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ABSTRACT

NAKUL SHARAD TANNU. A discrete element approach to predicting the uniaxial
compressive response of plain concrete. (Under the direction of DR. HARISH P.

CHERUKURI and DR. MIGUEL A. PANDO)

Discrete element method (DEM) has become the method of choice for modeling

the mechanical response of materials with granular structure. The method consists

of representing the material as a collection of particles that interact with each other

by transmitting forces through contact between neighboring particles. In DEM, the

particles are typically idealized as rigid and the contact forces and associated defor-

mations are modeled through spring-damper systems between the contact particles

with various degrees of sophistication and complexity including particle bonding and

cohesion necessary for concrete materials. The deformations due to contact include

normal displacements as well as tangential displacements. The tangential forces can

cause rolling, sliding as well as torsion. For bonded particles, the normal forces can

be tensile or compressive. The normal and tangential responses due to applied forces

or displacements are controlled by a multitude of user-specified parameters such as

the damping coefficients, normal and tangential stiffnesses, tensile and compressive

strengths and geometric factors such as the size and shape of the particles, as well as

the number and packing arrangement of the particles.

This thesis consists of two parts. In the first part, a parametric study of two-

particle and three-particle systems was conducted to understand the effect of various

DEM parameters on the system response. The DEM component of the commercial

finite element software package LS-Dyna was used for the numerical simulations. The
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parallel-bond contact model was used for capturing the interaction between the par-

ticles. The second part of the thesis consists of modeling the uniaxial compressive

response of an unreinforced concrete cylinder using a dense packing of spherical parti-

cles coupled by parallel-bonds. Guided by the results of the first part, the sensitivity

of the predicted results for concrete response to particle size and influence of various

parallel-bond parameters on the bulk response was studied to produce a calibrated

model that shows to be capable of producing realistic uni-axial compressive behavior

as observed in experiments. The results show that the maximum compressive stress

in the concrete cylinder largely depends on the strength of parallel bonds and initial

particle arrangement or sample void ratio. The axial strain to failure, as predicted by

the DEM model considered, is largely dependent on the bond modulus and to a lesser

extent on the particle size. Unlike other numerical techniques, particle size does not

act as a free parameter that controls resolution; however, for uni-axial compression

problem it affects the overall damage process.
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CHAPTER 1: INTRODUCTION

1.1 Background

The discrete element method (DEM) is a numerical technique that has become

the method of choice for studying the mechanical response of materials with granular

structure at multiple scales. DEM models can be used to study breakage and fracture

location and also to predict macroscale response of a large variety of materials. The

method requires several input parameters that characterize the interaction between

the particles in addition to the specification of distribution of the particle sizes and

time-step size. In this thesis, the DEM is used to study the effect of many of these

parameters on the response of a few elementary DEM systems followed by an applica-

tion of the method to study the uniaxial compressive response of plain (unreinforced)

concrete. This section provides some background information on concrete, and the

discrete element method.

Concrete is the most commonly used man-made material in the world, and consists

of cementitious man-made material composed of cement, gravel, and water. Concrete

has been reported as being used in construction by Egyptians as early as 1950 B.C.

[2]. The widespread use of concrete today in the modern world is primarily due

to its high compressive strength to cost ratio. A dditionally the main constituents

of concrete can be easily varied to modify its overall strength, durability and other
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properties.

The uni-axial compressive behavior of concrete materials can be studied mainly

with three different approaches: physical testing, analytical methods, and numerical

techniques. Use of the physical tests is the most reliable and trusted approach. The

applicability of these experiments accounts for several drawbacks and limitations.

It is often the preferred approach in construction QA/QC, however cost and other

drawbacks may sometimes limit its use. Analytical methods are also popular to

predict the response of concrete structures due to various loads. This approach often

involves use of equations that are derived from empirical correlations and are limited

in their applicability and thus, the method has to be used with caution.

The third approach is to use numerical methods. Numerical methods are relatively

easy to implement and more flexible than physical testing. The advantage of computer

simulations is that it has the flexibility to allow variation of different input parameters

and to investigate sensitivity of key variables which allows precise control over the

predicted material properties. It also allows study of the breakage process that can

be carefully observed as the crack-producing flaws progresses, this crack propagation

is expensive to replicate experimentally as the actual process occurs very rapidly

and requires specialized imaging techniques [25]. Numerical models are based on

the concept of representation of the material that in general can be either continuous

mass or discrete/granular particles. Numerical modeling of cementitious material like

concrete can be done using either continuous or discrete models.

Numerical studies of the uniaxial compressive behavior of plain concrete using

continuum-based methods such as the finite element (FE) method have been very
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popular since the development of FE methods for the past 67 years [1]. Most com-

mercial FE software packages include nonlinear constitutive models for concrete be-

havior (LS-Dyna, ABAQUS, PLAXIS). Although FE is a popular approach to predict

mechanical behavior of concrete, modeling of fracture of heterogeneous solids is a dif-

ficult problem to solve numerically, due to the creation of continuous motion of new

surfaces [17]. Also in conventional FE methods element distortion is a major concern

due to large displacements in granular materials like concrete.

In contrast, the discrete approach using DEM is much more recent. The DEM

approach has the advantage over the FE continuum approach in that it can relatively

better capture the mechanical behavior of an inherently discrete material such as

concrete. DEM was first proposed by P. A. Cundall for studying large-scale move-

ments in blocky rock system [7]. This approach was later studied and subsequently

used to develop a bonded particle model for rock (BPM) by D.O. Potyondy and P.A.

Cundall [26]. In this thesis, the bonded particle model forms the basis for studying

the response of Concrete under uniaxial compression.

1.2 Literature review

DEM is considered to be computationally more expensive relative to other nu-

merical techniques. However, with the increase in computational power in last two

decades, DEM has been a popular choice in various areas such as geotechnical engi-

neering, mining, civil engineering, powder metallurgy, chemical engineering, pharma-

ceutical, and food handling industries. The method continues to grow in popularity

due to advances in computing power and numerical algorithms for nearest neighbor
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searching, that have allowed DEM models to numerically simulate millions of parti-

cles on a single processor [33]. This increased ability makes DEM more suitable for

simulating structures consisting of a large number of particles like soil, grains, and

masonry structures. The use of DEM technique first started with the study of earth

materials by Cundall & Strack [9] who explored the study of granular media with no

cohesion. Liu et al. [18]; Yao & Anandarajah [31] examined DEM models of soil with

cohesion, Rock problems modeled with DEM have been reported by Moon et al. [21];

Potyondy & Cundall [26]. Similarly DEM applied to asphalt has been described by

You et al. [32].

In the context of soil with cohesion, cohesion is defined as a weak bond between

two particles due to the surface tension of water molecules. Typically, cohesion is

used in modeling of wet soil accompanying with shear tests and biaxial tests. Tsuji

et al. [29], studied the soil moisture condition using liquid bridges between particles

and measured connections between bulldozer blade and soil.

The study of earth-moving machines, involving analysis of tool-rock interfaces,

often requires hybrid finite-discrete element numerical techniques to accommodate

large displacements of a granular material and the relatively small deformation of the

tool. B. Aresh [3] studies the mechanics of material removal in rock cutting using

ELFEN; a hybrid finite-discrete element commercial package. J. Rojeck [27] discusses

the modeling of rock cutting using DEM, while the tool is represented as a rigid body.

For a numerical technique to qualify as a discrete element method, Cundall and

Hart define essential elements that a DEM numerical scheme must posses, as the

following [8]:
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• Must recognize new contacts automatically as the calculation progresses.

• Must allows finite displacements and rotations of discrete bodies, including

complete detachment.

The numerical scheme will be limited to small numbers of bodies as the interactions

are known in advance and no new contacts are automatically detected. The second

element is important otherwise a DEM numerical scheme will fail to reproduce some

important mechanisms in a discontinuous medium, including damage development

within the body.

A discrete element model is made up of two basic components: the elements and the

contacts between them. The elements can represent individual physical units of the

analyzed system or collections of the individual units. The elements can have different

shape, sizes and distribution over the domain. From a computational point of view

circular for 2D and spherical in 3D elements are the easiest to handle [13]. Depending

on the application and contact model used, the elements can be either perfectly rigid

or deformable. An element is said to be in contact when the distance between two

elements - suitably defined - is zero. However, a distance less than zero represents

an overlap between the two elements, and the magnitude of the overlap defines a

compressive force acting on them. Frictional force, tangential and normal stiffness,

damping coefficient are then incorporated within the elemental contacts to model the

overall bulk behavior. Other contact forces such as bending moment, tension and

torsion are possible using the Bonded Particle Method (BPM), which serves as a

major contribution to the behavior of cementitious materials like concrete.
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1.2.1 Bonded particle models in DEM

Different bonded particle models exist today like those proposed by Schneider et al.

[28] and Potyondy and Cundall [26]. These have been developed and implemented in

various DEM software, e.g., LS-Dyna (Livermore Software Technology Corporation),

EDEM (DEM Solutions Ltd), Particle Flow Code (PFC) (Itasca Consulting Group),

and DEMPack (CIMNE Edifici). The four features that most packages share and

which influence the way Bonded Particle Method is modeled are listed as follows:

• Particle generation and distribution

• Initialization of bonds

• Contact model

• Bond failure

Each of these features are discussed in detail in the following subsections.

1.2.2 Particle generation and distribution

As the feature name implies, a collection of particles representing the subject ma-

terial is created. Particle sizes are user specified and many packages allow for nonuni-

form particle sizes and multiple shapes of the particles. In the present work, the

particle shape is restricted to spherical. Thus an element corresponds to a spherical

particle for this study. The approach is to model the geometry with discrete particles

as close as elements corresponding to the units of real structure. In the cases of sand,

soil and concrete, several thousands of densely packed particles that represent a huge
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number of real particles, have to be defined randomly. There are several particle

generation techniques used in DEM simulation. A brief description of three of the

most widely used techniques is presented below (Z. Gyurko [13]).

1. Dynamic techniques : The elements initially located far from each other or ran-

domly generated at a user defined planer surface usually known as particle gen-

eration factory surface and are pushed into a significantly denser arrangement

by gravity or isotropic compression. A closed domain may not be necessary how-

ever a domain of the required geometry shape may be required for the particle

rearrangement. Figure 1a shows the generation of particles from top factory

surface while particles are allowed to arrange themselves due to gravity. This

method is computationally expensive as a DEM solution is required and new

elements are generated simultaneously.

2. Constructive algorithms : These algorithms are purely based on geometrical

calculations. LS-Dyna uses advancing front approach [11] to generate particles

in a closed domain. With the advantage that no secondary rearrangement is

required, these algorithms are more efficient than dynamic techniques. In this

method, the spheres of given diameters, specified by the user, are placed at

specific positions, using advancing front algorithm, in the domain of interest.

The algorithm ensures that no newly placed particle intersects with a previous

one, if any intersection or overlap is detected, then the new particle is rejected,

and the algorithm places the particle into another part of the domain. This

process runs until the algorithm returns a high number of unsuccessful tries.



8

When no further particle is accepted in the domain, the domain is considered

as completely filled. Since this method requires a closed domain to be specified,

element generation in bulk for open geometries, like flow over a conveyor belt,

is not possible. Figure 1b shows a rectangular domain filled using advancing

front approach.

3. Collective rearrangement techniques : In these methods, for a specific domain,

the user defines a fixed total number of particles during the sample preparation

process. A closed domain may be required for models having complex shapes.

At the first step, all the particles are placed randomly and overlaps are allowed

within elements. The next step during the process is to displace all the par-

ticles in contact equal to the amount of their overlap. Since this method is a

two-step process, collective rearrangement techniques similar to dynamic meth-

ods, are rather time-consuming. Figure 1c shows a representation of collective

rearrangement technique.

For a cementitious material like concrete, the size of each particle and the total

number of particles in an actual material is a fundamental phenomena for accurately

modelling a model to be studied. It is highly impossible to represent each individual

grain of actual material with a discrete particle. However, it is important that there

is a sufficient number of elements in a simulation to ensure a high enough resolution

to study material behavior.
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(a) Dynamic technique

(b) Constructive algorithm

(c) Collective rearrangement techniques

Figure 1: Particle generation techniques.
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In the case of concrete materials, this will relate to the size of cracks that can

develop. The particle size distribution for spherical particles can be divided into

three categories as follows:

1. Mono-disperse: This uses one size of particle for the entire sample [30].

2. Bi-disperse: This uses two sizes of particle for the entire sample [6].

3. Poly-disperse: This uses multiple sizes of particle for the entire sample [23].

1.2.3 Initialization of bonds

Bond models differ from non-bonded DEM models by the inclusion of a mechanism

that represents the cement joint between grains found in cementitious materials. A

specific criterion is required to form a bond between two particles. For example, the

maximum distance between the two particles is commonly used as a bond formation

criterion. If neighbouring particles are at a distance equal to or less than this specified

maximum distance the bonds will be formed. These bonded contacts can then be

treated accordingly to calculate relative resisting forces unlike a non-bonded contact.

If the value of the parameter that defines the bonding criteria is reduced, the number

of bonds will reduce, and so the material being represented will behave more granular

in nature [10]. The BPM model requires the geometric dimensions of the bond to

calculate the force-displacement law for a single bond between two particles. For

spherical particles, the bond is assumed to be a cylinder of uniform cross section.

The length of the bond is taken as the straight line distance between particle centres.
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Figure 2: Methods in determining the cross sectional geometry of a bond. (a) Arith-
metic mean of particle radii, (b) Minimum particle radius, (c) Harmonic mean of
particle radii. (Adapted from [5])

Shown in Figure 2 the three widely used methods to determine the radius of the bond

are:

1. Arithmetic mean of particle radii.

2. Minimum particle radius.

3. User input value.
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1.3 Thesis objectives

The objectives of the present study are as follows:

1. To analyze the influence of parallel-bond parameters on material macro-properties.

For this purpose, elementary systems involving only two and three particles are

considered..

2. To develop a 3D DEM model for concrete cylinder under uni-axial compression

test.

3. To Initialize bonds between the particle of the model using the BPM method.

4. Using quantitative data of simpler models, calibrate the 3D model to the desired

strength.

5. To validate and verify the numerical stress-strain curves with known experi-

mental data.

6. To calculate the numerical lateral and axial strains and calculate volumetric

strain of the model.

7. To analyse the overall damage and fracture patterns predicted by the DEM

models.
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1.4 Organization of thesis

The rest of the thesis is divided into six chapters as follows. Chapter 2 presents

a general background on the working of DEM. The theory of non-bonded as well as

bonded contact models are described in detail. Chapter 3 presents the implementation

of bonded contact model in LS-Dyna and describes the parameters required for the

formation of a bond. With the LS-Dyna in-built particle generation module, the

particle packing density is studied to optimize the particle size required for subject

modeling. Parameters for bond initialization and bond failure are further discussed.

Chapter 4 presents a parametric study to understand the influence of input parameters

of bonded contact model on the bulk response material response. The DEM models

used are two-particle and three-particle models and various parameters are varied

to study the response of these systems. Chapter 5 describes the model geometry,

loading configuration and boundary conditions. It also presents the calibrated model

with its values, using the results from parametric study from Chapter 4. Chapter 6

discusses the bulk mechanical properties such as strain at failure, Poisson’s ratio and

volumetric strains for each sample with varying particle size. The effect of particle

size on these quantitis is also presented. Overall damage behavior and failure patterns

on the samples are investigated. Chapter 7 summarizes the overall conclusions that

can be drawn from the present study and recommendations for future work are made.



CHAPTER 2: THE DISCRETE ELEMENT METHOD

2.1 General Background on DEM

In the Discrete Element Method, the body of interest is discretized into a collec-

tion of discrete, rigid particles. These particles contain all the mass of the system and

interact with each other at their contacts, the particles may overlap and the resulting

interaction force is directly proportional to the magnitude of overlap. A contact is

necessary for particles to interact in the case of non-bonded particles however not re-

quired in the case of bonded particles. In the case of modeling cementitious materials

such as concrete, a contact can still exist between two particles even if there is no

substantial overlap between them. The overlap of particles represents the deforma-

tion of surfaces that occurs when grains come into contact as in the physical material.

It is assumed that this overlap area is relatively small compared to the dimensions

of the corresponding particle. DEM provides a three-stage calculation cycle which

calculates the dynamic interaction of each element in contact. The three stages are;

contact detection, calculation of interaction forces and numerical time integration.

The process flow chart for overall working of DEM is shown in Figure 3. Once the

contacts are determined, the internal forces resulting from particle interactions are

determined using the force-displacement laws that are dictated by the choice of the

contact model. Newton’s second law of motion is used to calculate acceleration for
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each element based on the summation of internal and external forces. These acceler-

ations are then time integrated to calculate new positions of each element, with an

advancement in time step. The new positions now corresponds to new contacts. This

cycle continues until a specified amount of end time is reached.

This study focuses on the bonded particle models, since bonded contact models

are the most commonly used models that are capable of representing the bonding

between particles in actual material as in cementitious materials like concrete. Models

used to mimic the behavior of cementitious materials are required to have a contact

law that deals with non-bonded as well as bonded contacts. A non-bonded contact

later may arise either due to bond breakage or particles coming in contact after

the bond initializing process. The simulations in the present work are carried out

using the DEM software LS-Dyna (Livermore Software Technology Corporation). The

bonded particle model in LS-Dyna is based on the work by Potyondy and Cundall

[26]. Particles with non-bonded contact are simulated with the Hertz-Mindlin contact

model discussed by Cundall and Strack [9]. Both the above contact models are

discussed as follows.
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Figure 3: A Schematic of a DEM calculation cycle. (Adapted from [5])
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2.2 The Hertz-Mindlin Contact Model

The Hertz-Mindlin Contact Model (HMCM) is used to describe the force-displacement

relationship at non-bonded contacts; non-bonded contacts occur either through the

breakage of bonds or from two particles coming into contact for the first time. As

shown in Figure 4, the HMCM assumes spring-dashpot systems in tangential and

normal directions and takes into account the full 3D interaction of two elements.

Hertzian-type contacts are used for normal forces, the effects of tangential forces are

considered according to the models developed by Mindlin and Deresiewicz; see Nayak

([20],[22]).

Figure 4: A two particle spring dash-pot configuration.

The normal force F n and tangential force F s at non-bonded contacts are calculated

as the sum of their respective spring forces, F ns or F ss and damping forces F nd or
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F sd so that:

F n = F ns + F nd (1)

and

F s = F ss + F sd (2)

The normal and tangential forces due to the spring (denoted by F ns and F ss) and

due to the damper (denoted by F nd and F sd) are given by:

F ns =
4

3
Ec

√
RUn1.5, (3)

F nd = −2

√
5

6
ξd
√
Knm̄Vn, (4)

F ss = −KsU
s, (5)

and

F sd = −2

√
5

6
ξd
√
Ksm̄Vs (6)

respectively. Here, Ec is the equivalent Young's modulus of the two particles, R is

the equivalent radius, Un and U s are the normal and tangential overlap respectively,

ξd is the damping ratio related to the coefficient of restitution e, m̄ is the equivalent

mass, Vn and Vs are the normal and tangential components of relative velocity. The

tangential force is limited by Coulomb Friction, i.e.,

Fs ≤ µsF
n (7)
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with µs being the coefficient of static friction.

The normal stiffness kn and tangential stiffness ks are:

kn = 2Ec

√
RUn, (8)

ks = 8Ḡ
√
RU s, (9)

and

1

Ḡ
=

1− νA2

GA

+
1− νB2

GB

. (10)

Here, Ḡ is the equivalent shear modulus, νA and νB are the Poisson’s ratio of the

particles A and B. Clearly, this contact model provides a non-linear relationship

between the force and overlap.

2.3 Bonded Particle Model in DEM

The mechanical behavior of a cementitious material such as concrete is governed

by the formation, growth and the propagation of cracks through the interaction of

micro-cracks. Microscopic observations of cementitious material reveal comprehen-

sive information about initial defects and load-induced cracks, such as length, den-

sity, aspect ratio and orientation([24],[14]). Experimental observations reveal that

compression-induced cracks are the ones that proliferate at the initial faults, such

as grain boundaries or crack-like, low-aspect-ratio cavities and voids, and that all

compression-induced cracks are almost parallel to the direction of the maximum com-

pression. Compression-induced tensile crack has a substantial importance in produc-
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ing extensile crack growth[16].

Figure 5: A representation of compression-induced tensile cracking and its idealization
as bonded assembly of spherical particles. (Adapted from [26])

A mechanism for the formation of compression-induced tensile cracks is shown in

Fig 5, in which a group of elements are forced apart by an axial load, causing the re-

straining bond to experience tension. With the formation and growth of micro-cracks,

the subsequent interaction of these cracks is necessary to produce local failure such

as axial splitting or element separation during unconfined or confined compression

tests. A concrete model, intending to reproduce these phenomena, must allow the

micro-cracks to interact with one another[26].

The contact model used in the software package LS-Dyna for bonded particles is

the BPM as proposed by Potyondy and Cundall [26]. This model approximates the

grains of granular material by spherical spheres and represents the cemented bonds

by beam elements which are connected to centers of two particles as shown in Figure
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7.

The BPM simulates the mechanical behavior of a collection of rigid spherical par-

ticles that are bonded together at their contact points. The rigid particles interact

at their bonds that possess finite normal and shear stiffnesses and finite strengths in

both normal and shear directions. The BPM model with a bond between two particles

known as a parallel-bond can be envisioned as an elastic beam connecting the two

bonded particles with its ends at the particle centers. It is this virtual elastic beam

at each bonded contact that accommodates tension, bending, shearing and twisting

between bonded particles (see Figure 6).

Figure 6: A representation of a parallel-bond with BPM model that can accommodate
various forces and moments between two bonded particle. (Adapted from [15]).

The mechanical behavior of the bonded-particle system is described by the move-

ment of each particle and the force and moment acting at each contact. Newton’s

laws of motion provide the fundamental relations between particle motion and the
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resultant forces and moments causing that motion. The main assumptions in the

BPM models are as follows [26]:

• The particles are circular (2D) or spherical (3D) rigid bodies with a finite mass.

• The particles move independently of one another and can both translate and

rotate.

• The particles interact only at contacts; because the particles are circular or

spherical, a contact is comprised of exactly two particles.

• The particles are allowed to overlap one another, and all overlaps are small in

relation to particle size such that contacts occur over a small region (i.e., at a

point).

• Bonds of finite stiffness can exist at contacts, and these bonds carry load and

can break. The particles at a bonded contact need not overlap.

• Generalized force-displacement laws at each contact relate relative particle mo-

tion to forces and moments at the contact.

The cement-based portion of the force-displacement behavior at each cemented

contact is described by the following five parameters that define a parallel-bond (see

Fig. 7): normal and shear stiffnesses per unit area, k̄n, k̄s; tensile and shear strengths,

σ̄c τ̄c; and bond-radius multiplier, λ, such that the parallel-bond radius is given by:

R̄ = λ̄min (RA, RB) (11)
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Figure 7: Force displacement behaviour of bonded particles.

with RA and RB being the particle radii. A parallel-bond can be idealized as a set

of elastic springs uniformly distributed over a rectangular cross-section of the beam

lying on the contact plane and centered at the contact point. These springs behave as

a beam whose length L̄, approximates the mechanical behavior of a joint. The total

force and moment carried by the parallel-bond are denoted by F̄i and M̄i, respectively,

which represent the action of the bond on particle B. The force and moment vectors

can be resolved into normal and shear components with respect to the contact plane

as:

F̄i = F̄ nni + F̄ sti (12)

and

M̄i = M̄nni + M̄ sti (13)
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where F̄n, F̄s and M̄n, M̄s denote the axial- and shear-directed forces and moments,

respectively, and ni and ti are the unit vectors that define the contact plane. When

the parallel-bond is formed, F̄i and M̄i are initialized to zero. Each subsequent

relative displacement and rotation increment produces an increment of elastic force

and moment that is added to the current values. The increments of elastic force and

moment are given by:

∆F̄ n = k̄nA∆Un, (14)

∆F̄ s = −k̄sA∆U s, (15)

∆M̄n = −k̄s J ∆θn, (16)

and

∆M̄ s = −k̄n I ∆θs (17)

where, A,I and J are the area, moment of inertia and polar moment of the parallel-

bond cross-section, respectively. These quantities are given by:

A = πR̄2, (18)

I =
1

4
πR̄2, (19)
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and

J =
1

2
πR̄2. (20)

The maximum tensile and shear stresses acting on the parallel-bond periphery are

calculated from beam theory to be:

σ̄max =
−F̄ n

A
+

∣∣M̄ s
∣∣ R̄
I

(21)

and

τ̄max =
|F̄ s|
A

+

∣∣M̄n
∣∣ R̄
J

. (22)

If the maximum tensile stress exceeds the tensile strength [σ̄max ≥ σ̄c] or the maxi-

mum shear stress exceeds the shear strength [τ̄max ≥ τ̄c], then the bond is considered

broken and removed from the model along with its accompanying force, moment and

stiffness.



CHAPTER 3: DEM IN LS-DYNA

3.1 Contact model

The interaction of particles in DEM is through contact forces or forces due to

bonding. These forces and interaction in particles determine the overall behavior of

the material. The interaction between particles require an appropriate contact law to

be defined (as discussed in Chapter 2). The contact laws are the key components to

formulate the microscopic behavior of the material model. For modeling cementitious

materials such as concrete, bonds are assumed to exist between particles. These give

rise to bond forces that are similar to the internal forces in a continuum body. The

bonds are virtual and have no physical mass associated with it. Particle interactions

can be classified as non-bonded contact models and bonded-particle models. As

mentioned in Chapter 2, in the present work, it is the bonded-particle models that

are used to model compression of concrete. The DEM capabilities of the commercial

finite element software LS-Dyna is used for this purpose. For the study of cementitious

material like concrete, LS-Dyna uses two contact models each for non-bonded and

bonded contacts. The Hertz-Mindlin (HMCM) and BPM contact models are used for

non-bonded and bonded contacts respectively. Non-bonded contacts may arise due

to the breakage of bonds and when two particles come into contact after the bond

initialization procedure. The implementation of BPM contact model augments the
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overall DEM process with a bond initialization procedure where bonds are created

using a proximity criteria. The flow chart in Figure 8 summaries the integration of

BPM model into the explicit time-step cycle employed in the working of DEM.

As stated in Chapter 1, particles can be generated through different techniques.

However, each particle generation technique creates a different initial packing arrange-

ment of particles. This study (which uses LS-Dyna) uses a geometry-based approach

to generate particles in the domain specified by the user. The initial packing ar-

rangement and the packing density chiefly defines the geometric properties and the

total number of bonds. In the following, the packing density and the distribution of

particle sizes on it are presented.
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Figure 8: Flowchart representing the implementation of BPM model into the calcu-
lation cycle of DEM. (Adapted from [5])
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3.2 Element generation and packing

Generation of a suitable initial configuration of particles is a critical step in every

DEM simulation. When conducting any DEM modeling, it is crucial that the gener-

ated particle packing is representative of the volume of the material that is to studied.

The microscopic grain structures of cementitious materials are highly inhomogeneous,

often including voids or inclusions which provide natural weaknesses. Due to the wide

range in grain sizes, especially in concrete where fine sand grains can be much smaller

than the coarse aggregates, DEM models do not essentially model every individual

grain. Assumptions have to be made, and larger elements are often used to represent

a portion of the sample. The elements at the mesoscopic scale incorporate properties

of the microstructure and directly affect the properties of the bulk solids. Since par-

ticle packing directly affects the properties of the macrostructure, the discretization

should be primarily taken into account when considering the calibration of the model.

As mentioned in Chapter 1,LS-Dyna uses algorithms that are purely based on the

geometry of the domain. LS-Dyna uses advancing front approach [11] to generate

particles in a closed domain.

Numerical experiments were carried out to calculate packing densities of various

sizes of particles for the optimal selection of the range of size and distribution of

particles for the problems considered in this thesis. Packing density is defined as:

Packing density(%) =
volume of solids

volume of geometry
× 100. (23)

Numerical tests were performed for a mono-disperse particle distribution on a sam-
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ple cylindrical domain with the parameters in Table 1. Various particle sizes were

tested ranging from 0.05 to 2.5 to calculate packing densities as given in Table 2.

Table 1: Cylinder parameters of test sample used to examine packing densities.

Height Radius Total volume
(mm) (mm) (mm3)

10 5 785.398

Table 2: Calculated packing densities for different particle sizes.

Particle size Volume of Total no. Total Packing density
each particle of particles particle volume

(mm) (mm3) (mm3) (%)
2.5 65.45 3 196.34 25
2 33.51 6 201.06 25.6

1.5 14.13 17 240.33 30.06
1 4.18 72 301.59 38.4

0.5 5.23E-1 685 358.66 45.63
0.25 6.544E-2 6063 396.82 50.5
0.1 4.188E-3 100216 419.78 53.4
0.05 5.23E-4 815821 427.162 54.38

The Figure 9 shows the relation between particle size and particle densities. Based

on the trials performed, it is clear that the advancing front approach algorithm used

by LS-Dyna has a highest packing density in the range of 55% to 60% without further

rearrangement. It can be concluded that a particle size 40 times smaller than the

minimum dimension of the domain is sufficient to produce packing densities above

52%. Any decrease in the particle radius does not increase the packing density sub-

stantially, however this increases the number of particles and total simulation time

by a large amount. Hence, in the present work, particle density densities in the range

of 50%-55% are considered to be desirable.
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Figure 9: Effect of particle size on packing density.

3.3 Initialization of bonds

Bond models designed to simulate the behavior of cementitious materials such

as concrete differ from other models in the way the cement joints between grains

are captured. In BPM method used by LS-Dyna, this mechanism is represented by a

bonded contact which is capable of resisting the separation of the particles it connects.

An initialization procedure is required to determine which elements are considered

bonded and which are not. For most bond models, a criterion exists which must be

met for two particles to be considered bonded; the BPM method in LS-Dyna uses

proximity parameter as a criterion for bonding of two elements. The user defined
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card *DEFINE DE BOND initializes the bond and defines all the required variables

required for a successful bond generation. Table 3 shows the variables used in the

user defined card.

Table 3: Bond parameter card *DEFINE DE BOND in LS-Dyna.

PBN PBS PBN S PBS S SFA ALPHA MAXGAP

Gb k̄s/k̄n σ̄c τ̄c λ α X̄

Gb is the parallel-bond modulus

where

Gb = k̄nL (24)

and L = RA + RB. In addition, k̄s/k̄n is the parallel-bond stiffness ratio, σ̄c is the

parallel-bond normal strength, τ̄c is the parallel-bond shear strength, λ is the bond

radius multiplier, α is the numerical damping, and X̄ is the maximum gap between

two bonded particles.

The parameter X̄ defines the extension for a contact search of a neighboring particle

that has to be bonded. Thus, any two particles which are not in physical contact

with each other may still be bonded together. If the parameter X̄ is reduced, the

total number of bonds will reduce and thus the material being represented will behave

more granular in nature. The parameter X̄ can be reduced to zero, in this case, the

particles would have to be in direct contact with each other to form a bond between

them.

The contact model that describes the force-displacement law for a bonded particle
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requires the geometric dimensions of the bond to be defined. For a spherical particle,

the bond is assumed to be cylindrical in shape with a uniform cross-section. The

length of the bond is the distance between centers of two particles that are bonded.

For a uniform cylinder, the radius R̄ is determined by Equation 11, where λ, the bond

radius multiplier acts as a scaling factor to vary its magnitude.

3.4 Bond failure criteria

For a cementitious material like concrete, under loading, the material will have a

microscopic failure when the compression induced tensile loading on two cemented

elements exceeds the cement strength. This is represented in DEM particles as the

the failure of bonded particles when the loading exceeds the bond strength. The

material will undergo total failure when enough bonds are broken. The phenomenon

of bonds breaking at any location when bonding strength exceeds give the advantage

over Finite Element Method (FEM) in terms of crack formation and propagation.

The failure of bonds which represents the fracture in a cementitious material re-

quires a method through which the bonds between particles can break. This mode

of bond failure is a predefined failure criterion. For a BPM model discussed in this

study, bond failure criteria are based on limits of forces and are given by the Equation

21 and 22.



CHAPTER 4: PARAMETRIC STUDY: INFLUENCE OF INPUT PARAMETERS

In this chapter, a parametric study examining the influence of various parameters

of the BPM contact model on the DEM behavior is presented. Since many parameters

govern the BPM contact model with each parameter contributing independently to

the overall material behavior, understanding the influence of these parameters while

keeping other parameters the same is critical for the accurate calibration of a model.

This study is carried out in the context of concrete. Hence the parameters for bonded

contact will have the most influence over non-bonded contact. To better understand

a specific parameter and its direct impact on material behavior, simpler models con-

sisting of two-particle and three-particle models are used initially. Four important

parameters in the bonded contact model are of interest. In the following, these are

discussed in detail.

4.1 Influence of parallel-bond modulus

A two-particle model was used to study the effect of this parameter. Figure 10

shows a two particle configuration in which particle-1 is fixed at its center, and

particle-2 is axially loaded with a known force. A diameter of 1 mm is used for

both the particles. The particles do not have any overlap and are just in contact

with each other. The parallel-bond modulus Gb was varied from 100 GPa to 200 GPa

keeping all other bond parameters same. Table 4 gives the values for bonded contact
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parameters used in this parametric study.

Figure 10: A two particle model subject to pure axial loading.

Table 4: Bonded contact parameters used to examine the influence of parallel-bond
modulus.

Gb k̄s/k̄n σ̄c τ̄c λ α X̄
(GPa) (GPa) (GPa) (mm)

100 - 200 0.5 1.0 1.0 1.0 0.2 0.1

For each known force, the axial displacement of particle-2 is recorded for various

values of Gb . Table 5 shows the axial displacements obtained for each parallel-bond

modulus. Figure 11 shows the force-displacement curves.

Table 5: X-axial displacements of particle-2 with varying parallel-bond modulus.

Gb Axial displacement of particle-2 (mm)
F =1.5 KN F =2.0 KN F =2.5 KN F =3.0 KN

100 0.00955 0.0127 0.0159 0.0191
125 0.00764 0.0102 0.0127 0.0153
150 0.00637 0.00849 0.0106 0.0127
175 0.00546 0.00728 0.00909 0.0109
200 0.00477 0.00637 0.00796 0.00955
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Figure 11: Force-displacements curves for varying parallel-bond modulus.

Figure 12: Engineering stress-strain curves for varying parallel-bond modulus.

The bond’s virtual beam dimensions can be calculated using Equation 11. With

the known cross-section area and length of beam, an engineering stress-strain curve

is plotted (see Figure 12). As the parallel-bond stiffness increases, the strain for a
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given stress decreases. Furthermore, it can be seen from Figure 12 that the slope of

each stress-strain curve is equal to its magnitude of parallel-bond modulus. This is

analogous to the Young’s modulus of an elastic material.

4.2 Influence of parallel-bond stiffness ratio

A parallel-bond stiffness ratio is defined as the ratio of parallel-bond shear stiffness

to parallel-bond normal stiffness. This gives the magnitude for parallel-bond shear

stiffness with respect to parallel-bond normal stiffness. To understand the influence

of parallel-bond stiffness ratio on a DEM system, a three-particle model was used.

Figure 13 shows a model of three particles, where the bottom particles are placed

over a rigid plate and their motion is constrained in Y-direction. The top particle is

given a displacement loading in Z-direction through a top rigid plate. Particles are

just in contact with each other without any overlap. The centers of all three particles

are co-planar.

The parallel-bond stiffness ratio was varied from 0.5 to 0.9. For each parallel-bond

stiffness ratio, Z-displacement of the top particle and lateral displacements for bottom

particles were recorded at 50% of maximum-bond breakage strength. With the known

displacements of particles in axial and lateral directions, axial and lateral strains are

calculated as follows:

εz =
δz

z0
(25)

and

εx =
δx

x0
(26)
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where εz is the axial strain, εx is the lateral strain, δz, δx are the axial and lateral

displacements of top and bottom particles respectively. The subscript 0 represents

the initial values.

Figure 13: Engineering stress-strain curves for varying parallel-bond modulus.

With axial and lateral strains, a ratio of these strains, here proposed as particle

strain ratio (Psr), is calculated as:

Psr =
εx
εz
. (27)

Table 6 gives the values for bonded contact parameters used in this parametric

study. Table 7 gives the values for particle strain ratio for each parallel-bond stiffness

ratio.

Table 6: Bonded contact parameters used to examine the influence of parallel-bond
stiffness ratio.

Gb k̄s/k̄n σ̄c τ̄c λ α X̄ Particle radius
(GPa) (GPa) (GPa) (mm) (mm)

150 0.5-0.9 1.0 1.0 1.0 0.2 0.1 1.0
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Table 7: Particle strain ratio with varying parallel-bond stiffness ratio.

k̄s/k̄n εx εz Psr

0.5 8.34E-5 2.73E-4 0.30
0.6 1.20E-4 2.84E-4 0.42
0.7 1.64E-4 2.93E-4 0.55
0.8 2.14E-4 3.07E-4 0.69
0.9 3.01E-4 3.62E-4 0.82

Figure 14: Particle strain ratio for varying parallel-bond stiffness ratios.

Figure 14 shows that as the parallel-bond stiffness ratio (k̄s/k̄n) increases, the

particle strain ratio (Psr) also increases in the same proportion. The value of particle

stiffness ratio also remains close to the specified parallel-bond stiffness ratio. The

bulk behaviour of a model in axial and lateral strain is largely dependent on the

value specified as parallel-bond stiffness ratio. With this parametric study it can

be concluded that a parallel-bond stiffness ratio is analogous to Poisson’s ratio in

an elastic body. However, it should be noted that a more realistic model with a

large number of particles is needed to draw a direct comparison between Psr and the
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Poisson’s ratio of a material.

4.3 Influence of parallel-bond normal strength

Parallel-bond normal strength σ̄c is defined as the maximum stress in normal di-

rection that the bond can withstand before failing. For a bonded contact model, this

value is specified through the failure criterion as given in Equation 21. Equation 21

shows that normal force acting on the bond and the critical stress due to the applied

force are linearly proportional. Thus, any increase or decrease in the parallel-bond

normal strength will limit the critical stress in a bond linearly. The linear relation be-

tween parallel-bond normal strength and the maximum stress at failure in a bond can

be verified with a two-particle model as shown in Figure 10. A normal force is applied

to the bond for various values of the parallel-bond normal strength parameter. The

maximum forces at failure are recorded for various values of the parallel-bond normal

strength. With known dimensions of the virtual beam-bond, stresses are calculated

at bond failure, and a graph is plot for maximum stress vs. parallel-bond normal

strength as shown in Figure 15. In this parametric study, the maximum stress at

failure is calculated from:

σmax =
Fmax

A
(28)

where A is the area of cross-section of the virtual beam bond. Table 8 gives the

contact parameters used to examine the influence of parallel-bond normal strength

on DEM behavior.
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Table 8: Bonded contact parameters used to examine the influence of parallel-bond
normal strength.

Gb k̄s/k̄n σ̄c τ̄c λ α X̄ Particle radius
(GPa) (GPa) (GPa) (mm) (mm)

150 0.5 0.25-1.25 1.0 1.0 0.2 0.1 1.0

Table 9: Maximum stress at failure with varying parallel-bond normal strength.

σ̄c Fmax σmax

(GPa) (KN) (MPa)
0.25 0.9 286.47
0.5 1.6 509.29
0.75 2.4 763.94
1.0 3.20 1018.59
1.25 3.95 1257.32

Figure 15: Influence of parallel-bond normal strength on maximum stress at bond
failure.
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4.4 Influence of parallel-bond shear strength

Similar to parallel-bond normal strength, parallel-bond shear strength is also de-

fined as the maximum stress in shear, the bond can withstand before failing. Equa-

tion 22 gives the failure criterion of a bond in shear. Similar to parallel-bond normal

strength, a linear relation exists between parallel-bond shear strength and the maxi-

mum stress in shear at failure in a bond.

4.5 Summary of bonded contact parameters

For a concrete material under compressive loading, as the load increases, more

and more bonds fail as the contact forces continue to exceed the bond-failure loads.

Once a substantial number of bonds are broken, and the material reaches post failure

loading, the non-bonded contact parameters begin to influence more over the bonded

contacts. However, in this thesis which limits its research up to the material failure,

the bonded contact parameters play a major role in the characterization of material

behavior. As studied from the parametric study for parallel-bond modulus, the bond

modulus has a direct effect on the stiffness on each bond and hence on the overall

bulk stiffness. This also affects the bulk strain response. For example, if the stiffness

of the bond is decreased, deformation increases for a given force in each bond, and

thus resulting in an increased strain at failure. Parallel-bond stiffness ratio directly

affects the strain in the bulk response but does not affect the stiffness of the material.

It also defines the distribution of normal stiffness over shear stiffness in the material

model.

In summary, it can be concluded that, while keeping the particle size same, parallel-
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bond modulus and parallel-bond stiffness ratio affect the stiffness characteristics of

each bond and the parallel-bond normal and shear strength characterize the normal

and shear limits for each bond respectively. Simpler models with a very few number

of particles can be used very effectively to study the effect of these parameters on the

overall system response.



CHAPTER 5: MODELING OF A CONCRETE CYLINDER

This chapter describes the discrete element approach to modeling the response of a

3D concrete cylinder to uniaxial compression. Guided by the study of the two-particle

and three-particle systems discussed in Chapter 4, a set of parameters is derived after

calibration simulations performed. The predictive capabilities of these calibrated

parameters are simulated using four cylindrical samples of varying particle size under

uniaxial compression. For a loading configuration and specimen geometry, the effort

is to mimic a physical test of concrete cylinder under uniaxial test. The cylinder

geometry, bonded and non-bonded parameters and FEM-DEM contact parameters

are discussed in details in the following.

All simulations were carried out with LS-Dyna SMP, double precision, R8.0.0 and

were run on Copperhead, a Redhat Linux-based, high performance computing (HPC)

cluster at UNC Charlotte, with dual Intel Xeon 3.2 GHz 8-core processors and 128

Gb RAM.

5.1 Geometry

Figure 16 shows a cylinder geometry and the DEM model. LS-Dyna requires an

initial shell volume for the generation of DEM particles. As discussed in the in-

troduction part of Chapter 1, the advance front approaching method for generating

particles was used using the built-in sphere packing engine from LS-PrePost. This
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gives the option to the user to create particles with user defined radii. All par-

ticles once generated are recorded for their respective coordinates in the keycard

*ELEMENT DISCRETE SPHERE VOLUME. To simulate uni-axial loading config-

uration, the DEM particles are placed between two FEM rigid body plates. The

plates are 80 mm × 80 mm and 5 mm thick each.

Figure 16: Geometry of DEM cylinder specimen and loading configuration.

5.2 Boundary conditions

The loading configuration of DEM in uni-axial loading is achieved

through displacement loading at top plate using the keycard *BOUND-

ARY PRESCRIBED MOTION RIGID. The bottom plate is constrained in all

3 DOFs. Top plate is constrained in X and Y displacements and displacement is

given in Z -axis. To mimic quasi-static loading conditions, the loading rate is taken

to be 0.03 mm/ms. The total kinetic energy of the system remains within 1.5E-4

KN-mm until failure and particle separation. Both the plates are considered rigid
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and the material parameters are given in Table 10. Although these parameters do

not affect the material behavior and resultant force acting on FEM-DEM contact,

these parameters are required for particle-wall non-bonded contact model. DEM

particles are free in all 6 DOFs.

Table 10: Material parameters for rigid plates.

Parameter Description Value
ρ density (kg/mm3) 7.83E-6
E Modulus of elasticity (GPa) 200
ν Poisson’s ratio 0.3

5.3 FEM-DEM contact

The 3D model requires a contact to be defined between DEM elements

and FEM rigid plates. This contact is formulated using the key-card *CON-

TACT AUTOMATIC NODES TO SURFACE. The contact uses static friction co-

efficient (FS) between DEM particles and plates and viscous damping coefficient in

percent of critical (VDC) to avoid undesirable oscillations in contact. All simulations

in this study use FS = 0.3, VDC = 20 and all other parameters were default. The

above parameters were taken from N. Karajan et al. [15].

5.4 Calibrated parameters

A set of parameters were obtained that were capable of predicting compressive

strength typical for a concrete material. These non-bonded and bonded calibrated

parameters were used to create four sample models with varying particle size. Sim-

ulations on these four individual samples were studied for the predictability of bulk

mechanical properties and damage behavior of concrete.
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DEM particles are considered rigid and the material parameters can be assigned

using key-card *MAT RIGID. Table 11 gives the values for DEM particles. These

parameters are required to calculate the stiffness values of DEM particles for non-

bonded particles. Table 12 gives the values for non-bonded contact model. The

parameters such as NDAMP, TDAMP, NormK and ShearK do not specify damping

coefficient and spring stiffness, but are given as scale factors to their respective values.

These are assigned using key-card *CONTROL DISCRETE ELEMENT.

The calibration simulations focus primarily on the bonded contact model parame-

ters, as these are primarily responsible for characterizing a cementitious material such

as concrete. Table 13 gives the values for bonded contact model parameters. Table

14 gives a summary of bonded contact model parameters with varying particle size,

while keeping all other parameters same.

Table 11: Material parameters for DEM particles.

Parameter Description Value
ρ density (kg/mm3) 2.40E-6
E Modulus of elasticity (GPa) 17
ν Poisson’s ratio 0.15

Table 12: Non bonded contact parameters for DEM particles.

NDAMP TDAMP Fric FricR NormK ShearK
0.7 0.4 0.41 0.001 0.01 0.286

Table 13: Bonded contact parameters for DEM particles.

Gb k̄s/k̄n σ̄c τ̄c λ α X̄
(GPa) (GPa) (GPa) (mm)

320 0.7 0.5 0.25 1.0 0.2 0.01
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Table 14: Calibrated bonded parameters for each sample with varying particle size.

Particle radius Gb k̄s/k̄n σ̄c τ̄c λ Total no.
(mm) (GPa) (GPa) (GPa) of particles

0.5 320 0.7 0.5 0.25 1.0 161,200
0.75 320 0.7 0.5 0.25 1.0 47,004
1.0 320 0.7 0.5 0.25 1.0 19,529
1.25 320 0.7 0.5 0.25 1.0 9,871



CHAPTER 6: RESULTS AND DISCUSSION

In this chapter, the response of a concrete cylinder due to uniaxial compressive

load is studied as the particle sizes are varied. The DEM parameters used are the

parameters listed in Chapter 5. The bulk mechanical properties such as strain at

failure, Poisson’s ratio and volumetric strains are evaluated for each sample with

varying particle size. The particle size effects are discussed on these mechanical

properties. Later, overall damage behavior and failure patterns on the samples are

investigated.

6.1 Stress-strain curves

Uni-axial compression test is one of the most widely used methods to determine

the compressive strength of concrete. Kolver K. and Roussel N. mentioned in their

literature that compressive strength is the prime engineering property of concrete. A

schematic of the displacement-controlled uniaxial compression of a cylinder is shown

in Figure 16. If the compressive stress versus is plotted against the normal strain,

the maximum stress reached is taken to be the ultimate compressive strength. When

the particle size is 0.75 mm., the stress-strain curve obtained is shown in Figure 17.

Engineering stress σ and strains ε were calculated for each of the specimen as follows:

σ =
F

A0

(29)
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and

ε =
δ

L0

(30)

where F is the resultant force acting on top plate due to displacement loading, A0 is

the initial cross-section area normal to loading axis of the specimen, δ is the corre-

sponding displacement of top plate in loading direction and L0 is the initial height of

the specimen.

Figure 17: Engineering stress-strain curve for particle size 0.75 mm.

Gere and Timoshenko suggest that the ultimate compressive strength for plain

concrete is in the range of 10 MPa to 70 MPa, with a typical value of 35 MPa

[12]. Also, the Poisson’s ratio is in the range of 0.1 to 0.2. Table 15 gives the bulk

mechanical properties for specimen with particle size 0.75 mm. The specimen for

particle size 0.75 mm is considered as the reference specimen to study the particle size

effects on other bulk mechanical properties. In addition to 0.75 mm sized particles,

three other particle sizes were considered for the parametric study: 0.5 mm, 1.0 mm
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and 1.25 mm.

Table 15: Bulk mechanical properties for specimen with particle size 0.75 mm.

Parameter Description DEM Accepted
simulation range

σu Ultimate compressive strength (MPa) 47.56 10-70
εc Strain at maximum stress 0.0028 0.002-0.003
ν Poisson’s ratio 0.11 0.1-0.2

Stress-strain curves were calculated from the force-displacement curves for all four

specimens with different particle sizes. Figure 18 shows the effect of particle size on

engineering stress-strain curves. The stress-strain curves vary with particle size. It

can be concluded from figure that as particle size increases, strain at failure increases.

The decrease in strain can be explained due to the difference in packing densities of

each sample. Despite using the same domain and particle generation method, a

different particle size will result in a different packing density as discussed in Chapter

3. Table 16 gives the packing densities for each specimen. Also, for each sample,

particles were generated from the start which led to a different particle distribution

and location compared to other specimens. A lower packing density can be attributed

for higher porosity. Thus, particles under load will undergo higher displacements for

the same load causing larger strains in the overall bulk behavior.

Table 16: Packing densities for specimens with different particle size.

Particle size Volume of Total no. Total Packing density
each particle of particles particle volume

(mm) (mm3) (mm3) (%)
0.5 5.23E-1 161200 84404.12 53.7
0.75 1.767 47004 83062.92 52.8
1.0 4.18 19529 81802.88 52.0
1.25 8.18 9871 80756.92 51.4
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Figure 18: Engineering stress-strain curves for varying particle sizes.

The effect of particle size on maximum stress and peak strain respectively is shown

in Figure 19 and Figure 20 respectively.

Figure 20: Effect of particle size on engineering strain.

The increase in strain due to the decrease in packing density can be validated
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Figure 19: Effect of particle size on engineering stress.

from the domain size experiment. In this experiment, the domain size was varied

while keeping the particle size same ensuring all the parameters including particle

size remain same. Here, a sample of particle size 1 mm was used as reference case

while reducing the domain size in percent of volume. Table 17 gives the values of

domain size and its packing density. Figure 21 validates the increase in bulk strain

at failure due to the decrease in packing density.

Table 17: Packing densities for specimens with varying domain size.

Domain size % by volume Total no. Total Packing density
(height×radius) of particles particle volume

(mm) (mm3) (mm3) (%)
80×25 100 19529 81802.88 52.0

72×22.5 72 14163 59325.83 51.8
65×20 52 10024 41988.43 51.4
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Figure 21: Effect of packing density on engineering strain at failure.

6.2 Poisson’s ratio

In this study, the Poisson’s ratio is calculated at 40% of maximum compressive

strength. Bamforth et al. suggest that mechanical properties of concrete should be

measured at approximately 30% to 40%, due to the fact that material under loading

in this stage is in near elastic region [4]. The Poisson’s ratio ν is the negative of the

ratio of the radial strain εr to the axial strain εh:

ν = − εr
εh

(31)

where the axial strain εh and radial strain εr are given by:

εh =
h0 − h
h0

(32)
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and

εr =
D −D0

D0

. (33)

In these equations, h is the height of specimen, D is the average distance between

diametrically outermost particles at a given z and the subscript 0 denotes initial

values. Due to the random placement of particles in the domain, the two particles of

a pair may not be exactly on the horizontal or vertical axis. The center line joining the

particle centers may not pass through geometric center. Similarly for axial distances,

the center line may not pass through geometric natural axis. To account for this,

average values for D were calculated using radial distances at three different sections.

The technique is further discussed in below.

6.2.1 Calculation of radial strain

Figure 22: Schematic representation of determining average radial distance D.

Figure 22 shows the schematic representation of determining average radial distance

D. The domain was divided into three sections (top-section, mid-section and bottom-
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section) normal to z direction each equally spaced from mid-section. Two pairs (each

pair consisting of the centers of the extremal elements on a diameter) from each section

were considered for measuring D. The average distance D was then calculated as:

D =
1

6

6∑
r=1

dr (34)

where dr is the distance between the the centers of the extremal elements on a diam-

eter.

6.2.2 Calculation of axial strain

The axial distance which is equal to the height of specimen was calculated similar

to D, as represented in Figure 23. Though the effort was to locate the bottom most

and top most particles, these particles may not be exactly on the top and bottom

boundaries due to the random placement of particles.

Figure 23: Schematic representation of determining axial distances h and h0.

Table 18 gives the values for the axial, radial strains and the Poisson’s ratio in
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compression for all for samples. Figure 24 shows the effect of particle size on Poisson’s

ratio. It can be concluded that Poisson’s ratio decreases only slightly with an increase

in particle size. Thus, Poisson’s ratio, a bulk mechanical property, can be said as

dependent on parallel-bond stiffness-ratio parameter.

Table 18: Poisson’s ratio for samples with varying particle size.

Particle size Axial strain Radial strain Poisson’s ratio
(mm) (εh) (εr) (ν)

0.5 -140.01E-6 16.77E-6 0.118
0.75 -154.14E-6 17.64E-6 0.114
1.0 -174.36E-6 19.38E-6 0.111
1.25 -188.39E-6 18.29E-6 0.097

Figure 24: Effect of particle size on Poisson’s ratio.

6.3 Volumetric strain

Volumetric strain e is defined as the change in volume per unit volume. For a

cylindrical geometry, this can be found from:
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e =
∆V

V0
= −εh + 2(εxx) (35)

and

εxx =
Dx −D0

D0

(36)

where εxx is the lateral strain in X-direction. For a uni-axial loading, the above

equation gives the normal strain induced volume change. The calculation technique

used here is similar as discussed in previous topic with measurements taken at three

different sections. Figure 25 gives the schematic representation of determining average

lateral distance Dx.

Figure 25: Schematic representation of determining average lateral distance Dx.

Figure 26 shows a plot for volumetric strain e vs. axial strain εh. The volumetric

strain increases in magnitude as the axial strain increases as expected.
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Figure 26: Volumetric strain vs. axial strain.

6.4 Failure pattern

Mindess et al. Concrete discuss the typical patterns observed in the failure of

concrete under uniaxial compression loading [19]. They also discuss the influence of

friction between test specimen and loading plates. According to them, the friction

between the plates and specimen limits the radial expansion of material under loading

and thus resulting in cracks propagating at the top and bottom surface at an angle

while propagating vertically in the center. This results in a well formed cones at the

ends. Figure 27 shows a typical failure patterns observed in concrete cylinders under

uni-axial loading.

All simulations in this work were performed with friction between plates and spec-

imen. With DEM simulations, the phenomena of crack propagation and failure can

be well studied by visualizing contour plots for broken bonds. However LS-PrePost

V4.3, does not provide the ability to visualize broken bonds between bonded particles.
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Figure 27: Typical failure patterns observed in concrete cylinder under uni-axial
loading. (Adapted from [19])

With contour plots for axial and lateral displacements of particles at mid-section of

the specimen, it can be visualized for shearing planes and eventual failure patterns.

As evident in Figures (28- 31), the specimens with particle sizes 0.5 mm and 0.75

mm show a well formed cone shapes at both the ends. This is in complete agreement

with the observations made by Mindess et al. However, for particle sizes 1.0 mm and

1.25 mm, as shown in Figures (32- 35), the conical shapes do form but are not as

well developed as they are for the smaller particle sizes. Furthermore, in these cases,

diagonal cracking is observed. Thus, it can be concluded that the particle size and

packing density influence the failure patterns observed in the simulations.

The following shows contour plots of particle displacement for each of four cali-

brated samples.
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6.4.1 Failure pattern for specimen with particle size of 0.5 mm

Figure 28: Contour plots for axial displacements (Particle size - 0.5 mm).

Figure 29: Contour plots for lateral displacements (Particle size - 0.5 mm).
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6.4.2 Failure pattern for specimen with particle size of 0.75 mm

Figure 30: Contour plots for axial displacements (Particle size - 0.75 mm).

Figure 31: Contour plots for lateral displacements (Particle size - 0.75 mm).
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6.4.3 Failure pattern for specimen with particle size of 1.0 mm

Figure 32: Contour plots for axial displacements (Particle size - 1.0 mm).

Figure 33: Contour plots for lateral displacements (Particle size - 1.0 mm).
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6.4.4 Failure pattern for specimen with particle size of 1.25 mm

Figure 34: Contour plots for axial displacements (Particle size - 1.25 mm).

Figure 35: Contour plots for lateral displacements (Particle size - 1.25 mm).



CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
WORK

7.1 Conclusions

Based on the results presented in the previous chapters, the following conclusions

can be drawn. With proper calibration and the use of bonded particle method as

an additional contact model incorporated in conventional DEM, it can be concluded

that DEM can be successfully used to model cementitious materials like concrete.

Bonded-Particle DEM also particularly successfully captured the failure pattern as

observed in concrete material due to its inherent homogeneity in the model. The

failure patterns were in close agreement with the literature discussed by Mindess et

al. and all the samples show a unanimous representation of the expected failure

pattern that is the failure pattern for friction between plates and specimen.

The use of simpler models like two-particle and three-particle, can be successfully

used to calibrate larger and complex models. Satisfactory results were achieved for

all the key mechanical properties in all four samples as observed in literature.

The bulk response of the material appears to depend on the particle size and

packing density. Therefore, caution must be exercised in deriving bulk properties

based on DEM analyses. Further work is needed to understand optimal particle sizes

and packing densities for accurately predicting the bulk response of concrete. Particle

size is one of the major parameter that affects the overall bulk behaviour; however, a
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smaller particle size is desired to achieve better resolution of crack propagation and

failure pattern.

7.2 Recommendations for future work

This thesis demonstrates the modeling of concrete material under uni-axial loading

using a bonded particle method. Although this research mainly focuses on the uni-

axial loading of a concrete cylinder and the influence of bonded contact parameters,

there are several areas of research which could further improve the current model’s

capabilities.

The parametric study was limited to four most fundamental bonded-contact pa-

rameters and their influence on DEM behavior. Further studies on the influence of

the remaining bond parameters such as the bond radius multiplier λ and the dis-

tance between two bonded particles X̄ would have made the parametric study more

comprehensive.

Particle distribution in the DEM model was limited to a mono-disperse method

where all the particles considered were of the same size. A study using poly-disperse

method would help understand the influence of non uniformly distributed particle

sizes on the bulk response of the model. In addition, if the particle size ratios are

closely matched with a realistic material, the poly-disperse model could potentially

lead to more insights into the damage and failure patterns of the material.

Another extension of the studies presented in this work would be to develop DEM

models for triaxial compression and Brazilian tests. These models would further help

understand the response and failure of concrete structures.
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