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ABSTRACT

SHANJUN CHENG.Coordinating decentralized learning and conflict resolution
across agent boundaries. (Under the direction of DR. ANITA RAJA)

It is crucial for embedded systems to adapt to the dynamics of open environments.

This adaptation process becomes especially challenging in the context of multiagent

systems because of scalability, partial information accessibility and complex interac-

tion of agents. It is a challenge for agents to learn good policies, when they need

to plan and coordinate in uncertain, dynamic environments, especially when they

have large state spaces. It is also critical for agents operating in a multiagent system

(MAS) to resolve conflicts among the learned policies of different agents, since such

conflicts may have detrimental influence on the overall performance.

The focus of this research is to use a reinforcement learning based local optimization

algorithm within each agent to learn multiagent policies in a decentralized fashion.

These policies will allow each agent to adapt to changes in environmental conditions

while reorganizing the underlying multiagent network when needed. The research

takes an adaptive approach to resolving conflicts that can arise between locally op-

timal agent policies. First an algorithm that uses heuristic rules to locally resolve

simple conflicts is presented. When the environment is more dynamic and uncertain,

a mediator-based mechanism to resolve more complicated conflicts and selectively

expand the agents’ state space during the learning process is harnessed. For sce-

narios where mediator-based mechanisms with partially global views are ineffective,

a more rigorous approach for global conflict resolution that synthesizes multiagent

reinforcement learning (MARL) and distributed constraint optimization (DCOP) is

developed. These mechanisms are evaluated in the context of a multiagent tornado

tracking application called NetRads. Empirical results show that these mechanisms

significantly improve the performance of the tornado tracking network for a variety



iv

of weather scenarios.

The major contributions of this work are: a state of the art decentralized learning

approach that supports agent interactions and reorganizes the underlying network

when needed; the use of abstract classes of scenarios/states/actions that efficiently

manages the exploration of the search space; novel conflict resolution algorithms of

increasing complexity that use heuristic rules, sophisticated automated negotiation

mechanisms and distributed constraint optimization methods respectively; and finally,

a rigorous study of the interplay between two popular theories used to solve multiagent

problems, namely decentralized Markov decision processes and distributed constraint

optimization.
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CHAPTER 1: INTRODUCTION

Cooperative multiagent systems (MAS) are finding applications in a wide variety of

domains, including sensor networks, robotics, collaborative decision making systems

and distributed control. A cooperative MAS consists of a group of autonomous agents

that interact with one another in order to optimize a global performance measure.

For example, in sensor networks, because of limited communication bandwidth, the

control authority is naturally distributed among sensors, which work together to

achieve some common goal (e.g., tracking weather phenomena). In electricity grids,

electricity distribution management is decentralized among power stations, which

coordinate their power control configurations in order to satisfy variable demands from

all customers and minimize losses. These agents operate in an iterative three-step

closed loop [Russell and Norvig, 2006]: receiving sensory data from the environment,

performing internal computations on the data, and responding by performing actions

that affect the environment either using effectors or via communication with other

agents.

Two levels of control are associated with the three-step closed loop: deliberative

and meta-level control. The lower level is deliberative control, which involves the

agent making decisions about what local problem solving to perform in the current

context (also called domain actions) and how to coordinate with other agents to

complete tasks requiring joint effort. These deliberations may have to be done in the

face of limited resources, uncertainty about action outcomes and in real-time. Tasks

in these environments can be generated at any time by the environment or other

agents and generally have deadlines where completion after the deadline could lead

to lower or no utility.



2

At the higher level is meta-level control, which involves the agent making decisions

about whether to deliberate, how many resources to dedicate to this deliberation

and what specific deliberative control to perform in the current context. In practice,

meta-level control can be viewed as the process of deciding how to interleave domain

and deliberative control actions such that tasks are achieved within their deadlines.

It also involves allocating required amount of processor and other resources to these

actions at the appropriate times. The decision-making criterion for this process is

to maximize the overall utility as measured by the utility obtained by completing

individual tasks. For example, suppose the current time is 10 and an agent is in the

midst of executing a set of high quality 1 tasks with a deadline to complete the task at

time 25. At time 15 the agent receives a new medium quality task Tnew with expected

duration of 10 and a deadline of 40. The sensible meta control decision would be for

the agent to delay deliberating about how to accomplish task Tnew in the context of

ongoing activities until the existing task set has completed execution (time 25). This

would guarantee that the existing task set completes within its deadline, and quality

can still be gained by processing Tnew by time 40. The meta-level control decision

process should be designed to be computationally inexpensive, thus obviating the

need for meta-meta-level control.

Meta-level control also involves making choices from alternative deliberative action

sequences including choosing among various alternatives for scheduling/planning 2;

choosing between scheduling/planning and coordination; and, allocating extra time

for learning activities, etc. Consider the following example: suppose the current time

is 6 and an agent has two tasks: Tx, a high quality task with expected duration of 10

and deadline 30; and Ty, a low quality task with expected duration 6 and deadline

1Quality is a deliberately abstract domain-independent concept that describes the contribution
of a particular action to overall problem solving. Thus, different applications have different notions
of what corresponds to model quality.

2Planning refers to the process of generation of a sequence of activities that satisfy the re-
quirements for a task and scheduling is allocating the appropriate resources for the plan to be
accomplished.
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30. The meta-control decision could be to spend 5 time units doing a detailed high-

quality deliberation about Tx to find a good plan for the high quality task and two

units doing a quick and dirty deliberation to generate a plan for Ty (the lower quality

task). The remaining time not used by deliberative activities will be allocated to

successfully executing both tasks.

In a cooperative MAS, each agent selects actions individually, but it is the resulting

joint action that produces the outcome. It is critical to ensure that the individual

decisions of the agents result in (near-)optimal decisions for the group as a whole.

A central challenge in cooperative MAS research is to design distributed decision

policies for agents to coordinate their actions in order to efficiently achieve their

common goal. A common offline approach is to build a model (e.g., decentralized

Markov decision process [Bernstein et al., 2000]) for distributed decision problems

in a cooperative MAS and then compute coordination policies for agents from the

model. However, this approach is usually infeasible for large-scale complex MAS

applications, which involve tens to thousands of agents with limited communication

bandwidth and partial views of the whole system. First, it is time-costly or even not

possible to obtain an accurate model of practical MAS applications [Zhang et al.,

2009]. This is especially true for application operating in open environments where

the environmental characteristics are not known a priori and may evolve over time.

Second, even when we have such models, the computation for optimal policies for

agents is usually intractable.

Multiagent reinforcement learning (MARL) [Crites and Barto, 1995] is a common

approach for solving multiagent decision making problems. It allows agents to dy-

namically adapt to changes in the environment, while requiring minimum domain

knowledge. There are three key challenges for MARL. One is the non-stationary

environment of MARL where agents are concurrently learning and adapting to one

another. Another key challenge of MARL is its scalability to realistic problems, which
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is an even greater cause for concern in large-scale multiagent settings. The third chal-

lenge of MARL is its exposure to conflicts among agents’ actions, especially in agent

networks with high inter-agent dependencies.

The dissertation of this work is to design and implement MARL techniques that

support multiagent meta-level decision making. It involves modeling the meta-level

problem as a decentralized coordination problem; constructing classes of scenarios

where instances within a class have similar features; using the interplay between indi-

vidual agent reinforcement learning and optimization techniques to create a multia-

gent policy where the content and timing of deliberations are choreographed carefully

and include branches to account for what could happen as deliberation (and execu-

tion) plays out.

1.1 Motivation

1.1.1 Research Objective

As embedded systems consisting of collaborating agents capable of interaction be-

come ubiquitous, they must be able to adapt to the dynamic, uncertain characteristics

of an open environment. This adaptation needs to be distributed and based on the

priority of tasks, availability of resources, problem-solving state of other agents, and

availability of alternative ways of satisfying these and future tasks. The research ob-

jective of this dissertation is to design and develop bounded-rational agents equipped

with reasoning algorithms for multiagent meta-level control (MMLC). The meta-level

capabilities will allow the agents to individually determine when this adaptation pro-

cess should be done and how much effort should be invested in adaptation as opposed

to continuing with the current action plan. Consider for instance a scenario where

two agents A1 and A2 are negotiating about when A1 can complete method M1 that

enables A2’s method M2. This negotiation involves an iterative process of proposals

and counter-proposals where at each stage A2 generates a commitment request to

A1, A1 performs local optimization computations (scheduling) to evaluate commit-
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ment requests; this process repeats until A1 and A2 arrive at a mutually acceptable

commitment. The MMLC decision would be to ensure that A1 completes its local op-

timization in an acceptable amount of time so that A2 can choose alternate methods

in case the commitment is not possible.

To the best of my knowledge, Raja and Lesser [Raja and Lesser, 2003] [Raja and

Lesser, 2007] were the first to explore meta-level control in complex agent-based

settings where agents with a complex architecture could reason about alternative

methods for computation, including computations that handled simple negotiation

between two agents. The research builds on results on their work and more recent

related work to open a new vein of inquiry by addressing issues of scalability, partial

information and complex interactions across agent boundaries in real-world domains.

My intent for this dissertation is to design and develop a domain-independent frame-

work for MMLC including designing and implementing domain-independent versions

of the offline multiagent learning and the online global optimization algorithms. The

key idea is to formulate the MMLC problem as a global optimization problem with

offline learning providing the cost-to-go/reward function as input allowing agents to

adapt in knowledge-poor, partially observable environments. This will involve con-

structing a restricted class of decentralized Markov-Decision Processes (DEC-MDPs)

with factored states that has the ability to communicate and model interactions so

that decisions made in one agent’s meta-level DEC-MDP need to be coordinated with

the meta-level DEC-MDPs of other agents. This investigation will develop efficient

decision-making techniques to guide problem solving in complex agents when they are

faced with uncertainty, resource bounds and significant amount of interaction with

other agents.

By formalizing meta-level control, this work will significantly impact multiagent

systems research in that one can identify domains and scenarios where meta-level

control would be advantageous to overall multiagent performance. This work will
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also impact other fields that deal with uncertainty and non-stationarity including

robotic path-planning. The approach is innovative in its three research goals:

• To create a meta-level framework for multiagent systems that supports coordi-

nating decentralized Markov Decision Processes.

• To formulate the multiagent meta-level control problem as a global optimization

problem that bootstraps from individual agent learning and vice-versa.

• To show the importance of meta-level control for a significant and fielded multi-

agent application.

1.1.2 Why is the Problem Difficult?

In the multiagent context, meta-level control decisions at different agents need to be

coordinated. These agents may have multiple high-level goals from which to choose,

but if two or more agents need to coordinate their actions, the agents’ meta-control

components must be on the same page. That is, the agents must reason about the

same problem and may need to be at the same stage of the problem-solving process

(e.g., if one agent decides to devote little time to communication/negotiation before

moving to other deliberative decisions while another agent sets aside a large portion of

deliberation time for negotiation, the latter agent would waste time trying to negotiate

with an unwilling partner). Thus if an agent changes the problem-solving context it is

focusing on, it must notify other agents with which it may interact. This suggests that

the meta-control component of each agent should have a multiagent policy, where the

progression of what deliberations agents do, and when, is choreographed carefully and

includes branches to account for what could happen as deliberation (and execution)

plays out [Alexander et al., 2007] [Cox and Raja, 2008].

Determining the multiagent policy is a complicated problem since it is not expected

to be simply the union of all single-agent meta-control policies. In order to set up

the negotiation in the example scenario discussed in the Introduction, the meta-level

control should establish when negotiation results would be available. This involves
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defining important parameters of the negotiation including the earliest time the target

method will be enabled. Two agents with different views of meta-control policy for

negotiation need to be reconciled in order to set up the earliest starting time parameter

used in the negotiation process.

A second multiagent meta-level control research issue involves exploring how to

dynamically split the agent network into sub-networks that are coordinated but not

necessarily the same. Coordinated meta-level control decisions do not mean that

meta-level control has to be the same in all parts of the network; instead, it involves

finding consistent sets for different parts of the network. Multiagent meta-control

suggests the need for some kind of meta-level message passing. There are important

tradeoffs between the amount of communication (both size and number of messages)

and resulting overhead, and the usefulness of such communication. Agents must

determine what kind of information is contained in a meta-level message. In some

situations, it may be enough for the agent to simply let others know that it is thinking

about context X; in other cases, such as when agents are more tightly coupled, an

agent may need to communicate some partial results of its current thinking as well.

Agents must also reason about how to handle meta-control messages from others and

coordinate when these messages should be received and handled.

In a MAS that operates in complex and evolving environments, there is a need

for agents to adapt their local activities and organization relationships to the evolv-

ing characteristics of the uncertain environment. In this dissertation, we focus on

decentralized systems, where an agent has only a partial view of the system, that

is, an agent does not have full observability of the state of all other agents in the

system. The model of decentralized partially observable Markov decision processes

(DEC-POMDP) [Bernstein et al., 2002] generalizes such distributed problems. In a

DEC-POMDP, all agents share the same reward function, which is called a global

reward function. However, in many large-scale decentralized systems (e.g., network
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routing or distributed task allocation), learning agents do not have access to the glob-

al reward signals, because they can not be computed in real-time. Even when they

are available for some systems, they are usually not specifically tailored to individual

agents’ performance and are not good feedback for agents’ learning. In this work, we

leverage the significance of shared tasks and use the reward function to capture value

of tasks from a partially global perspective instead of a local perspective.

In partially observable environments, agents learn stochastic policies [Bernstein

et al., 2000] that map each state to a set of probability distributions over actions. S-

tochastic policies can cope with the uncertainty of observations in certain degree and

perform better than deterministic policies in partial observable environment. The

construction by hand of such adaptation policies is a difficult and time-consuming

process. Three of the difficulties in developing such policies are (a) adaptation may

affect the activities of other agents, which means that agents need to either implicitly

or explicitly coordinate their adaptation policies; (b) agents may need to know infor-

mation about the state of other neighboring agents in order for their local policies to

take appropriate action choices, which means there could be additional communica-

tion overhead. (c) The search space for each agent may become substantially large

that makes policy learning computationally challenging. We present a decentralized

learning algorithm that leverages smart state space expansion and conflict resolution

to address the above challenges.

1.1.3 A Real-world Application

For my dissertation work, I will study the above described intellectual questions

in the context of NetRads, a real-world application for tracking emerging weather

phenomena (e.g., rotations). The NetRads system [Krainin et al., 2007] [Zink et al.,

2005] is a network of adaptive radars controlled by a collection of Meteorological

Command and Control (MCC) agents that determine for each radar where to scan

based on emerging weather conditions. The NetRads radar is designed to quickly
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Figure 1.1: The MCCs experience homogeneous weather scenarios.

detect low-lying meteorological phenomena. The MCC agent can manage multiple

radars simultaneously, where each radar belongs to exactly one MCC. The MCC

agents have partial knowledge of their environments (they observe task set, neighbors,

data correlation and etc. with limited scope). Figure 1.1 is the example of MCC-

Radar configuration, where each MCC controls four radars. Each radar has a scanning

area represented by a circle and may have overlapping scanning areas with other

radars that demonstrates the environment of partial observability. The key terms

used in this work are defined as follows.

Heartbeat: The time allotted to the radar and its control systems for data gathering

and analysis of tasks is known as a heartbeat. Each NetRads agent has two choices

of heartbeat: 60 seconds and 30 seconds. A shorter heartbeat allows the system to

respond more rapidly to closely track the quickly evolving weather phenomena. A

longer heartbeat allows the system to scan with more resolution. In Figure 1.1, all

the MCCs have a 60 second heartbeat.
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Task: Each radar scanning task in the NetRads system has a position, a velocity,

a radius, a priority, a preferred scanning mode, and a type. Tasks are defined as four

types of weather phenomena (distinguished by different colors in Figure 1.1): storm,

rotation, reflectivity and velocity. Each of these types has its own distributions for

the characteristics mentioned above. The differences between these tasks are the

size (e.g., storms occupy a much larger area than rotations) and the elevations at

which a radar must scan the task to obtain useful information (e..g, storms must be

scanned at the lowest four elevations, but rotations must be scanned at the lowest six).

Tasks may be either pinpointing or non-pinpointing (described later). The utility of

a task from a single radar is the priority of the task multiplied by a factor meant to

represent the quality of the data that would result from the scan. The priority of

the task is specified by experts in the field such as meteorologists while quality of the

scan represents how well a particular portion of the atmosphere is sensed by a given

radar configuration. For each task ti, the utility is defined as:

u(ti) = d(ti)× q(ti) (1.1)

where d(ti) is determined by the priority of the requesting user or the weather pattern

and 0 ≤ d(ti) ≤ 1; q(ti) is the function for the quality of scan for ti and q(ti) :

ti × (s1, s2, ..., sn)→ r ∈ <, where sj denotes the scanning strategy of radar j.

Pinpointing and Non-Pinpointing Task: Pinpointing tasks are those that contribute

to a significant utility gain by scanning the associated volume of space with multiple

radars belonging to the same or different MCCs at once. The utility gained from

scanning a pinpointing task increases with the number of radars scanning the task

up to a point; whereas, the utility for a Non-Pinpointing task is the maximum of the

utilities from the individual radars.

Neighbor: Two MCCs are neighbors if their radars share overlapping scanning areas

(In Figure 1.1, each MCC has three neighbors).
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Data Correlation: Data Correlation occurs when radars belonging to different M-

CCs can observe the same weather phenomenon (such weather phenomenon are on

the overlapping areas of radars) and thus the interdependency and need for commu-

nication among these MCCs would increase. The data correlation is in part based on

the overlapping characteristics of potential scanning area of a radar; it is also based on

where weather phenomena are occurring and the speed of their movements. Degree of

data correlation captures how much data correlation MCCi has with its neighbor(s).

It is defined as 〈D1, D2, ..., Dn〉, in which n is the total number of MCCi’s neighbors,

Dj ∈ {High,Medium,Low}, j = 1, 2, ..., n. I abstract the degree of data correlation

into three qualitative categories to decrease the total number of explored states in the

search space. When radars belonging to different MCCs share data (especially data

about shared pinpointing tasks), they are more interdependent and so the commu-

nication among these MCCs would increase. In this work, I assume the value to be

High if the percentage of pinpointing tasks between two MCCs is equal or more than

70%; the value to be Low if the percentage of pinpointing tasks between two MCCs is

equal or less than 30%; otherwise it is set to Medium. In this work, the values (70%

and 30%) are set manually to categorize the three levels of degree of data correlation.

Weather Scenario: Weather scenario is the term used to qualitatively abstract the

weather environments that NetRads is experiencing at a particular time period. For

example, High Rotation Low Storm (HRLS) is one type of weather scenarios where

the number of rotations is significantly larger than the number of storms in a series of

heartbeats. The threshold of “significantly larger than X” is defined in a consistent

way as “more than three times compared with X”. This qualitative abstraction allows

for a substantial reduction in the search space. In Figure 1.1, all the MCCs experience

the same type of weather scenario in a simplified environment. In a more complicated,

heterogeneous and realistic environment, different parts of the system may encounter

different types of weather scenarios. In this work, I will learn individual policies
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for the heterogeneous weather scenarios that the NetRads system is experiencing.

The performance of my approach is evaluated in three different classes of weather

scenarios: High Rotation Low Storm (HRLS), Low Rotation High Storm (LRHS),

and Medium Rotation Medium Storm (MRMS). The performance is evaluated based

on these three general classes since each class stresses the system in different ways.

HRLS is the weather scenario where the number of rotations is significantly larger

than the number of storms in a series of heartbeats (e.g. lots of rotation phenomena

move in followed by a few storm phenomena, and then followed by lots of rotation

phenomena). LRHS is the weather scenario in which the number of storms is signifi-

cantly larger than the number of rotations in a series of heartbeats. MRMS denotes

the weather scenario in which the number of storms approximately equals that of

rotations. Storms and Rotations have different distributions for the characteristics so

that radars should adopt different scanning strategies. Even though this classification

of the real world weather distributions is very coarse, it has been found that this level

of detail is sufficient to generate policies that can improve the system performance

significantly.

Neighborhood Scenario: Each neighborhood scenario is a qualitative abstraction

that captures the characteristics of a class of real scenarios that are similar in struc-

ture and policy. I define a set NSi which consists of the neighborhood scenarios

MCCi might encounter based on the degrees of data correlation it has with its

neighbors. NSi = 〈f1, f2, ..., fN〉 where N is the total number of neighbors of the

MCC. fj(j = 1, 2...N) denotes the jth neighbor’s information that consists of its

current heartbeat (Vhb) and the number of its current radars (Vradar) involved in the

data correlation with MCCi. fj(j = 1, 2...N) is defined as (Vhb, Vradar), in which

Vhb ∈ {30seconds, 60seconds} and Vradar ∈ {0, 1,many}3. “many” means more than

3In the NetRads domain that is evaluated, the average number of radars each MCC controls is
low (< 5) and the probability that only one radar is involved in the data correlation between two
MCC agents is much higher than the others. So Vj is categorized into the three buckets to abstract
and differentiate Vj without the state space blowing up.
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one radar is involved in the data correlation. The qualitative value “many” is used

to simplify the description of MCC’s relation with its neighbors so as to reduce the

number of different feature sets. In Figure 1.1, from the view of MCC2, it is in

NS2= 〈(60seconds, 1), (60seconds, 0), (60seconds, 1)〉 which means that MCC2 has

three neighbors (MCC1, MCC3 and MCC4): MCC1 has the 60 seconds heartbeat

and 1 radar involved in the data correlation with MCC2; MCC3 has the 60 seconds

heartbeat and no radar involved in the data correlation with MCC2; MCC4 has the

60 seconds heartbeat and 1 radar involved in the data correlation with MCC2.

Meta-level control

As discussed earlier,two levels of control are associated with agents’ iterative three-

step closed loop: deliberative and meta-level control [Cox and Raja, 2008]. The lower

control level is deliberative control, which involves the agent making decisions about

what domain-level problem solving to perform in the current context and how to

coordinate with other agents to complete tasks requiring joint effort. As Figure 1.2

shows, deliberation-level and domain-level are two separate but related processes;

meaning 100% of resources for domain-level are also used for deliberation-level.

Figure 1.2: Heartbeat with three deliberative-level phases.

In the NetRads application, the domain action at each heartbeat would be the radar
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scanning. The deliberative action [Krainin et al., 2007] at each heartbeat would in-

volve each MCC spending some initial time in processing the radar data obtained

during the last heartbeat, then performing a local optimization to determine the con-

figuration of the radars under its control, followed by negotiation rounds of alternating

communication and recomputation of the local configuration.

These phases are called: Data Processing, Local Optimization and Negotiation re-

spectively (as Figure 1.2 shows). In Data Processing, each MCC gathers moment

data from the radars and runs detection algorithms on the weather data. The results

of this analysis lead to a set of weather-scanning tasks of interest for the next radar

scanning cycle. In Local Optimization, the MCC determines the best set of scanning

tasks to be assigned to each of its radars to maximize the sum of the task utilities

gained for that heartbeat. In Negotiation, the MCC communicates with its neighbor-

ing MCCs to modify its local optimization to successfully complete joint tasks and to

avoid redundant scanning of the same area. The goal of the NetRads is to maximize

the sum of the utilities of the tasks scanned in each heartbeat.

Figure 1.3: Adding MMLC phase in the heartbeat.

Although the types of deliberative actions [Krainin et al., 2007] are well-defined,

just sticking to these deliberative actions is not sufficient. Deliberation is computa-

tionally expensive and it is important to reason about deliberative choices. A new set

of actions are introduced that allow the agent to be smarter about its deliberations
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without itself consuming too many resources.

In this dissertation, multiagent meta-level control (MMLC ) is introduced to the

NetRads system as the process that facilitates agents to have a decentralized meta-

level multiagent policy, where the progression of what deliberations the agents should

do, and when, is choreographed carefully and includes branches to account for what

could happen as deliberation plays out.

Each MCC agent is augmented with a new meta-level phase called MMLC that

learns policies to handle the coordination of MCC agents and guide the deliberative-

level actions in Local Optimization and Negotiation. Although I apply and evaluate

the learning and conflict resolution algorithms to meta-level control in this work, the

approach is also applicable to the deliberative level. Each heartbeat is now split up

into four phases (as Figure 1.3 shown).

Questions to be addressed

At the highest level, the question I plan to address is the following: “How does

each MCC agent learn decentralized policies so that it can efficiently support agen-

t interactions with other MCC agents and reorganize the underlying network when

needed?” Specifically in NetRads, this involves addressing the following meta-level

adaptations:

1. How to re-organize the sub-networks of radars under each agent to minimize

the time required for agents to negotiate with their neighboring agents?

2. How to adjust the system heartbeat (how often a radar processing strategy

is updated) to adapt to changing weather conditions while balancing response

timeliness and scan accuracy?

The intuition behind identifying these meta-level issues is that it is preferable that

radars with large data correlation be allocated to the same MCC to reduce both

the amount of communication and the time for negotiation among MCCs. Moreover,

adjusting the system heartbeat allows MCCs to adapt to changing weather conditions.
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For example, if many scanning tasks occur in a certain region, meta-level control may

decide to use a shorter heartbeat to allow the system to respond more rapidly so as

to closely track the quickly evolving weather phenomena but with less resolution.

Figure 1.4: An LRC exists when both MCC1 and MCC3 move radars to MCC4.

There are two types of meta-level actions in MMLC phase: (1) Radar Reorganiza-

tion that involves potentially transferring the control of radars among different MCCs

and (2) Heartbeat Adaptation that involves potentially modifying the heartbeat of M-

CCs. The action of Radar Reorganization is more complicated than that of Heartbeat

Adaptation. It includes domain actions that deliberate about the type of radar move-

ment and the direction of radar movement. ‘Heavy Move’ and ‘Light Move’ are two

different types of radar movement (will be discussed in Chapter 3.2.2). The former

moves a large amount of radars to neighbors while the later moves few to decrease the

load of the MCC. For example, one action for Radar Reorganization could be ‘Heavy

Move(MCC1 to MCC2)’ which means MCC1 applies a ‘Heavy Move’ and the radars

are moved to MCC2 (the direction of radar movement). The Heartbeat Adaptation
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Figure 1.5: An SRC exists when both MCC1 and MCC3 require the control of R7.

action has two domain level action choices: ‘Use 30 seconds heartbeat’ and ‘Use 60

seconds heartbeat’. Simon [Simon, 1976] argued that deliberation time cost should

be applied to MMLC as well, since an agent is not performing rationally if it fails to

account for the overhead of computing a solution. The MMLC phase in each MCC

is restricted to a constrained time period (≤ 10% of the whole heartbeat) to ensure

enough time for the Local Optimization and Negotiation phases.

In this work, MCCs learn the policies that include these two types of meta-level

actions. The horizon of the policies for the NetRads is three heartbeat periods. This

horizon is defined after manually examining the behavior of the domain in various

scenarios. If the horizon is too short, it triggers meta-level control too frequently which

increases the cost of decision making and affects performance. On the other hand, a

horizon that is too long may result in meta-level control policies that are obsolete for

the latter part of the horizon, given the dynamic nature of the environment. In future

work, I plan to investigate the effectiveness of learning the horizon. The meta-level
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Figure 1.6: An IHC exists when MCC1 and MCC3 have different heartbeats.

action is defined as an abstract representation of real action sets. A detailed action

is an instantiation of an meta-level action. In Figure 1.1, a detailed action of the

meta-level action ‘Move less than 10% of the radars from MCC1 to MCC2’ could be

‘Move Radar R1 from MCC1 to MCC2’.

The concept of a conflict in my work is defined as incompatibilities among two or

more agents’ local policies for such reasons that agents compete for the same shared

resource, agents fail to balance the load of the whole multiagent system and agents

are not synchronized in communication. The following types of conflicts among a-

gents’ detailed actions associated with meta-level actions are defined as: Local Radar

Conflicts (LRC) (as Figure 1.4 shows) refer to situations in which an agent receives

radars from two or more neighboring agents simultaneously and thus it is overload-

ed 4; Shared Radar Conflicts (SRC) (as Figure 1.5 shows) are inconsistencies that

4The load of each MCC is measured based on the amount of data it needs to process. The number
of radar it controls as well as the number of tasks (especially pinpointing tasks) in the overlapping
areas contribute to the load.



19

may arise when two or more agents attempt to move the same radar(s); and Incon-

sistent Heartbeat Conflicts (IHC) (as Figure 1.6 shows) occur when two neighboring

agents have different heartbeats and have to communicate with each other during the

Negotiation phase. The three types of conflicts have different degrees of importance

to solve based on the influence they have on the system performance.

1.1.4 Motivating Example

Figure 1.7: The initial network topology. Radar R2 has a large data correlation with
R5; R13 has a large data correlation with R7. Many scanning tasks occur in the region
of MCC4.

I use a motivating example to show the implementations of these two types of

meta-level actions. In Figure 1.7, a large number of shared tasks occur in the

overlapping areas between R2 and R5; R13 and R7. For the sake of local opti-

mization, MCC2 could decide to move radars R5 and R6 to its neighbor MCC4;

meanwhile from the perspective of MCC3, it could also decide to move radar R10

to its neighbor MCC4 to achieve local optimization. However, this results in a L-

RC which makes MCC4 overloaded. An optimal policy for each MCC is needed

to minimize conflicts and at the same time to reach globally optimal solution (the
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Figure 1.8: The resulted network topology after meta-level actions (radar reorgani-
zation and heartbeat adaptation) are executed.

overall performance is maximized). In this example, one optimal policy for each

MCC would be: {MCC1 : ∅}; {MCC2 : “Move R5 to MCC1”}; {MCC3 : ∅};

{MCC4 : “Move R13 to MCC2”, “Use 30 second heartbeat”}. By making such

changes in MCC-radar associations, the system reduces the cost of communication

and the time spent on negotiation among MCCs. Also it is preferable for MCC4 to

use a shorter heartbeat (30 seconds) to respond more rapidly and to closely track the

quickly evolving tasks in its region. Figure 1.8 is the network topology resulting from

such a reorganization.

1.2 Assumptions

The agents are cooperative and will prefer alternatives which increase social utili-

ty/quality even if it is at the cost of decreasing local utility. The overall objective of

the system or agent is to maximize the utility generated over some finite time horizon.

MMLC is time constrained and can use only up to 10% of the total deliberation time.

The neighbors will always respond, and their responses will be always received. The

agents will all know when to terminate negotiations and do so at the same time by
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synchronizing their clocks.

The learning stage of this work describes the agent’s off-line learning process where

it adapts its behavior to improve performance. During the learning stage, the com-

plexity of the real state is handled by using the meta-level state that captures the

important qualitative state information relevant to the meta-level control decision

making process. The learning process is also sped up by defining the meta-level

action as an abstract representation of real actions and each meta-level action has

multiple possible detailed actions associated with it. A detailed action is an instan-

tiation of an meta-level action. For instance, the meta-level action “Move less than

20% of the radars from MCC1 to MCC2”5 could have the following detailed actions:

“Move 1 radar from MCC1 to MCC2” or “Move 2 radars from MCC1 to MCC2”.

When an agent takes an action, the “action” that is really implemented is a detailed

action. Execution stage in this work is denoted as the agent’s real-time execution

process when it chooses and implements the appropriate policy.

In this work, conflicts among agents’ actions are resolved at both learning and

execution stages so as to compute approximate optimal policies. Resolving conflicts

at only execution stage is not sufficient. Learned policies implicitly coordinate a-

gents’ behaviors, and so resolving conflicts only at execution stage may break their

coordination and result in poor performance.

The key idea in this work is that agents are smart about obtaining contexts and

requiring just relevant information to reduce conflicts. Suppose there are conflicts

among action choices, agents need to gather more contextual information. In other

words, when agents get into problems they acquire more information to reduce con-

flicts. The more context an agent has about its neighbors, the more coordinated its

decisions will be. It is expensive to learn in large contexts so we build local policies

making simplistic assumptions about the neighbors. An agent decides locally to take

5Suppose MCC1 has 11 radars associated with.
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an action but before executing recognizes if there is a conflict at that point and can

then take a different action. In other domains, conflicts could lead to only reduced

utility. In NetRads, conflicts reduce quality and conflict resolution has overhead. Our

idea is to reduce amount of time/effort involving conflict resolution strategy.

1.3 Summary of Approach

This dissertation seeks to answer the following key question: How can a network of

agents, operating in such complex cooperative domains, effectively learn policies that

support agent interactions with other agents and reorganize the underlying network

when needed?

Figure 1.9: An encompassing view of the MARL paradigm.

I model the problem as a decentralized coordination problem and describe a mul-

tiagent learning approach that uses decentralized Markov decision processes (DEC-

MDPs) [Bernstein et al., 2000] to learn the locally optimal policy for each agent. To

address the NEXP-Complete complexity of DEC-MDP, the solution is approximated

by using a factored reward function to define the Nash Equilibrium [Osborne and

Rubinstein, 1994] [Singh et al., 2000] (as shown in Figure 1.9). I extend a practical

MARL algorithm, called Policy Gradient Ascent with approximate policy prediction

(PGA-APP) [Zhang and Lesser, 2010], to learn stochastic policies for the DEC-MDPs
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belonging to individual agents.

The real-world weather scenarios are categorized into different classes by consider-

ing the effects they have in the system and the learning process is sped up by learning

the policies separately for each class. The exploration costs of DEC-MDPs are de-

creased by constructing abstract classes of states and actions where instances within

a class have similar features.

My dissertation establishes the following hypothesis : Harnessing decentralized learn-

ing and conflict resolution helps a cooperative MAS to converge to individual agent

policies that effectively improve the global performance.

As part of my adaptive approach to solve this problem, a heuristic rule-based

approach to locally change the detailed actions to resolve the conflicts in simplified

environments is first presented. The conflicts are categorized and pre-defined rules

are used to resolve different types of conflicts between two agents. The empirical

results show that this approach gives a performance advantage over an approach that

resolves conflicts in a much more ad-hoc manner.

However, the uncertainty and complexity of the environment often lead to very

large state space for each agent making decentralized policy learning computationally

challenging. I present a decentralized learning approach that is based on the idea of

selectively expanding the search space and learning the best policy for each agent by

harnessing information about the real-time performance of conflict resolution. The

conflicts are assigned different priorities based on the importance for resolution; these

priorities are taken into account in the approach. When conflicts resulting from

multiple neighboring agents applying their local policies are observed, agents switch

to “special” states that augment local policy states with additional non-local state

information and learn other actions to take in this specific situation. A mediator-

based mechanism is used to resolve conflicts in a partially global perspective. It

breaks the conflicts into smaller sets, partially centralizes and solves each set from
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a local view in a limited time period. Experimental results show that this approach

achieves good performance on system utility and conflict resolution by unrolling a

small fraction of the whole search space.

The above two approaches are designed to resolve conflicts from a local or partially

global perspective and survive in the scenarios where the dependency among agents

is not global and when we can believe that the interaction is limited to subset of

agents. To handle scenarios that the dependency among agents is highly constrained

and the interaction is globally distributed, we need distributed constraint optimiza-

tion algorithms to resolve conflicts and compute solutions from a global perspective.

Distributed constraint optimization problems (DCOPs) are a broad family of prob-

lems that a group of agents control the state of the variables in the system, having

the purpose to maximize the global reward for satisfying all the constraints. I model

the conflicts resolution problem as a DCOP and use a state-of-the-art algorithm that

solves DCOP, called Max-sum [Farinelli et al., 2008], to coordinate agents’ actions.

Empirical results show that the approach produces optimal solutions that minimize

the severity of conflicts at the global level.

1.4 Overview of Contributions

The contributions of this dissertation are:

1. A novel MAS framework for decentralized learning so that it can efficiently

support agent interactions and reorganize the underlying network when needed.

2. Efficient techniques to decrease the exploration costs of DEC-MDPs by con-

structing abstract classes of scenarios/ states/actions where instances within a

class have similar features.

3. Improving learning rates by categorizing different weather scenarios and learn-

ing policies for each MDP of each weather scenario.

4. Leveraging the significance of shared tasks in the NetRads domain and using

the reward function for the reinforcement learning to capture value of tasks
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from a partially global perspective instead of a local perspective.

5. Coordination of DEC-MDPs that use multiagent reinforcement learning to learn

joint polices in a decentralized fashion and incorporate an adaptive conflict res-

olution approach. The adaptive approach involves two algorithms that resolve

conflicts from a local and partially global perspective as well as a DCOP algo-

rithm that resolves conflicts from a global viewpoint.

6. A rigorous study of the interplay between two popular theories used to solve

multiagent problems, namely decentralized Markov decision processes and dis-

tributed constraint optimization.

7. A rigorous empirical study that spans both homogeneous and heterogeneous

(more complex) environments to show that the adaptive approach helps to

resolve conflicts and improve the overall performance.

1.5 Outline

The structure of this dissertation is as follows. In Chapter 2, I give an overview of

related work in multiagent systems, multiagent learning frameworks and multiagent

reinforcement learning algorithms. I also discuss research in DCOPs, meta-level con-

trol and NetRads application domain as well as compare other people’s work to my

work.

Chapters 3, 4 and 5 comprise the body of the dissertation. Chapter 3 describes

the DEC-MDP framework developed for my learning approach. To describe the

framework, the idea of abstraction is first presented, especially emphasizing on the

abstraction of states and actions. This is followed by a formal description of other

critical characteristics in the framework that include transition function, factored

reward function, Nash Equilibrium and stochastic policy.

In Chapter 4, research in multiagent reinforcement learning is described. I present a

MARL algorithm for local policy learning as well as the control flow that coordinates

DEC-MDPs and use this learning algorithm to learn joint policies in a decentralized
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fashion. The performance of this learning algorithm provides a sanity check on the

effectiveness of the DEC-MDP framework without conflict resolution.

Chapter 5 begins with a discussion about conflicts that may occur between agents’

local policies. I first present a categorization of the conflict types and priorities, fol-

lowed by a description of three incrementally more complex algorithms to resolve

conflicts and thus learn more effective policies for the whole system. The first conflict

resolution algorithm uses heuristic rules to locally resolve simple conflicts; the second

algorithm selectively expands agents’ state space and learns the decentralized policy

by harnessing information about the real-time performance of conflict resolution. It

uses a mediator-based mechanism to resolve conflicts from a partially global perspec-

tive. The final conflict resolution algorithm uses DCOP algorithm to resolve conflicts

from a global perspective. Experiments comparing and describing the viabilities of

these algorithms in different system environments are presented.

The dissertation concludes with Chapter 6, in which the main results and applica-

tions of this research and directions for future research are discussed.



CHAPTER 2: RELATED WORK

In this dissertation, I mainly deal with decision-making problems involving multiple

agents, and address the question how the agents operating in complex cooperative

domains, can effectively learn policies that support agent interactions and conflict

resolution. The approach is applied at the meta-level in a real-world radar tracking

system. In this chapter, I will discuss the current state of the art as it relates to the

research in this dissertation. This includes research in multiagent systems, multia-

gent learning frameworks, multiagent reinforcement learning, MDP unrolling, DCOPs

and distributed algorithms, meta-level control and NetRads application domain and

compare it to my work.

2.1 Multiagent Systems

Figure 2.1: A representation of two agents interacting with their environment.

A recent research effort on distributed artificial intelligence is to apply agent tech-

nology to intelligent network management and data harvesting. Agents are au-

tonomous entities that receive sensory inputs from the environment and then act

on it using their effectors based on the knowledge they have of the environmen-

t [Russell and Norvig, 2003]. A multi-agent system (MAS) consists of multiple agents
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which are all executing actions and influence their surrounding environments [Sycara,

1998] [Weiss, 1999]. A MAS allows for the distribution of knowledge, data, and re-

sources among individual agents and its modularity supports the development and

maintenance of complex highly reliable systems [Wooldridge, 2002]. Figure 2.1 shows

a representation of different agents interacting with their environment. In principle,

the agents in a MAS can have different, even conflicting goals. However, in this dis-

sertation I am interested in cooperative MASs in which the different agents form a

team with the same goal [Pynadath and Tambe, 2002]. This is an important topic

in distributed AI, since many large-scale applications, for example, sensor networks

and task allocation, are formulated in terms of functionally or spatially distributed

entities. Collaboration enables the different entities to work more efficiently and to

complete activities they are not able to accomplish individually. The use of a MAS

has the following advantages [Sycara, 1998]:

• A MAS can speed up the operation of a system because the agents can perform

the computations in parallel.

• A MAS usually has a high degree of robustness. In a single-agent system, the

entire system is crashed when a single failure happens. In a MAS, if one or

several agents fail, the system will still be operational because the remaining

agents can take over the workload.

• A MAS is easier to scale up. Adding new functionality to a monolithic system

is often much more difficult.

• A MAS has less communication bandwidth requirements since processing is

located nearer the source of information and facilitating real-time responsiveness

as processing, sensing, and effecting can be co-located.

A major challenge is to formalize these types of problems and construct solutions to

coordinate the different behaviors of the agents. Application domains include sensor

networks [Lesser, 2003] [Modi et al., 2003], network routing [Dutta et al., 2005],
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robotics [Low et al., 2011], energy [Chalkiadakis et al., 2011] and security [Shafi and

Merrick, 2011]. Next, I describe several other fundamental characteristics of a MAS

in more detail.

Dynamic environment

In most single-agent systems, the environment is assumed to be static, which means

that the transition and reward function do not depend on the time step t. However,

in a MAS, when other agents are part of the environment the new state and received

reward for one agent also depend on the actions selected by the other agents. The

environment becomes dynamic from the view of a single agent as a result. In Ne-

tRads, when one MCC chooses to do a “Heavy move” for radar reorganization, the

outcome depends on the behavior of other neighboring MCCs. The other neighboring

MCCs might anticipate the “Heavy move” of this MCC, but it is also possible that

they ignore the action of this MCC. The behavior of other agents can change over

time, resulting in a dynamic environment. Dynamic environments are more difficult

to handle than static environments since the same action can have different effects

based on factors an agent is not able to influence. This might lead to oscillated behav-

ior [Boutilier, 1999], and therefore requires solution techniques in which the agents

actively synchronize and coordinate their behaviors.

Homogeneous and heterogeneous agents

In a MAS, agents are either homogeneous or heterogeneous. Homogeneous agents

are constructed in the same way and have identical capabilities [Weiss, 1999]. For

example, hardware robots manufactured by the same factory process are homoge-

neous agents. On the other hand, heterogeneous agents have different designs and

different capabilities. For example, two soccer robots are heterogeneous when they

have different roles on the field and traverse the field with different velocities. In this

research, I focus on homogeneous agents.

Communication
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In a MAS, communication can help a team of agents to improve their performance.

In the extreme case, the agents are able to communicate instantaneously to all agents

for free without limitations in the number of messages. Then, it is in principle possible

to solve the system as one big single agent: one agent collects all the information based

on observations, solves the complete problem using single-agent learning techniques,

and informs each agent which action it should take. In this case, each agent obtains

perfect knowledge about the current situation, and therefore is able to model the

complete problem by itself, and select the action corresponding to its own identity.

In real applications, however, communication is restricted. For example, commu-

nication might not be available because of failing connections or spatial constraints.

Furthermore, communication is often delayed. In order to model the drawbacks of

communication, the sending of a message is sometimes associated with a cost, for

example, in the form of a negative reward [Pynadath and Tambe, 2002]. In NetRads,

it is critical to control the communication between agents to a reasonable degree at

the meta level. Too much communication may result in increased time spent at the

meta level, thus leading to less time at the deliberative phases (Phase 3 and Phase 4

in NetRads). On the other hand, sub-optimal meta-level policy is made mainly due

to insufficient communication between neighboring agents.

2.2 Meta-level Control

In this work, I focus on the MAS framework and investigate in the meta-level phase

in a real-time application. In complex environments, autonomous systems generally

require the ability to reason about resource allocation to computation at any point

in time. Doyle’s ‘rational psychology’ project [Doyle, 1983] is based on the idea

that computations, or state changes, are also actions to be reasoned about. He used

the idea of bounded rationality in the context of beliefs, intentions and learning.

Horvitz [Horvitz, 1988] also studied rational choice of computation in the context of

designing intelligent systems.
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The basic idea of bounded rationality arises in the work of Simon with his definition

of procedural rationality [Simon, 1982]. Simon’s work has addressed the implications

of bounded rationality in the areas of psychology, economics and artificial intelligence.

He argues that people find satisfactory solutions to problems rather than optimal

solutions because people do not have unlimited processing power. In the area of

agent design, he has considered how the nature of environment can determine how

simple an agent’s control algorithm can be and still produce rational behavior.

Russell, et al. [Russell et al., 1993] cast the problem of creating resource-bounded

rational agents as a search for the best program that an agent can execute. In

searching the space of programs, the agents, called bounded-optimal agents, can be

optimal for a given class of programs or they can approach optimal performance with

learning, given a limited class of possible programs. Schut and Wooldridge [Schut

and Wooldridge, 2001] observed that a Markov Decision Process (MDP)-based model

toward decision making is most similar to the bounded optimality model. Cox [Cox,

2005] provided a review of metacognition research in the fields of artificial intelligence

and cognitive science.

Meta-level control in complex agent-based settings was first explored in [Raja and

Lesser (2007)], where Raja and Lesser developed a sophisticated architecture that

could reason about alternative methods for computation, including computations that

handled simple negotiation between two agents. Meta-level control is the ability of an

agent to optimize its long-term performance by choosing and sequencing its deliber-

ation and execution actions appropriately. Cox and Raja [Cox and Raja, 2008] [Cox

and Raja, 2011] presented in plain language and simple diagrams a description of

a model of metareasoning that mirrors the action-selection and perception cycle in

first-order reasoning. In my work, meta-level control is used in a more complex appli-

cation of real-world system to support agent interaction and network reorganization.

I abstract the meta-level states and actions to bound the size of policy set and make
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the problem tractable.

Carlin and Zilberstein [Carlin and Zilberstein, 2011] considered a decentralized set-

ting, where multiple agents are solving components of a larger problem by running

multiple anytime problem solving algorithms concurrently. They proposed a formal

model, where meta-reasoning is used to monitor the progress of the anytime algo-

rithms and decide when to stop deliberation. In the decentralized monitoring problem

(DMP), Carlin and Zilberstein assume that the meta-level actions are known to each

agent (having 4 options); while in the NetRads domain, the set of meta-level action-

s is more complicated and exponential in size and is learned through DEC-MDPs.

Additionally, the cost defined for each meta-level action in the DMP application is

constant. However, in the NetRads domain, the cost of meta-level control is dy-

namic and the computation is sophisticated of radar re-organization. In the DMP

application, meta-level policies are used to monitor locally/globally other agents or

continue/stop the computation of agents to achieve optimal solution for global qual-

ity. In this work, meta-level policies are learned and used to guide the actions at

deliberative level.

Kennedy [Kennedy, 2010] introduces distributed meta-management where a single

agent has multiple meta-levels (metareasoning methods) that monitor each other and

the same object level. This requires choreographing the meta-levels, albeit within the

same agent. To my knowledge, there is very little work done in the area of exploring

the coordination of meta-level control parameters across agents and I plan to exploit

that idea in this work.

2.3 Multiagent Learning Frameworks

At the meta-level phase, it is important for each agent to learn optimal policies

and make smart decisions that help achieve the overall performance. In a sequential

decision-making problem an agent repeatedly interacts with its environment and tries

to optimize a performance measure based on the rewards it receives. It is difficult
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to determine the best action in each situation because a specific decision can have a

long-term effect and its particular outcome often depends on the future actions that

will be performed. Referring back to my NetRads example, it is impossible for an

MCC agent to reverse its decision for radar reorganization within a heartbeat.

I assume the sequential decision-making problems considered in this dissertation

all obey the Markov property. This implies that the current situation provides a

complete description of the history, and previous information is irrelevant for making

a decision. Furthermore, I assume that the decision-making agent is both autonomous

and rational. Autonomous means that the agent is capable of making decisions on

its own, and thus without the guidance of a user. Rational means that the agent

should select actions to maximize a given performance measure based on the available

information received from its sensors and its knowledge about the problem.

In this dissertation I mainly deal with sequential decision-making problems involv-

ing multiple agents, and address the question how the agents in a group can take the

right decision in a decentralized fashion for any given scenario. I restrict my attention

to cooperative multiagent systems in which the agents have to work together in order

to achieve a common goal, that is, optimize the given performance measure. This

differs from self-interested approaches [Shapley, 1953] [Littman, 1994] in which each

agent tries to maximize its own performance (e.g., in two-player games).

In this section, I describe different models for sequential decision making. I review

the single-agent Markov decision model and then extend it to incorporate multiple

agents. Stochastic games and other multiagent models are discussed.

2.3.1 Markov Decision Processes (MDPs)

Model: Markov Decision Processes (MDPs) [Puterman, 1994] [Bertsekas and Tsit-

siklis, 1996] are the foundations for much of the research in the single agent learning.

They provide a formal framework to model single agent decision-making problems

with uncertainty. In this sub-section, I will review the MDP model and its corre-
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sponding solution concepts.

Definition 1. A Markov decision process is defined by a tuple 〈S,A, T,R〉, where

• S is a set of states,

• A is a set of actions,

• T : S × A× S → [0, 1] is a transition function,

• R : S × A→ < is a reward function.

The transition function defines a probability distribution over next states as a

function of the current state and the agent’s action. The reward function defines

the reward the agent receives after taking an action in a state. Both the transition

functions and reward functions satisfy the Markov property, that is, the next state

and the reward solely depend on the current state and action, and not on the history

of states and actions [Puterman, 1994]. An agent interacts with its environment

through the alternation between perception and action. The agent observes the state

st at time t, and selects an action at. The agent then receives the reward rt, and

observes the next state, st+1 with the probability T (st+1|st, at). A sequence

s0, a0, r0, s1, a1, r1, ...st, at, rt, ...

refers to an execution trace of an agent.

Solution Concept: For MDP problems, we need to find an optimal policy for an

agent. A policy π : S → A is a mapping function that specifies an action π(s) ∈ A

in each state s ∈ S. Note that the policy for MDPs defined here is deterministic,

which means the agent always chooses a particular action for a state. We will define

stochastic policies later, which are more relevant for stochastic games. An optimal

policy for an MDP is defined as the policy that maximizes the function of the rewards

received by executing the policy over a potentially infinite horizon. There are two

types of functions of the rewards: cumulative reward and discounted reward.

a) Cumulative Reward: For open systems that run for a very long time, we are

usually interested in maximizing the cumulative reward over the time. The goal of
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the agent is to select actions that optimize a performance measure related to the

received rewards. The expected cumulative reward Rt collected from time step t is

defined as:

Rt = rt + rt+1 + rt+2 + rt+3 + ...+ rT = ΣT
k=tr

k, (2.1)

in which T is the final time step. This measure applies to episodic tasks in which the

interaction with the environment is divided into episodes. After T steps, or when a

terminal state is reached, the episode ends and the system resets to a starting state.

b) Discounted Reward: In the discounted reward formulation, immediate reward

is preferred over future reward. The expected discounted reward is specified as:

Rt = rt + γrt+1 + γ2rt+2 + ... = Σ∞k=0γ
krt+k, (2.2)

where γ, 0 ≤ γ < 1, is the discount rate. For γ < 1, rewards received in the near

future are favored as more valuable than later received rewards. As γ decreases, this

effect is more apparent; in the extreme case γ = 0 the agent only tries to maximize

the immediate received reward. Using this reward formulation, the goal for an agent

is to find an optimal policy π∗ that maximizes the discounted future reward for all

states. If the state transition function T and the reward function R is known, the

optimal policy can be calculated using a standard family of algorithms, e.g., value

iteration [Bellman, 1957] and policy iteration [Howard, 1960]. In this dissertation, I

am concerned about how to learn the optimal policy if the transition function and

the reward function are not known.

2.3.2 Stochastic Games

Model: In this section, I will focus on stochastic games, which are more interesting

for studying multiagent learning. Stochastic games [Shapley, 1953] are a superset of

MDPs, which can have multiple agents and multiple states. A stochastic game is a

dynamic game with probabilistic transitions played by one or more players, within a

sequence of stages. At the beginning of each stage, the game is in some state. The
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players choose actions and each player receives a payoff that depends on the current

state and the chosen actions. The game then transits to a new random state. The

procedure is repeated and the players continue to play for a finite or infinite number

of stages.

Definition 2. An n-agent stochastic game is defined by a tuple 〈A1, ..., An, S, T,R1, ...

, Rn〉, where

• Ai is the set of actions available to player i (and A = A1 × A2... × An is the

joint action space).

• S is a set of states.

• T : S × A × S → < is the transition function. T (s′|s, a) is the probability of

transiting to the next state s′ ∈ S after a joint action a ∈ A is taken by agents

in state s ∈ S.

• Ri : S×A→ < is the payoff or reward function of player i. Agent i receives an

individual reward Ri(s, a) for the joint action a ∈ A in state s ∈ S.

In stochastic games, there are multiple agents with each agent having an explicit

action set. For the agent set, the joint action and the current state determine the

individual next state and rewards. It should be noted that each agent has its own

independent reward function.

Solution Concept: Like in MDPs, the goal for each player in a stochastic game is

to find a policy that maximizes its long-term reward. The reward formulations of

cumulative reward and discounted reward also can be applied to stochastic games to

quantify the value of a joint policy to each player. For stochastic games, stochastic

policies are learned since they can cope with the uncertainty of observations to a

certain degree and perform better than deterministic policies in partially observable

environments. A stochastic policy for play i, πi, is a mapping that defines the prob-

ability of selecting an action from a particular state. Formally, π ∈ S × Ai → [0, 1],

where Σa∈Ai
π(s, a) = 1,∀s ∈ S. I use π = 〈π1, ..., πn〉 to refer to a joint policy for all
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the players, with πi being player i’s policy within that joint policy.

A fundamental solution concept in stochastic games is a Nash Equilibrium [Nash,

1950] [Osborne and Rubinstein, 1994]. It defines a joint action a∗ ∈ A with the

property that for every agent i holds Ri(a
∗
i , a
∗
−i) for all actions ai ∈ Ai, where a−i is

the joint action for all agents excluding agent i. Such an equilibrium joint action is a

steady state from which no agent can profitably deviate given the actions of the other

agents. In NetRads, the agents learn policies that converge to Nash Equilibrium.

POIPSG

Peshkin et al. [Peshkin et al., 2000] describe partially observable identical payoff

stochastic game (POIPSG), the interaction of a set of agents with a Markov environ-

ment in which all agents receive the same payoffs and they do not have the identity

observation function. In this setting, after each agent performs its action given its

observation according to some individual strategy, they all receive the same payoff.

The objective is to find a learning algorithm that makes each agent independently

find a strategy that enables the group of agents to receive the optimal payoff. The

POIPSG model is not applicable to NetRads, since the reward each agent receives is

from a partially global perspective and is different from others.

MMDP

When all players have the same reward function, such stochastic games are called

multiagent Markov decision processes (MMDP) [Boutilier, 1999]. MMDP is used

to model decision-making problems in fully cooperative multiagent systems where

all agents individually observe the state of the environment. Each agent has the

same utility or reward function. The MMDP model does not apply to NetRads,

because: 1) In NetRads, each MCC has its partial observability of the global state.

2) Communication of observations between MCCs during the MMLC phase can be

very expensive since the MMLC phase is time critical (less than 10% of deliberation

time).
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2.3.3 Decentralized MDP Models

In this dissertation, I am also interested in learning in the concept of cooperative

multiagent systems, where a group of agents work together to optimize the global

performance. In this section, I will first review the framework of decentralized par-

tially observable Markov decision processes (DEC-POMDP) to model the sequential

decision-making problem in cooperative multiagent systems. I then discuss other

decentralized MDP models that are derived from the DEC-POMDP model.

DEC-POMDP

Model: In [Bernstein et al., 2002], Bernstein et al. studied decentralized control

problems and centralized control problems from the point of view of computational

complexity. They consider two different models of decentralized control of MDPs.

One is a generalization of a partially-observable Markov decision process (POMDP),

which they call a decentralized partially-observable Markov decision process (DEC-

POMDP). In a DEC-POMDP, the process is controlled by multiple distributed a-

gents, each with possibly different information about the state. The DEC-POMDP

model [Bernstein et al., 2002] with n agents is a tuple 〈S,A, T ,Z,O,R,h〉, where

• S is a set of states, with a distinguished initial state s0.

• A = A1 × A2 × . . .× An is a set of joint actions, where Ai is the action set for

agent i.

• T : S ×A× S → [0, 1] is the transition function. T (s′ | s, a) is the probability

of transiting to the next state s′ after a joint action a ∈ A is taken by agents in

state s.

• Z = Z1×Z2× . . .×Zn is a set of joint observations, where Zi is the observation

set of agent i.

• O : S ×A×Z → [0, 1] is the observation function, where O(z | s, a) denotes

the probability of perceiving joint observation z after executing joint action a

and arriving in state s.
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• R : S ×A× → R is the reward function. R(s, a) is the reward for taking action

a ∈ A in state s ∈ S.

• If the DEC-POMDP has a finite horizon, that horizon is represented by a pos-

itive integer h.

Sub-classes of DEC-POMDPs can be characterized based on how the global states,

transition function, observation function, and reward function relate to the partial

view of each of the controlling agents [Goldman and Zilberstein, 2004]. In the simplest

case, the global states can be factored, the probability of transitions and observations

are independent, the combined observations determine the global state, and the re-

ward function can be easily defined as the sum of local reward functions. In this

extreme case I can say that the DEC-POMDP is equivalent to the combination of n

independent MDPs.

Solution Concept: Since an agent has no direct access to the current state in DEC-

POMDPs, selecting actions based on the current state (as in a MDP) is no longer

valid. An agent needs act based on perceived observations. As discussed earlier,

stochastic policies can cope with the uncertainty of observations in certain degree

and perform better than deterministic policies in partial observable environment.

The policy π is defined as: Zi×Ai → [0, 1] for agent i as a mapping of an observation

zi ∈ Z to a probability distribution over action Ai. I use π = 〈π1, ..., πn〉 to refer to a

joint policy for all the agents, with πi being agent i’s policy within that joint policy.

DEC-MDP

Model: A decentralized Markov decision process (DEC-MDP) is a DEC-POMDP

with the restriction that at each time step the agents’ observations together u-

niquely determine the state. The DEC-MDP model [Becker et al., 2004] is a tuple

〈S,A,P ,R, Ω,O〉, where

• S is a finite set of world states, with a distinguished initial state s0.

• A = A1 × A2 × . . . × An is a finite set of joint actions. Ai indicates the set of
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actions that can be taken by agent i.

• P : S ×A× S → R is the transition function. P(s′ | s, (a1...an)) is the prob-

ability of the outcome state s′ when the joint action (a1...an) is taken in state

s.

• R : S ×A× S → R is the reward function. R(s, (a1...an), s′) is the reward

obtained from taking joint action (a1...an) in state s and transitioning to state

s′.

• Ω = Ω1 × Ω2 × . . . × Ωn is a finite set of joint observations. Ωi is the set of

observations for agent i.

• O : S ×A× S× Ω → R is the observation function. O(s, (a1...an), s′, (o1...on))

is the probability of agents 1 through n seeing observations o1 through on (agent

i sees oi) after the sequence s, (a1...an), s′ occurs.

• Joint full observability: the n−tuple of observations made by the agents together

fully determine the current state. If O(s, (a1...an), s′, (o1...on)) > 0 then P(s′ |

(o1...on)) = 1.

DEC-MDP applies in the following MAS scenarios. In the decentralized view, an

agent cannot see other agents’ local states and local actions, and has to decide the

next local action on its own. Each agent has only a partial view of the system’s

global state, and different agents have different partial views. Of course, this does

not necessarily mean that the agents are isolated. Rather, an important ability of

decentralized cooperative agents is their ability to communicate. In [Xuan and Lesser,

2002], the authors view communication as a way of expanding an agent’s partial view

by exchanging local information not observed by other agents. DEC-MDPs is a

problem with the complexity of NEXP-complete.

An n-agent DEC-MDP is said to be transition independent [Goldman and Zilber-

stein, 2004]: that is, the new local state of each agent depends only on its previous

local state, the action taken by that agent, and the current external features.
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An n-agent DEC-MDP is said to be observation independent [Becker et al., 2003]:

that is, the observation an agent sees depends only on that agent’s current and next

local state and current action.

An n-agent DEC-MDP is said to be locally fully observable: that is, each agent

fully observes its own local state at each step.

An n-agent DEC-MDP is said to be reward independent : that is, the overall reward

is composed of a function of the local reward functions, each of which depends only

on the local state and local action of one of the agents. This function is such that

maximizing each of the local reward functions individually maximizes the function

itself.

ND-POMDP

Due to the intractability of optimally solving general DEC-POMDPs, research has

focused on restricted versions of DEC-POMDP that are easier to solve yet rich e-

nough to represent many practical applications. Networked Distributed POMDP

(ND-POMDP) [Nair et al., 2005] is one such model that is inspired by a real-world

sensor network coordination problem [Jain et al., 2009]. ND-POMDP assumes tran-

sition and observation independence and locality of interaction. Zhang and Less-

er [Zhang and Lesser, 2011] used the ND-POMDP framework to model cooperative

multi-agent decision making. They presented a scalable learning approach that syn-

thesizes multiagent reinforcement learning and distributed constraint optimization.

They grouped agents that have interactions among them and constructed interac-

tion hypergraph to model this relationship. The interaction hypergraph is unchanged

through the learning. In the NetRads domain, the joint actions of agents may change

the network configuration from time to time and a fixed interaction hypergraph is

not able to model this.
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2.4 Multiagent Reinforcement Learning

MDPs are the foundation for much of the research in the single agent control learn-

ing. They provide a formal framework for modeling single-agent decision-making

problems with uncertainty. Reinforcement learning (RL) allows an agent to learn

the solution without knowing the details of a MDP. Reinforcement learning [Sutton

and Barto, 1998] [Barto et al., 1989] [Whitehead and Ballard, 1991] is a mathemat-

ical framework used by agents to learn how to map situations to actions so as to

maximize a numerical reward signal. The usual approach taken by reinforcement

learning agents involves discovering which actions yield the most reward by trying

them out, associating expected reward values with different agent states, and using

reward values to choose actions.

When the transition function or reward function of an MDP is unknown, an agent

can not directly compute the optimal policy and needs to learn it through interacting

with the environment. Reinforcement learning is a field concerned with such learn-

ing in MDP environments. A broad spectrum of single-agent RL algorithms exists,

e.g., model-free methods based on online estimation of value functions [Watkins and

Dayan, 1992] [Peng and Williams, 1996] [Sutton, 1988] [Tesauro, 1992], and model-

learning methods that estimate a model, and then learn using model-based tech-

niques [Sutton, 1990] [Moore and Atkeson, 1993]. As in this research the multi-agent

learning algorithms I describe and implement in the Offline RL (Figure 3.2) are built

on top of Q-learning [Watkins and Dayan, 1992], I will briefly describe Q-learning

here.

The Q-learning algorithm learns the optimal state-action value function. The state-

action function (Q-value function) Qπ : S × A → < defines the expected discounted

reward of choosing a particular action from a particular state and then following the

policy π. Formally, Qπ(s, a) = Σ∞t=0γ
tErt+k|sk = s, ak = a, π. The optimal Q-value
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function Q∗ satisfies the Bellman optimality equation:

Q∗(s, a) = R(s, a) + γΣs′∈ST (s′|s, a)maxa′∈AQ
∗(s′, a′) (2.3)

This equation states that the optimal value of taking a in u is the expected immediate

reward plus the expected (discounted) optimal value attainable from the next state.

The policy is deterministic and picks the action with the highest Q-value for every

state:

π(s) = arg max
a∈A

Q(s, a) (2.4)

The agent can achieve the learning goal by first computing Q∗ and then choosing

actions by the policy, which is optimal (i.e., maximizing the expected reward) when

applied to Q∗.

Since the transition function is unknown, Q-learning turns Equation 2.3 into an

iterative approximation procedure. The current estimate of Q∗ is updated using

estimated samples of the right-hand side of Equation 2.3. These samples are computed

using actual experience interacting with the environment, in the form of the observed

next state sk+1 and rewards rk+1 after taking action ak in state sk:

Q(sk, ak)← Q(sk, ak) + αk[rk+1 + γ max
ak+1∈A

Q(sk+1, ak+1)−Q(sk, ak)] (2.5)

Since its update rule does not require knowledge about the transition and reward func-

tion, Q-learning is model-free. The learning rate αk ∈ (0, 1] specifies how far the cur-

rent estimateQ(sk, ak) is adjusted towards the update target rk+1+γmaxak+1∈AQ(sk+1

, ak+1). The learning rate is typically time-varying, decreasing with time. Separate

learning rates may be used for each state-action pair. The expression inside the square

brackets is the temporal difference, i.e., the difference between estimates of Q(sk, ak)

at two successive time steps, k + 1 and k.

The sequence Qk provably converges to Q∗ under the following conditions [Watkins

and Dayan, 1992] [Jaakkola et al., 1994]:
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• Explicit, distinct values of the Q-function are stored and updated for each state-

action pair.

• The time series of learning rates used for each state-action pair sums to infinity,

whereas the sum of its squares is finite.

• The agent keeps trying all actions in all states with nonzero probability.

The third condition means that the agent must sometimes explore other actions

than those determined by the current policy. To achieve this, one approach is to

choose at each step a random action with probability . ε ∈ (0, 1) and the greedy

action with probability (1−ε). This approach is called ε-greedy exploration. Another

approach is to use the Boltzmann exploration strategy [Sutton and Barto, 1998], which

in state s selects action a with probability:

π(s, a) =
eQ(s,a)/τ

Σa′eQ(s,a′)/τ
(2.6)

where τ > 0 is the temperature that controls the randomness of the exploration.

When τ → 0, this is equivalent with the policy specified by Equation 2.6. When

τ → ∞, action selection is purely random. For τ ∈ (0,∞), higher-valued actions

have a greater chance of being selected than lower-valued ones.

This dissertation develops a decentralized learning paradigm to allow agents to

effectively learn and adapt coordination policies in complex cooperative domains

without explicitly building the complete decision models. Multiagent Reinforcement

Learning (MARL) [Hu and Wellman, 1998] is a common approach for solving multi-

agent decision making problems. It allows agents to dynamically adapt to changes in

the environment and keep stability of the agents’ learning dynamics, while requiring

minimum domain knowledge. Most of the times each learning agent must keep track

of the other learning (and therefore, non-stationary) agents.

Previous techniques of MARL have the problem of not converging in the worst

case. Bowling and Veloso [Bowling and Veloso, 2002a] use a variable learning rate to
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overcome this shortcoming. They present the Win or Learn Fast heuristic (WoLF)

that makes a rational algorithm convergent in a two-agents, two-actions game. WoLF

assumes that an agent knows the Nash Equilibrium and the strategy of the other play-

ers. For real-world applications like NetRads, this assumption does not hold. The

MCC agent can only observe the immediate reward after selecting and performing an

local action. Abdallah & Lesser’s Weighted Policy Learner (WPL) algorithm [Abdal-

lah and Lesser, 2006] is a variant of the WoLF [Bowling and Veloso, 2002b] algorithm

for multiagent meta-level control. The main characteristic of the WoLF algorithm is

its ability to change the learning rate to encourage convergence in a multiagent RL

scenario. It helps determine how quickly or slowly an agent should change its policy

while accounting for other agents that are learning. In my previous work [Cheng

et al., 2010a] [Cheng et al., 2010b] [Cheng et al., 2010c], WPL is used to learn the

meta-level control policies for the NetRads domain.

In [Zhang and Lesser, 2010], Zhang and Lesser experimentally showed that WPL

converged slowly and did not perform well on some kinds of problems (e.g., Normal-

form games, Shapley’s game). Zhang and Lesser [Zhang and Lesser, 2010] presented

a new gradient ascent algorithm with policy prediction, called Policy Gradient Ascent

with approximate policy prediction (PGA-APP), that outperforms WPL in learning

results. PGA-APP guarantees that an agent can estimate its policy gradient with

respect to the opponent’s forecasted strategy without knowing the current strategy

and the gradient of the opponent.

Many AI researchers have addressed the use of abstraction for large-scale planning

and problem solving. This is mainly because the complexity of states and actions in

such large-scale domains makes policy convergence very difficult. Abstraction allows a

system to focus on the information relevant to the decision making and ignore details

that are irrelevant. In the RL literature, temporal abstraction [Sutton et al., 1999]

and hierarchical control [Ghavamzadeh and Mahadevan, 2004] are used to combat
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the curse of dimensionality in a principled way. One type of abstraction is the idea of

a “ macro-operator”, or just a “macro”, which is a sequence of operators or actions

that can be invoked by name as if it were a primitive operator or action [McGovern

and Barto, 2001]. Sutton et al. [Sutton et al., 1999] extended the usual notion of

action in the framework of RL and MDPs to include options - closed loop policies for

taking action over a period of time. They showed that options and primitive actions

can be used interchangeably in both planning and learning methods. The theory of

Semi-Markov Decision Processes (SMDPs) provides the foundation for the theory of

options. McGovern et al. [McGovern and Barto, 2001] analyzed the roles of macro-

actions that are closed-loop policies with termination conditions in RL algorithms.

Empirical results showed that macro-actions may either accelerate or retard learning,

depending on the appropriateness of the macro-actions to the particular task.

Ghavamzadeh & Mahadevan [Ghavamzadeh and Mahadevan, 2004] presented a

hierarchical RL framework that builds upon the MAXQ framework [Dietterich, 2000]

and the options model [Sutton et al., 1999]. Their approach studied how lower level

policies over subtasks or primitive actions can themselves be composed into higher

level polices. They showed that hierarchical RL using the MAXQ framework can

be much faster and more compact than flat RL. They also showed that coordination

skills are learned much more efficiently if the agents have a hierarchical representation

of the task structure. These works emphasize the importance and advantages of

abstraction in RL. My work in meta-level control is different from these works. I use

meta-level state/action as an abstract representation of the state/action that captures

the similar qualitative information relevant to the meta-level control decision making

process. The use of options/macro-actions is inappropriate for the NetRads domain,

since the environment is highly dynamic and a policy needs to be applied at the most

3 heartbeats to closely track the emerging weather phenomena.

In [Guestrin et al., 2001], the authors represented the multiagent system as a MDP
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and showed how such factored value functions allow the agents to find a globally

optimal joint action using a very natural message passing scheme. They used one

single MDP to learn the policies the size of which blows up exponentially when the

number of agents scales up. I use smaller MDPs to learn local policies, then co-

ordinate them using heuristic rules to resolve conflicts. Following [Guestrin et al.,

2001], Guestrin et al. [Guestrin et al., 2002] presented new algorithms for multiagent

reinforcement learning that have the common features of parameterized, structured

representation of a policy or value function. They proposed coordinated reinforcement

learning, by which agents coordinate action selection activities as well as parameter

updates. Their algorithms differ from the MAS learning algorithm used in NetRads

in that structured communication and coordination between agents exists at both the

learning algorithm and the execution stage.

Jelle R. Kok & Nikos Vlassis [Kok and Vlassis, 2006] described several algorithms

for learning the behavior of a group of agents in a collaborative multiagent setting.

They used the framework of coordination graphs of Guestrin et al. [Guestrin et al.,

2001] which exploits the dependencies between agents to decompose the global payoff

function into a sum of local terms. In this paper, the authors were interested in col-

laborative multiagent systems in which the agents have to work together to optimize a

shared performance measure. This approach differs from other multiagent models, for

instance, multiagent MDPs [Boutilier, 1999] or decentralized MDPs [Bernstein et al.,

2002], in which all agents observe the global reward. In this approach, it assumes

that the global reward is the sum of all individual rewards; while in NetRads, the

global reward is not a simple function of all individual rewards (scanning pinpointing

tasks between agents brings extra rewards which makes it complicated). Their model

assumes that the environment is stationary, that is, the reward and transition prob-

abilities are independent of the time step t. However, in my work, the environment

is dynamic, the reward changes according to the time steps (e.g., new phenomena
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moves in; old phenomena fades out; phenomena move fast between radars/MCCs).

2.5 MDP Unrolling

Agents often have large state spaces when they need to plan and coordinate in

uncertain, dynamic environments. This makes decentralized learning computationally

challenging.

Barto et al. [Barto et al., 1995] present a realtime dynamic programming algorith-

m that performs successive training cases on the uncertain environments. In each

training case, value updates are only performed on the states actually visited in that

case. Dean et al. [Dean et al., 1995] propose an envelope algorithm, which gradually

extends the initial state space to add in more states and thus learn new policies.

Given more computational time, this algorithm will perform better on partial policy

calculation. These heuristic search algorithms increase effort spent on states that are

most likely to be reached if an optimal policy is followed.

Wu and Durfee [Wu and Durfee, 2007] present a solver that learns effective policies

in problems with large state spaces by selectively unrolling the search space. In their

work, the exploration of the state space that is likely to be reached by the optimal

policy is emphasized. In my work described here, I unroll the state space of each

agent based on the conflict resolution performance it has achieved. Additionally, the

policy in their work is determined based on the quality function that is known as a

prior. I use a reinforcement learning algorithm to learn policies and a set of heuristics

to guide the MDP unrolling. They execute the MDP unrolling at the deliberative

level while I execute it as part of on-line learning.

Alexander et al. [Alexander et al., 2008] implement a meta-level control scheme to

determine when the agent should stop unrolling the state space in order to derive a

partial policy while reducing the time for re-prioritizing the states. Their approach

collects performance profile information to make meta-level decisions on state ex-

pansion although I re-prioritize the set of heuristics that guide the unrolling using
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actual on-line performance. In [Alexander et al., 2008], the MDP of a single agent

is unrolled; while I am working on multiagent settings and unrolling MDPs of each

agent.

2.6 DCOPs and Distributed Algorithms

In this dissertation, I use distributed constraint optimization algorithm to resolve

conflicts from a global perspective for scenarios where negotiation mechanisms with

local views are ineffective. Distributed constraint optimization problems (DCOPs)

are a broad family of problems that can be used to model many domains including:

optimal process control, task allocation and scheduling problems [Stranjak et al.,

2008] and distributed sensor network management [Kho et al., 2009]. In a constraint

satisfaction problem, the goal is to find a configuration of the domains of the vari-

ables so that they satisfy a set of constraints. A constraint optimization problem

consists of a utility function that aggregates the payoffs for satisfying each of a set

of ‘soft’ constraints over the states of variables in the problem [Schiex et al., 1995].

A distributed constraint optimization problem arises when a group of agents control

the state of the variables in the system, having the purpose to maximize the global

reward for satisfying all the constraints. A DCOP with n variables and m constraints

consists of the tuple 〈X ,D,U〉 [Petcu and Faltings, 2005a], where:

• X = {x1, ..., xn} is a set of variables, each one assigned to a unique agent

• D = {d1, ..., dn} is a set of finite domains for each variable

• U = {u1, ..., um} is a set of utility functions such that each function involves

a subset of variables in X and defines a utility for each combination of values

among these variables

An optimal solution to a DCOP instance involves an assignment of values in D

to X such that the sum of utilities in U is maximal. Problem domains that require

minimum cost instead of maximum utility view costs as negative utilities. The utility

functions represent soft constraints but can also represent hard constraints by using
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arbitrarily large negative values.

A number of complete algorithms that generate optimal solutions have been pro-

posed for solving DCOPs: including OptAPO [Mailler and Lesser, 2004], ADOP-

T [Modi et al., 2005] and DPOP [Petcu and Faltings, 2005a] and variations of DPOP

such as SDPOP [Petcu and Faltings, 2005b], M-DPOP [Petcu et al., 2008] and PC-

DPOP [Petcu et al., 2007]. More specifically, OptAPO uses a partially centralized

approach in which mediator agents compute solutions for portions of the overall prob-

lem. In contrast, ADOPT, DPOP and variations of DPOP preprocess the constraint

graph, arranging it into a Depth First Search (DFS) tree, and then exchange messages

over this tree.

Now, while these algorithms represent significant contributions in their own do-

main, they do not address many of the additional challenges that are present when

the agents correspond to embedded devices. In particular, optimality demands that

some aspect of these algorithms is exponential. For example, within OptAPO, me-

diator agents may be required to perform calculations that grow exponentially with

the size of the portion of the overall problem that they are responsible for. Similarly,

the number of messages that agents exchange when using ADOPT is exponential in

the height of the DFS tree, and for DPOP, it is exponential in the width of the tree.

Such exponential relationships are simply unacceptable for agent systems that exhibit

constrained computation, bandwidth and memory resources.

In contrast, a large number of approximate stochastic algorithms have also been

proposed for solving DCOPs. These algorithms are typically based upon entirely

local computation, whereby each agent updates its state based only on the communi-

cated (or observed) states of those local neighbors that influence its utility. As such,

these approaches are well suited for large scale distributed applications, and in this

context, the Distributed Stochastic Algorithm (DSA) [Zhang and Wittenburg, 2003]

is one of the most promising; having been proposed for decentralized coordination
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within sensor networks and bench-marked on DCOP problems [Zhang et al., 2005a].

However, algorithms of this type often converge to poor quality solutions since agents

do not explicitly communicate their utility for being in any particular state, but only

communicate their preferred state (i.e. the one that will maximize their own utility)

based on the current preferred state of their neighbors.

Max-Sum is a decentralized coordination algorithm that provides approximate so-

lutions for general constraint networks while requiring very limited communication

overhead and computation. It uses message-passing and maximizes a utility function

of a constraint graph. It is proven to work well for solving constraint optimization

problems [Farinelli et al., 2008] in domains where approximate solutions are acceptable

while requiring very limited communication overhead and computation. Empirical re-

sults show that Max-sum provides the approximate solution that are within 95% of

the optimum [Stranders et al., 2009]. The Max-Sum algorithm defines a factor graph

by creating a node for each variable and for each function. If the factor graph is

cycle-free, the messages are guaranteed to converge [Farinelli et al., 2008], and the

resulting solution will maximize the overall utility.

In the Max-Sum algorithm, there is a set of variables x = {x1, x2, ..., xm} on which

a set of functions F = {F1, F2, ..., Fn} depend. Fi = Fi(xi), xi ⊂ x. The goal is to

find x∗ which satisfies the following:

x∗ = arg max
x

n∑
i=1

Fi(Xi) (2.7)

To achieve this, the Max-Sum algorithm defines a factor graph by creating a node

for each variable and for each function. The graph is bipartite, and a function node

is connected to a variable node if the corresponding function is dependent upon that

variable. The algorithm has two types of messages passed between nodes, which

are [Farinelli et al., 2008]:
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Variable i to Function j:

qi→j(xi) = αij +
∑

k∈Mi\j

rk→i(xi) (2.8)

Here αij is a scalar set such that Σxiqi→j(xi) = 0, and Mi contains the indices of

function nodes connected to variable node i.

Function j to Variable i:

rj→i(xi) = max
xj\i

[Fj(xj) +
∑
k∈Nj\i

qk→j(xk)] (2.9)

where Nj contains the indices of variable nodes connected to function node j in the

factor graph.

When the factor graph is cycle free, the algorithm is guaranteed to converge to the

global optimal solution. Furthermore, this convergence can be achieved in time equal

to twice the depth of the tree by propagating messages from the leaf nodes of the tree

to the root and back again [Farinelli et al., 2008]. In this case, the optimal variable

assignment is found by locally calculating the function, zi(xi), once the variable node

has received a message from each of its connected function node.

zi(xi) =
∑
j∈Mi

rj→i(xi) (2.10)

and hence finding argmaxxizi(xi).

Otherwise, there is no guarantee of convergence. However, extensive empirical

results show that, even in this case, the algorithm frequently provides good solutions.

Before convergence, the value zi(xi) of agent i calculated from incoming messages

is actually an approximation of the exact value of action ai given other agents act

optimally. Therefore, the Max-sum algorithm can be implemented as an anytime

algorithm by controlling the number of rounds of passing messages, which will trade

off the quality and efficiency (or communication cost) of the action selection. In

addition, the Max-sum algorithm is essentially distributed. Its messages are small
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(linearly scaling with the maximum number of actions of agents), the number of

messages typically varies linearly with the number of agents and hyperlinks, and its

computational complexity scales exponentially with the maximum size of hyperlinks

(which typically is much less than the total number of agents).

Mailler and Lesser [Mailler and Lesser, 2006] presented a complete, distributed al-

gorithm for solving distributed constraint satisfaction problems (DCSPs). It is based

on a cooperative mediation process that agents, when acting as a mediator, centralize

small portions of the DCSP, and increase the size of their subproblems as the prob-

lem solving unfolds. My decentralized negotiation algorithm is similar in character

to their approach, except that I introduce termination conditions to guarantee time

bound for conflict resolution. Zhang et al. [Zhang et al., 2005b] described a technique

that uses a partial-order schedule to enable agents to reason about the interaction-

s among multiple negotiation issues. A contract bidding scheme is used to resolve

conflicts among agents. There is no guarantee on solution quality and the time it

runs mainly depends on the contracts bidding process. Krainin et al. [Krainin et al.,

2007] presents a decentralized algorithm to solve the negotiation problem that aris-

es when NetRads agents work together to improve the global performance. It uses

marginal utility to compute better moves and updates neighborhood’s configuration

gradually until the pre-specified amount of time is reached. In my work, the agents

learn the policies at the meta-level. To set a time limit for termination does not work

for this problem, since it is difficult to pre-define the time limit which optimizes the

performance of conflict resolution and reinforcement learning.

In my decentralized negotiation algorithm, agents are selected as mediators to

resolve conflicts from the view of the neighborhood and the overall performance is

improved by considering the importance as well as the number of different types of

conflicts in the mediation process.
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2.7 State of the Art Research on NetRads

There have been outcomes of other people with respect to the research of NetRads.

Krainin et al. [Krainin et al., 2007] proposed a distributed task allocation mechanism

in the NetRads system that improves the overall system utility with a significantly

reduced computational load. Meta-level control was not introduced in their work and

the optimization of radar scanning strategies was achieved at the deliberative level.

An et al. [An et al., 2011] introduced the concept “goal” to model end-users’ pref-

erences over multiple heartbeats and casts the complex sensing resource allocation

problem as a continuous time optimization problem. In my simulation model, all the

MCCs are myopically optimizing every “single” heartbeat’s utility. An et al. uses a

genetic algorithm to generate optimal scanning strategies of each single MCC and a

distributed negotiation model to coordinate multiple MCCs’ scanning strategies over

multiple heartbeats. However, I use MARL algorithm to learn the meta-level policies

for DEC-MDPs.

In [Kim et al., 2010], the authors used an approximate distributed optimization ap-

proach to coordinate radars for real-time weather sensing. The approach performed

efficiently in terms of resource utilization and communication for most scenario set-

tings in comparison to a negotiation-based algorithm specifically designed for this

domain structure. Like Krainin et al., they are concerned about optimizing the delib-

erative actions (radar scanning), not meta-level actions (such as heartbeat adaptation

and radar re-organization). In my work, I use MARL algorithm to learn meta-level

policies for DEC-MDPs to maximize the utility of task scanning at each heartbeat.



CHAPTER 3: FORMAL FRAMEWORK

In this research, I mainly focus on cooperative MASs in which the agents have to

optimize a shared performance measure. The definitions that are used in this research

are described. The DEC-MDP framework for decentralized learning is introduced and

the main contributions for constructing the framework are discussed. Abstractions

of states and actions are used that decrease the exploration costs of DEC-MDPs

efficiently. To address the complexity of DEC-MDP, the solution to the DEC-MDP

is approximated by using a factored reward function to define the Nash Equilibrium

instead of the global reward function.

3.1 Definition

I define the following terms that are used to describe the formal framework and

my approach:

• Abstract State: An abstract representation of the state that captures the im-

portant qualitative state information relevant to the meta-level control decision

making process. In this work, three features (will be discussed later in this

Chapter) are used to construct an abstract state.

• Abstract Action: An abstract representation of the real domain-level action sets

that capture the similar qualitative action information relevant to the meta-level

control decision making process. In this work, the huge meta-level action space

for radar reorganization is constructed using abstract actions.

• Detailed Action: An instantiation of an abstract action. When a certain agent

takes an action, the “action” that is really implemented is a detailed action.

• A stochastic policy of an agent i is denoted by πi(s) ∈ PD(Ai), where PD(Ai)

is the set of probability distributions over actions Ai; s is the abstract state for
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agent i. Stochastic policies can cope with the uncertainty of observation and

perform better than deterministic policies in partial observable environment.

• Learning Stage: An agent’s offline learning process when it adapts its behavior

to improve performance.

• Execution Stage: An agent’s realtime execution process when it chooses and

implements the appropriate policy.

3.2 A DEC-MDP based Approach

In real-world multiagent applications like NetRads, each agent has a partial view

of the environment including a partial view of the other agents. In the NetRads do-

main, I consider a cooperative problem where all the MCCs share a common goal,

the resolution is possible but intractable because of the complexity of the problem.

Such team problems can be modeled by DEC-MDP [Bernstein et al., 2002]. The

decentralized meta-level control in NetRads is framed as a stochastic, factored DEC-

MDP which is a DEC-MDP where the policy for each agent can be stochastic. A

DEC-MDP [Bernstein et al., 2002] is an extension of MDP, where the outcome of an

action can potentially depend on the state of all the other agents and their actions.

The main difference between other models such as MMDP [Boutilier, 1999] and DEC-

POMDP [Bernstein et al., 2002] concerns the observability assumption: MMDP uses

full observation of the global state; DEC-POMDP uses only partial observation. The

multiagent meta-level control problem (n agents in the system) is mapped to a fac-

tored DEC-MDP model in the following way. The model is a tuple 〈S,A, T ,R, Ω,O〉,

where

• S = S1 × S2 × . . . × Sn is a finite set of factored world states, where Si is the

state space of agent i. In NetRads, the local state of each MCC agent is the

abstract state as defined in Chapter 3.2.1 and it is not directly observed by the

agent but computed as a result of communication among neighboring agents

and detailed local state information of the agents.
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• A = A1×A2 . . .×An is a finite set of joint actions, where Ai is the action set for

agent i. In NetRads, the action of each MCC agent is the abstract action that

includes radar reorganization and heartbeat adaptation as defined in Chapter

3.2.2.

• T : S ×A× S → R is the transition function. T (s′ | s, a) is the probability of

transiting to the next state s′ after a joint action a ∈ A is taken by agents in

state s.

• R = {R1, R2, . . . , Rn} is a set of factored reward functions. Ri : S × A → R

provides agent i with an individual reward ri ∈ Ri(s, a) for taking action a in

state s. In NetRads, the reward Ri(s, a) for MCCi represents the average of

utilities (as defined in Chapter 1.1) of all tasks in the coverage areas of MCCi

and its neighbors. Ri(s, a) = 1
N

∑N
k=1 u(tk), where {t1, ..., tN} is the set of all

tasks in the coverage areas of MCCi and its neighbors. Ri(s, a) is computed as

a result of communication among neighboring agents.

• Ω = Ω1 × Ω2 × . . . × Ωn is a finite set of joint observations. Ωi is the set of

observations for agent i.

• O : S ×A× S× Ω → R is the observation function. O(s, (a1...an), s′, (o1...on))

is the probability of agents 1 through n seeing observations o1 through on (agent

i sees oi) after the sequence s, (a1...an), s′ occurs.

• Joint full observability: the n−tuple of observations made by the agents together

fully determine the current state. If O(s, (a1...an), s′, (o1...on)) > 0 then P(s′ |

(o1...on)) = 1.

NetRads is modeled as a DEC-MDP with the following characteristics (defined in

Chapter 2.3.3):

• transition independent

• observation independent

• not locally fully observable
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• not reward independent

In NetRads, multiple MCCs are allowed to collect weather information from the

same/overlapping area simultaneously without conflicting meaning the MCCs do not

interact through their state transitions. However in general the NetRads does not

exhibit transition independence because a MCCi’s actions affect its radar configura-

tion and the information it has collected, as well as other agents’ radar configurations

and the information they have collected. There are exceptions where DEC-MDPs

representing the NetRads decision making are transition independent as shown in the

following scenarios : 1) Each MCC only has its own local tasks. In other words, there

are no shared tasks in the overlapping regions between MCCs. 2) MCCs have both

local tasks and shared tasks. However all the shared tasks in the overlapping regions

are non-pinpointing tasks meaning that the agents can make independent decisions

such that the new local state of each agent depends only on its previous local state,

the action taken by that agent, and the current external features.

NetRads exhibits observation independence. MCCi only observes its own local

state and sees nothing related to any other MCCs.

NetRads is not locally fully observable. MCCi’s observation of its local state

depends on its action as well as its neighboring MCCs’ actions (Its neighboring MCCs

may hand off radars to MCCi that changes its radar configuration, so that changes

its local state). So when MCCi takes an action, it does not fully observe the outcome,

which is MCCi’s next local state.

NetRads does not exhibit reward independence. The local reward of MCCi repre-

sents the average of qualities of tasks in its neighborhood. It depends on the actions of

multiple MCCs (scanning pinpointing tasks simultaneously would increase the reward

value).
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3.2.1 Abstract States

Extending the definitions of real state and state abstraction in Raja and Less-

er [Raja and Lesser, 2007], I define the real state of the agent as the state that has

the detailed information related to the agent’s decision making and execution. It

accounts for every task which has to be reasoned about by the agent; the execution

characteristics of each of these tasks; and information about the environment such

as types of tasks (defined later in this section) arriving at the agent and frequency

of arrival of tasks. Consequently the real agent state is continuous and complex.

This leads to a combinatorial explosion in the real state space for meta-level control

even for simple scenarios. The complexity of the real state can be handled by defin-

ing an abstract representation of the state that captures the important qualitative

state information relevant to the meta-level control decision making process. This

abstraction of the real state is called the abstract state [Cheng et al., 2010a].

Three features F0, F1 and F2 are defined that sufficiently capture the meta-level

state information critical to the meta-level decision making process as an abstract

representation at each MCC. I use the motivating example introduced in Chapter 1

to illustrate these features.

Feature F0 contains Information about Self. Specifically it consists of MCCi’s

current heartbeat and the number of MCCi’s current radars involved in the data

correlation with its neighboring MCCs. It is defined as (V hb
i , V radar

i ), in which V hb
i ∈

{30 seconds, 60 seco nds} and V radar
i ∈ {0, 1,many}. “many” means there are more

than one radar involved in the data correlation. As discussed earlier, this helps

determine abstractions of the states and actions of MDPs. In the example from

Chapter 1 (Figure 1.7), MCC2 has a 60 seconds heartbeat and has two radars (R5

and R7) involved in the data correlation with its neighboring MCCs. MCC2 has the

feature F0 = (60seconds,many) in its meta-level state.

Feature F1 contains Information about Neighbor(s). It is the Neighborhood Scenario
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NSi defined earlier in Chapter 1.1. MCCi gets a good view of its neighborhood by

introducing communication among neighboring MCCs during both the policy learning

and execution stages. MCCi communicates with its neighbors to formalize the feature

F1 during the policy learning and execution stages to determine its current meta-level

state.

Feature F2 is the Degree of Data Correlation as defined earlier in Chapter 1.1.

Determining F2 also involves communication between MCCi and its neighbors.

In the Figure 1.7 example, MCC2 has the initial state: s0, in which F0 = (60seconds,

many), F1 = 〈(60seconds, 1), (60seconds, 1), (60seconds, 1)〉 and F2 = 〈Medium,Low,

High〉. Thus, the total number of meta-level states in this example is 55566 (F0, F1

and F2 has 6, 343 and 27 domain values respectively; 6× 343× 27 = 55566).

3.2.2 Abstract Actions

Figure 3.1: Relation between abstract action and detailed action.

As described in Chapter 1.1.2, there are two types of meta-level actions: radar

reorganization and heartbeat adaptation. The meta-level actions for heartbeat adap-

tation do not need to be abstracted, since there are only two action choices: “Use

30 seconds heartbeat”and “Use 60 seconds heartbeat”. The action space of radar
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reorganization is very large if real actions are used, and when the action space blows

up, the complexity of solving the associated DEC-MDP increases exponentially. The

abstract actions (defined in Chapter 3.1) for radar reorganization include two qual-

itative modes. In this work, only two qualitative modes are used since the average

number of radars each MCC controls is low. Setting more modes is prone to result in

more redundant states. The two modes are: Heavy Move and Light Move. Abstract-

ing meta-level actions for radar reorganization in this way substantially reduces the

number of explored states in the MDP. For example, suppose each MCCi supervises

x radars and has y neighbors. Without abstracting meta-level actions, each radar

of MCCi has y + 1 possible handoff choices (to be handed off to one of MCCi’s

neighbors or stay under MCCi). The total number of possible action sets for the x

radars is (y+ 1)x which leads to (y+ 1)x exploring states in the MDP. Using abstract

actions, for each neighbor of MCCi, MCCi has 3 possible choices {φ, Heavy Move,

Light Move}. The total number of possible action sets in this case is 3y. In the

domain of NetRads, the number of radars each MCC supervises can be large. 3y

is substantially smaller than (y + 1)x in most cases, especially in the case that x is

large. In the case that x = 8 and y = 3, using abstract actions reduces the number

of explored states in the MDP by 99.9% ((3 + 1)8 = 65536, 33 = 27).

I now discuss the role of detailed actions. Suppose MCCi has a high data cor-

relation with its neighbors, which then leads to taking the meta-level action Heavy

Move of MCCi. This meta-level action is implemented as a series of detailed actions

that “Move radars to neighboring MCC agents until data correlation degree between

MCCi and its neighbors changes to Low”; Light Move of MCCi is defined as “Move

less than 20% of MCCi’s radars to its neighbors until data correlation degree between

MCCi and its neighbors changes to Low”. The abstract action of radar reorganiza-

tion of MCCi is defined as: Mode(MCCi to MCCj), which means “Move radars from

MCCi to MCCj using the qualitative mode Mode”. In Figure 1.7, one action for
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MCC2 could be “LightMove(MCC2 to MCC1) & LightMove(MCC2 to MCC3)”.

As Figure 3.1 shows, when a certain agent takes an action, the “action” that is

really implemented is a detailed action (defined in Chapter 3.1). Each meta-level

action for radar reorganization could have different detailed actions associated with

it. For example, in Figure 1.7., “HeavyMove(MCC3 to MCC2)”has the detailed

actions such as: “Move R9 R10 and R11 to MCC2”and “Move R9, R10, R11 and R12

to MCC2”. The heuristic rule-based algorithm that changes the detailed actions of

meta-level actions to resolve conflicts will be described in Chapter 4.

3.2.3 Reward Function

In Netrads, the global reward is the sum of the utilities of all the tasks completed

by all the MCCs. The sum of the local rewards does not correctly represent the global

reward since the existence of overlapping and shared tasks could lead to redundant

accounting of task utilities. So the reward function (Ri(s, a)) for the learning phase

has a partially global component that accounts for the utility of tasks completed by

the neighborhood agents. The environment of NetRads is dynamic and the number

of tasks is changing rapidly, so average of utilities (instead of sum of utilities) of

the tasks is used to reflect the radar scanning performance. During the learning

stage, each agent communicates with its neighbors to compute its reward from a

neighborhood perspective. This partially global reward function is a better reflection

of real global reward compared to a purely local reward because when the partially

global reward increases (or decreases), the real global reward will also increase (or

decrease) correspondingly.

The decentralized learning process in NetRads is thus made much easier by the

reduced amount of communication facilitated by the DEC-MDP model and the fac-

tored partially global reward function that tips the Nash equilibrium approximate

solution of the DEC-MDP closer to the global reward which is actual solution to the

stochastic DEC-MDP. Stochastic DEC-MDPs do not always have a well-defined no-
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tion of optimal behavior for a particular agent, since its performance may depend on

behaviors of other agents. The most common solution concept in these cases is Nash

equilibria [Osborne and Rubinstein, 1994] [Singh et al., 2000], intuitively defined as

a particular behavior for all the agents where each agent is acting optimally with

respect to the other agents’ behaviors.

3.3 Control Flow

Figure 3.2: Control flow of each MCC involving 4 MCCs.

Figure 3.2 describes the control flow of my learning approach within each agent.

Each MCC has a meta-level control layer that includes five sub-stages:

• The Offline RL: It learns the policies for each weather scenario offline by ex-

tending PGA-APP (mentioned in Chapter 1).

• The Scenario Library: It is a centralized module that stores the MDPs of each

weather scenario as well as the meta-level policies for each abstract state.

• The Meta-level Action Selection: It chooses the appropriate abstract actions

based on the policies.
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• The Detailed Action Generation: It maps the abstract actions to the detailed ac-

tions associated which include radar/MCC reconfiguration and heartbeat adap-

tation. The mappings of these meta-level actions to detailed action sets are

stored in this component.

• The Conflict Resolution: It resolves conflicts that are resulted among the agents’

detailed actions.

In the next Chapter, I will describe the functionality and interaction of each compo-

nent in more details.

3.4 Summary

In NetRads, the agents are cooperative and are in a dynamic environment which is

partially observable. The new state and received reward for one agent also depend on

the actions selected by the other agents. The communication among agents needs to

be controlled at a reasonable level so that the overall performance is optimized. The

DEC-MDP framework is presented which approximates the DEC-POMDP to learn

the policy for each agent. Abstract states and abstract actions are constructed where

instances within a class have similar features to handle the complexity of the real

state and action space. The MDP search space is decreased substantially by using

abstract states and actions. The agents learn stochastic policies and approximate the

solution to the DEC-MDP by using a factored reward function to define the Nash

equilibrium. In the next chapter, I will describe local learning based on my DEC-

MDP framework, present one multiagent reinforcement learning algorithm that learns

local policies for radar reorganization and heartbeat adaptation, and discuss about

the empirical results.



CHAPTER 4: LOCAL LEARNING

In this chapter, I address the following questions: Can agents automatically learn

policies for specific environments based on the DEC-MDP framework described in

Chapter 3? Does this learned policy perform well for that environment and improve

the system performance?

As discussed in Chapter 3, this research focuses on cooperative agents that maxi-

mize the social utility by successfully completing their individual goals in the context

of limited computation and absence of detailed models of the environments. Re-

inforcement learning is useful for agents to learn local policies in such contexts. In

Chapter 4.1, the complexities of the issues faced by multiagent reinforcement learning

agents are described and the state-of-the-art algorithm that I extend in the context

of my DEC-MDP framework for local policy learning is presented. In Chapter 4.2,

the control flow that is designed for agents’ policy learning in simplified environments

is described. Experimental results describing the performance of the learned policies

using my local learning approach are provided.

4.1 Policy Gradient Ascent with Approximate Policy Prediction (PGA-APP)

Learning is a key component of MAS, which allows an agent to adapt to the dy-

namics of other agents and the environment and improves the agent performance or

the system performance (for cooperative MAS). Effective learning algorithms are a

key component to develop policies in cooperative MAS. However, due to the non-

stationarity of environments, like NetRads, where multiple interacting agents are

learning simultaneously, single-agent reinforcement learning techniques are not guar-

anteed to converge in multiagent settings. The central challenge for multi-agent learn-

ing is that each learner is adapting its behaviors in the context of other co-adapting
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learners. When applying single-agent learning to stationary environments (e.g., MDP

problems), the agent experiments with different policies by interacting with the en-

vironment until discovering a globally optimal policy. In dynamic environments, the

agent may at best try to keep up with the changes in the environment and constantly

track the shifting optimal behavior.

In most MARL algorithms, a common assumption is that an agent (or player)

knows its own payoff matrix. To guarantee convergence, each algorithm has it own

additional assumptions, such as requiring an agent to know a Nash Equilibrium and

the strategy of the other players [Banerjee and Peng, 2007] [Bowling and Veloso,

2002a] [Conitzer and Sandholm, 2007], or observe what actions other agents executed

and what rewards they received [Conitzer and Sandholm, 2007] [Hu and Wellman,

2003]. For practical applications like NetRads, these assumptions are very constrain-

ing and unlikely to hold, and, instead, an agent can only observe the immediate

reward after selecting and performing an action. Thus it is important for agents to

learn local policies that leverage predictions about other agents’ actions.

Zhang and Lesser [Zhang and Lesser, 2010] proposed a practical MARL algorithm,

called Policy Gradient Ascent with approximate policy prediction (PGA-APP), that

exploits the idea of policy prediction. PGA-APP only requires an agent to observe

its reward when choosing a given action. PGA-APP empirically converges faster and

in a wider variety of situations than other state-of-the-art MARL algorithms.

I augment the PGA-APP algorithm to the domain of NetRads to learn the MMLC

policies offline. PGA-APP uses Q-learning to learn the expected value of each action

in each state to estimate the partial derivative with respect to the current strategies

(line 5, Algorithm 1). The value function Q(s, a) stores the reward MCCi expects if it

executes action a at state s. The stochastic policy π(s, a) stores the probability that

MCCi will execute action a at state s. The actions here are abstract actions and the

states are abstract states as defined in Chapter 3.2. The ε−Greedy [Sutton and Barto,
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1998] exploration scheme is used to pick actions for learning (line 4, Algorithm 1). The

ε−Greedy exploration scheme is the best known scheme to balance the exploration

with exploitation by selecting both greedy actions and random actions during the

learning stage.

Algorithm 1 Zhang & Lesser’s PGA-APP Algorithm

1: Let θ and η be the learning rates, ξ be the discount factor, γ be the derivative
prediction length;

2: Initialize value function Q and policy π;
3: repeat
4: Select an action a in current state s according to policy

π(s, a) with suitable exploration;
5: Observing reward r and next state s′, update

Q(s, a) ← (1− θ)Q(s, a) + θ(r + ξmaxa′ Q(s′, a′));
6: Average reward V (s) ← Σa∈Aπ(s, a)Q(s, a);
7: foreach action a ∈ A do
8: if π(s, a) = 1 then δ̂(s, a) ← Q(s, a)− V (s)

else δ̂(s, a) ← (Q(s, a)− V (s))/(1− π(s, a));

9: δ(s, a) ← δ̂(s, a)− γ|δ̂(s, a)|π(s, a);
10: π(s, a) ← π(s, a) + ηδ(s, a);
11: end
12: π(s) ←

∏
∆[π(s)];

13: until the process is terminated ;

As shown by Line 5 in Algorithm 1, Q-learning only uses the immediate reward

to update the expected value. The reward r is the partially global reward defined in

Chapter 3.2.3. I introduce communication among neighboring agents in the learning

stage to better model the reward function in the DEC-MDP. In the online execution

of the policy, this immediate reward does not need to be computed, and hence avoid

any extra communication among MCC agents. The communication overhead is very

little considering that meta-level control is operating at a 30 or 60 second heartbeat

and there is already much more communication occurring as a result of negotiation. I

also introduce communication among MCC’s neighbors in the learning and execution

stages to calculate some features of the abstract states.

With the value function Q and current policy π, PGA-APP then can calculate the
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partial derivative, as shown by Line 8, Algorithm 1 [Zhang and Lesser, 2010]. As

shown in Line 9, Algorithm 1, PGA-APP approximates the second component by

the term −γ|δ̂(s, a)|π(s, a). When MCCs’ strategies converge to a Nash equilibrium,

this approximation derivative will be zero and will not cause the agents to deviate

from the equilibrium. The negative sign of this approximation term is intended to

adjust the policy with the derivative prediction length and increase the convergence

speed. In the next Chapter, we describe how we extend PGA-APP in our learning

framework to learn offline policies.

4.2 Offline Learning in Simplified Environment

As described in Chapter 3.3, Figure 3.2 shows the control flow within each MCC.

The Scenario Library component is a centralized module that stores the MDPs of each

weather scenario as well as the meta-level policies for each abstract state. The agents

are assumed to operate in a simplified environment that the entire radar network sees

only one specific scenario at any point in time. It is also worthwhile to note that I do

not include as a component in the abstract state having local neighborhood weather

pattern. In this work, each MCC is assumed to know the class of weather scenario for

the whole system by checking the number of each task pre-defined in the training/test

case. Consider the motivating example in Chapter 1, suppose the weather scenario

is HRLS, each MCC chooses the MDP for HRLS and applies its policy according to

its current abstract state (Steps 1 and 2 in Figure 3.2). The policies for each weather

scenario are learned offline using PGA-APP which is the role of the Offline RL. The

Meta-level Action Selection component chooses the appropriate abstract action based

on current policy, depending on the specific weather scenario that the agent is in. For

example, MCC2 chooses its abstract action (“Light Move”, “Use shorter heartbeat”)

based on using the MDP policies for HRLS (Step 3 in Figure 3.2).

The Detailed Action Generation component maps the abstract actions to the as-

sociated detailed actions which include radar/MCC reconfiguration and heartbeat
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adaptation. This sub-stage uses a greedy search to compute the first detailed action

that meets the condition of “Light Move”or “Heavy Move”. This may cause the

conflicts among detailed actions of the abstract actions of neighboring MCCs and

this is the main reason that I introduce the idea of conflict resolution and coordi-

nating decentralized learning and conflict resolution to converge to optimal policies.

In Chapter 5, I will describe the conflicts that can arise between locally optimal

agent policies and present my incremental approach to resolve conflicts and guide

the decentralized learning process. Suppose MCC2 chooses the detailed action of its

meta-level action: “Move R4 to MCC3” and “Use 30 seconds heartbeat”(Step 4 in

Figure 3.2). As a result of the Conflict Resolution component, MCC2 changes its

detailed action to “Move R5 to MCC3” and “Use 30 seconds heartbeat”(Step 5 in

Figure 3.2). At runtime, when the MMLC phase is triggered every heartbeat, each

MCC agent adopts the scenario-appropriate policy and executes the detailed action

of its meta-level action. The feedback from the Offline RL component updates the

MDPs in the Scenario Library.

4.2.1 Scenario Library

In this section, I describe how the Scenario Library component is constructed.

As mentioned in Chapter 1, it is important that the MMLC phase takes negligible

amount of time so that there is enough time for the complex operations of Local

Optimization and Negotiation phases. Online learning on a very large MDP that

captures all detailed weather scenarios, states and actions during the MMLC phase

can be very time expensive. In DEC-MDPs for a subset of agents, because the policy

space can not be independently searched, the size of policy space blows up very quickly

even when the number of agents are limited. Also, learning such a DEC-MDP is very

difficult because each possible action/state space combination has to be visited many

time during learning.

The Scenario Library that stores the MDPs of each weather scenario as well as the
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Figure 4.1: Construction of the Scenario Library.

meta-level policies for each abstract state is constructed. I argue that the learning

is sped up by categorizing different weather scenarios and learning policies for each

MDP of each weather scenario. In this work, 9 MDPs for different weather scenarios

are stored in the Scenario Library and three of them (HRLS, LRHS and MRMS)

are used to do the evaluation. For each MDP that is stored in it, there is a policy

associated with each abstract state. As discussed in Chapter 1, the policies that

are learned and applied are stochastic policies. Since an agent has no direct access

to the current state in DEC-MDPs, selecting actions based on the current state (as

in a MDP) is no longer valid. Stochastic policies can cope with the uncertainty of

observations to a certain degree and perform better than deterministic policies in

partial observable environments.

Figure 4.1 shows what is stored in the Scenario Library. In this example, I consider

the NetRads system with 3 MCCs and 18 radars. The Scenario Library stores three

MDPs as well as the policies for each abstract state. For the MDP of HRLS, the

total number of abstract states is 2646 (F0, F1 and F2 has 6, 49 and 9 domain values
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respectively; 6×49×9 = 2646). The total number of abstract actions is 50 (25 domain

values for radar reorganization and 2 domain values for heartbeat adaptation). S1,

S2...S2646 are the abstract states; a1, a2... a50 are the abstract actions.

Figure 4.2 shows the dominant abstract actions of MCC1 under different abstract

states for HRLS which is stored in the Scenario Library. The dominant abstract

action under abstract state s for MCCi is defined as the abstract action that has

the highest probability distribution in the policy πi(s). For example, suppose πi(s) :

a1(30%); a2(50%); a3(20%), the dominant abstract action prescribed by πi(s) for state

s is a2. F0, F1, and F2 are the features defined in Chapter 3.2.1. In this example, the

total number of policies of MCC1 in HRLS is 2646.

Figure 4.2: Dominant abstract actions of MCC1 under different states for HRLS
which is stored in the Scenario Library.

4.2.2 Offline RL

The policies for each weather scenario are learned offline using PGA-APP which

is the role of the Offline RL component (Figure 3.2). In this work, offline learning
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is preferred for two reasons. The first is to control the scenarios in the simulation

system. While the real NetRads environment could have varying weather scenarios in

play at any point in time, during the learning phase a simplifying assumption is made

in my simulation work that the entire radar network sees only one specific scenario

at any point in time. This ensures that multiple agents simultaneously contribute to

a particular weather scenario’s DEC-MDP policy, thereby speeding up the learning

process. Further more, communication in offline learning is controlled since my reward

function is targeted for policy generation and not necessarily for execution.

During the learning stage, the MMLC phase is triggered at every heartbeat which

means the meta-level actions of the MCCs are changed at every heartbeat. This is ac-

ceptable in the NetRads environment, since the offline learning takes very little time

by exploring the state space that is abstracted and computing the partially global re-

ward using neighborhood communication. My evaluation results show that triggering

MMLC at every heartbeat during learning helps improve the overall performance. It

is empirically observed that if MMLC is triggered multiple heartbeats apart during

learning, it will result in a meta-level policy, that is obsolete due to dynamic nature

of the environment. In other words, the weather phenomena are changing quickly

and dynamically resulting in significant changes of the current meta-level states of

the MCCs.

During the execution stage, the MMLC phase is also triggered at every heartbeat.

This is acceptable since the cost of MMLC is negligible compared with the expected

utility gained. Communication with neighbors is also used for MCCs to calculate

some features of the meta-level state at this stage. Each MCC then chooses the

proper policy and applies the appropriate detailed action based on its meta-level

state. After the two deliberative-level phases (Local Optimization and Negotiation)

are completed, domain actions of radar scanning are implemented based on the set

of tasks (Step 5 in Figure 3.2).
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In the next Section, the ability of agents to learn local policies in a decentralized

fashion is evaluated for a range of weather scenarios. Our learning algorithm is

compared with others to show meta-level control is useful and our algorithm allows

the network of NetRads to dynamically adjust to changing weather phenomena.

4.3 Experiments

I use the simulator of the NetRads radar system [Krainin et al., 2007] to evaluate

my implemented system. In this simulator, radars are clustered based on location,

and each cluster of radars has a single MCC. Each MCC has a feature repository

where it stores information regarding tasks in its spacial region, and each task repre-

sents a weather event. The simulator additionally contains a function that abstractly

simulates the mapping from physical events and scans of the radars to what the MCC

eventually sees as the result of those scans. MCCs discover and track the movement

of the weather events through this process.

Tasks are created at a MCC based on radar moment data that has been just

received. Tasks can be either pinpointing or non-pinpointing.

4.3.1 Experiment Setup

For the experiments reported here, I use the simulation setup where there are 3,

12 and 30 MCCs (agents). This is the setup used by Krainin et. al [Krainin et al.,

2007]. The experiments are run on a single machine although it is assumed that

there are several computation units working in parallel in a time step simulation.

Figure 4.3 is the snapshot of the radar simulator for a particular real-time scenario.

In Figure 4.3, each hollow circle represents a radar and each filled circle represents

a task ( rotation and storm tasks are only concerned about in the evaluation.). The

Radar Information Panel (Figure 4.3) provides information about a particular radar

including its name, its MCC supervisor, its physical location in the plane coordinate

system, the angle range it sweeps, the target task it scans and the belief value of the

negotiation algorithm in Phase 4: Negotiation. I test the results for three different
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types of weather scenarios : HRLS, LRHS, and MRMS. There are 80 total tasks in

each weather scenario. HRLS contains 60 rotation tasks, 20 storm tasks as well as

each of the other two types; LRHS contains 60 storm tasks, 20 rotation tasks as well

as each of the other two types; MRMS contains 40 storm tasks, 40 rotation tasks as

well as each of the other two types.

Figure 4.3: Snapshot of Radar Simulator.

I generate the training/test cases by varying such parameters as number of MCCs,

number and types of tasks, initial heartbeat for each MCC, percentPinpointing and

etc. percentPinpointing is defined as the percentage of pinpointing tasks relative to

all tasks in a specific training/test case. percentPinpointing is varied to evaluate

the performance on different numbers of pinpointing tasks. The number of tasks in

training/test cases is also scaled up. Utility and Negotiation Time are the parameters

that are used to analyze performance. Utility is defined as the overall utility of a give

configuration of radars where two sets of factors contribute to the utility [Kurose et al.,

2006]. The first set of factors is concerned with how well a particular portion of the

atmosphere is sensed by the given radar configuration. The second set of factors is



75

concerned with how important the scanned sectors are to the end users. Negotiation

Time denotes the average time (seconds) that MCCs spend in Negotiation (Phase 4).

If a MCC chooses to spend less time in Negotiation, then the remaining amount of time

in the fixed heartbeat is allocated to Data Processing and Local Optimization. This is

an instance of MMLC determines what resources to allocate to different deliberative

actions.

For the experiments, I make the following assumptions:

1. All the MCCs are in the same type of weather scenario that is set for the

simulation.

2. All the MCCs have the same number of radars associated and same heartbeats

(all are 30 seconds or 60 seconds) initially.

The results of three algorithms are compared: No-MLC, Adaptive Heuristic Heart-

beat (AHH) and PGA-APP.

• No-MLC is the algorithm with no explicit or implicit meta-level control (It has

all the phases except MMLC in a heartbeat).

• AHH is the algorithm where I incorporate hand-generated heuristics in meta-

level control to adaptively change the heartbeat of each MCC. The rules are

simple: For each MCCi, at the end of Data Processing (Phase 1), if there are

more rotation phenomena in the region of MCCi, MCCi increases the heart-

beat for its next period, otherwise, MCCi decreases the heartbeat for its next

period ( longer heartbeat is better for rotations due to the need for more s-

canned elevations, and shorter heartbeat is better for storms). The heuristics

also help to address the radar handoff issues. Assigning the same heartbeat

to the neighboring MCCs with overlapping region results in better communica-

tion/negotiation in the Negotiation phase so as to help reducing the amount of

data correlation in the next heartbeat period which has some of the same effect

as handing off radars.
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• PGA-APP augments MCCs with meta-level control based on offline RL (PGA-

APP) to adjust the system heartbeat and re-organize the subnets of radars to

adapt to changing weather conditions.

For the MMLC phase, I used 1000 training cases and each has a long sequence of

training data to learn the policies for each abstract scenario offline.

Learning parameters (defined in Line 1, Algorithm 1) will affect the convergence of

PGA-APP. For non-competitive problems (e.g., NetRads), with a too large γ (deriva-

tive prediction length), MCCi may not predict its neighbor’s strategy correctly. Then

the gradient based on the wrong neighboring MCC’ strategy deviates too much from

that of the current strategy, and MCCi adjusts its strategy in a wrong direction. In

the experiments, PGA-APP used prediction length γ = 0.2. With higher learning

rates θ and η, PGA-APP learns a policy faster at the early stage, but the policy may

oscillate at late stages [Zhang and Lesser, 2010]. Properly decaying θ and η makes

PGA-APP converge better. PGA-APP uses value-learning rate θ = 0.8 and policy-

learning rate η = 1/(1000 + t), where t is the current number of iterations. I ran

30 test cases for each of the three algorithms described above for the three different

weather scenarios (HRLS, LRHS and MRMS).

In the experimental evaluation, PGA-APP is compared with No-MLC and AHH.

Results show that adaptive multiagent meta-level control significantly improves the

performance for a variety of scenarios.

4.3.2 Performance of PGA-APP

I ran test cases for each weather scenario with 3, 12 and 30 MCCs (percentPin-

pointing is set to 60%, the number of tasks is 80. Each MCC controls 5 radars

initially.). Figure 4.4 shows the performance of No-MLC, AHH and PGA-APP on

Utility for a variety of scenarios. In HRLS scenarios, all the MCCs have to handle

HRLS scenarios simultaneously. AHH performs significantly (p < 0.05) better than

No-MLC on Utility in all comparisons (Figure 4.4(a)). This shows the effectiveness
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(a) HRLS Scenarios

(b) LRHS Scenarios

(c) MRMS Scenarios

Figure 4.4: Utility of No-MLC, AHH and PGA-APP in different weather scenarios
for number of MCCs to be 3, 12 and 30.
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of adding meta-level control to agent reasoning in HRLS scenarios. According to the

hand-generated rules in AHH, the three MCCs would all set their heartbeat to 60

seconds for HRLS. The three MCCs would then have more time on Local Optimiza-

tion and Negotiation so that the final configurations of scanning tasks for the next

heartbeat would be more optimized. This results in larger Utility. In HRLS scenarios,

PGA-APP performs significantly (p values from t-tests are 0.0074, 0.037 and 0.016

respectively) better than No-MLC and a little better than AHH. The minor discrep-

ancy of performance between PGA-APP and AHH on HRLS scenarios leads to the

speculation that the 60 seconds heartbeat is critical for rotations due to the need for

more scanned elevations. Rotations need more time for scanning as they must be

scanned at the lowest six elevations. Storms, on the other hand, must be scanned at

the lowest four elevations to obtain useful information.

In both LRHS and MRMS scenarios (Figure 4.4(b) and Figure 4.4(c)), AHH per-

forms a little better than No-MLC. PGA-APP performs significantly better than

No-MLC (In LRHS scenarios, p values are 0.023, 0.0095 and 0.0071 respectively; In

MRMS scenarios, p values are 0.008, 0.029 and 0.035 respectively) and AHH (In

LRHS scenarios, p values are 0.0086, 0.0013 and 0.0028 respectively; In MRMS sce-

narios, p values are 0.0074, 0.0082 and 0.034 respectively). It is observed that the

30 seconds heartbeat is not a profound factor in LRHS scenarios (AHH increases

small amount of Utility.). In PGA-APP, each MCC adopts the policy appropriate

to its neighborhood scenario. Allocating radars with large data correlation to the

same MCC reduces the time for negotiation between MCCs which would increase the

time for Local Optimization. In certain situations (e.g., there are many internal tasks

compared to boundary tasks) it is better to do a good job on local optimization and

allocate fewer cycles to negotiation while in other situations more cycles for negotia-

tion would be better (e.g., many pinpointing tasks exist in boundary regions between

MCCs). To summarize, PGA-APP performs significantly better on learning policies
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to control when and which radars should be moved.

(a) 30 seconds heartbeat

(b) 60 seconds heartbeat

Figure 4.5: Negotiation Time of No-MLC, AHH and PGA-APP in different weather
scenarios.

In Figure 4.5(a) and Figure 4.5(b), PGA-APP performs significantly better than

No-MLC on Negotiation Time (p values are 0.0028, 0.033 and 0.0058 respectively) for

each weather scenario. PGA-APP uses least time on Negotiation phase and achieves

highest Utility in each weather scenario. This shows that adaptive meta-level control

allows for effective use of the heartbeat i.e. by ensuring that meta-level control

parameters are coordinated so that negotiations converge quickly, more time can be

spent on data processing. AHH does not perform better than No-MLC on all weather

scenarios (It spends more Negotiation Time than No-MLC in LRHS scenarios) since
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Figure 4.6: Utility of No-MLC, AHH and PGA-APP, for percentPinpointing to be
20%, 60% and 90%.

Figure 4.7: Utility of No-MLC, AHH and PGA-APP, for number of tasks to be 80,
160 and 200.

AHH is not as adaptive as PGA-APP in dynamic conditions.

percentPinpointing (setting it to 20%, 60% and 90%) was varied and test cases

were run on all the three weather scenarios. In Figure 4.6, it is observed that Utility

increases with the increase of the percentage of pinpointing tasks to all tasks for

No-MLC, AHH and PGA-APP. More pinpointing tasks occurring in the boundary

regions between MCCs would increase the utilities for scanning pinpointing tasks so

as to increase Utility of all the scanning tasks. In all percentPinpointing settings

(20%, 60% and 90%), AHH performs better than No-MLC and PGA-APP achieves
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the best performance.

In Figure 4.7, I scaled up the number of total tasks to 160 and 200 and compared

the performance with that of 80 tasks (percentPinpointing is fixed at 60%). Utility

increases substantially with the increase of number of tasks for all three methods.

PGA-APP performs significantly better than No-MLC (p values are 0.0046, 0.023 and

0.0076 respectively) and AHH (p values are 0.049, 0.00063 and 0.0035 respectively)

on Utility.

The results of my evaluation show that PGA-APP performs significantly better on

learning meta-level policies to control radar reorganization and heartbeat adaptation.

4.4 Summary

This chapter describes a multiagent reinforcement learning approach which equips

agents to automatically learn local policies. This approach allows agents to adapt to

the dynamics of other agents and the environment and improves the system perfor-

mance for a cooperative MAS. This approach learns offline policies with a simplifying

assumption that the entire network experiences one particular weather scenario. The

learning is sped up by categorizing different weather scenarios and learning policies for

each MDP of each weather scenario. At the execution stage, each agent chooses the

scenario-appropriate MDP and implements its policy. The utility of this approach

is demonstrated experimentally by showing that the policies learned by the agent

performs significantly better than the hand-generated heuristic policies.

In the next chapter, I will discuss about my approach and handling conflicts that

may occur between agents’ local policies, especially when agents experience com-

plex environments. Three incremental approaches will be presented that: a) resolve

conflicts locally using heuristic rules; b) resolve conflicts from a partially global per-

spective and c) resolve conflicts from a global perspective. Experiments comparing

and describing the viabilities of these approaches in different system environments

are presented.



CHAPTER 5: CONFLICT RESOLUTION

As described in Chapter 4, the policies learned using the PGA-APP algorithm for

each MDP could be optimal policies for each agent from a local perspective. However,

it is possible that in some environments the chosen abstract actions could cause con-

flicts between agents when the associated detailed actions are generated. As will be

discussed in the experimental section, resolving such conflicts in an intelligent manner

improves overall system performance. Chapter 5.1 describes the types of conflicts.

Chapter 5.2 describes a heuristic rule-based algorithm that uses pre-defined rules to

locally resolve the conflicts by changing the detailed actions of the abstract actions

among agents at both learning and execution stages. This approach is capable of

resolving local conflicts when there are few agents and the network is not highly

constrained. In the more uncertain and complicated environments that lead to very

huge search space, decentralized online policy learning is computationally challenging.

Chapter 5.3 describes a decentralized learning algorithm that uses policies learned in

a simple environment in order to smartly expand the search space in the real envi-

ronment, when conflicts arise. A decentralized negotiation algorithm is presented to

resolve conflicts from a partially global perspective and hence guide the state expan-

sion and policy learning process. Empirical results show that the learning algorithm

achieves good performance in the complicated and dynamic environments. Chapter

5.4 emphasizes on how I apply a state of art DCOP algorithm, Max-sum [Farinelli

et al., 2008], in the learning approach to resolve conflicts in a global perspective and

learn globally optimal policies. Experimental results comparing these approaches in

different scenarios are analyzed and summarized.
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5.1 Conflict Type

The concept of a conflict in this work is defined as incompatibilities among two or

more agents’ local policies for such reasons that agents compete for the same shared

resource, agents fail to balance the load of the whole multiagent system and agents are

not synchronized in communication. For the NetRads domain, I identify the following

types of conflicts among agents’ detailed actions associated with abstract actions:

(a) Local Radar Conflicts (LRC) refer to situations in which an agent receives radars

from two or more neighboring agents simultaneously and thus is overloaded.

Consider the situation (Figure 1.7) where both MCC2 and MCC4 decide to

move radars to MCC3. It is acceptable for MCC3 to receive radars from either

MCC2 or MCC4, but receiving radars from both would result in a very high

load for MCC3 (Control of too many radars could increase a MCC’s time and

messages for local negotiation). The threshold for a high load of the MCC varies

according to different simulation scenarios. This is a LRC between MCC2

and MCC4. A LRC is recognized in the following way: Neighboring MCCs

exchange messages to inform each other about their current detailed actions. If

MCCi finds that its neighbor MCCj has the detailed action of moving radars

to the same agent MCCk, it sends a message to tell MCCk the number of

radars it plans to move to MCCk. Meanwhile, MCCj does the same type of

communication with MCCk as MCCi does. MCCk receives messages from

MCCi and MCCj, adds the potential number of radars to the current number

of radars associated with. If the sum exceeds the threshold for high load, MCCk

will notify MCCi and MCCj that a LRC exists between them.

(b) Shared Radar Conflicts (SRC) are inconsistencies that may arise when two or

more agents attempt to move the same radar(s). In Figure 1.7, a SRC occurs

when MCC1 and MCC3 both require the control of the same radar belonging to

MCC2. A SRC is recognized in the following way: Neighboring MCCs exchange
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messages to inform each other about their current detailed actions. If MCCi

finds that its neighbor MCCj has the detailed action that competes for the

same radar, it recognizes this as a SRC. Meanwhile, MCCj also recognizes the

SRC in a similar fashion.

(c) Inconsistent Heartbeat Conflicts (IHC) occur when two neighboring agents have

different heartbeats and have to communicate with each other during the Nego-

tiation phase. The MCCs are assumed to communicate with neighboring MCCs

that have the same heartbeats during the Negotiation phase. Suppose in Fig-

ure 1.7, MCC1 decides to use the shorter heartbeat (30 seconds) and MCC2

decides to use the longer one (60 seconds). It is not possible for MCC1 to

communicate with MCC2 at the end of every 30 seconds’ heartbeat as defined

in Chapter 1.1. An IHC is recognized when MCCi finds the neighboring agent

MCCj tries to use a different heartbeat by exchanging messages.

5.2 The Heuristic Rule-based Algorithm

5.2.1 Algorithm Description

Figure 5.1: Heartbeat Adaptation.

To gain understanding of how to handle these conflicts, I develop a heuristic con-

flict resolution algorithm for MCCi. This algorithm uses the following pre-defined

heuristic rules to solve the three types of conflicts:

(a) Resolution Rule for LRC: To resolve a LRC between two MCCs, the two MCCs
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exchange messages describing the degree of data correlation. The MCC with

larger data correlation first applies its current detailed action, the other MCC

stochastically chooses another of the candidate detailed actions that will not

result in a LRC and applies it. It should be noted that the candidate detailed

action only involves changing of radar reorganization, the current heartbeat

should remain the same since the change of heartbeat may incur new IHC

conflicts. If no such detailed action is found, the other MCC aborts its current

detailed action. If both MCCs have the same amount of data correlation, a

pre-defined ordering will determine which MCC will be the first to apply its

detailed action. The detailed action of the MCC that has larger data correlation

is always more valuable to execute since this MCC has more information about

pinpointing tasks in its region. Pinpointing tasks are generally more valuable

since they affect multiple agents.

(b) Resolution Rule for SRC: To resolve a SRC between two MCCs, the two MCCs

exchange messages with the current number of radars associated with each of

them. The MCC with fewer radars receives the shared radar(s). If both MCCs

have the same number of radars, a pre-defined ordering1 is used to choose the

MCC that should receive the shared radars. It is known that the more radars one

MCC controls, the more time and messages it spends for local negotiation that

decreases the utility for radar scanning [Krainin et al., 2007], so the resolution

rule is to prefer to assign the shared radar(s) to a MCC with the lower load.

(c) Resolution Rule for IHC: To resolve an IHC, the rule is that the MCC with the

shorter heartbeat has to adapt its communication schedule to the MCC with

longer heartbeat (as Figure 5.1 shown, MCC1 communicates with MCC2 every

two heartbeats). Since it is difficult to decide which MCC should change its

heartbeat when an IHC occurs and changing the heartbeat of one MCC may

1The MCC that has fewer neighbors is listed in the front. In most cases, the MCCs with fewer
neighbors have lower probability of being involved in conflicts compared with others.



86

result in other IHCs, heartbeat adaptation avoids such perplexity.

Algorithm 2 The Heuristic Rule-based Algorithm

1: for each neighboring MCCj ( j > i )do
2: MCCi send message to MCCj describing ai,DP
3: MCCj check aj,DP and ai,DP
4: if Con Check(aj,DP , ai,DP ) = true then
5: MCCj apply rules (defined in Chapter 5.2) to resolve the conflict
6: aj,DP ← a

′
j,DP

7: ai,DP ← a
′
i,DP

8: MCCj send message to MCCi describing new ai,DP

I now describe the heuristic rule-based algorithm presented in Algorithm 2. Let

ai,DP and aj,DP be the current detailed actions for MCCi and MCCj respectively; let

a
′
i,DP and a

′
j,DP be the new detailed actions after conflict resolution for MCCi and

MCCj respectively; let Con Check(aj,DP , ai,DP ) be the function that returns whether

any type of conflict (LRC, SRC or IHC ) exists between aj,DP and ai,DP . This function

uses the mechanism described in Chapter 4.1 to recognize the conflicts. Each MCCi

initializes the conflict resolution process by sending messages to its neighboring MCCs

(Line 1-2, Algorithm 2). I only consider the neighbors with higher index, i.e. MCCj

where j > i, in order to avoid resolving the conflict between two MCCs repeatedly.

Each neighboring MCC then applies the heuristic rules to resolve the conflict (Line

5, Algorithm 2) if any type of conflict exists and updates the new detailed action for

MCCi and itself (Line 6-7, Algorithm 2).

In this algorithm, each conflict is resolved by replacing the original detailed action

with a new one. However, each updated detailed action does not take into account

the influence it has on other neighboring agents and may introduce new conflicts with

other agents. For example, in Figure 1.7, the conflict between MCC2 and MCC3 is

resolved by changing the detailed action of MCC2 and this change may result in

a new conflict between MCC2 and its another neighbor MCC1. Thus, while this

localized algorithm has low overhead, it provides no guarantee that all conflicts in

the system will be resolved.
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5.2.2 Experiments

The experimental setup is as described in the previous chapter. I compare the

results of two algorithms: PGA-APP and PGA-APP-CR. PGA-APP is the offline

RL algorithm without conflict resolution as defined in the previous chapter. PGA-

APP-CR (PGA-APP with conflict resolution) is the algorithm where I incorporate

heuristic rules (defined in Chapter 5.2) to resolve local conflicts.

In PGA-APP, the SRC and LRC conflicts are resolved implicitly based on the order

of MCCs. For example, a SRC between MCC1 and MCC3 is resolved by assigning

the shared radar to MCC1 since it has a lower index, when a LRC is resolved in

PGA-APP, the MCC with the lower index takes its action and the other aborts its

action. When an IHC occurs, the MCC will only communicate to the neighbors that

have the same heartbeat. In PGA-APP-CR, such conflicts are resolved in an explicit

way. In the following paragraphs, I empirically show that resolving conflicts explicitly

improves overall system performance.

I re-ran the test cases for Figure 4.4 to compare PGA-APP-CR and PGA-APP.

The results reported are the average values of 30 test episodes. Figure 5.2 shows

the performance on Utility. Compared to PGA-APP, PGA-APP-CR achieves the

larger increase with respect to Utility when the number of MCCs is 3 (PGA-APP-CR

increases 9%, 17% and 7% respectively for the three weather scenarios). When the

number of MCCs increases from 3 to 12 in each weather scenario, the improvement

of PGA-APP-CR on Utility is not as significant. The increase on Utility is only

2%, 2% and 3% respectively. When the number of MCCs increases, each MCC has

more dependency with other MCCs and the probability of having conflicting actions

with neighboring MCCs increases significantly. On the other hand, resolving conflicts

locally between two MCCs using heuristic rules in PGA-APP-CR in this situation

will more likely introduce additional conflicts. Combining these factors, I can explain

why the performance gain goes down with the scaling of MCCs. In fact, in the LRHS
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(a) HRLS Scenarios

(b) LRHS Scenarios

(c) MRMS Scenarios

Figure 5.2: Utility of PGA-APP and PGA-APP-CR in different weather scenarios
for number of MCCs to be 3, 12 and 30.
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scenarios, PGA-APP-CR performs 5% worse than PGA-APP with respect to Utility

when the number of MCCs goes up to 30. When the utility lost by bringing in new

conflicts outweighs the expected utility gained by locally resolved conflicts, Utility

would decrease. PGA-APP-CR performs well on Utility in small problems (3 agents

in NetRads). Due to its mostly localized view, PGA-APP-CR is not expected to

perform well as the number of MCCs scales up and the dependencies among agents

increase significantly.

Figure 5.3: Utility of PGA-APP-CR and PGA-APP, number of conflicts varies.

Table 5.1: Results showing the average number of conflicts before and after conflict
resolution in three categories.

Average number of conflicts Average number of conflicts
Category

before conflict resolution after conflict resolution

3
0 ∼ 5

(LRC: 1; SRC: 1; IHC: 1)
0

7 2
5 ∼ 10

(LRC: 2; SRC: 3; IHC: 2) (LRC: 1; SRC: 1; IHC: 0)

18 10
> 10

(LRC: 8; SRC: 7; IHC: 3) (LRC: 6; SRC: 4; IHC: 0)

I ran 1000 test cases on each of the three weather scenarios where the number

of conflicts were 0 ∼ 5, 5 ∼ 10 and > 10 respectively (the number of MCCs is
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12, the number of tasks is 160). The results reported are average values of 30 test

episodes. In Figure 5.3, I observe that PGA-APP-CR performs better (18%, 8%

and 4% respectively) than PGA-APP with respect to Utility in each bucket. The

rules to resolve local conflicts work quite well with few conflicts. When the number

of conflicts increases, the effect of the rules fades. This is mainly because the rules

are defined to resolve local conflicts between two agents, and are not necessarily

capable of preventing new conflicts among subsets of agents when applying the rules.

Resolving local conflicts from a local perspective is not sufficient to find globally

optimal solution. Figure 5.3 and Table 5.1 show the conflict resolution performance in

the three different categories. All the IHC conflicts are resolved in the three categories

because the two MCCs adapt their communication schedule without changing either

of their heartbeats. In simple cases when there are few conflicts (the first category in

table 5.1), PGA-APP-CR is capable of resolving all of them. When the number of

conflicts increases, the heuristic rules are not capable of eliminating all the conflicts in

the problem. Consider the worst case in table 5.1, the heuristic rules only resolve 44%

(1−10/18 = 1−56% = 44%) of the conflicts. Let us consider the motivating example

in Chapter 1 (Figure 1.7). Suppose there is one conflict between MCC1 and MCC2

and another conflict between MCC2 and MCC3. The heuristic rules help to resolve

these two conflicts locally by changing the actions of MCC1 and MCC3 separately.

There is a possibility that a new conflict results as a consequence of the newly changed

actions of MCC1 and MCC3 and this could not be detected in the current approach.

For example, MCC1 decides to take the control of R5 after resolving the local conflict

between MCC2 and itself. At the same time, MCC3 also decides to take the control

of R5 after resolving the local conflict between MCC2 and itself. Thus, a SRC occurs

between MCC1 and MCC3.

Figure 5.4 shows the results of conflict resolution using PGA-APP-CR with number

of MCCs increasing. As mentioned earlier, all the IHC conflicts are successfully
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Figure 5.4: Percentage of conflicts resolved in different weather scenarios for number
of MCCs to be 3, 12 and 30.

resolved by adapting communication schedules between two MCCs. In the cases that

there are only 3 MCCs, both LRC and SRC conflicts are resolved very efficiently. 95%

of LRC conflicts and 93.5% of SRC conflicts are resolved in this situation. When the

number of MCCs increases, there are more dependencies among different agents which

makes the conflict resolution more complicated because of the shared tasks in the

overlapping areas, especially the pinpointing tasks that need significant coordination

among MCCs. In such complicated situations, the performance of PGA-APP-CR

on resolving LRC and SRC conflicts decreases significantly. This is because new

conflicts are resulted when resolving existing conflicts in a local view. I observe that

the percentage of conflicts resolved for LRC drops below 50% when the number of

MCCs reaches 30. The heuristic rule-based algorithm helps resolve some conflicts and

improve the overall utility.

5.3 Coordinating Informed Unrolling and Conflict Resolution

The heuristic rule-based algorithm is capable of resolving local conflicts when there

are few agents and the network is not highly constrained (In a highly constrained net-

work, each agent has very deep dependencies with its neighboring agents.). However,

the uncertainty and complexity of real-time application domains often lead to very
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large state spaces for each agent as well as very deep dependencies among agents.

Consider for instance, if in NetRads, a tornado tracking application [Krainin et al.,

2007], I have 30 agents where each agent can have 9 neighbors. Then there are about

18× 199 × 49 ≈ 1.5× 1018 possible states for the agent to generate and reason over.

Each state has three features that have 18, 19 and 4 possible values respectively,

two of these features are vectors that contain the state information about neighbors.

Moreover, when agents reason about deliberative actions like organization, planning,

coordination etc. at the meta-level, they have to carefully choreograph the progres-

sion of what deliberations the agents should do and when. This makes decentralized

online policy learning computationally challenging.

I extend the MMLC component described thus far based on the premise that when

agents in a MAS have more contextual information about the states of other agents

in their environment, the MAS tends to be more coordinated. Since there are costs

associated with obtaining contextual information in large state spaces is significant,

I claim that it is beneficial to augment agents with the capability to obtain context

in an informed fashion. When conflicts between individual agents’ intentions and

policies are discovered as a result of this contextual knowledge, agents should also be

equipped with techniques to resolve these conflicts.

5.3.1 Key Intellectual Ideas

I map these issues into two related decentralized learning research questions namely,

a) how to include critical contextual information when there is a very large search

space for each agent? and b) how to resolve conflicts among the learned policies

of different agents? As described in Chapter 3, I model the decentralized learning

problem using a decentralized Markov decision process (DEC-MDP) [Bernstein et al.,

2000]. The key idea in the approach is to have the agents first learn their policies

off-line within the context of a simplified environment (as defined in Chapter 4.3,

the agents are assumed to experience the same weather scenario during the specific
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learning episode); the agents then modify these policies on-line based on experience

gained in real environments by harnessing informed unrolling and conflict resolution

methods.

On-line learning is activated when conflicts resulting from multiple neighboring

agents applying their local policies are observed. It is used to augment selected

local policy states with additional nonlocal state information in order to learn other

actions to take in this specific situation. More specifically, when an agent determines

its current state, it first looks it up in its local policy, constructed off-line using

multi-agent learning based on the simplistic assumption (occurring in associated off-

line training scenarios) that its neighbors share its environmental context. Thus

the off-line agent learning does not capture the exact environmental context of its

neighboring agents in the agent state making learning much quicker since the state

space is drastically reduced.

An agent operating on-line in the real domain considers the corresponding action

from the off-line policy for execution. If there is no conflict with meta-level actions of

neighbors as a result of this agent’s proposed action or if the performance of conflict

resolution is good, then the agent remains in this “normal state” Si and executes the

action prescribed by the off-line policy. Else, in the case of existence of conflicts, the

agent searches the “special state” S ′i that extends its current state among the sibling

states. A special state is a state that is added into the local policy space because

of conflicts and it contains an additional state vector that captures current non-local

information about neighbors. If the special state S ′i has not been expanded earlier, it

is expanded as a sibling of the current normal state Si. The policy space with this

special state S ′i as root is unrolled and the policy for this subtree is used to augment

the existing policy. The above steps are then repeated until the problem horizon is

reached.

To balance the benefits of unrolling more states and being selective in the unrolling
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direction, I use a set of heuristics (that are also part of conflict resolution negotiation

strategy) and learn their priorities on-line to select actions that expand and unroll

subsequent states when conflict resolution fails. The heuristics help to determine the

most promising actions for overall performance improvement and unroll the states

that are most likely to be encountered. I use PGA-APP to learn both the off-line

policies for the initial state space as well as the on-line policies for the newly unrolled

parts of the tree.

While this study focuses on meta-level questions in Netrads, I have framed the

research questions to be applicable to the deliberative level as well. I believe this

approach to most MAS applications where access to information about its context,

improves the agents’ decision making performance and makes the MAS more coordi-

nated. The approach also benefits from the assumptions that the number of special

states that are added via online learning are limited; and that the learned policy has

a finite horizon. Conflict resolution between agent policies can be handled explicitly

(as is the case for Netrads in this research) or implicitly (in domains where conflicts

lead to some reduction in utility).

5.3.2 Overview of Approach

I build on the prior work where the policies are learned off-line in a simplified en-

vironment with the assumption that all agents experience the same weather scenario.

I extend this work by doing on-line learning so as to learn policies in a more com-

plicated and realistic environment where different parts of the system may encounter

different types of weather scenarios. Direct application of the off-line policies to on-

line scenarios could lead to undesirable performance since the off-line policies do not

have the current context of the agent (now the neighboring agents could experience

heterogenous weather scenarios. The tasks and data shared among agents are more

complex than that in the homogeneous scenario.) that may result in conflicts. Such

conflicts, if left unresolved, have detrimental effects on the overall performance of
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the MAS. The on-line learning is used to augment certain local policy states with

additional nonlocal state information in order to learn appropriate policies in specific

situations with conflicts.

I claim that the special states added in NetRads are limited for the following rea-

sons: 1) It has been shown in the off-line learned policy that the states that cause

conflicts are a small portion of the whole state space. The off-line policy is learned

in a simplified environment that each agent experiences the same weather scenario

which leads to few conflicts among neighboring agents. 2) When certain states cause

conflicts, the number of conflicts could be reduced to an acceptable level (having little

harmful effects to the overall performance) using decentralized negotiation algorithm

that avoids the need to add in extra special states.

This approach, called Informed Unroll and Conflict Resolution Learning (IU-CR-

L) is described in Algorithm 3. IU-CR-L is a decentralized algorithm that learns the

following issues:

(a) It learns which states cause conflicts and when “special states” need to be added

based on on-line performance.

(b) It learns the priorities of the heuristics through weight updating that are used

to decide which part of the search space to unroll.

(c) It learns policies for “special states” through reinforcement learning (PGA-

APP).

ψS(ξ), ψI(ξ) and ψL(ξ) denotes the number of SRC, IHC and LRC that exists in

the neighborhood ξ respectively. init-unroll(model) unrolls the initial MDP space

Sinit for MCCi (line 3, Algorithm 3). compute-conflicts(ξ) computes the number

of each type of conflicts in ξ. MCCi uses a decentralized negotiation algorithm to

resolve conflicts in ξ (line 10, Algorithm 3). PCR(ξ) measures the performance

of conflict resolution for neighborhood ξ. ρ(t) is the threshold for PCR(ξ) that

changes with time. Dec-Neg-MMLC(ξ) is the decentralized negotiation algorithm
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Algorithm 3 The Learning Algorithm IU-CR-L for MCCi
1: Initialize empty mdp, initState, PCR(ξ) and ρ(t);
2: openList← {initState};
3: mdp = init-unroll(model);
4: Initialize policy π as off-line optimal policy;
5: repeat
6: Determine the weather scenario MCCi encounters;
7: Communicate and observe the current state s;
8: Consider and deliberate about action a according to π(s, a);
9: {ψS(ξ), ψI(ξ) , ψL(ξ)} ← compute-conflicts (ξ);

10: PCR(ξ)← Dec-Neg-MMLC (ξ);
11: if PCR(ξ) > ρ(t) then
12: Execute action a;
13: Update π(s) using PGA-APP;
14: end if
15: else
16: Determine the special state s′;
17: if s′ is not expanded earlier then
18: Add in s′ as a sibling state of s in the mdp;
19: end if
20: Update the current state as s′;
21: a′ ← apply-heuristic ();
22: a← a′

23: mdp = Informed-Unroll (model);
24: Execute action a;
25: Update π(s′) using PGA-APP;
26: end else
27: until the process is terminated.

that deliberates on the detailed actions of actions to resolve conflicts from a partially

global perspective. apply-heuristic() is the process that uses heuristics to select an

action to expand. Informed-Unroll(model) is the smart procedure that does selective

MDP expansion and negotiation so as to improve global performance.

In IU-CR-L, agents identify bad states by just “deliberating” about taking the best

action at that state and predicting possible conflicts and not by actually “executing”

the best action. Before an agent executes a meta-level action it contacts the agent

the action will affect. If an agent that is contacted realizes through its own proposed

meta-level action that there is a conflict, it will alert those agents that there is a
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conflict and indicate the characteristics of the conflict (LRC, SRC or IHC). MCCi

observes its current state s, deliberates about action a to calculate the number of

conflicts in its neighborhood ξ (line 7-9, Algorithm 3). Agents are synchronized and

deliberate about actions at the same time. If the performance of conflict resolution

is good (denoted by PCR(ξ) > ρ(t)), MCCi executes a and updates the policy π(s)

and the MDP space of MCCi remains the same (line 11-14, Algorithm 3). Otherwise,

agents introduce special states at the same time. MCCi searches the special state s′

from the siblings of s. s′ extends s by adding an additional state vector that contains

non-local context about the neighbors. If s′ has not been expanded earlier, I expand

it as a sibling of s (line 17-19, Algorithm 3). Action expansion and search space

unrolling in the MAS is decentralized and synchronous.

The MDP space of MCCi with s′ as root is unrolled based on interleaving of action

expansion and negotiation (line 20-23, Algorithm 3). The procedure works as follows:

MCCi updates its action choice a by applying a set of heuristics in sequence that are

sorted from highest to lowest priority until the performance of conflict resolution is

acceptable or time has run out on this cycle. The heuristics help to direct the action

of the agent in the most promising direction that improves the overall performance

and more details will be provided in Chapter 5.3.6. The priority of each heuristic Hj

reflects the effectiveness ofHj on conflict resolution in a specific environmental context

and is learned implicitly based on multiagent reinforcement learning. I expand a and

its subsequent search space if a has not been expanded earlier. At the end of the

procedure, MCCi executes a and updates the policy π(s′) (line 24-25, Algorithm 3).

5.3.3 Motivating Example

Simple scenario:

I use a couple of examples to motivate the approach. Consider a simple on-line

scenario, described in Figure 5.5, where MCC1 and all its neighbors experience the

same weather scenario: HRLS. All the MCCs have the same 60 second heartbeat.
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Figure 5.5: The MCCs experience homogeneous weather scenarios.

MCC1, MCC3 and MCC4 each have one radar involved in the data correlation while

MCC2 has three radars involved in the data correlation.

Figure 5.6 is the initial MDP space Sinit (line 1-3, Algorithm 1) for MCC1. At

time t = 0 of the MMLC phase, each MCC determines its current state. Figure 5.6

shows the unrolling process for MCC1 where MCC1 is in state S1 and considers its

action a1 which has the highest probability distribution in the off-line policy π(s1).

MCC1 then computes the number of conflicts in its neighborhood (line 6-9, Algorithm

Figure 5.6: Sinit with initial state S1 for MCC1 for weather scenario: HRLS.



99

Figure 5.7: The MCCs experience heterogeneous weather scenarios.

1). At time t = 0.08 sec, it is observed that no conflict exists in this scenario

(ψS(ξ) = ψI(ξ) = ψL(ξ) = 0; PCR(ξ) = 1; ρ(0.08) = 0.784), each MCC executes the

current action and uses PGA-APP to update the policy (line 12-13, Algorithm 1).

MCC1 executes the action a1. The state space of each MCC remains unchanged and

there are no additional features added to the current state of any MCC.

Complex scenario:

I now consider a complex on-line scenario described in Figure 5.7, where MCC1

and its neighbors experience different weather scenarios. MCC1, MCC2, MCC3 and

MCC4 experiences High Rotation Low Storm (HRLS), High Rotation Medium Storm

(HRMS), Medium Rotation Medium Storm (MRMS) and Low Rotation High Storm

(LRHS) respectively. All the MCCs have the same 60 second heartbeat. MCC1 has

one radar (R4) involved in the data correlation while MCC2, MCC3 and MCC4 each

have three radars (R5, R7 and R8; R9, R10 and R12; R13, R14 and R15) involved in

the data correlation.

At time t = 0 of the MMLC phase, each MCC determines its current state, con-
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Figure 5.8: The MDP space for MCC1 at time t = 0.44 sec.

siders its best action recommended by the offline policy and computes the number of

conflicts in its neighborhood (line 6-9, Algorithm 1). Suppose MCC1’s current state

is S5 in Figure 5.8. At time t = 0.13 sec, it is observed that conflicts exist in this

scenario (For the whole network: ψS(ξ) = 2, ψI(ξ) = 4 and ψL(ξ) = 2). The MCCs

use the decentralized negotiation algorithm to resolve conflicts (line 10, Algorithm

1). MCC1 deliberates about the consequences of applying various detailed actions

of a3 and chooses the detailed action that performs best on conflict resolution in its

neighborhood ξ. The remaining conflicts are: ψS(ξ) = 0, ψI(ξ) = 3 and ψL(ξ) = 2.

At time t = 0.44 sec, the MCCs find that the performance of conflict resolution is

not good (PCR(ξ) = 4∗2+2∗1+1∗0
4∗2+2∗4+1∗2 = 0.56, ρ(0.44) = (−0.2) ∗ 0.44 + 0.8 = 0.712); each

MCC determines its special state that includes overlapping context among neighbors

(line 16, Algorithm 1). This is the learning type (a) which is described in IU-CR-L.

The MCC expands the special state if it is not expanded earlier (line 17-18, Algo-

rithm 1). Each MCC then stays in its special state, unrolls its MDP space with this

special state as root on a selective basis (line 20-23, Algorithm 1). For MCC1, S9 is
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Figure 5.9: The MDP space for MCC1 after a few learning episodes. The special
states are marked red.

the special state that has not been expanded (Figure 5.8) S9 extends S5 by adding

an additional state vector, 〈HRMS,MRMS,LRHS〉, that captures additional infor-

mation about neighbors. MCC1 applies heuristic H1 (H1 has the highest priority)

to decide the candidate action (a7) for expanding. Each MCC resolves conflicts with

its respective new candidate action. At time t = 1.1 sec: ψS(ξ) = 0, ψI(ξ) = 3,

ψL(ξ) = 0, PCR(ξ) = 4∗2+2∗1+1∗2
4∗2+2∗4+1∗2 = 0.67, ρ(1.1) = (−0.2) ∗ 1.1 + 0.8 = 0.58. Since

PCR(ξ) > ρ(t), each MCC expands the candidate action and unrolls the MDP s-

pace with this action as root. Also, the priority value of the corresponding heuristic

of each MCC is updated. This is the learning type (b) described in IU-CR-L. For

MCC1, it updates the priority value for H1 to 0.65. The MCCs execute the newly

selected actions (MCC1 executes a7) and use PGA-APP to update the policy π(s′)
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(line 24-25, Algorithm 1) which is the learning type (c) in IU-CR-L.

Figure 5.9 shows the MDP space for MCC1 after a few learning episodes. I can see

that when action a7 fails to resolve conflicts efficiently, I use another heuristic (H3)

to choose another candidate action a10 to take and unrolls the subsequent search

space. PGA-APP is the multiagent reinforcement learning algorithm that learns the

transition function and calculates the policy. In Figure 5.9, four states (S10, S11, S12

and S13) are expanded after action a7. Initially the transition probability for these

four states are evenly set values 0.25. During learning, the transition probabilities

are learned, moving towards the correct ones. In the example, I observe that S11

and S12 are the two states that are visited for hundreds of times while S10 and S13

are rarely visited. The transition probabilities are updated as: P (S10|S9, a7) = 0.01,

P (S11|S9, a7) = 0.67, P (S12|S9, a7) = 0.31 and P (S13|S9, a7) = 0.01.

5.3.4 Initial MDP Space

Procedure 1 mdp = init-unroll(model)

1: repeat
2: state← dequeue (openList);
3: action← highest-prob-action (state,model);
4: succs← suc-states (state, action,model);
5: for all succ ∈ succs do
6: mdp← update (state, action, succ,mdp);
7: if succ is not a terminal state then
8: if succ is explored by off-line learning then
9: enqueue (succ, openList);

10: end if
11: end if
12: end for
13: until openList is empty;
14: return mdp;

We now describe the init-unroll(model) in IU-CR-L that unrolls the initial MDP

space Sinit for MCCi. Each agent obtains its Sinit (Procedure 1) before on-line learn-

ing begins. I use the learned Scenario Library (Chapter 4.2.1) to determine the states

and actions which are initially unrolled. Sinit is obtained as follows: Each agent stays
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in its initial state. It expands the action that has the highest probability distribution

in the policy π(s) that is stored in the Scenario Library(line 3, Procedure 1). Every

possible state s′ (I get s′ by reusing the learned knowledge in the Scenario Library)

resulting from this action is expanded (line 4, Procedure 1) and for s′ similarly only

the action that has the highest probability distribution in π(s′) is expanded. This

process repeats until all the terminal states are reached. This greedy unrolling pro-

cedure can tell the agent what to execute (though maybe suboptimally) after the

agent reaches a state during execution. I set the depth of Sinit to 3 which reflects

the horizon of the policies for the NetRads which is three heartbeat periods. I defined

this horizon manually after examining the behavior of the NetRads domain in various

scenarios. It is important to establish the correct horizon, since if the horizon is too

short, it triggers meta-level control too frequently which increases the cost of decision

making and affects performance. On the other hand, a horizon that is too long may

result in meta-level control policies that are obsolete for the latter part of the horizon,

given the dynamic nature of the environment.

5.3.5 Decentralized Negotiation

I propose a decentralized negotiation algorithm (line 10, Algorithm 3) to resolve

conflicts among neighboring agents in order to better compute meta-level actions and

improve the global performance. The algorithm takes into account the priorities of

the three types of conflicts (SRC, IHC and LRC) when resolving them. In Dec-Neg-

MMLC, I use a mediator [Mailler and Lesser, 2006] to gradually update the detailed

actions to minimize conflicts in a limited time period. Choosing agents as mediators

in IU-CR-L helps break the conflicts into smaller sets, partially centralize and solve

each set from a local view reducing communication cost.

Prior to describing Dec-Neg-MMLC, I define the following key terms and functions

used in the algorithm:

• r: the number of iterations of the algorithm. Each iteration includes three
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Procedure 2 Dec-Neg-MMLC (ξ)

1: Initialize: r = 1; Ci,0 = {∅}, Cneigh
i,0 = {∅}; Ci,1, Cneigh

i,1 and Pi are computed by
agents;

2: if (Ci,r 6= Cneigh
i,r ) or (Ci,r−1 6= Cneigh

i,r−1 ) then
3: recalculate Pi;
4: end if
5: for all MCCneigh do
6: SendMsg(Pi, MCCneigh);

7: CollectMsg(P neigh
i , MCCneigh);

8: if Pi ≥ P neigh
i for all MCCneigh then

9: mediator ←MCCi;
10: branch-and-bound-search (mediator);
11: a∗i,DP ← argmaxai,DP

{PCR(ξ)};
12: for all MCCneigh do
13: SendMsg(a∗neigh,DP , MCCneigh);
14: end if
15: update Ci,r+1;
16: for all MCCneigh do
17: SendMsg(Ci,r+1, MCCneigh);

18: CollectMsg(Cneigh
i,r+1 , MCCneigh);

19: r + +;

stages (Mediator Identification, Mediation Process and Configuration Update).

• Ci,r = 〈si, ai, a∗i,DP 〉: the configuration of MCCi at iteration r is a tuple with

information about MCCi’s abstract state si, abstract action ai and the current

detailed action a∗i,DP of ai. Ci,r is used to appropriately describe the agent’s

own state and action information. I set Ci,0 = {∅} and Cneigh
i,0 = {∅} to be the

empty configuration before the negotiation algorithm runs. I set Ci,1 and Cneigh
i,1

to be the initial configuration at the beginning of the first iteration.

• Cneigh
i,r has a similar definition as Ci,r, except that Cneigh

i,r is the configuration of

MCCi’s neighboring agent MCCneigh. neigh ∈ {1, 2..., j}, j is the number of

neighbors MCCi has.

• Pi = w1×NSRC
i +w2×N IHC

i +w3×NLRC
i : the mediator priority for MCCi that

shows the priority for MCCi to be elected as a mediator in its neighborhood.

NSRC
i , N IHC

i and NLRC
i denotes the number of SRC, IHC and LRC that MCCi
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respectively has with its neighbors. Each of these conflicts is recognized using

the mechanism described in Chapter 5.1. wi(i = 1, 2, 3) is the weight for each

type of conflicts. In the evaluation, I set w1 = 4, w2 = 2 and w3 = 1 to illustrate

the different degrees of importance to resolve the three types of conflicts.

• Mediator: An agent with the highest mediator priority in its neighborhood

is set to be a mediator, because this agent has the most constraints within

its neighborhood that leads to most powerful mediation ability. In Fig. 5.7,

suppose MCC2 has a SRC conflict with MCC1 and a LRC conflict with the

other neighbor MCC3, the mediator priority P2 = 4 × 1 + 1 × 1 = 5. In the

NetRads domain, I assume that Pi = 0 if MCCi has a high load of radars. Such

an agent is not preferred to be a mediator since mediators require huge amounts

of computation and communication and need to get things done quickly.

• P neigh
i is defined as same as Pi, except that it is the mediator priority for MCCi’s

neighbor MCCneigh. neigh ∈ {1, 2..., j}, j is the number of neighbors MCCi

has.

• PCR(ξ)(0 ≤ PCR(ξ) ≤ 1) measures the conflict resolution performance for

neighborhood ξ (line 11, Procedure 2), it is defined as:

PCR(ξ) =


w1×S′(ξ)+w2×I′(ξ)+w3×L′(ξ)
w1×S(ξ)+w2×I(ξ)+w3×L(ξ)

if S(ξ) + I(ξ) + L(ξ) > 0

1 if S(ξ) + I(ξ) + L(ξ) = 0
(5.1)

where S ′(ξ), I ′(ξ) and L′(ξ) denotes the number of SRC, IHC and LRC that has

been resolved in the neighborhood ξ respectively; S(ξ), I(ξ) and L(ξ) denotes

the number of SRC, IHC and LRC that exists before the negotiation algorithm

in the neighborhood ξ respectively. wi (i = 1, 2, 3) is the weight for each type

of conflict as defined earlier. PCR(ξ) takes into account both the priority and

number of each type of conflicts.

• SendMsg(Content, MCCj): the function for MCCi to send message to the

receiver MCCj that contains the information of Content.
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• CollectMsg(Content, MCCj): the function for MCCi to collect message from

the sender MCCj that contains the information of Content.

Each iteration of the algorithm includes three stages (Stage 1: Mediator Identifi-

cation, Stage 2: Mediation process and Stage 3: Configuration update):

1. Stage 1: Mediator Identification

Each MCCi computes its Pi (line 3, Procedure 2) by checking the three types

of conflicts (SRC, IHC and LRC) given its configuration Ci,r and its neighbor’s

configuration Cneigh
i,r . As mentioned earlier, Pi would be degraded to 0 if MCCi

controls a high load of radars. Note that if neither Ci,r or Cneigh
i,r changed from

the previous iteration round, then Pi from the previous iteration round can

be re-used without any additional computation. MCCi then sends its mediator

priority Pi to each of its neighbors (line 6, Procedure 2). It also collects messages

describing P neigh
i from each of its neighbors (line 7, Procedure 2).

2. Stage 2: Mediation process

Each MCCi receives P neigh
i from each of its neighbors during Phase 1. MCCi

is set to be a mediator in its neighborhood if it has a mediator priority higher

than any of its neighbors (line 9, Dec-Neg-MMLC). In the case of a tie, the

MCC with lower index number is the one to be a mediator. In this way, each

neighborhood has at most one mediator in each iteration round. After the me-

diator is set, the mediation process starts. The mediator updates a solution

a∗i,DP using a Branch and Bound search [Zhang et al., 2005a] that efficiently re-

solves conflicts among the neighbors. Branch and bound is a general algorithm

for finding optimal solutions of various optimization problems. It consists of

a systematic enumeration of all candidate solutions by using upper and low-

er estimated bounds of the quality being optimized. During the search, the

mediator sends each possible detailed action ai,DP to its neighbors along with

information associated with ai,DP such as the current data correlation degree.
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Each neighbor MCCneigh sends back a message to notify the mediator whether

a conflict exists and the type of the conflict if it exists. I define the following

criterion to determine the solution a∗i,DP :

a∗i,DP ← argmaxai,DP
{PCR(ξ)} (5.2)

The criterion evaluates the performance of conflict resolution by taking into

account both the number of each type of conflicts resolved as well as the impor-

tance of each type of conflicts. The mediation result may include the changes

of the detailed actions of abstract actions of the neighbors. The newly updated

actions are sent to the neighbors by the mediator (line 13, Dec-Neg-MMLC).

It is not guaranteed that all the conflicts (between MCCi and its neighbors)

can be successfully resolved as a result of the mediation process. The space

of the detailed actions of the abstract actions of MCCi is limited and the

resolution of one conflict influences the future conflict resolutions (The change

of a∗i,DP may change the conflict types of other conflicts in the neighborhood,

or introduce new conflicts into the neighborhood). In some cases, there is no

mediator in a certain neighborhood when each agent in this neighborhood has

a lower mediator priority than some neighbor(s) outside this neighborhood.

After some iteration rounds, the mediator priorities of the agents outside this

neighborhood decrease and become lower than those of the agents inside the

neighborhood. The conflicts in this neighborhood would then be resolved by

electing one mediator inside it.

3. Stage 3: Configuration update

Each MCCi updates its configuration Ci,r+1 (line 15, Procedure 2) and sends

out messages describing Ci,r+1 to all of its neighbors (line 17, Procedure 2).

This step is necessary since after Phase 2, most MCCs have changed their

configurations. Meanwhile, MCCi collects the messages from its neighbors and
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populates Cneigh
i,r+1 .

The Dec-Neg-MMLC algorithm transmits a linear number of messages for informa-

tion updates. At each iteration r, MCCi sends messages to its neighbors describing

Ci,r, Pi and updated meta-level information only once. The largest number of mes-

sages for information updating one MCC sends/receives at each iteration depends on

the largest neighborhood size in the problem. The largest portion of messages comes

from Stage 2. During the Branch and Bound search, the mediator exchanges mes-

sages with its neighbors for each possible detailed action. The communication cost

increases substantially when the mediator has a huge number of candidate detailed

actions.

5.3.6 Informed Unrolling

Procedure 3 mdp = Informed-Unroll(model)

1: while termination condition is not met do
2: PCR(ξ)← Dec-Neg-MMLC (ξ);
3: if PCR(ξ) > ρ(t) then
4: if a is not expanded in the MDP space then
5: mdp = partial-unroll(s′, a,model);
6: end if
7: update-heuristic-priority ();
8: end if
9: else

10: a′ ← apply-heuristic ();
11: a← a′;
12: end else
13: end while

Informed-Unroll (line 23, IU-CR-L) is the process that selectively expands the MDP

space based on the performance of iterative conflict resolution when MCCs reach

special states (line 23, Algorithm 1). partial-unroll(s′, a,model) expands action a and

the subsequent search space in a similar way as init-unroll(model). When Informed-

Unroll starts, each agent checks the termination condition (line 1, Procedure 3) to

decide whether the MMLC phase needs to be terminated or not. I set the following

rules as the termination condition for the MMLC phase:
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1. When no conflict exists among the meta-level actions of each MCC, there is no

need to run the decentralized negotiation algorithm in the MMLC phase and

the time saved in the MMLC phase is allocated to Phase 3 and 4 for better

performance.

2. When conflicts exist among the meta-level actions of each MCC, allocating as

much time as possible (should not exceed the time limit for the MMLC phase)

to the decentralized negotiation algorithm for conflict resolution. If the time

limit for the MMLC phase is reached or the conflict resolution performance is

good (PCR(ξ) > ρ(t)), the negotiation will terminate.

I use a linear function to calculate the actual threshold ρ(t) (line 3, Procedure 3)

for PCR(ξ) (t is the amount of time spent (sec) in the MMLC phase, 0 ≤ t ≤ 3.) as:

ρ(t) = −a · t+ b (5.3)

where a and b are constants. At the start of the MMLC phase, ρ(t) is high so that the

agents have higher probability to select an optimal action that minimizes conflicts.

During the latter part of the MMLC phase, it is better to decrease ρ(t) so that the

agents are risk-averse to poor conflict resolution performance without enough time

left to fix it. Since MMLC phase is time constrained, I set the upper bound of t to

be 3 (30× 10% = 3) with respect to the 30 seconds heartbeat.

I use heuristics to expand appropriate actions (line 10, Procedure 3) in order to

direct the agent in the most promising direction that improves the overall performance

to the ultimate extend in limited time. The intuition behind the heuristics is that each

heuristic works well on conflict resolution under a certain condition. I learn the

priority of each heuristic on-line and use the heuristics to decide which action to take

when a special state is encountered. I define heuristics as:

• H1: The agent unrolls its MDP space by exploring a new action that has a

different type of radar movement from the current action choice. This heuris-

tic helps in situations that there are lots of data correlation existing among
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overlapping areas. For example, H1 makes MCC1 to change the action ‘Heavy

Move (MCC1 to MCC2)’ to ‘Light Move (MCC1 to MCC2)’.

• H2: The agent unrolls its MDP space by exploring a new action that has a differ-

ent direction of radar movement from the current action choice. This heuristic

helps in such situations that the agent moves radars to its heavily loaded neigh-

bor(s) while keeping other neighbor(s) free. A heavily loaded MCC [Krainin

et al., 2007] is one that reaches the upper bound of controlling radars. For ex-

ample, H2 makes MCC1 to change the action ‘Heavy Move (MCC1 to MCC2)’

to ‘Heavy Move (MCC1 to MCC3)’.

• H3: The agent unrolls its MDP space by exploring a new action that has a

different heartbeat from the current heartbeat choice. This heuristic helps in

situations that the agent has a different heartbeat with most of its neighbors.

• H4, H5 and H6 are the heuristics that enforce two of the above three elementary

heuristics. For example, H4 is the heuristic that the agent unrolls its MDP space

by exploring a new action that has a different type as well as a different direction

of radar movement from the current action choice.

• H7 enforces H1, H2 and H3 simultaneously.

• H8 is used to denote that an agent does not change its current action.

Initially, we have no prior knowledge about which heuristic works best for MCCi

under a special state. For MCCi, I define χi,j (j = 1, 2, ..., 8) as the priority that

measures the effectiveness for applying heuristic Hj for MCCi.

update-heuristic-priority() updates the priority for each heuristic based on the ac-

tual performance on conflict resolution (line 7, Procedure 3):

χi,j ←
χi,j ×N sum

i,j + PCR(ξ)

N sum
i,j + 1

(5.4)

where N sum
i,j is the total number of Hj that has been applied for MCCi up to now.

MCCi sorts all the heuristics in a descending order based on χi,j and put them

on a list. Each time when conflict resolution fails (PCR(ξ) ≤ ρ(t)), MCCi re-
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selects action a′ (line 10, Procedure 3) by applying the heuristic that has the highest

priority in the remaining list. When a heuristic has been applied, it will be removed

from the list. Each heuristic has the chance to be taken in this way. When conflict

resolution is successful (PCR(ξ) > ρ(t)), the priority of each heuristic is updated

using Equation 5.4 and all the heuristics are put back to the list and re-sorted. The

heuristic with lower priority previously could increase its priority if it continuously

has good performance on conflict resolution.

5.3.7 Experiments

I evaluate the algorithm IU-CR-L on scenarios with 12 agents controlling a total

of 72 radars where each scenario contains heterogenous weather scenarios in different

parts of the system based on the distribution of the tasks. A task represents a weather

event and I am only concerned about rotation and storm tasks in the evaluation.

The number of tasks varies from 80 to 200 for each scenario. There are nine types

of possible weather scenarios occurring in the system, and they are differentiated by

the number of these two tasks. Each MCC has two choices of heartbeat: 30 seconds

long or 60 seconds long.

I compare the results of four approaches: IU-CR-L, IU-CR-H, IU-CR and No-IU.

IU-CR-L is the online learning approach that iteratively expands the MDP search

space, uses a decentralized negotiation algorithm to resolve conflicts, updates the

priorities of heuristics (H1 to H8) and uses PGA-APP to update the policy. IU-

CR-H is the online learning approach that uses heuristics to unroll the MDP search

space. The priorities of the heuristics are also learned online. IU-CR-H does not

use PGA-APP to update the policy. IU-CR is different from IU-CR-L in that it

expands all the action choices instead of using heuristics to selectively unroll the

promising action choice when conflicts occur. No-IU is the online learning approach

that takes advantage of previously learned off-line policy from the Scenario Library. It

uses PGA-APP to update the policy without conflict resolution. In the experiments,
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ρ(t) = −0.2 · t+ 0.8.

In the following paragraphs, I empirically show that IU-CR-L learns useful poli-

cies for agents with a small amount of training episodes. Also, IU-CR-L achieves

significantly better performance on utility and conflict resolution by unrolling a small

fraction (only 10% in the best cases) of the whole search space.

Figure 5.10: Utility of the four algorithms for 12 MCCs, for various number of training
episodes.

I used a total of 10000 training episodes to learn the policies for the four algorithms.

I gradually increased the number of training episodes (as Figure 5.10 shows) and

used 30 test cases to evaluate the performance of policies that converge for different

amounts of training episodes. In Figure 5.10, I observe that IU-CR, IU-CR-H and IU-

CR-L perform significantly better than No-IU on Utility for all the training episodes.

Conflict resolution helps to improve the overall performance on Utility. I also observe

that IU-CR performs better than IU-CR-L on Utility when 100 training episodes

are run, this is because the heuristics with inaccurate priorities may lead to biased

expansion of actions. As the number of training episodes increases, the state space of

each agent using IU-CR-L is more accurate about the neighbors’ environmental states;

and the conflict resolution actions have been frequently explored and executed. These

two factors lead to improved performance with IU-CR-L with increased training.
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PGA-APP is useful and it helps to learn the appropriate policy that improves the

overall performance significantly.

I varied PTaskRatio (setting it to 20%, 60% and 90%) and compared the perfor-

mance of policies. When radars belonging to different MCCs share data (especially

data about shared pinpointing tasks), the communication among these MCCs would

increase and thus there is more interdependency. The pinpointing tasks need signifi-

cant coordination among MCCs. In Figure 5.11(a), I note that Utility increases with

the increase of the percentage of pinpointing tasks for both approaches. IU-CR-L

improves 3%, 7% and 21% for the 20%, 60% and 90% PTaskRatio cases respectively

on Utility compared with IU-CR.

Figure 5.11(b) and Figure 5.11(c) show that IU-CR, IU-CR-H and IU-CR-L per-

form significantly better than No-IU on Time for the 20%, 60% and 90% PTaskRatio

cases respectively. For IU-CR, p values are 0.0043, 0.018 and 0.047 respectively; for

IU-CR-H, p values are 0.0038, 0.039 and 0.044 respectively; for IU-CR-L, p values are

0.029, 0.001 and 0.0072 respectively. Adaptive meta-level control allows for effective

use of the heartbeat. By coordinating meta-level control parameters, the Negotiation

phase converges more quickly, so that more time can be spent on the Data Processing

and Local Optimization phases. In IU-CR, IU-CR-H and IU-CR-L, the negotiation

algorithm helps agents resolve conflicts and select the most appropriate action choices

from a non-local perspective to reduce the time in the Negotiation phase.

Table 5.2: Comparison results between IU-CR and IU-CR-L after 1000 training
episodes.

# of states # of special # of newly Unrolling
Approach

expanded states expanded learned policy time (sec.)

IU-CR 21389271 214 214 1.56
IU-CR-H 3702904 152 152 0.084
IU-CR-L 3587659 137 137 0.084

Figure 5.12 shows that IU-CR and IU-CR-L achieve similar conflict resolution
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(a) Utility

(b) 30 seconds heartbeat

(c) 60 seconds heartbeat

Figure 5.11: Performance for 12 MCCs, for PTaskRatio to be 20%, 60% and 90%.
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Figure 5.12: Number of conflicts (LRC, SRC and IHC) unresolved by the four algo-
rithms for 12 MCCs, for PTaskRatio to be 20%, 60% and 90%.

performance. IU-CR reduces the number of conflicts unresolved by 78%, 76% and

68% for the 20%, 60% and 90% PTaskRatio cases respectively compared with No-IU ;

while IU-CR-L reduces the number of conflicts unresolved by 75%, 71% and 74% for

the three cases respectively.

Table 5.2 shows that for IU-CR, IU-CR-H and IU-CR-L, the special states added

to the search space are limited. IU-CR-H and IU-CR-L unroll significantly fewer

states than IU-CR (reducing 95.5% and 96.8% respectively). Among these expanded

states only a small fraction (< 0.01%) are visited during learning. Each learned sub-

policy associated with an encountered special state is iterated 437 times on average.

In IU-CR-L, the heuristics help to balance the benefits of unrolling more states and

of being selective in the unrolling direction. Although IU-CR-L learns fewer sub-

polices compared with IU-CR and IU-CR-H, its policies perform better on Utility (see

Figure 5.10). IU-CR-L suggests a new action for a special state at the probability of

31.8%; while IU-CR-H does so at the probability of 13.5%. In IU-CR-L, PGA-APP

contributes to the learning of the expanded actions and thus leads to the appropriate

sub-policies. IU-CR spends significantly more time (1.56 sec compared with 0.084

sec) on unrolling compared with IU-CR-H and IU-CR-L. This is because when IU-CR

reaches a special state, it expands all the possible actions and unrolls the resulting
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search space of the actions that consumes much time.

Table 5.3: Comparison results of IU-CR-L with the increase of training episodes.

# of training # of states # of special Average # of actions
episodes expanded states expanded expanded after special states

100 790538 46 2.3
500 3012334 110 5.6
1000 3587659 137 5.1
4000 9347893 594 4.6
10000 12097539 862 3.4

Table 5.3 shows that the percentage of new states expanded using IU-CR-L is

decreasing substantially with the increase of training episodes. During the earlier

learning stage (from 100 to 500 training episodes), many new special states are en-

countered that results in a huge unrolling space. After that, the probability to expand

new special states decreases. IU-CR-L expands 281% and 19.1% more states when

number of training episodes increases to 500 and 1000 respectively.

During the earlier learning stage, the dominant heuristics are more likely to be

chosen, so the average number of actions expanded after special states is low. When

more training episodes are encountered, the number of heuristics that are applied

increases because of the uncertainty of conflict resolution. So the average number of

actions expanded also increases (5.6 compared with 2.3 in Table 5.3). After enough

training episodes are encountered, the priority of each heuristic becomes accurate

and the special states expanded later in the on-line learning have higher probability

to apply only the few dominant heuristics. For this reason, the average number of

actions expanded after special states decreases (5.1, 4.6 and 3.4 respectively compared

with 5.6 in Table 5.3). IU-CR-L learns the effectiveness of applying each heuristic.

5.3.8 Discussion

It is guaranteed that for the same set of conflicts, the negotiation algorithm changes

the solution towards less conflicts solution gradually. Suppose MCCi is elected as a

mediator at iteration r. After the mediation process of MCCi, the sum of mediator
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priorities in MCCi’s neighborhood decreases (it is equal to the sum in previous iter-

ation r− 1 at the worst case). The purpose of the mediator is to alleviate the degree

of conflicts in its neighborhood, thus lowering the sum of mediator priorities in the

neighborhood. Consequently the sum of mediator priorities of all MCCs is decreased

(or unchanged in the worst case) at the end of each iteration. So the solution is

moving towards less conflicts one gradually at each iteration. The question now is to

determine how close is the final solution to the optimal one? It depends mainly on

the following three factors:

1. Number of saturated neighborhoods: Saturated neighborhood is the neighbor-

hood in which the degree of conflicts is minimized and can not be decreased

further by the mediation process. When a neighborhood becomes a saturated

neighborhood, the sum of mediator priorities in it keeps unchanged at the end

of each iteration. The saturated neighborhood could become unsaturated by

resolving the conflicts from a non-local perspective. The negotiation algorithm

only resolves conflicts locally (the scope of the neighborhood) and can not han-

dle this issue. The speed of converging to the optimal solution depends on the

total number of saturated neighborhoods in the problem. The larger the number

of saturated neighborhoods is, the slower the speed is.

2. Number of negotiation rounds: The actual number of negotiation rounds in

the algorithm depends on the factors such as the total number of MCCs, the

average size of neighborhoods in the problem, the degree of conflicts in each

neighborhood and the actual time spent on the mediation process. The negoti-

ation round in a larger neighborhood takes more time compared with a smaller

one in terms of more constraints to consider and more messages to transmit.

The more number of negotiation rounds is in a specific scenario, the more closer

is the final solution to the optimal one.

3. Degree of conflict resolution difficulty: In some scenarios, the conflicts in each
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neighborhood have few or no dependencies with those in other neighborhoods.

The conflicts could be efficiently resolved (or partially resolved) by the media-

tion process at each negotiation round. The solution moves closer to the optimal

one at each negotiation round smoothly. The negotiation algorithm is preferred

in such scenarios. However, in other scenarios that the conflicts in each neigh-

borhood have high dependencies with those in other neighborhoods. Resolving

such conflicts locally at each negotiation round improves the performance very

slowly. In these scenarios, the negotiation algorithm may perform badly that

calculates the solution being far away from the optimal one.

5.4 Global Optimization

In the previous section, I described the decentralized negotiation algorithm that

is used to resolve conflicts from a partially global perspective. The algorithm is not

guaranteed to resolve all the conflicts in the problem (as shown in the experimental

results). In this chapter, I will delve into details on how decentralized learning and

DCOP algorithm are synthesized to resolve conflicts and reach globally optimal so-

lution. An empirical study is presented for different scenarios and the strengths and

weaknesses of a global optimization approach is presented.

5.4.1 Applying Max-sum to Resolve Conflicts Globally

I formulate the MMLC conflict resolution coordination problem discussed in the

previous Chapter as a DCOP, which is defined by a tuple 〈A,X ,D,F〉, where

• A = {A1, ..., Ak} is a set of agents; in the NetRads context, each MCCi is

assigned an agent.

• X = {X1, ..., Xm} is a set of m discrete variables; in the NetRads context, each

MCCi has a variable Xi, which represents MCCi’s abstract actions defined in

Chapter 3.

• D = {d1, ..., dp} is a set of domains for the variable set X . In the NetRads

context, the domains are the detailed actions of abstract actions for each MCC.
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• F = {F1, ..., Fn} is a set of n functions; each function Fi(Xi) is dependent on a

subset of variables xi ⊆ X defining the relationship among the variables in xi.

In the NetRads context, Fi(Xi) is defined as:

Fi(Xi) =
∑

MCCm∈Ci

CPm(anm) (5.5)

where
∑

MCCm∈Ci
CPm(anm) is the sum of conflict penalties of each possible

assignment of the variables involved in the neighborhood of the MCCi. Ci is

defined as the MCC configuration in the neighborhood of MCCi. anm is the

nth possible detailed action of the abstract action am. The conflict penalty of

applying the detailed action anm is defined as:

CPm(anm) = −|w1 ×NSRC
m + w2 ×N IHC

m + w3 ×NLRC
m | (5.6)

where NSRC
m , N IHC

m and NLRC
m denotes the number of SRC, IHC and LRC

MCCm has with its neighbors respectively. As mentioned earlier, each of these

conflicts is recognized using the mechanism, described in Chapter 5.1. wi(i =

1, 2, 3) is the weight for each type of conflicts, which has the same value as

defined in Chapter 5.3.4. The conflict penalty CPm(anm) measures the severity

of conflicts MCCm will bring into the problem when the detailed action anm

is applied. The lower CPm(anm) is, the more conflicts MCCm will bring into

the problem. CPm(anm) = 0 means MCCm has no conflict with its neighboring

MCCs if the detailed action anm is applied.

The optimization problem here is defined as finding the detailed actions for radar

reorganization and heartbeat adaptation that maximizes the sum of Fi(Xi) in the

system. In other words, the goal is to find the detailed actions of abstract actions for

MCCs that maximizes the performance of conflict resolution in the whole system.

In this work, I use the Max-sum algorithm to compute coordinated joint poli-

cies for both learning and execution stages. During the learning stage, I extend the
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Algorithm 4 The Learning Algorithm IU-CR-L’ for MCCi
1: Initialize empty mdp, initState, PCR(ξ) and ρ(t);
2: openList← {initState};
3: mdp = init-unroll(model);
4: Initialize policy π as off-line optimal policy;
5: repeat
6: Determine the weather scenario MCCi encounters;
7: Communicate and observe the current state s;
8: Consider and deliberate about action a according to π(s, a);
9: {ψS(ξ), ψI(ξ) , ψL(ξ)} ← compute-conflicts (ξ);

10: PCR(ξ)← Max-sum (ξ);
11: if PCR(ξ) > ρ(t) then
12: Execute action a;
13: Update π(s) using PGA-APP;
14: end if
15: else
16: Determine the special state s′;
17: if s′ is not expanded earlier then
18: Add in s′ as a sibling state of s in the mdp;
19: end if
20: Update the current state as s′;
21: a′ ← apply-heuristic ();
22: Resolve conflicts using Max-sum;
23: Update π(s′) using PGA-APP;
24: end else
25: until the process is terminated.

IU-CR-L algorithm (presented in Chapter 5.3.1) by replacing the decentralized ne-

gotiation algorithm with Max-sum when agents deliberate about their actions (line

10, Algorithm 4). If the performance of conflict resolution is good, MCCi executes

its meta-level action a and updates the policy π(s) and the MDP space of MCCi

remains the same (line 11-14, Algorithm 4). Otherwise, special state s′ (line 16-20,

Algorithm 4) is introduced and there is no further exploration (the state space of

MCCi is not expanded). Next time MCCi observes the special state s′, it will choose

a different meta-level action a′ and uses Max-sum to find the best detailed action

(line 21-22, Algorithm 4).
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Figure 5.13: Framework flow diagram for algorithm IU-CR-L’.

As mentioned, when the factor graph of Max-sum is not cycle free, the convergence

is not guaranteed and Max-sum continues running by increasing rounds of passing

messages. I set the following rules as the termination condition for Max-sum in case

it exceeds the time limit of the MMLC phase (≤ 10% of the heartbeat):

1. When no conflict exists among the meta-level actions of each MCC, there is no

need to run the Max-sum algorithm and the time saved in the MMLC phase is

allocated to Phase 3 and 4 for better performance.

2. When conflicts exist among the meta-level actions of each MCC, allocating as

much time as possible (should not exceed the time limit for the MMLC phase)

to run Max-sum. If the time limit for the MMLC phase is reached and Max-sum

is still running (not converged), Max-sum will be terminated and approximate

solutions are utilized.

Figure 5.13 is the framework flow diagram illustrating the relationships among

the three key components in IU-CR-L’. The Max-sum algorithm serves two main

functionalities: a) It determines the best detailed actions along with the reward rCR

based on the current abstract states and actions it receives from PGA-APP b) It

supervises the informed unrolling process on whether to stay in the current MDP
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Figure 5.14: The relationships between all the algorithms.

space or to expand further MDP space by adding in new special states. Max-sum

chooses reward rCR = max∀nCPm(anm) for local abstract action am of agent MCCm

and sends it back to PGA-APP. The reward rCR reflects the performance of conflict

resolution by using abstract action am and needs to be included in the observed

reward r (line 5, Algorithm 1) in PGA-APP. Figure 5.14 illustrates the relationships

between all the algorithms developed in this dissertation.

5.4.2 Experiments

I evaluate the Max-sum-based approach using the same simulation environment of

the NetRads system as described in Chapter 4.4. I use the same training/test cases

discussed in Chapter 5.3.6 and compare the results of five approaches: IU-CR-L’,

IU-CR-L, IU-CR-H, IU-CR and No-IU. IU-CR-L’ is the learning approach that iter-

atively expands the MDP search space, uses Max-sum algorithm to resolve conflicts
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from a global perspective, updates the priorities of heuristics and uses PGA-APP to

update the policy. IU-CR-L’ differs with IU-CR-L in that IU-CR-L’ is implement-

ed with the Max-sum algorithm to resolve conflicts from a global perspective while

IU-CR-L is implemented with the decentralized negotiation algorithm that resolves

local conflicts.

For experiments involving the decentralized negotiation algorithm as well as the

Max-sum algorithm, each MCC, when the local computation is completed, waits for

other MCCs to finish the computation and then they exchange messages. Therefore,

the time complexity in the decentralized setting results from the sum of the longest

time taken in the local computation for each round. It is assumed there is no com-

munication delay in measuring the completion time. Both the number of messages

and the size of messages were measured to compute communication costs and this

includes counting the control messages to construct the network as well including the

time for establishing connectivity between nodes and information sharing on possible

values that each variable can take. The total amount of communication is measured

in bytes.

Figure 5.15: Utility of the five algorithms for 12 MCCs, for various number of training
episodes.

In Figure 5.15, I observe that IU-CR-L’ provides the upper bound for Utility among
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(a) 30 seconds heartbeat

(b) 60 seconds heartbeat

Figure 5.16: Time of the five algorithms for 12 MCCs, with PTaskRatio of 20%, 60%
and 90% respectively.

these five algorithms. IU-CR-L’ improves 0.3%, 2.1%, 3.5%, 4.2%, 5.8%, 5.9% and

5.7% respectively on Utility compared with IU-CR-L. The Max-sum algorithm helps

resolve more conflicts and thus calculate the better policy. Figure 5.16(a) and Fig-

ure 5.16(b) show that IU-CR-L’ performs significantly better than No-IU on Time

for the three cases respectively. p values are 0.019, 0.0084 and 0.027 respectively.

The Max-sum algorithm helps agents resolve conflicts and select the most appropri-

ate action choices from a global perspective to reduce the time in the Negotiation

phase.
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Figure 5.17: Number of conflicts (LRC, SRC and IHC) unresolved by the five algo-
rithms for 12 MCCs, for PTaskRatio to be 20%, 60% and 90%.

In Figure 5.17, I observe that IU-CR-L’ performs best on conflict resolution. IU-

CR-L’ reduces the number of conflicts unresolved by 96%, 94% and 94% for the

20%, 60% and 90% PTaskRatio cases respectively compared with No-IU. Max-sum

is not guaranteed to resolve all the conflicts, especially when the networks are highly

constrained.

Table 5.4 shows that IU-CR-L’ expands the fewest number of states during on-

line learning. IU-CR-L’ unrolls significantly fewer states compared with IU-CR, IU-

CR-H and IU-CR-L (reducing 97.6%, 46.4% and 22.7% respectively). Among these
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Table 5.4: Comparison results after 10000 training episodes.

# of states # of special # of newly Time spent
Approach

expanded states expanded learned sub-policies in MMLC (sec.)

IU-CR 382765303 1547 1547 0.49
IU-CR-H 17432685 1084 1084 1.73
IU-CR-L 12097539 862 862 1.75
IU-CR-L’ 9351376 621 621 2.38

Figure 5.18: Utility of the three algorithms for 12 MCCs. The SA algorithm is run
with the same number of tasks (weather phenomena) as the number of radars. It is
run with a computation time limit of 6 minutes. I set the time limit to 6 minutes
in order to get reasonable optimizations for sake of calculating the upper bound on
Utility. I use the upper bound to measure how far the other two algorithms are from
the global optimization solution.

expanded states only a very small fraction (< 0.01%) are visited during learning. Each

learned sub-policy associated with an encountered special state is iterated 503 times on

average. The good performance of IU-CR-L’ with regard to conflict resolution helps

reduce the possibility of introducing more special states for agents, thus mitigating

extra unrolling on search space. Although IU-CR-L’ learns better performing policies

compared to other algorithms, it spends more time in the MMLC phase (2.38 sec.

compared with 0.49, 1.73 and 1.75 sec. respectively). This is because it takes longer

time for the Max-sum algorithm to converge.

Different Network Sizes
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(a) Time in the decentralized setting

(b) Messages

(c) Communication

Figure 5.19: Comparison of the decentralized negotiation algorithm in IU-CR-L and
the Max-sum algorithm in IU-CR-L’.
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In order to evaluate the general performance and the scalability of the algorithms,

I compare the performance on different sized networks. In these scenarios, there are

the same number of phenomena as the number of radars in the network as shown in

Figure 5.18 and Figure 5.19. I used a simulated annealing (SA) [Kirkpatrick et al.,

1983] algorithm to calculate globally optimal solutions and compared the learning

approaches with this benchmark as upper bound. The SA algorithm approaches the

global optimum by gradually reducing the intensity of making “downhill” moves.

It is observed in Figure 5.18 that IU-CR-L’ performs better than IU-CR-L on

Utility for the 36, 72, 96 and 120 radar cases respectively. The improvements are

5%, 6%, 19% and 17% respectively. IU-CR-L’ remains quite close to the optimal

solution with lower number of radars. IU-CR-L’ achieves 99.7% and 98.2% on Utility

compared with the SA algorithm with respect to 36 and 72 radar cases. Even for the

96 and 120 radar cases, IU-CR-L’ achieves 93.8% and 96.5% on Utility compared to

the upper bound. In some circumstances, the Max-sum algorithm is not guaranteed

to converge and approximate solution is made that is deviated from the optimal one.

IU-CR-L achieves 95.3%, 93.1%, 78.8% and 82.6% respectively on Utility compared

with the upper bound.

The result in Figure 5.19 (a) shows that the Max-sum algorithm is able to handle

the problem well both with respect to quality and computation time on bigger sized

problems. The Max-sum algorithm achieves higher Utility at the cost of more compu-

tation time and communication cost. Compared to the Dec-Neg-MMLC algorithm,

Max-sum spends 36%, 31% and 22% more time in the 72, 96 and 120 radar cases re-

spectively. Max-sum needs more cycles for message transition and computation which

takes more time. In the 36 radar case, Max-sum spends 19% less time compared to

the other. In the network topology with lower constraints, the depth of the tree is

lower which makes the message propagation more efficient thus reducing the conver-

gence time of Max-sum. In terms of communication, when only messages exchanged
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across MCCs are counted, Max-sum needs no more than twice the communication

than the decentralized negotiation algorithm. Communication only between MCCs

are measured for both algorithms.

Different number of phenomena

In the next experiment, I increase the number of weather phenomena in a 72-radar

network with 12 MCCs, thereby requiring more coordination among radars and study

how the algorithms perform. Compared with the upper bound determined by SA,

IU-CR-L’ achieves 98%, 99%, 97% and 98% on Utility in the 80, 120, 160 and 200

phenomena cases respectively (Figure 5.20 (a)). While the quality of solution of Max-

sum is slightly better, the time complexity of Max-sum sharply increases because in

Max-sum more cycles are needed to calculate the optimal solution as more weather

phenomena are added. IU-CR-L’ increases 6%, 12%, 4% and 5% on Utility, while

spends 36%, 40%, 49% and 61% more time in the four cases respectively.

Also, the number of messages across MCCs increases as shown in Figure 5.20 (c)

as there are more tasks shared by multiple MCCs in the environment. The number

of messages in the decentralized negotiation algorithm increases slightly because the

algorithm quickly converges to a suboptimal solution due to the termination condition

inside each MCC resulting in an early termination within only 1 to 2 cycles.

Scaling up number of agents

In the next experiment, I increase the number of MCCs to be 12, 18 and 30 (with

72, 108 and 180 radars respectively). Figure 5.21 (a) shows that IU-CR-L’ outper-

forms (increases 6.3% and 10.4%) IU-CR-L on Utility in the 12 and 18 MCCs cases

respectively. However, in the 30 MCCs cases, the decentralized negotiation algorithm

performs better than Max-sum (with an increase of 8.4%) on Utility. The number

of neighbor in function nodes in Max-sum increases as more agents are added that

makes the factor graph not cycle free. Thus Max-sum does not converge during the

MMLC phase (within the 6 second limit) and the optimal solution is not successfully
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(a) Utility

(b) Time in the decentralized setting

(c) Messages

Figure 5.20: Comparison of the decentralized negotiation algorithm in IU-CR-L and
the Max-sum algorithm in IU-CR-L’, with 80, 120, 160 and 200 phenomena respec-
tively.
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(a) Utility

(b) Time in the decentralized setting

Figure 5.21: Comparison of the decentralized negotiation algorithm in IU-CR-L and
the Max-sum algorithm in IU-CR-L’, with 12, 18 and 30 agents respectively.

generated. Even in such cases, Max-sum still generates good solutions (78.0% of the

upper bound as in Figure 5.21 (a)). As Figure 5.21 (b) shows, the time complexity

of Max-sum sharply increases when the number of agents increases from 12 to 18. In

the 18 MCCs cases, Max-sum uses more than two times the time as the decentralized

negotiation algorithm. I were not able to compute the time Max-sum uses in the 30

MCCs cases, since Max-sum did not converge in such cases within the 6 second limit.
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Figure 5.22: For smaller to medium sized networks (number of agents < 30), IU-CR-
L’ works on a more accurate search space than IU-CR-L.

5.4.3 Summary

There are compelling insights that resulted from extensive empirical evaluation of

the IU-CR-L’ algorithm with respect to the IU-CR-L algorithm. In all the evaluated

scenarios with 12 and 18 agents, IU-CR-L’ performs significantly better than IU-

CR-L with respect to conflict resolution and utility. Although IU-CR-L’ unrolls

fewer states compared with the other algorithms, the improved performance with

respect to conflict resolution helps reduce the possibility to introduce more special

states for agents, thus mitigating extra unrolling on search space (as Figure 5.22

shows). In more dynamic scenarios (with more radars and more phenomena), IU-CR-

L’ outperforms IU-CR-L while the computation time and communication cost tend

to increase substantially. As far as Max-sum converges within the MMLC phase, it

generates optimal solutions.

In the empirical evaluation of scenarios with 30 agents, IU-CR-L’ does not perform

as well as IU-CR-L on utility. This is because in such cases, the factor graph of Max-

sum is densely clustered and Max-sum is not converged within the MMLC phase.

Approximate solutions may lead to biased subspace unrolling (where biased subspace
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Figure 5.23: For bigger agent networks (number of agents ≥ 30), IU-CR-L’ works on
a biased search space.

means that if there are many equally likely outcomes for an action choice, the agent

unrolls one subtree that has lower probability to reach, as Figure 5.23 shows).

This chapter describes the different types of conflicts that may exist in the problem

domain and presents an adaptive approach to resolve conflicts that can arise between

locally optimal policies. An algorithm that uses the heuristic rules to locally resolve

simple conflicts is proposed first. When the environment becomes more dynamic and

uncertain, the optimal policies are not easily learned using this algorithm. A decen-

tralized learning approach is then presented to handle such complex environments.

The approach resolves more complicated conflicts using a decentralized negotiation

algorithm and selectively expands the agents’ state space during the learning process.

Experimental results show that this approach achieves good performance on system

utility and conflict resolution by unrolling a small fraction of the whole search space.

In order to resolve conflicts globally and reach the upper bound of globally optimal

solution, I propose a decentralized learning approach that a DCOP algorithm is em-

bedded to resolve conflicts and further pilot the state expansion. In most evaluated

scenarios, the DCOP algorithm performs significantly better than the decentralized
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negotiation algorithm on conflict resolution as well as on overall utility, with the

price of message and communication overhead. However, in scenarios that have large

number of agents (30 in NetRads domain), the DCOP algorithm is inferior to the

decentralized negotiation algorithm with regard to utility.



CHAPTER 6: CONCLUSIONS

Decision making in cooperative multiagent systems is an important topic since

many large-scale applications are formulated in terms of spatially or functionally

distributed agents. Collaboration enables the different agents to work more efficiently

and to complete activities they are not able to accomplish individually. However, in

order to collaborate the agents should (learn to) coordinate their actions. This is

a complicated process because the state space grows exponentially with an increase

of the number of agents, and each agent takes individual decisions of which the

outcome can be influenced by the actions performed by the other agents. Moreover,

conflicts among the learned polices of individual agents could happen that may have

detrimental influence on the overall performance.

This dissertation presented several techniques to coordinate and learn the behavior

of the agents in distributed cooperative multiagent systems. It both studied the

problem of coordinating the behavior of multiple agents in a specific situation, and

learning, based on experience and conflict resolution performance, the behavior of a

group of agents in sequential decision-making problems. The latter are problems in

which the agents repeatedly interact with their environment and have to perform a

sequence of actions in order to reach a certain goal. My main approach in all presented

methods is to facilitate the learning problem by exploiting the on-line nonlocal state

information in case of conflicts.

This dissertation establishes the following hypothesis: Leveraging decentralized

learning and conflict resolution helps converge to polices among complex agents that

improve the overall performance of a cooperative multiagent system. This final chap-

ter presents several concluding remarks on the work described in this dissertation and
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highlights its contributions. Furthermore, it discusses several promising directions for

future research.

6.1 Main Results

A DEC-MDP framework that approximates the DEC-POMDP to learn coordinat-

ed joint policies for complex agents is presented in Chapter 3. The policies allow

each agent to adapt to changes in environmental conditions while reorganizing the

underlying multiagent network when needed. The exploration costs of DEC-MDPs

are substantially decreased by constructing abstract classes of scenarios, states and

actions. The abstract action is used during the learning stage while the detailed

action is used at execution. The agents learn stochastic policies and approximate

the solution to the DEC-MDP by using a factored reward function that captures the

value of tasks from a partially global perspective instead of a local perspective.

Chapter 4 provides insight into the usefulness of reinforcement learning algorithms

in complex multiagent sequential decision-making problems. I implemented a multi-

agent version of a RL-based algorithm, called PGA-APP, to learn the polices of the

DEC-MDPs. This approach learns offline polices with a simplifying assumption that

the entire network experiences one particular environmental scenario. A control flow

framework in each agent is presented which controls the agent interaction and policy

learning process. The learning is sped up by categorizing the real-world scenarios into

different classes and learning policies separately for each class through controlled ex-

perimentation. I empirically compared my approach with the other two: the No-MLC

that has no explicit or implicit meta-level control; and the AHH that incorporates

hand-generated heuristics to make action choices. Experimental results show that

my approach significantly outperforms (p < 0.05) No-MLC and AHH for different

weather scenarios with different number of agents (3, 12 and 30 respectively). Results

also show that my approach is better at handling dynamic environments (with more

tasks and dependencies among agents).
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Chapter 5 investigates the two related decentralized learning research questions

namely, a) how to include critical contextual information when there is a very large

search space for each agent? and b) how to resolve conflicts among the learned

policies of different agents? I described the different types of conflicts that may

exist in the problem domain and defined heuristic rules to locally resolve conflicts

in simplified environments. I observed that heuristic rules are capable of resolving

high percentage of conflicts in best cases, while in worst cases they are not resolving

conflicts effectively.

I then presented a decentralized learning approach, called IU-CR-L, to handle

more complex and dynamic environments. IU-CR-L takes advantage of offline policies

within the context of a simplified environment and modifies these policies online based

on experience gained in real environments. It learns (sub-)optimal polices for each

agent by harnessing informed unrolling of state space and conflict resolution methods.

A decentralized negotiation algorithm that builds on mediator mechanism to solve

conflicts from a partially global perspective is proposed. Using IU-CR-L the agents

were able to learn useful policies with a small amount of training (10000 episodes).

IU-CR-L achieved significantly better performance on utility and conflict resolution

by unrolling a small fraction (only 10% in the best cases) of the whole search space.

I mapped the conflict resolution coordination problem as a DCOP formulation and

replaced the previous negotiation algorithm with a DCOP algorithm, called Max-

sum, to resolve complex conflicts from a global perspective so as to produce globally

optimal solution for each agent. Experimental results show that the policies learned

with Max-sum perform as well as if not better than the decentralized negotiation

algorithm. In most scenarios, the learned policies using Max-sum achieved more than

90% on utility compared with the globally optimal solution (upper bound), while

unrolling significantly (p < 0.05) less number of states. One useful result was that

the Max-sum algorithm helped the agents unroll fewer number of states without losing
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utility on performance.

6.2 Applying this Work

While this study focuses on meta-level questions in NetRads, I have framed the

research questions to be applicable to the deliberative level as well. My approach

can be applied to most MAS applications where information about its context is

accessible and improves the agents’ decision making performance and makes the MAS

more coordinated. My approach also benefits from the assumptions that the number

of special states that are added via online learning are limited; and that the learned

policy has a finite horizon. Conflict resolution between agent policies can be handled

explicitly (as is the case for NetRads in this research) or implicitly (in domains where

conflicts lead to some reduction in utility).

This dissertation shows that my approach can be effective in real-time environ-

ments, characterized by uncertainty and limited computational resources. In these

environments, computational resources such as time, memory or information are lim-

ited for policy learning and calculation. It shows that my approach is a flexible,

real-time approach which seeks to optimize solution quality. The learning approach

described in this dissertation allows the agent to capture the really important non-

local context information based on experience gained in real environments, and ex-

plore the “right” part of the whole search space for globally optimal solution.

6.3 Future Extensions

Approximate methods

Experimental results in Chapter 5 show that Max-sum does not perform well in

some scenarios for reasons such as taking long time to converge and having too much

communication overhead. I plan to use extended versions of Max-sum, called fast

Max-sum [Ramchurn et al., 2010] and bounded Max-sum [Stranders et al., 2009], as

the contingency plan. Fast max-sum [Ramchurn et al., 2010] extends Max-sum in

two main ways. First, it reduces the number of states over which each factor has to



139

compute its solution. Second, only the nodes who’s utility changes as a result of the

addition need resend their Max-sum messages. It uses less messages and converges

much faster than Max-sum. Bounded Max-sum provides bounded approximate solu-

tions by removing cycles in the original constraint network and then using Max-sum

to optimally solve the resulting tree structured constraint network. These two ex-

tended versions generate good approximate solutions. They are well suited for large

scale distributed applications in which the optimality of the solution can be sacrificed

in favor of computational and communication efficiency [Ramchurn et al., 2010].

Field study

An operational radar testbed [Krainin et al., 2007] [Zink et al., 2005] that is de-

ployed in Oklahoma is used to observe severe weather events and compare the perfor-

mance of radar scanning using different techniques. I am interested in taking some of

the ideas I have studied in the NetRads simulator and testing them out in the testbed.

A verification of my algorithm in a real system would be a big win in understanding

my approach.

Currently the 4 radar testbed in Oklahoma has been dismantled. The existing

radars are being refurbished and will be installed in the Dallas Fort Worth area

sometime this summer although the siting process might result in some delays in

getting all 4 nodes up by the end of the summer. And the longer-term plan for Dallas

should have at least 8 radars running in the next few years with a high possibility of

an even larger network in the next 3 or 4 years. I will upload my algorithms in the

testbed and test them out in the near future (probably this summer).

MMLC trigger

In my current implementation of PGA-APP, the MMLC phase is triggered at every

heartbeat. This is acceptable since I assume radar switching has no cost and running

the heuristic rule-based algorithm costs very little time (this is verified by evaluation).

When I add cost for radar switching, triggering the MMLC too frequently may not be
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a good idea. Consider the situation that the same radar is switched to a new MCC

at the first heartbeat and then it is switched back in the next heartbeat. This results

in a big cost (overhead) on radar switching compared with the limited utility gained

and thus should be avoided. It would be interesting to develop different strategies

to dynamically trigger the MMLC phase based on the system performance so as to

efficiently utilize the limited resources.

Comparing with existing work on RL

I use abstract actions and states in reinforcement learning algorithm. I will compare

my approach with other RL algorithms that also use a certain kind of abstraction in

states and actions. It would also be interesting to compare my approach with other

extended versions of RL (e.g., hierarchical RL).
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APPENDIX A: SYSTEM LOG FOR MOTIVATING EXAMPLE

Direct Application of Offline Policy

Figure A.1: The MCCs experience homogeneous weather scenario.

I use an example to elaborate my IU-CR-L algorithm. Figure A.1 is a simple online

scenario, where MCC1 and all its neighbors experience the same weather scenario:

HRLS. All the MCCs have the 60 second heartbeat. MCC1, MCC3 and MCC4

each have one radar involved in the data correlation while MCC2 has three radars

involved in the data correlation. There is only one pinpointing task which appears in

the overlapping area between R2 and R5.

In my approach, each MCC initially unrolls a small portion of its complete MDP

space (line 1-3, Algorithm 3), called the initial MDP space Sinit. For each state

s ∈ Sinit, the dominant action is unrolled using the offline policy computed for the

current weather scenario. For all the subsequent states of this dominant action, the

unrolling proceeds in a similar fashion until all the terminated states are reached. I
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Figure A.2: Sinit with initial state S1 for MCC1 for weather scenario: HRLS.

unroll Sinit to balance the benefits of unrolling more states and the costs of unrolling

by using selective unrolling. Figure A.2 shows the Sinit with initial state S1.

At time 0 of the MMLC phase, MCC1 determines the weather scenario (HRLS)

using the number of weather tasks of each type in the agent’s scanning region (line

6, Algorithm 3). MCC1 communicates with each of its neighbors to collect each

neighbor’s information about data correlation, the number of radars involved in data

correlation and about their current heartbeat (line 7, Algorithm 3). MCC1 then uses

such information to determine its state (S1 in Fig A.2). MCC2, MCC3 and MCC4

simultaneously determine their state in a similar fashion.

Time 0 sec (MMLC phase):

MCC1’s state S1:

F0 : (HRLS, 60seconds, 1);

F1 : 〈(60seconds,many), (60seconds, 1), (60seconds, 1)〉;

F2 : 〈High, Low, Low〉; (The percentage of pinpointing tasks in the overlapping

areas between MCC1 and MCC2 is 100%, so the degree of data correlation is High.

Similarly, the percentage of pinpointing tasks in the overlapping areas between MCC1

and MCC3 (MCC4) is 0%, so the degree of data correlation is Low.)

Policy: { 63% ‘Light Move (MCC1 to MCC2)’ ‘Use 60 seconds heartbeat’; 23%

‘Heavy Move (MCC1 to MCC3)’ ‘Use 60 seconds heartbeat’; 5% ‘Light Move (MCC1
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to MCC3)’ ‘Use 60 seconds heartbeat’; 3% ‘Heavy Move (MCC1 to MCC4) & Light

Move (MCC1 to MCC2)’ ‘Use 30 seconds heartbeat’; 3% ‘Light Move (MCC1 to

MCC4)’ ‘Use 30 seconds heartbeat’; 1% ‘No Move’ ‘Use 60 seconds heartbeat’; 0%...

} (It is the offline policy of MCC1 stored in the scenario library. The actions that

have the probability distribution of 0 are omitted here for the sake of space.)

Action choice a1 (Fig A.2): ‘Light Move (MCC1 to MCC2)’ ‘Use 60 seconds heart-

beat’. (MCC1 chooses its action to take according to its policy (line 8, Algorithm 3).

It is possible that other actions except the dominant action are chosen. In this case,

I unroll the selected action and its subsequent state space (line 9-10, Algorithm 3).)

MCC2’s state:

F0 : (HRLS, 60seconds,many);

F1 : 〈(60seconds, 1), (60seconds, 1), (60seconds, 1)〉;

F2 : 〈High, Low, Low〉; (The percentage of pinpointing tasks in the overlapping

areas between MCC2 and MCC1 is 100%, so the degree of data correlation is High.

Similarly, the percentage of pinpointing tasks in the overlapping areas between MCC2

and MCC3 (MCC4) is 0%, so the degree of data correlation is Low.)

Policy: { 57% ‘Light Move (MCC2 to MCC3)’ ‘Use 60 seconds heartbeat’; 31%

‘Light Move (MCC2 to MCC3) & Light Move (MCC2 to MCC4)’ ‘Use 60 seconds

heartbeat’; 6% ‘Heavy Move (MCC2 to MCC4)’ ‘Use 30 seconds heartbeat’; ... } (It

is the offline policy of MCC2 stored in the scenario library.)

Action choice: ‘Light Move (MCC2 to MCC3)’ ‘Use 60 seconds heartbeat’.

MCC3’s state:

F0 : (HRLS, 60seconds, 1);

F1 : 〈(60seconds, 1), (60seconds,many), (60seconds, 1)〉;

F2 : 〈Low,Low, Low〉;

Policy: { 49% ‘Light Move (MCC3 to MCC4)’ ‘Use 60 seconds heartbeat’; 36%

‘Light Move (MCC3 to MCC1)’ ‘Use 60 seconds heartbeat’; 10% ‘No Move ’ ‘Use
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60 seconds heartbeat’; ... } (It is the offline policy of MCC3 stored in the scenario

library.)

Action choice: ‘Light Move (MCC3 to MCC4)’ ‘Use 60 seconds heartbeat’.

MCC4’s state:

F0 : (HRLS, 60seconds, 1);

F1 : 〈(60seconds, 1), (60seconds,many), (60seconds, 1)〉;

F2 : 〈Low,Low, Low〉;

Policy: { 61% ‘Light Move (MCC4 to MCC1)’ ‘Use 60 seconds heartbeat’; 22%

‘Heavy Move (MCC4 to MCC2)’ ‘Use 30 seconds heartbeat’; 7% ‘Light Move (MCC4

to MCC3)’ ‘Use 60 seconds heartbeat’; ... } (It is the offline policy of MCC4 stored

in the scenario library.)

Action choice: ‘Light Move (MCC4 to MCC1)’ ‘Use 60 seconds heartbeat’.

Each MCC applies its detailed action1 of the abstract action and computes the

number of conflicts in its neighborhood (line 12, Algorithm 3). The detailed actions

for each meta-level action of radar reorganization are:

MCC1: ‘Move R2 from MCC1 to MCC2’(The detailed actions for ‘Light Move

(MCC1 to MCC2)’ along with their frequency to be applied during offline learning

is: ∅: 20%; ‘Move R1 from MCC1 to MCC2’: 11%; ‘Move R2 from MCC1 to MCC2’:

43%; ‘Move R3 from MCC1 to MCC2’: 16%; ‘Move R4 from MCC1 to MCC2’: 10%.

)

MCC2: ∅

MCC3: ‘Move R10 from MCC3 to MCC4’

MCC4: ∅

I can see that no conflict occurs in this scenario, thus there is no need to resolve

1There could be different detailed actions for one abstract action. For instance, ‘Light Move
(MCC1 to MCC2)’ can have such detailed actions as: ‘Move R1 from MCC1 to MCC2’; ‘Move R2

from MCC1 to MCC2’ and ∅. ∅ means no radar needs to be moved and it could be one detailed
action of ‘Light Move’. In [Cheng et al., 2010a], each MCC applies the detailed action that is most
likely to be applied based on the history of the training data. Such detailed actions capture the
effect of policy best.
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conflicts:

LRC: 0

SRC: 0

IHC: 0

Each MCC observes the next state s′ (S2 in Fig A.2) without adding overlapping

context about its neighbors (line 15, Algorithm 3. The changed features are bolded,

such changes are due to new action choices):

Figure A.3: MCC-Radar configuration for the homogeneous scenario at time 0.08 sec.

Time 0.08 sec (MMLC phase):

MCC1’s state S2:

F0 : (HRLS, 60seconds, 0);

F1 : 〈(60seconds,many), (60seconds, 0), (60seconds, 1)〉;

F2 : 〈Low,Low, Low〉;

MCC2’s state:

F0 : (HRLS, 60seconds,many);
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F1 : 〈(60seconds, 0), (60seconds, 0), (60seconds, 1)〉;

F2 : 〈Low,Low, Low〉;

MCC3’s state:

F0 : (HRLS, 60seconds, 0);

F1 : 〈(60seconds, 0), (60seconds,many), (60seconds, 1)〉;

F2 : 〈Low,Low, Low〉;

MCC4’s state:

F0 : (HRLS, 60seconds, 1);

F1 : 〈(60seconds, 0), (60seconds,many), (60seconds, 0)〉;

F2 : 〈Low,Low, Low〉;

I can see that S2 has already been explored in the Sinit for MCC1 (Figure A.2).

This is also true for the other three MCCs. Because no conflict exists among the

actions of each MCC, there is no need to execute the iterations of UMDP and CR

stages (line 22, Algorithm 3) as described in Chapter 5.3. As defined in [Cheng et al.,

2010a], the termination condition is met when the conflict resolution performance is

good or the time limit for the MMLC phase is reached. The state space of each MCC

remains unchanged and there are no additional features added to the current state of

any MCC.

Indirect Application of Offline Policy

Figure A.4 is a complex online scenario, where MCC1 and its neighbors experience

different weather scenarios. MCC1, MCC2, MCC3 and MCC4 experiences HRLS,

HRMS, MRMS and LRHS respectively. All the MCCs have 60 second heartbeat.

MCC1 has one radar involved in the data correlation while MCC2, MCC3 and MCC4

each have three radars involved in the data correlation. Suppose MCC1 and MCC4

are almost overloaded2, and moving two radars simultaneously to MCC1 or MCC4

2The load of each MCC is measured based on the amount of data it needs to process. The number
of radar it controls as well as the number of tasks (especially pinpointing tasks) in the overlapping
areas contribute to the load.
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Figure A.4: The MCCs experience heterogeneous weather scenarios.

results in an LRC. Direct application of the offline policy of MCC1 could lead to

undesirable performance since the offline policy does not have the current contex-

t of the agent. The tasks and data shared between MCC1 and its neighbors are

more complex than that in the simple online scenario. For example, ‘Use 60 seconds

heartbeat’ is a good choice for MCC1 in the simple online scenario where each MCC

experiences the same weather scenario: HRLS. When MCC1’s neighbors experience

the weather scenarios where the number of storms is predominant, adhering to the

60 seconds heartbeat is a bad choice that harms the overall performance. A shorter

heartbeat allows MCCs to adapt to changing weather conditions (especially storms).

This means MCC1 requires non-local information from other agents in order to make

globally relevant decisions. Additional conflicts between MCC1 and its neighbors

could occur.

As described in Chapter 5.3, my approach is that each MCC initially unrolls its

Sinit (line 1-3, Algorithm 3). Each MCC selectively expands the search space to
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capture non-local context information crucial to global performance and to negotiate

about conflicts that cannot be resolved locally.

Figure A.5: Sinit with initial state S5 for MCC1 for weather scenario: HRLS.

At time 0 sec (MMLC phase), MCC1 identifies that it is in the weather scenario:

HRLS (line 6, Algorithm 3). MCC1 communicates with each of its neighbors to

collect their information about their data correlation, the number of radars involved

in data correlation and their heartbeat. MCC1 uses such information to calculate

the features of its state correspondingly (line 7, Algorithm 3). MCC2, MCC3 and

MCC4 also simultaneously identify their weather scenario (HRMS, MRMS and LRHS

respectively) and calculate the features of their state.

Time 0 sec (MMLC phase):

MCC1’s state S5 (Fig A.5):

F0 : (HRLS, 60seconds, 1);

F1 : 〈(60seconds,many), (60seconds,many), (60seconds,many)〉;

F2 : 〈High, Low,Medium〉; (The percentage of pinpointing tasks between MCC1

and MCC2 is 75%. The percentage of pinpointing tasks between MCC1 and MCC3

is 0%. The percentage of pinpointing tasks between MCC1 and MCC4 is 33%.)

Policy: { 74% ‘Light Move (MCC1 to MCC4)’ ‘Use 60 seconds heartbeat’; 12%

‘Light Move (MCC1 to MCC2)’ ‘Use 60 seconds heartbeat’; 4% ‘Heavy Move (MCC1

to MCC3)’ ‘Use 60 seconds heartbeat’;... }
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Action choice a3: ‘Light Move (MCC1 to MCC4)’ ‘Use 60 seconds heartbeat’

(MCC1 chooses its action to take according to its policy (line 8, Algorithm 3). It

is possible that other actions except the dominant action are chosen. In this case, I

unroll the selected action and its subsequent state space (line 9-10, Algorithm 3).)

MCC2’s state:

F0 : (HRMS, 60seconds,many);

F1 : 〈(60seconds, 1), (60seconds,many), (60seconds,many)〉;

F2 : 〈High, Low,High〉;

Policy: { 43% ‘Heavy Move (MCC2 to MCC4)’ ‘Use 60 seconds heartbeat’; 30%

‘Heavy Move (MCC2 to MCC1) & Heavy Move (MCC2 to MCC3)’ ‘Use 60 seconds

heartbeat’; 16% ‘Heavy Move (MCC2 to MCC3)’ ‘Use 60 seconds heartbeat’;... }

Action choice: ‘Heavy Move (MCC2 to MCC4)’ ‘Use 60 seconds heartbeat’

MCC3’s state:

F0 : (MRMS, 60seconds,many);

F1 : 〈(60seconds, 1), (60seconds,many), (60seconds,many)〉;

F2 : 〈Low,Low,Medium〉;

Policy: { 52% ‘Light Move (MCC3 to MCC1)’ ‘Use 30 seconds heartbeat’; 23%

‘Heavy Move (MCC3 to MCC2)’ ‘Use 60 seconds heartbeat’; 5% ‘No Move’ ‘Use 30

seconds heartbeat’;... }

Action choice: ‘Light Move (MCC3 to MCC1)’ ‘Use 30 seconds heartbeat’

MCC4’s state:

F0 : (LRHS, 60seconds,many);

F1 : 〈(60seconds, 1), (60seconds,many), (60seconds,many)〉;

F2 : 〈Medium,High,Medium〉;

Policy: { 39% ‘Heavy Move (MCC4 to MCC2)’ ‘Use 30 seconds heartbeat’; 20%

‘Heavy Move (MCC4 to MCC1) & Heavy Move (MCC4 to MCC2)’ ‘Use 30 seconds

heartbeat’; 13% ‘Heavy Move (MCC4 to MCC2)’ ‘Use 60 seconds heartbeat’;... }
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Action choice: ‘Heavy Move (MCC4 to MCC1) & Heavy Move (MCC4 to MCC2)’

‘Use 30 seconds heartbeat’

Figure A.5 shows the Sinit with initial state S5 for MCC1. Each MCC applies its

detailed action of the abstract action and computes the number of conflicts in its

neighborhood (line 12, Algorithm 3). The detailed actions for each action of radar

reorganization are:

MCC1: ‘Move R4 from MCC1 to MCC4’ (The detailed actions for ‘Light Move

(MCC1 to MCC4)’ along with their frequency to be applied during offline learning

is: ∅: 30%; ‘Move R1 from MCC1 to MCC4’: 23%; ‘Move R2 from MCC1 to MCC4’:

1%; ‘Move R3 from MCC1 to MCC4’: 9%; ‘Move R4 from MCC1 to MCC4’: 37%.

)

MCC2: ‘Move R5 and R6 from MCC2 to MCC4’

MCC3: ‘Move R10 from MCC3 to MCC1’

MCC4: ‘Move R13 and R14 from MCC4 to MCC1’ ‘Move R13, R14 and R15 from

MCC4 to MCC2’

The initial numbers of all the types of conflicts are:

LRC: 2 (LRC1: MCC1 and MCC2 move radars simultaneously to MCC4; LRC2:

MCC3 and MCC4 move radars simultaneously to MCC1.)

SRC: 2 (SRC1: MCC1 and MCC2 both want the control of R13; SRC2: MCC1

and MCC2 both want the control of R14.)

IHC: 4 (IHC1: MCC1 and MCC3 use different heartbeats; IHC2: MCC1 and

MCC4 use different heartbeats; IHC3: MCC2 and MCC3 use different heartbeats;

IHC4: MCC2 and MCC4 use different heartbeats.)

The MCCs use the decentralized negotiation algorithm to resolve conflicts (line 13,

Algorithm 3), the detailed actions of all MCCs are updated as:

Time 0.44 sec (MMLC phase):

Round 1 (UMDP and CR):
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Figure A.6: MCC-Radar configuration for the heterogeneous scenario at time 0 sec.

MCC1: ‘Move R4 from MCC1 to MCC4’

MCC2: ‘Move R5 and R6 from MCC2 to MCC4’

MCC3: ∅ (It chooses to ‘Use 60 second heartbeat’)

MCC4: ‘Move R13 and R16 from MCC4 to MCC1’ ‘Move R14 and R15 from MCC4

to MCC2’

The numbers of all the types of conflicts are:

LRC: 2 (LRC1: MCC1 and MCC2 move radars simultaneously to MCC4; LRC2:

MCC3 and MCC4 move radars simultaneously to MCC1.)

SRC: 0

IHC: 3 (IHC1: MCC1 and MCC4 use different heartbeats; IHC2: MCC2 and

MCC4 use different heartbeats; IHC3: MCC3 and MCC4 use different heartbeats.)

PCR(ξ) = 4∗2+2∗1+1∗0
4∗2+2∗4+1∗2 = 0.56, ρ(0.44) = (−0.2) ∗ 0.44 + 0.8 = 0.712. Since

PCR(ξ) < ρ(t), each MCC unrolls its special state that includes overlapping context

among neighbors (line 17-19, Algorithm 3), applies appropriate heuristic to select
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Figure A.7: MCC-Radar configuration for the heterogeneous scenario at time 0.44
sec.

another action for conflict resolution (line 20, Algorithm 3). apply-heuristic() is the

function for MCCi that chooses the heuristic with the highest priority among its set

of heuristics. For more details about heuristics, see Chapter 5.3.5.

Time 0.52 sec (MMLC phase):

MCC1’s state S9 (Fig A.8):

F0 : (HRLS, 60seconds,many);

F1 : 〈(60seconds, 1), (60seconds, 1), (60seconds,many)〉;

F2 : 〈Low,Low,High〉;

F3 : 〈HRMS,MRMS,LRHS〉. (The weather scenarios of MCC2, MCC3 and

MCC4 are HRMS, MRMS and LRHS respectively. )

MCC2’s state:

F0 : (HRMS, 60seconds, 1);

F1 : 〈(60seconds,many), (60seconds, 1), (60seconds,many)〉;

F2 : 〈Low,Low,Medium〉;
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Figure A.8: The MDP space for MCC1 at time 0.52 sec.

F3 : 〈HRLS,MRMS,LRHS〉. (The weather scenarios of MCC1, MCC3 and

MCC4 are HRLS, MRMS and LRHS respectively.)

MCC3’s state:

F0 : (MRMS, 60seconds, 1);

F1 : 〈(60seconds,many), (60seconds, 1), (60seconds,many)〉;

F2 : 〈Low,Low,Medium〉;

F3 : 〈HRLS,HRMS,LRHS〉. (The weather scenarios of MCC1, MCC2 and

MCC4 are HRLS, HRMS and LRHS respectively.)

MCC4’s state:

F0 : (LRHS, 60seconds,many);

F1 : 〈(60seconds,many), (60seconds, 1), (60seconds, 1)〉;

F2 : 〈High,Medium,Medium〉;

F3 : 〈HRLS,HRMS,MRMS〉. (The weather scenarios of MCC1, MCC2 and

MCC3 are HRLS, HRMS and MRMS respectively.)

MCC1:

Priorities of heuristics: {H1 : 0.84; H2 : 0; H3 : 0.21; H4 : 0.55; H5 : 0.1; H6 : 0.73;

H7 : 0.28; H8 : 0.6}

Heuristic chosen: H1; (It is defined in Chapter 5.3.5)
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Previous action a1: ‘Light Move (MCC1 to MCC4)’‘Use 60 seconds heartbeat’;

Updated action a7: ‘Heavy Move (MCC1 to MCC4)’‘Use 60 seconds heartbeat’.

MCC2:

Priorities of heuristics: {H1 : 0.28; H2 : 0.39; H3 : 0.93; H4 : 0.48; H5 : 0; H6 : 0.12;

H7 : 0; H8 : 0.3}

Heuristic chosen: H3; (It is defined in Chapter 5.3.5)

Previous action : ‘Heavy Move (MCC2 to MCC4)’ ‘Use 60 seconds heartbeat’;

Updated action: ‘Heavy Move (MCC2 to MCC4)’ ‘Use 30 seconds heartbeat’.

MCC3:

Priorities of heuristics: {H1 : 0.66; H2 : 0.49; H3 : 0; H4 : 0.8; H5 : 0.16; H6 : 0.5;

H7 : 0.72; H8 : 0.31}

Heuristic chosen: H4; (H4 is the heuristic that the agent unrolls its MDP space

by exploring a new action that has a different type as well as a different direction of

radar moves from the current action choice)

Previous action : ‘Light Move (MCC3 to MCC1)’ ‘Use 30 seconds heartbeat’;

Updated action : ‘Heavy Move (MCC3 to MCC2)’ ‘Use 30 seconds heartbeat’.

MCC4:

Priorities of heuristics: {H1 : 0; H2 : 0.29; H3 : 0.54; H4 : 0.62; H5 : 0.1; H6 : 0;

H7 : 0; H8 : 0.75}

Heuristic chosen: H8;

Previous action : ‘Heavy Move (MCC4 to MCC2)’ ‘Use 30 seconds heartbeat’;

Updated action: ‘Heavy Move (MCC4 to MCC2)’ ‘Use 30 seconds heartbeat’.

(The heuristic H8 is defined as: ‘No change of action’)

For MCC1, S9 is a state that has not been encountered during offline learning. S9

is unrolled in the Sinit of MCC1 (Fig A.8). Similarly, MCC2, MCC3 and MCC4 all

unroll their new states in their initial MDP space. Since there are conflicts among the

actions of MCCs, each MCC executes the iterations of UMDP and CR stages (line
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22, Algorithm 3). Each MCC executes the decentralized negotiation algorithm (Pro-

cedure 4) to resolve conflicts from a partially global perspective. During the decen-

tralized negotiation algorithm, MCCs update their detailed actions using a mediator-

based mechanism so as to maximize the conflict resolution performance. The conflict

resolution performance is measured by comparing two parameters: PCR(ξ) (Chap-

ter 5.3.1) and ρ(t) (Chapter 5.3.1). PCR(ξ) measures the conflict resolution per-

formance in the neighborhood ξ by taking into account both the priorities and the

number of the three types of conflicts. ρ(t) is a variable that determines the thresh-

old of conflict resolution performance. In this example, I initialize PCR(ξ) = 1 and

ρ(t) = −0.2× t+ 0.8. If PCR(ξ) > ρ(t) , the Sinit of each MCC is unrolled using the

method partial-unroll(s′, a,model) (line 3-4, Procedure 3). partial-unroll(s′, a,model)

is a function that unrolls the action a and its subsequent search tree. For each un-

rolled state ssucc: if ssucc is an internal state and explored by offline learning (line 7-8,

Procedure 1), it chooses the dominant action (the action with the highest probability

distribution in its offline policy π(ssucc)) to unroll (line 3, Procedure 1). The process

continues until all the terminal states are reached. partial-unroll(s′, a,model) is a

greedy method that always unrolls the branch of search space that has good perfor-

mance during offline learning. If PCR(ξ) ≤ ρ(t), the MCC selects another action for

conflict resolution by applying appropriate heuristics (line 7-8, Procedure 3). A set

of heuristics with different priorities are used to guide the unrolling for each MCC.

For example, H1 is the heuristic that the agent unrolls its search space by explor-

ing a new action that has a different type of radar moves from the current action

choice. The priorities are updated based on the conflict resolution performance (line

5, Procedure 3). Procedure 5 computes the priority of each heuristic. Each MCC

applies the heuristic that has the highest priority (line 7, Procedure 3). It ensures

that the actions that have better performance on conflict resolution are more likely to

be unrolled. This is an advantage over complete unrolling since it reduces the MDP
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space significantly.

Since the termination condition is not met , each MCC enters the first round of

UMDP and CR. After that, the detailed actions of all MCCs are updated as:

Time 1.1 sec (MMLC phase):

Round 1 (UMDP and CR):

MCC1: ‘Move R1 from MCC1 to MCC4’

MCC2: ‘Move R5 and R7 from MCC2 to MCC4’

MCC3: ‘Move R11 from MCC3 to MCC2’ (It chooses to ‘Use 60 second heartbeat’)

MCC4: ‘Move R13 and R14 from MCC4 to MCC2’

The numbers of all the types of conflicts are:

LRC: 0

SRC: 0

IHC: 3 (IHC1: MCC1 and MCC2 use different heartbeats; IHC2: MCC1 and

MCC3 use different heartbeats; IHC3: MCC1 and MCC4 use different heartbeats.)

Figure A.9: MCC-Radar configuration for the heterogeneous scenario at time 1.1 sec.



165

Figure A.10: The MDP space for MCC1 at time tk+2. The special states are marked
red.

PCR(ξ) = 4∗2+2∗1+1∗2
4∗2+2∗4+1∗2 = 0.67, ρ(1.1) = (−0.2) ∗ 1.1 + 0.8 = 0.58. Since PCR(ξ) >

ρ(t), each MCC unrolls its MDP space and updates the priorities of heuristics (line

4-5, Procedure 3). Figure A.10 shows the MDP space for MCC1 after the first round

of UMDP and CR. In Figure A.10, S12 and S13 are the special states that are not

encountered during offline learning. The unrolling stops at the edge of S12 and S13.

When MCC1 reaches these states during online learning, it will unroll subsequent

search space based on the conflict resolution performance.

The updated priorities of heuristics for each MCC are:

MCC1:

Priorities of heuristics: {H1 : 0.88; H2 : 0; H3 : 0.21; H4 : 0.55; H5 : 0.1; H6 : 0.73;

H7 : 0.28; H8 : 0.6}

MCC2:

Priorities of heuristics: {H1 : 0.28; H2 : 0.39; H3 : 0.94; H4 : 0.48; H5 : 0; H6 : 0.12;

H7 : 0; H8 : 0.3}

MCC3:

Priorities of heuristics: {H1 : 0.66; H2 : 0.49; H3 : 0; H4 : 0.82; H5 : 0.16; H6 : 0.5;
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Figure A.11: The MDP space for MCC1 after a few learning episodes.

H7 : 0.72; H8 : 0.31}

MCC4:

Priorities of heuristics: {H1 : 0; H2 : 0.29; H3 : 0.54; H4 : 0.62; H5 : 0.1; H6 : 0;

H7 : 0; H8 : 0.76}

Since the termination condition is met, the iterations of UMDP and CR terminate

after the first round. Fig A.11 shows the MDP space for MCC1 after a few learning

episodes. I can see that when action a7 fails to resolve conflicts efficiently, the state

S9 applies heuristic to choose another action a10 and unrolls the subsequent search

space. The updated heuristics help to unroll the most prominent actions and their

subsequent search space and learn online policies for the new part of the MDP tree.

S18 and S20 are new special states that are added to the problem.


