
TOWARDS SENDER ACCOUNTABILITY ON EMAIL INFRASTRUCTURE USING
SENDER IDENTITY AND REPUTATION MANAGEMENT

by

Gautam Singaraju

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Information Technology

Charlotte

2009

Approved by:

Dr. Brent Kang

Dr. Anita Raja

Dr. Xintao Wu

Dr. Jack Cathey

 ii

© 2009

Gautam Singaraju
ALL RIGHTS RESERVED

 iii

ABSTRACT

GAUTAM SINGARAJU. Towards sender accountability on email infrastructure
using sender identity and reputation management. (Under the direction of DR.
BRENT BYUNGHOON KANG)

Email Infrastructure has grown exponentially, since the early days of ARPANET,

to support millions of users. However, the extensive adoption of the original open design

has led to security implications. As claimed in recent statistics, about 95% of the emails

are unsolicited and place phishing losses at $500 million.

Even though, current email-filtering technologies weed out most of the incoming

spam, there is a need to hold senders accountable for their email behavior. Without

sender accountability, there is no way to hold senders responsible for their online email

behavior. Holding senders accountable helps identify senders who propagate spam, and

possibly reduce the spam transmitted.

Holding a sender accountable for the sender’s online activity requires: first, the

sender’s identification; and second, maintenance of its historical email activity. Today,

widely deployed sender identity techniques counteract email spoofing by authenticating

the sender's email server to the receiver organizations. Unfortunately, these techniques

are not as effective as originally intended as: a) the senders create their own identity; b)

spam-propagating senders have adopted these technologies.

Knowledge of the sender's identity alone does not guarantee its adherence to

email best practices. Towards establishing sender accountability, this dissertation

proposes RepuScore, a collaborative reputation framework that allows participating

receiver organizations to share sender's behavioral patterns. In addition, this dissertation

 iv

also explores Privilege Messaging (P-Messaging) framework, a fine-granular sender-

authorization framework where each sender holds a set of credentials (privileges) to send

an email; the receivers verify the attached credentials before accepting the emails. P-

Messaging attempts to maintain trust among organizations with the help of a central

authority, which periodically verifies the participating organization's adherence to good

email practices.

To create a long-standing history, participating organizations locally collect

information about the senders - from users or existing spam classification mechanisms

that are submitted to a central RepuScore authority - to compute a global reputation

summary. This dissertation discusses the distributed architecture and the algorithms

designed to compute reputation based on the sender's a) spam rate (RepuScore) or b)

spam rate and email volume (Volume-Enhanced RepuScore).

Additionally, the dissertation shares findings from experiments based on a

RepuScore prototype using a) simulation logs; and b) deployed SpamAssassin plug-in

since 10/9/2007 at three organizations. Based on the deployment, reputation for about

90,000 sender identities and about 12 million IP addresses as of Feb 2009 have been

computed. We note that email classification using RepuScore is 97.8% accurate.

Finally, this dissertation discusses future directions for Distributed RepuScore that

allows organizations to maintain their personal reputation view to be shared among

trusted peers. Distributed RepuScore enables a global reputation view while holding

senders accountable at each organization instead of deploying it at a central authority.

 v

ACKNOWLEDGEMENT

First and foremost, I would like to express gratitude to my dissertation director,

Professor Brent ByungHoon Kang, whose insightful guidance has augmented my

doctoral study. His constant help, suggestions, and willingness to meet me whenever I

knocked at his office door deserve my further appreciation.

I am grateful to the dissertation committee members, Professor Anita Raja and

Professor Xintao Wu, for their thoughtful suggestions that were extremely helpful in

completion of this dissertation. I would also like to thank them for their warm advice on

my career path.

I am would additionally like to thank Professor Yuliang Zheng and Professor

Gail-Joon Ahn for their advice during my doctoral study. Further, I am indebted to

members of the Infrastructure Systems Research Laboratory for their valuable feedback

on my research.

I would to thank Ladar Levison and Ben Poliakoff for their contributions to my

research by providing logs without which most of the experiments would not have been

possible. I would like acknowledge Jeff Moss whose open source tool has been very

valuable to this research.

Finally, but most importantly: my special thanks to my parents, brother and Vijita

for their support, prayer, and love.

 vi

DEDICATION

To Guruji and my family
for everything.

 vii

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF GRAPHS x

LIST OF TABLES xiii

LIST OF EQUATIONS xiv

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: BACKGROUND AND RELATED WORK 8

2.1 Email Classification based on content and Collaborative Blacklisting 10

2.2 Classification based on Sender’s Identity 10

2.3 Classification based on Reputation/Certification Schemes 12

2.4 Reputation Management in Peer-to-Peer systems 14

CHAPTER 3: PRIVILEGE MESSAGING 16

3.1 P-Messaging: Components 18

3.2 Circle of Trust in P-Messaging 19

3.2.1 Addition of a P-Server to the CoT 20

3.2.2 Revocation of a P-Server from the CoT 20

3.2.3 Advantages of CoT 21

3.3 P-Messaging Architecture 21

3.3.1 Sender Architecture 22

3.3.2 Receiver Architecture 23

3.4 Privileges in an email header: Privilege Tag 24

3.4.1 P-Tag Creation and Maintenance 25

3.4.2 Privilege-List Maintenance 25

3.5 Advantages of Privilege: A fine-granular and strongly-bound Identity 26

 3.6 Privilege Messaging Implementation Details 26

CHAPTER 4: REPUSCORE FRAMEWORK 28

4.1 Sender Identity Techniques for Reputation Management 28

 viii

4.2 RepuScore: A Collaborative Reputation Framework 29

4.2.1 Design considerations for RepuScore 29

4.2.2 RepuScore Components 31

4.2.3 RepuScore Architecture 32

4.3 RepuScore Algorithm 35

4.4 Volume-Enhanced RepuScore Algorithm. 38

4.5 RepuScore Deployment 41

4.5.1 SpamAssassin Plug-in 42

CHAPTER 5: RESULTS 43

5.1 P-Messaging Evaluation 43

5.1.1 Signature Generation and Verification Time 43

5.1.2 Privilege Generation and Verification time 44

5.1.3 Effect of Cardinality on Collaborative Blacklists 44

5.2 RepuScore Evaluation 49

5.2.1 Format of Logs to RepuScore Algorithm 51

5.2.2 Experiments with Simulated Logs 52

5.2.2.1 Effect of α on trusted Sender 52

5.2.2.2 Initial Values for RepuCollector 54

5.2.2.3 Resilience to Sybil Attacks 55

5.2.3 Results from the Deployment 56

CHAPTER 6: CONTRIBUTIONS AND FUTURE WORK 72

6.1 Contributions 72

6.2 Distributed Reputation Management Framework 74

6.2.1 Distributed RepuScore Architecture and Algorithm 76

6.2.2 Effect of Synchronization 77

6.2.3 Evaluation of Distributed RepuScore 78

REFERENCES 80

 ix

LIST OF FIGURES

FIGURE 2.1: Comparison of Privilege Messaging with current technologies. 9

FIGURE 3.1 Granularity of Privilege Messaging Identity as compared to
 Domain-based solution and User-based White-lists. 17

FIGURE 3.2: Circle of Trust among the Privilege Servers. 20

FIGURE 3.3: P-Messaging Sender Architecture. 21

FIGURE 3.4: P-Messaging Receiver Architecture. 22

FIGURE 3.5: Microsoft Outlook Plug-in with new option: “Send with
 Privilege”. 27

FIGURE 3.6: Microsoft Plug-in that displaying list of Privileges. 27

FIGURE 3.7: Thunderbird plug-in with a new option: “Send with permissions”. 27

FIGURE 3.8: Thunderbird plug-in with a login prompt. 27

FIGURE 4.1: Hierarchical architecture for RepuScore with each RepuCollector
 receiving reputation information from multiple RepuServers. 32

FIGURE 4.2: The function function is monotonically decreasing function. 40

FIGURE 4.3: SpamAssassin plug-in collects statistics from mail servers. 41

FIGURE 4.4: Email classification using SpamAssassin plug-in. 41

FIGURE 6.1: Distributed RepuScore Architecture where RepuCollectors
 synchronize with friend-peers. 75

FIGURE 6.2: Effect of synchronization in distributed RepuScore 78

 x

LIST OF GRAPHS

GRAPH 5.1: The overhead of P-tag using P-Messaging compared to PGP signed
 and unsigned emails.

44

GRAPH 5.2: The overhead of P-Tag verification compared to PGP signature
 verification.

44

GRAPH 5.3: Percentage of incorrectly classified email per day without receiver
 collaboration to maintain a blacklist.

45

GRAPH 5.4: Percentage of incorrectly classified email per day where receivers
 within an organization collaborated to maintain a blacklist.

46

GRAPH 5.5: Percentage of incorrectly classified email per day where all 5
 organizations collaborate to maintain a global Blacklist.

47

GRAPH 5.6: The change in the reputation of a trusted domain that transmits
 spam after reputation interval 30 as a function of α.

52

GRAPH 5.7: In the modified RepuScore algorithm, a high value of α (other than
 1.0) implies gradual increase, but fast decrease in reputation.

53

GRAPH 5.8: RepuScore’s resilience towards Sybil attack. 54

GRAPH 5.9: Percentage of Authenticated Emails classified using RepuScore. 55

GRAPH 5.10: Around 10% of the authenticated sender identities were credible
 senders; while about 32% were known spammers.

56

GRAPH 5.11: Number of sender identities with lifetime of 1 day and 2 days
 plotted against their first appearance.

56

GRAPH 5.12: Cumulative distribution of sender identities as a function of
 reputation. 97.8% of the identities had reputation of 0 or 1.

57

GRAPH 5.13: The distribution of sender identities vs. their lifetime. The number
 of sender identities decreases as the lifetime increases.

58

GRAPH 5.14: Percentage of good (or bad) sender identities to total number of
 sender identities as plotted against lifetime.

59

GRAPH 5.15: Average reputation of all sender identities with the same lifetime. 59

GRAPH 5.16: Number of times a sender identity changed from good to bad or
 vice-versa.

60

 xi

GRAPH 5.17: Volume-Enhanced RepuScore reacts based on the email volume
 for a popular free email provider.

60

GRAPH 5.18: Volume of the Spam and Email noticed at receiver organization 1. 60

GRAPH 5.19: RepuScore: Reputation of the free email provider computed using
 information from two receiver organizations.

61

GRAPH 5.20: Volume-Enhanced RepuScore: Using volume, the global
 reputation is closer to the reputation from both the receiver
 organizations.

61

GRAPH 5.21: Reputation of IP address over the lifetime of the deployment. 62

GRAPH 5.22: The reputation of a well known free email provider computed
 over 170 days.

62

GRAPH 5.23: The number of IP addresses as a function of their lifetime. As
 lifetime increases, the number of domains decreases.

63

GRAPH 5.24: The number of authenticated sender identities as a function of
 lifetime.

63

GRAPH 5.25: The average reputation of the IP addresses as a function of the
 lifetime.

64

GRAPH 5.26: The average reputation of a sender identity as a function of
 lifetime.

64

GRAPH 5.27: The number of IP addresses with lifetime 0 and 1 that show up
 during the time of deployment.

65

GRAPH 5.28: The number of sender identities that appear with Lifetime 0, 1 that
 appear during the time of deployment.

65

GRAPH 5.29: The daily percentage of IP addresses that were accepted,
 rejected and with no reputation.

66

GRAPH 5.30: The percentage of rejected emails, accepted emails and with
 emails with no reputation computed by RepuScore.

66

GRAPH 5.31: The percentage of authenticated sender identities that were
 rejected, accepted and with no reputation.

67

GRAPH 5.32: The percentage of authenticated emails classified using
 RepuScore.

67

GRAPH 5.33: The percentage of False Positives plotted against number of days. 68

 xii

GRAPH 5.34: The percentage of False Negatives plotted against number of
 days.

68

GRAPH 5.35: The total amount of emails received and classified using
 RepuScore against number of days.

69

GRAPH 5.36: The percentage of emails classified using RepuScore. 69

 xiii

LIST OF TABLES

TABLE 5.1: shows the average percentage of incorrectly classified spam. 48

TABLE 5.2: Mail Logs from Postfix Server. 50

TABLE 5.3: Sample logs from simulated RepuServer Table. 50

TABLE 5.4: RepuCollector and CA reputation tables. 50

TABLE 5.5 shows the values by distribution against the minimum good
 reputation. 57

 xiv

LIST OF EQUATION

EQUATION 4.1: RepuServer algorithm computes sender’s reputation using
 good rate.

35

EQUATION 4.2: Modified RepuServer algorithm. 36

EQUATION 4.3: Local RepuCollector Reputation. 36

EQUATION 4.4: Central Authority computes global reputation. 37

EQUATION 4.5: Instantaneous value of α based on the volume of email. 39

EQUATION 6.1: Distributed RepuCollector while synchronizing with peers. 76

EQUATION 6.2: The threshold to pause synchronization with peers. 76

CHAPTER 1: INTRODUCTION

Email is a simple and cost effective messaging technology that has evolved into

a universal mode of interaction among users. The day-to-day activities are contingent

upon email infrastructure’s consistent and reliable operation. Unfortunately, email

architecture has not evolved proportionally as compared to Internet’s sudden growth

over the years. The original infrastructure was designed for communication among

relatively few machines. The current email infrastructure is mostly based on the

original design leading to a multitude of risks and threats faced by the users and their

organizations. Unsolicited email has now reached epidemic proportions, severely

limiting the email infrastructure’s usability (Gomes 2004). Phishing (Milletary 2006),

yet another threat, fools the recipients into divulging their financial information by

redirecting them to a masquerading site. Spam presently contributes to about 95% of all

email on the Internet and estimates place the financial losses due to phishing around

$2.8 billion a year.

Recent legislations (such as CAN-SPAM (CAN-SPAM act) and other State

Junk Email Legislations) that attempt to curtail unsolicited emails need to monitor an

extremely large amount of email communications. To deal with the deluge of emails,

organizations have adopted spam filters or blacklists that identify spam-propagating

senders. These techniques provide an excellent mechanism to weed out most

unsolicited emails; however, they could potentially blacklist a legitimate sender. The

2

effectiveness of blacklists therefore is subjective to the deploying organization.

Organizations usually consider a false positive1 10 times more seriously than a false

negative2. Therefore, financial losses are not only due to the unsolicited bulk email but

also from false positives (Finnegan 2006).

These observations motivate a fundamental need to enforce sender

accountability over the email infrastructure. By holding sender accountable, receivers

would be able to hold senders accountable for the emails they transmit. For example,

consider the situation where the senders consistently spam, by holding senders

accountable, the receivers can reject sender’s emails. Though different techniques (such

as blacklists) are available for email classification, sender accountability dictates a need

to monitor the senders over long periods.

To monitor the senders for extended periods, an irrefutable identity is essential.

For example, users on the Internet can send emails using IP address as the identity.

Unfortunately, spam Botnets (Ramachandran 2006) also use IP address to proliferate

unsolicited emails. A spoofed email3 though contains an envelope IP address, the IP

address cannot be held accountable for the actions that they have not performed.

However, the IP address is accountable for the spoofed email.

In an effort to stop spoofing, senders started using sender identity techniques,

discussed in Section 2.2, such as DKIM (Allman 2005, Peterson 2006), SPF (Wong

2004) and SenderID (Microsoft 2004). Currently, these techniques are a basis for

determining the sender’s history of adherence to best email practices (Jordon 2006).

1False Positive refers to the unsolicited emails being classified as solicited emails.
2False Negative refers to the solicited emails being classified as unsolicited emails.
3 In Email Spoofing, an email’s sender address and other parts of the header are altered such that it
appears to have originated from a different source.

3

Presently, about 35% of all emails over the Internet use one of the sender

authentication systems (Peterson 2006). The experiments conducted during this

dissertation also demonstrate that about 33% of the incoming emails were authenticated

after first filtering emails using blacklists.

The above techniques create a weakly-bound identity. Such an identity can be

considered weakly-bound as senders create their own identity. To be able to classify

emails from senders, there is a requirement to maintain a history of actions of these

identities. In the case of a weakly-bound identity, the senders’ identities can only be

revoked/ corrected by the senders who create the identity. A strongly-bound identity, on

the other hand, requires organizations to register their identity with a third party.

Accredited DomainKeys (Goodrich 2005) extends the presently deployed sender

identity techniques with the use of a central authority. Even with a strongly-bound

identity, there is a need to observe sender behavior. A strongly-bound identity allows

the central authority to revoke a spammer sender identity.

To establish sender accountability, this dissertation first discusses the design of

the Privilege Messaging (P-Messaging) Framework that enables an authenticated

sender to send emails while enabling the receivers to verify the email’s privileges

before creating content in the user’s mailboxes. A privilege can be viewed as a

credential associated with a group of users used to identify the senders.

Statistics collected with the help of a deployment at a single organization, as

discussed in Section 5.2.3, show that adoption of a sender identity technique by an

organization does not necessarily prove a sender’s adherence to a good mail practice. A

sender’s identity alone does not allow receiver-organizations to differentiate between a

4

credible sender identity and an unscrupulous one. It has been noted that spammers have

been the early adopters of the sender identity schemes. Preliminary experiments

discussed in Section 5.2.3 show that about 89% of the sender identities that use SPF

and DKIM were classified as spammer.

Given sender identification schemes, a mechanism for the receivers to evaluate

the sender’s past adherence to good email practices can be designed. This dissertation

describes RepuScore: a reputation framework which computes senders’ reputation

using receiver collaboration to enforce sender accountability.

Organizations such as Gmail (Taylor 2006) use reputation framework to classify

emails. Email reputation has been demonstrated to be highly effective in email

classification due to the ability to maintain the history of the sender’s adherence. Due to

large number of users, large organizations can maintain accurate reputation for large

number of senders. Smaller organizations desire reputation information for a large

number of senders, but cannot attain it themselves due to their limited operations. From

our deployment, we noticed that during a single year of deployment, a small

organization computed reputation of about 105,000 IP addresses where as an Email

Service Provider collected reputation for 12 million IP addresses. Small organizations

would benefit from sharing reputation about the senders they interact with. The

reputation collected from multiple organizations allows receivers to access a relatively

large history for a sender’s past actions. Such a perspective allows a receiver

organization to accept emails from senders about whom no prior information is

available. With the help of receiver collaboration, a sender’s spamming activity would

be reported to all receivers. Such a mechanism places the onus on the senders to reduce

5

the amount of unsolicited emails they send.

RepuScore provides organizations with the benefit of collaboration. RepuScore

eases the overhead of reputation collection and computation with the help of distributed

architecture. RepuScore supports a central architecture with minimal overhead

(Jakobsson 2004) for organizations to enforce sender accountability.

RepuScore maintains a history of the spam rate as a measure to evaluate the

senders using the Time Sliding Window Exponentially Weighted Moving Average

(TSW-EWMA) algorithm proposed by Biswas et.al (2005). RepuScore is resistant to

Sybil attacks (Srivatsa 2005, Yu 2003, Yu 2006) by valuing a reputable participant’s

vote higher than that of a less reputable one. To thwart Sybil attacks, RepuScore

employs the Weighted Moving Algorithm Continuous (WMC) (Yu 2002) algorithm.

In Chapter 5, this dissertation discusses the evaluation of the RepuScore

framework using a) simulated logs; and b) with the deployment at three receiver

organizations (from 10/9/2007 – to 04/26/2008). Using the simulated logs to

demonstrate the features of RepuScore framework, the framework is shown to

withstand Sybil attacks from colluding reputation reporters.

For the real-world deployment, a RepuScore plug-in for SpamAssassin has been

designed which employs existing SpamAssassin plug-ins. The RepuScore plug-in

verifies the sender identities and calculates senders’ reputation at a single organization.

From the deployment, this dissertation discusses the results of the deployment where

reputations for over 16,500 sender identities and 58,000 IP addresses have been

computed. Further, this dissertation discusses:

a. Two variations of the RepuScore algorithm: a) using spam rate; and b) using

6

both spam rate and email volume. As using only the spam-rate, variations in the

received email volume significantly impacted the reputation of the sender, Volume-

Enhanced RepuScore was designed as an extension that uses both spam-rate and email

volume for computing reputation.

b. the design of a RepuScore SpamAssassin plug-in. The plug-in uses existing

SpamAssassin plug-ins to verify the sender identity and transmits the information to a

local RepuServer.

c. Observations and statistics from our deployment from RepuScore:

i) With knowledge of only 42% of the sender identities (11% legitimate, 32%

spammers), RepuScore classified 72% of the authenticated emails.

ii) 97.8% of the sender identities had a reputation of either 0 or 1 where the

reputation is in the open interval (0, 1).

iii) Sender identities with a low reputation score have a shorter average lifetime

(17.47 days) as compared to ones with a high reputation score (61.9 days).

iv) A large percentage of sender identities send an email only on a single day.

v) Reputation can be accurate in determining if a sender identity is a spammer.

The global reputation is a single view that is used to enforce sender

accountability. While a global reputation labels a specific sender as that of a low repute,

another receiver organization might have a contradictory view. Maintenance of a single

global view drowns out contradictory views resulting in directed attacks where spam

senders could maintain high reputations by sending legitimate mail to reputable

domains while sending unsolicited emails to others. It is imperative to maintain

conflicting views rather than a single view that could be enforced by all senders.

7

Sharing reputation among different entities poses privacy issues. Organizations

would wish to share reputation collected only with a selected trusted list of peers rather

than the entire world. The design of RepuScore requires nodes to be time-synchronized

to calculate reputation based on inputs from a majority of the receivers. Time-

synchronization among multiple receiver organizations is difficult to achieve.

Due to these limitations, this dissertation proposes Distributed RepuScore as an

extension of the RepuScore, where each receiver organization maintains its own

reputation by eliminating the requirement for a central authority. To achieve higher

accuracy rates, the receiver organizations synchronize the reputation they compute

about a set of sender identities with each other. Distributed RepuScore could allow

organizations to choose their peers to synchronize reputations with. For example,

governmental organizations can participate in reputation sharing without the need to

share data with civilians.

This dissertation is organized as follows. Chapter 2 discusses the background

and related work including sender identity frameworks, reputation management

frameworks and finally, available email reputation management techniques. Chapter 3

discusses a novel flexible cardinal identity framework. In Chapter 4, this dissertation

discusses RepuScore framework, the first open source email reputation framework.

Chapter 5 discusses the result of our experiments. In Chapter 6, this dissertation

discusses the contributions and future work. Finally, in Chapter 7 concludes with the

discussion of our main contributions.

CHAPTER 2: BACKGROUND AND RELATED WORK

Network-based email communication has existed since the early days of

ARPANET (Hardy 1996) enabling a small, close-knit group to communicate

electronically. Today, even with the extensive usage of email infrastructure (Gomes

2004), there is no mechanism to provide strict sender accountability. As senders are not

accountable, there is no way to guard against fraudulent mailers sending unsolicited

messages to others. To combat this, multiple filtering technologies have been developed

that weed out most, but not all of the unsolicited email.

One of the mechanisms to address spoofing is to identify the senders. The sender

identity techniques have been implemented using: a) User-based identity; and b)

Domain-based identity. User-based identity systems, such as PGP, identify a specific

user to the receivers. Each user creates an identity that is submitted to a central

authority. The identities are used to identify the senders and classify emails from them.

Domain-based identity solutions authorize specific IP address to transmit emails.

These IP addresses are identified in the DNS records by the respective organization’s

System Administrators. Domain-based identities such as SPF, DKIM and SenderID,

discussed in Section 2.2, were developed to deal with email spoofing. Technologies can

be considered as a weakly-connected – weakly because the identity is created by the

organizations themselves. A recent study reports that 35% of all email is authenticated

using one of the sender identity techniques (Ironport 2006). Organization can setup the

sender identities themselves. Spammers have started adopting these solutions to create

9

their own identities to be able to propagate spam. Accredited DomainKeys allows a third

party to maintain the identities. Such a mechanism allows the identities to be strongly-

connected; an organization needs to notify the central authority before changing them.

Figure 2.1 shows the comparison between domain-based identity and user-based

identity. When domain is used as an identity, a complete domain is either white-list or

black-listed. For example, when a domain is blacklisted, honest-users of the domain

would not be able to send emails. Therefore, organization should maintain granular

identities smaller than that of the domain.

On the other hand, when using an email ID as an identity to check against both

white-lists and black-lists requires huge recourses. A new correspondent might be

considered as unsolicited unless the sender is listed in the white-list beforehand. These

lists can become extremely large to incorporate multiple users’ lists. The management of

these lists can become extremely challenging: for example, white-listing need to be

maintained by the users, the mail servers and the domains.

Email classification schemes can be classified as: a) the characteristics of the

email content and blacklisting; b) the sender identity credentials; c)

Figure 2.1: Comparison of Privilege Messaging with current technologies.

10

reputation/certification schemes.

2.1 Email Classification Based on Content and Collaborative Blacklisting

Word filters (Ahmed et.al 2004) search for patterns and remove the most obvious

spam; however, spammers have often circumvented word filters by using misspelled

words. Thus, word filters requires regular updates of the misspelled words used in

unsolicited emails. Rule-Based scoring mechanisms check for keywords and use rules to

analyze emails depending on the score received by a particular email. Bayesian filters

(Sahami 1998) perform lexicographical and statistical analysis on the email for words

and/or phrases depending on the recipient’s previous spam emails.

Incorporating user feedback at the Message Transfer Agent (MTA) level forms

the basis of collaborative filters (Gray 2004). With collaborative filters, an unsolicited

email is filtered with the help of users’ feedback on falsely classified emails. A

combination of different techniques provides a reliable means to classify an email (Leiba

2004). SpamGuru (Segal 2004) employs multiple techniques such as word filters.

Chung-Kwei algorithm (Rigoutsos 2004), a pattern discovery technique is also

employed to classify emails.

Other techniques such as HoneySpam (Andreolini 2005) borrows the idea of

Honeypots (Provos 2004); Social Network based classification and changing email

infrastructure from push to pull architecture (Duan 2005, Neustaedter 2005) are

suggested to identify spammers. However, these systems do not address the essential

problem of unrestricted access to others’ mailboxes.

2.2 Classification Based on Sender’s Identity

Blacklisting IP addresses by users is comparatively simpler and computationally

11

less intensive than other techniques. This process keeps a list of IP addresses identified

as spammers and a white-list for legitimate users. Real-time Blackhole List (RBL)

(Realtime Blackhole List 2002) works similar to Blacklist IP, but RBLs are not

manually updated by individual organizations but by RBL operators who maintain the

public RBLs.

PGP (Price 2003, Zimmerman 1995) allows verification of a sender’s email

address based on the sender’s domain identity. PGP is an email granular service

containing a list of individual users’ public keys. User contact management based on

PGP keys can provide the benefits of identifying trusted correspondents as well as

verifying the email’s integrity. However, utilizing PGP incurs the overhead as each

individual user needs to maintain a white-list and a black-list. A new correspondence

might be considered unsolicited unless the email id is enlisted beforehand. The size of

the white-list can grow unbounded because the local and global white-lists may need to

list all the legitimate email IDs on the Internet.

SenderID (Microsoft 2004) addresses the problem of spam and phishing by

validating an email’s origin, i.e., by verifying the IP address presented by the email

against the sending domain’s registered domain’s email servers. SenderID is a domain-

granular service validating a sender’s domain.

Sender Policy Framework (SPF) (Wong 2004) is a technique that has been

introduced to prevent email forgery. Senders identify the email server in their Domain

Name Service (DNS) entries. The receivers validate the sender’s email servers by

evaluating the DNS records. The DNS records indicate the sender’s adopted policy, for

instance, the list of email servers allowed to send email by the domain. When an email is

12

received, the receiver checks the sender’s policy specified through their DNS records. If

the sender’s email server is not the one specified in the policy, the email is considered

unsolicited.

Domain Key Identified Mail (DKIM) (Allman 2005), attempts to reduce the

traffic on the network by enabling each sender to publish a public key through its DNS

records. The email server signs each outgoing email. The receiver verifies the digital

signature by retrieving the public key of the sender from their DNS records; thereby

verifying the senders’ authenticity. However, the Public Key Infrastructure (PKI) key

pair is generated by each domain itself. This allows spammers to adopt DKIM without

being accountable. By using a Certificate Authority (CA) (Goodrich 2005), the senders

can be made more accountable. DKIM presently does not enforce this restriction.

Accredited DomainKeys adds a central authority to the DomainKeys architecture

(Goodrich 2005). The centralized authority, called the Accreditation Bureau, maintains

the sender domain’s public key. Users conform to a specified usage policy and

adherence to the policy is periodically checked. A history of the past adherence should

be used to check the adherence to the specified usage policy.

2.3 Classification Based on Reputation/Certification Schemes

To create a group of senders whose prolonged history vouches for its email best

practices, a reputation management system should use a domain name rather than the

sender domain’s IP addresses. Basing reputation on the domain name strongly ties an

organization with its past email activity because (i) an IP address does not intuitively

translate to a domain name (Dewan 2004); (ii) multiple organizations can share an IP

address; (iii) credible organizations in general would maintain their domain name for a

13

longer period of time than their IP addresses.

SenderPath’s SenderScore Certified (Sender Score Certified et.al), Habeas’

Safelist (Habeas Safelist et.al) and Goodmail’s Certified Email (Goodmail Systems et.al)

are certification and accreditation services that allow bulk senders to obtain third party

certification. These systems are not reputation systems: as the senders maintains the

reputation and not the receivers. Spammers could adopt these systems and use them to

transmit unsolicited content without being held accountable.

Return Path’s Sender Score (Return Path et.al) and Habeas’ SenderIndex provide

reputation management per sender’s IP address. SecureComputing’s TrustedSource

(CipherTrust 2006) provides a global reputation system that receives reports from

deployed email servers in different organizations. Reputation based on IP addresses is

not effective, as an IP address cannot be bonded to specific organizations (Dewan 2004).

For instance, when multiple organizations share an IP address, spammers in a single

domain can affect the reputation of users in other organizations. Moreover, if

organizations move to another service provider, their past actions are no longer be

attributed to them. Reputation should be more closely associated with the organization,

utilizing the organization’s domain name.

Project Lumos (Brondmo 2003) was proposed as an effort to provide reputation

among collaborating ISPs. Receiver organizations provided feedback as to whether a

sender was a spammer or otherwise. The algorithm was designed to compute reputation

based on the activity of the previous 180 days. Project Lumos was designed to consider

the weighted average of previous and present reputation of the senders. Project Lumos’

proposal has been made public; but the project does not seem to be deployed. Moreover,

14

Project Lumos’ design does not consider Sybil attacks.

Google’s reputation service (Taylor 2006) identifies the senders using best-guess

SPF or DKIM and computes the sender’s reputation based on user inputs. This system

demonstrated a high accuracy in classifying bulk of Gmail’s incoming emails. Google’s

reputation service computes reputation from a single domain. It does not provide a

mechanism for collaborative reputation sharing among different entities. Taylor et.al

suggests the need for a third party reputation framework, i.e., collaboration among

multiple organizations to compute reputation.

Cloudmark’s Network Classifier (Prakash 2005) is a community-based filter-

system where multiple agents submit feedback about emails to nomination servers

which require multiple users to confirm the claim that an email is spam. This

information is submitted to a central server known as the Trust Evaluation System which

computes a global view for an email’s fingerprint. The Cloudmark paper advises not to

use authenticated domain name as a fingerprint, as this would lead to a high multiplicity

and cross-collision rate. RepuScore uses an authenticated domain name to maintain

reputation for each sender instead of using a fingerprint for each email.

2.4 Reputation Management in Peer-to-Peer Systems

Reputation management techniques have been used in agent-based systems

(Shmatikov 2003, Swamynathan 2008) as a mechanism to evaluate trust. In multi-agent

systems, peers use reputation to evaluate other agents to select the best course of action

to maximize their own outcome (Papaioannou 2004). Reputation systems have been

prone to Sybil attacks (Douceur 2002) where a single attacker uses multiple identities to

submit multiple reputation votes about its peers. Such attacks are detrimental to honest

15

users and amicable to the attacker.

To protect against deception and attacks in cooperative reputation systems,

inputs from honest users are considered more valuable than the inputs from dishonest

users. The effectiveness of reputation protocols can be measured by their success in

thwarting Sybil attacks. User-personalized reputation in addition to the global sender

reputation is one mechanism to harden the reputation frameworks (Chirita 2004).

Using eigenvectors, EigenTrust (Kamvar 2003) uses global reputation to identify

malicious peers. Future reputation is calculated based on the present normalized trust

reputation of all the peers. Due to the feedback mechanism, EigenTrust is a self-policing

system that regards a trusted peer more than that of a peer of low-repute. Such a

mechanism is helpful in guarding against Sybil attacks.

Another reputation framework has been developed as an application-independent

system (Yu 2002). This system considers the multi-player prisoners dilemma, where

every agent tries to maximize its own profits while maintaining the trust of other nodes.

The system also incorporates (Yu 2003) a mechanism to detect deceptions and reduce

the effect of malicious votes from such peers.

Our framework builds architecture for email sender identity and email reputation

along with an algorithm to compute reputation. In later sections, we discuss the

architecture and elaborate the email algorithm framework.

CHAPTER 3: PRIVILEGE MESSAGING

To enable sender accountability on the email infrastructure, this chapter

discusses sender identity. Sender identity techniques can be classified into two different

categories: a) weakly-bound; and b) strongly-bound. A weakly-bound identity system

allows organizations to create their own identity and maintain them. For example, SPF,

DKIM, SenderID and DomainKeys are sender identity systems where organizations

create their own identities, sometimes, in their DNS records. Each organization controls

the identity it creates. These technologies have been developed as a mechanism to

combat spoofing and not necessarily to be used as a sender identity. A strongly-bound

identity requires a mechanism to bind an identity to an organization. Such a mechanism

requires a third party to maintain and evaluate these identities. Accredited DomainKeys

(Goodrich 2005) uses a central authority that controls the identities.

Apart from classifying sender identities as weakly-bound and strongly-bound

identities, the sender identities are domain-based and user-based. We note that a user-

based solution requires extensive resources, both storage and computation, to maintain a

history of accountability, but would be useful in maintaining an accurate sender

accountability. In contrast, we note that a domain-based solution entails lesser storage

and computation for each identity; however, it averages the information for all users at a

single organization. Therefore, a domain-based solution would not be as accurate as the

email id. Finally, we note that holding a domain accountable for their users’ actions

17

enables peer organizations to force the said sender domain to revoke a user. However,

such a mechanism is not available when sender accountability is to be maintained for

each email address.

This dissertation discusses the design of Privilege Messaging (P-Messaging), a

fine-granular1 sender identification technique. P-Messaging creates identities that can be

customizable allowing different users to be added or removed from it. The identity is

maintained independently from email infrastructure.

A privilege is a fine-granular identity associated with a PKI key pair and a group

of users. P-Messaging stipulates that an email can be verified based on the privileges it

holds. The administrators set the granularity of a privilege. Each email id can be

assigned multiple privileges. For instance, an email ID can be associated with a

department in a school and another for project team for a class.

P-Messaging creates and maintains a Circle of Trust (CoT) among P-Messaging

1 A granular identity allows the email administrators to modify the number of users to the
identity.

Figure 3.1 Granularity of Privilege Messaging Identity as compared to Domain-
based solution and User-based white-lists.

18

Servers to identify trusted senders. A CoT is a trust relationship among P-Messaging

Servers due to the mutual trust they place on a third party: Certificate Authority (CA).

Using CoT, qualified trust can be placed on a sender by a member. Each of the P-

Messaging Server in turn places a high level of trust on each of their privileges.

The following section discusses the components of P-Messaging, architecture for

CoT, followed by the architectures of P-Messaging.

3.1 P-Messaging: Components

This subsection discusses the components of P-Messaging:

1. P-Messaging Server

2. P-Messaging Privilege Verifier

3. P-Messaging Trust Authority

P-Messaging Server

Architecturally, P-Messaging Server (P-Server) is a component between the user

and the organization’s Mail Transfer Agent. To send an email, the users at an

organization interact with its P-Server. The P-Server validates the user and attaches the

requested credentials (i.e., privileges; for example: UNCC_MEMBER, ISR_MEMBER,

UNCC_STUDENT, UNCC_COIT, CLASS_ITCS6162 and CLASS_ITCS6112) to the

email. The privileges-attached email interacts with the MTA to transmit the email. The

P-Server provides the following services:

• User Authentication: authenticates users using challenge-response authentication

(Wikipedia). With the help of a user authentication scheme, a P-Server associates

privileges to be associated only with authenticated users.

• Privilege Lookup: lists all the privileges a user can send email with. Once the

19

users are authenticated, the Privilege Lookup service identifies the privileges that a

specific user can send email with.

• Message Signing: attaches the privileges to an email using a digital signature.

The signature uniquely-identifies the selected privilege.

• Privilege Administration: is an administrative interface to manage users and

privileges. The administrators can add users to a privilege, create privileges etc.

P-Messaging Privilege Verifier

P-Messaging Privilege Verifier (P-Verifier) verifies the received privilege-emails

from senders based on the attached signature. The P-Verifier provides two services:

• Message Authorization: verifies an email’s digital signature to verify the

privileges and checks if the receiver accepts the email.

• Privilege-list Maintenance: is an interface to maintain a list of privileges a user

accepts. Only the privileges listed by the user are accepted; other privileges even though

authorized are not accepted.

P-Messaging Trust Authority

The P-Messaging Trust Authority is the entity that creates the Circle of Trust

among P-Servers by providing a certificate to each P-Server. With the help of a digital

signature, the receivers can identify a valid P-Server. The Trust Authority maintains the

history of adherence to the good email practices enforced by it.

3.2 Circle of Trust in P-Messaging

P-Messaging provides the capability to identify a valid P-Server before accepting

any emails from them with the help of Circle of Trust (CoT). A Circle of Trust creates a

group of senders and receivers who can place some qualified trust on each other. P-

20

Messaging framework can be deployed with mechanisms that determine a peer’s trust.

P-Messaging’s CoT uses a peer’s trust to enforce sender accountability. Honoring a P-

Server’s privileges, i.e., accepting email across domains is dependent upon the qualified

trust that can be placed on the sender P-Server. If any P-Server sends unsolicited emails,

the amount of trust placed on it should decrease. This section discusses how CoT is

created and maintained.

3.2.1 Addition of a P-Server to the CoT

Figure 3.2 describes P-Messaging’s hierarchical architecture, where the P-

Messaging Trust Authority functions as a CA. All P-Servers trust the trust authority.

Each P-Server must receive a certificate from the P-Messaging Trust Authority that can

be used to verify the P-Server by other servers.

3.2.2 Revocation of a P-Server from the CoT

The P-Messaging Trust Authority can revoke a P-Server based on a prior

agreement. One condition could be that a member of the sender’s adherence is mandated

Figure 3.2: Circle of Trust among the Privilege Servers using P-Messaging Trust
Authority that allows a Privilege Server to be verified by other Privilege Servers.

21

to follow a common policy; if the sender does not conform to it, the sender could be

revoked. Upon being revoked, a previously participating P-Server can request new

certificates but under strict adherence to the common policy. Therefore, if a P-Server

does not contain a privilege’s negative characteristics, the P-Server would be revoked

from CoT.

3.2.3 Advantages of CoT

With the help of CoT, a P-Server can place qualified trust on other peer P-

Servers. Honoring a sender’s privilege by receivers is based on the trust placed on the P-

Server by the P-Messaging Trust Authority. With the help of this mechanism, a

distributed identity system can be provided among different P-Servers with each P-

Server is capable of creating its own privileges.

3.3 P-Messaging Architecture

P-Messaging architecture has two major objectives: a) sender architecture; and b)

Figure 3.3: P-Messaging Sender Architecture: After the sender Bob is verified, the
P-Server signs the email with a privilege specified in the Member List. The email is
then sent from the P-Server to the MTA that relays the email.

22

receiver architecture. A receiver P-Server, after sender identification, interacts with the

receiver’s MTA before the email is delivered to the mailbox of the intended users based

on the privileges the accepted by the users at the receiver organization. When sending an

email, a P-Server interacts with the MTA to send the email with the sender

organization’s user’s privileges.

3.3.1 Sender Architecture

A P-Server is a sandbox the MTA as shown in Figure 3.3. When sending an

email, the sender P-Server first verifies the user, for instance, Bob. After user

verification, the P-Server signs the email for the requested privileges. Bob select

privileges, or the P-Server based on a simple rule-based engine from the Member List

for every user at the P-Server. A P-Server signs an email and relays it through the MTA.

A receiver P-Server first verifies the sender P-Server; based on the trust on the P-

Server verifies the privilege attached with the email. For example, when a P-Server

Figure 3.4: P-Messaging Receiver Architecture: Once an email is received, the
MTA passes the mail to the P-Verifier looks-up the public key of the privilege to
verify the mail. Once the mail is verified, emails are classified according to the
privileges specified in the Privilege List.

23

installed at a university, the P-Messaging Trust Authority creates a key pair, for the P-

Server, which is securely transmitted to the P-Server. The university’s P-Server can then

create multiple privileges, for example, for faculty called “faculty” and for students

called “student”.

The receiver accepts a privilege message only if it honors the sender’s privilege.

Without this, the message that is sent cannot be classified into privilege classes but into

the underprivileged class. These classes are described in later sections.

3.3.2 Receiver Architecture

The receiver architecture is shown in detail in Figure 3.4. At the receiver’s

domain, upon receiving the email, the MTA verifies the privileges associated with the

email with the help of the P-Verifier. For verifying an email, the P-Verifier evaluates the

P-Server using the signature. Once the P-Server is verified, the privilege’s public key is

retrieved from the P-Server. Using the public key of the privilege, the privilege signed

email is verified.

To retrieve the message, as shown in Figure 3.4, the client, for instance Alice,

connects to the mail server to retrieve the messages. Using the additional header

information, any email client can display the information in any desired format. The

mail clients can show the different ‘inboxes’, where each inbox caters to a different

class. In this way, the classification of the email into different classes provides users

with the ability to view the messages according to the privileges accepted by them. This

allows a faster lookup by classifying the emails at one location thereby, providing

Quality of Service (QoS). For the example listed in Section 3.3.1, the receiver first

verifies the university’s P-Server and then verifies the privileges associated with it, by

24

retrieving the PKI key pair for the privilege from the universities’ privilege.

Once the mail is verified, the next step is to place the mail into classes. Based on

user’s Privilege List, P-Messaging defines three privilege classes:

Privileged Class

Privileged Class is a set of privilege-“inboxes” that hold emails that have been

successfully verified and honored privileges by the receiver.

Underprivileged Class

Underprivileged class is a set of privilege-“inboxes” that are successfully verified, but

not honored by the receiver. If the privileges presented by an email are deemed

important, the receiver needs to subscribe to the privilege making it a privileged class

rather than an underprivileged class.

No-privilege Class

The No-privilege classes form the lowest class where unsigned or emails whose

authenticity cannot be ascertained are placed.

3.4 Privileges in an Email Header: Privilege Tag

The credentials attached to a privileged-email are referred to as Privilege Tag (P-

Tag). The P-Tag has a digital signature evaluating the authenticity of the email’s origin.

P-Tag is designed to be extensible by allowing each P-Server to create its own

privileges. Each P-Server acts a CA for the privileges it holds. The P-Tag format that is

attached to the email’s header as follows:

[P-Server]:[Privilege]

A privilege email is of the following structure:

{[Email] Privilege Signature}: {[Privilege Signature] P-Server signature}

25

A privilege is a double digital signature for the email, first using the privilege

and then using the P-Server’s private key by the P-Server. As discussed earlier, to verify

a privileged email: first, the P-Server signature and then the privilege signature is

verified.

3.4.1 P-Tag Creation and Maintenance

As part of Privilege management, apart from creation and maintenance of the

privileges, the administrator of a privilege performs the tasks of adding and

deleting/revocation of users. The privilege-administrator is responsible for:

1. Adding a Privilege to a user.

2. Deletion or Revocation of a user’s Privilege.

Addition and revocation of privileges modifies a user’s Member List. The

Member List contains the privileges a user is authorized to send with. Users are added or

revoked by the privilege administrator. If a user abuses the privilege, the administrator

revokes the privilege. For a user’s revocation, the member list is updated by removing

the user from the Member List. As the privilege’s private key is never revealed, the

privilege administrator need not create another PKI key pair.

3.4.2 Privilege-List Maintenance

Each user at a receiver’s organization maintains the list of accepted privileges by

updating the Privilege List at the P-Verifier. The mail service provider assigns a default

list of privileges. In the absence of a user’s input, which could be quite common, the

service provider’s default privilege from the Privilege List will be used. In the future,

some user-profiling or personalization could determine a privilege list on user’s behalf.

26

3.5 Advantages of Privilege: A fine-granular and strongly-bound Identity

As shown in Figure 3.1, a privilege identity is a customizable identity that is

more finely-granular than domain-based and more coarsely-granular than the user-based

solutions. A privilege can be either a single user or a group of users that could be larger

than the users at a single organization.

A domain identity has a single credential for the entire domain. In comparison,

when P-Server is registered, the domain is given an authorization to manage their

privileges, not the right to send emails. P-Messaging is installed over multiple P-Servers

on a domain where each P-Server maintains multiple privileges.

DKIM allows public keys to be created and embedded into the DNS records,

whereas P-Messaging requires the P-Server to publish its public key with a third party,

the P-Messaging Trust Authority. Therefore, in P-Messaging, the message is accepted

after verification of the sender by a trusted third party. P-Messaging’s identity is

strongly-bound to the domain.

The credentials for the user-based white-lists are the individual email IDs as

compared to privileges in P-Messaging. With white-lists, a new correspondent might be

classified as an unsolicited sender. The benefit of P-Messaging is that a new

correspondent may not be classified as an unsolicited sender. The variable-granularity of

an identity allows the system to provide higher accuracy comparable to the email

identity without significant investment of resources.

3.6 Privilege Messaging Implementation Details

This section first discusses the client software developed for P-Messaging using

Outlook 2003 and Thunderbird.

27

To send and classify privilege emails, plug-ins for Outlook 2003 and

Thunderbird has been designed. Figure 3.5 shows the Outlook plug-in with new options:

“Send with Privilege” and with a new option in the left pane to show the list of all

privilege emails by the sender. Figure 3.6 shows the list of privileges:

UNCC_MEMBER, ISR_MEMBER, etc.

Figure 3.7 shows the Mozilla Thunderbird plug-in with a new option: “Send with

Permissions” to send privilege-authenticated email. Figure 3.8 shows the Thunderbird’s

interface to login to the P-Server.

Figure 3.5: Microsoft Outlook Plug-in
with new option: “Send with Privilege”. A
Privilege Sent Mail in the left pane that
allows users to access all the privilege
emails sent.

Figure 3.6: Microsoft Plug-in that
displaying list of Privileges the
authorized user can send an email with.

Figure 3.7: Thunderbird plug-in with a
new option: “Send with permissions” to
send privilege-signed emails.

Figure 3.8: Thunderbird plug-in with a
login prompt for the P-Messaging
server.

CHAPTER 4: REPUSCORE FRAMEWORK

A sender identity technique along with a reputation framework creates a trusted

group of senders. A verified identity (through any existing authentication mechanism) is

a required basis for maintaining sender’s reputation. However, knowledge of the sender

does not imply that the sender adheres to the best email practices. To enable receivers to

identify the senders who adhere to the best email practices, the past history of the senders

should be maintained. Reputation management framework maintains the history of

adherence to a common policy about the best practices.

4.1 Sender Identity Techniques for Reputation Management

Systems designed using email id as a sender identity, such as PGP, when used to

maintain reputation entails a huge overhead for vote collection, storage and computation.

Instead of using email ids as identities, domain authentication schemes (DKIM, SPF or P-

Messaging) could be used, thereby decreasing the number of identities needed. Such a

mechanism is more scalable than the email id based reputation system.

About 35% of all authenticated email over the Internet is authenticated using SPF,

DKIM or SenderID. A reputation framework evaluates the senders who are authenticated

using these mechanisms. Such a mechanism will help evaluate the domains that adhere to

a common guideline.

The lack of a centralized authority (Jakobsson 2006) has been noted as a main

reason for the inability to tie email forgery to a single user or the organization. A central

authority can maintain a group of reputable senders where each sender maintains a high

29

reputation. Such a mechanism allows a common best email practice to be enforced

among senders.

P-Messaging’s CoT is designed with a central authority that can be used for

reputation framework. The P-Messaging Trust Authority can use the reputation

framework to maintain a group of trusted P-Servers. The reputation framework is used to

work with current sender authentication schemes along with P-Messaging; and therefore,

a different nomenclature is used.

4.2 RepuScore: A Collaborative Reputation Framework

RepuScore is a collaborative email reputation framework that allows participating

organizations to establish sender accountability based on the senders’ past actions. For a

non-changing identity, RepuScore employs a) existing domain based schemes such as

SPF, SenderID and DKIM; or b) their IP addresses. For the long-standing history,

participating organizations locally collect information about the senders - from users or

existing spam classification mechanisms that are submitted to a central RepuScore

authority to compute a global reputation summary that is used to enforce sender

accountability.

Multiple RepuScore algorithms have been designed that compute reputation

gathered from organizations based on the sender’s a) spam rate (RepuScore) or b) spam

rate and email volume (Volume-Enhanced RepuScore).

4.2.1 Design Considerations for RepuScore

RepuScore should ease the overhead of vote collection and computation with the

help of a distributed architecture. As each receiver-organization receives a lot of emails, a

centralized vote collection incurs an excessive overhead. Such architecture allows each

30

organization to collect votes from its users. However, distributing the reputation

management creates additional challenges.

Since RepuScore employs a distributed reputation framework, it is susceptible to

Sybil attacks (Srivatsa 2005, Yu 2006). In Sybil attacks, a malicious receiver manipulates

the rating mechanism by creating multiple identities (also called Sybils) to give a) a

higher rating to colluding senders; and b) a lower rating to legitimate senders. RepuScore

should be able to thwart Sybil attacks by valuing a reputable participant’s input more than

that of a less reputable one.

The lack of centralized enforcement has been cited as the main obstacle in

connecting email fraud to a particular user or organization. RepuScore should enable a

centralized design with minimal overhead to create a trusted group of senders.

A reputation framework should facilitate in the creation of a group rather than just

maintaining a group of blacklisted senders. RepuScore differs from other approaches

because of the collaborative reputation based on the scores suggested by peers.

A reputation framework should accept a single reputation vote from each

deployed organization. A large global organization might have multiple mail servers (or

P-Servers), each situated in different geographic locations. If a reputation management

framework considers votes from mail servers, an organization with a large number of

mail servers would have greater say than those organizations that host a single mail

server. Therefore, each organization should be allowed to vote only once considering all

the mail servers in the domain.

The sender’s reputation should decrease for bad behavior and increase in the

absence of bad behavior; i.e., when spam is reported, the sender’s reputation should

31

decrease; else the reputation should increase.

The initial reputation for senders should be appropriately set, as an improper

initial reputation would give high spam propagating domains an unfair advantage as their

reputation would stay for longer intervals. In contrast, a low initial reputation would be

unfair to a new domain, as peers would not accept its emails.

Reputation Aggregation Interval is defined as the sender’s reputation should be

computed every specific interval of time after receiver collaboration. A sender should

adhere to good practices for a significant number of intervals to be considered good. Such

a mechanism would make spamming unviable for a spammer as it would require a

significant investment of resources, including both time and money. In addition, a quick

reduction in reputation for non-adherence to the policy removes spammers from the

trusted group of senders.

4.2.2 RepuScore Components

RepuScore framework has three components: a) RepuServer; b) RepuCollector;

and c) Central Authority. A RepuServer as a mail server with the additional capability of

verifying the users and collecting the reputation votes from them. Each local RepuServer

collects votes from its users and email filters, aggregates the votes locally, and forwards

them to the organization’s RepuCollector.

A RepuCollector is an organizational-level service that aggregates votes from the

local RepuServers and submits a single vote in a global reputation of peer

RepuCollectors. As all the RepuServers belong to the organization, the RepuCollector

belonging to the organization assumes that the RepuServers do not compromise the

reputation.

32

The central authority computes the global reputation by computing reputation

from multiple RepuCollectors. When Sybil attacks (Douceur 2002), where a single

attacker takes multiple identities to thwart a reputation system by submitting incorrect

information occurs, the algorithm should be able to secure against these attacks.

4.2.3 RepuScore Architecture

Figure 4.1 shows RepuScore’s hierarchical architecture that is designed to ease

reputation collection and computation as the number of participating domains increase.

The RepuScore framework computes reputation based on the votes collected by each

RepuServer. While collecting reputation votes, a RepuServer checks the validity of the

reporting users. The user’s votes are based on the evaluation of the sender’s adherence to

best practices. There are three major steps in RepuScore:

a) Reputation Vote Collection

b) Reputation Computation

c) Reputation Lookup Service

Figure 4.1: Hierarchical architecture for RepuScore with each RepuCollector
receiving reputation information from multiple RepuServers. The RepuCollector
transmits the reputation to a Central Authority.

33

Reputation Vote Collection

As spam is subjective, another user might not consider an email regarded as spam

by one user. Therefore, a global blacklist or white list would not be ideal as it would fail

to represent the conflicting views of multiple users. RepuScore employs a social rating

mechanism to consider the conflicting views of the users.

The receiver’s RepuServer can maintain the number of emails received and the

emails marked as spam for each sender RepuServer. The vote collection mechanism

requires minimal participation from the users. For example, RepuServer collects the

users’ votes based on the users’ implicit inputs; users only mark an incorrectly filtered-

email as non-spam or to report a spam email that was not correctly filtered by the spam

classifiers. (Many email services provide similar mechanisms for their users to report a

spam email or an incorrectly filtered email.) Before accepting votes from the users, the

RepuServer should validate the users.

The spam classifiers are also used along with users’ input in collecting votes. A

negative vote for a sender is entered when the spam filters determines an email as spam.

Likewise, a positive vote for a sender is automatically made when the sender’s email is

not considered spam. In the event that the spam filter marks a legitimate email as spam,

the users can mark the email as non-spam, submitting a positive vote for a sender to the

RepuServer.

Reputation Computation

Based on the number of spam and emails collected, each RepuServer calculates

the reputation of the sender RepuServer. RepuServer Reputation is defined as the

weighted average of the reputation in the previous and the present intervals.

34

RepuScore calculates the reputation of a RepuCollector based on the reputation of

the RepuServers maintained by the RepuCollector. A RepuCollector Reputation is

defined as the aggregate reputation of the RepuServers in their domain in the present

interval. Each RepuCollector calculates the local reputation for each peer RepuCollector.

The computed reputation is digitally signed by each RepuCollector to maintain the

integrity of the data. To provide a global perspective, the Central Authority should collect

the locally computed RepuCollector’s reputations.

RepuScore introduces a central authority that collects reputation votes from all the

RepuCollectors and computes the global reputation for all RepuCollectors. The central

authority verifies the RepuCollector’s votes based on the digital signature. The central

authority should make sure that the reputation collection is conducted once every

interval. The central authority calculates a global reputation for each RepuCollector based

on the change in its reputation as reported by peer RepuCollectors. The central authority

takes into account the reputation of the RepuCollectors to compute the global reputation

of the peer RepuCollectors. If the reporting RepuServers’ reputation is below the

participation threshold, their reputation votes are not factored into the global reputation.

Reputation Lookup Service

A reputation lookup service can be provided with the help of a third party lookup

service. The reputation lookup service can be similar to Real-time Black Lists. Such a

reputation lookup service can also provide a mechanism for the receivers to lookup the

reputation of a sender’s RepuCollector as reported by peers. An alternate way for

receivers to determine reputation is by associating the reputation with a sender identity

that can be vouched for by a third party. For example, in the case of Accredited

35

DomainKeys, the reputation can be embedded as the part of the seal that is supplied to

the MTAs. When the client checks the DNS entries, the seal can be verified for the

reputation.

In P-Messaging, the reputation will be used by the Trust Authority to calculate the

reputation of the P-Servers. If the reputation of a specific P-Server is below the threshold,

the P-Server will be removed from the framework.

4.3 RepuScore Algorithm

RepuScore computes the reputation at the individual P-Servers, at the

organization and at the Central Authority. The algorithm is described below:

RepuServer Reputation Calculation

Peer RepuServers calculates a RepuServer’s reputation. The reputation in

RepuScore is always in the open interval (0, 1). A score of 1 indicates a highly reputable

sender whereas a score of 0 indicates a sender with a low reputation. For all sender

RepuServers, each receiving RepuServer maintains the number of emails received and

the number among those marked as spam. Equation 4.1(a) demonstrates the algorithm to

compute reputation of a RepuServer; the observed reputation is computed as the number

Equation 4.1: RepuServer algorithm computes sender’s reputation using good rate.

36

of good emails over the number of emails sent by a sender in a particular interval.

Equation 4.1(b) shows the reported reputation calculated using modified time sliding

window exponentially weighted moving average (TSW-EWMA) algorithm (Biswas

2005). The sender’s reputation is based on the reputation in the previous interval and the

observed reputation in the present interval. Correlation factor α indicates the amount of

previous reputation considered for computation of the RepuServer’s reputation in the new

interval. If the correlation factor is high, the reputation of a sender takes a long time to

increase or decrease, as a lot of weight is given to the previous reputation. However, if

the correlation factor is low, the reputation increases or decreases very quickly since

current actions are given additional weight. The effect of the correlation factor on

Equation 4.2: Modified RepuServer algorithm maintains computes reputation.

Equation 4.3: Local RepuCollector Reputation calculates the average reputation of
all its RepuServers

37

reputation in the experiments is demonstrated.

The reputation should increase slowly to check a long history of adherence, while

the reputation should decrease quickly when the domain starts spamming. However,

using Equation 4.1, the reputation either increases and decreases slowly or increases and

decreases quickly. The Equation 4.2 should be modified to allow slow increase and quick

decrease in reputation.

RepuCollector Reputation Calculation

The change in RepuServers’ reputation is used to update the RepuCollector’s

reputation. Equation 4.3 shows the local reputation computation at a RepuCollector. The

RepuCollector reputation is the average reputation of all of the reports from its

RepuServers. This information is transmitted to a Central Authority that computes the

global reputation. Such a mechanism can be shown to help in the creation of a trusted

group of reputable senders.

CA Reputation Calculation

The central authority calculates the global reputation of the RepuCollectors based

on a modified Weighted Majority Algorithm (WMA) called WMA Continuous (WMC)

proposed by Yu et al (Yu 2002). The WMC algorithm has been used in peer-to-peer

Equation 4.4: Central Authority computes global reputation. To thwart Sybil
Attacks, different weight is applied based on the RepuCollector’s reputation.

38

systems to detect deception.

Equation 4.4 demonstrates the Global RepuCollector reputation as the reputation-

weighted average of the local RepuCollector reputation computed by each peer. The new

reputation is computed once every interval and is valid for one interval.

4.4. Volume-Enhanced RepuScore Algorithm

An interesting observation from the deployment was that the reputation of certain

sender identities did not reflect the change in the email volume received from them. A

constant spam rate does not imply that the volume of email is constant. For example,

consider a spammer who propagates 1 spam email out of 10 emails in the first interval

(spam rate = 0.1, reputation of 0.9) followed by 900 spam messages out of 1000 emails

(spam rate = 0.9; reputation = 0.1) in the second interval. In this case, with a value α as

0.5, the reputation would be 0.5 (an average of 0.1 and 0.9). However, such a sender

should be penalized more.

To track sender’s reputation more closely, more emphasis should be placed on the

interval in which the email volume was higher. For example, if the email volume in the

past interval was higher than the email volume in the present, more emphasis should be

placed in the past. Likewise, when the email volume in the present is higher, the present

reputation should be considered more than the past reputation.

Incorporating the change in the email volume on a global scale requires all the

RepuCollectors to share both peer-reputations and the email volume. Sharing of the email

volume invokes potential for further attacks on the reputation framework; for instance,

some receiver organizations could provide incorrect volume information about sender

identities to increase/decrease their reputations. The initial deployment showed that the

39

majority of sender identities were spammers. As incorporating email volume at a global

level, participating receiver organizations could lie about the volume sent by a sender.

For this reason, email volume should be incorporated at RepuServers but not at the

RepuCollectors.

Any incorrect volume embedded into reputations at RepuServer would only be

constrained to the organization. Such incorrect reputation-view from a receiver

organization will not significantly affect the global reputation since such data will be

refuted by other honest receiver organizations.

To incorporate email volume as a basis for the computation, an exponentiation is

selected due to its monotonic property. Due to this property, the e-x always lies in the

interval (0, 1) and is a monotonically decreasing function. A monotonically decreasing

function is required as the value of α should decrease as the volume rate increases.

‐

Equation 4.5: Instantaneous value of α based on the volume of email received at a
RepuServer.

40

Equation 4.5 demonstrates the mechanism to compute the instantaneous

correlation factor α based on the email volume. Equation 4.5a shows the mechanism to

compute Volume-Enhanced Good Rate (Vol-Enh GR) is the sum of the good rate in the

interval that had larger volume and a fraction of the good rate in the other. This implies

that having the Good Rate (GR) constant, if the volume in present is large, the Vol-Enh

GR is the sum of good rate in the present and a fraction of the good rate in the past. If the

volume in the past is small, the good rate in the past is small multiplied by the factor past

volume divided by present volume. Equation 4.5b is used to compute instantaneous α, a

lower value of Vol-Enh GR relative to the present good rate leads to a higher

instantaneous α to accurately compute reputation.

Figure 4.2 demonstrates that larger the value of Vol-Enh GR implies a different

curve is selected resulting in a larger value of α. High α implies a greater importance is

Figure 4.2: The function e-x function is monotonically decreasing function. As the
value of Volume-Enhanced Good Rate increases, a higher curve is selected resulting
in a larger value of α.

41

placed on the past interval as compared to the present interval. Likewise, high Vol-Enh

GR leads to a lower value for instantaneous α. The multiplicative factor is used to

decrease large values of Vol-Enh GR.

For the example discussed in the first paragraph, the Vol-Enh GR = 0.901 (1 × 0.9

+ 10/1000 × 0.1). Using the multiplicative factor of 1, the Volume-Enhanced reputation

will be 0.42 instead of 0.5. Using Volume-Enhanced RepuScore, the computed reputation

was based on the volume of the email received. In the above example, when the email

was higher in the second interval, the reputation increased slowly as compared to

reputation in the first interval.

4.5 RepuScore Deployment

RepuScore has been deployed in a few organizations with the help of a

deployment model. The gathered votes, from receiver organizations, are collected based

on user inputs or email classification programs such as SpamAssassin.

Figure 4.3: SpamAssassin plug-in collects
statistics from mail servers and transmits it
to a RepuServer. The plug-in uses other
SpamAssassin plug-ins to identify sender
identities.

Figure 4.4: Email classification using the
SpamAssassin plug-in. Email verification
can use other spam classification
techniques to correct the reputation-based
classification.

Verified

Classification

SpamAssassin
SPF/DKIM Plug‐in

Transmit Store
Information at
RepuServer

Incoming
Email

Yes

No

Classification
(including
RepuScore)

Classify as Non‐
Spam

Update
Reputation

Classify as Spam

Reputable?

Correct?

Verify Email
Classification

Domain Verified
Email

Yes

Yes

No

No

42

4.5.1 SpamAssassin Plug-in

A SpamAssassin plug-in that collects information about each authenticated email;

i.e., whether or not an email is spam, and computes reputation for the sender identity. The

RepuScore plug-in uses the available standard SpamAssassin plug-ins for SPF and DKIM

to identify the senders.

Figure 4.3 demonstrates the design of the SpamAssassin plug-in that collects

information for each email from an organization’s mail server. Figure 4.4 shows the

mechanism used to classify email after sender verification. A reputable sender’s email is

classified as non-spam and vice versa. Reputation-based email classification requires a

feedback mechanism for checking the accuracy of classification with the help of low-

process intensive mail filters. As the RepuScore plug-in has already performed the sender

identity checks, content-based filters can be utilized. The information is then transmitted

as a UDP packet and stored at a local RepuServer.

System administrators can select any low-process intensive email classification

technique to correct the information. Such a mechanism allows high-process intensive

mechanism to be used to classify emails without an associated sender identity. This

allows a faster email classification when a huge volume of email is received.

The RepuServer’s server module (a Perl module) maintains multiple forked

instances to keep a few “hot” instances in memory to handle the normal load, while

having the ability to fork a few additional instances based on the need. These processes

capture the packets transmitted to them by the RepuServer client module and write the

incoming data into a MySQL database. A cronjob initializes a script that computes the

reputation at every reputation interval by invoking SQL statements.

CHAPTER 5: RESULTS

Our results for the projects P-Messaging (Kang 2006) and Central RepuScore

algorithms (Singaraju 2007, Singaraju 2008) are published at USENIX LISA 06, LISA

07 and CEAS 08 conferences. In addition, this dissertation also discusses the results for

IP based reputation and False Positives and False Negatives.

5.1 P-Messaging Evaluation

P-Messaging technology can be developed in Java and can be provided with a

command-line interface for configuring the server. P-Messaging can be evaluated based

on the ease of configuring the servers. Other experiments demonstrate the performance

costs associated compared with PGP-signed email:

1. Signature Generation and Verification Time

2. Privilege Generation and Verification Time

5.1.1 Signature Generation and Verification Time

To demonstrate the overhead incurred due to generation of P-Tags, P-

Messaging's tag generation performance is compared with the time taken to generate

PGP digital signature and unsigned emails. Graph 5.1 shows the results. The time taken

to generate the tag was reasonably higher than for PGP and unsigned messages. This

overhead includes the time taken to request a privilege including two signature

generations. As P-Messaging uses a double signature as compared to one signature for

PGP, the results shown are expected.

44

The overhead incurred due to verification of the privilege is compared with the

time taken for verifying a PGP signed message. The results are shown in Graph 5.2

where the time taken to verify the emails is twice the time taken to verify the PGP

signed mail that is expected again.

5.1.2 Privilege Generation and Verification Time

The experiments show that the time taken to generate a P-Tag was about 0.16

seconds. This time included the time taken to generate double signatures: one for the

privilege and another for the P-Server server. The time taken to verify a message was

about 0.09 seconds, again this time involved the time taken to verify the P-Server

signature, and then the Privilege signature. It also involved the time to retrieve the

privileges’ public key from the sender’s P-Server.

5.1.3 Effect of Cardinality on Collaborative Blacklists

This section discusses the effects of cardinality of sender’s identity and the

number of collaborating receivers on the accuracy of blacklists. This section begins by

discussing the Log Statistics obtained from a global non-profit organization.

Graph 5.1: The overhead of P-tag using P-
Messaging compared to PGP signed and
unsigned emails.

Graph 5.2: The overhead of P-Tag
verification compared to PGP
signature verification.

45

Log Statistics

The experiments were performed using 21-day logs [from Aug 6th - 26th 2006]

obtained from a global non-profit organization that maintained 5 domains. Each of the

domains additionally maintained multiple sub-domains. The organization ran a Postfix

mail server (Hildebrandt 2003). The mail trace contained 41,400 domains that sent

emails to the organization and about 1,133 domains to which emails were sent. The

email trace contained 271,200 emails. Of these, 150,951 emails, i.e., 55% were marked

as spam with the help of Real Time Blacklists (RBL) (Real Time Blackhole 2002).

The spam emails identified by RBLs were marked as ‘rejects’ with the reason

for reject and the RBL that has identified the sender as a spammer. The mail server also

rejected mails if the sender domain did not exist. The user behavior is modeled based

on the results from the RBL. In the event that a reject was noted, the RBL rejects were

used to simulate user input to blacklists.

Graph 5.3: Percentage of incorrectly classified email per day without receiver
collaboration to maintain a blacklist.

0

2

4

6

8

10

12

14

Day
1

Day
2

Day
3

Day
4

Day
5

Day
6

Day
7

Day
8

Day
9

Day
10

Day
11

Day
12

Day
13

Day
14

Day
15

Day
16

Day
17

Day
18

Day
19

Day
20

Day
21

Time in Days

%
 o

f i
nc

or
re

ct
ly

 c
la

ss
ifi

ed
 e

m

Sender Identity: Email Id
Sender Identity: Flexible
Sender Identity: Domain

46

Rejects from RBL Lookup Simulates User Behavior for Blacklists

The first experiment demonstrates that the email rejects noted in the mail log

due to RBL lookup can be used to simulate user behavior. To demonstrate user blacklist

behavior, every user is assumed to maintain a blacklist for every sender’s email id as an

identity. Upon receipt of an email, the receiver’s local blacklist is checked. If the sender

has not been blacklisted, the RBL entry is checked to simulate the user’s entry. If RBL

marks the email as spam, the sender is added to the blacklists.

The experiment showed that about 510 emails (or 0.18%) were false positives

(legitimate emails incorrectly recognized as spam) and false negatives (spam

incorrectly recognized as legitimate email). A deviation of about 0.18% indicates a

strong correlation between RBLs and local blacklist mechanism.

Effect of Cardinality of Identity and Receiver Collaboration

The mail logs described in Section 5.2.1 was used to demonstrate the

effectiveness of blacklist mechanism. The receivers maintain blacklists of senders with

the help of a shared blacklist among the receivers, based on the senders’ identities. The

Graph 5.4: Percentage of incorrectly classified email per day where receivers within
an organization collaborated to maintain a blacklist.

0

5

10

15

2 0

2 5

3 0

3 5

4 0

Day
1

Day
2

Day
3

Day
4

Day
5

Day
6

Day
7

Day
8

Day
9

Day
10

Day
11

Day
12

Day
13

Day
14

Day
15

Day
16

Day
17

Day
18

Day
19

Day
20

Day
21

T im e in D ays

%
 o

f i
nc

or
re

ct
ly

 c
la

ss
ifi

ed
 e

m
ai

ls

S ender Identity: E m ail Id
S ender Identity: F lexib le
S ender Identity: D om ain

47

experiment is similar to the one performed in Section 5.2.1. When an email is received,

the identity is checked against the local blacklist. If the identity is present in the

blacklist, the email is rejected. If not, the user reads the email and the user determines

whether it is spam. When the user determines that the email is spam, the user puts the

sender identity on the local blacklist. The rejects logs from RBL are employed to

emulate user behavior.

These experiments use three types of sender identity: email id, domain name,

and flexible identity. The cardinality of the sender identity is selected as the number of

users associated with the identity. (e.g., the cardinality of sender identity using single

email id is 1.) In the experiments, flexible identity contained at least 2 randomly

selected email ids, thus its cardinality is larger than that of single email id and smaller

than that of the domain as sender identity.

Assuming that the RBL simulates user behavior, Graph 5.3, Graph 5.4 and

Graph 5.5 denote the number of incorrectly classified emails per day plotted against the

number of days. Incorrectly-classified emails include both false positives and false

Graph 5.5: Percentage of incorrectly classified email per day where all 5
organizations collaborate to maintain a global Blacklist.

0

10

20

30

40

50

60

70

80

90

Day
1

Day
2

Day
3

Day
4

Day
5

Day
6

Day
7

Day
8

Day
9

Day
10

Day
11

Day
12

Day
13

Day
14

Day
15

Day
16

Day
17

Day
18

Day
19

Day
20

Day
21

Time in days

Pe
rc

en
ta

ge
 o

f s
pa

m
 in

co
rr

ec
tly

 c
la

s

Sender Identity: Email Id
Sender Identity: Flexible
Sender Identity: Domain

48

negatives. Graph 5.3 shows the amount of emails that were incorrectly recognized for

different sender identities without any receiver collaboration. It can be seen that as the

cardinality of the identity increases, the amount of incorrectly classified emails

increased.

Graph 5.4 demonstrates the amount of incorrectly recognized spam when the

users among a domain collaborate. The graph reiterates the same behavior as in Graph

5.3, where as the cardinality of the identity increases, the amount of incorrectly

classified emails increase. Comparing this graph with Graph 5.5, it can be seen that by

introducing receiver collaboration, the percentage of incorrectly recognized emails has

increased.

Graph 5.5 demonstrates the number of incorrectly classified emails when the

senders maintained a global blacklist. The global blacklist was maintained among the 5

domains. Table 5.1 summarizes the results, showing the overall percentage of

incorrectly classified emails as a function of the cardinality of the sender identity and

receiver collaboration. For highest accuracy, the receivers should not collaborate when

the sender identity being an email id. The most inaccurate method for maintaining a

Table 5.1: The average percentage of incorrectly classified spam over 21 days as a
function of receiver collaboration and sender identity.

49

blacklist is with sender identity being a domain with global collaboration.

Even though accuracy is highest for email id as identity, it entails a huge

amount of storage and collaboration requirements. On the other hand, collaboration for

the sender identity being set as domain is highly inaccurate. Additionally, without

receiver collaboration, the time required to classify emails for the users is huge. This

suggests that collaborative systems should use some sort of collaboration for a flexible

identity. The flexible identity should be fine-granular than the domain and coarse-

granular than the email id. Such an identity would be ideal to reduce the amount of

incorrectly recognized email based on sender identity.

5.2 RepuScore Evaluation

The effectiveness of RepuScore is demonstrated through experiments with the help of:

a) Simulated logs to demonstrate specific properties of RepuScore; and

b) Deployed results from RepuScore

Simulated logs

The simulated logs were created with 100 RepuCollectors spanning 45 intervals.

A random number of RepuServers is selected which reported to their local

RepuCollectors. The number of emails and spam that were transmitted to and from an

organization was perturbed using a random number; for example, since RepuScore

creates a trusted group of reputable senders, the spam rate among them was set at under

20%, whereas a spamming domain’s spam rate was set at greater than 95%. (This trend

is seen in the logs from the non-profit organization.)

Mail logs from a Non-Profit Organization

The logs were 20-day mail logs collected by 5 domains maintained by the

50

organization. It contained about 45,000 domains to which 450,000 emails were sent,

55% were marked as spam by RBLs or rejected since the sender domain did not exist

through reverse DNS lookup; a reverse DNS lookup checks if the sender is likely using

an inexpensive internet service, such as a dialup. A sizeable amount of spam originating

from inexpensive dial-up Internet services is rejected due to reverse DNS lookups.

Deployment at Three Organizations

During the deployment for 174+ days computed reputations for 16,509 sender

identities authenticated using SPF and DKIM. Minimum Good Reputation is defined as

the minimum reputation to be considered a credible sender. For the experiments, a

Minimum Good Reputation is selected to be 0.5 to classify the emails and discuss the

Table 5.2: Sample mail logs from Postfix Server

Table 5.3: Sample logs from simulated
RepuServer table

Interval Sender Spam Total
1 43 319 1227
1 96 1575 6058
1 32 549 1962
1 32 481 2294
1 50 626 3915

Table 5.4: Sample RepuCollector and
CA reputation tables

Interval Sender Reputation

1 1 0.827423
1 2 0.871215
1 3 0.840456
1 4 0.832936
1 5 0.829092

Aug 20 04:32:22 abc postfix/smtpd[17111]: < unknown[someIP]: RCPT
TO:<someone@somewhere.com>

Aug 20 04:32:22 abc postfix/smtpd[17111]: extract_addr: input: <someone@somewhere.com>

…

Aug 20 04:32:22 abc postfix/smtpd[17111]: >>> START Helo command RESTRICTIONS <<<

Aug 20 04:32:22 abc postfix/smtpd[17111]: generic_checks: name=permit_mynetworks

Aug 20 04:32:22 abc postfix/smtpd[17111]: permit_mynetworks: unknown someIP

Aug 20 04:32:22 abc postfix/smtpd[17111]: match_hostaddr: someIP ~? 127.0.0.0/8

Aug 20 04:32:22 abc postfix/smtpd[17111]: match_list_match: someIP: no match

Aug 20 04:32:22 abc postfix/smtpd[17111]: generic_checks:
name=reject_unknown_sender_domain

51

reasons for selecting the same. Lifetime of a sender identity is defined as the number of

reputation intervals between the first and the last occasion including the first occasion

the sender identity sent an email. For example, if the sender appears just on one day, the

Lifetime is considered 1. For the experiments, a value of α of 0.8 is selected for original

RepuScore for all comparisons. The value of 0.8 is selected to allow more importance

in the past than the present.

The deployment experiments show information from two organizations. The

first receiver organization is a small business organization with a user base of 50 that

uses SpamAssassin to classify the emails. This organization has deployed RepuScore

since 10/9/2007.

The second receiver organization is an Email Service Provider (ESP) that has

deployed RepuScore since 2/7/2008. The organization has 78,000 users of which about

10,000 paying customers have SpamAssassin plug-in to identify senders. About

17,000+ verified authenticated emails are received by the organization in a single day.

5.2.1 Format of Logs to RepuScore Algorithm

The mail logs from the non-profit organization were based on postfix mail server. Table

5.2 shows the different checks that the postfix server performed. The mail server uses

spamhaus.org as the RBL. The anonymized logs captured received emails for 5

organizations.

The RepuServer computes the information from different senders. This is

maintained in the format shown in Table 5.3. The RepuCollector and the Central

Authority maintain the reputation for senders in the format shown in Table 5.4.

52

5.2.2 Experiments with Simulated Logs

This section discusses the results from the simulated logs:

a) Effect of α on trusted Sender with sudden increase transmitted spam

b) Initial Values for RepuCollector

c) Resilience to Sybil Attacks

5.2.2.1 Effect of α on trusted Sender with sudden increase transmitted spam

This section discusses the scenario where spammers build reputation and

suddenly transmitting huge amounts of spam. In such cases, it is expected that the

sender identities’ reputation would be high until the spamming activity, after which the

reputation would decrease quickly. To demonstrate the effectiveness of RepuScore,

logs with 100 RepuCollectors spanning 45 aggregation intervals were created. Random

number of RepuServers are selected which reported their reputations to their local

Graph 5.6: The change in the reputation of a trusted domain that transmits spam after
reputation interval 30 as a function of α. Reputation eventually converges to (1 - average
spam rate) after multiple reputation intervals. A high value of α places importance to
reputation in the previous interval, whereas a lower value places higher importance to
the present interval. For a high value of α, it takes a long time for the reputation to
change whereas for low α value the change is faster. The sudden change from the initial
score in the first interval is due to initial sender reputation set at 0.7.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
p

am
-R

at
e

0.
13

0.
16

0.
19

0.
18

0.
15

0.
16

0.
14

0.
14

0.
16

0.
16

0.
16

0.
15

0.
14

0.
15

0.
16

0.
16

0.
13

0.
15

0.
15

0.
16

0.
16

0.
13

0.
22

0.
15

0.
19

0.
15

0.
18

0.
17

0.
13

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

Interval1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

R
ep

ut
at

io
n

S
co

re

Reputation Aggregation Intervals (with Spam Rate)

Alpha = 0.1
Alpha = 0.3
Alpha = 0.5
Alpha = 0.7
Alpha = 0.9

Reputation Score Converges to
(1- spam rate) .

Sudden Increase in Spam on Day 30
Initial RepuDomain Reputation = 0.7
Initial RepuServer Reputation = 0.5
Lower Bound Reputation = 0.0

Jump from initial reputation
associated with alpha. Lower the
alpha, Higher the jump.

53

RepuCollectors. The number of email and spam transmitted to and from an

organization was perturbed using a random number; for example, since RepuScore for

trusted and reputable senders, the spam rate among them was set at under 20%, whereas

a spamming domain’s spam rate was set at greater than 95%. (The trend from real

world logs.)

Using Equation 1 without Swapping α and (1- α)

Graph 5.6 demonstrates the reputation of a sender identity from which the

amounts of spam suddenly increased and demonstrate these using different values of α.

For the first 30 aggregation intervals, the RepuCollector built its reputation and

attempted to be a trusted sender. After aggregation interval 30, the spam rate from the

RepuCollector increased to 95%. The initial jump in the reputation is due to the value

of α combined with the initial reputation value of RepuCollector that was set at 0.5.

Therefore, the reputation of the RepuCollector for α = 0.9 decreased from 0.7 after the

first aggregation interval.

In the case where the sender does not propagate spam, the reputation should

Graph 5.7: In the modified RepuScore algorithm, a high value of α (other than 1.0)
implies gradual increase, but fast decrease in reputation.

0

0.2

0.4

0.6

0.8

1

1.2

S
p

am
-R

at
e

0.
13

0.
16

0.
19

0.
18

0.
15

0.
16

0.
14

0.
14

0.
16

0.
16

0.
16

0.
15

0.
14

0.
15

0.
16

0.
16

0.
13

0.
15

0.
15

0.
16

0.
16

0.
13

0.
22

0.
15

0.
19

0.
15

0.
18

0.
17

0.
13

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

Interval1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

R
ep

ut
at

io
n

 S
co

re

Number of Reputation Aggregation Intervals (with Spam Rate)

Alpha = 0.1
Alpha = 0.3
Alpha = 0.5
Alpha = 0.7
Alpha = 0.9

Sudden Increase in Spam on Day 30
Initial RepuDomain Reputation = 0.7
Initial RepuServer Reputation = 0.5
Lower Bound Reputation = 0.0

High value for alpha shows
the gradual increase in
reputation and rapid
decrease in reputation.

54

increase slowly indicating a long history of non-spamming. Hence the high value of α

is good to maintain an association for a long history of good actions. If the sender

propagates spam, the reputation should decrease immediately, reflecting the current

actions of the sender. A low value of α guarantees an immediate reduction when the

sender propagates spam.

Using Equation 1 with Swapping α and (1- α)

With the interchange of α and (1- α) in Equation 1, allows the slow increase and

fast decrease in the reputation. Graph 5.7 demonstrates the values of reputation by

using the modified algorithm. For high values of α, reputation increases gradually but

decreases more rapidly.

5.2.2.2 Initial Values for RepuCollector

Setting an appropriate initial value for RepuCollectors’ reputation is extremely

important to maintain a trusted group of reputable senders. For instance, if the initial

reputation scores for the RepuCollector and RepuServers are set too high, it would take

a long time for the reputation to decrease. On the other hand, if the initial reputation is

Graph 5.8: RepuScore’s resilience towards Sybil attack. Multiple spamming domains
(under a Sybil’s control) increase their reputation of each other and decrease reputation
for others after the reputation aggregation interval 30. Sybil domains reputations stays
low and non-Sybil’s reputation remains high.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

R
ep

ut
at

io
n

S
co

re

Reputation Aggregation Intervals

Sybil Domain with 10% Sybil domains
Sybil Domain with 20% Sybil domains
Sybil Domain with 30% Sybil domains
Good Domain with 10% Sybil domains
Good Domain with 20% Sybil domains
Good Domain with 30% Sybil domains

55

set too low, it would take a long time for the reputation of a non-spamming

RepuCollector to increase.

The experiments show that an ideal initial reputation value for the RepuServer

and the RepuCollector is between 0.5 and 0.7. With different initial values it is noted

that the average reputation of all the domains using the logs from the non-profit

organization converged to about 0.6 for α = 0.1, 0.47 for α=0.5 and 0.36 for α = 0.9.

Hence, an ideal initial reputation should be equal to the average reputation of all

domains in the system after a long period. In order for the new reputation domains to

participate in the reputation aggregation intervals, the threshold should be 0.1- 0.3

below the initial reputation.

5.2.2.3 Resilience to Sybil Attacks

To demonstrate resilience to Sybil attacks, the percentage of malicious reporting

RepuCollectors is increased from 10 to 30%. Each sender transmits a high amount of

spam (> 95%) for the first 30 aggregation intervals. After 30 aggregation intervals, the

Sybil attackers start increasing the reputation of its own Sybil domains and decrease the

Graph 5.9: Percentage of Authenticated Emails classified using RepuScore. The
reputation computed from receiver-organization 1 was used to classify emails of
receiver-organization 2. On average, RepuScore classified about 72% of emails -
40% were accepted and 32% were rejected.

20

25

30

35

40

45

50

55

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

% Emails Rejected by RepuScore
% Emails Accepted by RepuScore
% Emails RepuScore had No reputation

Reputation Interval (in Days)

%
 o
f
Em

ai
l R

ec
ei
ve
d

56

reputation of other domains. Graph 5.8 demonstrates the results where the reputation of

the Sybil domains steadily decreased, but the reputation of the non-Sybil domains

increased.

5.2.3 Results from the Deployment

The RepuScore statistics, effectiveness of RepuScore and the results of Volume-

Enhanced RepuScore is demonstrated in this section.

Graph 5.10: Around 10% of the authenticated sender identities were credible senders;
while about 32% were known spammers. RepuScore had no reputation information
for 58% of the senders.

Graph 5.11: Number of sender identities with lifetime of 1 day (sent emails only on 1
day in 174 days) and 2 days (sent emails on 2 consecutive days in 174 days) plotted
against their first appearance. For the sake of brevity, the number of domains which
had lifetimes of 3 and above is not shown. However, it is noted that the value is
negligible compared to Lifetime 1 and 2. About 8000 sender identities with Lifetime
1 sent emails were noticed.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

% Sender Identities Rejected by RepuScore
% Sender Identities Accepted by RepuScore
% Sender Identities RepuScore had no Reputation

Reputation Interval (in Days)

%
 o
f
A
u
th
en

ti
ca
te
d

Se
n
d
er
 Id
en

ti
ti
es

0

20

40

60

80

100

120

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171

Lifetime = 1
Lifetime = 2

Reputation Interval (in Days)

N
um

be
r o

f S
en

de
r

Id
en

ti
ti
es
 In
tr
od

uc
ed

57

Effectiveness of RepuScore

To show the effectiveness of RepuScore, the reputation computed from the first

receiver organization from day 107 is used to compute the reputation at the second

organization’s mail logs. In these graphs, the second organization uses SpamAssassin

and not RepuScore to classify emails.

Graph 5.9 and Graph 5.10 shows the effectiveness of RepuScore in classifying

authenticated emails. The results show that using RepuScore, while only 10% of the

sender identities were good over 23 days they transmitted about 40% of the

Graph 5.12: Cumulative distribution of sender identities as a function of
reputation. 97.8% of the identities had reputation of 0 or 1.

Table 5.5: The distribution of reputation as a function of minimum good
reputation.

Minimum Good
Reputation

Number of Good
Domains

0 (From 0 to 1) 16,509 (100%)
0.1 (From 0.1 to 1) 1,925 (11.66%)
0.2 (From 0.2 to 1) 1,858 (11.25%)
0.3 (From 0.3 to 1) 1,834 (11.11%)
0.4 (From 0.4 to 1) 1,817 (11.01%)
0.5 (From 0.5 to 1) 1,803 (10.92%)
0.6 (From 0.6 to 1) 1,767 (10.70%)
0.7 (From 0.7 to 1) 1,752 (10.61%)
0.8 (From 0.8 to 1) 1,730 (10.48%)
0.9 (From 0.9 to 1) 1,681 (10.18%)
1 (Reputation of 1) 1,541 (9.33%)

58

authenticated emails that were accepted by RepuScore. About 32% of the sender

identities were spammers that sent about 32% of the authenticated emails which were

rejected using RepuScore. The experiment demonstrates that with the knowledge of

42% of the sender identities, RepuScore classified 72% of the authenticated emails.

The results show that reputation gathered from a small set of users can be

effective to classify emails for a large number of users. It is noticed that the number of

identities RepuScore had no knowledge about was always constant indicating that a lot

of new one-time sender identities were being introduced.

Graph 5.11 proves the hypothesis about a huge number of sender identities

being created to spam and are taken down soon. It can be noticed that sender identities

with a lifetime of 1 day are distributed over the time of the deployment. The total

number of identities that sent emails only in 1 interval was about 8000. The rate at

which identities sent email on two consecutive days was much lesser.

The cumulative distribution of sender identities as a function of reputation is

demonstrated in Graph 5.12. Out of the 16,500+ identities, about 14,000 had a

reputation of 0. The graph shows that about 97.8% of the senders have a reputation

Graph 5.13: The distribution of sender identities vs. their lifetime. The number of
sender identities decreases as the lifetime increases.

1

10

100

1000

10000

1 21 41 61 81 101 121 141 161

N
u
m
b
e
r
o
f
Se
n
d
e
r

Id
e
n
ti
ti
e
s

Lifetime of sender Identities (in Days)

59

either “0” or “1”. With the help of Table 5.5, a minimum good reputation to be 0.5 is

selected as it bisects the two clusters with reputations of 0 and 1. With minimum good

reputation as 0.5, only 10.92% of the sender identities were good senders. By changing

the minimum good reputation to 0.7, 51 (0.3%) additional sender identities were

considered bad.

Graph 5.13 also validates this by showing the distribution of the number of

sender identities vs. their lifetime. The number of sender identities with lifetime of 1

was about 8,000. However, as the lifetime increased, the number of sender identities

became smaller and evenly distributed.

To prove the hypothesis that if the lifetime of the sender identity is long, the

Graph 5.14: Percentage of good (or bad) sender identities to total number of sender
identities as plotted against lifetime. The probability that a sender identity being
credible increases with long lifetime.

Graph 5.15: Average reputation of all sender identities with the same lifetime. As the
lifetime increases, sender identity with longer lifetime has a higher reputation.

0
10
20
30
40
50
60
70
80
90
100

5 25 45 65 85 105 125 145 165

Average % of Good Sender Identities
Average % of Spammer Sender Identities

%
 o
f T

ot
al
 S
en

de
r I
de

nt
it
ie
s

Lifetime of sender Identities (in Days)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

5 25 45 65 85 105 125 145 165

Average Reputation for all Sender Identity with a specific Lifetime

A
ve
ra
ge

 R
ep

ut
at
io
n

Lifetime of sender Identities (in Days)

60

probability of it being a good identity is high, a plot of the daily percentage of good and

bad sender identities plotted against lifetime in Graph 5.11. The graph shows that the

percentage of bad identities decreases as the lifetime increases, whereas the percentage

increases for legitimate sender identity. Graph 5.15 validates this claim and shows the

Graph 5.16: Number of times a sender identity changed from good to bad or vice-
versa. Only 290 sender identities (about 1.75%) changed its behavior.

Graph 5.17: Volume-Enhanced RepuScore reacts to the email volume for a popular
free email provider. After volume enhancement, the reputation between the intervals
1-11, drops radically. Reputation increases between the intervals 11-15. The slope in
volume enhanced RepuScore is indicative of email volume.

Graph 5.18: Volume of the Spam and Email noticed at receiver organization 1. The
reputation of the sender identity changes based on the email volume.

1

10

100

1000

1 11 21 31 41
Number of Instances a Sender Identity Changed Behavior

N
um

be
r o

f
Se
nd

er
 Id
en

ti
ti
es

0

5

10

15

20

25

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151

Volume of Email
Volume of Spam

Reputation Intervals (in Days)

61

average reputations for all sender identities with same lifetimes. The curve for the

average reputation for all identities shows a similar trend as percentage of good

identities in Graph 5.14. Additionally, using a minimum good reputation of 0.5,

credible sender identities had an average lifetime of 61.9 days while spammers had

17.47 days.

Graph 5.16 shows the number of sender identities for which the reputation

changed from being good to bad or vice versa. About 1.75% changed from being good

to bad or vice versa corresponding to about 291 sender identities. There were only 8

sender identities whose reputation kept changing from good to bad or vice versa more

than 15 times as their reputations hovered around 0.5.

Graph 5.19: RepuScore: Reputation of the free email provider computed using
information from two receiver organizations. Receiver organization 2 was
introduced on day 107 of receiver organization 1.

Graph 5.20: Volume-Enhanced RepuScore: Using volume, the global reputation is
closer to the reputation from both the receiver organizations.

62

Volume-Enhanced RepuScore

Graph 5.17 shows the reputation for a sender identity, corresponding to a

popular free email service on the Internet. The sender identity had alternatively sent

high and low spam rate to a single organization. Graph 5.18 shows the corresponding

email volume and spam volume. Using the reputation information from the receiver

organization 1, logs from the receiver organization 2 classify the emails. Graph 5.17

shows the benefit of using volume enhancement as the sender identity reputation was

Graph 5.21: Reputation of IP address over the lifetime of the deployment.

Graph 5.22: The reputation of a well known free email provider computed over 170
days.

63

varied with the email volume. From the graphs, it is noticed that the rate at which the

reputation decreases for changes based on the email volume. For example, from

interval 1 to 11, the volume-enhanced reputation is lower than the original reputation.

At intervals 11 to 13, the reputation computed by volume-enhancement was higher than

the original RepuScore algorithm. It is noted that with the help of Volume-Enhanced

RepuScore, the slope of the reputation follows the email volume. The average

Graph 5.23: The number of IP addresses as a function of their lifetime. As lifetime
increases, the number of domains decreases. A large amount of domains had a lifetime
of “0”.

Graph 5.24: The number of authenticated sender identities as a function of lifetime.
This follows the same trend as the IP addresses.

64

reputation over 175 days for the sender was 0.82 using the original RepuScore and was

about 0.662 using volume-enhanced RepuScore. On the average over 175 days,

considering a minimum good reputation of 0.5, the sender was credible.

Combining Reputations from Two Receiver Organizations

This experiment considers the effect of combining global reputation computed

Graph 5.25: The average reputation of the IP addresses as a function of the lifetime.
As the lifetime increases, the average reputation for IP address also increases.

Graph 5.26: The average reputation of a sender identity as a function of lifetime. As
the lifetime increases, the average reputation for authenticated sender identity also
increases.

65

at two receiver organizations. For the sender identity discussed in Section 4.3, the

receiver organization 2 transmitted about 38,100 authenticated emails of which 61 were

spam in a span of 55 days. The receiver organization 2 started the evaluation of

RepuScore from the reputation interval 107.

Graph 5.19 and Graph 5.20 shows results using RepuScore and Volume-

Enhanced RepuScore. The experiments show the accuracy of the reputation depends on

the number of honest receiver organizations that start contributing to RepuScore. As the

Graph 5.27: The number of IP addresses with lifetime 0 and 1 that show up during
the time of deployment.

Graph 5.28: The number of sender identities that appear with Lifetime 0, 1 that
appear during the time of deployment.

66

number of receiver organizations increase, the global reputation will be a weighted

average of the reputation seen from different domains. In the example, as both receiver

organizations did not maintain reputation for the other, the global score was a simple

average.

Comparison between using IP address and Domain name as Sender Identity

Graph 5.21 shows the reputation of an IP address. The reputation is displayed

against the time of deployment. It can be seen that the reputation of the sender increases

Graph 5.29: The daily percentage of IP addresses that were accepted, rejected and
with no reputation.

Graph 5.30: The percentage of rejected emails, accepted emails and with emails with
no reputation computed by RepuScore.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Deployment Time (in Days)

%
 o

f I
P Rejected but Accepted by RepuScore

Accepted by RepuScore
No Reputation Information

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Deployment Time (in Days)

%
 o

f E
m

ai

 Rejected Emails Accepted by RepuScore

 Accepted Emails using RepuScore

 Emails with No Reputation Information

67

from 90 and then becomes equal to 100. Graph 5.22 demonstrates the reputation of the

sender identity of the well-known free email provider. It can be seen that as the time of

deployment increased, the reputation of the sender changes a lot over the time. About

366 different IP addresses claimed to have sent email from the said domain. Of these,

184 (50.27%) had proven SPF and DKIM records.

Graph 5.23 shows the number of IP addresses having the specific lifetimes. It

can be seen that as the lifetime increases, the number of IP addresses with the specific

lifetime decreases. A large number of IP had a lifetime of “0”. This shows that a large

Graph 5.31: The percentage of authenticated sender identities that were rejected,
accepted and with no reputation.

Graph 5.32: The percentage of authenticated emails classified using RepuScore.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Deployment Time (in Days)

%
D

om
ai

n Rejected Domains using RepuScore
Accepted Domains by RepuScore
Domains with No Reputation

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Deployment Time (in Days)

%
Em

ai

 Rejected Emails
 Accepted Emails using RepuScore
 Emails with No Reputation Information

68

Graph 5.33: The percentage of False Positives plotted against number of days.

Graph 5.34: The percentage of False Negatives plotted against number of days.

0.01

0.1

1

10

0 25 50 75 100 125 150 175 200 225 250

% False Positives

Linear Trend (% False Positives)

%
 F
al
se

Po
si
ti
ve

0.1

1

10

0 25 50 75 100 125 150 175 200 225 250

% False Negatives

Linear Trend (% False Negatives)

number of IP addresses come online and do not come back again. Graph 5.24 shows the

same trend for domain name. Using domain name and IP address follow the same

trend.

Graph 5.25 shows the average reputation of the IP addresses with the same

lifetime. It can be seen that as the lifetime increases, the average reputation of the IP

addresses increases. Graph 5.26 shows the same statistics for domain name. These

shows that lifetime can be considered to be used for computing reputation for IP

addresses.

Graph 5.27 shows the distribution of the identities over the lifetime of the

deployment. It can be seen that everyday at least 200 new IP addresses transmitted

69

Graph 5.35: The total amount of emails received and classified using RepuScore
against number of days.

Graph 5.36: The percentage of emails classified using RepuScore.

0

100000

200000

300000

400000

500000

600000

700000

0 25 50 75 100 125 150 175 200 225 250

Total Emails Received

Total Emails Classified by RepuScore

N
U
m
be

r o
f E
m
ai
ls

0

10

20

30

40

50

60

70

0 25 50 75 100 125 150 175 200 225 250

% of Total Emails Classified by RepuScore

Linear Trend (% of Total Emails Classified by RepuScore)

%
 o
f T
ot
al
Em

ai
ls
 C
la
ss
if
ie
d

emails that did not send emails again. Graph 5.28 shows the same information for

domain name.

Email Classification Using RepuScore

The reputation information is used from the single domain (16,500+ domains or

58,000+ IP addresses) and applied the information to classify emails at a second

organization. The second organization received about 4.72 million emails in the month

of March 2008.

Graph 5.29 shows the daily percentage of IP addresses which were classified as

good, bad and those for which there was no reputation at all. RepuScore computed

reputation for about 14.25% of the IP addresses that sent emails.

70

Graph 5.30 shows the corresponding daily percentage of emails that were

classified using IP addresses for email classification. It can be seen that using IP

addresses, a large amount of emails cannot be classified. This is because the bulk of

emails were distributed over a large number of IP addresses for which reputation still

needs to be maintained.

Graph 5.31 shows the same results using the authenticated domain names.

About 31.5% of the emails were authenticated using DKIM and SPF. Graph 5.32 shows

the percentage of authenticated emails that could be classified using RepuScore. With

the knowledge of about 12% of the total domains that sent emails, RepuScore was able

to classify about 26.8% of authenticated emails during March 2008.

Accuracy of RepuScore

Using the logs available at receiver-organization 2 with 4 mail servers, which

we designate as a, b, c and d. For evaluating the accuracy of RepuScore, we computed

reputation from server a, b and c over 250 days of deployment every day. Real-Time

Blacklists identifies a sender as spammer or otherwise. We then used the email logs

available at mail server d to calculate the accuracy at mail server d.

Graph 5.33 demonstrates the false positives due to email classification using

RepuScore. We note that over 250 days of deployment, the average % false positives is

about 1% of the total email identified. Graph 5.34 demonstrates the false negatives by

using RepuScore. We note that the average % false negatives are about 1.2% of the

total emails classified. We note that for the total emails classified, the accuracy of

RepuScore is 97.8%. Graph 5.35 shows the total number of emails received by server d

and the total percentage of emails classified using RepuScore. Graph 5.36 shows the %

71

of emails classified using RepuScore every day of the deployment. We notice that

about 30.3% of the emails were classified. We believe that if server d computes

reputation, the reputation can be useful in increasing the % of the emails that can be

identified by RepuScore.

CHAPTER 6: CONTRIBUTIONS AND FUTURE WORK

The contributions of this dissertation work along with the future work in this

direction are presented in this chapter. Section 6.1 discusses the contributions followed

by Section 6.2 that discusses the future work in this direction.

6.1 Contributions

Sender accountability is a mechanism to hold senders accountable for the emails

they transmit. It requires a) identifying the senders; and b) maintaining a history of the

sender’s activity.

This dissertation presents an authorization framework, called Privilege

Messaging or P-Messaging, overlaying the existing email infrastructure while retaining

the beneficial aspects such as relaying. For the sender, P-Messaging provides a

mechanism that allows email delivery only if the sender possesses the privilege that the

receiver would accept. Based on the privileges, the email is classified automatically

according to the Privilege Tag at the receiver. Maintaining the privileges in the white-list

as compared to individual email IDs allows a smaller list to be maintained. Each

Privilege Server manages multiple privileges as opposed to a single credential in

previously proposed domain-based authentication schemes. In case of the compromise

or spam being propagated from one domain, the negative reputation is contained within

a privilege rather than the complete domain.

With the help of P-Messaging, a trusted third party verifies the email’s

73

authenticity. To verify privileges, P-Messaging establishes a Circle of Trust (CoT)

among the P-Server for privilege verification. P-Messaging performs dual digital

signature on an email, first by the assigned privilege and then by P-Server, allowing

peers in the CoT to verify the email’s authenticity. This ensures that only authorized

users can send messages only if their P-Server is a member of CoT, and that a P-Server

needs to limit the unwanted email that it transmits or it would be revoked from the CoT.

To ensure a long history of sender accountability, this dissertation work

describes, RepuScore, a collaborative reputation framework that calculates global

reputation for sender identities by collecting reputation-views from multiple receivers.

After being blacklisted, spammers usually adopt new sender identities. In contrast, a

legitimate sender’s identity typically exists for long periods. A reputation framework

will be effective in blocking spam by maintaining a group of reputable trusted senders.

RepuScore distributes the overhead for reputation collection and computation by

using a distributed architecture while allowing a centralized authority to collectively

calculate the global reputation for each sender.

This dissertation presents algorithms to compute reputations using the history

with the help of the correlation factor (α). RepuScore uses the spam rate of the senders

to maintain the history of sender activity. To protect against Sybil attacks, this

dissertation has devised a mechanism to consider a good sender’s input more than the

input submitted from a non-reputable one. During RepuScore deployment, it is noticed

that the daily change in the email volume affected the reputation when only the spam-

rate is used to calculate the score.

To enhance the effect of volume, Volume-Enhanced RepuScore incorporates

74

email volume to compute reputation in addition to the spam rate of the sender identity.

This dissertation also discusses a RepuScore plug-in for SpamAssassin to collect

information about each email from mail servers. The plug-in is deployed RepuScore at

two organizations since 10/9/2007 and computed reputations for authenticated sender

identities.

The results generated from using both the IP addresses and domain name as

sender identities is compared. During the deployment since October, reputations for

about 16,500+ authenticated domains and about 58,000+ IP addresses have been

computed. The reputation for sender identities as seen from a single domain is applied at

another organization for 1 month (March 2008). The second organization received about

4.72 million emails during this period of which about 1.48 million (31.5%) were domain

authenticated using SPF and DKIM. The analysis shows that RepuScore can be effective

to classify sender’s emails especially when the sender identity is domain authenticated.

The results show some interesting observations: a) identities with low reputation

have a shorter lifetime compared to ones with high reputations; b) RepuScore was able

to classify emails from about 42% of the authenticated sender identities corresponding to

about 72% of the authenticated email volume; c) about 97.8% of the sender identities

had reputation either near 0 or near 1. d) Average lifetime of good and bad sender

identity was 61.9 and 17.47 days respectively as a large number of sender identities are

created constantly that sent email only in one interval.

6.2 Distributed Reputation Management Framework

Though centralized reputation management provides high accuracy, it introduces

a single point of failure. Reputation management protocol faces Denial of Service

75

attacks from spammers disabling the reputation management service. Centralized

reputation management faces directed-attacks where spamming domains can maintain

high reputation by sending legitimate emails to multiple domains, but send spam to a

specific domain. As centralized RepuScore computes an average of the reputation, the

spammer can maintain high-reputation and spam specific domains in each time-period.

Organizations with low reputations can attempt to change identities when their

reputation is known. This would allow organizations to use multiple domain names to

send emails until their emails are accepted.

To offset these problems from Central RepuScore, a distributed version of

RepuScore needs to be developed where each node has its own view of the world in

comparison with a single point of view for the entire world. A single view of the world

might not be amenable to all the domains in the reputation algorithm.

Figure 6.1: Distributed RepuScore Architecture where RepuCollectors synchronize
with friend-peers to achieve high accuracy in reputation.

76

6.2.1 Distributed RepuScore Architecture and Algorithm

The architectural components of the distributed RepuScore are the RepuServer,

RepuCollector which are similar to the components of the central RepuScore. However,

in distributed RepuScore, there is no Central Authority. Figure 6.3 shows the different

components of the distributed RepuScore algorithm.

A RepuCollector synchronizes with its peers to achieve a high-level of accuracy.

The distributed RepuScore should achieve the baseline accuracy of the centralized

RepuScore, but should be able to thwart the attacks that centralized RepuScore can face.

Reputation Computation

The RepuServer and RepuCollector compute reputation using Equation 4.2 and

Equation 4.3 respectively. The RepuCollector reputations are shared among the peers

Equation 6.1: Distributed RepuCollector while synchronizing with peers.

Equation 6.2: The threshold to pause synchronization with peers. The
Synchronization occurs every reputation aggregation interval.

77

using a distributed mechanism. Equation 6.1 shows the new RepuCollector algorithm for

synchronization architecture. This algorithm is iterated a number of times till each node

assume a steady state. Equation 6.2 shows the algorithm to compute the synchronization.

The steady state in reputation is calculated when a system synchronizes with its peers.

The steady-state is assumed to have been reached when the difference in the reputation

between a previous time and the present time should be less than a threshold. This

mechanism allows dynamic variation of the number of times a particular RepuCollector

needs to synchronize with its peers.

The distributed RepuScore architecture faces Sybil Attacks similar to the

Centralized RepuScore algorithm. The weighted RepuCollector algorithm above

attempts to reduce the effect of Sybil domains by employing high importance to

reputable peers than to low reputable peers.

6.2.2 Effect of Synchronization

Organizations can choose to perform unidirectional or bidirectional

synchronization with the peers. Though bidirectional synchronization would converge

faster, there might be security and privacy issues for bidirectional synchronization. For

example, when a RepuCollector synchronizes with a peer, the peer trusts the requesting

peer with its data. However, the data from the requesting peer might not be accurate

enough for synchronization. Therefore, RepuCollectors should be allowed to perform

both unidirectional and bidirectional synchronizations.

78

Due to synchronization, a peer’s local reputation is passed onto the senders

through multiple iterations. Therefore, the sender reputation can be diluted multiple

number of times before reaching a required organization. Figure 6.3 shows the effect of

synchronizing. Reputations from node H is passed through the nodes G and E before

reaching the node A. The reputation view of the node H is reduced by node G’s

reputation of node H, node E’s reputation of node G and finally, node A’s reputation of

node E. It needs to be noted that: A H ≠ A E * E G * G H where represents

the synchronized value. Given number of RepuCollectors is n and the number of

synchronizations at best case should be: log2 (n).

6.2.3 Evaluation of Distributed RepuScore

Distributed RepuScore based on the following criteria:

a) Synchronization Frequency: Synchronization frequency is the number of times

distributed RepuScore needs to synchronize in a single day. The Synchronization

frequency should be set to a value so that the cost of synchronization is minimized while

computing the local reputation is highly accurate.

Figure 6.2: Effect of synchronization in distributed RepuScore.

79

b) Effect of random peers vs. select set of peers: Distributed RepuScore can be

designed to select random peers to synchronize their reputations or select a set of trusted

peers to interact with. An evaluation should demonstrate which among the two provide

higher accuracy.

c) Attacks on Distributed RepuScore: Distributed RepuScore needs to be evaluated to

check how well it can fare against different attacks.

o Directed-attack against a single domain: a spamming domain can send

directed spam against one domain while sending good emails to other organizations to

maintain high reputation. Distributed RepuScore will be able to thwart directed attacks.

Both the RepuScore algorithms could be evaluated to demonstrate how Directed-attacks

can be thwarted.

o Sybil Attacks are where spammers create multiple identities that are used to

gain disproportionate influence to thwart reputation management protocols. Experiments

should be able to demonstrate that Distributed RepuScore can thwart Sybil attacks as

best as RepuScore.

80

REFERENCES

Ahmed S.; F. Mithun. 2004. Word stemming to enhance spam filtering. In Proceedings of
the First Conference on Email and Anti-Spam (CEAS).

Allman E. DomainKeys Identified Mail (DKIM): Introduction and Overview, 2005.
www.mipassoc.org/ dkim/info/DKIM-Intro- Allman.html

Andreolini M.; M. Colajanni; F. Mazzoni; L. Messori. 2005. HoneySpam: Honeypots
fighting spam at the source, In Proc. USENIX Steps to Reducing Unwanted Traffic on
the Internet Workshop, Cambridge.

Biswas S.; R. Morris. 2005. ExOR: Opportunistic Multi-Hop Routing for Wireless
Networks. Proceedings of ACM SIGCOMM ’05, Philadephia.

Brondmo H. P.; M. Olson; P. Boissonneault. 2003. Project Lumos: A Solutions Blueprint
for Solving the Spam Problem by Establishing Volume Email Sender Accountability.

CAN-SPAM Act: Requirements for Commercial Emailers.
http://www.ftc.gov/bcp/conline/pubs/buspubs/canspam.htm

Chirita P.; W. Nejdl; M. Schlosser; O. Scurtu. 2004. Personalized reputation management
in P2P networks. Technical report, University of Hannover.

CipherTrust. 2006. TrustedSource: The Next-Generation Reputation System. White
Paper.

Dewan P.; P. Dasgupta. 2004. Pride: peer-to-peer reputation infrastructure for
decentralized environments. In Proceedings of the 13th international World Wide Web
Conference on Alternate Track Papers & Posters.

Douceur J. R. 2002. The Sybil Attack. First international Workshop on Peer-To-Peer
Systems.

Duan Z.; K. Gopalan; Y. Dong. 2005. Push vs. Pull: Implications of Protocol Design on
Controlling Unwanted Traffic, In Proc. USENIX Steps to Reducing Unwanted Traffic on
the Internet Workshop, Cambridge.

Finnegan O. 2005. Email Deliverability Getting your Email into the inbox.
http://www.ieinternet.com/mailwall/ Email_Deliverability_whitepaper.pdf

Gomes L. H.; C. Cazita; J.M. Almeida; V. Almeida; W. Meira. 2004. Characterizing
spam traffic. In Proc. 4th ACM SIGCOMM Conference on Internet Measurement.

Goodmail Systems. Certified Email. www.goodmailsystems.com/certifiedmail.

81

Goodrich M.T.; R. Tamassia; D. Yao. 2005. Accredited DomainKeys: A Service
Architecture for Improved Email Validation. Second Conference on Email Anti-Spam.

Gray A.; M. Haahr. 2004. Personalized, Collaborative spam filtering. In Proc. the First
Conference on Email and Anti-Spam (CEAS).

Habeas Safe List, http://www.habeas.com/en-US/Senders/Safelist/.

Habeas SenderIndex, http://www.habeas.com/en-US/Receivers/SenderIndex.

Hardy I.R. 1996. The Evolution of ARPANET Email. Thesis, Department of History,
University of California.

Hildebrandt R.; P. Koetter. 2003. The Book of Postfix.

IronPort. 2006. Study on Email Authentication Reveals Significant Adoption.

Jakobsson M.; S. Myers. 2006. Phishing and Countermeasures, Understanding the
Increasing Problem of Electronic Identity Theft, Wiley.

Jordan S.; M. Blumberg; D. Cahill; R. Gingras. 2006. Accountable Email: Building on
Authentication. Authentication Summit II.

Kamvar S. D.; M. T.Schlosser; H.Garcia-Molina. 2003. The EigenTrust Algorithm for
Reputation Management in P2P Networks. In Proceedings of the Twelfth International
World Wide Web Conference.

Kang B. B.; G. Singaraju; S. Jain. 2006. Privilege messaging: an authorization framework
over email infrastructure. In Proceedings of the 20th Conference on Large installation
System Administration.

Leiba B.; N. Borenstein. 2004. A multifaceted approach to spam reduction, In
Proceedings of the First Conference on Email and Anti-Spam (CEAS).

Microsoft Corporation. 2004. Sender ID Framework – Executive Overview.

Milletary J. 2006. Technical Trends in Phishing Attacks. http://www.cert.org/archive/
pdf/Phishing_trends.pdf

NACHA. 2004. Phishing losses total $500 million. Technical report, NACHA- The
Electronic Payments Association.

Neustaedter C.; A.J. Bernheim Brush; Marc A. Smith; Danyel Fisher. 2005. The Social
Network and Relationship Finder: Social Sorting for Email Triage. In Proc. Conference
on Email and Anti-Spam (CEAS).

82

Papaioannou T. G.; G. D. Stamoulis. 2004. Effective use of reputation in peer-to-peer
environments. In Proceedings of the 2004 IEEE international Symposium on Cluster
Computing and the Grid.

Peterson P. 2006. SIDF and DKIM overview Scorecard. Authentication Summit II.
http://www.aotalliance.org/summit_archive/pdfs/2_Summit_Scorecard_final.pdf.

Prakash V.V.; A. O’Donnell. 2005. Fighting spam with reputation systems. Queue 3, 9.

Price W. 2003. Inside PGP Key Reconstruction, A PGP corporation White paper.

Provos N. 2004. A virtual honeypot framework. In Proceedings of the 13th Conference
on USENIX Security Symposium.

Ramachandran A.; N. Feamster; D. Dagon. 2006. Revealing botnet membership using
DNSBL counter-intelligence. In Proceedings of the 2nd Conference on Steps To
Reducing Unwanted Traffic on the internet - Volume 2 (San Jose, CA).

Realtime Blackhole List. 2002. Mail Abuse Prevention System LLC, California.
http://www.mail-abuse.org/rbl/.

Rigoutsos I.; T. Huynh. 2004. Chung-Kwei: A pattern-discovery-based system for the
automatic identification of unsolicited e-mail messages. In Proceedings of the First
Conference on Email and Anti-Spam (CEAS).

Return Path. Sender Score Email Reputation Management, http://www.returnpath.com/
delivery/senderscore.

Sahami M.; S. Dumais; D. Heckerman; E. Horvitz. 1998. A Bayesian approach to
filtering junk e-mail, in: Proc. AAAI Workshop on Learning for Text Categorization.

Segal R.; J. Crawford; J. Kephart; B. Leiba. 2004. Spamguru: An enterprise anti-spam
filtering system. In Proc. of the First Conference on Email and Anti-Spam (CEAS).

Sender Score Certified, Return Path Management, http://www.senderscorecertified.com.

Shmatikov V.; C. Talcott. 2003. Reputation-based trust management. In Workshop on
Issues in the Theory of Security.

Singaraju G.; B. Kang. 2007. RepuScore: Collaborative Reputation Management
Framework for Email Infrastructure, USENIX 21th Large Installation System
Administration Conference.

Singaraju G.; J. Moss; B. Kang. 2008. Tracking Email Reputation for Authenticated
Sender Identities, Fifth Conference on Email and Anti-Spam, 2008.

83

Srivatsa M.; L. Xiong; L. Liu. 2005. TrustGuard: Countering Vulnerabilities in
Reputation Management for Decentralized Networks. In 14th World Wide Web
Conference.

Swamynathan G.; B. Y. Zhao; K. C. Almeroth. 2008. Exploring the feasibility of
proactive reputations: Research Articles. Concurrent Computing.

Taylor B. 2006. Sender Reputation in a Large Webmail Service. Third Conference on
Email and Anti-Spam (CEAS 2006).

Wikipedia. Challenge-response Authentication. http://en.wikipedia.org/wiki/ Challenge-
response_authentication

Wong M. W. 2004. Sender Authentication: what to do, Technical Document,
http://www.openspf.org/ whitepaper.pdf

Yahoo Inc. DomainKeys: Proving and Protecting Email Sender Identity.
http://antispam.yahoo.com/domainkeys

Yu B.; M. P. Singh. 2002. An Evidential Model of Distributed Reputation Management.
Proceedings of the 1st International Joint Conference on Autonomous Agents and
MultiAgent Systems.

Yu B.; M. P. Singh. 2003. Detecting Deception in Reputation Management. Proceedings
of the 2nd International Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), Melbourne, ACM Press.

Yu H.; M. Kaminsky; P. B. Gibbons; A. D. Flaxman. 2006. Defending against Sybil
attacks via social networks. Proceedings of ACM SIGCOMM Conference.

Zimmermann P. 1995. The Official PGP User’s Guide. MIT Press, Cambridge.

