficient that the following conditions hold:

1. At all continuity points, L(x) satisfies

L(x) =


lim
t→∞

NP{Y ≤ x} for x < 0

− lim
t→∞

NP{Y > x} for x > 0.

(26)

2. σ2 satisfies

σ2 = lim
τ→0+

lim sup
t→∞

NV ar[Y 1{Y≤τ}] = lim
τ→0+

lim inf
t→∞

NV ar[Y 1{Y≤τ}] (27)

3. For each τ > 0 the following identity is satisfied,

lim
t→∞

{
NE[Y 1{Y≤τ}]−

A(t)

B(t)

}
= a+

∫ τ

0

x3

1 + x2
dL(x)−

∫ ∞
τ

x

1 + x2
dL(x). (28)

Here, a is a constant depending on the distribution function.

Theorem 5. Suppose that Xi’s in (23) are i.i.d. double exponentially distributed

random variables (8). Also, suppose that N(t) is defined as in (18) and λ satisfies

the inequality, 0 < λ < 2. Then,

SN(t)− A(t)

B(t)

d→ Fλ (29)

for large t where A(t) and B(t) are given in (16) and (15) respectively. Fλ is an

infinitely divisible distribution with the characteristic function,

φλ(u) = exp

{
iau+ λe

∫ ∞
0

(
eiux − 1− iux

1 + x2

)
dx

xλ+1

}
, (30)
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where a is given by

a =


λeπ

2 cos
λπ

2

for λ 6= 1

0 for λ = 1.

(31)

Proof. To prove this theorem, we need to show that the three conditions in Theorem

(4) are satisfied.

1. For selected B(t) = (λt)t (15), the function L(x) (26) is given by

L(x) =


lim
t→∞

NP{Y ≤ x} = 0 for x < 0

− lim
t→∞

NP{Y > x} = −x−λe for x > 0.

(32)

where Y is given in (23). Because Y ≥ 0, L(x) = 0 holds in the case x < 0.

Assume that x > 0. By using (15), (18) and (23) we obtain

NP{Y (t) > x)} = eλtP

{
etX

B(t)
> x

}
= eλtP

{
X >

lnx+ lnB(t)

t

}
∼= exp

{
1 + λt− exp

(
lnx+ lnB(t)

t

)}
∼= exp

{
1 + λt−

(
1 +

lnx

t

)
λt

}
= −x−λe

for large t, which shows that (32) holds.

2. We claim that (27) holds and σ2 = 0 for all λ ∈ (0, 2). Since

0 ≤ V ar
[
Y 1{Y≤τ}

]
≤ E

[
Y 21{Y≤τ}

]
,

we just need to prove that

σ2 = lim
τ→0+

lim
t→∞

NE
[
Y 21{Y≤τ}

]
= 0 . (33)
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We introduce a common variable which will be used throughout this theorem,

η(t, τ) =
lnB(t) + ln τ

t
(34)

Using (15), (18) and (34) for any τ > 0,

NE
[
Y 21{Y≤τ}

] ∼= N(t)E

[
e2tX

B2(t)
1{X≤η(t,τ)}

]
∼=
N(t)e

B2(t)

∫ +∞

0

exp {2tx+ x− ex} 1{x≤η(t,τ)} dx

We use the substitution x = y+ ln(2t+ 1) (18), Appendix B.2 and B.3 which give

C(t)

∫ +∞

− ln(2t+1)

exp {(2t+ 1)(y − ey)} 1{y≤η(t,τ)−ln(2t+1)} dy

= C(t)

∫ K

− ln(2t+1)

exp {(2t+ 1)(y − ey)} dy

= C(t) exp
{

(2t+ 1)(K − eK)
} 1

(2t+ 1) | g′(K) |
(35)

where

C(t) =
N(t)e

B2(t)
exp{(2t+ 1) ln(2t+ 1)}

K = ln(λ/2) +
ln τ

t
− ln

(
1 +

1

2t

)
(36)

The substitution of K (36) into (35) gives us (Refer to Appendix B.4, for details)

NE
[
Y 21{Y≤τ}

] ∼= λτ 2−λe

|g′(K)|

where |g′(K)| ∼= 1− λ/2 > 0 when t is large. Then

σ2 = lim
τ→0+

lim
t→∞

NE[Y 21{Y≤τ}] = lim
τ→0+

λτ 2−λe

|g′(K)|
= lim

τ→0+

λτ 2−λe

1− λ/2
= 0
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3. When λ ∈ (0, 2), the limit,

Dλ(τ) = lim
t→∞

{
NE[Y 1{Y≤τ}]−

A(t)

B(t)

}
,

exists for each τ > 0 where A(t) and B(t) are given in (16), (15) respectively. Then

Dλ(τ) can be expressed

Dλ(τ) =


λe

1− λ
τ 1−λ for λ 6= 1

e ln τ for λ = 1.

(37)

3a.) Assume that λ ∈ (0, 1). Then A(t) = 0 (16c). Using the substitution

x = y + ln(t+ 1), (34) and Appendix B.2

NE
[
Y 1{Y≤τ}

] ∼= N(t)e

B(t)

∫ +∞

0

exp
{
tx+ x− eX

}
1{x≤η(t,τ)} dx

= D(t)

∫ +∞

− ln(t+1)

exp {(t+ 1)(y − ey)} 1{y≤η(t,τ)−ln(t+1)} dy

= D(t)

∫ K

− ln(t+1)

exp {(t+ 1)(y − ey)} dy

= D(t) exp
{

(t+ 1)(K − eK)
} 1

(t+ 1) | g′(K) |
(38)

where

D(t) =
N(t)e

B(t)
exp{(t+ 1) ln(t+ 1)} (39)

K = ln(λ) +
ln τ

t
− ln

(
1 +

1

t

)
(40)

The substitution of K (40) into (38) gives us (Refer to Appendix B.4, B.5 for

details)

NE
[
Y 1{Y≤τ}

] ∼= λτ 1−λe

|g′(K)|
∼=
λτ 1−λe

1− λ
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when t is large.

3b.) Assume that λ ∈ (1, 2). Also, A(t) = E[SN(t)] (16a). Using the substitution

x = y + ln(t+ 1) (39) and Appendix B.3

NE[Y 1{Y≤τ}]−
A(t)

B(t)

∼=
N(t)e

B(t)

∫ +∞

0

exp
{
tx+ x− eX

}
1{x>η(t,τ)} dx

= D(t)

∫ +∞

− ln(t+1)

exp {(t+ 1)(y − ey)} 1{y>η(t,τ)−ln(t+1)} dy

= D(t)

∫ ∞
K

exp {(t+ 1)(y − ey)} dy

= D(t) exp
{

(t+ 1)(K − eK)
} 1

(t+ 1) | g′(K) |
(41)

where

K = ln(λ) +
ln τ

t
− ln

(
1 +

1

t

)
> 0 (42)

for large t. Substitution of K (42) into (41) gives us (Refer to Appendix B.4 and

B.6 for details)

NE
[
Y 1{Y≤τ}

]
− A(t)

B(t)
∼=
λτ 1−λe

|g′(K)|
∼=
λτ 1−λe

1− λ

when t is large.

3c.) Assume that λ = 1 and τ > 1 for definiteness. Also, A(t) = E[SN(t)1{Y≤1}]
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(16b). Using N(t) (18) and B(t) (15),

NE[Y 1{Y≤τ}]−
A(t)

B(t)

∼=
N(t)e

B(t)

∫ +∞

0

exp
{
tx+ x− eX

}
[1{x≤η(t,τ)} − 1{x≤lnB(t)/t}] dx

=
N(t)e

B(t)

∫ η(t,τ)

lnB(t)/t

exp
{
tx+ x− eX

}
dx

∼=
N(t)e

B(t)

ln τ

t
exp

{
tK +K − eK

}
(43)

where

K = ln t+
ln τ

t
(44)

for large t. Substitution of K (44) into (43) gives us

NE
[
Y 1{Y≤τ}

]
− A(t)

B(t)
∼= e ln τ

when t is large.

3d.) The parameter a defined in (31) satisfies the identity (28) with L(x) specified

by (32),

Dλ(τ) = lim
t→∞

{
NE[Y 1{Y≤τ}]−

A(t)

B(t)

}
∼= a+

∫ τ

0

ex2−λ

1 + x2
dx−

∫ ∞
τ

ex−λ

1 + x2
dx (45)

where Dλ(τ) is given by (37).

Assume that λ ∈ (0, 1). It is known that

∫ τ

0

x2−λ

1 + x2
d(x) =

τ 1−λ

1− λ
−
∫ τ

0

x−λ

1 + x2
dx (46)
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Using (32) and (31), the equation (45) results in

π

2cos

(
λπ

2

) =

∫ ∞
0

x−λ

1 + x2
dx

which is true from Gradshteyn and Ryzhik (1994) [10].

When λ ∈ (1, 2), it is known that

∫ ∞
τ

xλ

1 + x2
d(x) =

τ 1−λ

λ− 1
−
∫ ∞
τ

x2−λ

1 + x2
dx (47)

Using (32) and (31), equation (45) turns out to be

π

2cos

(
λπ

2

) +

∫ ∞
0

x2−λ

1 + x2
dx = 0,

which is true again from Gradshteyn and Ryzhik [10].

For λ = 1, equation (45) has the form

ln τ =

∫ τ

0

x

1 + x2
dx+

∫ ∞
τ

1

(1 + x2)x
dx

The integral on the right can be computed using calculus as

1

2
ln
(
1 + x2

) ∣∣∣τ
0

+
1

2
ln

(
x2

1 + x2

) ∣∣∣∞
τ

= ln τ

This completes the proof.

Theorem 6. The charachteristic function φλ determined by Theorem 5 corresponds

to a stable probability law with the exponent λ ∈ (0, 2) and the skewness parameter



23

β = 1 and can be represented in canonical form by

φλ(u) =



exp

{
−Γ(1− λ)e | u |λ exp

(
−iπλ

2
sgn(u)

)}
for λ ∈ (0, 1)

exp

{
Γ(2− λ)

λ− 1
e | u |λ exp

(
−iπλ

2
sgn(u)

)}
for λ ∈ (1, 2)

exp

{
iu(1− γ)e− πe

2
| u |

(
1 + i sgn(u)

2

π
ln | u |

)}
for λ = 1

(48)

where Γ(s) =
∫∞
τ
xs−1e−x dx is the gamma function, sgn(u) : u/ | u | for u 6= 0 and

sgn(u) := 0, and γ = 0.5772... is the Euler constant. The proof of this theorem can

be found in the paper by Ben Arous et al. (2003) [5].



CHAPTER 4: APPLICATION: STATISTICAL ESTIMATION OF THE
LUNDBERG ROOT USING THE EMPIRICAL LAPLACE TRANSFORM

Many applications in insurance mathematics are related to compound distributions

and their corresponding ruin probabilities. The ruin probability of an insurance

portfolio is one of the major concerns of an insurance company and it depends on the

tail behavior of the insurance portfolio.

First, we present a section about finding the upper and lower bounds of the tail

probability in the case of compound distributions from the book by Rolski et al.

(1999: pp. 125-131 and 170-171) [12]. Here, the tail probability is approximated

using Lundberg bounds and the corresponding adjustment coefficient. Assume that

the solution of the following Lundberg equation exists

L(γ) =

∫ ∞
0

eγx dF (x) =
1

p
. (49)

This solution is called as the adjustment coefficient. The question is how to estimate

the unknown solution of this equation. Csorgo and Teugels (1990) [6] answered this

question by developing an estimation procedure using the empirical Laplace trans-

form.

The first section motivates our study about estimation of Lundberg type bounds.

Then, we use the empirical Laplace transform and customize the growth rate of the

number of individual risks, i.e. the number of claims. The number of individual risks
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is a function of the adjustment coefficient.

4.1 Geometric Compounds

This section is mainly taken from the book of Rolski et al. (1999: pp. 125-131)

[12] and it is followed by the Lundberg root estimation.

Consider a portfolio consisting of infinitely many policies with individual risks

{X1, X2, ...} over a given time period. Assume that the non-negative random variables

{X1, X2, ...} are i.i.d. Weibull-type random variables (6) with distribution function

FX . First, we investigate the asymptotic behavior of the tail probability

FU(x) = P (U > x) of the compound U =
N∑
i=1

Xi when N → ∞. Here, N has a

geometric distribution with a parameter p ∈ (0, 1). We are able to determine this by

finding the upper and lower Lundberg bounds, but in practical applications, we do

not know the form of L(t) precisely. Only a sample version of L(t) or LN(t) is known

for an insurance company. This is defined as the empirical Laplace transform:

LN(γ) =
1

N

N∑
j=1

(eγXj). (50)

The compound geometric distribution FU is given by

FU(x) =
∞∑
i=0

(1− p)pi F ∗iX (x) (51)

Writing the first summand in (51) separately, we get

FU = (1− p)δ0 + pFX ∗ FU (52)
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where

δ0 = δ0(x) =


1, if x ≥ 0

0, if x < 0

This is called the defective renewal equation or transient renewal equation. Replacing

the distribution FU on the right hand side of (52) by the term (1− p) δ0 + pFX ∗ FU

and iterating this procedure, we get

FU(x) = lim
n→∞

Fn(x) (53)

for x ≥ 0 where Fn is defined as

Fn = (1− p)δ0 + pFX ∗ Fn−1 (54)

for all n ≥ 1 and F0 is an arbitrary initial distribution on R+. Additionally, assume

that

L(γ) =

∫ ∞
0

eγx dFX(x) =
1

p
(55)

has a solution where p is the parameter of the geometric distribution and FX(x) is

the distribution function of the Weibull distributed individual risks, {X1, X2, ...}. γ

is the adjustment coefficient here. Let x0 = sup{x : FU(x) < 1}. Then the following

theorem gives us the Lundberg bounds based on the existence of the adjustment

coefficient.

Theorem 7. If X is a geometric compound with characteristics (p, FX) such that
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(55) admits a positive solution ,γ, then

a−e
−γx ≤ FU(x) ≤ a+e

−γx

where x ≥ 0 and

a− = inf
x∈[0,x0)

eγxFX(x)∫∞
x
eγy dFX(y)

(56)

a+ = sup
x∈[0,x0)

eγxFX(x)∫∞
x
eγy dFX(y)

Proof. To find the upper bound in (56) we aim to find an initial distribution F0 such

that the corresponding distribution F1 defined in (54) for n = 1 satisfies

F1(x) ≥ F0(x) (57)

for x ≥ 0. Then FX(x) ∗ F1(x) ≥ FX(x) ∗ F0(x) for x ≥ 0 and by induction,

Fn+1(x) ≥ Fn(x) for all x ≥ 0 and n ∈ N. This means that

FU(x) ≤ F 0(x) (58)

for x ≥ 0. Let F0(x) = 1 − a e−γx = (1 − a)δ0(x) + aG(x) where a ∈ (0, 1] is some

constant and G(x) = 1− e−γx. Inserting this into (54) we obtain

F1(x) = 1− p+ p

(
(1− a)FX(x) + a

∫ x

0

G(x− y) dFX(y)

)
= 1− p+ p

(
FX(x)− a

∫ x

0

e−γ(x−y) dFX(y)

)
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for all x ≥ 0. Since we want to arrive at (57) we look for a such that

1− p+ p

(
FX(x)− a

∫ x

0

e−γ(x−y) dFX(y)

)
≥ 1− aeγx (59)

This inequality can be simplified to

a

(
1− p

∫ x

0

eγy dFX(y)

)
≥ peγx FX(x)

which is trivial for x ≥ x0 using

1 = p

∫ ∞
0

eγy dFX(y) = p

∫ x

0

eγy dFX(y) + p

∫ ∞
x

eγy dFX(y)

Then (59) is equivalent to

ap

∫ ∞
x

eγy dFX(y) ≥ peγxFX(x) (60)

Setting a+ = sup
x∈[0,x0)

eγxFX(x)∫∞
x
eγy dFX(y)

, we get (57) and consequently (58). The upper

bound follows and the lower bound can be driven similarly.

4.2 Estimation of the Adjustment Coefficient

When we find the bounds to the tail probability in the previous section, we assume

the existence of a solution to the Lundberg equation (55), the adjustment coefficient.

In this section, we study an estimation problem which is motivated by the previous

section. Here, the empirical Laplace transform and the central limit theorem are

applied to convert the Laplace equation (55) into an estimation problem.

We made use of the Laplace transform for Lundberg bounds in Theorem 7. It

is assumed that the Laplace transform L(γ) exists in an open neighborhood of the

origin, I = (−∞, σ), where σ is the abscissa of convergence of L(γ). L(γ) is arbitrarily
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many times differentiable in I. Also, L(γ) is an increasing convex function on I and

has non-negative random variables.

In this section, we introduce additional assumptions. We assume that we have a

sequence of insurance portfolios {0, 1, 2, ..., n, ...} and that the n’th portfolio has Nn

individual risks. Individual risks {X1, X2, ..., XNn} follow the Weibull law with the

parameter % > 1 and have a distribution function FX (6). They are i.i.d. random

variables. Nn is defined as:

Nn = Nn(γ) = eλH(γ), (61)

where H(γ) =
γ%
′

%′
for the Weibull distribution, when γ is large and λ is a constant.

Our goal is to find the solution of the following equation for varying pn

L(γ) =

∫ ∞
0

eγx dF (x) =
1

pn
. (62)

To ensure that there is a solution, we select pn small enough. It means that we select

pn ∼= exp{−cγ%
′

}

with constant and big enough c. We can state that pn → 0 as n→∞.

We define each solution of (62) as tn. Note that tn → ∞ when n → ∞ and tn is

the real Lundberg root of the estimation problem. In real applications, we only have

a sample of information and we don’t have a precise form of L(γ). Hence, we replace

the Laplace transform with the empirical Laplace transform and call the following
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equation the n’th empirical Lundberg equation

Ln(γ) =
1

Nn(γ)

Nn(γ)∑
j=1

(eγXj) =
1

pn
. (63)

There is a sequence of solutions for the empirical Lundberg equations with an appro-

priate decay factor pn. We define it as a sequence, τn.

Based on the above definitions, we have the following array scheme containing i.i.d.

individual risks

X1, X2, ..., XN1

X1, X2, ..., XN2

............................

X1, X2, ..., XNn

............................

Each line refers to a portfolio, which is composed of individual risks. There is a

sequence of real solutions, tn, to the Lundberg Equations

L(tn) = E(etnXj) =

∫ ∞
0

etnx dFX(x) =
1

pn
. (64)

On the other hand, we have a sequence of adjustment coefficients, τn and they are

solutions to the equations

Ln(τn) =
1

Nn(τn)

Nn(τn)∑
j=1

(eτnXj) =

∫ ∞
0

eτnx dFNn(τn)(x) =
1

pn
(65)
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where

FNn(τn)(x) =
1

Nn(τn)
#{1 ≤ j ≤ Nn : Xj ≤ x}

is the empirical distribution function of the sample. Here, Ln(τn) is a random analytic

function for all values of τn. We obtain a sample based estimator of the adjustment

coefficient using the empirical Laplace transform.

We introduce some expressions to be used in limits.

WNn(τn) =

Nn(τn)∑
j=1

{eτnXj − E(eτnXj)} (66)

Also, one term Taylor series expansion gives us the identity

exp (τnXj) = exp (tnXj) + (τn − tn)Xj exp (τn(j)Xj) (67)

where τn(j) satisfies the inequalities min(τn, tn) ≤ τn(j) ≤ max(τn, tn). We also use

the following abbreviations:

SNn(τn) =

Nn(τn)∑
j=1

Xje
τnXj (68)

where τn(j) is determined by the above equations.

We estimate tn by solving the equation LNn(τn) = 1/pn and L(tn) = 1/pn when pn

is small. Combining the two equations results in

0 = Nn(τn)
(
Ln(τn)− L(tn)

)
=

Nn(τn)∑
j=1

(eτnXj − E(etnXj)) .
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Applying the Taylor series approximation from (67) gives us

Nn(τn)∑
j=1

(eτnXj − E(etnXj)) =

Nn(τn)∑
j=1

(etnXj − E(etnXj)) + (τn − tn)

Nn(τn)∑
j=1

Xje
τn(j)Xj = 0.

Also, rearrangement of terms leads to

tn − τn =

Nn(τn)∑
j=1

(etnXj − E(etnXj))

Nn(τn)∑
j=1

Xje
τn(j)Xj

. (69)

Assume that the growth rate for the number of claims satisfies

λ > λ2 = 2%
′ %
′

%
(70)

Then, the LLN holds from Theorem 2 and we can write

1

Nn(tn)

Nn(tn)∑
j=1

etnXj

E[etnXj ]

p→ 1, (71)

1

Nn(τn)

Nn(τn)∑
j=1

eτnXj

E[eτnXj ]

p→ 1. (72)

where the denominator in (71) and the nominator in (72) are equal to 1/pn. This

implies the asymptotic equivalence of E[eτnXj ] ∼= exp{τ %n/%} and E[etnXj ] ∼= exp{t%n/%}

in probability for the Weibull distribution. Using this fact and the expressions (66)

and (68), we can approximate the ratio in (69) as

tn − τn =

Nn(τn)∑
j=1

(etnXj − E(etnXj))

Nn(τn)∑
j=1

Xje
τn(j)Xj

∼=

Nn(τn)∑
j=1

(eτnXj − E(eτnXj))

Nn(τn)∑
j=1

Xje
τnXj

=
WNn(τn)

SNn(τn)
(73)
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Theorem 3 and condition (70) imply that

Nn(τn)∑
j=1

(eτnXj − E(eτnXj))

V ar
Nn(τn)∑

j=1

eτnXj

1/2

d→ N(0, 1) (74)

We know from Lemma 4.1 (Ben Arous et al. 2003: p. 16)[5] that V ar(etXi) ∼= eH(2t)

for the Weibull distribution. Because %
′
> 1 in (13), cross terms have lower degree

and we get asymptotic equivalency

V ar

Nn(τn)∑
j=1

eτnXj

 ∼= Nn(τn)eH(2τn).

The asymptotics above gives us the equivalence of the nominator tn − τn, WNn(τn),

as

WNn(τn) =

Nn(τn)∑
j=1

(eτnXj − E(eτnXj))

∼= V ar

Nn(τn)∑
j=1

eτnXj

1/2

N(0, 1) ∼= Nn(τn)1/2eH(2τn)/2N(0, 1). (75)

The asymptotic of SNn(τn) is driven in Appendix A as

SNn(τn) =

Nn(τn)∑
j=1

Xje
τnXj ∼= Nn(τn)E[Xje

τnXj ]

∼= Nn(τn) exp

{
τ %
′

n

%′

}
= Nn(τn) exp{H(τn)} (76)

Here, we have the LLN because of the condition (70). As a result of these limits, the
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asymptotic confidence interval for tn is

lim
n→∞

P
{
τn − zα/2 J(τn) ≤ tn ≤ τn + zα/2 J(τn)

}
= 1− α (77)

where φ(zα/2) = 1− α/2 for 0 < α < 1 and

J(τn) = Nn(τn)−1/2 exp{H(2τn)/2−H(τn)}

.



CHAPTER 5: APPLICATION: THE REM MODEL

The free energy was driven using concepts of convergence in probability in papers

by Eisele (1983) [7] and Bovier et al. (2002) [1]. However ,this computation required

long derivations. Hence, we develop a different approach using order statistics, the

Euler-Maclaurin series and the Laplace method which simplifies the process. In the

first part, we introduce variables for our computations. Then, we derive the free

energy for the the Weibull distribution using the limiting distributions similar to the

paper by Ben Arous et al. (2003) [5]. Then, we develop the new approach using order

statistics. The free energy is calculated for the Weibull, relatively heavy-tailed (10)

and relatively light-tailed (8) distributions using this method. Once the statistical

sum is represented in terms of exponential random variables, deriving the free energy

is quite straight forward.

5.1 Variable Definitions

Assume that {Xi, i = 1, 2, ..., N } are i.i.d. random variables. We already defined

the free energy in Chapter 1 as

χ(β) = lim
n→∞

logZn(β)

n
(78)

where

Zn(β) =

N(n)∑
i=1

eβA(n)Xi (79)
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is the statistical sum or partition function and β is strictly positive. For simplicity,

we assume that

N = [en] (80)

lnN = n+O
(
e−n
)

A(n) in the statistical sum is selected in such a way that the free energy converges.

For different distributions, we will select the proper growth factor for A(n).

5.2 The REM Using Limit Theorems for the Weibull Distribution

Assume that {Xi, i = 1, 2, ..., N } are i.i.d. random variables with the Weibull

distribution and we select

A(n) = n1/%
′

(81)

as the proper growth factor where %
′
is introduced in (13) for the Weibull distribution.

The cumulant generating function for the Weibull is

H(t) = logE[etX ] ∼=
t%
′

%′
(82)

for large t. H(t) is well defined, non-decreasing and H(t)/t → ∞ as t → ∞. Also,

A(n) is an increasing funtion of n. As a result of these definitions, we express the

expected value of the statistical sum for large n as

E[Zn(β)] =

[en]∑
i=1

E
[
eβA(n)Xi

] ∼= [en]exp

{
β%
′
n

%′

}
(83)
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5.2.1 Main Theorems

Theorem 8. The Law of Large Numbers for the statistical sum

Let ln E[eβA(n)Xi ] = H(βA(n)). For sufficiently small ε, if

nε−H((1 + ε)βA(n)) + (1 + ε)H(βA(n))] > 0

then we have

Zn(β)

E[Zn(β)]

p→ 1 (84)

as n→∞.

Proof. Set t= βA(n). Also, define

Z∗n(β) =
Zn(β)

E[Zn(β)]
=

1

N

N∑
i=1

etxi−H(t) (85)

We have to prove that Z∗n(β)
p→ 0 as n→∞. It is sufficient to show that

lim
n→∞

E|Z∗n(β)− 1|r = 0

for some r > 1. Using the Bahr-Esseen inequality and

(x+ 1)r ≤ 2r−1(xr + 1)

where (x > 0, r ≥ 1), we obtained in the proof of the LLN, Theorem 2

E |Z∗n(β)− 1|r ≤ 2rN1−reH(rt)−rH(t) + 2rN1−r (86)

For the existence of the limit, we must have lim
n→∞

E|Z∗n(β) − 1|r = 0. Substituting

t = βA(n), r = 1 + ε, N = [en] (80) to the right hand side of the inequality (86), we
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obtain the condition

lim inf
t→∞
ε→0+

[nε−H((1 + ε)βA(n)) + (1 + ε)H(βA(n))] > 0

for the existence of the LLN.

Theorem 9. Assume that Xi’s are i.i.d. Weibull-type random variables and we have

the following conditions

M1,N(n) = max
(
eβA(n)Xi

)
(87)

for i = 1, ..., N = [en] and βA(n) = βn1/%
′
. Then

P

(
M1,N(n)

B(n)
< x

)
→ K(x) = e−x

−α

logM1,N(n) ∼= lnB(n)

for large n where lnB(n) = β%1/%n .

Proof. Let’s call A = βA(n), which implies that n =
A%
′

β%
′ . Then

P

(
M1,N(n)

B(n)
< x

)
=

[
P

(
eAXi

B(n)
< x

)]N
=

[
P

(
Xi <

ln(B(n)x)

A

)]N
=

[
1− exp

{
−A

−% ln%(B(n)x)

%

}]N
∼= exp

{
−exp

{
lnN − A−% ln%(B(n)x)

%

}}
.

The asymptotic of the exponent can be computed using the binomial formula

lnN − A−% ln%(B(n)x)

%
= n− n1−%β−% ln%B(n)

(
1 + %

lnx

lnB(n)

)
/%

= n− n1−%β−% ln%B(n)/%+ n1−%β−% ln%−1B(n) lnx



39

Plugging lnB(n) = β%1/%n into the above equation , we obtain

P

(
M1,N(n)

B(n)
< x

)
→ −%

1/%
′

β
lnx

Then, we can state that logM1,N(n) ∼= lnB(n) for large n.

5.2.2 The Computation of the Random Energy

Lemma 10. Assume that we have a sequence of i.i.d. Weibull-type random variables

X1, ..., XN (6). When we select βA(n) = βn1/%
′
, the statistical sum satisfies the LLN

for 0 < β < %1/%
′

= βcritical . Also, the free energy can be quantified by the following

formula in this interval

χ(β) := 1 +
β%
′

%′
.

Proof. In Appendix B, we have proven that the moment generating function satisfies

H(βA(n)) = H(βn1/%
′
) = nf(β) + o(n) for large n. Using the equivalent of H(t), we

obtain that

H(βn1/%
′

) ∼=
(βn1/%

′
)%
′

%′
=
β%
′
n

%′
. (88)

Using Theorem 8, we must have the following condition for the LLN when ε is small

nε−H((1 + ε)βA(n)) + (1 + ε)H(βA(n)) > 0 .

The binomial formula implies that

nε−H((1 + ε)βA(n)) + (1 + ε)H(βA(n)) = nε− (1 + ε)%
′ β%

′
n

%′
+ (1 + ε)

β%
′
n

%′

∼= nε−
(

1 + ε%
′
) β%′n

%′
+ (1 + ε)

β%
′
n

%′
= nε− ε

(
%
′ − 1

) β%′n
%′

(89)

for small ε. (89) should be positive for the LLN, which implies that β must satisfy
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the inequality 0 < β < %1/%
′
. Also, we formulated the statistical sum in (83). When

the LLN holds,

χ(β) = lim
n→∞

logZn(β)

n
= 1 + f(β) = 1 +

β%
′

%′

Theorem 11. (Ben Arous et al., 2013: p. 48) [5] When the LLN is not satisfied

which means β ≥ βcritical,

lnM1,N(n)

lnZN(β)

p→ 1

as n→∞. Here, M1,N(n) = max(eβA(n)Xi , i = 1, ..., N = [en]), βA(n) is an increas-

ing function of n and Xi are i.i.d. Weibull-type random variables.

Proof. The proof of this theorem can be found in the paper by Ben Arous et al. (2013:

p. 48) [5].

Using Theorem 9 and Theorem 11, we can state that

χ(β) := lim
n→∞

lnZn(β)

n
= lim

n→∞

lnM1,N(n)

n

= lim
n→∞

lnB(n)

n
= β%1/% if β ≥ βcritical = %1/%

′

Combining this result and Lemma 10, the free energy can be calculated as follows:

χ(β) =


1 +

β%
′

%′
, if β < %1/%

′
= βcritical

β%1/%, if β ≥ βcritical
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This result is obtained using convergence in probability concepts. In the next section,

we introduce the method of order statistics.

5.3 The REM Using Order Statistics

We compute the free energy using order statistics. The central assumption in this

section is that the random variables in the statistical sum (79) can be expressed as

an increasing function of standard exponentially distributed random variables.

5.3.1 Formulation of the Statistical Sum

We introduce exponential random variables that will be rearranged in the statistical

sum. Let

{Y1, Y2, ..., Yi, ..., YN} (90)

P{Yi > x} =


e−x, if x ≥ 0

1, o.w.

such that Xi = f(Yi) where f is a monotone increasing function of standard expo-

nentially distributed random variables, Yi . Also, we reorder the sequence in (90) to

obtain the variational sequence of the sample

Y(1) > Y(2) > .... > Y(i) > ... > Y(N) . (91)
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We make use of a proposition from Feller Volume 2 (see Feller, 1971: p. 19) [11] to

express each ordered random variable in (91) and we obtain

Y(1) = W1 +
W2

2
+ ............+

WN

N

Y(2) =
W2

2
+ ............+

WN

N

...................................................

Y(i) =
Wi

i
+ ...+

WN

N
(92)

...................................................

Y(N) =
WN

N

where {W1,W2, ...,Wi, ...,WN} is another set of i.i.d. standard exponential random

variables.

This helps us to derive the partition function in terms of standard exponential

random variables:

Zn(β) =
N∑
i=1

eβA(n)Xi =
N∑
i=1

eβA(n)f(Yi)

=
N∑
i=1

exp

{
βA(n)f

(
Wi

i
+ ...+

WN

N

)}
(93)

To be able to simplify the above expression,
Wi

i
+...+

WN

N
, we prove three propositions

to obtain its asymptotic equivalent in the following section.

Proposition 12. Suppose that {Y1, Y2, ..., Yl, ..., YN} are standard exponentially dis-

tributed random variables. Then, MYN = max(Y1, Y2, ..., YN) − lnN converges to the

standard Gumbel distribution as N →∞.

Proof. Let F (x) = 1− e−x for x ∈ [0,∞). When x ∈ R, the cumulative distribution
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function of MYN can be expressed as

P {MYN ≤ x} = P {max{Y1, Y2..., YN} ≤ x+ lnN}

= FN (x+ lnN)

= {1− exp{−x− lnN}}N

which converges to exp{−e−x} as N →∞.

Proposition 13. Let {W1,W2, ...,Wl, ...,WN} be a set of i.i.d. standard exponential

random variables. Then,
∞∑
l=i

Wl − 1

l

follows Gumbel distribution such that

P

{
∞∑
l=i

Wl − 1

l
≤ x

}
= exp

{
−e−x+γ

}
where γ is the Euler constant.

Proof. Let MYN = max(Y1, Y2, ..., YN) − lnN where {Y1, Y2, ..., Yl, ..., YN} are i.i.d.

standard exponentially distributed random variables. Using the representation in

(92), we can write for any x ∈ R that

P {MYN ≤ x}

= P

{
max(Y1, Y2, ..., YN)− 1− 1

2
− ...− 1

N
≤ x+ lnN − 1− 1

2
− ...− 1

N

}
= P

{
N∑
l=i

Wl − 1

l
≤ x+ lnN −

(
1 +

1

2
+ ...+

1

l
+ ...+

1

N

)}

converges to a standard Gumbel distribution as N →∞, which was proven in Propo-
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sition 12. Note that

γ = lim
N→∞

[
lnN −

(
1 +

1

2
+ ...+

1

l
+ ...+

1

N

)]

where γ is the Euler constant. Then we can drive the the distribution function as

follows

P

{
∞∑
l=i

Wl − 1

l
≤ x

}
= exp

{
−e−x+γ

}
Note that E

[∑∞
l=i

Wl − 1

l

]
= 0 and V ar

(∑∞
l=i

Wl − 1

l

)
=

Π2

6

Proposition 14. Let {W1,W2, ...,Wi, ...,WN} be a set of i.i.d. standard exponential

random variables. Then the summation,
Wi

i
+ ...+

WN

N
, can be approximated by

Wi

i
+ ...+

WN

N
∼= lnN − ln i+

N∑
l=i

Wl − 1

l
= lnN − ln i+O(1) (94)

when N is large.

Proof. From the Euler-Maclaurin formula, we get the following approximation for

large N
N∑
l=i

1

l
=

∫ N

i

1

x
dx+O(1) = lnN − ln i+O

(
1

N

)
+O

(
1

i

)
(95)

Using the result above,

Wi

i
+ ...+

WN

N
=

N∑
l=i

1

l
+

N∑
l=i

Wl − 1

l
= lnN − ln i+

N∑
l=i

Wl − 1

l
+ o(1) (96)

when N and i are large. Also, Kolmogorov’s two series theorem implies that the series
N∑
l=i

Wl − 1

l
is convergent as

N∑
l=i

V ar

(
Wl − 1

l

)
and

N∑
l=i

E

[
Wl − 1

l

]
are convergent.

Also, Proposition 13 states that
N∑
l=i

Wl − 1

l
converges to a Gumbel distribution. This

proves the approximation (94).



45

By substituting (94) into (93), the statistical sum is expressed as follows:

Zn(β) =
N∑
i=1

exp

{
βA(n)f

(
Wi

i
+ ...+

WN

N

)}

=
N∑
i=1

exp
{
βA(n)f

(
lnN − ln i+O(1)

)}
(97)

5.3.2 Computation of Limits

In this section, we compute the free energy for i.i.d. random variables in the

statistical sum, (79), which are functions of standard exponential random variables,

such that Xi = f(Yi) (90). We make use of the simplified statistical sum formula (97)

and obtain the asymptotic behavior of the free energy. At the very end, we show two

phase transitions for the mixed Weibull distribution.

5.3.3 The Weibull-Type Distribution

Xi = f(Yi) = Y
1/%
i %1/% and Xi’s are i.i.d. random variables because Yi’s are i.i.d

standard exponential random variables as in (90). It is apparent that Xi’s have the

Weibull distribution

P{Xi > a} = P

{
Yi >

a%

%

}
= exp

{
−a

%

%

}
(98)
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where a ≥ 0. Also, we select A(n) = n1/%
′

in the statistical sum (79). The statistical

sum can be expressed as

Zn(β) =
N∑
i=1

exp{βA(n)Xi}

=
N∑
i=1

exp
{
βn1/%

′

%1/%
(
n− ln i+O(1)

)1/%}
(99)

by using (80) and (94). Also, the Euler-MacLaurin series gives us the approximate

integral of this series

N∑
i=1

exp
{
βn1/%

′

%1/%(n− ln i+O(1))1/%
}

=

∫ N

1

exp
{
β%1/%n1/%

′

(n− lnx+O(1))1/%
}
dx+O(exp

{
β%1/%n

}
) (100)

Note that for some c > 0, we can find bounds on ZN(β), such that

N1∑
i=1

exp
{
βn1/%

′

%1/% (n− ln i− c)1/%
}
< ZN(β) <

N∑
i=1

exp
{
βn1/%

′

%1/% (n− ln i+ c)1/%
}

where N1 = [en−c]. The integral in (100) is computed by replacing O(1) with c in

Appendix A using the Laplace method. This helps us find the lower and upper bounds

of ZN(β). As they only differ by a constant multiplier, these constant multipliers

cancel out in the limit so as to give the free energy as

χ(β) = lim
n→∞

logZn(β)

n
=


1 +

β%
′

%′
, if 0 < β < βc = %1/%

′
,

β%1/%, if β ≥ βc .

Note that χ(βc) = % and χ′(βc) = 1



47

5.3.4 Relatively Heavy-Tailed Distribution

Let xi = f(Yi) =
1 + Yi

ln(1 + Yi)
, where Yi s are i.i.d standard exponential random

variables (90). Note that these random variables have heavier tails than the Weibull

distribution.

P{Xi > a} = P

{
1 + Yi

ln(1 + Yi)
> a

}
= exp

{
−a ln a− a ln ln a+O(1)

}
(101)

We select A(n) = lnn in the statistical sum (79). By using (80) and (94), the

asymptotic of the statistical sum can be expressed as

Zn(β) =
N∑
i=1

exp{βA(n)Xi} ∼=
N∑
i=1

exp

{
β lnn

1 + n− ln i

ln(1 + n− ln i)

}
∼=

N∑
i=1

exp {β (1 + n− ln i)} = eβn
N∑
i=1

eβ

iβ
(102)

The sequence of the sums,
N∑
i=1

eβ

iβ
, converges to the finite limit,

∞∑
i=1

eβ

iβ
iff β > 1.

When β < 1, we use the Euler-MacLaurin series to approximate the asymptotic of

the the series in terms of an integral. It gives us

N∑
i=1

eβ

iβ
∼= eβ

∫ N

1

1

xβ
dx ∼= eβ

exp{n(1− β)}
1− β

(103)

When β = 1, we again use the Euler-MacLaurin series to approximate the asymptotic

of the series in terms of an integral. It gives us

N∑
i=1

eβ

i
∼= e

∫ N

1

1

x
dx ∼= e lnN (104)
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Then, the free energy is given as

χ(β) = lim
n→∞

logZn(β)

n
=


1, if 0 < β ≤ βc = 1,

β, if β > βc .

Also, note that χ(βc) = 1, χ′(βc) = 1 and they are continuous.

5.3.5 The Double Exponential Distribution

Let Xi = f(Yi) = lnYi where Yi s are i.i.d random variables with the standard

exponential distribution (90). Note that these random variables have lighter tails

than the Weibull distribution.

P{Xi > a} = P {lnYi > a} = exp {−ea} (105)

for a ≥ 0. We select A(n) =
n

lnn
in the statistical sum (79). By using (80) and (94),

the asymptotic of the statistical sum can be expressed as

Zn(β) =
N∑
i=1

exp{βA(n)Xi} ∼=
N∑
i=1

exp
{
β

n

lnn
ln(n− ln i)

}

We express the upper and lower bounds of χn(β) =
logZn(β)

n
for large n in the

following inequality

logN1

n
+
β

n

lnn
ln(n− logN1)

n
<
logZn(β)

n
<
logN

n
+
β

n

lnn
ln(n)

n
(106)

where N1 = [eλn] for λ < 1. Simplification of this inequality gives us

λ+ β
n+ ln(1− λ)

n
<
logZn(β)

n
< 1 + β (107)
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for large n. Because λ is arbitrarily close to 1, we deduce that

lim
n→∞

logZn(β)

n
= 1 + β

for any β > 0.

5.4 The Mixed Weibull Distribution

We repeat the experiment of selecting mixed Weibull-type random variables. In

this experiment, we either choose the Weibull-type random variable with probability

p or the shifted Weibull-type random variable with probability q = 1− p. As a result

of this experiment, the random variables in the statistical sum (93) can be expressed

as

X =


Y1, with probability p and P (Y1 > x) = exp

{
−x

%

%

}
an1/% + σY2, with probability q and P (Y2 > x) = exp

{
−x

%

%

}
Also, assume that we repeat this experiment N = [en] times. We obtain vn Weibull

and N − vn shifted Weibull random variables. Such a mixed distribution has the

following interpretation: Out of N i.i.d. random variables, {X1, X2, ..., Xi, ...XN}, in

the statistical sum, the set of indexes is the union of vn successes, Y j
1 , j = 1, 2, ..., vn,

and N − vn failures, an1/% + σY k
2 , k = 1, 2, ..., N − vn. Here, vn has the binomial

distribution B(N, p). Also, A(n) = n1/%
′
. Then, we can express the statistical sum
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(93) as follows.

Zn(β) =
N∑
i=1

exp {βA(n)Xi}

=
vn∑
j=1

exp
{
βA(n)Y j

1

}
+

N−vn∑
k=1

exp
{
βA(n)

(
an1/% + σY k

2

)}
=

vn∑
j=1

exp
{
βA(n)Y j

1

}
+ exp {aβn}

N−vn∑
k=1

exp
{
βA(n)σY k

2

}
= Z1

n(β) + Z2
n(β)

It means that the exponent in the sum varies depending on the result of the ex-

periment. If the Weibull-type sample is selected in a single draw, the exponent is

βA(n) = βn1/%
′
. If the shifted Weibull-type sample is selected in the same single

draw, the exponent is σβA(n) = βn1/%
′
σ. When σ is different than 1, this gives two

critical points in the free energy.

For the mixed Weibull case, we have vn successes as a result of random sampling.

We assume that vn, Y j
1 , Y k

2 are independent. In the previous section 5.3.3, we obtained

the free energy for the Weibull case. We can still make use of this section’s results for

Y j
1 ’s. For Y k

2 ’s, we simply use the same formulation from 5.3.3 by replacing β with

σβ. Using the independence of the random variables, it can be stated that

Z1
n(β) =

vn∑
i=1

eβn
1/%
′
Xi ∼=

p[en]∑
i=1

eβn
1/%
′
Xi

∼=


exp

{(
1 +

β%
′

%′

)
n

}
, if β < %1/%

′
= βcritical1

exp
{
β%1/%n

}
, if β ≥ βcritical1

In the case of shifted samples, we obtain:
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Z2
n(β) = eaβn

[en]−vn∑
i=1

eβn
1/%
′
σXi ∼= eaβn

(1−p)[en]∑
i=1

eβσn
1/%
′
Xi

∼=


exp

{(
1 + aβ +

(βσ)%
′

%′

)
n

}
, if β <

%1/%
′

σ
= βcritical2

exp
{(
aβ + βσ%1/%

)
n
}
, if β ≥ βcritical2

To be able to calculate the free energy, χ(β) = lim
n→∞

lnZn(β)

n
, we make use of the

following inequality

max(Z1
n(β), Z2

n(β)) < Zn(β) < 2 max(Z1
n(β), Z2

n(β))

ln max(Z1
n(β), Z2

n(β)) < lnZn(β) < ln 2 + ln max(Z1
n(β), Z2

n(β))

lim
n→∞

ln max(Z1
n(β), Z2

n(β))

n
< lim

n→∞

lnZn(β)

n
< lim

n→∞

ln 2 + ln max(Z1
n(β), Z2

n(β))

n

which implies that

lim
n→∞

lnZn(β)

n
= lim

n→∞

ln max(Z1
n(β), Z2

n(β))

n

For large n, when σ > 1

χ(β) = lim
n→∞

lnZn(β)

n

∼=



1 + max

(
β%
′

%′
, aβ +

(βσ)%
′

%′

)
, if β <

%1/%
′

σ
= βcritical2

max(1 +
β%
′

%′
, aβ + βσ%1/%), if βcritical2 ≤ β < %1/%

′
= βcritical1

βmax(%1/%, a+ σ%1/%), if βcritical1 ≤ β
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For large n, when σ < 1

χ(β) = lim
n→∞

lnZn(β)

n

∼=



1 + max

(
β%
′

%′
, aβ +

(βσ)%
′

%′

)
, if β < βcritical1

max

(
%1/%, 1 + aβ +

(βσ)%
′

%′

)
, if βcritical1 ≤ β < βcritical2

βmax
(
%1/%, a+ σ%1/%

)
, if βcritical2 ≤ β



CHAPTER 6: CONCLUSION

We studied the limit theorems for the sum of random exponentials and their ap-

plications. The LLN, the CLT and the convergence to the stable distribution under

additive and multiplicative factors have been analyzed for a new class of distribution:

the double exponential distribution. This can be extended to other families of dis-

tributions. In terms of application, we reviewed the ruin probability estimation of

insurance portfolios using a sample based approach. The LLN and the CLT are the

main limit theorems. Another application is the REM from the statistical physics.

We derived the free energy for the REM through a different methodology when the

random variables in the partial sum could be expressed as an increasing function of

standard exponential random variables.

Classical studies on the ruin probability estimation of insurance portfolios have been

done based on the assumption that the number of claims goes to infinity without any

dependence to a parameter. In the fourth chapter, our approach is more controlled

by defining the number of claims as a function of the adjustment coefficient and then

sending it to infinity. The sample based ruin probability estimates should give better

estimates on the insurance portfolios. Because this study is done from a theoretical

perspective and there is no empirical data, we do not know how precise our method

would be in practice compared to the existing estimation methods. This can be

addressed in an empirical paper with real life insurance data. If this approach is
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tested and yields consistent results with the market data, the insurance companies

could use a more accurate approach based on our results. Also, we assumed that the

claims have the Weibull-type distribution. This can be reformulated to different class

of distributions depending on the claim distributions.

We worked with probability limits for the REM in the fifth chapter. On the other

hand, our new approach was about the representation of random variables in terms

of standard exponential random variables and the application to the REM. Our con-

tribution in this subject is in terms of the simplification of the computation for the

free energy. Also, this method can be applied to more general class of distributions.
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APPENDIX A: THE ASYMPTOTIC BEHAVIOR OF THE WEIBULL

INTEGRAL FOR THE REM

Integral for the Weibull Random Variable

We claim that the following integral’s asymptotic equivalent for large n is as follows

ln I(β) = ln

∫ N

1

exp
{
β%1/%n1/%

′

(n− lnx+ c)1/%
}
dx

=


n

(
1 +

β%
′

%′

)
+ o(n), if 0 < β < βc = %1/%

′
,

nβ%1/% + o(1), if β ≥ βc.

(108)

where N is defined in (80).

Proof. Let y = lnx− c and y = nz. These substitutions provide us with:

∫ N

1

exp
{
β%1/%n1/%

′

(n− lnx+ c)1/%
}
dx

= nec
∫ 1

0

exp
{
n
(
z + β%1/%(1− z)1/%

)}
dx

where we define g(z) = z + β%1/%(1− z)1/% and it follows that

g′(z) = 1− β

%1/%
′
(1− z)1/%

′

Then, the conditions below are satisfied:

If β < %1/%
′

= βc, then g(z) has a maximum at zl = 1− β%
′

%
.

If β ≥ %1/%
′

then g(z) has a maximum at zl = 0, as our integration region is restricted

to (0, 1). Then, the asymptotic of the integral can be driven using the Laplace Method.
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It is expressed as:

ln I(β) =


n

(
1 +

β%
′

%′

)
+ o(n), if 0 < β < βc = %1/%

′
,

nβ%1/% + o(n), if β ≥ βc.

Another Integral with the Weibull Distribution and the LLN

Suppose that Xj’s have the Weibull distribution (6). We are interested in finding the

asymptotic equivalent of

SNn(τn) =

Nn(τn)∑
j=1

Xje
τnXj (109)

for large τn, which is used in (73). First, we prove the asymptotic equivalence of

integral E[Xje
τnXj ], then the LLN. Nn(τn) is given in (17).

Using the substitution x = t%
′−1y, we obtain

E[XrertX ] =

∫ +∞

0

XrertXfX(x) d(x)

= tr%
′
+%
′−r
∫ +∞

0

y%−1+r exp

{
rt%
′
(
y − y%

r%

)}
d(y)

Also, g(y) = y − y%

r%
has a maximum at y = r1/(%−1) and the following conditions are

satisfied:

g(r1/(%−1)) = r1/(%−1) − r%/(%−1)

r%
= r%

′−1/%
′

g
′
(r1/(%−1)) = 0

g
′′
(r1/(%−1)) = −(%− 1)r1/[(%−1)(%−2)]/r < 0
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Then we can find the asymptotic expression using the Laplace method:

logE[XrertX ] =
(rt)%

′

%′
+ smaller terms

as t→∞. In the limit, we can see that logE[XetX ] ∼= t%
′
/%
′

for large t.

Theorem 15. The Law of large numbers (LLN),

SNN (τn)

E[SN(τn)]

p→ 1. (110)

Assume that Xj’s in the statistical sum (109) have the Weibull distribution (6).

If λ > %
′ − 1 = λ1 (17), the LLN holds.

Proof. Set lnE[Xje
τnXj ] = M(τn) and

S∗Nn(τn) =
SNn(τn)

E[SNn(τn)]
=

1

Nn(τn)

Nn(τn)∑
j=1

Xje
τnXj−M(τn)

It is sufficient to show that limt→∞E
∣∣S∗Nn(τn)− 1

∣∣r = 0 for some r > 1.

E|S∗Nn(τn)− 1|r = E

∣∣∣∣∣
∑Nn(τn)

j=1 Xje
τnXj−M(τn)

Nn(τn)
− 1

∣∣∣∣∣
r

= E

∣∣∣∣∣
∑Nn(τn)

j=1

[
Xje

τnXj−M(τn) − 1
]

Nn(τn)

∣∣∣∣∣
r

= Nn(τn)−rE

∣∣∣∣∣∣
Nn(τn)∑
j=1

[
Xje

τnXj−M(τn) − 1
]∣∣∣∣∣∣
r

Using the Bahr-Esseen inequality and (x+ 1)r ≤ 2r−1(xr + 1), where (x > 0, r ≥ 1),

Nn(τn)−rE

∣∣∣∣∣∣
Nn(τn)∑
j=1

[
Xje

τnXj−M(τn) − 1
]∣∣∣∣∣∣
r

≤ 2Nn(τn)−r
Nn(τn)∑
j=1

E
∣∣Xje

τnXj−M(τn) − 1
∣∣r

≤ 2Nn(τn)1−rE
∣∣Xje

τnXj−M(τn) + 1
∣∣r ≤ 2Nn(τn)1−r2r−1E

∣∣Xr
j e
rτnXj−rM(τn) + 1

∣∣
< 2rNn(τn)1−rE

(
Xr
j e
rτnXj

)
e−rM(τn) + 2rNn(τn)1−r (111)
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Then

lim inf
n→∞

[
(r − 1) logNn(τn)

M(τn)
−
E
(
Xr
j e
rτnXj

)
M(τn)

+ r

]
= λ(r − 1)−

(
r%
′

− r
)

= vλ(r)

By Lemma 1, we can choose r > 1 such that vλ(r) > 0 when λ > λ1 =
%
′

%
= %

′ − 1

and this implies that the right hand side converges to 0.

This concludes that

SNn(τn) =

Nn(τn)∑
j=1

Xje
τnXj ∼= Nn(τn)E[Xje

τnXj ]

∼= Nn(τn) exp

{
τ %
′

n

%′

}
= Nn(τn) exp{H(τn)} (112)

in probability for large n and H(τn) is the cumulant generating function of the Weibull

distribution.
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APPENDIX B: APPLICATION OF THE LAPLACE METHOD TO WEIBULL

AND DOUBLE EXPONENTIAL DISTRIBUTIONS

The Weibull Distribution

Suppose that X has the Weibull distribution (6). We are interested in finding the

asymptotic equivalent of the cumulant generating function (12). Using the substitu-

tion x = t%
′−1y, we obtain

E[etX ] =

∫ +∞

0

etXfX(x) d(x)

= t%
′
∫ +∞

0

y%−1 exp

{
t%
′
(
y − y%

%

)}
d(y) .

Also, g(y) = y− y
%

%
has a maximum at y = 1 and the following conditions are satisfied:

g(1) = 1− 1

%

g
′
(1) = 0

g
′′
(1) = −%+ 1 < 0 .

Then, we can find the asymptotic expression using the Laplace method:

H(t) = logE[etX ] =
t%
′

%′
+
%
′

2
log(t) +

1

2
log(

2π

%− 1
) + o(1)

as t→∞. In the limit we can see that H0(t) = t%
′
/%
′
.

The Double Exponential Distribution

1. We calculate the cumulant generating function (12) for large t, when X has the

double exponential distribution (8). The density of this distribution is expressed
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as

fX(x) = exp{1 + x− ex}

for x > 0. Use the substitution x = y + ln(t+ 1) to obtain

E[etX ] =

∫ +∞

0

etXfX(x) d(x)

= exp {1 + ln(t+ 1) + t ln(t+ 1)}
∫ +∞

− ln(t+1)

exp {(t+ 1)(y − ey)} dy

Also, g(y) := y − ey has a maximum at y = 0 from g
′
(y) = 1 − ey = 0. Then we

can apply the Laplace method to obtain:

H(t) = logE[etX ] ∼= t ln(t)− t+
ln t

2
+ smaller terms as t→∞

2. We evaluate integrals of type

∫ +∞

−M1(t)

exp {M2(t)(y − ey)} 1{y≤K} dy

using the Laplace transform, where K < 0 is the maximum point of the region

of integration and M1(t),M2(t) → ∞ as t → ∞. For large t, this integral is

equivalent to ∫ K

−M1(t)

exp {M2(t)(y − ey)} dy

Because g(y) = y − ey has a maximum at y = 0, g′(y) > 0 for negative y and the

maximum point is outside of the interval of integration, the major contribution to

the integral comes from the neighborhood of the boundary point K. Then, the
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Laplace method gives us

∫ K

−M1(t)

exp {M2(t)(y − ey)} dy ∼= exp
{
M2(t)(K − eK)

} 1

M2(t) | g′(K) |

3. We evaluate integrals of type

∫ +∞

0

exp {M2(t)(y − ey)} 1{y>K} dy

using the Laplace transform, where K > 0 is the maximum point of the region of

integration and M2(t)→∞ as t→∞. For large t, this integral is equivalent to

∫ ∞
K

exp {M2(t)(y − ey)} dy

Because g(y) = y − ey has a maximum at y = 0, g′(y) < 0 for positive y and the

maximum point is outside of the interval of integration, the major contribution to

the integral comes from the neighborhood of the boundary point K. Then, the

Laplace method gives us

∫ ∞
K

exp {M2(t)(y − ey)} dy ∼= exp
{
M2(t)(K − eK)

} 1

M2(t) | g′(K) |

4. We derive the asymptotic equivalent of K =
lnB(t) + ln τ

t
− ln(at+ 1) for large t,

by (15),

K =
lnB(t) + ln τ

t
− ln(at+ 1) = lnλ+ ln t+

ln τ

t
− ln(at+ 1)

∼= ln(λ/a) +
ln τ

t
− ln

(
1 +

1

at

)
.
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5. We simplify NE[Y a1{Y≤τ}] using the result (35)

NE[Y a1{Y≤τ}]

=
N(t)

Ba(t)
exp{(at+ 1) ln(at+ 1)} exp

{
(at+ 1)(K − eK)

} e

(at+ 1) | g′(K) |

Assume that λ/a < 1. Using (15), (18), and K = ln(λ/a) +
ln τ

t
− ln

(
1 +

1

at

)
,

we obtain

NE[Y a1{Y≤τ}] = eλt
(at+ 1)at+1

(λt)at
exp

{
(at+ 1)(K − eK)

} e

(at+ 1) | g′(K) |

= aet

(
aaeλ

λa

)t
exp

{
(at+ 1)(K − eK)

} e

(at+ 1) | g′(K) |

= aet

(
aaeλ

λa

)t(
λ

a

)at+1

τa−λe−1−tλ
e

(at+ 1)|g′(K)|

=
λτa−λe

|g′(K)|

where g(y) = y − exp{y} and |g′(K)| ∼= 1− λ/a .

6. We then simplify NE[Y 1{Y≤τ}] using the result (41)

NE[Y 1{Y≤τ}]−
A(t)

B(t)

=
N(t)

B(t)
exp{(t+ 1) ln(t+ 1)} exp

{
(t+ 1)(K − eK)

} e

(t+ 1) | g′(K) |

where A(t) is given in (16a) for 0 < λ < 1. Using (15), (18), and

K = lnλ+
ln τ

t
− ln

(
1 +

1

t

)
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we obtain

NE[Y 1{Y >τ}] = eλt
(t+ 1)t+1

(λt)t
exp

{
(t+ 1)(K − eK)

} e

(t+ 1) | g′(K) |

= et

(
eλ

λ

)t
exp

{
(t+ 1)(K − eK)

} e

(t+ 1) | g′(K) |

= et

(
eλ

λ

)t
λt+1τ 1−λe−1−tλ

e

(t+ 1)|g′(K)|

=
λτ 1−λe

|g′(K)|

where g(y) = y − exp{y} and |g′(K)| ∼= 1− λ .


