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ABSTRACT

JING LI. Risk Minimizing Portfolio Optimization and Hedging with Conditional
Value-at-Risk. (Under the direction of DR. MINGXIN XU)

This thesis looks at the problem of finding the optimal investment strategy of a self-

financing portfolio in a dynamic complete market setting so that the risk measured by

Conditional Value-at-Risk (CVaR) is minimized under the condition that the expected

return is bounded from below.

We start out with a CVaR minimization problem without expected return requirement.

We find the exact optimal conditions and apply them to two classic complete market models:

the Binomial model and the Black-Scholes model. In these cases, the procedures of finding

the optimal strategies are given with exact formulas, and the resulting minimal CVaR values

can be calculated.

We then add a minimal expected return constraint, and look for an optimal solution

in a continuous-time setting. The optimal solution most likely does not exist if there is

no upper bound on returns over time, but the infimum of CVaR can still be computed.

However, when such a uniform upper bound is prescribed, we find the optimal conditions

together with the optimal investment strategy and the resulting minimal CVaR.
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CHAPTER 1: INTRODUCTION

1.1 Risk Measures and Risk Management

More than half a century ago, Markowitz proposed a method of ranking and selecting

investments in his Nobel Prize winning work [14]. He used standard deviation, also called

volatility, to gauge the risk level associated with each investment, and worked out the

investment combination that yields minimal risk-taking at each return level. The positively

sloped portion of this famous trade-off curve of minimal risk given return or maximum return

given risk is named efficient frontier in that all the investment combination on the curve

is risk-return efficient. This portfolio selection methodology is written into the standard

finance textbooks and regarded as the foundation of modern portfolio theory.

While it is true that risk can be interpreted as uncertainty, and volatility is naturally

called upon to measure this level, it is argued why the uncertainty in upward profit swing

should be of worry. Investors will certainly welcome superior returns, and be concerned with

the possibility of dwindling returns dipping below their expectation. Many risk measures,

such as semi-standard deviation and (maximum) drawdown, are developed afterwards to

include only the downward uncertainty.

Measuring and reporting risk exposures is merely the first step of the risk management

process. Risk managers usually raise the questions: first, whether the risk profile is in

compliance with the portfolio strategy as prescribed in the prospectus; second, whether the

returns justify the levels of risk-taking; and third, what corrective actions can be suggested

to a risk-return mismatched portfolio. It then interacts with portfolio manager’s decision

making process of whether these suggested corrective actions are indeed necessary, and

if so, then how to strategically design and systematically execute the actions. From the

perspective of regulatory bodies and compliance officers, they need to find out what level

of cash cushion would be considered sufficient to back up an enterprize’s risk position, and
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whether the enterprize has this level of cash in reserve. Neither standard deviation nor its

variants provides a confident answer to the question upfront: what is the risk level?!

In 1994, J.P.Morgan in RiskMetrics system proposed a quantile based risk measure:

Value-at-Risk (VaR). It answers the following question: how much a position is expected

to lose during a measurement period with a given probability? For a given measurement

period and a probability level λ, VaR is simply the loss that is exceeded with probability

1−λ during this period. It soon gains wide acceptance in the financial industry for its clarity

in concept and it is later adopted by Basel Banking Supervisory Committee (BASEL) in

the calculation of capital mandate that is required to back up risk position.

Despite its still popular use in the industry and regulatory bodies, its inadequacy as a

risk measure surfaces. Being a quantile measure, VaR gives the threshold that the loss of

a portfolio will exceed in the worst λ situations, but it fails to give the magnitude of loss

should such situations realize. Optimizing a portfolio by minimizing VaR as a risk measure

is a formidable task from an implementation perspective, because VaR is generally not

convex. And this optimization leads to non-smooth results because of the discontinuous

nature of the quantiles. Thus as a frequent reporting measure of market risk exposure,

potential large change of value in VaR during a very short period of time is not a desirable

property for financial stability. Moreover, reducing VaR may also thin out the tail, i.e.,

even though less loss is expected to be exceeded, but once it’s exceeded, the magnitude is

disastrous! The most notorious shortcoming of VaR that draws lots of criticism is that it

discourages diversification, a well known way of reducing risk.

Recent research in the area of mathematical finance, as for the economic theory of

utility functions, developed an axiomatic approach for risk measure. With the axioms of

coherence parallel to those of rational investors, Artzner et al. [4] and [5] first proposed

coherent risk measures and derived their representation theorems. Conditional Value-at-

Risk (CVaR), sometimes called Shortfall Risk, is a distribution-based coherent risk measure

first studied by Rockafellar and Uryasev [16] and Acerbi and Tasche [1]. It is known as the

expected loss during a certain period of time, conditional that the loss is greater than a

loss threshold corresponding to a certain confidence level λ. CVaR is a vast improvement

over VaR in producing smooth portfolio optimization results. The wide use of VaR and the
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advantage of CVaR have lead many financial institutions to consider supplementing VaR

with CVaR for internal risk control.

We have so far discussed various risk measures along the historical line, and recognized

the superior properties CVaR possesses. Nonetheless, an adequate risk management system

should look at several risk measures all at once while bearing their limitations in mind, and

supplement these measures with stress testing and scenarios analysis.

1.2 Problems and Assumptions

Parallel to the problem of finding a static minimal variance portfolio solved by Markovitz,

with the positively sloped portion being defined as efficient frontier, the problem of find-

ing a static minimal CVaR portfolio is numerically solved by Rockafellar and Uryasev [16].

Bielecki et. al.[2] put one step further, and solve the dynamic version of mean-variance

portfolio selection with bankruptcy prohibition in a complete market. In this thesis, we

attempt to replace variance with CVaR, and find a mean-CVaR efficient dynamic portfolio

with uniform bounds on returns over time.

A good reference for the risk measure CVaR is in the book written by Föllmer and

Schied [10] where CVaR is given a third name Average VaR. We define VaR of a random

variable Z with finite expectation at level λ to be

V aRλ(Z) = inf{m |P (Z + m < 0) ≤ λ }, λ ∈ (0, 1),

and CVaR to be

CV aRλ(Z) =
1
λ

∫ λ

0
V aRγ(Z)dγ, λ ∈ (0, 1). (1.1)

With this definition, it is easy to see why CVaR is different from VaR: it is smooth

with respect to the change of the confidence level λ. We have to be a little careful when we

write down the equivalent form of (1.1) for the case when the probability space has atoms

CV aRλ(Z) = − 1
λ

(
E[Z1{Z<qλ}] + qλ(λ− P (Z < qλ))

)
, qλ = −V aRλ(Z).

Numerical implementation of an optimization problem with quantile-based constrains

instead of variance does not have to be easy. The major contribution of Rochafellar and
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Uryasev [17] is that they found an equivalent formula for CVaR as a convex function,

thus opening the door for convex programming methods. Using Monte-Carlo simulation

for a one-time step model with multiple assets, they formulated the portfolio optimization

problem into a linear programming problem which can be efficiently implemented with

standard programming software. For λ ∈ (0, 1), definition (1.1) is equivalent to

CV aRλ(Z) =
1
λ

inf
x∈R

(E[(x− Z)+]− λx). (1.2)

The self-financing portfolio Xt under consideration comprises two investments: a money

market account and a risky asset St. Suppose the interest rate is a constant r and the St is

a real-valued semimartingale process on the filtered probability space (Ω,F , (F)0≤t≤T , P )

that satisfies the usual conditions where F0 is trivial and FT = F . With ξt shares invested

in the risky asset, the value of the portfolio evolves according to the dynamics

dXt = ξtdSt + r(Xt − ξtSt)dt, X0 = x0,

where x0 is the initial portfolio value.

The question is how we should trade the shares throughout a finite holding period

[0, T ] so that we can achieve minimal risk, measured by CVaR, at time T , while keeping

the return within acceptable range? In the classic setup of portfolio optimization, expected

returns are maximized given limits on the risk of the portfolio. It can be made formal with

some technical conditions that the above problem is equivalent to minimizing the risk of

the portfolio given requirements for its return. Our setup will focus on the later approach,

which focuses on risk minimization as the objective.

An attempt to employ the dynamic programming method for multi-period models was

made by Ruszczyński and Shapiro [21], whose approach is to modify the risk measure CVaR

into a dynamic version “conditional risk mappings for CVaR”. In this thesis, we will keep the

original measure of CVaR at a fixed time horizon, and let the portfolio composition adjusts

dynamically. This is similar to maximizing expected utility on the outcomes of a dynamic

portfolio. Ruszczyński and Shapiro’s choice of optimizing “conditional risk mappings for
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CVaR” at each time period yields very different results than ours, where we optimize CVaR

of the final wealth of a dynamic portfolio.

Mathematically, we are looking for a strategy (ξt)0≤t≤T to minimize the conditional

Value-at-Risk at level 0 < λ < 1 of the final portfolio value: infξt CV aRλ(XT ), while

requiring the expected return to remain above constant z: E[XT ] ≥ z. In addition, we

allow uniform bounds on the value of the portfolio over time: xd ≤ Xt ≤ xu, ∀t ∈ [0, T ],

where the constants satisfy −∞ < xd < x0 < xu ≤ ∞. Therefore, our Main Problem is

ξ∗t = arg inf
ξt

CV aRλ(XT ), (1.3)

subject to E[XT ] ≥ z,

xd ≤ Xt ≤ xu a.s., for all t ∈ [0, T ].

When xu = ∞, there is practically no upper bound for Xt throughout time t, but we will

not have the situation P (XT = ∞) > 0 because we will exclude arbitrage in Assumption

1.1. If we further set xd = 0, then we have the no bankruptcy condition.

The Main Problem (1.3) is equivalent to the problem of minimizing CVaR on the return

RT

ξ∗t = arg inf
ξt

CV aRλ(RT ),

subject to E[RT ] ≥ zr,

rd ≤ Rt ≤ ru a.s., for all t ∈ [0, T ],

whether it be percentage return RT = XT−X0
X0

or log return RT = ln XT
X0

because we only

need to identify the one-to-one correspondence between the quantiles of XT and RT . We

are requiring the realized return to be above rd in all cases if we take ru = ∞.

When we have an existing portfolio Ht consisting of investments in securities, we can

ask a second question as how to hedge our risk with a self-financing admissible portfolio.

Let H be the random variable representing the final value of the existing portfolio. It is
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FT -measurable since H = HT . The optimal hedging problem is to solve

ξ∗t = arg inf
ξt

CV aRλ(H + XT ), (1.4)

subject to E[XT ] ≥ z

xd ≤ Xt ≤ xu a.s., for all t ∈ [0, T ].

Thus when we combine the original portfolio and the hedging portfolio, the risk is minimized.

It is straight-forward to see that if X∗
T is the final wealth of the optimal portfolio for problem

(1.3), by which we mean that

min
ξt

CV aRλ(XT ) = CV aRλ(X∗
T ),

then X∗
T −H is the optimal solution to problem (1.4) if it is the final wealth of some self-

financing strategy. In a complete market model, this is not an issue because all derivatives

can be replicated. Therefore, we will first focus on solving problem (1.3) in a complete

market model.

In the search of solution to the Main Problem (1.3), we first solved the following Main

Problem without the condition on the expectation E[XT ] ≥ z:

ξ∗t = arg inf
ξt

CV aRλ(XT ), (1.5)

subject to xd ≤ Xt ≤ xu a.s., for all t ∈ [0, T ].

Assumption 1.1. Assume there is no arbitrage and the market is complete with a unique

equivalent local martingale measure P̃ .

Assumption 1.2. The Radon-Nikodým derivative dP̃
dP has a continuous distribution.

Under Assumption 1.1, any F-measurable random variable can be replicated by a
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dynamic portfolio. The dynamic optimization problem (1.3) can be reduced to a static one

inf
X∈F

CV aRλ(X) (1.6)

subject to E[X] ≥ z, (return constraint)

Ẽ[X] = xr, (capital constraint)

xd ≤ X ≤ xu a.s.;

and problem (1.5) becomes

inf
X∈F

CV aRλ(X) (1.7)

subject to Ẽ[X] = xr, (capital constraint)

xd ≤ X ≤ xu a.s..

Here the expectation E is taken under the physical probability measure P , and the

expectation Ẽ is taken under the risk neutral probability measure P̃ , while xr = x0e
rT . To

solve the main problem in an incomplete market setting, the exact hedging argument that

translate the dynamic problem (1.3) into the static problem (1.6) has to be replaced by a

super-hedging argument. This is done for expected shortfall minimization in Föllmer and

Leukert [9], and for convex risk minimization in Rudloff [18]. Similarly, the hedging result

can be easily adapted for St to be Rd-valued, where the dimension d is a natural number.

Assumption 1.2, namely the Radon-Nikodým derivative dP̃
dP has a continuous distribution, is

also made not because of technical impossibility, but because of the simplification it brings

to the presentation for its lengthy discussion does not bring additional new insight to the

main topic of this thesis. In fact, we’ll consider the case of discontinuous Radon-Nikodým

derivative in the solution to the Main Problem without expected return requirement.

1.3 Overview

Chapter 2 details the approach to the risk minimization problem without expected

return constraint, finds the closed-form solution and applies it two popular complete market

models: the Binomial model and the Black-Scholes model. Chapter 3 adds expected return



8

constraint to the optimization problem solved in Chapter 2, addresses the case when there

is no uniform upper bound on returns, and finds the solution to the case when such an

upper bound is prescribed. Chapter 4 concludes.



CHAPTER 2: AN OPTIMIZATION PROBLEM WITHOUT EXPECTED RETURN
REQUIREMENT

2.1 One-Constraint Optimization Problem

This chapter focuses on the Main Problem without expected return constraint (1.5),

formulated as below:

ξ∗t = arg inf
ξt

CV aRλ(XT ), (2.1)

subject to xd ≤ Xt ≤ xu a.s., for all t ∈ [0, T ].

And the related optimal hedging problem looks like:

ξ∗t = arg inf
ξt

CV aRλ(H + XT ), (2.2)

subject to xd ≤ Xt ≤ xu a.s., for all t ∈ [0, T ].

2.2 Static Formulation of the Dynamic Problem

Our solution will anchor on duality methods based on risk neutral measures, similar

to those employed in option pricing and utility maximization problems. This martingale

approach is well-studied in recent mathematical finance research partly because it allows

finding solutions to a wider ranges of problems which does not possess Markovian property

and thus do not meet dynamic programming principles.

As mentioned in Chapter 1, CVaR minimization problem is complicated because the

objective function involves quantile function and the corresponding numerical methods will

have to involve ordering the position values. Rockafellar and Uryasev ([16] and [17]) found

CVaR to be the Fenchel-Legendre dual of expected shortfall

CV aRλ(Z) =
1
λ

inf
x∈R

(E[(x− Z)+]− λx),



10

thus standard convex analysis applies.

Recall that under Assumption 1.1, the space of final outcomes of self-financing strategies

are those FT -measurable random variables X such that Ẽ[X] = xr. And the dynamic

problem (1.5) has the following static form, as mentioned in Chapter 1:

inf
X∈F

CV aRλ(X) (2.3)

subject to Ẽ[X] = xr,

xd ≤ X ≤ xu a.s..

Now we can further reformulate the above static version into a more tractable static

convex optimization problem

CV aR(X∗) = inf
X

1
λ

inf
x∈R

(E[(x−X)+]− λx), (2.4)

subject to Ẽ[X] = xr, xd ≤ X ≤ xu a.s..

Let X∗
T = X∗, then X∗

T is the final value of the optimal portfolio for problem (1.5):

CV aRλ(X∗
T ) = inf

ξt

CV aRλ(XT ) = inf
X

1
λ

inf
x∈R

(E[(x−X)+]−λx) =
1
λ

inf
x∈R

(E[(x−X∗)+]−λx).

Martingale representation theorem applied to X∗
t = Ẽ[X∗

T |Ft] will produce the optimal

hedging strategy ξ∗t for problem (1.5).

Problem (2.4) is intrinsically much simpler than problem (1.5) because it looks for an

optimal random variable X∗ with convex objective function. The above simplification steps

we have taken is based on classic duality theory (martingale approach) in mathematical

finance. By duality, we mean there are two important spaces: the primal space consisting of

dynamics of self-financing portfolios and the dual space consisting of risk neutral measures.

The optimization problem in the primal space is translated into an optimization problem

in the dual space, where a solution is always easier to obtain in a complete market since

the dual space consists of a singleton.
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2.3 Solution to the Static Formulation

After rewriting the above static problem (2.4) by interchanging the order of infimum:

inf
ξt

CV aRλ(XT ) =
1
λ

inf
x∈R

(
inf
X

E[(x−X)+]− λx

)
(2.5)

subject to Ẽ[X] = xr, xd ≤ X ≤ xu a.s.,

where the constants satisfy −∞ < xd < xr < xu ≤ ∞, we arrive at the final form of the

optimization problem (1.5) where we provide a direct solution in two steps:

One-Constraint Problem

Step 1 Minimization of Expected Shortfall

v(x) = inf
X

E[(x−X)+] (2.6)

subject to Ẽ[X] = xr, xd ≤ X ≤ xu a.s.,

Step 2 Minimization of CVaR

inf
ξt

CV aRλ(XT ) =
1
λ

inf
x∈R

(v(x)− λx). (2.7)

Schied [22] solved a general law invariant risk minimization problem of the type (2.6). We

solve the CVaR minimization with the above two-step approach where we do not require

the probability space to be atomless so the tree models are included. We also allow the

upper bound to be infinity so there is no cap for how large the wealth can possibly be. We

give explicit computation methods for the Black-Scholes and Binomial models in Section

2.4.

The solution for Expected Shortfall Minimization is studied in a semimartingale model

in Föllmer and Leukert [9] and Xu [25]. Apply Proposition 4.1 in [9] to the above shortfall

problem, we get the following result.

Theorem 2.1 (Solution to Expected Shortfall Minimization Problem). For any constant

a, define sets based on the size of the Radon Nikodým derivative between the risk neutral
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probability measure P̃ and the physical probability measure P : A =
{

ω ∈ Ω : dP̃
dP (ω) > a

}
,

B =
{

ω ∈ Ω : dP̃
dP (ω) < a

}
, and C =

{
ω ∈ Ω : dP̃

dP (ω) = a
}
. The optimal solutions X∗ and

the corresponding value function v(x) to the Expected Shortfall Minimization Problem in

Step 1 are given as the following:

Case 1 x ≤ xd:

X∗ = any random variable X with values in [xd, xu] satisfying Ẽ[X∗] = xr.

v(x) = 0.

Case 2 xd ≤ x ≤ xr < xu:

X∗ = any random variable X with values in [x, xu] satisfying Ẽ[X∗] = xr.

v(x) = 0.

Case 3 xd < xr ≤ x ≤ xu:

X∗ = xdIAx + kxICx + xIBx, where sets Ax, Bx, Cx are decided by level ax defined as

ax = sup
{

a : P̃ (B) ≤ xr − xd

x− xd

}
,

and kx is chosen so that the constraint

xr = Ẽ[X∗] = xdP̃ (Ax) + kxP̃ (Cx) + xP̃ (Bx)

is satisfied, i.e.,

kx =
xr − xdP̃ (Ax)− xP̃ (Bx)

P̃ (Cx)
I{P̃ (Cx)>0}.

v(x) = (x− xd)P (Ax) + (x− kx)P (Cx).

Case 4 x ≥ xu (when xu < ∞):

X∗ = xdIĀ + k̄IC̄ + xuIB̄, where Ā, B̄, C̄ are decided by level ā defined as

ā = sup
{

a : P̃ (B) ≤ xr − xd

xu − xd

}
,
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and k̄ is chosen so that the constraint

xr = Ẽ[X∗] = xdP̃ (Ā) + k̄P̃ (C̄) + xuP̃ (B̄)

is satisfied, i.e.,

k̄ =
xr − xdP̃ (Ā)− xuP̃ (B̄)

P̃ (C̄)
I{P̃ (C̄)>0}.

v(x) = (x− xd)P (Ā) + (x− k̄)P (C̄) + (x− xu)P (B̄).

Remark. Notice that the numbers a, x, k and sets A, B, C are all related. We call the

collection xu, ā, k̄ and Ā, B̄, C̄ that corresponds to xu the ‘bar-system’. Later in the paper

we will also have ‘r-system’ and ‘star-system’. We reserve the non-indexed system x, a, k

and A, B, C for general definitions, and we use ax, kx and Ax, Bx, Cx to describe a system

for fixed x.

Remark. The global minimum for function v(x) is 0. For the first two cases where x ≤ xr,

the minimal value of 0 can be easily achieved by an admissible X∗ ≥ x, including the special

example of X∗ ≡ xr that naturally satisfies the constraint of Ẽ[X∗] = xr. For the latter

two cases where x > xr, the solution comes from Neyman-Pearson Lemma. A part of the

X∗ should be as large as possible to minimize v(x) on the good set ‘B’, while the other

part should be taken at the lower bound to offset this large number so that the risk-neutral

expectation of X∗ is guaranteed to stay at xr.

In Case 3, we can equivalently define ax as

ax = sup
{

a : P̃ (A) ≥ x− xr

x− xd

}
,

because for fixed x level, Ax is the smallest set satisfying P̃ (Ax) ≥ x−xr
x−xd

, and Bx is the

largest set satisfying P̃ (Bx) ≤ xr−xd
x−xd

. When there is point mass at ax, set Cx has non-zero

probability and kx has to be chosen to satisfy the constraint of Ẽ[X∗] = xr. When there

is no point mass at ax, set Cx has zero probability under both physical and risk-neutral

probability measures, and we have exact equalities P̃ (Ax) = x−xr
x−xd

and P̃ (Bx) = xr−xd
x−xd

.

Note that the sets A,B, C and the number k in Case 3 are functions of x, while in Case
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4 they are not.

Remark. To use Theorem 2.1 to solve the CVaR Minimization Problem in Step 2, we need

to find the global minimum among four cases when xu < ∞:

1
λ

inf
x≤xd

(v(x)− λx) =
1
λ

inf
x≤xd

(0− λx) = −xd,

1
λ

inf
xd≤x≤xr

(v(x)− λx) =
1
λ

inf
xd≤x≤xr

(0− λx) = −xr ≤ −xd,

1
λ

inf
xr≤x≤xu

(v(x)− λx) =
1
λ

inf
xr≤x≤xu

(
(x− xd)P (Ax) + (x− kx)P (Cx)− λx

)
,

1
λ

inf
x≥xu

(v(x)− λx) =
1
λ

inf
x≥xu

(
(x− xd)P (Ā) + (x− k̄)P (C̄) + (x− xu)P (B̄)− λx

)
.

When xu = ∞, only the first three cases need to be considered. We rewrite the third case

as

1
λ

inf
xr≤x≤xu

(v(x)− λx) =
1
λ

inf
xr≤x≤xu

((x− xd)P (Ax) + (x− kx)P (Cx)− λx)

= −xr +
1
λ

inf
xr≤x≤xu

((x− xd)P (Ax) + (x− kx)P (Cx)− λx + λxr)

= −xr +
1
λ

inf
xr≤x≤xu

((x− xd)(P (Ax)− λP̃ (Ax)) + (x− kx)(P (Cx)− λP̃ (Cx)))

= −xr +
1
λ

inf
xr≤x≤xu

h(x)

where we define

h(x) = (x− xd)(P (Ax)− λP̃ (Ax)) + (x− kx)(P (Cx)− λP̃ (Cx)),

and solve the problem

inf
xr≤x≤xu

h(x) (2.8)

in Lemma 2.2. In case four when we have xu < ∞, the minimization is simpler because

Ā, B̄, C̄ and k̄ are irrelevant to x. The function is linear in x with positive slope so the
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minimum is obtained at x = xu:

1
λ

inf
x≥xu

(
(x− xd)P (Ā) + (x− k̄)P (C̄) + (x− xu)P (B̄)− λx

)
=

1
λ

(
(xu − xd)P (Ā) + (xu − k̄)P (C̄)− λxu

)
≥ 1

λ
inf

xr≤x≤xu

(
(x− xd)P (Ax) + (x− kx)P (Cx)− λx

)
.

We have shown here that the minimum obtained in the fourth case will not provide the

global minimum because it is dominated by the result from the third case. Note that the

solutions for the first two cases are simple where we observe the second case dominates the

first case. It is easy to see that case two is also dominated by case three because it coincides

with the result in case three when x = xr. Therefore, once we solve (2.8) in Lemma 2.2, we

arrive naturally at the result of Step 2 in Theorem 2.4.

Lemma 2.2. Recall from Theorem 2.1, sets A, B, C are defined according to the number a,

namely A =
{

ω ∈ Ω : dP̃
dP (ω) > a

}
, B =

{
ω ∈ Ω : dP̃

dP (ω) < a
}
, and C =

{
ω ∈ Ω : dP̃

dP (ω) = a
}
.

Also recall for any fixed x, we define

ax = sup
{

a : P̃ (B) ≤ xr − xd

x− xd

}
, kx =

xr − xdP̃ (Ax)− xP̃ (Bx)
P̃ (Cx)

I{P̃ (Cx)>0},

where the sets Ax, Bx and Cx are related to x as Ax =
{

ω ∈ Ω : dP̃
dP (ω) > ax

}
, etc. De-

note the parameters ā, k̄, Ā, B̄, C̄ corresponding to x = xu as the ‘bar-system’; parameters

ar, kr, Ar, Br, Cr corresponding to x = xr as the ‘r-system’, parameters a∗, k∗, A∗, B∗, C∗

corresponding to x = x∗ as the ‘star-system’. The solution to the minimization problem

inf
xr≤x≤xu

h(x),

where

h(x) = (x− xd)(P (Ax)− λP̃ (Ax)) + (x− kx)(P (Cx)− λP̃ (Cx)),

is
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• If dP̃
dP ≤ 1

λ , P−a.s., then the minimum is achieved by the ‘r-system’ and

inf
xr≤x≤xu

h(x) = h(xr) = 0.

• Otherwise, if 1
ā ≤

λ−P (Ā)

1−P̃ (Ā)
, then the minimum is achieved by the ‘bar-system’ and

inf
xr≤x≤xu

h(x) = h(xu).

If 1
ā > λ−P (Ā)

1−P̃ (Ā)
, then the minimum is achieved by the ‘star-system’ and

inf
xr≤x≤xu

h(x) = h(x∗) = (x∗ − xd)(P (A∗)− λP̃ (A∗)).

Here a∗ = sup
{

a : 1
a ≥

λ−P (A)

1−P̃ (A)

}
, A∗ =

{
ω ∈ Ω : dP̃

dP (ω) > a∗
}
, k∗ = x∗ = xr−xdP̃ (A∗)

1−P̃ (A∗)
,

are the parameters that defines the ‘star-system’.

Remark. The ‘r-system’ corresponds to parameters: ar = ess sup dP̃
dP , P̃ (Br) = P (Br) = 1,

P̃ (Ar) = P̃ (Cr) = 0, and kr = 0. When xu < ∞, the definition for the ‘bar-system’ is

straightforward. When xu = ∞, the ‘bar-system’ corresponds to the set of parameters

satisfying ā = ess inf dP̃
dP , P̃ (B) = P (B) = 0, P̃ (A) + P̃ (C) = 1. With this definition, we do

not need to differentiate the cases of xu < ∞ and xu = ∞ in the above lemma. In particular,

when xu = ∞, 1
ā > λ−P (Ā)

1−P̃ (Ā)
is automatically satisfied under the condition P (dP̃

dP > 1
λ) > 0

thus the optimal is always achieved by the ‘star-system’.

Corollary 2.3. In the case where the probability space is atomless and the Radon Nikodým

derivative dP̃
dP (ω) has continuous distribution, we have P̃ (C) = P (C) = 0 and P̃ (B) = 1 −

P̃ (A), so set C will become irrelavant. The definition ax = sup
{

a : P̃ (B) ≤ xr−xd
x−xd

}
yields

the precise equalities P̃ (Ax) = x−xr
x−xd

and P̃ (Bx) = xr−xd
x−xd

. The solution to the minimization

problem

inf
xr≤x≤xu

h(x)

where

h(x) = (x− xd)(P (Ax)− λP̃ (Ax))
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is

• If dP̃
dP ≤ 1

λ , P−a.s., then the minimum is achieved by the ‘r-system’ and

inf
xr≤x≤xu

h(x) = h(xr) = 0.

• Otherwise, if 1
ā ≤

λ−P (Ā)

1−P̃ (Ā)
, then the minimum is achieved by the ‘bar-system’ and

inf
xr≤x≤xu

h(x) = h(xu).

If 1
ā > λ−P (Ā)

1−P̃ (Ā)
, then the minimum is achieved by the ‘star-system’ and

inf
xr≤x≤xu

h(x) = h(x∗),

where x∗ = xr−xdP̃ (A∗)

1−P̃ (A∗)
and A∗ =

{
ω ∈ Ω : dP̃

dP (ω) > a∗
}

satisfies 1
a∗ = λ−P (A∗)

1−P̃ (A∗)
.

Remark. Recall from the definitions in Remark 2.3, when xu = ∞, the ‘bar-system’ cor-

responds to the set of parameters satisfying ā = ess inf dP̃
dP , P̃ (B) = P (B) = 0, P̃ (A) =

P (A) = 1. As in Lemma 2.2, we do not need to differentiate the cases of xu < ∞ and

xu = ∞ in the above corollary. In particular, when xu = ∞, 1
ā > λ−P (Ā)

1−P̃ (Ā)
is automatically

satisfied under the condition P (dP̃
dP > 1

λ) > 0 thus the optimal is always achieved by the

‘star-system’.

Proof for Corollary 2.3. Let us first prove Corollary 2.3 in the continuous distribution case.

Suppose dP̃
dP ≤ 1

λ , P−a.s. Then for any x ∈ [xr, xu],

P̃ (Ax) =
∫

Ax

dP̃

dP
(ω)dP (ω) ≤ 1

λ
P (Ax).

Thus h(x) = (x − xd)(P (Ax) − λP̃ (Ax)) ≥ 0. When x = xr, P̃ (Br) = xr−xd
xr−xd

= 1 and

P (Ar) = P̃ (Ar) = 0, therefore h(xr) = 0. We conclude,

inf
xr≤x≤xu

h(x) = h(xr) = 0.
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Now suppose P (dP̃
dP > 1

λ) > 0. Notice that when dP̃
dP has a continuous distribution, we

have the exact equalities P̃ (Ax) = x−xr
x−xd

and P̃ (Bx) = xr−xd
x−xd

, and we observe the following:

• Ax increases as x increases; ax decreases as x increases.

Define function f(x) = x−xr
x−xd

. We see that f(x) is an increasing function since f ′(x) =

xr−xd
(x−xd)2

> 0. Notice that the probability function P̃ (Ax) is an increasing function of

Ax, so x ↗⇔ f(x) ↗⇔ P̃ (Ax) ↗⇔ Ax ↗. In this special case where the Radon-

Nikodým derivative dP̃
dP (ω) has continuous distribution but could skip values, ax is a

decreasing function of x where at times it can jump downward.

• P̃ (Ar) = 0 and

P̃ (Ā) =


xu−xr
xu−xd

, xu < ∞,

1, xu = ∞.

See Remark 2.3 and note P̃ (C) = 0 in this case.

• dP̃ (Ax)
dx = xr−xd

(x−xd)2
; D−P (Ax) = 1

ax−

dP̃ (Ax)
dx , D+P (Ax) = 1

ax+

dP̃ (Ax)
dx .

Use the definition of f(x), dP̃ (Ax)
dx = f ′(x) = xr−xd

(x−xd)2
. Notice that ax may not be a

continuous function of x, but the left-hand and right-hand limit ax− and ax+ exist for

all x because it is a decreasing function. In fact, we have P̃ (ax+ < dP̃
dP (ω) < ax−) = 0,

see Fig. 2.1. Since P and P̃ are equivalent, we also have P (ax+ < dP̃
dP (ω) < ax−) = 0

and P (Ax) = P (dP̃
dP (ω) > ax−) = P (dP̃

dP (ω) > ax+). If we denote the left-hand and

right-hand derivatives as

D−P (Ax) = lim
ε↗0

P (Ax+ε)− P (Ax)
ε

,

D+P (Ax) = lim
ε↘0

P (Ax+ε)− P (Ax)
ε

,

we have

D−P (Ax) = lim
ε↗0

P (Ax+ε)− P (Ax)
ε

= lim
ε↗0

E[1Ax+ε ]− E[1Ax ]
ε

= lim
ε↗0

Ẽ[dP
dP̃

1 dP̃
dP

>ax+ε
]− Ẽ[dP

dP̃
1 dP̃

dP
>ax−

]

ε
= lim

ε↗0

Ẽ[dP
dP̃

1
ax−< dP̃

dP
≤ax+ε

]

−ε
.
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Since

Ẽ[dP
dP̃

1
ax−< dP̃

dP
≤ax+ε

]

−ε
≥ 1

ax+ε

Ẽ[1
ax−< dP̃

dP
≤ax+ε

]

−ε

=
1

ax+ε

P̃ (Ax+ε)− P̃ (Ax)
ε

→ 1
ax−

dP̃ (Ax)
dx

,

and

Ẽ[dP
dP̃

1
ax−< dP̃

dP
≤ax+ε

]

−ε
<

1
ax−

Ẽ[1
ax−< dP̃

dP
≤ax+ε

]

−ε

=
1

ax−

P̃ (Ax+ε)− P̃ (Ax)
ε

→ 1
ax−

dP̃ (Ax)
dx

,

as ε ↗ 0. We conclude that the left derivative is

D−P (Ax) =
1

ax−

dP̃ (Ax)
dx

.

Similarly, the right derivative is

D+P (Ax) =
1

ax+

dP̃ (Ax)
dx

.

If ax is continuous at x, i.e., ax+ = ax− = ax, then the derivative exists

dP (Ax)
dx

=
1
ax

dP̃ (Ax)
dx

=
xr − xd

ax(x− xd)2
.

Now let us turn to the first and second derivatives of the function we would like to

minimize:

h(x) = (x− xd)(P (Ax)− λP̃ (Ax)),
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and show it to be a convex function. On x ∈ (xr, xu), when ax is continuous at x, we have

h′(x) = (P (Ax)− λP̃ (Ax)) + (x− xd)

(
dP (Ax)

dx
− λ

dP̃ (Ax)
dx

)

=
(

P (Ax)− λ
x− xr

x− xd

)
+ (x− xd)

(
xr − xd

ax(x− xd)2
− λ

xr − xd

(x− xd)2

)
= P (Ax)− λ

x− xr

x− xd
+
(

1
ax
− λ

)
xr − xd

x− xd

= P (Ax)− λ +
1
ax

(1− P̃ (Ax)).

When ax is discontinuous at x, we can define the left- and right-derivatives

D−h(x) = lim
ε↗0

h(x + ε)− h(x)
ε

,

D+h(x) = lim
ε↘0

h(x + ε)− h(x)
ε

.

Similar to the above calculation, we get

D−h(x) = P (Ax)− λ +
1

ax−
(1− P̃ (Ax)),

D+h(x) = P (Ax)− λ +
1

ax+
(1− P̃ (Ax)).

When ax is continuous at x, P̃ (Ax) = P̃ (dP̃
dP (ω) > ax) = 1 − P̃ (dP̃

dP (ω) ≤ ax) = 1 − F̃ (ax),

where F̃ (·) is the cumulative distribution function of the Radon Nikodým derivative dP̃
dP .

Since P̃ (Ax) = x−xr
x−xd

, F̃ (ax) = xr−xd
x−xd

. We have also started by assuming dP̃
dP has a continuous

distribution, therefore the derivative of F̃ (·) exists and is the probability density function

f̃(·). When ax− = ax+, P̃ (Ax) is strictly increasing as x increases, thus f̃(ax) > 0. By

Inverse Differentiation Theorem, the derivative of ax exists and can be computed as

(ax)′ = − xr − xd

f̃(ax)(x− xd)2
< 0.

By Chain Rule, we know (
1
ax

)′
= −a′x

a2
x

> 0.
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Now we can compute the second derivative of h(x):

h′′(x) =
dP (Ax)

dx
+
(

1
ax

)′
(1− P̃ (Ax))− 1

ax

dP̃ (Ax)
dx

=
(

1
ax

)′
(1− P̃ (Ax)) > 0.

Here 1 − P̃ (Ax) = P̃ (Bx) = xr−xd
x−xd

is strictly positive on the set x ∈ (xr, xu). Clearly,

the second derivative indicates that h′(x) is strictly increasing at those points x ∈ (xr, xu)

where ax is continuous.

When ax is discontinuous, we have

D−h(x) = P (Ax)− λ +
1

ax−
(1− P̃ (Ax)) < D+h(x) = P (Ax)− λ +

1
ax+

(1− P̃ (Ax)).

We recognize that this is a kink point for h(x). Finally, we conclude h(x) is convex on

(xr, xu).

When xu < ∞, it is easy to see that h(x) is continuous at both left and right end points

with the definition in Remark 2.3. Therefore, it is convex on the closed interval [xr, xu]. If

we can find x∗ ∈ [xr, xu], where 0 ∈ [D−h(x∗), D+h(x∗)], then it is the minimum. Otherwise

if D+h(xr) ≥ 0, then the infimum is obtained at x = xr; if D−h(xu) ≤ 0, then the infimum

is obtained at x = xu. If the derivative of h(x) exists at x = x∗, then the condition

0 ∈ [D−h(x∗), D+h(x∗)] collapses to h′(x∗) = 0, or equivalently, 1
a∗ = λ−P (A∗)

1−P̃ (A∗)
. When

the derivative does not exist, the condition that 0 ∈ [D−h(x∗), D+h(x∗)] corresponds to

1
a∗− < λ−P (A∗)

1−P̃ (A∗)
, and 1

a∗+ > λ−P (A∗)

1−P̃ (A∗)
. In this case, we can always find an 1

a∗ ∈ [ 1
ax∗−

, 1
ax∗+

]

where 1
a∗ = λ−P (A∗)

1−P̃ (A∗)
, and the corresponding x∗ can be computed from the equation P̃ (A∗) =

x∗−xr
x∗−xd

, i.e., x∗ = xr−xdP̃ (A)

1−P̃ (A)
.

Recall that P (dP̃
dP > 1

λ) > 0. Recall from Remark 2.3, P̃ (Ar) = P (Ar) = 0, ar =

ess sup dP̃
dP > 1

λ . So D+h(xr) = P (Ar) − λ + 1
ar

(1 − P̃ (Ar)) = −λ + 1
ar

< 0. On the other

end, D−h(xu) = P (Ā)−λ+ 1
ā(1− P̃ (Ā)). We have D−h(xu) > 0 if and only if 1

ā > λ−P (Ā)

1−P̃ (Ā)
.

In this case, the minimum occurs at x∗ ∈ (xr, xu) where 1
a∗ = λ−P (A∗)

1−P̃ (A∗)
. If 1

ā ≤
λ−P (Ā)

1−P̃ (Ā)
, h(x)

decreases on [xr, xu], and the minimum is achieved at the right end point with the value

h(xu).
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When xu = ∞, h(x) is convex on [xd,∞). As x → ∞, P (Ax) → 1, P̃ (Ax) → 1,

ax → ess inf dP̃
dP . D+h(x) becomes positive sooner or later, and the minimum is obtained in

the interior where we define the ‘star-system’. Q.E.D.

Proof for Lemma 2.2. As in the proof for Corollary 2.3, let F̃ (·) be the cumulative distri-

bution function of the Radon Nikodým derivative dP̃
dP . Then for fixed x, we have F̃ (ax) =

1 − P̃ (Ax). In the proof for Corollary 2.3, we have assumed that dP̃
dP has a continuous

distribution. This essentially dealt with case where F̃ (·) is continuous: it could either be

strictly increasing or flat. Now to deal with the general case, we only need to discuss the

remaining case where F̃ (·) has a jump, i.e., there is a point mass at dP̃
dP = ax, see Fig. 2.1.

Figure 2.1: F̃ (a) is the cumulative distribution function of the Radon-Nikodým derivative
dP̃
dP .
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Recall the definitions

ax = sup
{

a : P̃ (B) ≤ xr − xd

x− xd

}
,

Ax =

{
ω ∈ Ω :

dP̃

dP
(ω) > ax

}
, Cx =

{
ω ∈ Ω :

dP̃

dP
(ω) = ax

}
, Bx =

{
ω ∈ Ω :

dP̃

dP
(ω) < ax

}
,

kx =
xr − xdP̃ (Ax)− xP̃ (Bx)

P̃ (Cx)
1{P̃ (Cx)>0},

h(x) = (x− xd)(P (Ax)− λP̃ (Ax)) + (x− kx)(P (Cx)− λP̃ (Cx)),

and we would like to find

inf
xr≤x≤xu

h(x).

When dP̃
dP has a point mass at ax, i.e., P̃ (dP̃

dP = ax) = P̃ (Cx) > 0, the distribution function F̃

has a jump at ax: F̃ (ax)−F̃ (ax−) = P̃ (Cx). As in the proof for Corollary 2.3, we first discuss

the case dP̃
dP ≤ 1

λ , P−a.s. Similarly we can show P̃ (Ax) ≤ 1
λP (Ax) and P̃ (Cx) ≤ 1

λP (Cx) for

x ∈ [xr, xu]. It is easy to check that x− kx ≥ 0 when xr ≤ x ≤ xu, so h(x) ≥ 0 on [xr, xu].

Also notice that h(xr) = 0, we conclude,

inf
xr≤x≤xu

h(x) = h(xr) = 0.

Now suppose P (dP̃
dP > 1

λ) > 0. If we can find an a such that P̃ (A) = x−xr
x−xd

exactly and

P̃ (B) = xr−xd
x−xd

exactly, then P̃ (C) = 0. This is the situation where the distribution of dP̃
dP

is continuous. If such an a cannot be found then we have the situation where P̃ (C) > 0,

and this corresponds to the situation where there is a point mass that we need to work out.

Therefore, we need to discuss three cases:

1 P̃ (Ax) = x−xr
x−xd

, P̃ (Bx) < xr−xd
x−xd

and P̃ (Cx) > 0,

2 P̃ (Ax) < x−xr
x−xd

, P̃ (Bx) = xr−xd
x−xd

and P̃ (Cx) > 0,

3 P̃ (Ax) < x−xr
x−xd

, P̃ (Bx) < xr−xd
x−xd

and P̃ (Cx) > 0.

We first deal with the last case where we fix a1, A1, B1 and C1 where P̃ (A1) < x−xr
x−xd

, P̃ (B1) <

xr−xd
x−xd

and P̃ (C1) = P̃ (dP̃
dP = a1) > 0 and xr = xdP̃ (A1)+xP̃ (B1)+kxP̃ (C1) is satisfied. As
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kx decreases from x to xd, x increases from x1 = xr−xdP̃ (A1)

P̃ (B1)+P̃ (C1)
to x2 = xr−xd(P̃ (A1)+P̃ (C1))

P̃ (B1)
,

while at the same time A1, B1, C1 and a1 remain unchanged. The derivative of h(x) on the

interval x ∈ (x1, x2) is easily calculated as

h′(x) = (P (A1)− λP̃ (A1)) + (1− dkx

dx
)(P (C1)− λP̃ (C1))

= (P (A1)− λP̃ (A1)) + (1 +
P̃ (B1)
P̃ (C1)

)(P (C1)− λP̃ (C1))

= (P (A1)− λP̃ (A1)) + (1− P̃ (A1))(
P (C1)
P̃ (C1)

− λ)

= (P (A1)− λP̃ (A1)) + (1− P̃ (A1))(
1
a1
− λ)

= P (A1)− λ +
1
a1

(1− P̃ (A1)).

The formula reads exactly the same as the one in the continuous case except that h′(x) is

constant now on this open interval, and the originally curved h(x) degenerates to a straight

line. At the end point x = x2, kx dropped to xd and we have P̃ (B1) = xr−xd
x−xd

. Still we have

P̃ (C1) = P̃ (dP̃
dP = a1) > 0 and P̃ (A1) < x−xr

x−xd
. This corresponds to the second case in the

above list. There are three possibilities at this point.

(a) There is a point a2 < a1 where F̃ (a) is constant on the interval (a2, a1) and has a

jump at a2, i.e., F̃ (a2−) < F̃ (a2).

(b) There is a point a1+ < a1 and a1+ is the smallest number such that F̃ (a) is constant

on the interval (a1+, a1) and has no jump at a1+.

(c) F̃ (a) is strictly increasing to the left of a1.

These three cases correspond to how the function h(x) at x = x2 is connected to its right-

hand side:

(a) A kink connection to another line with different slope.

(b) A kink connection to a curve.

(c) A smooth connection to a curve.
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If F̃ (a) is flat until it encounters another point mass at a2 as in case (a), then the old sets

A1 and C1 combine to produce the new set A2 = A1
⋃

C1 and C2 = {ω : dP̃
dP (ω) = a2}. The

left derivative at this point is computed above

D−h(x2) = P (A1)− λ +
1
a1

(1− P̃ (A1)).

The right derivative is the same formula applied to the new sets:

D+h(x2) = P (A2)− λ +
1
a2

(1− P̃ (A2)).

The difference

D+h(x2)−D−h(x2)

= P (A2)− λ +
1
a2

(1− P̃ (A2))−
(

P (A1)− λ +
1
a1

(1− P̃ (A1))
)

= P (C1) + (
1
a2
− 1

a1
)(1− P̃ (A2))−

1
a1

P̃ (C1)

= (
1
a2
− 1

a1
)P̃ (B1) ≥ 0.

Here we used the definition of set C1 =
{

dP̃
dP = a1

}
to yield P (C1) − 1

a1
P̃ (C1) = 0, and

1
a2
≥ 1

a1
since a2 < a1. Therefore, the convexity of h(x) at x = x2 is kept. In case (c), F̃ (a)

is increasing on the left of a1 and we shall now return to the continuous case in the proof

for Corollary 2.3 to conclude that

D+h(x2) = P (A1)− λ +
1

a1+
(1− P̃ (A1)) ≥ h′(x), for x ∈ (x1, x2),

because a1+ ≤ a1. In case (b),

D+h(x2) = P (A2)− λ +
1

a1+
(1− P̃ (A2)),

and the proof for

D+h(x2) ≥ D−h(x2)
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is similar to that of case (a). Thus h(x) is convex on x ∈ (x1, x2].

Now consider the other end point x = x1. Here kx = x and we have P̃ (A1) = x−xr
x−xd

,

P̃ (C1) = P̃ (dP̃
dP = a1) > 0 and P̃ (B1) < xr−xd

x−xd
. This corresponds to the first case in the

above list. We can carry out similar discussion as in the second case and conclude that

D−h(x1) ≤ h′(x), for x ∈ (x1, x2),

thus we have the convexity of function h(x) on the closed interval [x1, x2]. In summary:

when there is a point mass at dP̃
dP = ax, i.e., F̃ (ax−) < F̃ (ax) the convex function h(x)

becomes linear; in contrast to the fact that when F̃ (a) is flat, h(x) will have a kink point

where its derivative jumps. As shown in Fig. 2.2, in a case like the Binomial model where

there are only point masses, h(x) is a piecewise constant convex function; in a case like the

Black-Scholes model where the distribution is continuous and spans the whole positive part

of the real line, h(x) is a continuously differentiable convex function. In general, these two

pictures can be mixed. In any case, combining the results we have just shown and those in

the proof of Corollary 2.3, we know that h(x) is convex all the time on x ∈ [xr, xu].

Figure 2.2: The left picture is how h(x) look like in the Binomial model; the right pictures
is for the Black-Scholes model.

The discussion in the proof of Corollary 2.3 dealt with minimizing h(x) when h(x) is

curved and contains kink points. The optimal condition is the existence of an a∗ such that

1
a∗

=
λ− P (A∗)
1− P̃ (A∗)

. (2.9)

Now we deal with the situation where h(x) is a straight line on [x1, x2] where the minimum
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can only occur at end points. For downward slopping case where h′(x) < 0 on (x1, x2),

the minimum occurs at the right-end point x2 where either a kink or a smooth connection

to a curved situation can happen, or a kink to another line can happen. When it is a

smooth connection, x2 can not be a global minimum because h′(x2) exists and is strictly

negative. When it is a kink to a smooth curve, then 0 ∈ [D−h(x2), D+h(x2)] corresponds

to 1
a1

< λ−P (A1)

1−P̃ (A1)
and 1

a1+
≥ λ−P (A2)

1−P̃ (A2)
. When it is connected with a kink to another line,

a observes a jump from a1 to a2, the set A jumps from A1 to A2 and k jumps from xd

to x2. The optimal condition 0 ∈ [D−h(x2), D+h(x2)] corresponds to 1
a1

< λ−P (A1)

1−P̃ (A1)
and

1
a2
≥ λ−P (A2)

1−P̃ (A2)
. In both cases, the optimal a can be expressed as

a∗ = sup
{

a :
1
a
≥ λ− P (A)

1− P̃ (A)

}
, (2.10)

and x2 = xr−xdP̃ (A2)

1−P̃ (A2)
= xr−xdP̃ (A∗)

1−P̃ (A∗)
= k. The case of upward sloping can be similarly

analyzed. It is easy to check the conditions when the slope is zero. Recognizing (2.10) is a

generalization of (2.9) we had for the continuous case, we arrive at the optimal condition

a∗ = sup
{

a :
1
a
≥ λ− P (A)

1− P̃ (A)

}
,

and x∗ = xr−xdP̃ (A∗)

1−P̃ (A∗)
= k∗. The only remaining issue to be checked is the condition for

‘bar-system’ to be optimal when xu corresponds to a point mass at ā. The arguments given

in the proof of Corollary 2.3 for the continuous case work here too both for finite and infinite

xu. For example, in the case xu = ∞, we have defined in Remark 2.3 that ā = ess inf dP̃
dP .

Therefore, we have P̃ (B̄) = P (B̄) = 0, and P̃ (C̄) + P̃ (Ā) = P (C̄) + P (Ā) = 1 where

C̄ =
{

ω ∈ Ω : dP̃
dP (ω) = ā

}
. Since this is a line segment for h(x), we have already calculated

its slope

h′(x) = P (Ā)− λ +
1
ā
(1− P̃ (Ā)) = P (Ā)− λ +

1
ā
P̃ (C̄)

= P (Ā)− λ +
1
ā
āP (C̄) = 1− λ > 0.

So the optimal will be obtained by the ‘star-system’ in the interior. Q.E.D.
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Theorem 2.4 (Solution to CVaR Minimization Problem). Define the sets A, B, C and the

numbers ax, kx and the sets Ax, Bx, Cx for fixed number x the same way as in Lemma 2.2

and Theorem 2.1. Denote the ‘r-system’, ‘bar-system’ and ‘star-system’ as in Lemma 2.2.

The solution to problem (2.5) and consequently our main problem (1.5) is as follows:

• If dP̃
dP ≤ 1

λ , P−a.s., then X∗ = xr is the optimal final portfolio value, and the minimal

risk is CV aRλ(X∗) = −xr.

• Otherwise, find the ‘bar-system’ using definitions

ā =


sup

{
a : P̃ (B) ≤ xr−xd

xu−xd

}
, xu < ∞,

ess inf dP̃
dP , xu = ∞.

Ā =

{
ω ∈ Ω :

dP̃

dP
(ω) > ā

}
, B̄ =

{
ω ∈ Ω :

dP̃

dP
(ω) < ā

}
,

C̄ =

{
ω ∈ Ω :

dP̃

dP
(ω) = ā

}
, k̄ =

xr − xdP̃ (Ā)− xuP̃ (B̄)
P̃ (C̄)

I{P̃ (C̄)>0}.

– If 1
ā ≤

λ−P (Ā)

1−P̃ (Ā)
, then the optimal risk is achieved by this ‘bar-system’: the optimal

final portfolio value and the associated minimal risk are

X∗ = xdIĀ + k̄IC̄ + xuIB̄,

CV aRλ(X∗) = −xr +
1
λ

[(xu − xd)(P (Ā)− λP̃ (Ā)) + (xu − k̄)(P (C̄)− λP̃ (C̄))].

– If 1
ā > λ−P (Ā)

1−P̃ (Ā)
, then the optimal risk is achieved by the ‘star-system’ obtained

by a∗ = sup
{

a : 1
a ≥

λ−P (A)

1−P̃ (A)

}
, A∗ =

{
ω ∈ Ω : dP̃

dP (ω) > a∗
}
, x∗ = xr−xdP̃ (A∗)

1−P̃ (A∗)
.

The optimal final portfolio value and the associated minimal risk are

X∗ = xdIA∗ + x∗IA∗c ,

CV aRλ(X∗) = −xr +
1
λ

(x∗ − xd)(P (A∗)− λP̃ (A∗)).

Remark. For the continuous case as in Remark 2.3 we can simplify the results as following

• If dP̃
dP ≤ 1

λ , P−a.s., then X∗ = xr is the optimal final portfolio value, and the minimal
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risk is CV aRλ(X∗) = −xr.

• Otherwise, find the ‘bar-system’ using definitions

ā =


sup

{
a : P̃ (B) ≤ xr−xd

xu−xd

}
, xu < ∞,

ess inf dP̃
dP , xu = ∞.

Ā =

{
ω ∈ Ω :

dP̃

dP
(ω) > ā

}
.

– If 1
ā ≤

λ−P (Ā)

1−P̃ (Ā)
, then the optimal portfolio is achieved by this ‘bar-system’:the

optimal final portfolio value and the associated minimal risk are

X∗ = xdIĀ + xuIĀc ,

CV aRλ(X∗) = −xr +
1
λ

(xu − xd)(P (Ā)− λP̃ (Ā)).

– If 1
ā > λ−P (Ā)

1−P̃ (Ā)
, then the optimal risk is achieved by the ‘star-system’ obtained

by a∗ = {a : 1
a = λ−P (A)

1−P̃ (A)
}, A∗ =

{
ω ∈ Ω : dP̃

dP (ω) > a∗
}

. x∗ = xr−xdP̃ (A∗)

1−P̃ (A∗)
. The

optimal final portfolio value and the associated minimal risk are

X∗ = xdIA∗ + x∗IA∗c ,

CV aRλ(X∗) = −xr +
1
λ

(x∗ − xd)(P (A∗)− λP̃ (A∗)).

Proof. Theorem 2.1 gives the solution to the shortfall problem in Step 1. Leveraging these

results, we have discussed in Remark 2.3 that the solution for step 2 is achieved by finding

the solution to the third case of

1
λ

inf
xr≤x≤xu

(v(x)− λx) = −xr +
1
λ

inf
xr<x≤xu

h(x),

where h(x) = (x − xd)(P (Ax) − λP̃ (Ax)) + (x − kx)(P (Cx) − λP̃ (Cx)). Now combine the

solution to

inf
xr≤x≤xu

h(x),
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found in Lemma 2.2, we quickly arrive at the conclusion. Q.E.D.

2.4 Application to Some Complete Market Examples

2.4.1 Binomial Model

Consider a recombining binomial tree, we have the following dynamics for the stock Sn

and the self-financing portfolio Xn:

Sn+1(H) = uSn, with P (ωn = H) = p and P̃ (ωn = H) = p̃,

Sn+1(T ) = dSn, with P (ωn = T ) = q and P̃ (ωn = T ) = q̃,

Xn+1 = ξnSn+1 + (Xn − ξnSn)(1 + r),

where p̃, q̃ are risk-neutral probabilities, p, q are physical probabilities, u, d are the step

sizes for up move and down move respectively, and r is the risk-free interest earned for one

time step. Given initial stock price S0 and initial portfolio value X0, our main goal is first

to find

CV aRλ(X∗
N ) := inf

ξn

CV aRλ(XN ) s.t. Ẽ[XN ] = xr, xd ≤ XN ≤ xu, (2.11)

where the constants satisfy −∞ < xd < x < xu ≤ ∞, and then to find the corresponding

dynamic hedging ξn.

Denote the final states of an N-step binomial tree as Ω = {ω1, ω2, ..., ω2N }, where we

require the Radon-Nikodým derivatives to be arranged in descending order, i.e., P̃ (ωi)
P (ωi)

≥
P̃ (ωj)
P (ωj)

, ∀i < j. Note that in this case where the tree is recombining, the Radon-Nikodým

derivative P̃ (ωi)
P (ωi)

= p̃mq̃N−m

pmqN−m depends on the total number of up moves m in state ωi, and is

monotonic in m depending on whether p̃
p > 1 or p̃

p < 1. We group the distinct final nodes

into sets Ω = Ω0 ∪ Ω1 ∪ ...ΩN . Suppose p̃
p < 1, Ω0 = {ω1} contains the only state where

there are N down moves, Ω1 = {ω2, ω3, ... ωN+1} contains those states where there are

N − 1 down moves and one up move. In general, Ωk =
{

ω ∈ Ω : P̃ (ωi)
P (ωi)

= p̃N−k q̃k

pN−kqk

}
contains

N !
k!(N−k)! states. If instead p̃

p > 1, the order will be reversed and w1 is the state with N up

moves.
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Proposition 2.5. Following the definitions of ‘r-system’, ‘bar-system’ and ‘star-system’

as in Theorem 2.4. We can compute the solution to problem (2.11) and the corresponding

dynamic hedging strategy ξn in an N -step Binomial Model as below:

• If either 1 < p̃
p ≤

N

√
1
λ or 1 < q̃

q ≤
N

√
1
λ holds, then the optimal portfolio is X∗

N = xr

and the optimal strategy is ξn = 0, for all n = 0, 1, ..., N − 1. The corresponding

minimal risk is CV aRλ(X∗
N ) = −xr.

• Otherwise, if xu < ∞, find the ‘bar-system’ using definitions

iu =


N + 1, P̃ (ΩN ) > xr−xd

xu−xd
,

min
{

k :
∑N

i=k P̃ (Ωi) ≤ xr−xd
xu−xd

}
, o.w.

B̄ =
⋃

i : i≥iu

Ωi, C̄ = Ωiu−1, Ā =
⋃

i : i≥iu−2

Ωi,

ā = P̃ (Ωiu−1)
P (Ωiu−1) , k̄ = xr−xdP̃ (Ā)−xuP̃ (B̄)

P̃ (C̄)
.

– If 1
ā ≤ λ−P (Ā)

1−P̃ (Ā)
, then the optimal is achieved by this ‘bar-system’: the optimal

final portfolio value and the associated minimal risk are

X∗
N = xdIĀ + k̄IC̄ + xuIB̄,

CV aRλ(X∗
N ) = −xr + 1

λ [(xu − xd)(P (Ā)− λP̃ (Ā)) + (xu − k̄)(P (C̄)− λP̃ (C̄))].

– If 1
ā > λ−P (Ā)

1−P̃ (Ā)
, then find the ‘star-system’ obtained by

a∗ = sup
{

a : a > P̃ (Ωk)
P (Ωk) ,

1
a ≥

λ−
Pk

i=0 P (Ωi)

1−
Pk

i=0 P̃ (Ωi)

}
,

A∗ =
⋃
i

{
Ωi : P̃ (Ωi)

P (Ωi)
> a∗

}
,

x∗ =
xr − xdP̃ (A∗)

1− P̃ (A∗)
.

The minimal risk is CV aRλ(X∗
N ) = −xr + 1

λ(x∗−xd)(P (Ā)−λP̃ (Ā)), where the

optimal final portfolio value is X∗
N = xdIA∗ + x∗IA∗c.

If xu = ∞, then the optimal risk is achieved by the ‘star-system’ calculated above.
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In either case, hedging is calculated as ξ∗n =
X∗

n+1(H)−X∗
n+1(T )

Sn+1(H)−Sn+1(T ) from the Risk Neutral

Pricing formula X∗
n = 1

(1+r)(N−n) Ẽ[X∗
N |Fn].

Proof. The first condition in Theorem 2.4, dP̃
dP ≤ 1

λ , P − a.s., is equivalent to P̃ (ω1)
P (ω1) ≤

1
λ

since the states are already arranged in descending order according to the size of the Radon

Nikodým derivative. When p̃
p > 1, P̃ (ω1)

P (ω1) = p̃N

pN ≤ 1
λ ⇔ p̃

p ≤
N

√
1
λ . Similarly, we get the

condition for the case p̃
p > 1, i.e., q̃

q > 1.

The second part of Theorem 2.4 can be translated easily by realizing that set B is the

union of all the Ωi’s such that their Radon Nikodým derivatives are less than a threshold

a. Now since the final states are ordered, once we find the state Ωiu for the ‘bar-system’,

then all the states with a bigger index, i.e., Ωiu , Ωiu+1, ..., ΩN , comprise the set B̄. Ā and

C̄ are determined accordingly. Note that when xu < ∞,
∑N

i=0 P̃ (Ωi) = 1 > xr−xd
xu−xd

, so iu

can only take values from 1, 2, ..., N + 1, so set C̄ is non-empty. Q.E.D.

Algorithm 2.6. CVaR Minimization for Binomial Model

1. If 1 < p̃
p ≤

N

√
1
λ or 1 < q̃

q ≤
N

√
1
λ , then

inf
ξn

CV aRλ(XN ) = −xr, X∗
N = xr, ξ∗n = 0 for all n.

Stop.

2. If xu = ∞, go to Step (4). Otherwise, find ‘bar-system’, go to Step (3).

3. If 1
ā ≤

λ−P (Ā)

1−P̃ (Ā)
, then

inf
ξn

CV aRλ(XN ) = −xr + 1
λ [(xu − xd)(P (Ā)− λP̃ (Ā)) + (xu − k̄)(P (C̄)− λP̃ (C̄))],

X∗
N = xdIĀ + k̄IC̄ + xuIB̄.

Go to Step (5).
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4. Find the ‘star-system’.

inf
ξn

CV aRλ(XN ) = −xr +
1
λ

(x∗ − xd)(P (A∗)− λP̃ (A∗)),

X∗
N = xdIA∗ + x∗IA∗c .

Go to Step (5).

5. Calculate X∗
n = 1

(1+r)(N−n) Ẽ[X∗
N |Fn] for all n. Calculate ξ∗n =

X∗
n+1(H)−X∗

n+1(T )

Sn+1(H)−Sn+1(T ) . Stop.

2.4.2 Black-Scholes Model

Let us turn our attention to the Black-Scholes model, a complete market model with

continuously distributed stock price. The dynamics of the stock price and the self-financing

portfolio are as follows:

dSt = St(µdt + σdWt),

dXt = ξtdSt + (Xt − ξtSt)rdt.

Our main goal is once again first to find

inf
ξt

CV aRλ(XT ) s.t. Ẽ[XT ] = xr, xd ≤ XT ≤ xu a.s., (2.12)

and then to find the corresponding dynamic hedging ξt.

Definition 2.1. Let the market price of risk θ = µ−r
σ > 0 be as usual, and define the

functions

d−(a, s, t) = 1
θ
√

T−t
[− ln a + θ

σ (µ+r−σ2

2 t− ln s
S0

) + θ2

2 (T − t)], d+(a, s, t) = −d−(a, s, t).

Denote N(·) as the cumulative distribution function for standard normal distribution.

Proposition 2.7. Following the definitions of ‘r-system’, ‘bar-system’, ‘star-system’ as in

Theorem 2.4, we can compute the solution to problem (2.12) and the corresponding dynamic
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hedging ξn in the Black-Scholes model as below:

If xu < ∞, find the ‘bar-system’ using equations

P̃ (Ā) =
xu − xr

xu − xd
,

ā = e
θ
√

T
h

θ
√

T
2
−N−1(P̃ (Ā))

i
,

P (Ā) = N(− θ
√

T
2 − ln ā

θ
√

T
).

• If 1
ā ≤

λ−P (Ā)

1−P̃ (Ā)
, then the optimal portfolio is achieved by this ‘bar-system’, in which

case the minimum risk, the optimal portfolio and the hedging strategy are

CV aRλ(X∗
T ) = −xr + 1

λ(xu − xd)(P (Ā)− λP̃ (Ā)),

X∗
t = e−r(T−t) [xuN (d+(ā, St, t)) + xdN (d−(ā, St, t))] ,

ξ∗t =
xu − xd

σSt

√
2π(T − t)

e−r(T−t)−
d2
−(ā,St,t)

2 .

• If 1
ā > λ−P (Ā)

1−P̃ (Ā)
, then the optimal risk is achieved by the ‘star-system’ calculated as

a∗ =
{

a : a =
1−N( θ

√
T

2
− ln a

θ
√

T
)

λ−N(− θ
√

T
2
− ln a

θ
√

T
)

}
,

P (A∗) = N(− θ
√

T
2 − ln a∗

θ
√

T
),

P̃ (A∗) = N( θ
√

T
2 − ln a∗

θ
√

T
),

x∗ =
xr − xdP̃ (A∗)

1− P̃ (A∗)
.

The minimum risk, the optimal portfolio and the hedging strategy are

CV aRλ(X∗
T ) = −xr + 1

λ(x∗ − xd)(P (A∗)− λP̃ (A∗)),

X∗
t = e−r(T−t) [x∗N (d+(a∗, St, t)) + xdN (d−(a∗, St, t))] ,

ξ∗t =
x∗ − xd

σSt

√
2π(T − t)

e−r(T−t)−
d2
−(a∗,St,t)

2 .

If xu = ∞, then the optimal risk is achieved by the ‘star-system’ calculated above.
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Remark. Note that the formulae for X∗
t and ξ∗t resemble the Black-Scholes formulae for a

European call option. The reason is that X∗
t is the Risk Neutral price of the optimal final

value X∗
T = xdIA∗ + x∗IA∗c from Theorem 2.4. We will see in the following proof that set

A∗ =
{

dP̃
dP > a∗

}
= {ST < c∗} where c∗ = S0e

µ+r−σ2

2 T−σ
θ

ln a∗ . Thus the optimal final value

becomes piecewise constant depending on the final stock price below or above a constant

threshold X∗
T = xdI{ST <c∗} + x∗I{ST≥c∗}.

Proof. According to Theorem 2.4 and Remark 2.3, we need to check whether dP̃
dP (ω)

∣∣
T
≤ 1

λ

P−a.s., and if not, then whether 1
ā ≤

λ−P (Ā)

1−P̃ (Ā)
for the case xu < ∞. The Radon Nikodým

derivative process for geometric Brownian motion model is Zt := dP̃
dP |t = e−θWt− θ2

2
t, where

θ = µ−r
σ . Obviously, P

(
dP̃
dP (ω)

∣∣
T

> 1
λ

)
> 0 since ess supZT = ∞. To check the second

inequality, and possibly to find solution to the equation a = 1−P̃ (A)
λ−P (A) , we need to find the

explicit relation among the three elements P̃ (A), P (A) and a. Notice that

A =
{

dP̃
dP

∣∣
T

> a
}

=
{

WT√
T

< − θ
√

T
2 − ln a

θ
√

T

}
=
{

W̃T√
T

< θ
√

T
2 − ln a

θ
√

T

}
,

we have

P (A) = N(− θ
√

T
2 − ln a

θ
√

T
), P̃ (A) = N( θ

√
T

2 − ln a
θ
√

T
).

Link the above two equations with the definition P̃ (A) = x−xr
x−xd

, we can solve for P̃ (Ā),

ā, P (Ā) sequentially:

P̃ (Ā) =
xu − xr

xu − xd
, ā = e

θ
√

T
h

θ
√

T
2
−N−1(P̃ (Ā))

i
, P (Ā) = N(− θ

√
T

2 − ln ā
θ
√

T
).

To obtain ‘star-system’, we only need to solve the equation a = 1−P̃ (A)
λ−P (A) through its explicit

form:

a =
1−N( θ

√
T

2 − ln a
θ
√

T
)

λ−N(− θ
√

T
2 − ln a

θ
√

T
)
.

A direct application of Theorem 2.4 gives the optimal final portfolio X∗
T and the minimal

CV aR. The corresponding optimal hedging ξ∗t is the usual ‘Delta-hedge’ in the Black-

Scholes model where the derivative payoff is X∗
T , so we first calculate the Risk Neutral price
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process Xt = v(St, t), and then differentiate with respect to the stock price St.

Xt = er(T−t)Ẽ[X∗
T |Ft] = e−r(T−t)

[
x∗P̃t(A∗c) + xdP̃t(A∗)

]
= e−r(T−t)

[
x∗ + (xd − x∗)P̃t(A∗)

]
,

where P̃t(A∗) is the conditional probability under the Risk Neutral measure. Since

A∗ = {ZT > a∗} =
{

Zte
−θ(WT−Wt)− θ2

2
(T−t) > a

}
=
{

W̃T−W̃t√
T−t

< −
ln a∗

Zt

θ
√

T−t
+ θ

2

√
T − t

}
,

we have then

P̃t(A∗) = N(−
ln a∗

Zt

θ
√

T−t
+ θ

2

√
T − t). (2.13)

Note that Zt can be represented by the stock price St:

St = S0e
σWt+(µ− 1

2
σ2)t ⇒ Wt =

ln
St
S0
−(µ− 1

2
σ2)t

σ ,

Zt = e−θWt− 1
2
θ2t ⇒ Zt = g(St, t), where g(s, t) = e

θ
σ

[µ+r−σ2

2
t−ln s

S0
]
.

Substitute g(St, t) into (2.13) we have

P̃t(A∗) = N (d−(a∗, St, t)) ,

where

d−(a, s, t) = 1
θ
√

T−t
[− ln a + θ

σ (µ+r−σ2

2 t− ln s
S0

) + θ2

2 (T − t)].

Hence

Xt = v(St, t),

where

v(s, t) = e−r(T−t) [x∗N (d+(a∗, s, t)) + xdN (d−(a∗, s, t))] , d+(a∗, s, t) = −d−(a∗, s, t)

Rewrite v(s, t) = e−r(T−t) [x∗ + (xd − x∗)N (d−(a∗, s, t))], we find the partial derivative

vs(s, t) =
x∗ − xd

σs
√

2π(T − t)
e−r(T−t)−

d2
−(a∗,s,t)

2 .
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Given the stock price St at time t, the optimal strategy ξ∗t is:

ξ∗t = vs(St, t).

Q.E.D.

Algorithm 2.8. CVaR Minimization for Black-Scholes Model

1. If xu = ∞, go to Step (3). Otherwise, find ‘bar-system’, go to Step (2).

2. If 1
ā ≤

λ−P (Ā)

1−P̃ (Ā)
, then

inf
ξt

CV aRλ(XT ) = −xr + 1
λ(xu − xd)(P (Ā)− λP̃ (Ā)),

X∗
t = e−r(T−t) [xuN (d+(ā, St, t)) + xdN (d−(ā, St, t))] ,

ξt =
xu − xd

σSt

√
2π(T − t)

e−r(T−t)−
d2
−(ā,St,t)

2 .

Stop.

3. Find the ‘star-system’.

inf
ξt

CV aRλ(XT ) = −xr + 1
λ(x∗ − xd)(P (A∗)− λP̃ (A∗)),

X∗
t = e−r(T−t) [x∗N (d+(a∗, St, t)) + xdN (d−(a∗, St, t))] ,

ξ∗t =
x∗ − xd

σSt

√
2π(T − t)

e−r(T−t)−
d2
−(a∗,St,t)

2 .

Stop.

2.5 Comparison: Optimal Portfolios with Dynamic & Static Hedging

2.5.1 Binomial Model

Dynamic Hedging

Take a 2-step binomial model as an example, where the sampling times are t = t0, t1, t2.

Also assume p = 7
8 , q = 1

8 , u = 2, d = 1
2 , r = 1

4 , S0 = 4, X0 = 1, xu = 2, xd = 1, λ = 0.1.

We calculate the risk-neutral probabilities p̃ = 1+r−d
u−d = 1

2 , q̃ = u−1−r
u−d = 1

2 , and xr =

(1 + r)2 = 25
16 . Following Algorithm 2.6, we have:
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Figure 2.3: Binomial Model Example

1. Neither 1 < p̃
p ≤

N

√
1
λ nor 1 < q̃

q ≤
N

√
1
λ is satisfied.

2. Find ‘bar-system’:

ā = 16
7 , B̄ = Ω2, Ā = Ω0, C̄ = Ω1.

So P̃ (Ā) = 1
4 , P (Ā) = 1

64 .

3. Condition 1
ā ≤

λ−P (Ā)

1−P̃ (Ā)
does not hold.

4. Find the ‘star-system’:

a∗ = 8.8889, A∗ = Ω0, B∗ = Ω1
⋃

Ω2, x∗ = 1.75.

infξn CV aRλ(X2) = −1.6328, and X∗
2 (Ω0) = 1, X∗

2 (Ω1) = X∗
2 (Ω2) = 1.75.

5. X∗
1 (H) = 1.4, X∗

1 (T ) = 1.1. ξ∗1(H) = 0, ξ∗1(T ) = 0.25, ξ∗0 = 0.05.

Static Hedging

If we can only determine the hedging at the beginning, i.e., ξ0, then the portfolio values

along the binomial tree are X2 = ξ0S2+(1+r)2(X0−ξ0S0). To constrain X2 on the interval

[xd, xu], we require ξ0 ∈ [−0.0577, 0.0449]. We notice that the optimal ξ∗0 in the dynamic

case is outside of this range because ξ∗1 can still be adjusted for the final outcome to be

admissible. The resulting CV aRλ(X2) with λ = 0.1, is tabulated as follows:
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P (ω) X2(ω) ξ0 = -0.0577 ξ0 ∈ (−0.0577, 0) ξ0 = 0 ξ0 ∈ (0, 0.0449) ξ0 = 0.0449
49
64 X2(HH) 1 ↗ 1.5625 ↗ 2
7
64 X2(HT ) 1.6923 ↘ 1.5625 ↘ 1.4615
7
64 X2(TH) 1.6923 ↘ 1.5625 ↘ 1.4615
1
64 X2(TT ) 1.8654 ↘ 1.5625 ↘ 1.3269
CV aR0.1(X2) -1 -1 -1.5625 ↗ -1.4405

Table 2.1: Binomial Model Example

Obviously the static hedging is not as good as the dynamic hedging since the optimal

risk is infξ0 CV aRλ(X2) = −1.5625, achieved at ξ0 = 0.

2.5.2 Black-Scholes Model

Assume λ = 5%, T = 2, r = 5%, S0 = 10, X0 = 10, xd = 5, xu = 30.

(xu < ∞) Example 1 Example 2 Example 3
µ 0.1 0.2 0.3
σ 0.2 0.1 0.1

Dynamic initial hedge ξ∗0 0 2.6117 4.9958
Dynamic minimal CV aR(X∗

T ) -11.0517 -13.3297 -28.8575

Table 2.2: Black-Scholes Model Example with Finite Upper Bound

Here we use a finite upper bound xu = 30 to first illustrate two cases where the optimal

is achieved by the ‘star-system’ in Example 2 and ‘bar-system’ in Example 3. Although we

choose a fairly reasonable set of parameters in Example 1, it turns out that the optimal

‘star-system’ gives value very close to the ‘r-system’ where no investment in the stock is

made.

Next we let xu = ∞ while keeping all other constants at the same level, and compare

the results between static and dynamic hedging. To compute the results for the static

hedging case, note that

XT = xr + ξ0(ST − S0e
rT ), xr = X0e

rT .
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For XT ∈ [xd,∞), we require ξ0 ∈ [0, xr−xd

S0erT ].

CV aRλ(XT ) = − 1
λE[XT 1{XT <qλ}], where qλ = −V aRλ(XT )

= −xr − ξ0S0(eµT N(N−1(λ)−σ
√

T)
λ − erT ).

Since the CV aRλ(XT ) is linear in ξ0, the minimal is obtained at one of the end points.

(xu = ∞) Example 1 Example 2 Example 3
µ 0.1 0.2 0.3
σ 0.2 0.1 0.1

Static hedge ξ∗0 0 0 0.5476
Static minimal CV aR(X∗

T ) -11.0517 -11.0517 -12.3889
Dynamic initial hedge ξ∗0 0 2.6117 7.6179

Dynamic minimal CV aR(X∗
T ) -11.0517 -13.3297 -57.9182

Table 2.3: Black-Scholes Model Example with Infinite Upper Bound

We see that dynamic hedging provide quite different results both for the minimal CV aR

and the hedge in Example 2 and Example 3, while remaining almost indistinguishable in

Example 1.



CHAPTER 3: AN OPTIMIZATION PROBLEM WITH EXPECTED RETURN
REQUIREMENT

3.1 Two-Constraint Optimization Problem

In this Chapter, we will focus on solving the Main Problem (1.3) with additional

assumption 1.2, restated below:

inf
ξt

CV aRλ(XT )

subject to E[XT ] ≥ z,

xd ≤ Xt ≤ xu a.s., ∀t ∈ [0, T ].

Similar to the approach of reformulating the Main Problem without expected return

requirement (1.5) described in Chapter 2, we use the equivalence between conditional Value-

at-Risk and the Fenchel-Legendre dual of the expected shortfall derived in Rockafellar and

Uryasev ([16] and [17]), namely,

CV aRλ(X) =
1
λ

inf
x∈R

(
E[(x−X)+]− λx

)
, ∀λ ∈ (0, 1), (3.1)

to reduce the Main Problem (1.3) to the following static convex optimization problem

CV aR(X∗) = inf
X∈F

inf
x∈R

1
λ

(E[(x−X)+]− λx), (3.2)

subject to E[X] ≥ z, (return constraint)

Ẽ[X] = xr, (capital constraint)

xd ≤ X ≤ xu a.s..

Interchanging the order of infimum, we have the following two-step procedure for the Main

Problem (1.3):
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Two-Constraint Problem:

Step 1: Minimization of Expected Shortfall

v(x) = inf
X∈F

E[(x−X)+] (3.3)

subject to E[X] ≥ z, (return constraint)

Ẽ[X] = xr, (capital constraint)

xd ≤ X ≤ xu a.s.;

Step 2: Minimization of conditional Value-at-Risk

inf
X∈F

CV aRλ(X) =
1
λ

inf
x∈R

(v(x)− λx) (3.4)

With the additional constraint on the expectation E[X] ≥ z, Rockafellar and Uryasev

[16] provides a linear programming solution for the Monte-Carlo simulation of the one-time

step problem. The dynamic solution given in Ruszczyński and Shapiro [21] requires the

modification of the CVaR into a dynamic version. The new results obtained in this thesis

is to provide a solution to the problem of Minimization of Expected Shortfall in (3.3) with

the constraint on the expectation E[X] ≥ z, then to the problem of Minimization of CVaR

in (3.4), thus solve the Main Problem in (1.3).

Recall the two-step procedure for the Main Problem without expected return require-

ment (2.5) solved in Chapter 2:

Step 1: Minimization of Expected Shortfall

v(x) = inf
X∈F

E[(x−X)+] (3.5)

subject to Ẽ[X] = xr, (capital constraint)

xd ≤ X ≤ xu a.s.;
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Step 2: Minimization of conditional Value-at-Risk

inf
X∈F

CV aRλ(X) =
1
λ

inf
x∈R

(v(x)− λx) (3.6)

Föllmer and Leukert [9] derived the optimal solution to Step 1 of this One-Constraint

Problem:

X(x) = xdIn dP̃
dP

>a
o + xIn dP̃

dP
≤a
o, for xd < x < xu a.s.. (3.7)

The above X(x) is the solution under a special case when the Radon-Nikodým derivative

dP̃
dP |T is restricted to have a continuous distribution to minimize the complication in its

presentation. The optimality of X(x) can be proved in various ways, but it is clearly a

result of Neyman-Pearson lemma once the connection between the problem of Minimization

of Expected Shortfall and that of hypothesis testing between P and P̃ is established. To

view it as a solution from convex duality approach, see Theorem 1.19 in Xu [25]. Note

that in (3.7), a is computed from the budget constraint Ẽ[X] = xr for fixed constant x.

To proceed to Step 2, we varied the value of x and looked for the best x∗. Define set

A =
{

ω ∈ Ω : dP̃
dP (ω) > a

}
. Let a∗ and A∗ be the solution to the equation 1

a = λ−P (A)

1−P̃ (A)
.

Define x∗ = xr−xdP̃ (A∗)

1−P̃ (A∗)
. Under some technical conditions, the solution to Step 2 of the

Main Problem without expected return constraint is shown in Chapter 2 to be

X∗ = xdIA∗ + x∗IA∗c , (Two-Line Configuration) (3.8)

CV aRλ(X∗) = −xr +
1
λ

(x∗ − xd)
(
P (A∗)− λP̃ (A∗)

)
,

regardless whether xu < ∞ or xu = ∞. More general solutions in the case when the Radon-

Nikodým derivative dP̃
dP |T is not restricted to have a continuous distribution is fully treated

in Chapter 2. Note that the two-line solution in (3.8) is inherited from the Neyman-Pearson

lemma. We will see later in this Chapter that when xu < ∞, the solutions to both Step

1 and Step 2 of the static formulation (3.2), and thus the Main Problem (1.3) and (1.6),

turn out to be a three-line solution of the form

X∗∗ = xdIA∗∗ + x∗∗IB∗∗ + xuID∗∗ , (Three-Line Configuration)
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where

A =
{

ω ∈ Ω : dP̃
dP (ω) > a

}
, B =

{
ω ∈ Ω : b ≤ dP̃

dP (ω) ≤ a
}

D =
{

ω ∈ Ω : dP̃
dP (ω) < b

}
,

and A∗∗, B∗∗ and D∗∗ are associated to the optimal choice of a∗∗ and b∗∗. When xu = ∞,

the optimal solution X most likely will not exist, but the infimum of the CVaR can still be

computed, some insight can be found in the Black-Scholes example in section 3.5.

The key to finding the exact solution to the Main Problem without expected return

constraint (1.5), is to find the pair (a∗, x∗), and Theorem (2.4) states that (a∗, x∗) is the

solution to the capital constraint (Ẽ[X] = xr) and Euler first order optimality condition

(v′(x) = 0 in Step 2):

xdP̃ (A) + xP̃ (Ac) = xr,

P (A) +
P̃ (Ac)

a
− λ = 0.

Likewise, we will see later in Proposition 3.10 and Theorem 3.11 that (a∗∗, b∗∗, x∗∗) is

the solution to the same two conditions plus the return constraint (E[X] = z):

xdP (A) + xP (B) + xuP (D) = z,

xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr,

P (A) +
P̃ (B)− bP (B)

a− b
− λ = 0.

3.2 Case: xu < ∞

Before establishing their existence, we first define some particular Two-Line solutions

and the general Three-Line solution that satisfy their respective capital and expected return

constraints. Recall the definitions of the sets:

Definition 3.1.

A =
{

ω ∈ Ω : dP̃
dP (ω) > a

}
, B =

{
ω ∈ Ω : b ≤ dP̃

dP (ω) ≤ a
}

, D =
{

ω ∈ Ω : dP̃
dP (ω) < b

}
.
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Definition 3.2. Three-Line Configuration has the structure X = xdIA + xIB + xuID.

Two-Line Configuration X = xIB + xuID is a degenerated form of Three-Line Configu-

ration with a = ∞, B =
{

ω ∈ Ω : dP̃
dP (ω) ≥ b

}
and D =

{
ω ∈ Ω : dP̃

dP (ω) < b
}

.

Two-Line Configuration X = xdIA + xIB is a degenerated form of Three-Line Configu-

ration with b = 0, A =
{

ω ∈ Ω : dP̃
dP (ω) > a

}
, and B =

{
ω ∈ Ω : dP̃

dP (ω) ≤ a
}

.

Two-Line Configuration X = xdIA + xuID is a degenerated form of Three-Line Config-

uration with a = b, A =
{

ω ∈ Ω : dP̃
dP (ω) > a

}
, and D =

{
ω ∈ Ω : dP̃

dP (ω) < a
}

.

Remark. Under Assumption 1.2, the ‘bar-system’ (ā, Ā, B̄) in Chapter 2 is the same as

the system achieved by the Two-Line Configuration X = xdIA + xuID, here we treat the

system as a shorthand from its general form (ā, b̄, x̄, Ā, B̄, D̄), where x̄ = xu, b̄ = ā and

P (B̄) = P̃ (B̄) = 0. Similarly the ‘star-system’ in Chapter 2 corresponds to the Two-Line

Configuration X = xdIA+xIB, and we treat it as a shorthand from (a∗, b∗, x∗, A∗, B∗, D∗),

where b∗ = 0 and P (D∗) = P̃ (D∗) = 0.

Definition 3.3. General Constraints are the capital constraint and the equality part of

the expected return constraint for configuration X = xdIA + xIB + xuID:

E[X] = xdP (A) + xP (B) + xuP (D) = z,

Ẽ[X] = xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr.

Degenerated Constraints 1 are the capital constraint and the equality part of the ex-

pected return constraint for configuration X = xIB + xuID:

E[X] = xP (B) + xuP (D) = z,

Ẽ[X] = xP̃ (B) + xuP̃ (D) = xr.

Degenerated Constraints 2 are the capital constraint and the equality part of the ex-
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pected return constraint for configuration X = xdIA + xIB:

E[X] = xdP (A) + xP (B) = z,

Ẽ[X] = xdP̃ (A) + xP̃ (B) = xr.

Degenerated Constraints 3 are the capital constraint and the equality part of the ex-

pected return constraint for configuration X = xdIA + xuID:

E[X] = xdP (A) + xuP (D) = z,

Ẽ[X] = xdP̃ (A) + xuP̃ (D) = xr.

Definition 3.4. For fixed −∞ < xd < xr < xu < ∞, let ā = b̄ be the constant that

satisfies capital constraint Ẽ[X] = xdP̃ (A) + xuP̃ (D) = xr for configuration X = xdIA +

xuID in Degenerated Constraints 3. Consequently, Ā, D̄ and X̄ are associated to

the constant ā = b̄, i.e., X̄ = xdIĀ + xuID̄ where Ā =
{

ω ∈ Ω : dP̃
dP (ω) > ā

}
, and D̄ ={

ω ∈ Ω : dP̃
dP (ω) < ā

}
. Define z̄ = E[X̄] = xdP (Ā) + xuP (D̄).

Note that z̄ is the expected return achieved by the ‘bar-system’ defined in Chapter

2; it is the unique expected value of a Two-Line configuration that satisfy Degenerated

Constraints 3.

Lemma 3.1. z̄ is the highest return that can be obtained by a portfolio with initial capital

x0 and is bounded between xd and xu:

z̄ = max
X∈F

E[X] s.t. Ẽ[X] = xr, xd ≤ X ≤ xu a.s.

Proof. The problem of

z̄ = max
X∈F

E[X] s.t. Ẽ[X] = xr, xd ≤ X ≤ xu a.s.
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is equivalent to the Expected Shortfall Problem

z̄ = min
X∈F

E[(xu −X)+] s.t. Ẽ[X] = xr, X ≥ xd a.s..

Therefore, the answer is immediate. Q.E.D.

From now on, we will concern ourselves with z ∈ [xr, z̄]. The lower bound can be

interpreted that the investment will yield a higher return than the risk-free rate r, i.e.,

z = E[X] ≥ x0e
rT = xr. Mathematically, when z ∈ (−∞, xr), the optimal solution X∗

to the One-Constraint Problem satisfies the return constraint E[X∗] ≥ z automatically

(see Lemma 3.2), thus it is also the optimal solution to the Two-Constraint Problem.

Lemma 3.2. For fixed −∞ < xd < xr < xu < ∞, and any x ∈ [xd, xr], choose b so that

configuration X = xIB +xuID satisfies the capital constraint Ẽ[X] = xP̃ (B)+xuP̃ (D) = xr

in Degenerated Constraints 1. Let z = E[X] = xP (B) + xuP (D). Then z decreases

continuously from z̄ to xr as x increases from xd to xr. For any x ∈ [xr, xu], choose a so that

configuration X = xdIA +xIB satisfies the capital constraint Ẽ[X] = xdP̃ (A)+xP̃ (B) = xr

in Degenerated Constraints 2. Let z = E[X] = xdP (A) + xP (B). Then z increases

continuously from xr to z̄ as x increases from xr to xu.

Proof. Choose xd ≤ x1 < x2 ≤ xr. Let X1 = x1IB1+xuID1 where B1 =
{

ω ∈ Ω : dP̃
dP (ω) ≥ b1

}
and D1 =

{
ω ∈ Ω : dP̃

dP (ω) < b1

}
. Choose b1 such that Ẽ[X1] = xr. This capital con-

straint means x1P̃ (B1) + xuP̃ (D1) = xr. Since P̃ (B1) + P̃ (D1) = 1, P̃ (B1) = xu−xr
xu−x1

and

P̃ (D1) = xr−x1
xu−x1

. Define z1 = E[X1]. Similarly, z2, X2, B2, D2, b2 corresponds to x2 where

b1 > b2 and P̃ (B2) = xu−xr
xu−x2

and P̃ (D2) = xr−x2
xu−x2

. Note that D2 ⊂ D1, B1 ⊂ B2 and
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D1\D2 = B2\B1. We have

z1 − z2 = x1P (B1) + xuP (D1)− x2P (B2)− xuP (D2)

= (xu − x2)P (B2\B1)− (x2 − x1)P (B1)

= (xu − x2)P
(
b2 < dP̃

dP (ω) < b1

)
− (x2 − x1)P

(
dP̃
dP (ω) ≥ b1

)
= (xu − x2)

∫
�

b2<
dP̃
dP (ω)<b1

� dP
dP̃

(ω)dP̃ (ω)− (x2 − x1)
∫
�

dP̃
dP (ω)≥b1

� dP
dP̃

(ω)dP̃ (ω)

> (xu − x2)
1
b1

P̃ (B2\B1)− (x2 − x1)
1
b1

P̃ (B1)

= (xu − x2)
1
b1

(
xu − xr

xu − x2
− xu − xr

xu − x1

)
− (x2 − x1)

1
b1

xu − xr

xu − x1
= 0.

For any given ε > 0, choose x2 − x1 ≤ ε, then

z1 − z2 = (xu − x1)P (B2\B1)− (x2 − x1)P (B2)

≤ (xu − x1)P (B2\B1)

≤ (xu − x1)
(

xu − xr

xu − x2
− xu − xr

xu − x1

)
≤ (x2 − x1)(xu − xr)

xu − x2
≤ x2 − x1 ≤ ε.

Therefore, z decreases continuously as x increases when x ∈ [xd, xr]. When x = xd, z = z̄

from Definition 3.4. When x = xr, X ≡ xr and z = E[X] = xr. Similarly, we can show

that z increases continuously from xr to z̄ as x increases from xr to xu. Q.E.D.

From the above lemma, we can see that for given x value, we can compute the cor-

responding z value in Degenerated Constraints 1 and Degenerated Constraints 2.

Since their relationship is monotone and continuous in each situation, given z we can find

the corresponding x value in both situations.

Definition 3.5. For fixed −∞ < xd < xr < xu < ∞, and fixed z ∈ [xr, z̄], define xz1

and xz2 to be the corresponding x values for configurations that satisfy Degenerated

Constraints 1 and Degenerated Constraints 2 respectively.

Definition 3.5 means that when we fix z in a proper interval [xr, z̄], we can find two
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feasible solutions: X = xz1IB + xuID satisfying Ẽ[X] = xz1P̃ (B) + xuP̃ (D) = xr and

E[X] = xz1P (B)+xuP (D) = z; X = xdIA +xz2IB satisfying Ẽ[X] = xdP̃ (A)+xz2P̃ (B) =

xr and E[X] = xdP (A) + xz2P (B) = z.

Now we fix x ∈ [xd, xz1], and as in Lemma 3.2, choose b so that configuration X =

xIB +xuID satisfies the capital constraint Ẽ[X] = xP̃ (B)+xuP̃ (D) = xr in Degenerated

Constraints 1. At the left end point x = xd, we encounter X̄ given by Degenerated

Constraints 3 in Definition 3.4 and corresponding z̄ = E[X̄] ≥ z. At the right end point

x = xz1, we encounter X = xz1IB + xuID such that E[X] = z. In between, E[X], where

X = xIB + xuID and Ẽ[X] = xr, is decreasing according to Lemma 3.2. We recognize that

E[X] = xP (B) + xuP (D) ≥ z, for all x ∈ [xd, xz1]. Similar analysis can be applied to the

interval x ∈ [xz2, xu]. We make this conclusion in the following lemma.

Lemma 3.3. For fixed −∞ < xd < xr < xu < ∞, and fixed z ∈ [xr, z̄],

1. If we fix x ∈ [xd, xz1], the Two-Line Configuration X = xIB + xuID which satisfies

the capital constraint Ẽ[X] = xP̃ (B) + xuP̃ (D) = xr in Degenerated Constraints 1

satisfies the expected return constraint: E[X] = xP (B) + xuP (D) ≥ z;

2. If we fix x ∈ (xz1, xr], the Two-Line Configuration X = xIB + xuID which satisfies

the capital constraint Ẽ[X] = xP̃ (B) + xuP̃ (D) = xr in Degenerated Constraints 1

fails the expected return constraint: E[X] = xP (B) + xuP (D) < z;

3. If we fix x ∈ [xr, xz2), the Two-Line Configuration X = xdIA +xIB which satisfies the

capital constraint Ẽ[X] = xdP̃ (A) + xP̃ (B) = xr in Degenerated Constraints 2 fails

the expected return constraint: E[X] = xP (B) + xuP (D) < z;

4. If we fix x ∈ [xz2, xu), the Two-Line Configuration X = xdIA + xIB which satisfies

the capital constraint Ẽ[X] = xdP̃ (A) + xP̃ (B) = xr in Degenerated Constraints 2

satisfies the expected return constraint: E[X] = xP (B) + xuP (D) ≥ z.

Proposition 3.4. For fixed −∞ < xd < xr < xu < ∞, and fixed z ∈ [xr, z̄], if we fix

x ∈ [xd, xz1], then there exists a Two-Line Configuration X = xIB + xuID which is the

optimal solution to Step 1 of the Two-Constraint Problem; if we fix x ∈ [xz2, xu], then



50

there exists a Two-Line Configuration X = xdIA + xIB which is the optimal solution to

Step 1 of the Two-Constraint Problem.

Lemma 3.3 and Proposition 3.4 are natural logical consequences and their proofs will

be skipped.

When x ∈ (xz1, xz2), the Two-Line Configurations that can be achieved with the right

amount of initial capital (Ẽ[X] = xr) do not generate high enough expected return (E[X] <

z) to be feasible, so we have to look for a novel solution of Three-Line Configuration that

is both feasible and optimal.

Lemma 3.5. For fixed −∞ < xd < xr < xu < ∞, fixed z ∈ [xr, z̄], and fixed x ∈ (xz1, xz2),

choose the pair of real numbers −∞ < b ≤ a < ∞ so that configuration X = xdIA + xIB +

xuID always satisfies the capital constraint Ẽ[X] = xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr in

General Constraints. When b = b̄ = ā = a, then X = X̄ and E[X̄] = z̄. When b < b̄

and a > ā, the expected value E[X] = xdP (A) + xP (B) + xuP (D) decreases continuously

as b decreases and a increases. In the extreme case b = 0, the Three-Line configuration

becomes the Two-Line Configuration X = xIB + xuID; in the extreme a = ∞, the Three-

Line configuration becomes the Two-Line Configuration X = xdIA +xIB. In either extreme

cases, the expected value is below z by Lemma 3.3.

Proof. Choose −∞ < b1 < b2 ≤ b̄ = ā ≤ a2 < a1 < ∞. Let configuration X1 = xdIA1 +

xIB1 + xuID1 correspond to the pair (a1, b1) where A1 =
{

ω ∈ Ω : dP̃
dP (ω) > a1

}
, B1 ={

ω ∈ Ω : b1 ≤ dP̃
dP (ω) ≤ a1

}
, D1 =

{
ω ∈ Ω : dP̃

dP (ω) < b1

}
. Similarly, let configuration X2 =

xdIA2 + xIB2 + xuID2 correspond to the pair (a2, b2). Define z1 = E[X1] and z2 = E[X2].

Since both X1 and X2 satisfy the capital constraint, we have

xdP̃ (A1) + xP̃ (B1) + xuP̃ (D1) = xr = xdP̃ (A2) + xP̃ (B2) + xuP̃ (D2).

This simplifies to the equation

(x− xd)P̃ (A2\A1) = (xu − x)P̃ (D2\D1). (3.9)
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Then

z2 − z1 = xdP (A2) + xP (B2) + xuP (D2)− xdP (A1)− xP (B1)− xuP (D1)

= (xu − x)P (D2\D1)− (x− xd)P (A2\A1)

= (xu − x)P (D2\D1)− (xu − x)
P̃ (D2\D1)
P̃ (A2\A1)

P (A2\A1)

= (xu − x)P̃ (D2\D1)
(

P (D2\D1)
P̃ (D2\D1)

− P (A2\A1)
P̃ (A2\A1)

)

= (xu − x)P̃ (D2\D1)


∫�

b1≤dP̃
dP (ω)<b2

� dP
dP̃

(ω)dP̃ (ω)

P̃ (D2\D1)
−

∫�
a2<

dP̃
dP (ω)≤a1

� dP
dP̃

(ω)dP̃ (ω)

P̃ (A2\A1)


≥ (xu − x)P̃ (D2\D1)

(
1
b1
− 1

a1

)
> 0.

Suppose the pair (a1, b1) is chosen so that X1 satisfies the budget constraint Ẽ[X1] = xr.

For any given ε > 0, choose b2− b1 small enough such that P (D2\D1) ≤ ε
xu−x . Now choose

a2 such that a2 < a1 and equation (3.9) is satisfied. Then X2 also satisfies the budget

constraint Ẽ[X2] = xr, and

z2 − z1 = (xu − x)P (D2\D1)− (x− xd)P (A2\A1) ≤ (xu − x)P (D2\D1) ≤ ε.

We conclude that the expected value of the Three-Line configuration decreases continuously

as b decreases and a increases. Q.E.D.

Proposition 3.6. For fixed −∞ < xd < xr < xu < ∞, and fixed z ∈ [xr, z̄], if we fix

x ∈ (xz1, xz2), then there exists a Three-Line Configuration X = xdIA + xIB + xuID

that satisfies the General Constraints which is the optimal solution to Step 1 of the

Two-Constraint Problem.

Proof. Denote ρ = dP̃
dP . According to Lemma 3.5, there exists a Three-Line configuration

X̂ = xdIA + xIB + xuID that satisfies the General Constraints:

E[X] = xdP (A) + xP (B) + xuP (D) = z,

Ẽ[X] = xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr.



52

where

A = {ω ∈ Ω : ρ(ω) > â} , B =
{

ω ∈ Ω : b̂ ≤ ρ(ω) ≤ â
}

, D =
{

ω ∈ Ω : ρ(ω) < b̂
}

.

As standard for convex optimization problems, if we can find a pair of Lagrange multipliers

λ ≥ 0 and µ ∈ R such that X̂ is the solution to the minimization problem

inf
X∈F , xd≤X≤xu

E[(x−X)+ − λX − µρX] = E[(x− X̂)+ − λX̂ − µρX̂], (3.10)

then X̂ is the solution to the constrained problem

inf
X∈F , xd≤X≤xu

E[(x−X)+], s.t. E[X] ≥ z, Ẽ[X] = xr.

Define

λ =
b̂

â− b̂
, µ = − 1

â− b̂
.

Then (3.10) becomes

inf
X∈F , xd≤X≤xu

E
[
(x−X)+ + ρ−b̂

â−b̂
X
]
.

Choose any X ∈ F where xd ≤ X ≤ xu, and denote G = {ω ∈ Ω : X(ω) ≥ x} and

L = {ω ∈ Ω : X(ω) < x}. Note that ρ−b̂

â−b̂
> 1 on set A, 0 ≤ ρ−b̂

â−b̂
≤ 1 on set B, ρ−b̂

â−b̂
< 0 on
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set D. Then the difference

E
[
(x−X)+ + ρ−b̂

â−b̂
X
]
− E

[
(x− X̂)+ + ρ−b̂

â−b̂
X̂
]

= E
[
(x−X)IL + ρ−b̂

â−b̂
X (IA + IB + ID)

]
− E

[
(x− xd) IA + ρ−b̂

â−b̂
(xdIA + xIB + xuID)

]
= E

[
(x−X)IL +

(
ρ−b̂

â−b̂
(X − xd)− (x− xd)

)
IA + ρ−b̂

â−b̂
(X − x) IB + ρ−b̂

â−b̂
(X − xu) ID

]
≥ E

[
(x−X)IL + (X − x) IA + ρ−b̂

â−b̂
(X − x) IB + ρ−b̂

â−b̂
(X − xu) ID

]
= E

[
(x−X) (IL∩A + IL∩B + IL∩D) + (X − x) (IA∩G + IA∩L) + ρ−b̂

â−b̂
(X − x) IB

+ρ−b̂

â−b̂
(X − xu) ID

]
= E

[
(x−X) (IL∩B + IL∩D) + (X − x) IA∩G + ρ−b̂

â−b̂
(X − x) IB + ρ−b̂

â−b̂
(X − xu) ID

]
= E

[
(x−X) (IL∩B + IL∩D) + (X − x) IA∩G + ρ−b̂

â−b̂
(X − x) (IB∩G + IB∩L)

+ρ−b̂

â−b̂
(X − xu) (ID∩G + ID∩L)

]
= E

[
(x−X)

(
1− ρ−b̂

â−b̂

)
IB∩L +

(
x−X + ρ−b̂

â−b̂
(X − xu)

)
ID∩L + (X − x) IA∩G

+ρ−b̂

â−b̂
(X − x) IB∩G + ρ−b̂

â−b̂
(X − xu) ID∩G

]
≥ 0.

The last inequality holds because each term inside the expectation is greater than or equal

to zero. Q.E.D.

Let us recall the first step for the Two-Constraint Problem:

Step 1: Minimization of Expected Shortfall

v(x) = inf
X∈F

E[(x−X)+] (3.11)

subject to E[X] ≥ z, (return constraint)

Ẽ[X] = xr, (capital constraint)

xd ≤ X ≤ xu a.s.;

Theorem 3.7 (Solution to Step 1: Minimization of Expected Shortfall). For fixed −∞ <

xd < xr < xu < ∞, and fixed z ∈ [xr, z̄]. The optimal X(x) and the corresponding value
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function v(x) to Step 1: Minimization of Expected Shortfall of the Two-Constraint

Problem are as follows:

• x ∈ (−∞, xd]:

X(x) = any random variable with values in [xd, xu] satisfying both

Ẽ[X(x)] = xr and E[X(x)] ≥ z,

v(x) = 0.

• x ∈ [xd, xz1]:

X(x) = any random variable with values in [x, xu] satisfying both

Ẽ[X(x)] = xr andE[X(x)] ≥ z,

v(x) = 0.

• x ∈ (xz1, xz2):

X(x) = xdIAx + xIBx + xuIDx

where Ax, Bx, Dx are determined by ax and bx through definitions 3.1

satisfying the General Constraints:Ẽ[X(x)] = xr and E[X(x)] = z,

v(x) = (x− xd)P (Ax).

• x ∈ [xz2, xu]:

X(x) = xdIAx + xIBx

where Ax, Bx are determined by ax as in Definition 3.2 satisfying both

Ẽ[X(x)] = xr and E[X(x)] ≥ z,

v(x) = (x− xd)P (Ax).
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• x ∈ [xu,∞):

X(x) = xdIĀ + xuIB̄ = X̄

where Ā, B̄ are associated to ā as in Definition 3.4 satisfying both

Ẽ[X(x)] = xr and E[X(x)] = z̄ ≥ z,

v(x) = (x− xd)P (Ā) + (x− xu)P (B̄).

Theorem 3.7 is a direct consequence of Lemma 3.3, Proposition 3.4, and Proposition

3.6.

To solve Step 2 of the Two-Constraint Problem, we need to find

1
λ

inf
x∈R

(v(x)− λx),

where we have already computed v(x) in Theorem 3.7. It turns out that depending on

the z level in the return constraint of the Two-Constraint Problem, sometimes the

optimal is obtained by the Two-Line solution to the One-Constraint Problem, other

times it is obtained by a true Three-Line solution. To accomplish this, we have to recall

the results of Theorem 2.4 and the Remark on continuous case in Chapter (2). Recognizing

the equivalence of the “bar-system” and “bar-system” defined in Definition 3.4, we restate

the result as follows:

Theorem 3.8 (Theorem 2.4 and its Remark in Chapter 2 with Assumption 1.2).

1. Suppose ess sup dP̃
dP ≤ 1

λ . X = xr is the optimal solution to Step 2: Minimization of

Conditional Value-at-Risk of the One-Constraint Problem and the associated

minimal risk is

CV aR(X) = −xr.

2. Suppose ess sup dP̃
dP > 1

λ .

• If 1
ā ≤

λ−P (Ā)

1−P̃ (Ā)
, then X̄ = xdIĀ + xuID̄ is the optimal solution to Step 2: Mini-

mization of Conditional Value-at-Risk of the One-Constraint Problem
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and the associated minimal risk is

CV aR(X̄) = −xr +
1
λ

(xu − xd)(P (Ā)− λP̃ (Ā)).

• Otherwise, let a∗ be the solution to the equation 1
a = λ−P (A)

1−P̃ (A)
. Then A∗ and B∗

defined in 3.1 and Definition 3.2 are the sets associated to the level a∗. Define

x∗ = xr−xdP̃ (A∗)

1−P̃ (A∗)
so that configuration

X∗ = xdIA∗ + x∗IB∗

satisfies the capital constraint Ẽ[X∗] = xdP̃ (A∗) + x∗P̃ (B∗) = xr in Degener-

ated Constraints 2. Then X∗ is the optimal solution to Step 2: Minimiza-

tion of Conditional Value-at-Risk of the One-Constraint Problem and

the associated minimal risk is

CV aR(X∗) = −xr +
1
λ

(x∗ − xd)(P (A∗)− λP̃ (A∗)).

Definition 3.6. In the situation where ess sup dP̃
dP > 1

λ of Theorem 3.8, define z∗ = z̄ in the

first case; define z∗ = E[X∗] in the second case.

It is straightforward to see that when z is less than z∗, the Two-Line solution provided

in Theorem 3.8 is indeed the optimal solution to Step 2: Minimization of Conditional

Value-at-Risk of the Two-Constraint Problem. While when z is greater than z∗ the

Two-Line solutions are no longer feasible in the Two-Constraint Problem and we will

show now that the Three-Line solutions are not only feasible but also optimal.

For z ∈ (z∗, z̄], Step 2 of the Two-Constraint Problem

1
λ

inf
x∈R

(v(x)− λx)

is the minimum of the following five sub-problems after applying Theorem 3.7:
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Case 1
1
λ

inf
(−∞,xd]

(v(x)− λx) =
1
λ

inf
(−∞,xd]

(−λx) = −xd;

Case 2
1
λ

inf
[xd,xz1]

(v(x)− λx) =
1
λ

inf
[xd,xz1]

(−λx) = −xz1 ≤ −xd;

Case 3
1
λ

inf
(xz1,xz2)

(v(x)− λx) =
1
λ

inf
(xz1,xz2)

((x− xd)P (Ax)− λx) ;

Case 4
1
λ

inf
[xz2,xu]

(v(x)− λx) =
1
λ

inf
[xz2,xu]

((x− xd)P (Ax)− λx) ;

Case 5
1
λ

inf
[xu,∞)

(v(x)− λx) =
1
λ

inf
[xu,∞)

(
(x− xd)P (Ā) + (x− xu)P (B̄)− λx

)
.

We first establish the convexity of the objective function and its continuity in Lemma

3.9, then we prove the Three-Line solution which is feasible and satisfies the first order

condition is indeed optimal.

Lemma 3.9. v(x) is a convex function for x ∈ R, and thus continuous.

Proof. The convexity of v(x) is a simple consequence of its definition (3.3). Real-valued

convex functions on R are continuous on its interior of the domain, so v(x) is continuous

on R. Q.E.D.

x

v(x)

Figure 3.1: Sample v(x) for Black-Scholes Model
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Proposition 3.10. For fixed −∞ < xd < xr < xu < ∞, and fixed z ∈ (z∗, z̄]. Suppose

ess sup dP̃
dP > 1

λ . The solution a∗∗, b∗∗ and x∗∗ (and consequently, A∗∗, B∗∗ and D∗∗) to the

system

xdP (A) + xP (B) + xuP (D) = z, (return constraint)

xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr, (capital constraint)

P (A) +
P̃ (B)− bP (B)

a− b
− λ = 0, (first order Euler condition)

exists. X∗∗ = xdIA∗∗ +x∗∗IB∗∗ +xuID∗∗ is the optimal solution to Step 2: Minimization

of Conditional Value-at-Risk of the Two-Constraint Problem where

1
λ

inf
x∈R

(v(x)− λx) =
1
λ

min
(xz1,xz2)

(v(x)− λx),

and the associated minimal risk is

CV aR(X∗∗) = −xr +
1
λ

((x∗∗ − xd)P (A∗∗)− λx∗∗) .

Proof. Obviously, Case 2 dominates Case 1 in the sense that its minimum is lower. In

Case 3, by the continuity of v(x), we have

1
λ

inf
(xz1,xz2)

((x− xd)P (Ax)− λx) ≤ 1
λ

((xz1 − xd)P (Axz1)− λxz1) = −xz1.

The last equality comes from the fact P (Axz1) = 0: As in Lemma 3.5, we know that when

x = xz1, the Three-Line configuration X = xdIA +xIB +xuID degenerates to the Two-Line

configuration X = xz1IB + xuID where axz1 = ∞. Therefore, Case 3 dominates Case 2.
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In Case 5,

1
λ

inf
[xu,∞)

(v(x)− λx) =
1
λ

inf
[xu,∞)

(
(x− xd)P (Ā) + (x− xu)P (B̄)− λx

)
=

1
λ

inf
[xu,∞)

(
(1− λ)x− xdP (Ā)− xuP (B̄)

)
=

1
λ

(
(1− λ)xu − xdP (Ā)− xuP (B̄)

)
=

1
λ

(
(xu − xd)P (Ā)− λxu

)
≥ 1

λ
inf

[xz2,xu]
((x− xd)P (Ax)− λx) .

Therefore, Case 4 dominates Case 5. When x ∈ [xz2, xu] and ess sup dP̃
dP > 1

λ , Theorem 3.7

and Theorem 3.8 imply that the infimum in Case 4 is achieved either by X̄ or X∗. Since

we restrict z ∈ (z∗, z̄] where z∗ = z̄ by Definition 3.6 in the first case, we need not consider

this case in the current proposition. In the second case, Lemma 3.2 implies that x∗ < xz2

(because z > z∗). By the convexity of v(x), and then the continuity of v(x),

1
λ

inf
[xz2,xu]

((x− xd)P (Ax)− λx) =
1
λ

((xz2 − xd)P (Axz2)− λxz2)

≥ 1
λ

inf
(xz1,xz2)

((x− xd)P (Ax)− λx) .

Therefore, Case 3 dominates Case 4. We have shown that Case 3 actually provides the

globally infimum:
1
λ

inf
x∈R

(v(x)− λx) =
1
λ

inf
(xz1,xz2)

(v(x)− λx).

Now we focus on x ∈ (xz1, xz2), where X(x) = xdIAx + xIBx + xuIDx satisfy the general

constraints:

E[X(x)] = xdP (Ax) + xP (Bx) + xuP (Dx) = z,

Ẽ[X(x)] = xdP̃ (Ax) + xP̃ (Bx) + xuP̃ (Dx) = xr,
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and the definition for sets Ax, Bx and Dx are

Ax =
{

ω ∈ Ω : dP̃
dP (ω) > ax

}
, Bx =

{
ω ∈ Ω : bx ≤ dP̃

dP (ω) ≤ ax

}
,

Dx =
{

ω ∈ Ω : dP̃
dP (ω) < bx

}
.

Note that v(x) = (x − xd)P (Ax) (see Theorem 3.7). Since P (Ax) + P (Bx) + P (Dx) = 1

and P̃ (Ax) + P̃ (Bx) + P̃ (Dx) = 1, we rewrite the capital and return constraints as

x− z = (x− xd)P (Ax) + (x− xu)P (Dx),

x− xr = (x− xd)P̃ (Ax) + (x− xu)P̃ (Dx).

Differentiating both sides with respect to x, we get

P (Bx) = (x− xd)
dP (Ax)

dx
+ (x− xu)

dP (Dx)
dx

,

P̃ (Bx) = (x− xd)
dP̃ (Ax)

dx
+ (x− xu)

dP̃ (Dx)
dx

.

Since
dP̃ (Ax)

dx
= ax

dP (Ax)
dx

,
dP̃ (Dx)

dx
= bx

dP (Dx)
dx

,

we get
dP (Ax)

dx
=

P̃ (Bx)− bP (Bx)
(x− xd)(a− b)

.

Therefore,

(v(x)− λx)′ = P (Ax) + (x− xd)
dP (Ax)

dx
− λ

= P (Ax) +
P̃ (Bx)− bP (Bx)

a− b
− λ.

When the above derivative is zero, we arrive at the first order Euler condition

P (Ax) +
P̃ (Bx)− bP (Bx)

a− b
− λ = 0.

To be precise, the above differentiation should be replaced by left-hand and right-hand
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derivatives as detailed in the Proof for Corollary (2.3) in Chapter 2. But the first order

Euler condition will turn out to be the same because we have assumed that the Radon-

Nikodým derivative dP̃
dP has continuous distribution.

To finish this proof, we need to show that there exists an x ∈ (xz1, xz2) where the first

order Euler condition is satisfied. From Lemma 3.5, we know that as x ↘ xz1, ax ↗ ∞,

and P (Ax) ↘ 0. Therefore,

lim
x↘xz1

(v(x)− λx)′ = −λ < 0.

As x ↗ xz2, bx ↘ 0, and P (Dx) ↘ 0. Therefore,

lim
x↘xz1

(v(x)− λx)′ = P (Axz2)−
P̃ (Ac

xz2
)

axz2

− λ.

This derivative coincide with the derivative of the value function of the Two-Line configu-

ration that is optimal on the interval x ∈ [xz2, xu] provided in Theorem 3.7 (see Proof for

Corollary (2.3) in Chapter 2). Again when x ∈ [xz2, xu] and ess sup dP̃
dP > 1

λ , Theorem 3.7

and Theorem 3.8 imply that the infimum of v(x)−λx is achieved either by X̄ or X∗. Since

we restrict z ∈ (z∗, z̄] where z∗ = z̄ by Definition 3.6 in the first case, we need not consider

this case in the current proposition. In the second case, Lemma 3.2 implies that x∗ < xz2

(because z > z∗). This in turn implies

P (Axz2)−
P̃ (Ac

xz2
)

axz2

− λ < 0.

We have just shown that there exist some x∗∗ ∈ (xz1, xz2) such that (v(x)−λx)′|x=x∗∗ = 0.

By the convexity of v(x)− λx, this is the point where it obtains the minimum value. Now

CV aR(X∗∗) =
1
λ

(v(x∗∗)− λx∗∗)

=
1
λ

((x∗∗ − xd)P (A∗∗)− λx∗∗) .

Q.E.D.

Theorem 3.11 (Solution to Step 2: Minimization of Conditional Value-at-Risk). For fixed
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−∞ < xd < xr < xu < ∞.

1. Suppose ess sup dP̃
dP ≤ 1

λ and z = xr. X = xr is the optimal solution to Step 2:

Minimization of Conditional Value-at-Risk of the Two-Constraint Problem

and the associated minimal risk is

CV aR(X) = −xr.

2. Suppose ess sup dP̃
dP ≤ 1

λ and z ∈ (xr, z̄]. The optimal solution to Step 2: Minimiza-

tion of Conditional Value-at-Risk of the Two-Constraint Problem does not

exist and the minimal risk is

CV aR(X) = −xr.

3. Suppose ess sup dP̃
dP > 1

λ and z ∈ [xr, z
∗].

• If 1
ā ≤

λ−P (Ā)

1−P̃ (Ā)
(see Definition 3.4), then X̄ = xdIĀ + xuID̄ is the optimal solu-

tion to Step 2: Minimization of Conditional Value-at-Risk of the Two-

Constraint Problem and the associated minimal risk is

CV aR(X̄) = −xr +
1
λ

(xu − xd)(P (Ā)− λP̃ (Ā)).

• Otherwise, X∗ = xdIA∗ + x∗IB∗ defined in Theorem 3.8 is the optimal solu-

tion to Step 2: Minimization of Conditional Value-at-Risk of the Two-

Constraint Problem and the associated minimal risk is

CV aR(X∗) = −xr +
1
λ

(x∗ − xd)(P (A∗)− λP̃ (A∗)).

4. Suppose ess sup dP̃
dP > 1

λ and z ∈ (z∗, z̄]. X∗∗ = xdIA∗∗ + x∗∗IB∗∗ + xuID∗∗ defined in

Proposition 3.10 is the optimal solution to Step 2: Minimization of Conditional

Value-at-Risk of the Two-Constraint Problem and the associated minimal risk
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is

CV aR(X∗∗) = −xr +
1
λ

((x∗∗ − xd)P (A∗∗)− λx∗∗) .

Proof. Case 3 and 4 are already proved in Theorem 3.8 and Proposition 3.10. In Case 1

where ess sup dP̃
dP ≤ 1

λ and z = xr, X = xr is both feasible and optimal by Theorem 3.8.

In Case 2, fix arbitrary ε > 0. We will look for a Two-Line solution Xε = xεIAε + αεIBε

with the right parameters aε, xε, αε which satisfies both the capital constraint and return

constraint:

E[Xε] = xεP (Aε) + αεP (Bε) = z, (3.12)

Ẽ[Xε] = xεP̃ (Aε) + αεP̃ (Bε) = xr, (3.13)

where

Aε =
{

ω ∈ Ω : dP̃
dP (ω) > aε

}
, Bε =

{
ω ∈ Ω : dP̃

dP (ω) ≤ aε

}
,

and produces a CVaR level close to the lower bound:

CV aR(Xε) ≤ CV aR(xr) + ε = −xr + ε.

First, we choose xε = xr − ε. To find the remaining two parameters aε and αε so that

equations (3.12) and (3.13) are satisfies, we note

xrP (Aε) + xrP (Bε) = xr,

xrP̃ (Aε) + xrP̃ (Bε) = xr,

and conclude that it is equivalent to find a pair of aε and αε such that the following two

equalities are satisfied:

−εP (Aε) + (αε − xr)P (Bε) = γ,

−εP̃ (Aε) + (αε − xr)P̃ (Bε) = 0,
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where we denote γ = z − xr. If we can find a solution aε to the equation

P̃ (Bε)
P (Bε)

=
ε

γ + ε
, (3.14)

then

αε = xr +
P̃ (Aε)
P̃ (Bε)

ε,

and we have the solutions for equations (3.12) and (3.13). It is not difficult to prove that

the fraction P̃ (B)
P (B) increases continuously from 0 to 1 as a increases from 0 to 1

λ . Therefore,

we can find a solution aε ∈ (0, 1
λ) where (3.14) is satisfied. By definition (1.2),

CV aRλ(Xε) =
1
λ

inf
x∈R

(
E[(x−Xε)+]− λx

)
≤ 1

λ

(
E[(xε −Xε)+]− λxε

)
= −xε.

The difference

CV aRλ(Xε)− CV aR(xr) ≤ −xε + xr = ε.

Under Assumptions 1.1, 1.2, the solution in Case 2 is almost surely unique, the result is

proved. Q.E.D.

3.3 Case: xu = ∞

We first restate Theorem 3.8 in the current context. When xu = ∞, we interpret Ā = Ω

and z̄ = ∞.

Theorem 3.12 (Theorem 2.4 and its Remark in Chapter 2 when xu = ∞).

1. Suppose ess sup dP̃
dP ≤ 1

λ . X = xr is the optimal solution to Step 2: Minimization of

Conditional Value-at-Risk of the One-Constraint Problem and the associated

minimal risk is

CV aR(X) = −xr.

2. Suppose ess sup dP̃
dP > 1

λ . Let a∗ be the solution to the equation 1
a = λ−P (A)

1−P̃ (A)
. Asso-

ciate sets A∗ =
{

ω ∈ Ω : dP̃
dP (ω) > a∗

}
and B∗ =

{
ω ∈ Ω : dP̃

dP (ω) ≤ a∗
}

to level a∗.
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Define x∗ = xr−xdP̃ (A∗)

1−P̃ (A∗)
so that configuration

X∗ = xdIA∗ + x∗IB∗

satisfies the capital constraint Ẽ[X∗] = xdP̃ (A∗) + x∗P̃ (B∗) = xr in Degenerated

Constraints 2. Then X∗ is the optimal solution to Step 2: Minimization of

Conditional Value-at-Risk of the One-Constraint Problem and the associated

minimal risk is

CV aR(X∗) = −xr +
1
λ

(x∗ − xd)(P (A∗)− λP̃ (A∗)).

Theorem 3.13 (Minimization of Conditional Value-at-Risk When xu = ∞). For fixed

−∞ < xd < xr < xu < ∞.

1. Suppose ess sup dP̃
dP ≤ 1

λ and z = xr. X = xr is the optimal solution to Step 2:

Minimization of Conditional Value-at-Risk of the Two-Constraint Problem

and the associated minimal risk is

CV aR(X) = −xr.

2. Suppose ess sup dP̃
dP ≤ 1

λ and z ∈ (xr,∞). The optimal solution to Step 2: Mini-

mization of Conditional Value-at-Risk of the Two-Constraint Problem does

not exist and the minimal risk is

CV aR(X) = −xr.

3. Suppose ess sup dP̃
dP > 1

λ and z ∈ [xr, z
∗]. X∗ is the optimal solution to Step 2:

Minimization of Conditional Value-at-Risk of the Two-Constraint Problem

and the associated minimal risk is

CV aR(X∗) = −xr +
1
λ

(x∗ − xd)(P (A∗)− λP̃ (A∗)).
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4. Suppose ess sup dP̃
dP > 1

λ and z ∈ (z∗,∞). The optimal solution to Step 2: Mini-

mization of Conditional Value-at-Risk of the Two-Constraint Problem does

not exist and the minimal risk is

CV aR(X∗) = −xr +
1
λ

(x∗ − xd)(P (A∗)− λP̃ (A∗)).

Proof. Case 1 and 3 are obviously true in light of Theorem 3.12. The proof for Case

2 is similar to that in the Proof of Theorem 3.11, so we will not repeat it here. Since

E[X∗] = z∗ < z in case 4, CV aR(X∗) is only a lower bound in this case. We first show that

it is the true infimum obtained in Case 4. Fix arbitrary ε > 0. We will look for a Three-Line

solution Xε = xdIAε + xεIBε + αεIDε with the right parameters aε, bε, xε, αε which satisfies

the general constraints:

E[Xε] = xdP (Aε) + xεP (Bε) + αεP (Dε) = z, (3.15)

Ẽ[Xε] = xdP̃ (Aε) + xεP̃ (Bε) + αεP̃ (Dε) = xr, (3.16)

where

Aε =
{

ω ∈ Ω : dP̃
dP (ω) > aε

}
, Bε =

{
ω ∈ Ω : bε ≤ dP̃

dP (ω) ≤ aε

}
,

Dε =
{

ω ∈ Ω : dP̃
dP (ω) < bε

}
,

and produces a CVaR level close to the lower bound:

CV aR(Xε) ≤ CV aR(X∗) + ε.

First, we choose aε = a∗, Aε = A∗, xε = x∗ − δ, where we define δ = λ
λ−P (A∗)ε. To find

the remaining two parameters bε and αε so that equations (3.15) and (3.16) are satisfies, we
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note

E[X∗] = xdP (A∗) + x∗P (B∗) = z∗,

Ẽ[X∗] = xdP̃ (A∗) + x∗P̃ (B∗) = xr,

and conclude that it is equivalent to find a pair of bε and αε such that the following two

equalities are satisfied:

−δ(P (B∗)− P (Dε)) + (αε − x∗)P (Dε) = γ,

−δ(P̃ (B∗)− P̃ (Dε)) + (αε − x∗)P̃ (Dε) = 0,

where we denote γ = z − z∗. If we can find a solution bε to the equation

P̃ (Dε)
P (Dε)

=
P̃ (B∗)

γ
δ + P (B∗)

, (3.17)

then

αε = x∗ +

(
P̃ (B∗)
P̃ (Dε)

− 1

)
δ,

and we have the solutions for equations (3.15) and (3.16). It is not difficult to prove that the

fraction P̃ (D)
P (D) increases continuously from 0 to P̃ (B∗)

P (B∗) as b increases from 0 to a∗. Therefore,

we can find a solution bε ∈ (0, a∗) where (3.17) is satisfied. By definition (1.2),

CV aRλ(Xε) =
1
λ

inf
x∈R

(
E[(x−Xε)+]− λx

)
≤ 1

λ

(
E[(xε −Xε)+]− λxε

)
=

1
λ

(xε − xd)P (Aε)− xε.

The difference

CV aRλ(Xε)− CV aR(X∗) ≤ 1
λ

(xε − xd)P (Aε)− xε −
1
λ

(x∗ − xd)P (A∗) + x∗

=
1
λ

(x∗ − xd)(P (Aε)− P (A∗)) +
(

1− P (Aε)
λ

)
(x∗ − xε) = ε.
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Under Assumptions 1.1, 1.2, the solution in Case 4 is almost surely unique, the result is

proved. Q.E.D.

3.4 Application to Black-Scholes Model

The dynamics of the stock price and the self-financing portfolio in the Black-Scholes

model are as follows:

dSt = St(µdt + σdWt),

dXt = ξtdSt + (Xt − ξtSt)rdt.

Our main goal is once again first to find

inf
ξt

CV aRλ(XT ) s.t. Ẽ[XT ] = xr, E[XT ] ≥ z, xd ≤ XT ≤ xu a.s., (3.18)

and then to find the corresponding dynamic hedging ξt.

Proposition 3.14. The calculations of ‘bar-system’, ‘star-system’ are as in Theorem 3.11,

and the calculation of ‘double-star-system’ is calculated as in Proposition 3.10. Namely:

bar-system

P̃ (Ā) =
xu − xr

xu − xd
,

ā = e
θ
√

T
h

θ
√

T
2
−N−1(P̃ (Ā))

i
,

P (Ā) = N(− θ
√

T
2 − ln ā

θ
√

T
).

star-system
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a∗ =
{

a : a =
1−N( θ

√
T

2
− ln a

θ
√

T
)

λ−N(− θ
√

T
2
− ln a

θ
√

T
)

}
,

P (A∗) = N(− θ
√

T
2 − ln a∗

θ
√

T
),

P̃ (A∗) = N( θ
√

T
2 − ln a∗

θ
√

T
),

x∗ =
xr − xdP̃ (A∗)

1− P̃ (A∗)
.

double-star-system

The system (a∗∗, b∗∗, x∗∗) (and consequently, A∗∗, B∗∗, D∗∗,) is the solution to the following

equations:

xdP (A) + xP (B) + xuP (D) = z, (return constraint)

xdP̃ (A) + xP̃ (B) + xuP̃ (D) = xr, (capital constraint)

P (A) +
P̃ (B)− bP (B)

a− b
− λ = 0. (first order Euler condition)

z̄ and z∗ are defined in Definition 3.4 and 3.6:

z̄ = xdP (Ā) + xu(1− P (Ā)),

z∗ =

 xdP (Ā) + xu(1− P (Ā)) : if xu < ∞ and 1
ā ≤

λ−P (Ā)

1−P̃ (Ā)

xdP (A∗) + x∗(1− P (A∗)) : otherwise.

We can compute the solution to problem (3.18) and the corresponding dynamic hedging ξt

in the Black-Scholes model as below:

1. Suppose z ∈ [xr, z
∗].

• If xu < ∞ and 1
ā ≤

λ−P (Ā)

1−P̃ (Ā)
, then the minimal risk, the optimal portfolio and the
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hedging strategy are

CV aRλ(X∗∗
T ) = −xr + 1

λ(xu − xd)(P (Ā)− λP̃ (Ā)),

X∗∗
t = e−r(T−t) [xuN (d+(ā, St, t)) + xdN (d−(ā, St, t))] ,

ξ∗∗t =
xu − xd

σSt

√
2π(T − t)

e−r(T−t)−
d2
−(ā,St,t)

2 .

• Otherwise, the minimal risk, the optimal portfolio and the hedging strategy are

CV aRλ(X∗∗
T ) = −xr + 1

λ(x∗ − xd)(P (A∗)− λP̃ (A∗)),

X∗∗
t = e−r(T−t) [x∗N (d+(a∗, St, t)) + xdN (d−(a∗, St, t))] ,

ξ∗∗t =
x∗ − xd

σSt

√
2π(T − t)

e−r(T−t)−
d2
−(a∗,St,t)

2 .

2. Suppose z ∈ (z∗, z̄].

• If xu < ∞, then the minimal risk, optimal portfolio and the hedging strategy are

CV aR(X∗∗
T ) = −xr +

1
λ

((x∗∗ − xd)P (A∗∗)− λx∗∗) ,

X∗∗
t = e−r(T−t)[x∗∗N(d+(a∗∗, St, t)) + xdN(d−(a∗∗, St, t))]

+ e−r(T−t)[x∗∗N(d−(b∗∗, St, t)) + xuN(d+(b∗∗, St, t))]

− er(T−t)x∗∗,

ξ∗∗t =
x∗∗ − xd

σSt

√
2π(T − t)

e−r(T−t)−
d2
−(a∗∗,St,t)

2

+
x∗∗ − xu

σSt

√
2π(T − t)

e−r(T−t)−
d2
+(b∗∗,St,t)

2 .

• If xu = ∞, then the optimal portfolio or the hedging strategy does not exist, but

the minimal risk is

CV aR(X∗∗) = −xr + 1
λ(x∗ − xd)(P (A∗)− λP̃ (A∗)).

Remark. Recall Definition 3.4, the bar-system (ā, b̄, x̄) (and consequently, Ā, B̄, D̄), where
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ā = b̄ (and consequently P (B̄) = P̃ (B̄) = 0), is the solution to the following equation:

xdP̃ (A) + xuP̃ (D) = xr. (capital constraint)

The star-system (a∗, b∗, x∗) (and consequently, A∗, B∗, D∗), where b∗ = 0 (and conse-

quently P (D̄) = P̃ (D̄) = 0), is the solution to the following equations:

xdP̃ (A) + xP̃ (D) = xr, (capital constraint)

P (A) +
P̃ (D)

a
− λ = 0. (first order Euler condition)

Proof. The Radon Nikodým derivative process for geometric Brownian motion model is

Zt := dP̃
dP |t = e−θWt− θ2

2
t, where θ = µ−r

σ . Obviously, P
(

dP̃
dP (ω)

∣∣
T

> 1
λ

)
> 0 since ess supZT =

∞. According to Theorem 3.11 and Theorem 3.13, if z ∈ [xr, z∗], then the optimal solution

is the same as that for the one-constraint problem described in Proposition 2.7, otherwise

we need to see if xu < ∞. When xu is unbounded, there is no optimal final portfolio X∗∗
T or

optimal strategy ξ∗∗t , but the minimal CVaR is given. When xu is bounded from above, the

optimal is achieved by double-star-system (a∗∗, b∗∗, x∗∗) (and consequently, A∗∗, B∗∗, D∗∗,),

which can be found numerically. A direct application of Theorem 3.11 gives the optimal

final portfolio X∗∗
T and the minimal CVaR. The corresponding optimal hedging ξ∗∗t is the

usual ‘Delta-hedge’ in the Black-Scholes model where the derivative payoff is X∗∗
T , so we first

calculate the Risk Neutral price process Xt = v(St, t), and then differentiate with respect

to the stock price St.

Xt = er(T−t)Ẽ[X∗∗
T |Ft] = e−r(T−t)

[
xdP̃t(A∗∗) + x∗∗P̃t(B∗∗) + xuP̃t(D∗∗)

]

where P̃t(•) is the conditional probability under the Risk Neutral measure. Since

A∗∗ = {ZT > a∗∗} =
{

Zte
−θ(WT−Wt)− θ2

2
(T−t) > a∗∗

}
=
{

W̃T−W̃t√
T−t

< −
ln a∗∗

Zt

θ
√

T−t
+ θ

2

√
T − t

}
,

we have then

P̃t(A∗∗) = N(−
ln a∗∗

Zt

θ
√

T−t
+ θ

2

√
T − t). (3.19)
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Similarly, we have

P̃t(D∗∗) = 1−N(−
ln b∗∗

Zt

θ
√

T−t
+ θ

2

√
T − t). (3.20)

Note that Zt can be represented by the stock price St:

St = S0e
σWt+(µ− 1

2
σ2)t ⇒ Wt =

ln
St
S0
−(µ− 1

2
σ2)t

σ ,

Zt = e−θWt− 1
2
θ2t ⇒ Zt = g(St, t), where g(s, t) = e

θ
σ

[µ+r−σ2

2
t−ln s

S0
]
.

Substitute g(St, t) into (3.19) and (3.20) we have

P̃t(A∗∗) = N (d−(a∗∗, St, t)) ,

P̃t(D∗∗) = 1−N (d−(b∗∗, St, t)) = N (d+(b∗∗, St, t)) .

where

d−(a, s, t) = 1
θ
√

T−t
[− ln a + θ

σ (µ+r−σ2

2 t− ln s
S0

) + θ2

2 (T − t)],

d+(a, s, t) = 1
θ
√

T−t
[ln a + θ

σ (µ+r−σ2

2 t− ln s
S0

) + θ2

2 (T − t)],

Hence

Xt = v(St, t),

where

v(s, t) = e−r(T−t)xdN (d−(a∗∗, s, t)) + e−r(T−t)x∗∗[1−N (d−(a∗∗, s, t))−N (d+(b∗∗, s, t))]

+ e−r(T−t)xuN (d+(b∗∗, s, t)) .
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Rewrite

v(s, t) = e−r(T−t) [x∗∗N (d+(a∗∗, s, t)) + xdN (d−(a∗∗, s, t))]

+ e−r(T−t) [x∗∗N (d−(b∗∗, s, t)) + xuN (d+(b∗∗, s, t))]− e−r(T−t)x∗∗

= e−r(T−t) [x∗∗ + (xd − x∗∗)N (d−(a∗∗, s, t))]

+ e−r(T−t) [x∗∗ + (xu − x∗∗)N (d+(b∗∗, s, t))]− e−r(T−t)x∗∗,

we find the partial derivative

vs(s, t) =
x∗∗ − xd

σs
√

2π(T − t)
e−r(T−t)−

d2
−(a∗∗,s,t)

2 +
x∗∗ − xu

σs
√

2π(T − t)
e−r(T−t)−

d2
+(b∗∗,s,t)

2 .

Given the stock price St at time t, the optimal strategy ξ∗∗t is:

ξ∗∗t = vs(St, t).

Q.E.D.

Algorithm 3.15. CVaR Minimization for Black-Scholes Model

1. Find ‘bar-system’, ‘star-system’, z̄ and z∗.

2. If z ∈ [xr, z∗], then go to Step (3). Otherwise, go to Step (4).

3. If xu < ∞ and 1
ā ≤

λ−P (Ā)

1−P̃ (Ā)
, then

inf
ξt

CV aRλ(XT ) = −xr + 1
λ(xu − xd)(P (Ā)− λP̃ (Ā)),

X∗
t = e−r(T−t) [xuN (d+(ā, St, t)) + xdN (d−(ā, St, t))] ,

ξ∗t =
xu − xd

σSt

√
2π(T − t)

e−r(T−t)−
d2
−(ā,St,t)

2 .
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Otherwise

inf
ξt

CV aRλ(XT ) = −xr + 1
λ(x∗ − xd)(P (A∗)− λP̃ (A∗)),

X∗
t = e−r(T−t) [x∗N (d+(a∗, St, t)) + xdN (d−(a∗, St, t))] ,

ξ∗t =
x∗ − xd

σSt

√
2π(T − t)

e−r(T−t)−
d2
−(a∗,St,t)

2 .

Stop.

4. If xu < ∞, then find ‘double-star-system’, and

CV aR(X∗∗
T ) = −xr +

1
λ

((x∗∗ − xd)P (A∗∗)− λx∗∗) ,

X∗∗
t = e−r(T−t)[x∗∗N(d+(a∗∗, St, t)) + xdN(d−(a∗∗, St, t))]

+ e−r(T−t)[x∗∗N(d−(b∗∗, St, t)) + xuN(d+(b∗∗, St, t))]

− er(T−t)x∗∗,

ξ∗∗t =
x∗∗ − xd

σSt

√
2π(T − t)

e−r(T−t)−
d2
−(a∗∗,St,t)

2

+
x∗∗ − xu

σSt

√
2π(T − t)

e−r(T−t)−
d2
+(b∗∗,St,t)

2 .

Otherwise, the optimal portfolio or the hedging strategy does not exist, and

CV aR(X∗∗) = −xr + 1
λ(x∗ − xd)(P (A∗)− λP̃ (A∗)).

Stop.

3.5 Comparison: Minimal CVaR with & without Expected Return Constraint

Let us take Example 2 in Chapter 2, where the optimal of the one-constraint problem

is achieved by ‘star-system’. Recall that the parameters are λ = 5%, T = 2, r = 5%, S0 =

10, X0 = 10, xd = 5, µ = 0.2, σ = 0.1. The levels of z is selected so that z ∈ [xr, z∗] since it

is of the most interest to see cases where optimal of the two-constraint problem is achieved

by ‘double-star-system’.
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One-Constraint Optimization Two-Constraint Optimization
xu 30 50 xu 30 30 50

z 18 25 25
z̄ 28.0609 28.0609 43.0320
z∗ 15.3352 15.3352 15.3352

x∗ 15.4407 15.4407 x∗∗ 15.4859 15.0151 15.3753
a∗ 14.5304 14.5304 a∗∗ 14.2057 11.2895 13.9225

b∗∗ 0.0152 0.2769 0.0308
CV aR(X∗

T ) -13.3297 -13.3297 CV aR(X∗∗
T ) -13.2585 -12.2534 -13.1624

Table 3.1: Black-Scholes Model Example with & without Expected Return Constraint

Whether the upper bound xu being 30 or 50 does not have any impact on the ‘star-

system’ (x∗, a∗), and ẑ calculated from this system is not impacted either. However, as the

upper bound xu increases, z̄ increases, thus we can require a higher expected return z.

Compare the results of the three cases where xu = 30 in the table, we see that the

higher the required return, the harder it is to obtain a low CVaR. This is also true for

the two cases where xu = 50. Now let us compare the two columns to the right: the two

cases have the same required return 25. When the upper bound xu is higher (=50), the

attainable return z̄ is higher (=43.0320), the required return z = 25 is relatively easier to

achieve, thus has less an impact in minimizing CVaR. (CVaR only decreases a little from

-13.3297 to -13.1624.) An intuition we can get from this comparison is that when we let the

upper bound be extremely large (xu ↑ ∞), the attainable return z̄ will also be so large that

any required return z will seem to be effortless to obtain, thus the value of minimal CVaR

is almost not impacted.

Also have a look at the threshold b∗∗: when this number is small, the optimal of the

two-constraint problem is very close to the optimal of the one-constraint problem. In the

extreme that b∗∗ = 0, the two problems coincide. With the same upper bound, the higher

the required return, the more adjustment needs to be made on top of X∗
T , thus the larger

the b value. With the same required return, the higher the upper bound, the less the effort

in adjusting X∗
T , thus the less the b value. In the extreme when xu ↑ ∞, b∗∗ ↓ 0, thus

CV aR(X∗∗
T ) ↓ CV aR(X∗

T ).



CHAPTER 4: CONCLUSION AND DISCUSSION

We have so far found exact solutions for CVaR minimization in complete market models.

Without the expected return constraint, we get results with both Continuous and Discrete

distribution of Radon-Nikodým derivative, cite Binomial model and Black-Scholes model as

examples, and describe procedures of finding the optimals with exact formulae. With the

additional constraint on expected return, we require the Radon-Nikodým derivative to have

continuous distribution as in Assumption 1.2, and a theoretical solution is found. When this

assumption is weakened, the results should still hold, albeit in a more complicated form.

It will also be very interesting to extend this result for CVaR minimization to minimizing

Law-Invariant Risk Measures in general.
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