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ABSTRACT 
 
 

GAUTAM SINGARAJU. Towards sender accountability on email infrastructure 
using sender identity and reputation management. (Under the direction of DR. 
BRENT BYUNGHOON KANG) 
 
 
Email Infrastructure has grown exponentially, since the early days of ARPANET, 

to support millions of users. However, the extensive adoption of the original open design 

has led to security implications. As claimed in recent statistics, about 95% of the emails 

are unsolicited and place phishing losses at $500 million.  

Even though, current email-filtering technologies weed out most of the incoming 

spam, there is a need to hold senders accountable for their email behavior. Without 

sender accountability, there is no way to hold senders responsible for their online email 

behavior. Holding senders accountable helps identify senders who propagate spam, and 

possibly reduce the spam transmitted. 

Holding a sender accountable for the sender’s online activity requires: first, the 

sender’s identification; and second, maintenance of its historical email activity. Today, 

widely deployed sender identity techniques counteract email spoofing by authenticating 

the sender's email server to the receiver organizations. Unfortunately, these techniques 

are not as effective as originally intended as: a) the senders create their own identity; b) 

spam-propagating senders have adopted these technologies.  

Knowledge of the sender's identity alone does not guarantee its adherence to 

email best practices. Towards establishing sender accountability, this dissertation 

proposes RepuScore, a collaborative reputation framework that allows participating 

receiver organizations to share sender's behavioral patterns. In addition, this dissertation 



   iv 

 

 

 

also explores Privilege Messaging (P-Messaging) framework, a fine-granular sender-

authorization framework where each sender holds a set of credentials (privileges) to send 

an email; the receivers verify the attached credentials before accepting the emails. P-

Messaging attempts to maintain trust among organizations with the help of a central 

authority, which periodically verifies the participating organization's adherence to good 

email practices.  

To create a long-standing history, participating organizations locally collect 

information about the senders - from users or existing spam classification mechanisms 

that are submitted to a central RepuScore authority - to compute a global reputation 

summary. This dissertation discusses the distributed architecture and the algorithms 

designed to compute reputation based on the sender's a) spam rate (RepuScore) or b) 

spam rate and email volume (Volume-Enhanced RepuScore).  

Additionally, the dissertation shares findings from experiments based on a 

RepuScore prototype using a) simulation logs; and b) deployed SpamAssassin plug-in 

since 10/9/2007 at three organizations. Based on the deployment, reputation for about 

90,000 sender identities and about 12 million IP addresses as of Feb 2009 have been 

computed. We note that email classification using RepuScore is 97.8% accurate. 

Finally, this dissertation discusses future directions for Distributed RepuScore that 

allows organizations to maintain their personal reputation view to be shared among 

trusted peers. Distributed RepuScore enables a global reputation view while holding 

senders accountable at each organization instead of deploying it at a central authority. 
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CHAPTER 1: INTRODUCTION 
 
 

Email is a simple and cost effective messaging technology that has evolved into 

a universal mode of interaction among users. The day-to-day activities are contingent 

upon email infrastructure’s consistent and reliable operation. Unfortunately, email 

architecture has not evolved proportionally as compared to Internet’s sudden growth 

over the years. The original infrastructure was designed for communication among 

relatively few machines. The current email infrastructure is mostly based on the 

original design leading to a multitude of risks and threats faced by the users and their 

organizations. Unsolicited email has now reached epidemic proportions, severely 

limiting the email infrastructure’s usability (Gomes 2004). Phishing (Milletary 2006), 

yet another threat, fools the recipients into divulging their financial information by 

redirecting them to a masquerading site. Spam presently contributes to about 95% of all 

email on the Internet and estimates place the financial losses due to phishing around 

$2.8 billion a year.  

Recent legislations (such as CAN-SPAM (CAN-SPAM act) and other State 

Junk Email Legislations) that attempt to curtail unsolicited emails need to monitor an 

extremely large amount of email communications. To deal with the deluge of emails, 

organizations have adopted spam filters or blacklists that identify spam-propagating 

senders. These techniques provide an excellent mechanism to weed out most 

unsolicited emails; however, they could potentially blacklist a legitimate sender. The 
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effectiveness of blacklists therefore is subjective to the deploying organization. 

Organizations usually consider a false positive1 10 times more seriously than a false 

negative2. Therefore, financial losses are not only due to the unsolicited bulk email but 

also from false positives (Finnegan 2006).  

These observations motivate a fundamental need to enforce sender 

accountability over the email infrastructure. By holding sender accountable, receivers 

would be able to hold senders accountable for the emails they transmit. For example, 

consider the situation where the senders consistently spam, by holding senders 

accountable, the receivers can reject sender’s emails. Though different techniques (such 

as blacklists) are available for email classification, sender accountability dictates a need 

to monitor the senders over long periods. 

To monitor the senders for extended periods, an irrefutable identity is essential. 

For example, users on the Internet can send emails using IP address as the identity. 

Unfortunately, spam Botnets (Ramachandran 2006) also use IP address to proliferate 

unsolicited emails. A spoofed email3 though contains an envelope IP address, the IP 

address cannot be held accountable for the actions that they have not performed. 

However, the IP address is accountable for the spoofed email. 

In an effort to stop spoofing, senders started using sender identity techniques, 

discussed in Section 2.2, such as DKIM (Allman 2005, Peterson 2006), SPF (Wong 

2004) and SenderID (Microsoft 2004). Currently, these techniques are a basis for 

determining the sender’s history of adherence to best email practices (Jordon 2006).  
                                                           
1False Positive refers to the unsolicited emails being classified as solicited emails. 
2False Negative refers to the solicited emails being classified as unsolicited emails. 
3 In Email Spoofing, an email’s sender address and other parts of the header are altered such that it 
appears to have originated from a different source. 
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Presently, about 35% of all emails over the Internet use one of the sender 

authentication systems (Peterson 2006). The experiments conducted during this 

dissertation also demonstrate that about 33% of the incoming emails were authenticated 

after first filtering emails using blacklists. 

The above techniques create a weakly-bound identity. Such an identity can be 

considered weakly-bound as senders create their own identity. To be able to classify 

emails from senders, there is a requirement to maintain a history of actions of these 

identities. In the case of a weakly-bound identity, the senders’ identities can only be 

revoked/ corrected by the senders who create the identity. A strongly-bound identity, on 

the other hand, requires organizations to register their identity with a third party. 

Accredited DomainKeys (Goodrich 2005) extends the presently deployed sender 

identity techniques with the use of a central authority. Even with a strongly-bound 

identity, there is a need to observe sender behavior. A strongly-bound identity allows 

the central authority to revoke a spammer sender identity. 

To establish sender accountability, this dissertation first discusses the design of 

the Privilege Messaging (P-Messaging) Framework that enables an authenticated 

sender to send emails while enabling the receivers to verify the email’s privileges 

before creating content in the user’s mailboxes. A privilege can be viewed as a 

credential associated with a group of users used to identify the senders.  

Statistics collected with the help of a deployment at a single organization, as 

discussed in Section 5.2.3, show that adoption of a sender identity technique by an 

organization does not necessarily prove a sender’s adherence to a good mail practice. A 

sender’s identity alone does not allow receiver-organizations to differentiate between a 
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credible sender identity and an unscrupulous one. It has been noted that spammers have 

been the early adopters of the sender identity schemes. Preliminary experiments 

discussed in Section 5.2.3 show that about 89% of the sender identities that use SPF 

and DKIM were classified as spammer.  

Given sender identification schemes, a mechanism for the receivers to evaluate 

the sender’s past adherence to good email practices can be designed. This dissertation 

describes RepuScore: a reputation framework which computes senders’ reputation 

using receiver collaboration to enforce sender accountability. 

Organizations such as Gmail (Taylor 2006) use reputation framework to classify 

emails. Email reputation has been demonstrated to be highly effective in email 

classification due to the ability to maintain the history of the sender’s adherence. Due to 

large number of users, large organizations can maintain accurate reputation for large 

number of senders. Smaller organizations desire reputation information for a large 

number of senders, but cannot attain it themselves due to their limited operations. From 

our deployment, we noticed that during a single year of deployment, a small 

organization computed reputation of about 105,000 IP addresses where as an Email 

Service Provider collected reputation for 12 million IP addresses. Small organizations 

would benefit from sharing reputation about the senders they interact with. The 

reputation collected from multiple organizations allows receivers to access a relatively 

large history for a sender’s past actions. Such a perspective allows a receiver 

organization to accept emails from senders about whom no prior information is 

available. With the help of receiver collaboration, a sender’s spamming activity would 

be reported to all receivers. Such a mechanism places the onus on the senders to reduce 
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the amount of unsolicited emails they send.  

RepuScore provides organizations with the benefit of collaboration. RepuScore 

eases the overhead of reputation collection and computation with the help of distributed 

architecture. RepuScore supports a central architecture with minimal overhead 

(Jakobsson 2004) for organizations to enforce sender accountability. 

RepuScore maintains a history of the spam rate as a measure to evaluate the 

senders using the Time Sliding Window Exponentially Weighted Moving Average 

(TSW-EWMA) algorithm proposed by Biswas et.al (2005). RepuScore is resistant to 

Sybil attacks (Srivatsa 2005, Yu 2003, Yu 2006) by valuing a reputable participant’s 

vote higher than that of a less reputable one. To thwart Sybil attacks, RepuScore 

employs the Weighted Moving Algorithm Continuous (WMC) (Yu 2002) algorithm.  

In Chapter 5, this dissertation discusses the evaluation of the RepuScore 

framework using a) simulated logs; and b) with the deployment at three receiver 

organizations (from 10/9/2007 – to 04/26/2008). Using the simulated logs to 

demonstrate the features of RepuScore framework, the framework is shown to 

withstand Sybil attacks from colluding reputation reporters.  

For the real-world deployment, a RepuScore plug-in for SpamAssassin has been 

designed which employs existing SpamAssassin plug-ins. The RepuScore plug-in 

verifies the sender identities and calculates senders’ reputation at a single organization. 

From the deployment, this dissertation discusses the results of the deployment where 

reputations for over 16,500 sender identities and 58,000 IP addresses have been 

computed. Further, this dissertation discusses:  

a. Two variations of the RepuScore algorithm: a) using spam rate; and b) using 
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both spam rate and email volume. As using only the spam-rate, variations in the 

received email volume significantly impacted the reputation of the sender, Volume-

Enhanced RepuScore was designed as an extension that uses both spam-rate and email 

volume for computing reputation. 

b. the design of a RepuScore SpamAssassin plug-in. The plug-in uses existing 

SpamAssassin plug-ins to verify the sender identity and transmits the information to a 

local RepuServer. 

c. Observations and statistics from our deployment from RepuScore:  

i) With knowledge of only 42% of the sender identities (11% legitimate, 32% 

spammers), RepuScore classified 72% of the authenticated emails.  

ii) 97.8% of the sender identities had a reputation of either 0 or 1 where the 

reputation is in the open interval (0, 1).  

iii) Sender identities with a low reputation score have a shorter average lifetime 

(17.47 days) as compared to ones with a high reputation score (61.9 days).  

iv) A large percentage of sender identities send an email only on a single day. 

v) Reputation can be accurate in determining if a sender identity is a spammer.  

The global reputation is a single view that is used to enforce sender 

accountability. While a global reputation labels a specific sender as that of a low repute, 

another receiver organization might have a contradictory view. Maintenance of a single 

global view drowns out contradictory views resulting in directed attacks where spam 

senders could maintain high reputations by sending legitimate mail to reputable 

domains while sending unsolicited emails to others. It is imperative to maintain 

conflicting views rather than a single view that could be enforced by all senders. 
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Sharing reputation among different entities poses privacy issues. Organizations 

would wish to share reputation collected only with a selected trusted list of peers rather 

than the entire world. The design of RepuScore requires nodes to be time-synchronized 

to calculate reputation based on inputs from a majority of the receivers. Time-

synchronization among multiple receiver organizations is difficult to achieve.  

Due to these limitations, this dissertation proposes Distributed RepuScore as an 

extension of the RepuScore, where each receiver organization maintains its own 

reputation by eliminating the requirement for a central authority. To achieve higher 

accuracy rates, the receiver organizations synchronize the reputation they compute 

about a set of sender identities with each other. Distributed RepuScore could allow 

organizations to choose their peers to synchronize reputations with. For example, 

governmental organizations can participate in reputation sharing without the need to 

share data with civilians. 

This dissertation is organized as follows. Chapter 2 discusses the background 

and related work including sender identity frameworks, reputation management 

frameworks and finally, available email reputation management techniques. Chapter 3 

discusses a novel flexible cardinal identity framework. In Chapter 4, this dissertation 

discusses RepuScore framework, the first open source email reputation framework. 

Chapter 5 discusses the result of our experiments. In Chapter 6, this dissertation 

discusses the contributions and future work. Finally, in Chapter 7 concludes with the 

discussion of our main contributions. 



 

 

 

 

 

CHAPTER 2: BACKGROUND AND RELATED WORK 
 
 

Network-based email communication has existed since the early days of 

ARPANET (Hardy 1996) enabling a small, close-knit group to communicate 

electronically. Today, even with the extensive usage of email infrastructure (Gomes 

2004), there is no mechanism to provide strict sender accountability. As senders are not 

accountable, there is no way to guard against fraudulent mailers sending unsolicited 

messages to others. To combat this, multiple filtering technologies have been developed 

that weed out most, but not all of the unsolicited email. 

One of the mechanisms to address spoofing is to identify the senders. The sender 

identity techniques have been implemented using: a) User-based identity; and b) 

Domain-based identity. User-based identity systems, such as PGP, identify a specific 

user to the receivers. Each user creates an identity that is submitted to a central 

authority. The identities are used to identify the senders and classify emails from them. 

Domain-based identity solutions authorize specific IP address to transmit emails. 

These IP addresses are identified in the DNS records by the respective organization’s 

System Administrators. Domain-based identities such as SPF, DKIM and SenderID, 

discussed in Section 2.2, were developed to deal with email spoofing. Technologies can 

be considered as a weakly-connected – weakly because the identity is created by the 

organizations themselves. A recent study reports that 35% of all email is authenticated 

using one of the sender identity techniques (Ironport 2006). Organization can setup the 

sender identities themselves. Spammers have started adopting these solutions to create 
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their own identities to be able to propagate spam. Accredited DomainKeys allows a third 

party to maintain the identities. Such a mechanism allows the identities to be strongly-

connected; an organization needs to notify the central authority before changing them. 

Figure 2.1 shows the comparison between domain-based identity and user-based 

identity. When domain is used as an identity, a complete domain is either white-list or 

black-listed. For example, when a domain is blacklisted, honest-users of the domain 

would not be able to send emails. Therefore, organization should maintain granular 

identities smaller than that of the domain. 

On the other hand, when using an email ID as an identity to check against both 

white-lists and black-lists requires huge recourses. A new correspondent might be 

considered as unsolicited unless the sender is listed in the white-list beforehand. These 

lists can become extremely large to incorporate multiple users’ lists. The management of 

these lists can become extremely challenging: for example, white-listing need to be 

maintained by the users, the mail servers and the domains. 

Email classification schemes can be classified as: a) the characteristics of the 

email content and blacklisting; b) the sender identity credentials; c) 

 

Figure 2.1: Comparison of Privilege Messaging with current technologies. 
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reputation/certification schemes. 

2.1  Email Classification Based on Content and Collaborative Blacklisting 

Word filters (Ahmed et.al 2004) search for patterns and remove the most obvious 

spam; however, spammers have often circumvented word filters by using misspelled 

words. Thus, word filters requires regular updates of the misspelled words used in 

unsolicited emails. Rule-Based scoring mechanisms check for keywords and use rules to 

analyze emails depending on the score received by a particular email. Bayesian filters 

(Sahami 1998) perform lexicographical and statistical analysis on the email for words 

and/or phrases depending on the recipient’s previous spam emails.   

Incorporating user feedback at the Message Transfer Agent (MTA) level forms 

the basis of collaborative filters (Gray 2004). With collaborative filters, an unsolicited 

email is filtered with the help of users’ feedback on falsely classified emails. A 

combination of different techniques provides a reliable means to classify an email (Leiba 

2004). SpamGuru (Segal 2004) employs multiple techniques such as word filters. 

Chung-Kwei algorithm (Rigoutsos 2004), a pattern discovery technique is also 

employed to classify emails.  

Other techniques such as HoneySpam (Andreolini 2005) borrows the idea of 

Honeypots (Provos 2004); Social Network based classification and changing email 

infrastructure from push to pull architecture (Duan 2005, Neustaedter 2005) are 

suggested to identify spammers. However, these systems do not address the essential 

problem of unrestricted access to others’ mailboxes. 

2.2 Classification Based on Sender’s Identity 

Blacklisting IP addresses by users is comparatively simpler and computationally 
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less intensive than other techniques. This process keeps a list of IP addresses identified 

as spammers and a white-list for legitimate users. Real-time Blackhole List (RBL) 

(Realtime Blackhole List 2002) works similar to Blacklist IP, but RBLs are not 

manually updated by individual organizations but by RBL operators who maintain the 

public RBLs. 

PGP (Price 2003, Zimmerman 1995) allows verification of a sender’s email 

address based on the sender’s domain identity. PGP is an email granular service 

containing a list of individual users’ public keys. User contact management based on 

PGP keys can provide the benefits of identifying trusted correspondents as well as 

verifying the email’s integrity.  However, utilizing PGP incurs the overhead as each 

individual user needs to maintain a white-list and a black-list. A new correspondence 

might be considered unsolicited unless the email id is enlisted beforehand. The size of 

the white-list can grow unbounded because the local and global white-lists may need to 

list all the legitimate email IDs on the Internet.  

SenderID (Microsoft 2004) addresses the problem of spam and phishing by 

validating an email’s origin, i.e., by verifying the IP address presented by the email 

against the sending domain’s registered domain’s email servers. SenderID is a domain-

granular service validating a sender’s domain.  

Sender Policy Framework (SPF) (Wong 2004) is a technique that has been 

introduced to prevent email forgery. Senders identify the email server in their Domain 

Name Service (DNS) entries. The receivers validate the sender’s email servers by 

evaluating the DNS records. The DNS records indicate the sender’s adopted policy, for 

instance, the list of email servers allowed to send email by the domain. When an email is 
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received, the receiver checks the sender’s policy specified through their DNS records. If 

the sender’s email server is not the one specified in the policy, the email is considered 

unsolicited.  

Domain Key Identified Mail (DKIM) (Allman 2005), attempts to reduce the 

traffic on the network by enabling each sender to publish a public key through its DNS 

records. The email server signs each outgoing email. The receiver verifies the digital 

signature by retrieving the public key of the sender from their DNS records; thereby 

verifying the senders’ authenticity. However, the Public Key Infrastructure (PKI) key 

pair is generated by each domain itself. This allows spammers to adopt DKIM without 

being accountable. By using a Certificate Authority (CA) (Goodrich 2005), the senders 

can be made more accountable. DKIM presently does not enforce this restriction.  

Accredited DomainKeys adds a central authority to the DomainKeys architecture 

(Goodrich 2005). The centralized authority, called the Accreditation Bureau, maintains 

the sender domain’s public key. Users conform to a specified usage policy and 

adherence to the policy is periodically checked. A history of the past adherence should 

be used to check the adherence to the specified usage policy.  

2.3 Classification Based on Reputation/Certification Schemes 

To create a group of senders whose prolonged history vouches for its email best 

practices, a reputation management system should use a domain name rather than the 

sender domain’s IP addresses. Basing reputation on the domain name strongly ties an 

organization with its past email activity because (i) an IP address does not intuitively 

translate to a domain name (Dewan 2004); (ii) multiple organizations can share an IP 

address; (iii) credible organizations in general would maintain their domain name for a 
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longer period of time than their IP addresses.  

SenderPath’s SenderScore Certified (Sender Score Certified et.al), Habeas’ 

Safelist (Habeas Safelist et.al) and Goodmail’s Certified Email (Goodmail Systems et.al) 

are certification and accreditation services that allow bulk senders to obtain third party 

certification. These systems are not reputation systems: as the senders maintains the 

reputation and not the receivers. Spammers could adopt these systems and use them to 

transmit unsolicited content without being held accountable. 

Return Path’s Sender Score (Return Path et.al) and Habeas’ SenderIndex provide 

reputation management per sender’s IP address. SecureComputing’s TrustedSource 

(CipherTrust 2006) provides a global reputation system that receives reports from 

deployed email servers in different organizations. Reputation based on IP addresses is 

not effective, as an IP address cannot be bonded to specific organizations (Dewan 2004). 

For instance, when multiple organizations share an IP address, spammers in a single 

domain can affect the reputation of users in other organizations. Moreover, if 

organizations move to another service provider, their past actions are no longer be 

attributed to them. Reputation should be more closely associated with the organization, 

utilizing the organization’s domain name. 

Project Lumos (Brondmo 2003) was proposed as an effort to provide reputation 

among collaborating ISPs. Receiver organizations provided feedback as to whether a 

sender was a spammer or otherwise. The algorithm was designed to compute reputation 

based on the activity of the previous 180 days. Project Lumos was designed to consider 

the weighted average of previous and present reputation of the senders. Project Lumos’ 

proposal has been made public; but the project does not seem to be deployed. Moreover, 
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Project Lumos’ design does not consider Sybil attacks. 

Google’s reputation service (Taylor 2006) identifies the senders using best-guess 

SPF or DKIM and computes the sender’s reputation based on user inputs. This system 

demonstrated a high accuracy in classifying bulk of Gmail’s incoming emails. Google’s 

reputation service computes reputation from a single domain. It does not provide a 

mechanism for collaborative reputation sharing among different entities. Taylor et.al 

suggests the need for a third party reputation framework, i.e., collaboration among 

multiple organizations to compute reputation.  

Cloudmark’s Network Classifier (Prakash 2005) is a community-based filter-

system where multiple agents submit feedback about emails to nomination servers 

which require multiple users to confirm the claim that an email is spam. This 

information is submitted to a central server known as the Trust Evaluation System which 

computes a global view for an email’s fingerprint. The Cloudmark paper advises not to 

use authenticated domain name as a fingerprint, as this would lead to a high multiplicity 

and cross-collision rate. RepuScore uses an authenticated domain name to maintain 

reputation for each sender instead of using a fingerprint for each email.  

2.4 Reputation Management in Peer-to-Peer Systems 

Reputation management techniques have been used in agent-based systems 

(Shmatikov 2003, Swamynathan 2008) as a mechanism to evaluate trust. In multi-agent 

systems, peers use reputation to evaluate other agents to select the best course of action 

to maximize their own outcome (Papaioannou 2004). Reputation systems have been 

prone to Sybil attacks (Douceur 2002) where a single attacker uses multiple identities to 

submit multiple reputation votes about its peers. Such attacks are detrimental to honest 
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users and amicable to the attacker. 

To protect against deception and attacks in cooperative reputation systems, 

inputs from honest users are considered more valuable than the inputs from dishonest 

users. The effectiveness of reputation protocols can be measured by their success in 

thwarting Sybil attacks. User-personalized reputation in addition to the global sender 

reputation is one mechanism to harden the reputation frameworks (Chirita 2004). 

Using eigenvectors, EigenTrust (Kamvar 2003) uses global reputation to identify 

malicious peers. Future reputation is calculated based on the present normalized trust 

reputation of all the peers. Due to the feedback mechanism, EigenTrust is a self-policing 

system that regards a trusted peer more than that of a peer of low-repute. Such a 

mechanism is helpful in guarding against Sybil attacks. 

Another reputation framework has been developed as an application-independent 

system (Yu 2002). This system considers the multi-player prisoners dilemma, where 

every agent tries to maximize its own profits while maintaining the trust of other nodes. 

The system also incorporates (Yu 2003) a mechanism to detect deceptions and reduce 

the effect of malicious votes from such peers.  

Our framework builds architecture for email sender identity and email reputation 

along with an algorithm to compute reputation. In later sections, we discuss the 

architecture and elaborate the email algorithm framework.  



 

 

 

 
 

 
CHAPTER 3: PRIVILEGE MESSAGING 

 
 

To enable sender accountability on the email infrastructure, this chapter 

discusses sender identity. Sender identity techniques can be classified into two different 

categories: a) weakly-bound; and b) strongly-bound. A weakly-bound identity system 

allows organizations to create their own identity and maintain them. For example, SPF, 

DKIM, SenderID and DomainKeys are sender identity systems where organizations 

create their own identities, sometimes, in their DNS records. Each organization controls 

the identity it creates. These technologies have been developed as a mechanism to 

combat spoofing and not necessarily to be used as a sender identity. A strongly-bound 

identity requires a mechanism to bind an identity to an organization. Such a mechanism 

requires a third party to maintain and evaluate these identities. Accredited DomainKeys 

(Goodrich 2005) uses a central authority that controls the identities. 

Apart from classifying sender identities as weakly-bound and strongly-bound 

identities, the sender identities are domain-based and user-based. We note that a user-

based solution requires extensive resources, both storage and computation, to maintain a 

history of accountability, but would be useful in maintaining an accurate sender 

accountability. In contrast, we note that a domain-based solution entails lesser storage 

and computation for each identity; however, it averages the information for all users at a 

single organization. Therefore, a domain-based solution would not be as accurate as the 

email id. Finally, we note that holding a domain accountable for their users’ actions 
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enables peer organizations to force the said sender domain to revoke a user. However, 

such a mechanism is not available when sender accountability is to be maintained for 

each email address.  

This dissertation discusses the design of Privilege Messaging (P-Messaging), a 

fine-granular1 sender identification technique. P-Messaging creates identities that can be 

customizable allowing different users to be added or removed from it. The identity is 

maintained independently from email infrastructure.  

A privilege is a fine-granular identity associated with a PKI key pair and a group 

of users. P-Messaging stipulates that an email can be verified based on the privileges it 

holds. The administrators set the granularity of a privilege. Each email id can be 

assigned multiple privileges. For instance, an email ID can be associated with a 

department in a school and another for project team for a class.  

P-Messaging creates and maintains a Circle of Trust (CoT) among P-Messaging 
                                                           
1 A granular identity allows the email administrators to modify the number of users to the 
identity. 

 

Figure 3.1 Granularity of Privilege Messaging Identity as compared to Domain-
based solution and User-based white-lists. 
 



18 

 

 

 

Servers to identify trusted senders. A CoT is a trust relationship among P-Messaging 

Servers due to the mutual trust they place on a third party: Certificate Authority (CA). 

Using CoT, qualified trust can be placed on a sender by a member. Each of the P-

Messaging Server in turn places a high level of trust on each of their privileges. 

The following section discusses the components of P-Messaging, architecture for 

CoT, followed by the architectures of P-Messaging. 

3.1 P-Messaging: Components  

This subsection discusses the components of P-Messaging: 

1. P-Messaging Server  

2. P-Messaging Privilege Verifier 

3. P-Messaging Trust Authority 

P-Messaging Server 

Architecturally, P-Messaging Server (P-Server) is a component between the user 

and the organization’s Mail Transfer Agent. To send an email, the users at an 

organization interact with its P-Server. The P-Server validates the user and attaches the 

requested credentials (i.e., privileges; for example: UNCC_MEMBER, ISR_MEMBER, 

UNCC_STUDENT, UNCC_COIT, CLASS_ITCS6162 and CLASS_ITCS6112) to the 

email. The privileges-attached email interacts with the MTA to transmit the email. The 

P-Server provides the following services:  

• User Authentication: authenticates users using challenge-response authentication 

(Wikipedia). With the help of a user authentication scheme, a P-Server associates 

privileges to be associated only with authenticated users. 

• Privilege Lookup: lists all the privileges a user can send email with. Once the 
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users are authenticated, the Privilege Lookup service identifies the privileges that a 

specific user can send email with. 

• Message Signing: attaches the privileges to an email using a digital signature. 

The signature uniquely-identifies the selected privilege.  

• Privilege Administration: is an administrative interface to manage users and 

privileges. The administrators can add users to a privilege, create privileges etc. 

P-Messaging Privilege Verifier 

P-Messaging Privilege Verifier (P-Verifier) verifies the received privilege-emails 

from senders based on the attached signature. The P-Verifier provides two services:  

• Message Authorization: verifies an email’s digital signature to verify the 

privileges and checks if the receiver accepts the email.  

• Privilege-list Maintenance: is an interface to maintain a list of privileges a user 

accepts. Only the privileges listed by the user are accepted; other privileges even though 

authorized are not accepted.   

P-Messaging Trust Authority 

The P-Messaging Trust Authority is the entity that creates the Circle of Trust 

among P-Servers by providing a certificate to each P-Server. With the help of a digital 

signature, the receivers can identify a valid P-Server. The Trust Authority maintains the 

history of adherence to the good email practices enforced by it.  

3.2 Circle of Trust in P-Messaging 

P-Messaging provides the capability to identify a valid P-Server before accepting 

any emails from them with the help of Circle of Trust (CoT). A Circle of Trust creates a 

group of senders and receivers who can place some qualified trust on each other. P-
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Messaging framework can be deployed with mechanisms that determine a peer’s trust. 

P-Messaging’s CoT uses a peer’s trust to enforce sender accountability. Honoring a P-

Server’s privileges, i.e., accepting email across domains is dependent upon the qualified 

trust that can be placed on the sender P-Server. If any P-Server sends unsolicited emails, 

the amount of trust placed on it should decrease. This section discusses how CoT is 

created and maintained. 

3.2.1 Addition of a P-Server to the CoT 

Figure 3.2 describes P-Messaging’s hierarchical architecture, where the P-

Messaging Trust Authority functions as a CA. All P-Servers trust the trust authority. 

Each P-Server must receive a certificate from the P-Messaging Trust Authority that can 

be used to verify the P-Server by other servers.  

3.2.2 Revocation of a P-Server from the CoT 

The P-Messaging Trust Authority can revoke a P-Server based on a prior 

agreement. One condition could be that a member of the sender’s adherence is mandated 

  

Figure 3.2: Circle of Trust among the Privilege Servers using P-Messaging Trust 
Authority that allows a Privilege Server to be verified by other Privilege Servers. 
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to follow a common policy; if the sender does not conform to it, the sender could be 

revoked. Upon being revoked, a previously participating P-Server can request new 

certificates but under strict adherence to the common policy. Therefore, if a P-Server 

does not contain a privilege’s negative characteristics, the P-Server would be revoked 

from CoT.  

3.2.3 Advantages of CoT 

With the help of CoT, a P-Server can place qualified trust on other peer P-

Servers. Honoring a sender’s privilege by receivers is based on the trust placed on the P-

Server by the P-Messaging Trust Authority. With the help of this mechanism, a 

distributed identity system can be provided among different P-Servers with each P-

Server is capable of creating its own privileges.  

3.3  P-Messaging Architecture  

P-Messaging architecture has two major objectives: a) sender architecture; and b) 

 

Figure 3.3: P-Messaging Sender Architecture: After the sender Bob is verified, the 
P-Server signs the email with a privilege specified in the Member List. The email is 
then sent from the P-Server to the MTA that relays the email. 
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receiver architecture. A receiver P-Server, after sender identification, interacts with the 

receiver’s MTA before the email is delivered to the mailbox of the intended users based 

on the privileges the accepted by the users at the receiver organization. When sending an 

email, a P-Server interacts with the MTA to send the email with the sender 

organization’s user’s privileges.  

3.3.1 Sender Architecture  

A P-Server is a sandbox the MTA as shown in Figure 3.3. When sending an 

email, the sender P-Server first verifies the user, for instance, Bob. After user 

verification, the P-Server signs the email for the requested privileges. Bob select 

privileges, or the P-Server based on a simple rule-based engine from the Member List 

for every user at the P-Server. A P-Server signs an email and relays it through the MTA.  

A receiver P-Server first verifies the sender P-Server; based on the trust on the P-

Server verifies the privilege attached with the email. For example, when a P-Server 

 

Figure 3.4: P-Messaging Receiver Architecture: Once an email is received, the 
MTA passes the mail to the P-Verifier looks-up the public key of the privilege to 
verify the mail. Once the mail is verified, emails are classified according to the 
privileges specified in the Privilege List. 
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installed at a university, the P-Messaging Trust Authority creates a key pair, for the P-

Server, which is securely transmitted to the P-Server. The university’s P-Server can then 

create multiple privileges, for example, for faculty called “faculty” and for students 

called “student”. 

The receiver accepts a privilege message only if it honors the sender’s privilege. 

Without this, the message that is sent cannot be classified into privilege classes but into 

the underprivileged class. These classes are described in later sections. 

3.3.2 Receiver Architecture 

The receiver architecture is shown in detail in Figure 3.4. At the receiver’s 

domain, upon receiving the email, the MTA verifies the privileges associated with the 

email with the help of the P-Verifier. For verifying an email, the P-Verifier evaluates the 

P-Server using the signature. Once the P-Server is verified, the privilege’s public key is 

retrieved from the P-Server. Using the public key of the privilege, the privilege signed 

email is verified.  

To retrieve the message, as shown in Figure 3.4, the client, for instance Alice, 

connects to the mail server to retrieve the messages. Using the additional header 

information, any email client can display the information in any desired format. The 

mail clients can show the different ‘inboxes’, where each inbox caters to a different 

class. In this way, the classification of the email into different classes provides users 

with the ability to view the messages according to the privileges accepted by them. This 

allows a faster lookup by classifying the emails at one location thereby, providing 

Quality of Service (QoS). For the example listed in Section 3.3.1, the receiver first 

verifies the university’s P-Server and then verifies the privileges associated with it, by 
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retrieving the PKI key pair for the privilege from the universities’ privilege.  

Once the mail is verified, the next step is to place the mail into classes. Based on 

user’s Privilege List, P-Messaging defines three privilege classes: 

Privileged Class 

Privileged Class is a set of privilege-“inboxes” that hold emails that have been 

successfully verified and honored privileges by the receiver.  

Underprivileged Class 

Underprivileged class is a set of privilege-“inboxes” that are successfully verified, but 

not honored by the receiver. If the privileges presented by an email are deemed 

important, the receiver needs to subscribe to the privilege making it a privileged class 

rather than an underprivileged class.  

No-privilege Class 

The No-privilege classes form the lowest class where unsigned or emails whose 

authenticity cannot be ascertained are placed.  

3.4 Privileges in an Email Header: Privilege Tag 

The credentials attached to a privileged-email are referred to as Privilege Tag (P-

Tag). The P-Tag has a digital signature evaluating the authenticity of the email’s origin. 

P-Tag is designed to be extensible by allowing each P-Server to create its own 

privileges. Each P-Server acts a CA for the privileges it holds. The P-Tag format that is 

attached to the email’s header as follows: 

[P-Server]:[Privilege] 

A privilege email is of the following structure: 

{[Email] Privilege Signature}: {[Privilege Signature] P-Server signature} 
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A privilege is a double digital signature for the email, first using the privilege 

and then using the P-Server’s private key by the P-Server. As discussed earlier, to verify 

a privileged email: first, the P-Server signature and then the privilege signature is 

verified.  

3.4.1 P-Tag Creation and Maintenance 

As part of Privilege management, apart from creation and maintenance of the 

privileges, the administrator of a privilege performs the tasks of adding and 

deleting/revocation of users. The privilege-administrator is responsible for: 

1. Adding a Privilege to a user. 

2. Deletion or Revocation of a user’s Privilege. 

Addition and revocation of privileges modifies a user’s Member List. The 

Member List contains the privileges a user is authorized to send with. Users are added or 

revoked by the privilege administrator. If a user abuses the privilege, the administrator 

revokes the privilege. For a user’s revocation, the member list is updated by removing 

the user from the Member List. As the privilege’s private key is never revealed, the 

privilege administrator need not create another PKI key pair. 

3.4.2 Privilege-List Maintenance 

Each user at a receiver’s organization maintains the list of accepted privileges by 

updating the Privilege List at the P-Verifier. The mail service provider assigns a default 

list of privileges. In the absence of a user’s input, which could be quite common, the 

service provider’s default privilege from the Privilege List will be used. In the future, 

some user-profiling or personalization could determine a privilege list on user’s behalf.  
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3.5 Advantages of Privilege: A fine-granular and strongly-bound Identity 

As shown in Figure 3.1, a privilege identity is a customizable identity that is 

more finely-granular than domain-based and more coarsely-granular than the user-based 

solutions. A privilege can be either a single user or a group of users that could be larger 

than the users at a single organization.  

A domain identity has a single credential for the entire domain. In comparison, 

when P-Server is registered, the domain is given an authorization to manage their 

privileges, not the right to send emails. P-Messaging is installed over multiple P-Servers 

on a domain where each P-Server maintains multiple privileges.  

DKIM allows public keys to be created and embedded into the DNS records, 

whereas P-Messaging requires the P-Server to publish its public key with a third party, 

the P-Messaging Trust Authority. Therefore, in P-Messaging, the message is accepted 

after verification of the sender by a trusted third party. P-Messaging’s identity is 

strongly-bound to the domain. 

The credentials for the user-based white-lists are the individual email IDs as 

compared to privileges in P-Messaging. With white-lists, a new correspondent might be 

classified as an unsolicited sender. The benefit of P-Messaging is that a new 

correspondent may not be classified as an unsolicited sender. The variable-granularity of 

an identity allows the system to provide higher accuracy comparable to the email 

identity without significant investment of resources. 

3.6 Privilege Messaging Implementation Details  

This section first discusses the client software developed for P-Messaging using 

Outlook 2003 and Thunderbird.  
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To send and classify privilege emails, plug-ins for Outlook 2003 and 

Thunderbird has been designed. Figure 3.5 shows the Outlook plug-in with new options: 

“Send with Privilege” and with a new option in the left pane to show the list of all 

privilege emails by the sender. Figure 3.6 shows the list of privileges: 

UNCC_MEMBER, ISR_MEMBER, etc. 

Figure 3.7 shows the Mozilla Thunderbird plug-in with a new option: “Send with 

Permissions” to send privilege-authenticated email. Figure 3.8 shows the Thunderbird’s 

interface to login to the P-Server.  

 

Figure 3.5: Microsoft Outlook Plug-in 
with new option: “Send with Privilege”. A 
Privilege Sent Mail in the left pane that 
allows users to access all the privilege 
emails sent. 

 

Figure 3.6: Microsoft Plug-in that 
displaying list of Privileges the 
authorized user can send an email with. 

 

Figure 3.7: Thunderbird plug-in with a 
new option: “Send with permissions” to 
send privilege-signed emails. 

 

Figure 3.8: Thunderbird plug-in with a 
login prompt for the P-Messaging 
server. 



 

 

  

 
 

CHAPTER 4: REPUSCORE FRAMEWORK 
 
 

A sender identity technique along with a reputation framework creates a trusted 

group of senders. A verified identity (through any existing authentication mechanism) is 

a required basis for maintaining sender’s reputation. However, knowledge of the sender 

does not imply that the sender adheres to the best email practices. To enable receivers to 

identify the senders who adhere to the best email practices, the past history of the senders 

should be maintained. Reputation management framework maintains the history of 

adherence to a common policy about the best practices.  

4.1 Sender Identity Techniques for Reputation Management 

Systems designed using email id as a sender identity, such as PGP, when used to 

maintain reputation entails a huge overhead for vote collection, storage and computation. 

Instead of using email ids as identities, domain authentication schemes (DKIM, SPF or P-

Messaging) could be used, thereby decreasing the number of identities needed. Such a 

mechanism is more scalable than the email id based reputation system. 

About 35% of all authenticated email over the Internet is authenticated using SPF, 

DKIM or SenderID. A reputation framework evaluates the senders who are authenticated 

using these mechanisms. Such a mechanism will help evaluate the domains that adhere to 

a common guideline. 

The lack of a centralized authority (Jakobsson 2006) has been noted as a main 

reason for the inability to tie email forgery to a single user or the organization. A central 

authority can maintain a group of reputable senders where each sender maintains a high 
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reputation. Such a mechanism allows a common best email practice to be enforced 

among senders. 

P-Messaging’s CoT is designed with a central authority that can be used for 

reputation framework. The P-Messaging Trust Authority can use the reputation 

framework to maintain a group of trusted P-Servers. The reputation framework is used to 

work with current sender authentication schemes along with P-Messaging; and therefore, 

a different nomenclature is used. 

4.2  RepuScore: A Collaborative Reputation Framework 

RepuScore is a collaborative email reputation framework that allows participating 

organizations to establish sender accountability based on the senders’ past actions. For a 

non-changing identity, RepuScore employs a) existing domain based schemes such as 

SPF, SenderID and DKIM; or b) their IP addresses. For the long-standing history, 

participating organizations locally collect information about the senders - from users or 

existing spam classification mechanisms that are submitted to a central RepuScore 

authority to compute a global reputation summary that is used to enforce sender 

accountability.  

Multiple RepuScore algorithms have been designed that compute reputation 

gathered from organizations based on the sender’s a) spam rate (RepuScore) or b) spam 

rate and email volume (Volume-Enhanced RepuScore).  

4.2.1 Design Considerations for RepuScore 

RepuScore should ease the overhead of vote collection and computation with the 

help of a distributed architecture. As each receiver-organization receives a lot of emails, a 

centralized vote collection incurs an excessive overhead. Such architecture allows each 



30 

 

 

 

organization to collect votes from its users. However, distributing the reputation 

management creates additional challenges.  

Since RepuScore employs a distributed reputation framework, it is susceptible to 

Sybil attacks (Srivatsa 2005, Yu 2006). In Sybil attacks, a malicious receiver manipulates 

the rating mechanism by creating multiple identities (also called Sybils) to give a) a 

higher rating to colluding senders; and b) a lower rating to legitimate senders. RepuScore 

should be able to thwart Sybil attacks by valuing a reputable participant’s input more than 

that of a less reputable one.  

The lack of centralized enforcement has been cited as the main obstacle in 

connecting email fraud to a particular user or organization. RepuScore should enable a 

centralized design with minimal overhead to create a trusted group of senders.  

A reputation framework should facilitate in the creation of a group rather than just 

maintaining a group of blacklisted senders. RepuScore differs from other approaches 

because of the collaborative reputation based on the scores suggested by peers.  

A reputation framework should accept a single reputation vote from each 

deployed organization. A large global organization might have multiple mail servers (or 

P-Servers), each situated in different geographic locations. If a reputation management 

framework considers votes from mail servers, an organization with a large number of 

mail servers would have greater say than those organizations that host a single mail 

server. Therefore, each organization should be allowed to vote only once considering all 

the mail servers in the domain. 

The sender’s reputation should decrease for bad behavior and increase in the 

absence of bad behavior; i.e., when spam is reported, the sender’s reputation should 
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decrease; else the reputation should increase.  

The initial reputation for senders should be appropriately set, as an improper 

initial reputation would give high spam propagating domains an unfair advantage as their 

reputation would stay for longer intervals. In contrast, a low initial reputation would be 

unfair to a new domain, as peers would not accept its emails. 

Reputation Aggregation Interval is defined as the sender’s reputation should be 

computed every specific interval of time after receiver collaboration. A sender should 

adhere to good practices for a significant number of intervals to be considered good. Such 

a mechanism would make spamming unviable for a spammer as it would require a 

significant investment of resources, including both time and money. In addition, a quick 

reduction in reputation for non-adherence to the policy removes spammers from the 

trusted group of senders.  

4.2.2 RepuScore Components 

RepuScore framework has three components: a) RepuServer; b) RepuCollector; 

and c) Central Authority. A RepuServer as a mail server with the additional capability of 

verifying the users and collecting the reputation votes from them. Each local RepuServer 

collects votes from its users and email filters, aggregates the votes locally, and forwards 

them to the organization’s RepuCollector.  

A RepuCollector is an organizational-level service that aggregates votes from the 

local RepuServers and submits a single vote in a global reputation of peer 

RepuCollectors. As all the RepuServers belong to the organization, the RepuCollector 

belonging to the organization assumes that the RepuServers do not compromise the 

reputation. 
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The central authority computes the global reputation by computing reputation 

from multiple RepuCollectors. When Sybil attacks (Douceur 2002), where a single 

attacker takes multiple identities to thwart a reputation system by submitting incorrect 

information occurs, the algorithm should be able to secure against these attacks.  

4.2.3 RepuScore Architecture 

Figure 4.1 shows RepuScore’s hierarchical architecture that is designed to ease 

reputation collection and computation as the number of participating domains increase. 

The RepuScore framework computes reputation based on the votes collected by each 

RepuServer. While collecting reputation votes, a RepuServer checks the validity of the 

reporting users. The user’s votes are based on the evaluation of the sender’s adherence to 

best practices. There are three major steps in RepuScore: 

a) Reputation Vote Collection  

b) Reputation Computation 

c) Reputation Lookup Service 

 

Figure 4.1: Hierarchical architecture for RepuScore with each RepuCollector 
receiving reputation information from multiple RepuServers. The RepuCollector 
transmits the reputation to a Central Authority. 
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Reputation Vote Collection 

As spam is subjective, another user might not consider an email regarded as spam 

by one user. Therefore, a global blacklist or white list would not be ideal as it would fail 

to represent the conflicting views of multiple users. RepuScore employs a social rating 

mechanism to consider the conflicting views of the users.  

The receiver’s RepuServer can maintain the number of emails received and the 

emails marked as spam for each sender RepuServer. The vote collection mechanism 

requires minimal participation from the users. For example, RepuServer collects the 

users’ votes based on the users’ implicit inputs; users only mark an incorrectly filtered-

email as non-spam or to report a spam email that was not correctly filtered by the spam 

classifiers. (Many email services provide similar mechanisms for their users to report a 

spam email or an incorrectly filtered email.) Before accepting votes from the users, the 

RepuServer should validate the users.  

The spam classifiers are also used along with users’ input in collecting votes. A 

negative vote for a sender is entered when the spam filters determines an email as spam. 

Likewise, a positive vote for a sender is automatically made when the sender’s email is 

not considered spam. In the event that the spam filter marks a legitimate email as spam, 

the users can mark the email as non-spam, submitting a positive vote for a sender to the 

RepuServer. 

Reputation Computation 

Based on the number of spam and emails collected, each RepuServer calculates 

the reputation of the sender RepuServer. RepuServer Reputation is defined as the 

weighted average of the reputation in the previous and the present intervals.  
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RepuScore calculates the reputation of a RepuCollector based on the reputation of 

the RepuServers maintained by the RepuCollector. A RepuCollector Reputation is 

defined as the aggregate reputation of the RepuServers in their domain in the present 

interval. Each RepuCollector calculates the local reputation for each peer RepuCollector. 

The computed reputation is digitally signed by each RepuCollector to maintain the 

integrity of the data. To provide a global perspective, the Central Authority should collect 

the locally computed RepuCollector’s reputations.  

RepuScore introduces a central authority that collects reputation votes from all the 

RepuCollectors and computes the global reputation for all RepuCollectors. The central 

authority verifies the RepuCollector’s votes based on the digital signature. The central 

authority should make sure that the reputation collection is conducted once every 

interval. The central authority calculates a global reputation for each RepuCollector based 

on the change in its reputation as reported by peer RepuCollectors. The central authority 

takes into account the reputation of the RepuCollectors to compute the global reputation 

of the peer RepuCollectors. If the reporting RepuServers’ reputation is below the 

participation threshold, their reputation votes are not factored into the global reputation. 

Reputation Lookup Service 

A reputation lookup service can be provided with the help of a third party lookup 

service.  The reputation lookup service can be similar to Real-time Black Lists. Such a 

reputation lookup service can also provide a mechanism for the receivers to lookup the 

reputation of a sender’s RepuCollector as reported by peers. An alternate way for 

receivers to determine reputation is by associating the reputation with a sender identity 

that can be vouched for by a third party. For example, in the case of Accredited 
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DomainKeys, the reputation can be embedded as the part of the seal that is supplied to 

the MTAs. When the client checks the DNS entries, the seal can be verified for the 

reputation.  

In P-Messaging, the reputation will be used by the Trust Authority to calculate the 

reputation of the P-Servers. If the reputation of a specific P-Server is below the threshold, 

the P-Server will be removed from the framework. 

4.3 RepuScore Algorithm 

RepuScore computes the reputation at the individual P-Servers, at the 

organization and at the Central Authority. The algorithm is described below: 

RepuServer Reputation Calculation 

Peer RepuServers calculates a RepuServer’s reputation. The reputation in 

RepuScore is always in the open interval (0, 1).  A score of 1 indicates a highly reputable 

sender whereas a score of 0 indicates a sender with a low reputation. For all sender 

RepuServers, each receiving RepuServer maintains the number of emails received and 

the number among those marked as spam. Equation 4.1(a) demonstrates the algorithm to 

compute reputation of a RepuServer; the observed reputation is computed as the number 

  
 

 

 
 

 
 

 
 

 
 
Equation 4.1: RepuServer algorithm computes sender’s reputation using good rate. 
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of good emails over the number of emails sent by a sender in a particular interval. 

Equation 4.1(b) shows the reported reputation calculated using modified time sliding 

window exponentially weighted moving average (TSW-EWMA) algorithm (Biswas 

2005). The sender’s reputation is based on the reputation in the previous interval and the 

observed reputation in the present interval. Correlation factor α indicates the amount of 

previous reputation considered for computation of the RepuServer’s reputation in the new 

interval. If the correlation factor is high, the reputation of a sender takes a long time to 

increase or decrease, as a lot of weight is given to the previous reputation. However, if 

the correlation factor is low, the reputation increases or decreases very quickly since 

current actions are given additional weight. The effect of the correlation factor on 

  
 

 
 

 
 

 
 

 

 
 
Equation 4.2: Modified RepuServer algorithm maintains computes reputation. 

 
 

 
 

 

 

 

Equation 4.3: Local RepuCollector Reputation calculates the average reputation of 
all its RepuServers 
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reputation in the experiments is demonstrated.  

The reputation should increase slowly to check a long history of adherence, while 

the reputation should decrease quickly when the domain starts spamming. However, 

using Equation 4.1, the reputation either increases and decreases slowly or increases and 

decreases quickly. The Equation 4.2 should be modified to allow slow increase and quick 

decrease in reputation. 

RepuCollector Reputation Calculation 

The change in RepuServers’ reputation is used to update the RepuCollector’s 

reputation. Equation 4.3 shows the local reputation computation at a RepuCollector. The 

RepuCollector reputation is the average reputation of all of the reports from its 

RepuServers. This information is transmitted to a Central Authority that computes the 

global reputation. Such a mechanism can be shown to help in the creation of a trusted 

group of reputable senders. 

CA Reputation Calculation 

The central authority calculates the global reputation of the RepuCollectors based 

on a modified Weighted Majority Algorithm (WMA) called WMA Continuous (WMC) 

proposed by Yu et al (Yu 2002). The WMC algorithm has been used in peer-to-peer 

  
 

 

 
 

 
 

Equation 4.4: Central Authority computes global reputation.  To thwart Sybil 
Attacks, different weight is applied based on the RepuCollector’s reputation. 
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systems to detect deception.  

Equation 4.4 demonstrates the Global RepuCollector reputation as the reputation-

weighted average of the local RepuCollector reputation computed by each peer. The new 

reputation is computed once every interval and is valid for one interval. 

4.4. Volume-Enhanced RepuScore Algorithm 

An interesting observation from the deployment was that the reputation of certain 

sender identities did not reflect the change in the email volume received from them. A 

constant spam rate does not imply that the volume of email is constant. For example, 

consider a spammer who propagates 1 spam email out of 10 emails in the first interval 

(spam rate = 0.1, reputation of 0.9) followed by 900 spam messages out of 1000 emails 

(spam rate = 0.9; reputation = 0.1) in the second interval. In this case, with a value α as 

0.5, the reputation would be 0.5 (an average of 0.1 and 0.9). However, such a sender 

should be penalized more.  

To track sender’s reputation more closely, more emphasis should be placed on the 

interval in which the email volume was higher. For example, if the email volume in the 

past interval was higher than the email volume in the present, more emphasis should be 

placed in the past. Likewise, when the email volume in the present is higher, the present 

reputation should be considered more than the past reputation. 

Incorporating the change in the email volume on a global scale requires all the 

RepuCollectors to share both peer-reputations and the email volume. Sharing of the email 

volume invokes potential for further attacks on the reputation framework; for instance, 

some receiver organizations could provide incorrect volume information about sender 

identities to increase/decrease their reputations. The initial deployment showed that the 
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majority of sender identities were spammers. As incorporating email volume at a global 

level, participating receiver organizations could lie about the volume sent by a sender. 

For this reason, email volume should be incorporated at RepuServers but not at the 

RepuCollectors.  

Any incorrect volume embedded into reputations at RepuServer would only be 

constrained to the organization. Such incorrect reputation-view from a receiver 

organization will not significantly affect the global reputation since such data will be 

refuted by other honest receiver organizations.  

To incorporate email volume as a basis for the computation, an exponentiation is 

selected due to its monotonic property.  Due to this property, the e-x always lies in the 

interval (0, 1) and is a monotonically decreasing function. A monotonically decreasing 

function is required as the value of α should decrease as the volume rate increases. 

 

‐   
 

 

 

 

 

 
 

 
 

 
 

Equation 4.5: Instantaneous value of α based on the volume of email received at a 
RepuServer.  
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Equation 4.5 demonstrates the mechanism to compute the instantaneous 

correlation factor α based on the email volume. Equation 4.5a shows the mechanism to 

compute Volume-Enhanced Good Rate (Vol-Enh GR) is the sum of the good rate in the 

interval that had larger volume and a fraction of the good rate in the other. This implies 

that having the Good Rate (GR) constant, if the volume in present is large, the Vol-Enh 

GR is the sum of good rate in the present and a fraction of the good rate in the past. If the 

volume in the past is small, the good rate in the past is small multiplied by the factor past 

volume divided by present volume. Equation 4.5b is used to compute instantaneous α, a 

lower value of Vol-Enh GR relative to the present good rate leads to a higher 

instantaneous α to accurately compute reputation.  

Figure 4.2 demonstrates that larger the value of Vol-Enh GR implies a different 

curve is selected resulting in a larger value of α. High α implies a greater importance is 

 

Figure 4.2: The function e-x function is monotonically decreasing function. As the 
value of Volume-Enhanced Good Rate increases, a higher curve is selected resulting 
in a larger value of α. 
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placed on the past interval as compared to the present interval. Likewise, high Vol-Enh 

GR leads to a lower value for instantaneous α. The multiplicative factor is used to 

decrease large values of Vol-Enh GR.  

For the example discussed in the first paragraph, the Vol-Enh GR = 0.901 (1 × 0.9 

+ 10/1000 × 0.1). Using the multiplicative factor of 1, the Volume-Enhanced reputation 

will be 0.42 instead of 0.5. Using Volume-Enhanced RepuScore, the computed reputation 

was based on the volume of the email received. In the above example, when the email 

was higher in the second interval, the reputation increased slowly as compared to 

reputation in the first interval. 

4.5 RepuScore Deployment  

RepuScore has been deployed in a few organizations with the help of a 

deployment model. The gathered votes, from receiver organizations, are collected based 

on user inputs or email classification programs such as SpamAssassin. 

 
Figure 4.3: SpamAssassin plug-in collects 
statistics from mail servers and transmits it 
to a RepuServer. The plug-in uses other 
SpamAssassin plug-ins to identify sender 
identities. 

 

 

Figure 4.4: Email classification using the 
SpamAssassin plug-in. Email verification 
can use other spam classification 
techniques to correct the reputation-based 
classification.  

 

  

Verified

Classification

SpamAssassin 
SPF/DKIM Plug‐in

Transmit Store 
Information at 
RepuServer

Incoming 
Email

Yes

No

Classification 
(including 
RepuScore)

Classify as Non‐
Spam

Update 
Reputation

Classify as Spam

Reputable?

Correct?

Verify Email 
Classification

Domain Verified 
Email

Yes

Yes

No

No



42 

 

 

 

4.5.1 SpamAssassin Plug-in 

A SpamAssassin plug-in that collects information about each authenticated email; 

i.e., whether or not an email is spam, and computes reputation for the sender identity. The 

RepuScore plug-in uses the available standard SpamAssassin plug-ins for SPF and DKIM 

to identify the senders.  

Figure 4.3 demonstrates the design of the SpamAssassin plug-in that collects 

information for each email from an organization’s mail server. Figure 4.4 shows the 

mechanism used to classify email after sender verification. A reputable sender’s email is 

classified as non-spam and vice versa. Reputation-based email classification requires a 

feedback mechanism for checking the accuracy of classification with the help of low-

process intensive mail filters. As the RepuScore plug-in has already performed the sender 

identity checks, content-based filters can be utilized. The information is then transmitted 

as a UDP packet and stored at a local RepuServer.  

System administrators can select any low-process intensive email classification 

technique to correct the information. Such a mechanism allows high-process intensive 

mechanism to be used to classify emails without an associated sender identity. This 

allows a faster email classification when a huge volume of email is received. 

The RepuServer’s server module (a Perl module) maintains multiple forked 

instances to keep a few “hot” instances in memory to handle the normal load, while 

having the ability to fork a few additional instances based on the need. These processes 

capture the packets transmitted to them by the RepuServer client module and write the 

incoming data into a MySQL database. A cronjob initializes a script that computes the 

reputation at every reputation interval by invoking SQL statements. 



 

 

 

 
 
 

CHAPTER 5: RESULTS 
 
 

Our results for the projects P-Messaging (Kang 2006) and Central RepuScore 

algorithms (Singaraju 2007, Singaraju 2008) are published at USENIX LISA 06, LISA 

07 and CEAS 08 conferences. In addition, this dissertation also discusses the results for 

IP based reputation and False Positives and False Negatives. 

5.1 P-Messaging Evaluation 

P-Messaging technology can be developed in Java and can be provided with a 

command-line interface for configuring the server. P-Messaging can be evaluated based 

on the ease of configuring the servers. Other experiments demonstrate the performance 

costs associated compared with PGP-signed email: 

1. Signature Generation and Verification Time 

2. Privilege Generation and Verification Time 

5.1.1 Signature Generation and Verification Time 

To demonstrate the overhead incurred due to generation of P-Tags, P-

Messaging's tag generation performance is compared with the time taken to generate 

PGP digital signature and unsigned emails. Graph 5.1 shows the results. The time taken 

to generate the tag was reasonably higher than for PGP and unsigned messages. This 

overhead includes the time taken to request a privilege including two signature 

generations. As P-Messaging uses a double signature as compared to one signature for 

PGP, the results shown are expected. 
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The overhead incurred due to verification of the privilege is compared with the 

time taken for verifying a PGP signed message. The results are shown in Graph 5.2 

where the time taken to verify the emails is twice the time taken to verify the PGP 

signed mail that is expected again. 

5.1.2 Privilege Generation and Verification Time 

The experiments show that the time taken to generate a P-Tag was about 0.16 

seconds. This time included the time taken to generate double signatures: one for the 

privilege and another for the P-Server server. The time taken to verify a message was 

about 0.09 seconds, again this time involved the time taken to verify the P-Server 

signature, and then the Privilege signature. It also involved the time to retrieve the 

privileges’ public key from the sender’s P-Server. 

5.1.3 Effect of Cardinality on Collaborative Blacklists 

This section discusses the effects of cardinality of sender’s identity and the 

number of collaborating receivers on the accuracy of blacklists. This section begins by 

discussing the Log Statistics obtained from a global non-profit organization.  

Graph 5.1: The overhead of P-tag using P-
Messaging compared to PGP signed and 
unsigned emails. 

 

Graph 5.2: The overhead of P-Tag 
verification compared to PGP 
signature verification. 
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Log Statistics 

The experiments were performed using 21-day logs [from Aug 6th - 26th 2006] 

obtained from a global non-profit organization that maintained 5 domains. Each of the 

domains additionally maintained multiple sub-domains. The organization ran a Postfix 

mail server (Hildebrandt 2003). The mail trace contained 41,400 domains that sent 

emails to the organization and about 1,133 domains to which emails were sent. The 

email trace contained 271,200 emails. Of these, 150,951 emails, i.e., 55% were marked 

as spam with the help of Real Time Blacklists (RBL) (Real Time Blackhole 2002).  

The spam emails identified by RBLs were marked as ‘rejects’ with the reason 

for reject and the RBL that has identified the sender as a spammer. The mail server also 

rejected mails if the sender domain did not exist. The user behavior is modeled based 

on the results from the RBL. In the event that a reject was noted, the RBL rejects were 

used to simulate user input to blacklists. 

 

 

 

Graph 5.3: Percentage of incorrectly classified email per day without receiver 
collaboration to maintain a blacklist. 
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Rejects from RBL Lookup Simulates User Behavior for Blacklists 

The first experiment demonstrates that the email rejects noted in the mail log 

due to RBL lookup can be used to simulate user behavior. To demonstrate user blacklist 

behavior, every user is assumed to maintain a blacklist for every sender’s email id as an 

identity. Upon receipt of an email, the receiver’s local blacklist is checked. If the sender 

has not been blacklisted, the RBL entry is checked to simulate the user’s entry. If RBL 

marks the email as spam, the sender is added to the blacklists. 

The experiment showed that about 510 emails (or 0.18%) were false positives 

(legitimate emails incorrectly recognized as spam) and false negatives (spam 

incorrectly recognized as legitimate email). A deviation of about 0.18% indicates a 

strong correlation between RBLs and local blacklist mechanism.  

Effect of Cardinality of Identity and Receiver Collaboration 

The mail logs described in Section 5.2.1 was used to demonstrate the 

effectiveness of blacklist mechanism. The receivers maintain blacklists of senders with 

the help of a shared blacklist among the receivers, based on the senders’ identities. The 

 

Graph 5.4: Percentage of incorrectly classified email per day where receivers within 
an organization collaborated to maintain a blacklist. 
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experiment is similar to the one performed in Section 5.2.1. When an email is received, 

the identity is checked against the local blacklist. If the identity is present in the 

blacklist, the email is rejected. If not, the user reads the email and the user determines 

whether it is spam. When the user determines that the email is spam, the user puts the 

sender identity on the local blacklist. The rejects logs from RBL are employed to 

emulate user behavior.  

These experiments use three types of sender identity: email id, domain name, 

and flexible identity. The cardinality of the sender identity is selected as the number of 

users associated with the identity. (e.g., the cardinality of sender identity using single 

email id is 1.) In the experiments, flexible identity contained at least 2 randomly 

selected email ids, thus its cardinality is larger than that of single email id and smaller 

than that of the domain as sender identity.  

Assuming that the RBL simulates user behavior, Graph 5.3, Graph 5.4 and 

Graph 5.5 denote the number of incorrectly classified emails per day plotted against the 

number of days. Incorrectly-classified emails include both false positives and false 

 

Graph 5.5: Percentage of incorrectly classified email per day where all 5 
organizations collaborate to maintain a global Blacklist. 
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negatives. Graph 5.3 shows the amount of emails that were incorrectly recognized for 

different sender identities without any receiver collaboration. It can be seen that as the 

cardinality of the identity increases, the amount of incorrectly classified emails 

increased. 

Graph 5.4 demonstrates the amount of incorrectly recognized spam when the 

users among a domain collaborate. The graph reiterates the same behavior as in Graph 

5.3, where as the cardinality of the identity increases, the amount of incorrectly 

classified emails increase. Comparing this graph with Graph 5.5, it can be seen that by 

introducing receiver collaboration, the percentage of incorrectly recognized emails has 

increased. 

Graph 5.5 demonstrates the number of incorrectly classified emails when the 

senders maintained a global blacklist. The global blacklist was maintained among the 5 

domains. Table 5.1 summarizes the results, showing the overall percentage of 

incorrectly classified emails as a function of the cardinality of the sender identity and 

receiver collaboration. For highest accuracy, the receivers should not collaborate when 

the sender identity being an email id. The most inaccurate method for maintaining a 

Table 5.1: The average percentage of incorrectly classified spam over 21 days as a 
function of receiver collaboration and sender identity. 
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blacklist is with sender identity being a domain with global collaboration. 

Even though accuracy is highest for email id as identity, it entails a huge 

amount of storage and collaboration requirements. On the other hand, collaboration for 

the sender identity being set as domain is highly inaccurate. Additionally, without 

receiver collaboration, the time required to classify emails for the users is huge. This 

suggests that collaborative systems should use some sort of collaboration for a flexible 

identity. The flexible identity should be fine-granular than the domain and coarse-

granular than the email id. Such an identity would be ideal to reduce the amount of 

incorrectly recognized email based on sender identity. 

5.2 RepuScore Evaluation 

The effectiveness of RepuScore is demonstrated through experiments with the help of: 

a) Simulated logs to demonstrate specific properties of RepuScore; and 

b) Deployed results from RepuScore 

Simulated logs 

The simulated logs were created with 100 RepuCollectors spanning 45 intervals. 

A random number of RepuServers is selected which reported to their local 

RepuCollectors. The number of emails and spam that were transmitted to and from an 

organization was perturbed using a random number; for example, since RepuScore 

creates a trusted group of reputable senders, the spam rate among them was set at under 

20%, whereas a spamming domain’s spam rate was set at greater than 95%. (This trend 

is seen in the logs from the non-profit organization.) 

Mail logs from a Non-Profit Organization 

The logs were 20-day mail logs collected by 5 domains maintained by the 
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organization. It contained about 45,000 domains to which 450,000 emails were sent, 

55% were marked as spam by RBLs or rejected since the sender domain did not exist 

through reverse DNS lookup; a reverse DNS lookup checks if the sender is likely using 

an inexpensive internet service, such as a dialup. A sizeable amount of spam originating 

from inexpensive dial-up Internet services is rejected due to reverse DNS lookups. 

Deployment at Three Organizations 

During the deployment for 174+ days computed reputations for 16,509 sender 

identities authenticated using SPF and DKIM. Minimum Good Reputation is defined as 

the minimum reputation to be considered a credible sender. For the experiments, a 

Minimum Good Reputation is selected to be 0.5 to classify the emails and discuss the 

Table 5.2: Sample mail logs from Postfix Server 

 
 

Table 5.3: Sample logs from simulated 
RepuServer table 

Interval  Sender  Spam  Total 
1  43  319  1227 
1  96  1575  6058 
1  32  549  1962 
1  32  481  2294 
1  50  626  3915 

 

 

Table 5.4: Sample RepuCollector and 
CA reputation tables 

Interval  Sender  Reputation 

1  1  0.827423 
1  2  0.871215 
1  3  0.840456 
1  4  0.832936 
1  5  0.829092 

 

 

Aug 20 04:32:22 abc postfix/smtpd[17111]: < unknown[someIP]: RCPT 
TO:<someone@somewhere.com> 

Aug 20 04:32:22 abc postfix/smtpd[17111]: extract_addr: input: <someone@somewhere.com> 

… 

Aug 20 04:32:22 abc postfix/smtpd[17111]: >>> START Helo command RESTRICTIONS <<<

Aug 20 04:32:22 abc postfix/smtpd[17111]: generic_checks: name=permit_mynetworks 

Aug 20 04:32:22 abc postfix/smtpd[17111]: permit_mynetworks: unknown someIP 

Aug 20 04:32:22 abc postfix/smtpd[17111]: match_hostaddr: someIP ~? 127.0.0.0/8 

Aug 20 04:32:22 abc postfix/smtpd[17111]: match_list_match: someIP: no match 

Aug 20 04:32:22 abc postfix/smtpd[17111]: generic_checks: 
name=reject_unknown_sender_domain 
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reasons for selecting the same. Lifetime of a sender identity is defined as the number of 

reputation intervals between the first and the last occasion including the first occasion 

the sender identity sent an email. For example, if the sender appears just on one day, the 

Lifetime is considered 1. For the experiments, a value of α of 0.8 is selected for original 

RepuScore for all comparisons. The value of 0.8 is selected to allow more importance 

in the past than the present.  

The deployment experiments show information from two organizations. The 

first receiver organization is a small business organization with a user base of 50 that 

uses SpamAssassin to classify the emails. This organization has deployed RepuScore 

since 10/9/2007.  

The second receiver organization is an Email Service Provider (ESP) that has 

deployed RepuScore since 2/7/2008. The organization has 78,000 users of which about 

10,000 paying customers have SpamAssassin plug-in to identify senders. About 

17,000+ verified authenticated emails are received by the organization in a single day. 

5.2.1 Format of Logs to RepuScore Algorithm 

The mail logs from the non-profit organization were based on postfix mail server. Table 

5.2 shows the different checks that the postfix server performed. The mail server uses 

spamhaus.org as the RBL. The anonymized logs captured received emails for 5 

organizations. 

The RepuServer computes the information from different senders. This is 

maintained in the format shown in Table 5.3. The RepuCollector and the Central 

Authority maintain the reputation for senders in the format shown in Table 5.4.  

 



52 

 

 

 

5.2.2 Experiments with Simulated Logs 

This section discusses the results from the simulated logs: 

a) Effect of α on trusted Sender with sudden increase transmitted spam 

b) Initial Values for RepuCollector 

c) Resilience to Sybil Attacks 

5.2.2.1 Effect of α on trusted Sender with sudden increase transmitted spam 

This section discusses the scenario where spammers build reputation and 

suddenly transmitting huge amounts of spam. In such cases, it is expected that the 

sender identities’ reputation would be high until the spamming activity, after which the 

reputation would decrease quickly.  To demonstrate the effectiveness of RepuScore, 

logs with 100 RepuCollectors spanning 45 aggregation intervals were created. Random 

number of RepuServers are selected which reported their reputations to their local 

 
Graph 5.6: The change in the reputation of a trusted domain that transmits spam after 
reputation interval 30 as a function of α. Reputation eventually converges to (1 - average 
spam rate) after multiple reputation intervals. A high value of α places importance to 
reputation in the previous interval, whereas a lower value places higher importance to 
the present interval. For a high value of α, it takes a long time for the reputation to 
change whereas for low α value the change is faster. The sudden change from the initial 
score in the first interval is due to initial sender reputation set at 0.7.  
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RepuCollectors. The number of email and spam transmitted to and from an 

organization was perturbed using a random number; for example, since RepuScore for 

trusted and reputable senders, the spam rate among them was set at under 20%, whereas 

a spamming domain’s spam rate was set at greater than 95%. (The trend from real 

world logs.)  

Using Equation 1 without Swapping α and (1- α) 

Graph 5.6 demonstrates the reputation of a sender identity from which the 

amounts of spam suddenly increased and demonstrate these using different values of α. 

For the first 30 aggregation intervals, the RepuCollector built its reputation and 

attempted to be a trusted sender. After aggregation interval 30, the spam rate from the 

RepuCollector increased to 95%. The initial jump in the reputation is due to the value 

of α combined with the initial reputation value of RepuCollector that was set at 0.5. 

Therefore, the reputation of the RepuCollector for α = 0.9 decreased from 0.7 after the 

first aggregation interval. 

In the case where the sender does not propagate spam, the reputation should 

 

Graph 5.7:  In the modified RepuScore algorithm, a high value of α (other than 1.0) 
implies gradual increase, but fast decrease in reputation. 
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increase slowly indicating a long history of non-spamming. Hence the high value of α 

is good to maintain an association for a long history of good actions. If the sender 

propagates spam, the reputation should decrease immediately, reflecting the current 

actions of the sender. A low value of α guarantees an immediate reduction when the 

sender propagates spam.  

Using Equation 1 with Swapping α and (1- α) 

With the interchange of α and (1- α) in Equation 1, allows the slow increase and 

fast decrease in the reputation. Graph 5.7 demonstrates the values of reputation by 

using the modified algorithm. For high values of α, reputation increases gradually but 

decreases more rapidly.  

5.2.2.2 Initial Values for RepuCollector 

Setting an appropriate initial value for RepuCollectors’ reputation is extremely 

important to maintain a trusted group of reputable senders. For instance, if the initial 

reputation scores for the RepuCollector and RepuServers are set too high, it would take 

a long time for the reputation to decrease. On the other hand, if the initial reputation is 

 

Graph 5.8: RepuScore’s resilience towards Sybil attack. Multiple spamming domains 
(under a Sybil’s control) increase their reputation of each other and decrease reputation 
for others after the reputation aggregation interval 30. Sybil domains reputations stays 
low and non-Sybil’s reputation remains high. 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

R
ep

ut
at

io
n 

S
co

re

Reputation Aggregation Intervals

Sybil Domain with 10% Sybil domains
Sybil Domain with 20% Sybil domains
Sybil Domain with 30% Sybil domains
Good Domain with 10% Sybil domains
Good Domain with 20% Sybil domains
Good Domain with 30% Sybil domains



55 

 

 

 

set too low, it would take a long time for the reputation of a non-spamming 

RepuCollector to increase. 

The experiments show that an ideal initial reputation value for the RepuServer 

and the RepuCollector is between 0.5 and 0.7. With different initial values it is noted 

that the average reputation of all the domains using the logs from the non-profit 

organization converged to about 0.6 for α = 0.1, 0.47 for α=0.5 and 0.36 for α = 0.9. 

Hence, an ideal initial reputation should be equal to the average reputation of all 

domains in the system after a long period. In order for the new reputation domains to 

participate in the reputation aggregation intervals, the threshold should be 0.1- 0.3 

below the initial reputation. 

5.2.2.3 Resilience to Sybil Attacks 

To demonstrate resilience to Sybil attacks, the percentage of malicious reporting 

RepuCollectors is increased from 10 to 30%. Each sender transmits a high amount of 

spam (> 95%) for the first 30 aggregation intervals. After 30 aggregation intervals, the 

Sybil attackers start increasing the reputation of its own Sybil domains and decrease the 

 

Graph 5.9: Percentage of Authenticated Emails classified using RepuScore. The 
reputation computed from receiver-organization 1 was used to classify emails of 
receiver-organization 2. On average, RepuScore classified about 72% of emails - 
40% were accepted and 32% were rejected. 
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reputation of other domains. Graph 5.8 demonstrates the results where the reputation of 

the Sybil domains steadily decreased, but the reputation of the non-Sybil domains 

increased. 

5.2.3 Results from the Deployment 

The RepuScore statistics, effectiveness of RepuScore and the results of Volume-

Enhanced RepuScore is demonstrated in this section. 

 

Graph 5.10: Around 10% of the authenticated sender identities were credible senders; 
while about 32% were known spammers. RepuScore had no reputation information 
for 58% of the senders.  

 

 

Graph 5.11: Number of sender identities with lifetime of 1 day (sent emails only on 1 
day in 174 days) and 2 days (sent emails on 2 consecutive days in 174 days) plotted 
against their first appearance. For the sake of brevity, the number of domains which 
had lifetimes of 3 and above is not shown. However, it is noted that the value is 
negligible compared to Lifetime 1 and 2. About 8000 sender identities with Lifetime 
1 sent emails were noticed. 
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Effectiveness of RepuScore 

To show the effectiveness of RepuScore, the reputation computed from the first 

receiver organization from day 107 is used to compute the reputation at the second 

organization’s mail logs. In these graphs, the second organization uses SpamAssassin 

and not RepuScore to classify emails. 

Graph 5.9 and Graph 5.10 shows the effectiveness of RepuScore in classifying 

authenticated emails. The results show that using RepuScore, while only 10% of the 

sender identities were good over 23 days they transmitted about 40% of the 

 

Graph 5.12: Cumulative distribution of sender identities as a function of 
reputation. 97.8% of the identities had reputation of 0 or 1. 

 

Table 5.5: The distribution of reputation as a function of minimum good 
reputation. 

 
 

Minimum Good 
Reputation

Number of Good 
Domains

0 (From 0 to 1) 16,509 (100%)
0.1 (From 0.1 to 1) 1,925 (11.66%)
0.2 (From 0.2 to 1) 1,858 (11.25%)
0.3 (From 0.3 to 1) 1,834 (11.11%)
0.4 (From 0.4 to 1) 1,817 (11.01%)
0.5 (From 0.5 to 1) 1,803 (10.92%)
0.6 (From 0.6 to 1) 1,767 (10.70%)
0.7 (From 0.7 to 1) 1,752 (10.61%)
0.8 (From 0.8 to 1) 1,730 (10.48%)
0.9 (From 0.9 to 1) 1,681 (10.18%)
1 (Reputation of 1) 1,541 (9.33%)



58 

 

 

 

authenticated emails that were accepted by RepuScore. About 32% of the sender 

identities were spammers that sent about 32% of the authenticated emails which were 

rejected using RepuScore. The experiment demonstrates that with the knowledge of 

42% of the sender identities, RepuScore classified 72% of the authenticated emails.  

The results show that reputation gathered from a small set of users can be 

effective to classify emails for a large number of users. It is noticed that the number of 

identities RepuScore had no knowledge about was always constant indicating that a lot 

of new one-time sender identities were being introduced. 

Graph 5.11 proves the hypothesis about a huge number of sender identities 

being created to spam and are taken down soon. It can be noticed that sender identities 

with a lifetime of 1 day are distributed over the time of the deployment. The total 

number of identities that sent emails only in 1 interval was about 8000. The rate at 

which identities sent email on two consecutive days was much lesser.  

The cumulative distribution of sender identities as a function of reputation is 

demonstrated in Graph 5.12. Out of the 16,500+ identities, about 14,000 had a 

reputation of 0. The graph shows that about 97.8% of the senders have a reputation 

Graph 5.13: The distribution of sender identities vs. their lifetime. The number of 
sender identities decreases as the lifetime increases.  
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either “0” or “1”. With the help of Table 5.5, a minimum good reputation to be 0.5 is 

selected as it bisects the two clusters with reputations of 0 and 1. With minimum good 

reputation as 0.5, only 10.92% of the sender identities were good senders. By changing 

the minimum good reputation to 0.7, 51 (0.3%) additional sender identities were 

considered bad.  

Graph 5.13 also validates this by showing the distribution of the number of 

sender identities vs. their lifetime. The number of sender identities with lifetime of 1 

was about 8,000. However, as the lifetime increased, the number of sender identities 

became smaller and evenly distributed.  

To prove the hypothesis that if the lifetime of the sender identity is long, the 

 

Graph 5.14: Percentage of good (or bad) sender identities to total number of sender 
identities as plotted against lifetime. The probability that a sender identity being 
credible increases with long lifetime. 

 

 

Graph 5.15: Average reputation of all sender identities with the same lifetime. As the 
lifetime increases, sender identity with longer lifetime has a higher reputation.  
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probability of it being a good identity is high, a plot of the daily percentage of good and 

bad sender identities plotted against lifetime in Graph 5.11. The graph shows that the 

percentage of bad identities decreases as the lifetime increases, whereas the percentage 

increases for legitimate sender identity. Graph 5.15 validates this claim and shows the 

 

Graph 5.16: Number of times a sender identity changed from good to bad or vice-
versa. Only 290 sender identities (about 1.75%) changed its behavior.  

 

 

Graph 5.17: Volume-Enhanced RepuScore reacts to the email volume for a popular 
free email provider. After volume enhancement, the reputation between the intervals 
1-11, drops radically. Reputation increases between the intervals 11-15. The slope in 
volume enhanced RepuScore is indicative of email volume.  

 

 

Graph 5.18: Volume of the Spam and Email noticed at receiver organization 1. The 
reputation of the sender identity changes based on the email volume.  
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average reputations for all sender identities with same lifetimes. The curve for the 

average reputation for all identities shows a similar trend as percentage of good 

identities in Graph 5.14. Additionally, using a minimum good reputation of 0.5, 

credible sender identities had an average lifetime of 61.9 days while spammers had 

17.47 days. 

Graph 5.16 shows the number of sender identities for which the reputation 

changed from being good to bad or vice versa. About 1.75% changed from being good 

to bad or vice versa corresponding to about 291 sender identities. There were only 8 

sender identities whose reputation kept changing from good to bad or vice versa more 

than 15 times as their reputations hovered around 0.5. 

 

Graph 5.19: RepuScore: Reputation of the free email provider computed using 
information from two receiver organizations. Receiver organization 2 was 
introduced on day 107 of receiver organization 1.  

 

 
Graph 5.20: Volume-Enhanced RepuScore: Using volume, the global reputation is 
closer to the reputation from both the receiver organizations. 
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Volume-Enhanced RepuScore 

Graph 5.17 shows the reputation for a sender identity, corresponding to a 

popular free email service on the Internet. The sender identity had alternatively sent 

high and low spam rate to a single organization. Graph 5.18 shows the corresponding 

email volume and spam volume. Using the reputation information from the receiver 

organization 1, logs from the receiver organization 2 classify the emails. Graph 5.17 

shows the benefit of using volume enhancement as the sender identity reputation was 

 

Graph 5.21: Reputation of IP address over the lifetime of the deployment. 

 

Graph 5.22: The reputation of a well known free email provider computed over 170 
days. 
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varied with the email volume. From the graphs, it is noticed that the rate at which the 

reputation decreases for changes based on the email volume. For example, from 

interval 1 to 11, the volume-enhanced reputation is lower than the original reputation. 

At intervals 11 to 13, the reputation computed by volume-enhancement was higher than 

the original RepuScore algorithm. It is noted that with the help of Volume-Enhanced 

RepuScore, the slope of the reputation follows the email volume. The average 

 

Graph 5.23: The number of IP addresses as a function of their lifetime. As lifetime 
increases, the number of domains decreases. A large amount of domains had a lifetime 
of “0”. 

 

 

Graph 5.24: The number of authenticated sender identities as a function of lifetime. 
This follows the same trend as the IP addresses.  
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reputation over 175 days for the sender was 0.82 using the original RepuScore and was 

about 0.662 using volume-enhanced RepuScore. On the average over 175 days, 

considering a minimum good reputation of 0.5, the sender was credible. 

Combining Reputations from Two Receiver Organizations 

This experiment considers the effect of combining global reputation computed 

 

Graph 5.25: The average reputation of the IP addresses as a function of the lifetime. 
As the lifetime increases, the average reputation for IP address also increases. 

 

 

Graph 5.26: The average reputation of a sender identity as a function of lifetime. As 
the lifetime increases, the average reputation for authenticated sender identity also 
increases. 
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at two receiver organizations. For the sender identity discussed in Section 4.3, the 

receiver organization 2 transmitted about 38,100 authenticated emails of which 61 were 

spam in a span of 55 days. The receiver organization 2 started the evaluation of 

RepuScore from the reputation interval 107. 

Graph 5.19 and Graph 5.20 shows results using RepuScore and Volume-

Enhanced RepuScore. The experiments show the accuracy of the reputation depends on 

the number of honest receiver organizations that start contributing to RepuScore. As the 

 

Graph 5.27: The number of IP addresses with lifetime 0 and 1 that show up during 
the time of deployment. 

 

 

Graph 5.28: The number of sender identities that appear with Lifetime 0, 1 that 
appear during the time of deployment. 
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number of receiver organizations increase, the global reputation will be a weighted 

average of the reputation seen from different domains. In the example, as both receiver 

organizations did not maintain reputation for the other, the global score was a simple 

average. 

Comparison between using IP address and Domain name as Sender Identity 

Graph 5.21 shows the reputation of an IP address. The reputation is displayed 

against the time of deployment. It can be seen that the reputation of the sender increases 

 

Graph 5.29: The daily percentage of IP addresses that were accepted, rejected and 
with no reputation. 

 

 

Graph 5.30: The percentage of rejected emails, accepted emails and with emails with 
no reputation computed by RepuScore. 
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from 90 and then becomes equal to 100.  Graph 5.22 demonstrates the reputation of the 

sender identity of the well-known free email provider. It can be seen that as the time of 

deployment increased, the reputation of the sender changes a lot over the time. About 

366 different IP addresses claimed to have sent email from the said domain. Of these, 

184 (50.27%) had proven SPF and DKIM records.  

Graph 5.23 shows the number of IP addresses having the specific lifetimes. It 

can be seen that as the lifetime increases, the number of IP addresses with the specific 

lifetime decreases. A large number of IP had a lifetime of “0”.  This shows that a large 

 

Graph 5.31: The percentage of authenticated sender identities that were rejected, 
accepted and with no reputation. 

 

 

Graph 5.32: The percentage of authenticated emails classified using RepuScore. 
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Graph 5.33: The percentage of False Positives plotted against number of days. 

 

 

Graph 5.34: The percentage of False Negatives plotted against number of days. 
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number of IP addresses come online and do not come back again. Graph 5.24 shows the 

same trend for domain name. Using domain name and IP address follow the same 

trend. 

Graph 5.25 shows the average reputation of the IP addresses with the same 

lifetime. It can be seen that as the lifetime increases, the average reputation of the IP 

addresses increases. Graph 5.26 shows the same statistics for domain name. These 

shows that lifetime can be considered to be used for computing reputation for IP 

addresses.  

Graph 5.27 shows the distribution of the identities over the lifetime of the 

deployment. It can be seen that everyday at least 200 new IP addresses transmitted 
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Graph 5.35: The total amount of emails received and classified using RepuScore 
against number of days. 
 

 
Graph 5.36: The percentage of emails classified using RepuScore. 
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emails that did not send emails again. Graph 5.28 shows the same information for 

domain name. 

Email Classification Using RepuScore 

The reputation information is used from the single domain (16,500+ domains or 

58,000+ IP addresses) and applied the information to classify emails at a second 

organization. The second organization received about 4.72 million emails in the month 

of March 2008.  

Graph 5.29 shows the daily percentage of IP addresses which were classified as 

good, bad and those for which there was no reputation at all. RepuScore computed 

reputation for about 14.25% of the IP addresses that sent emails.  
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Graph 5.30 shows the corresponding daily percentage of emails that were 

classified using IP addresses for email classification. It can be seen that using IP 

addresses, a large amount of emails cannot be classified. This is because the bulk of 

emails were distributed over a large number of IP addresses for which reputation still 

needs to be maintained. 

Graph 5.31 shows the same results using the authenticated domain names. 

About 31.5% of the emails were authenticated using DKIM and SPF. Graph 5.32 shows 

the percentage of authenticated emails that could be classified using RepuScore. With 

the knowledge of about 12% of the total domains that sent emails, RepuScore was able 

to classify about 26.8% of authenticated emails during March 2008.  

Accuracy of RepuScore 

Using the logs available at receiver-organization 2 with 4 mail servers, which 

we designate as a, b, c and d. For evaluating the accuracy of RepuScore, we computed 

reputation from server a, b and c over 250 days of deployment every day. Real-Time 

Blacklists identifies a sender as spammer or otherwise. We then used the email logs 

available at mail server d to calculate the accuracy at mail server d.  

Graph 5.33 demonstrates the false positives due to email classification using 

RepuScore. We note that over 250 days of deployment, the average % false positives is 

about 1% of the total email identified. Graph 5.34 demonstrates the false negatives by 

using RepuScore. We note that the average % false negatives are about 1.2% of the 

total emails classified. We note that for the total emails classified, the accuracy of 

RepuScore is 97.8%. Graph 5.35 shows the total number of emails received by server d 

and the total percentage of emails classified using RepuScore. Graph 5.36 shows the % 
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of emails classified using RepuScore every day of the deployment. We notice that 

about 30.3% of the emails were classified. We believe that if server d computes 

reputation, the reputation can be useful in increasing the % of the emails that can be 

identified by RepuScore.   



 

 

 

 

 
 

CHAPTER 6: CONTRIBUTIONS AND FUTURE WORK 
 
 

The contributions of this dissertation work along with the future work in this 

direction are presented in this chapter. Section 6.1 discusses the contributions followed 

by Section 6.2 that discusses the future work in this direction. 

6.1 Contributions 

Sender accountability is a mechanism to hold senders accountable for the emails 

they transmit. It requires a) identifying the senders; and b) maintaining a history of the 

sender’s activity.  

This dissertation presents an authorization framework, called Privilege 

Messaging or P-Messaging, overlaying the existing email infrastructure while retaining 

the beneficial aspects such as relaying. For the sender, P-Messaging provides a 

mechanism that allows email delivery only if the sender possesses the privilege that the 

receiver would accept. Based on the privileges, the email is classified automatically 

according to the Privilege Tag at the receiver. Maintaining the privileges in the white-list 

as compared to individual email IDs allows a smaller list to be maintained. Each 

Privilege Server manages multiple privileges as opposed to a single credential in 

previously proposed domain-based authentication schemes. In case of the compromise 

or spam being propagated from one domain, the negative reputation is contained within 

a privilege rather than the complete domain.  

With the help of P-Messaging, a trusted third party verifies the email’s 
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authenticity. To verify privileges, P-Messaging establishes a Circle of Trust (CoT) 

among the P-Server for privilege verification. P-Messaging performs dual digital 

signature on an email, first by the assigned privilege and then by P-Server, allowing 

peers in the CoT to verify the email’s authenticity. This ensures that only authorized 

users can send messages only if their P-Server is a member of CoT, and that a P-Server 

needs to limit the unwanted email that it transmits or it would be revoked from the CoT. 

To ensure a long history of sender accountability, this dissertation work 

describes, RepuScore, a collaborative reputation framework that calculates global 

reputation for sender identities by collecting reputation-views from multiple receivers. 

After being blacklisted, spammers usually adopt new sender identities.  In contrast, a 

legitimate sender’s identity typically exists for long periods. A reputation framework 

will be effective in blocking spam by maintaining a group of reputable trusted senders.  

RepuScore distributes the overhead for reputation collection and computation by 

using a distributed architecture while allowing a centralized authority to collectively 

calculate the global reputation for each sender.  

This dissertation presents algorithms to compute reputations using the history 

with the help of the correlation factor (α). RepuScore uses the spam rate of the senders 

to maintain the history of sender activity. To protect against Sybil attacks, this 

dissertation has devised a mechanism to consider a good sender’s input more than the 

input submitted from a non-reputable one. During RepuScore deployment, it is noticed 

that the daily change in the email volume affected the reputation when only the spam-

rate is used to calculate the score.  

To enhance the effect of volume, Volume-Enhanced RepuScore incorporates 
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email volume to compute reputation in addition to the spam rate of the sender identity. 

This dissertation also discusses a RepuScore plug-in for SpamAssassin to collect 

information about each email from mail servers. The plug-in is deployed RepuScore at 

two organizations since 10/9/2007 and computed reputations for authenticated sender 

identities. 

The results generated from using both the IP addresses and domain name as 

sender identities is compared. During the deployment since October, reputations for 

about 16,500+ authenticated domains and about 58,000+ IP addresses have been 

computed. The reputation for sender identities as seen from a single domain is applied at 

another organization for 1 month (March 2008). The second organization received about 

4.72 million emails during this period of which about 1.48 million (31.5%) were domain 

authenticated using SPF and DKIM. The analysis shows that RepuScore can be effective 

to classify sender’s emails especially when the sender identity is domain authenticated. 

The results show some interesting observations: a) identities with low reputation 

have a shorter lifetime compared to ones with high reputations; b) RepuScore was able 

to classify emails from about 42% of the authenticated sender identities corresponding to 

about 72% of the authenticated email volume; c) about 97.8% of the sender identities 

had reputation either near 0 or near 1. d) Average lifetime of good and bad sender 

identity was 61.9 and 17.47 days respectively as a large number of sender identities are 

created constantly that sent email only in one interval. 

6.2 Distributed Reputation Management Framework 

Though centralized reputation management provides high accuracy, it introduces 

a single point of failure. Reputation management protocol faces Denial of Service 
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attacks from spammers disabling the reputation management service. Centralized 

reputation management faces directed-attacks where spamming domains can maintain 

high reputation by sending legitimate emails to multiple domains, but send spam to a 

specific domain. As centralized RepuScore computes an average of the reputation, the 

spammer can maintain high-reputation and spam specific domains in each time-period. 

Organizations with low reputations can attempt to change identities when their 

reputation is known. This would allow organizations to use multiple domain names to 

send emails until their emails are accepted.  

To offset these problems from Central RepuScore, a distributed version of 

RepuScore needs to be developed where each node has its own view of the world in 

comparison with a single point of view for the entire world. A single view of the world 

might not be amenable to all the domains in the reputation algorithm. 

 

Figure 6.1: Distributed RepuScore Architecture where RepuCollectors synchronize 
with friend-peers to achieve high accuracy in reputation. 
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6.2.1 Distributed RepuScore Architecture and Algorithm 

The architectural components of the distributed RepuScore are the RepuServer, 

RepuCollector which are similar to the components of the central RepuScore. However, 

in distributed RepuScore, there is no Central Authority. Figure 6.3 shows the different 

components of the distributed RepuScore algorithm.  

A RepuCollector synchronizes with its peers to achieve a high-level of accuracy. 

The distributed RepuScore should achieve the baseline accuracy of the centralized 

RepuScore, but should be able to thwart the attacks that centralized RepuScore can face.  

Reputation Computation  

The RepuServer and RepuCollector compute reputation using Equation 4.2 and 

Equation 4.3 respectively. The RepuCollector reputations are shared among the peers 

  
 

 

 
 

 
 

Equation 6.1: Distributed RepuCollector while synchronizing with peers. 

 

 
 

 

 
 

 

 

Equation 6.2: The threshold to pause synchronization with peers. The 
Synchronization occurs every reputation aggregation interval. 
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using a distributed mechanism. Equation 6.1 shows the new RepuCollector algorithm for 

synchronization architecture. This algorithm is iterated a number of times till each node 

assume a steady state. Equation 6.2 shows the algorithm to compute the synchronization. 

The steady state in reputation is calculated when a system synchronizes with its peers. 

The steady-state is assumed to have been reached when the difference in the reputation 

between a previous time and the present time should be less than a threshold. This 

mechanism allows dynamic variation of the number of times a particular RepuCollector 

needs to synchronize with its peers. 

The distributed RepuScore architecture faces Sybil Attacks similar to the 

Centralized RepuScore algorithm. The weighted RepuCollector algorithm above 

attempts to reduce the effect of Sybil domains by employing high importance to 

reputable peers than to low reputable peers.  

6.2.2 Effect of Synchronization 

Organizations can choose to perform unidirectional or bidirectional 

synchronization with the peers. Though bidirectional synchronization would converge 

faster, there might be security and privacy issues for bidirectional synchronization. For 

example, when a RepuCollector synchronizes with a peer, the peer trusts the requesting 

peer with its data. However, the data from the requesting peer might not be accurate 

enough for synchronization. Therefore, RepuCollectors should be allowed to perform 

both unidirectional and bidirectional synchronizations. 
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Due to synchronization, a peer’s local reputation is passed onto the senders 

through multiple iterations. Therefore, the sender reputation can be diluted multiple 

number of times before reaching a required organization. Figure 6.3 shows the effect of 

synchronizing. Reputations from node H is passed through the nodes G and E before 

reaching the node A. The reputation view of the node H is reduced by node G’s 

reputation of node H, node E’s reputation of node G and finally, node A’s reputation of 

node E. It needs to be noted that: A H ≠ A E * E G * G H where  represents 

the synchronized value. Given number of RepuCollectors is n and the number of 

synchronizations at best case should be: log2 (n).  

6.2.3 Evaluation of Distributed RepuScore 

Distributed RepuScore based on the following criteria: 

a) Synchronization Frequency: Synchronization frequency is the number of times 

distributed RepuScore needs to synchronize in a single day. The Synchronization 

frequency should be set to a value so that the cost of synchronization is minimized while 

computing the local reputation is highly accurate. 

  

Figure 6.2: Effect of synchronization in distributed RepuScore. 
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b) Effect of random peers vs. select set of peers: Distributed RepuScore can be 

designed to select random peers to synchronize their reputations or select a set of trusted 

peers to interact with. An evaluation should demonstrate which among the two provide 

higher accuracy. 

c) Attacks on Distributed RepuScore: Distributed RepuScore needs to be evaluated to 

check how well it can fare against different attacks.  

o Directed-attack against a single domain: a spamming domain can send 

directed spam against one domain while sending good emails to other organizations to 

maintain high reputation. Distributed RepuScore will be able to thwart directed attacks. 

Both the RepuScore algorithms could be evaluated to demonstrate how Directed-attacks 

can be thwarted. 

o Sybil Attacks are where spammers create multiple identities that are used to 

gain disproportionate influence to thwart reputation management protocols. Experiments 

should be able to demonstrate that Distributed RepuScore can thwart Sybil attacks as 

best as RepuScore. 
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