
DESIGN AND FABRICATION OF OPTICAL FILTERS FOR LONG 

WAVELENGTH SPECTROSCOPY APPLICATION

 

by 

 

Ayman Mohamad Zohbi 

 

 

 

 

A dissertation submitted to the faculty of 

 The University of North Carolina at Charlotte  

In partial fulfillment of the requirements  

for the degree of Doctor of Philosophy in  

Electrical Engineering 

 

Charlotte 

 

2012 

 

 

 

 

                                                                                               Approved by: 

 

 

 

 

                                                                                               Dr. Mohamad-Ali Hasan 

                                                                                               Dr. Farid Tranjan  

                                                                                               Dr. Stephen Bobbio 

                                                                                               Dr. Yildirim Aktas 



ii 

 

 

 

 

 

 

 

 

 

© 2012 

Ayman Mohamad Zohbi 

ALL RIGHTS RESERVED 

 



iii 

 

ABSTRACT

AYMAN MOHAMAD ZOHBI. Design and fabrication of thin-film optical 

filters for long wavelengths spectroscopy application. (Under the direction of Dr. 

MOHAMAD-ALI HASAN). 

 

 The design and fabrication of thin film Fabry-Perot interferometer  (FPI) for 

long wavelength spectroscopy application is demonstrated. The system is designed to 

be integrated in a small portable spectrometer for the measurement of molecular 

absorption or emission as well as substance that has an infrared signature.  

A Fabry-Perot interferometer with dielectric mirrors was fabricated using fabrication 

process on a silicon substrate. The FPI was made of multi thin layers, deposited on 

silicon (Si) substrate, alternating between high and low refractive-index (n) layers. Si 

was used as a substrate due to the high precision of etching achievable using 

conventional VLSI fabrication techniques. Since the wavelength of interest was in the 

far infrared (5 to 15 micrometers), the layers were selected carefully to minimize the 

thickness required to meet the quarter-wave optical-thickness criteria for the 

interferometer. Another criterion that had to be met is the ratio of the refractive 

indices (n) between the layers.  In this study, we have utilized germanium (Ge), 

which has n value of ~ 4 in the wavelength range of interest, and zinc oxide (ZnO), 

which has n value average of ~1.8 in the range of interest. Deposition of the layers 

was carried out using electron beam deposition for Ge and sputtering for ZnO. First 

the Si substrate was etched precisely to provide the gap needed for the wavelengths 

on interest and then the dielectric layers were deposited. For example, using Ge 

thickness of 0.576 µm, ZnO thickness of 1.22 µm, and a gap of 4.77 µm, we have 

demonstrated a filter transmitting a wavelength of 9.2 micrometers with a full width 
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at half maximum of ~ 0.5 microns using one stack of Ge/ZnO layers. Simulations, 

using Freesnell software, were consistent with the experimental results.       

The tuning of the FPI with different cavity distances was demonstrated by 

measuring the transmission spectrum of the FPI. The transmission measurement was 

carried out using Fourier Transform Infrared Spectroscopy (FTIR) while the thickness 

of the layers was confirmed by scanning electron microscopy (SEM). 
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CHAPTER I: INTRODUCTION 

 

 

Optical thin film filters are essential components in blocking or transmitting 

specific wavelengths and they are used in a wide variety of applications and industries. 

For instance they are used in telecommunication networks, in astronomy, in gravitational 

wave detection, in gas detection, in medicine spectroscopy, etc. 

Infrared spectroscopy has long been used in the medical field for non-invasive 

measurement in many areas ranging from the amount of oxygen in the blood to optical 

tomography [13, 14].  

One very promising usage of spectroscopy is the measuring of blood glucose level for 

diabetic patients. 

Glucose is a monosaccharide sugar and it belongs to the carbohydrates family. 

The glucose molecule contains 6 Carbon atoms, 12 Hydrogen atoms, and 6 Oxygen 

atoms C6H12O6.  It is the main source of energy for the human body; however when the 

body cannot maintain the glucose level within 65-100 mg/mL, diabetes is developed [15]. 
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Figure 1.1: Glucose molecule structure [16]. 

The body regulates the glucose level by the means of insulin. Insulin is a hormone 

produced in the Islets of Langerhans in the beta cells of the pancreas; it interacts with the 

insulin receptor in the cells to open the glucose channels and consequently allows the 

glucose to transfer from the blood stream into cells and tissues [17,18].  

 

 
 

Figure 1.2: The process of glucose transfer to cells [17]. 

 



3 

 

Diabetes is one of the major health issues in the world because of its total number 

of patients, cost, and mortality. According to the International Diabetes Federation (IDF) 

diabetes has an estimated 366 million patients worldwide and an estimated healthcare 

cost reaching $465 billion per year and it is blamed for 4.6 million deaths in 2011 [9]. 

 In the United Sates alone, according to the Centers for Disease Control and Prevention 

(CDC), about 25.8 million patients , or 8.3 % of U.S population, suffered from diabetes 

in 2011, the healthcare cost reaches $174 billion annually and the projected number of 

patients will increase to 1 in 3 Americans by 2050 [8].  

The Centers for Disease Control and Prevention (CDC) estimates that only 18.8 million 

patients are diagnosed and the remaining 7 million patients or 27% of diabetics do not 

know they have the disease [3].  

There are two main types of diabetes, type 1 which is characterized by the 

pancreas‟ failure to produce insulin in the body, and type 2, less serious, which is 

characterized by the pancreas‟ failure to produce enough insulin in the body [1, 2]. 

The severity of diabetes is not in the disease itself only but in the chronic complications 

that are associated with it, such as heart disease and stroke, high blood pressure, 

blindness, amputations, nervous system disease etc. 

Therefore a reliable technology that enables people to monitor and control diabetes has 

become an urgent necessity.  

The effort to develop a continuous glucose monitoring system goes back to the 

year 1965 when Kadish and Hall who designed a system to continuously monitor the 

glucose level by measuring the amount of dissolved oxygen in the blood [4]. 



4 

 

Over the years and due to the growing need for a continuous glucose monitoring system 

many measurement methods have been developed to meet this objective and they are 

presented below [5, 6, 10, 11]: 

1.1 Glucose Sensing Methods 

1.1.1 Minimum-invasive sensors  

1.1.1.1 Needle/flexible wire amperometric enzyme electrode  

 

This method is based on the glucose oxidase enzyme. The enzyme is fixated on a 

charged electrode at the tip of the needle or the flexible wire. When the glucose oxidizes 

upon reacting with the enzyme, it releases an electrical current proportional to the glucose 

concentration. The chemical reaction happens according to equations 1.1 and 1.2 below: 

Glucose + O2   oxidase glucose H2O2 + gluconic acid   (eq. 1.1) 

 

H2O2   700mV O2 + 2e
−                                                                    

(eq. 1.2)
 

 

The glucose reacts with the glucose oxidase to produce hydrogen peroxide 

(H2O2), which then in the presence of 700 mv potential oxidizes at the electrode and 

generate electrons. The signal is then correlated to the glucose level. 

Medtronic is the only company that uses this technology for continuous monitoring of 

glucose where a needle is inserted in the subcutaneous tissue.  

Even though the sensor offers a continuous reading of glucose level, it however 

requires calibration and it suffers from a drift as compared to the actual sugar level in the 

blood and therefore it cannot be used in a closed-loop pancreas like system [10].  
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Figure 1.3: Amperometric based sensor. Hydrogen peroxide produced by glucose 

oxidation is detected electrochemically [10]. 

 

1.1.1.2 Near-infrared fluorescence 

 

In this method a fluorophore protein binds with the glucose. After binding to the 

glucose, the protein fluorescent characteristics change. This change is then detected by an 

external sensor. 
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Figure 1.4: Glucose sensing with fluorophore (F) protein binding. Glucose binding 

changes the protein‟s fluorescent characteristics (increase or decrease, depending on the 

fluorophore) [10] . 

 

1.1.1.3 Fluorescence-resonant-energy-transfer (FRET)  

 

This sensor is based on the competitive binding of dextran, acceptor (A), to 

Concanavalin A, donor (D). A hollow dialysis fiber containing immobilized  

Concanavalin A to its inner wall is introduced to the tissue, the glucose molecules 

entering the tube disjoint the dextran from the bond and increase the distance between the 

acceptor and the donor, causing FRET to decrease and both fluorescence intensity and 

lifetime to increase. Then a sensor detects the fluorescence intensity and calculates the 

glucose level. 
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Figure 1.5: Glucose sensing with fluorescence resonance energy transfer (FRET).FRET 

occurs between Concanavalin A (Con A) and dextran. Displacement of dextran by 

glucose reduces FRET and increases fluorescence intensity and lifetime [10].  

 

 

1.1.2 Micro-dialysis  

 

1.1.2.1 Reverse iontophoresis 

 

 In this method a small current passed through the skin cause ions and glucose-

containing interstitial fluid to move towards the skin surface where a glucose-oxidase 

based sensor measures the glucose level. 
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Figure 1.6: Transdermal glucose sensing where a current passing through the skin causes 

glucose-containing fluid to move to the surface of the skin where it is measured by 

amperometric sensor [11]. 

 

1.1.3 Non-invasive sensor 

1.1.3.1 Mid-infrared spectroscopy 

 In this method a light is shined on the tissue, and the intensity of the light passing 

thru or reflected from the tissue is measured. 

By adjusting the glucose spectra to a defined concentration of glucose, the glucose level 

can be obtained. 

The infrared wavelengths of interest that have been reported in the literature as 

potential wavelengths for non-invasive measurement of glucose are in the range of 8 m 

to 10 m [7,85].  

 



9 

 

Although there are many research groups and companies working towards 

developing a non-invasive continuous glucose sensor, there is still no such a device in the 

current market. 

In this dissertation, we propose in vitro and in vivo device to monitor glucose 

level using infrared absorption-signature of glucose.  

 

 

Figure 1.7: Conceptual drawing of the proposed infrared sensor. An infrared red source 

generating the incident light, after passing through the glucose molecules; the transmitted 

light is then filtered and measured. The light intensity will then be correlated to glucose 

concentration. 

 

Figure 1.8 shows typical absorption spectra of glucose taken at various glucose 

concentration levels [7] while Figure 1.9 plots the changes in the components of peak 5 

(in Fig. 1.8) with increasing glucose concentrations.  
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Figure 1.8: Transmission spectra of aqueous glucose solutions [7].

  
 

 

 

 
Figure 1.9: Change of selected Peak5 as function of glucose concentration [7]. 
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While the absorption spectra are known, there are no simple, miniature detectors 

for this wavelength range. The proposed device is a miniature spectrometer that operates 

on the wavelengths of interest for measuring the glucose level. 

A Typical IR Spectrometer consists of 3 main building blocks, an Infrared source, an 

interferometer or optical filter, and a detector. 

 

 
Figure 1.10: IR Spectrometer Block Diagram. 

 

 

In the following chapters I will cover the existing and under development non-

invasive glucose monitoring devices in the market, the different IR technology for 

sources and detectors and the design of an optical filter for the IR wavelengths.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER II: EXISTING/UNDERDEVELOPMENT NON-INVASIVE GLUCOSE 

MONITORING DEVICES 

 

 

2.1 Introduction 

 

This chapter will shed the light on the current or under development non-invasive 

glucose monitoring devices, the technology they are using and the companies that are 

developing them.  

There are two main technologies being largely investigated for the development 

of non-invasive glucose monitoring devices for the purpose of reducing the pain and 

discomfort associated with pricking the finger and testing blood.  

1- Using the molecular properties of glucose such as infrared signature, optical rotation, 

Raman shifts, and photoacoustic absorption. 

2- Looking at a correlation between the glucose level and its effect on the physical 

properties of blood and tissue, given that glucose is an important constituent of blood that 

influences the physicochemical parameters of the tissue. 

There are many start-up companies working in developing new technologies and 

devices for noninvasive blood glucose monitoring. Some of the main companies that are 

involved in this field and their corresponding technologies are discussed below.

 
 

 

 

 



13 

 

2.2 Eyesense 

 

Eyesense is a startup company founded in 2006 as a spin-off from Novartis. The 

concept of Eyesense‟s glucose monitoring technology is based on the measurement of 

fluorescence of glucose in the interstitial fluid below the conjunctiva of the eye.  

A mini chemical sensor is surgically inserted under the conjunctiva of the eye in a 

very short procedure. This sensor must be replaced annually by an ophthalmologist.  

The chemical sensor reacts with the blood glucose and sends a fluorescent light.  

The fluorescent signal is then measured by an external small hand-held device, 

which correlates the glucose concentration to the light intensity and displays it on the 

screen. The device takes less than 20 seconds to finish the reading and the measurement 

can be taken as often as needed by the patient [86-87]. 

Eyesense is conducting large clinical trials to prove safety and effectiveness and 

plans to launch the product in 2013 [87].  

2.3 Freedom Meditech 

 

Freedom-Meditech is a US based start-up Company founded in December 2006. 

Freedom- Meditech has two non-invasive, ophthalmic medical devices currently under 

development. ClearPath DS-120 for the detection of chronic disease and the I-SugarX for 

diabetes management [86,88]. 

The I-SugarX glucose monitor detects glucose concentrations in the eye by 

shining a beam of light into the eye which is then measured, correlated to the glucose 

level, and then displayed on a handheld device [86,88].  

The ClearPath DS-120 is intended as a non-invasive, in-office diabetes screening 

device for professionals. It works by scanning the eye with a low power blue light and the 
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result is displayed at the point of care in less than 10 seconds. Its main objective is to 

identify patients who may be pre-diabetics or undiagnosed diabetics [86,88].  

2.4 Calisto Medical 

 

Calisto Medical is a US company that has been in operation since 2004 with the 

objective of becoming the leader in manufacturing and marketing non-invasive glucose 

monitoring devices. The company‟s main product is the Glucoband [86,89].  

The Glucoband is a watch-like device that is worn on the wrist and uses Bio-

Electromagnetic Resonance (BEMR) to continuously monitor glucose concentration. The 

BEMR concept is based on the fact that the electromagnetic molecular self-oscillation of 

glucose varies with the glucose concentrations, this phenomenon is referred to as glucose 

signatures. The Glucoband has a large database of glucose reference signatures covering 

the range of blood glucose concentration from 40mg/dl to 400mg/dl [86,89].  

These reference signatures are matched against the self-oscillation waves in the 

human body to estimate the glucose levels. The device initial measurement can take few 

minutes, however in the monitoring mode; measurement can be continuous or 

intermittent with the frequency set by the user. 

2.5 Diramed Technology 

 

Diramed is a startup company whose technology is based on the concept of 

Raman Spectroscopy, which measures the intensity of the shifted scattered light. It 

utilizes a laser beam targeted at the patient‟s skin, upon impinging on the skin the light 

scatters. The scattered light is then captured by a detector, which measures the changes in 

the light frequency caused by the interaction between light and various constituents in the 

body. 
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Diramed device is initially intended to be used in hospitals and later on a smaller portable 

unit will be developed for home use [86,90]. 

2.6 Integrity Applications 

 

Integrity Applications is an Israeli company founded in 2001. The company‟s 

glucose monitoring device is called GlucoTrack. The device is designed to 

simultaneously yet independently measure the glucose concentration using three 

techniques, ultrasonic, electromagnetic, and thermal. Physically, the device consists of 

the main unit and an ear clip. The main unit contains the device electronics and signal 

processor and the ear clip comprises the three types of sensors needed for measurement 

[86,91]. 

The ear clip clips to the ear lobe and the three sensors collect the measurements 

simultaneously, the data is then send to the processor where it is analyzed correlated to 

the glucose concentration and then displayed on the LCD.  
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Figure 2.1: GlucoTrak glucose monitoring device [91]. 

 

 

2.7 Glucon 

 

Glucon is an Israeli startup company founded in 2000. The company‟s main 

product is called Aprise and it uses photoacoustic technology to measure glucose 

concentration. The device uses a laser beam to generate acoustic signals in the 

vasculature. These acoustic signals are generated due to the absorption of light of a 

specific wavelength, which is influenced by glucose concentration. The optical properties 

of the tissue are then captured in an ultrasonic image, which resolves the blood vessel 

from the tissue layers around it. This gives an accurate picture of the glucose 

concentration in the blood [86].  
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Glucon is also working on a hospital based CGM device called Optimus. This 

device is intended to be attached to the existing vascular line attached to the patient. The 

device automatically draws blood at a fixed frequency by interrupting the intra-venous 

fluid line. The blood is then analyzed for glucose by the regular glucose oxidase lab 

method [86]. 

2.8 GlucoLight 

 

GlucoLight was founded in 2003 and now it is out of business. The company 

developed a product called Sentris-100. The device utilizes an optical coherence 

tomography. The device consisted of a source for low coherence light, an interferometer 

with a reference arm and a sample arm, a moving mirror in the reference arm, and a 

photodetector to measure the transmitted signal. The amount of light scattered by the 

tissue depends on the refractive index of the interstitial fluid, which is proportional to the 

glucose concentration, and the refractive index of scattering centers such as constituents 

in the blood.  

This scattered light by the tissue is combined with the light returned from the 

reference arm of the interferometer and the resulting signal is detected by a photodetector 

[86,94]. 
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Figure 2.2: GlucoTrak glucose monitoring device [94]. 

 

 

2.9 Glumetrics 

 

Glumetrics is a US based company whose main product is called GluCath. The 

Glucath is an intravenous continuous glucose monitor.  

The device utilizes a proprietary fluorescent chemistry fixated at the tip of a 

miniature fiber optics. The fiber is inserted in a vein and the fluorescence is detected by 

blue light [86,92].  

The product is intended to be used in the ICU environment for glycemic control. 
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Figure 2.3: Glucath conceptual schematic [92]. 

 

 

2.10 VeraLight 

 

VeraLight is a privately held company established in 2004. The company‟s main 

product is the Scout DS which is a non-invasive diabetes screening system for the 

screening of Type-2 and prediabetes conditions. The device utilizes fluorescence 

spectroscopy for the measurement of advanced glycation end products (AGEs) in the skin 

of the forearm. Over the past decades, research has proven a correlation between the Skin 

AGEs and elevated glucose level and that is the basis of this device.  

VeraLight has developed a proprietary algorithm that takes into account the 

variations in skin color, skin depth variations, and skin thickness to accurately measure 

the glucose concentration and deliver a meaningful result [86,93]. 
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Figure 2.4: Scout DS glucose screening device [93]. 

 

 

 

 

 



 

CHAPTER III: SPECTROSCOPY 

 

 

3.1 Introduction 

 

The word spectroscopy refers to the investigative techniques based on the 

interaction of electromagnetic waves and matter. Spectroscopy covers the entire spectrum 

ranging from X-rays to radio frequency. Each region is characterized by its energy 

transfer. The energy transfers of each region are presented in the table below. 

Table 3.1: Energy transfer corresponding to different spectrum region [99]. 

 

 

 

 

 

 

The science of spectroscopy was originally started with Isaac Newton back in 

1666 when he discovered that the white light coming from the sun can be broken down 

into continuous series of color lights. He called this phenomenon “Spectrum” this was the 

first time this term was used ever, after that more discoveries by many scientists 

contributed to this science [100]. 

 

Region of Spectrum  Energy Transfer 

X-rays  Bond Breaking 

Ultraviolet/Visible  Electronic transition 

Infrared  Molecular Vibration 

Microwave  Molecular Rotation 

Radiofrequencies  

Nuclear Magnetic Resonance (Nuclear 

Spin) 

Electron Spin Resonance (Electron Spin) 
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For his experiment, Newton built an instrument that consisted of a small aperture 

to only pass one beam of light, a lens to collimate it, a prism to separate it, and a screen to 

display the spectrum.

After Newton and in the 1800, W Herschel demonstrated that the light radiating from the 

sun extended into the infrared region, and in 1801 J.W. Ritter demonstrated the existence 

of the ultraviolet light in the sun‟s spectrum [100].  

In 1814 Joseph Fraunhofer noticed fine dark lines crossing the sun‟s spectrum 

when it is largely dispersed, these line are called Fraunhofer lines. 

Even though Fraunhofer did not quite understand the origin of these lines, his discovery 

provided the quantitative foundation for spectroscopy.  

The implementation of spectroscopy as a scientific tool didn‟t begin until 1859 

when Kirchhoff established that each element and compound has its own unique 

spectrum, and that by analyzing the spectrum of an unknown element, its chemical 

composition can be determined. This was the beginning of using spectroscopy as a 

scientific technique for studying atomic and molecular structure, and established the 

discipline of spectrochemical analysis for analyzing the composition of materials.  

These techniques are the only tool used today to analyze terrestrial and 

astrophysical objects to determine their chemical elements [100].  

After the discovery made by Kirchhoff, scientists collected a database of atomic 

spectral data, assigned characteristic lines to each element and accurately measured their 

wavelengths.  

As the field of quantum mechanics developed, new light was shed on the science 

of spectroscopy and the structure of atom. In 1913 Bohr proposed that in an atom, the 
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electron, bound by Coulomb force to the nucleus, which positively charged, moves in 

distinct circular orbits and that these discrete states do not radiate.  

He proposed that light is only emitted when an electron at a higher state makes a 

transition to a lower state, and the energy lost by this transition is carried away by a 

photon whose energy is given by hv [100]. 

In the first half of the 20
th

 century few discoveries were made that expanded the 

science of spectroscopy and led to the establishment of molecular spectroscopy.  

Fist in 1918 R.W. Wood discovered the resonance radiation in vapors and then in 1928 

C.V. Raman discovered the process of inelastic light scattering in molecules and the 

physical effect [100].  

In 1924 Pauli proposed that the atomic nucleus have a small magnetic moment 

and in 1935 M. Schiiler and T. Schmidt proposed, after studying the hyperfine structure 

anomalies, the existence of a nuclear quadrupole moment [100]. 

Few spectrum analyzers were developed since 1868 to make spectroscopic 

measurements however the accuracy of the wavelengths measurement did not reach high 

accuracy until 1893 when Michelson built his analyzer.  

Michelson analyzer employed an interferometer which consisted of reflective surfaces 

that cause the light to reflect and then interfere and upon interfering it produces a fringe 

pattern [100].  

In 1905, Charles Fabry and Alfred Perot invented a new type of interferometer 

consisting of two parallel reflecting mirrors and by varying the distance between them 

different fringe patterns are produced, this interferometer carried their name and it is 

called Fabry-Perot interferometer.  
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Their results confirmed Michelson's conclusion that Row land's results weren‟t 

accurate, and as a result in 1907 the 6438 Å line from a cadmium lamp as the primary 

standard of length was established to replace the standard meter. The new standard was 

more accurate, and it had the advantage of being able to be duplicated anywhere around 

the world. And in 1960 a new standard was established based on the orange line of 
86

Kr 

at 6058 Å to replace the old one [100].  

With the invention of LASER, a new era of spectroscopy started. The LASER 

with its high intensity light, narrow spectral width, and phase coherence opened a new 

interest in high resolution atomic and molecular spectroscopy [100]. 

Now a day the science of spectroscopy is divided to four subcategories [95]: 

 Mass Spectroscopy 

 Visible and Ultraviolet Spectroscopy 

 NMR & ESR Spectroscopy 

 Infrared Spectroscopy 

3.2 Mass Spectroscopy 

 

Mass Spectroscopy is an analytical technique used to determine the mass of 

atoms, molecules, nanoparticle, cell etc. by measuring the mass to charge ratio of charged 

particles. Mass spectroscopy cannot measure mass directly that is why an ionization step 

is required to create charged particles and then measure their mass to charge ratio. 
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Figure 3.1: Mass Spectroscopy instrument diagram [101]. 

A Mass Spectroscopy instrument consists of three main components, an ion 

source, which converts gas phase molecules into ions, a mass analyzer or separator, 

which sorts the ions by their masses, and a detector, which measures the value and 

quantity of the charged particles and provides data for calculating the amount of each ion 

detected. 

Many techniques have been developed over the years for Mass Spectroscopy 

measurements, below is a list and a brief description of each technique developed for 

each component [95]. 
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3.2.1 Ionization technique 

3.2.1.1 Electron Ionization.  

Electron Ionization is the most common ionization technique used for mass 

spectroscopy. It works well for most molecules in the gas phase, but it does have its 

limitations. Because electron Ionization causes a great fragmentation it provides 

structural information of the molecule which helps to interpret its unknown spectra [95]. 

 

 

 

Figure 3.2: Electron Ionization [95]. 

 

 

As depicted in the figure above, the electrons used in the ionization are created by 

passing a high current in the filament to heat up after certain temperature the wire starts 

electrons and an electric field accelerates these electrons across the source and keeps a 

the beam of electrons flowing. As the molecule, in gas phase, passes through the high 

energy electrons beam, the molecule looses electron from its outer shell and becomes a 

positive ion [95].     
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If the electron energy is higher than the energy needed for ionization then, this 

results in molecule fragmentation where the number of fragments is determined by the 

ionization energy and the kinetics of the fragmentation pathways. Depending on the 

ionization energy different distribution of fragment ions can be observed [95].  

This distribution is then interpreted to determine the mass spectra of the compound. 

3.2.1.2 Chemical Ionization  

Chemical Ionization is also called soft ionization because unlike the electron 

ionization this technique generates ions with minimal excess energy. Thus this technique 

produces more molecular ion and less fragmentation which makes it ideal for molecular 

mass determination [95].  

In the chemical ionization a reagent gas is used and ionized in the source with an 

electron beam upon ionization the reagent gas creates a cloud of ions. These ions react 

with each other and produce adduct ions which are great proton donors. 

When a molecule enters the source the adduct ions donate a proton to the molecule which 

becomes a positive ion [95]. 

3.2.1.3 Fast Atom Bombardment. 

Fast Atom Bombardment employs high energy atoms to sputter and ionize the 

molecule in a one step. In this ionization technique, a beam of high energy rare gas is 

focused on sample, and upon impinging on the surface of the sample the high energy 

causes the molecules to sputter into the gas phase and ionize in one step. The exact 

mechanism of this process is not well understood, but since this technique doesn‟t require 

any heating, it is well suited to study thermally sensitive compound that would otherwise 

decompose [95]. 
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Figure 3.3: Fast Atom Bombardment Source [95]. 

 

 

3.2.1.4 Atmospheric Pressure Ionization and Electrospray Ionization.  

 

Atmospheric Pressure Ionization technique uses the atmospheric pressure to 

ionize the sample and then transfer the ions into the mass spectrometer. Similarly to the 

fast atom bombardment these techniques are best used for thermally labile samples.  

For this technique the sample is prepared by dissolving it in an appropriate solvent and 

then the solution is launched into the mass spectrometer [95]. 

By using conventional inlets the solution increases the pressure in the source area 

of the mass spectrometer. Furthermore, the Joule-Thompson effect of the liquid when 

entering the vacuum causes the solution droplets to freeze. The sample then passes 

through a series of differentially pumped stages this method allows to keep a large 

pressure difference without using big vacuum pumps. In order to break up the formed 

clusters a drying gas is introduced in the process [95].  
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Figure 3.4: Electrospray Ionization Source [95]. 

 

The most common application of Atmospheric Pressure Ionization is electrospray 

ionization which implies using a large potential between the metal inlet needle and the 

first skimmer in the source [95]. 
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3.2.2 Mass Analyzers 

 

After the formation of ions in the source an electric field accelerates them to the 

mass analyzer where they are separated according to their mass to charge ratio. 

Mass Analyzers can be continuous or pulsed, only pulsed analyzers will be discussed 

here [95].  

3.2.2.1 Time-of-Flight.  

The time-of-flight mass analyzer is a sample analyzer that uses a fixed voltage 

and doesn‟t need a magnetic field. This analyzer only needs one fast ionization pulse to 

form ions which are then accelerated in the flight tube by an electric field formed 

between the backing plate and the acceleration grid [95].  

 

 

Figure 3.5: Time-of-Flight Mass Spectrometer [95]. 
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3.2.2.2 Quadrupole Ion Trap.  

 

The Quadrupole ion trap mass analyzer consists of a doughnut shaped ring 

electrode and two endcap electrodes as depicted in the figure below. 

It is a newly developed mass analyzer with some special features such as high sensitivity 

and fast scanning. Since the quadrupole ion trap mass analyzer detects all the formed ions 

it exhibits high signal-to-noise ratio [95]. 

 

 

Figure 3.6: A cut-away of the Quadrupole Ion Trap Mass Spectrometer [95]. 

 

3.2.2.3 Ion Cyclotron Resonance 

 

The Ion Cyclotron Resonance mass analyzer employs a superconducting magnet 

to trap ions in a small sample cell. The magnetic field created causes ions to travel in a 

circular path similar to the path of an ion in a magnetic sector, however the ions are 

traveling slower and the magnetic field is stronger. Due to this fact the ions are contained 

in the volume of the trap. After trapping them the ions are detected by measuring the 

signal at this cyclotron frequency [95]. 
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This type of analyzer is very expensive and usually used for specialized research 

applications. 

 

 

Figure 3.7: Ion Cyclotron Mass Spectrometer. A) main components, B) ion movement 

within the trap [95]. 
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3.2.3 Detectors 

 

The detector is selected based on the application requirement such as speed, 

dynamic range, gain, and geometry. 

Faraday cup is used to collect ions and measure the current in large signal application. In 

some older instruments photographic plates were used to measure the number of ions at 

each mass to charge ratio.  

Modern detectors amplify the ion signal using a collector like a photomultiplier 

tube. Other detectors are sufficiently sensitive to detect a single ion [95]. 
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3.3 Visible and Ultraviolet Spectroscopy 

 

The visible-ultraviolet spectroscopy covers the region of the spectrum ranging 

from 190 nm to 800 nm. Ultraviolet-visible spectroscopy observes the electronic 

transitions from one state to another allowing us to find out the wavelength and 

maximum absorbance of compounds.  

By using Beer‟s Law: A = εbc, where: 

A = absorbance,  

ε = molar extinction coefficient,  

b = path length,  

and c =concentration 

 

We can determine either the concentration or the molar absorptivity depending on 

what variable is known. Since each compound has its own molar extinction, UV-Vis 

spectroscopy can be used to determine the identity of an unknown compound.  

 

 

Figure 3.8: Typical UV-VIS spectrometer [97]. 
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A typical diagram of a spectrometer is shown in the figure above. The 

spectrometer works as follows, a beam of light from a visible and/or UV light source is 

broken down into its different light wavelengths by a prism or diffraction grating. Each 

wavelength is then split into two beams of equal intensity by a half-mirrored device. One 

beam, the sample beam passes through a small transparent container containing the 

sample being analyzed.  

The other beam, the reference beam, passes through an identical container 

containing only the solvent. The intensities of both beams are then measured by detectors 

and their ratio is plotted versus wavelengths. Since every compound has its own 

transmittance/absorbance profile, the compound is then determined by analyzing the 

graph [97].  
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3.4 NMR & ESR Spectroscopy 

 

NMR stands for Nuclear Magnetic Resonance; NMR spectroscopy is used to 

determine the physical and chemical properties of molecules by making use of the 

magnetic properties of certain atomic nuclei [98]. 

NMR is based on the concept that many nuclei have spin and all nuclei are 

electrically charge. If nuclei are subjected to an external magnetic field, then an energy 

transfer is likely between a lower energy to a higher energy level [98].  

 

 

Figure 3.9: Diagram of NMR spectrometer [98] 
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This energy transfer occurs at a wavelength that corresponds to radio frequencies 

and when the spin returns to its lower level, energy is released at the same frequency. The 

signal that matches this transfer is then measured and processed in order to produce an 

NMR spectrum for the nucleus being studied [96]. 

 

 

Figure 3.10: The basis of NMR [96] 

 

ESR stands for Electron Spin Resonance, ESR spectroscopy is similar to NMR, 

and however in ESR the electron spins are excited instead of nuclear spins of NMR. 
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3.5 Infrared Spectroscopy 

 

Infrared spectroscopy is a technique of molecular spectroscopy. This technique 

has been used in many fields and industries for a variety of measurements. For instance it 

is used to monitor certain gas species for environmental and industrial measurements, 

such as CO2, CH4 and CH2O. In the medical field it is used for the detection of toxic 

molecules and drugs. It is even used by law enforcement for the detection of explosives 

and hazardous material [19]. 

Infrared refers to the region of the electromagnetic spectrum ranging from 0.78 

μm to 1000 μm. The infrared region is divided to three sub-regions near-infrared (NIR), 

mid-infrared (MIR), and far-infrared (FIR). Table 1 below shows the IR spectrum of each 

sub-region [20]. 

Table 3.2. Infrared regions spectrum range [20]. 

IR Sub-region spectrum range (μm) 

Near Infrared (NIR) 0.78 - 2.5 

Mid Infrared (MIR) 2.5 - 50  

Far Infrared (FIR) 50 – 1000 

 

Molecular spectroscopy and consequently Infrared spectroscopy is based on the 

principle of molecular vibration. A molecule vibrates when bonds between its atoms 

stretch and bend.  

Stretching is the change in inter-atomic distance along bond axis and it is divided 

to symmetrical and asymmetrical, where Bending is the change in the angle between two 

bonds. Bending is divided into four types, Rocking, Scissoring, Wagging, and Twisting 

[21]. 
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For a molecule to absorb an infra-red radiation, it must be active in the IR region. 

That is when exposed to IR radiation; a change in the net dipole moment must occur [21]. 

A molecule will have an electric dipole moment when two adjacent atoms in the 

molecule have different charge, a positive charge (+ e) and a negative charge (- e).  

The electric moment is defined as μ = e × d where e is the magnitude of charge at either 

end of the dipole, and d is the distance between the centers of + e and – e charge [23]. 

 

 
Figure 3.11: dipole moment direction [23]. 
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Figure 3.12: Different vibration modes of a molecule [23]. 

 

 

 

3.5.1 Water Molecule Vibration and IR Spectra 

 

For example the water molecule has 3 modes of vibration illustrated in figure 3, 

those vibration modes result in the infrared spectra shown in figure 4 [24]. 

 

 
 

Figure 3.13: H2O molecule vibration modes [24]. 

 

Symmetric Stretch 
 

Antisymmetric Stretch 
 

Bend 
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Figure 3.14: H2O molecule absorption spectra and its correlation with the vibration 

modes [24].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER IV: INFRA-RED SOURCES 

 

 

4.1 Introduction 

 

Infra Red (IR) sources are made from different materials, metal and ceramic, 

which is upon heating start glowing and emitting light of broad spectrum [25]. 

The energy radiated by the IR source per unit area is called the body's “emittance” R and 

it is proportional to IR source temperature [26-28].  The spectral emittance of these 

sources follows Planck‟s law [25]. 
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    Where: 

 
R = the radiant power emitted per unit radiating surface area per unit wavelength (W m-2) 

c = Speed of light  

h = Planck‟s constant  

λ = Wavelength  

k = Boltzman constant  

T = Temperature (K) 
 

The following graph shows the spectral emittance of an ideal IR source as temperature 

increases. 
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Figure 4.1: The spectral emittance of an ideal IR source with different temperatures.There 

are many types of IR sources used in spectroscopy; each has its uniqueness in terms of 

size, emissivity, and temperature [33].  
 

 

The IR sources are discussed below. 

 

4.2 Globar 

 

The Globar is most used IR source in FTIR. It is made of silicon carbide rod and 

it is electrically heated by passing a current through it [29, 30]. The Globar can reach a 

temperature as high as 1300 K. However, the high out power can result in excessive heat 

being dissipated in the machine which requires water cooling to protect the electrodes 

from damage [29, 30]. 
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4.3 Nernst Glower 

 

The Nernst Glower is one of the original IR sources used in spectroscopy. It is 

composed of rare earth metal oxides, such as zirconium and yttrium [29, 30].  

The spectral emittace is close to a black body with a nominal operating temperature of 

1800 K. One drawback of this source is that it has a negative coefficient of electrical 

resistance, meaning its resistance decreases as the temperature increases to overcome this 

problem a ballast resistor must be used to regulate the output [29,30]. 

4.4 Ceramic Source  

 

The ceramic source known also Opperman source consists of a ceramic tube with 

a rare metal oxide wire located in its center. The wire is electrically heated which in turn 

heats the ceramic tube emitting radiation [29].  

4.5 Metal Filaments source 

 

Simply this is an incandescent light bulb without its glass cover, because the glass 

cover limits the emission spectrum to 4 μm [29-31]. These filaments are electrically 

heated and they can reach temperature as high as 2800 K.  

One disadvantage of using this source is the short lifetime due to thermal stress and 

oxidation [29-31]. 

4.6 Planar sources 

 

These sources are made of a thin film structure fabricated on a Si wafer with an 

integrated heating element. These sources are electrically heated and they can reach 

temperature as high as 1025 K [31,32].  

 

 



 

CHAPTER V: DETECTORS 

 

 

5.1 Introduction 

 

The detectors used to detect IR energy are divided to two main categories of 

photo-detectors and thermal detectors. 

5.2 Photo-detectors 

 

Photodetector is an optical device that converts the detected light into electrical 

signal such as voltage or current. Photodetectors are made of semiconductor materials of 

a specific band gap and structured in a specific way [37-39].  

Semiconductors are different from insulators and metals by the fact that their conduction 

band is relatively close to the valence band which makes their electron excitation possible 

under certain conditions. 

For instance when the energy ( h ) of the incident photon is greater than the band 

gap energy, then the photon has enough energy to excite an electron from the valence 

band to the conduction band leaving behind a positive hole. 
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Figure 5.1: Illustration of an atom band gap [34]. 

 

The band gap energy is proportional the photon wavelength as depicted by equation 1 

[34]. 

 



Eg 
hc


(1)   where: 

 

h = Planck‟s constant 

c = speed of light 

 = photon wavelength 

 

For infrared detection Quantum Well Infrared Photodetectors (QWIP) are the commonly  

 

used photodetectors in spectroscopy.  

 

5.2.1 Quantum Well Infrared Photodetectors (QWIP) 

 

The concept of detecting light by using quantum wells has been studied 

comprehensively for over 2 decades. Quantum wells are made by sandwiching a very thin 

layer, tens of nanometers, of semiconductor material between two semiconductors of 

wider band-gap. Since the thin layer material has a smaller band gap its electrons are 

thought of as confined in a “well” and the other two layers are the “barriers” [37-40].  

The operation of the original quantum well was based on the absorption of the IR 

radiation by the free carriers that are trapped in the well layer.  However the detection of 
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the new infrared quantum well detectors is based on the intersubband transition in the 

well [38-40]. 

 

 

 

 
 

Figure 5.2: (a) Schematic illustration of a quantum well (QW) structure where a thin 

layer of GaAs is sandwiched between two semiconductors (AlGaAs) of wider bandgap. 

(b) The conduction electrons in the GaAs layer are confined by Ec and their energy is 

quantized by a small length d in the x-direction. (c) The density of states of a two-

dimensional QW. The density of states is constant at each quantized energy level [34]. 
 

 

If we assume the growth direction is along the x axis, as in the figure above, then 

we can say that the conduction electrons are confined in the x direction and they are free 

to move in the other two dimensions. Since the well layer is very thin, the movement of 

electrons is quantized in the growth direction and the energy levels become discrete and 

called subbands [37-37]. 

The energy level at quantum level n is given by: 
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And the intersubband transition energy between the lowest and first excited state is given  

 

by  
2*

22

12

8

3

dm

nh
EE

e

  

                  

Where h = Planck‟s constant  

            n = the quantum level 

            D = the well width 

            
*

e
m = the electron effective mass            

 

The main disadvantage of QWIPs is their high dark current which necessitates 

cooling the detector to temperature around 65 K or even below to eliminate any 

background interference [41]. 

5.3 Thermal Detectors 

 

Thermal detectors are devices that convert the detected light into change in 

temperature. They are made of materials whose physical properties change due to change 

in temperature.  There are two common thermal detectors:   

Bolometers, whose resistance changes with temperature.  

Pyroelectric detectors, whose surface charge changes with temperature. 

5.3.1 Bolometer 

 

Bolometer is a thermal detector used to measure the energy of incident radiation; 

it is capable of measuring a wide range of spectrum even though it is mostly used in 

longwave detection applications i.e astronomy [46]. 

 As illustrated in the figure below, a bolometer consists of a heat absorbing 

material with a heat capacity C at a given temperature T.  It is then thermally connected 

with conductance G to a heat sink with temperature T0 .  The bolometer contains a 

resistive thermometer made of semiconductor material such as germanium [47]. 
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Figure 5.3: Structure of a bolometer [9]. 

 

 

 

The incident radiation causes the temperature in the absorbing material to rise 

proportionally to its energy according to the following equation [43,44]: 

            

As the temperature decreases because of the heat sink, it decays as follows [43,44]: 

     
   

And as the temperature changes, the bolometer resistive material changes according to 

the following equation [43,44]: 

      
      

   

 

Where RS is the resistance parameter (Ohms),  is the resistance (Ohms),   is the 

temperature of the resistor, and    (K) is the material band gap temperature.  
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The value of         is called the material parameter and is given the symbol  . 

The temperature coefficient of resistance is defined by [43,44],  

    
 

 

  

  
     

 

Figure 5.4: Bolometer circuit readout [42]. 

 

 

The typical bolometer readout circuit is illustrated in Figure. The bolometer is 

usually biased with a constant DC current I and as the current passes through the 

Bolometer resistance, it generates voltage across the resistance. The voltage can then be 

read with and ADC and correlated to the incoming energy.  
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5.3.2 Pyroelectric 

 

Pyroelectric detector is another form of photo-detectors they are made of 

pyroelectric crystals, such as Lithium Tantalate (LiTaO3) and Barium Titanate (BaTiO3), 

capable of converting the change in temperature into electric signal [48-49]. 

The pyroelectric effect was first discovered in the 18
th

 century in tourmaline crystals and 

in the 19
th

 century Rochelle salt was used to fabricate pyroelectric sensors [36,50]. 

A pyroelectric material is composed of a large number of randomly oriented tiny 

crystals called crystallites. Those crystallites behave much like an electric dipole. When 

those crystallites go through a temperature change, they become polarized and an electric 

charge exists on the surface of the crystal. 

However in order for any pyroelectric material to exhibit a pyroelectric effect, it 

must be operated below a certain temperature know as Curie point, above which the 

crystallites lose their dipole moment [36,50]. 

 The magnitude of electric charge resulting from change in temperature is given by 

equation (3) [36,49]: 

 



Qa  A(Ta,W ) (3)   where: 

 

μ = Dipole moment per unit volume  

A = area 

Ta = Temperature 



W = Thermal energy absorbed by the material 
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Figure 5.5: (Top) a pyroelectric crystal with an intrinsic dipole moment, (Middle) A 

pyroelectric crystal with electrode attached on each side, with no change in temperature 

there is no current flow. (Bottom) a change in temperature causes instantaneous 

polarization and flow of current [51]. 

 

 

In order to collect the charge, pyroelectric sensors are fabricated in thin films with 

electrodes on each side. The charge and voltage coefficients of a pyroelectric sensor can 

be described in equations (4) and (5) respectively [36]: 

 



PQ 
dPs

dT
(4) 

 



53 

 



PV 
dE

dT
(5)  

 

 

Where: 

 

Ps = Spontaneous polarization (electric charge)  

E = Electric field strength 

T = Temperature in K 

 

Both coefficients are related the electric permittivity, εr, and dielectric constant, ε0 as 

follows [3]: 



PQ

PV

dPs

dE
r0 (6) 

 

Since the pyroelectric material is dependent on the change in temperature then 

charge and voltage changes can be described by equations (7) and (8) respectively: 

 



Q  PQAT (7) 

 



V  PVhT (8) where h is the thickness of the material 

 

Now capacitance is defined as: 

 



Ce 
Q

V
 r0

A

h
(9)  

 

Now the above equations can be rearranged as follows: 

 



V  PQ
A

Ce
T  PQ

r0

h
T (10)  

 

It is obvious from equation (10) that the output voltage is proportional to the 

change in temperature and the charge coefficient and inversely proportional to the film 

thickness. 



 

CHAPTER VI: FABRY-PEROT INTERFEROMETER 

 

 

6.1 Introduction 

 
The Fabry-Perot interferometer is named after two French physicists, Charles 

Fabry and Alfred Perot, who in the late 1800 published a paper describing a device that 

became to be known Fabry-Perot interferometer [52,18].  

The Fabry-Perot interferometer is an optical resonator formed by two parallel reflective 

surfaces separated by a fixed distance in a specific medium, such as air.  

6.2 Fabry-Perot Applications 

 

The Fabry-Perot interferometer has been used in many applications ranging from 

imaging spectroscopy [53] to optical filters [54], the most common are listed below. 

6.2.1 Dichroic Filter 

 

Dichroic filters are the most common application of Fabry-Perot, in which multi-

layers of dielectric layers are deposited on a glass surface to allow only certain 

wavelengths of light to pass through and reflect the unwanted spectrum. Unlike 

absorptive filters, these filters transmit rather than absorb the unwanted spectrum, thus 

they transmit more light, stay cool, and don‟t burn out.  
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6.2.2 Telecommunication Networks 

 

Telecommunication networks that use wavelength division multiplexing have an 

add-drop multiplexer which made of Fabry-Perot etalon. This multiplexer can combine 

several wavelengths of data into a single light beam; and simultaneously, it can drop or 

remove other light signals from the stream of data and direct them to other network 

routes [102].  

6.2.3 Optical wavemeter  

 

An optical wavemeter  is a made of a number of Fabry–Pérot interferometers with 

with different free spectral ranges. The beam is passed through a lens to diverge it and the 

distance between two bright lines is then recorded by an array of detectors [105]. 

6.2.4 Single Mode LASER 

 

Etalons are used to build single-mode lasers. A LASER generally produces light 

over a range of wavelengths instead of a single wavelength; this broad range of light 

corresponds to multi-cavity modes.  

By employing an etalon into the laser cavity, that has a specific free-spectral range, all 

unwanted frequencies or wavelengths can then be suppressed, thus changing the 

operation of the laser from multi-mode to single-mode. 
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6.2.5 Zeeman-effect detection 

 

A Fabry–Perot etalon can be used to detect the Zeeman-effect. The Zeeman Effect 

is observed when there is a magnetic field to influence the atomic energy levels under 

such influence the atomic energy levels as well as the spectral lines split to larger 

number. By using Fabry–Perot etalon the spectrometer becomes sensitive enough to 

detect the spectral lines that are too close together to distinguish with a normal 

spectrometer [104]. 

6.2.6 Astronomy 

 

In astronomy the etalon is used to measure the intensity of light, emitted by 

objects in the space, as a function of wavelength.  The data allow astronomers to 

understand the physical properties and the motion of these objects in the space.  

6.2.7 Gravitational wave detection 

 

Gravitational waves are ripples of space-time and they are the basis of the theory 

of relativity. By using Fabry–Perot cavity one can store photons for a very short period of 

time as they bounce back and forth between the mirrors.  

This increases the time of interaction between a gravitational wave and light, resulting in 

a better sensitivity at low frequencies. This principle is used by detectors such as LIGO, 

which consist of a Michelson interferometer with a Fabry–Perot cavity with a length of 

several kilometers in both arms [103].  

6.3 Operation and Mirrors Material 

 

A typical Fabry-Perot interferometer and its transmission are illustrated in Figure 

6.1(a) and 6.1(b) respectively. Assuming M1 and M2 are two mirrors perfectly parallel to 

each other, and then the light waves in the cavity reflect back and forth between M1 and 
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M2. Those light waves interfere constructively and destructively resulting in standing EM 

waves [55].  

If we assume that EoP1 is the wave representing the direction of the incident wave, 

then this wave upon impinging on the mirror M1 divides into two waves, a reflected wave 

in the direction of P1E1
‟
, and a transmitted wave in the direction of P1P1

‟
.  

The transmitted wave impinges on mirror M2 at angle θ, and it is as well divided into two 

waves, one transmitted in the direction of P1
‟
E1

‟
, and one reflected in the filter in the 

direction of P1
‟
P2. 

This process of reflection/transmission of the wave continues indefinitely as 

depicted in figure 1-(a) below. The total transmitted light will be the sum of all 

transmitted waves.   

However since the transmitted waves are not in phase, we need to determine their phase 

difference. 

In optics the phase shift corresponds to the difference in optical paths which is for 

E1 and E2 is given by [55, 70, 71]: 



nP1

'P2P2

'  P1

'Q1 
2nd

cos


2d

cos


2nd

cos


2d

cos
sin sin 

2nd

cos


2d

cos
sin(n sin)  

                         




2nd

cos
(1 sin 2)  2ndcos

 

The phase difference is given by: 



 
2











2ndcos

 

The incident electromagnetic wave can be described as [56]: 



E(t)  E0e
iwtikz   , where



w 
2C


, 



k 
2


. 
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If both mirrors have the same reflectivity R, then the total transmitted field can be written 

as: 



ET 
E0(1 R)ei(wt 0 )

1 R*e i2
 

and the transmitted intensity will then be [70,71] : 



IT  ET
2 

I0(1 R)2

1 R2  2Rcos2


I0(1 R)2

1 R2  2R  2R(1 cos2)


I0(1 R)2

(1 R)2  4Rsin 2

 

This can be re-written as: 



IT 
I0

1 F sin 2
where

F 
4R

(1 R)2

 

Therefore, we can conclude that the transmitted intensity is a periodic function of the 

phase shift and when the mirror reflectivity is very high, then transmission occur only 

when the following condition is satisfied [55] : 



 
2ndcos


 m  

Assume θ = 0, and n=1, then 



 
2nd


 m  m 

2d


, where m is an integer that 

corresponds to the cavity mode. 
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                             (a)                                                                     (b) 

 

Figure 6.1: (a) Schematic of an FPI. M1 and M2 are the two mirrors; d is the distance 

between the mirrors;



  is the angle of incident light, and θ is the phase shift at reflection. 

(b) Transmission spectrum of an FPI. 

 

 

The transmittance spectrum of a FPI is illustrated in figure-1 (b) and described by the  

 

airy-function in equation (1). 

 

Assuming the two reflectors have the same reflectance R and the same absorbance A, the 

transmission T can be described as follows [6]: 



T  1
A

(1 R)











2
1

1
4R

(1 R)2









sin2 2nd

1


cos 











(1)
 

    

To simplify the discussion, we assume that the angle of incidence is zero and the phase  

 

change on reflections is π, then equation (1) becomes: 

 



T  1
A

(1 R)











2
1

1
4R

(1 R)2









sin

2 2nd













 

The transmission peaks occur when the following condition is satisfied: 

 

 



2nd


 m  m 

2nd

m
(2)
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The spectral resolution of a FPI, which determines the spectral bandwidth (FWHM), is 

described in equation (3) [6]. 



FWHM 
1

2d

1 R

 R
(3) 

                                           

The spectral distance between two adjacent peaks or resonant wavelengths is 

called the Free Spectral Range (FSR), and the ratio of FSR and FWHM is called the 

Finesse and it is described in equation (4) [57]: 

 



F
~


FSR

FWHM

 R

1 R
(4)      

 

The performance of a Fabry-Perot interferometer depends on the reflectivity of 

the mirrors. The higher the reflectance the sharper and narrower the transmission peaks of 

the filter. Therefore, as R increases FWHM decreases.   

There are two commonly used materials in the fabrication of optical mirrors, metal thin 

film, and multilayer dielectric coatings.  

6.3.1 Metal Thin Film Mirrors 

 

Metallic mirrors consist of a thin layer of a metal coated on a substrate. Metallic 

mirrors are easy to fabricate and they have a good reflectance over a long range. However 

they require periodic maintenance and suffer from absorption loss, figure 2 below shows 

the reflectance of the most common metals used as reflective mirrors [58]. 

Aluminum is the most commonly used material simply because it has a very good 

reflectivity in the ultraviolet, visible and infrared spectrum and because of its strong 

adherence on most material including plastics. However the performance of an aluminum 

mirror falls gradually over time and that is due to oxidation and collection of dirt and dust 
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on the surface that sometimes cannot be easily cleaned without damaging the film, in this 

case a recurring recoating is required [58]. 

Silver is similar to Aluminum in terms of easiness to manufacture; however it is 

damaged rather quickly upon exposure to the atmosphere due to the formation of silver 

sulphide. And similar to Aluminum a periodic recoating is needed to mitigate the  

problem [58].  Gold is probably the best material to use as mirror in terms of maintenance 

because it doesn‟t require recoating. However gold film suffers from being soft, easily 

scratched, and difficult to adhere on the substrate without an underlayer of Chrome or 

Nichrome. 
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Figure 6.2: Reflectance of thin films of aluminium, copper, gold, rhodium and silver as a 

function of wavelength from 0.2–10 μm [58]. 

 
 

Metals have a complex index of reflection of the form N=n-iK, where n is the real 

part of the refractive index, and it is the ratio of the speed of light in a given medium to 

that in vacuum,  K is the imaginary part of the complex refractive index, and it is related 

to the absorption of light by the medium. 

The electromagnetic wave propagating in a metal in the z direction can be  

 

expressed as:  

 



E(z)  E0e
iNkz   E0e

inkz e ikKz  where k  2  

E(z)  E0e


2Nz













 E0e
i

2nz













e


2Kz













(5)

   

 

Equation five consists of two terms the first term describes a non-decaying wave 

amplitude, where is the second term reflects how the wave amplitude decreases 

exponentially as a function of z in the metal film, we call this term the damping factor. 
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Then the fraction of the electromagnetic wave that has propagated through the material 

can be expressed by  



E(z)  E0e
z   E0e

2k


z











. 

And the distance where the amplitude of the electromagnetic field E (z) decreases to 



E(z)  E0e
1  , is called the skin depth and it is given by equation (6) [55,59]: 

 



 
1






2k
(6)

.
 

 

Therefore the thickness of metallic thin film mirror can effect the transmission of 

light and consequently the performance of the optical filter.  

Figure 3 below shows the k value of aluminum, and figure 4 shows the transmission and 

reflectance of aluminum as they vary with thickness at 



= 2 um. The skin depth of 

aluminum at 2 um is:  



 
1






2k


2e6

2* *(20.3)
15.7nm  
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Figure 6.3: K value of aluminium [60]. 

 

 

 

 

 Figure 6.4: Transmission and reflectance of aluminum as a function of film thickness 
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6.3.1 Dielectric Mirrors 

 

Dielectric mirrors consist of stacking alternating layers of dielectric materials of 

low and high reflective indices. The high reflectance is achieved due to the fact that when 

the light beams reflect at the interfaces of the different layers, they all reach the front 

surface having the same phase shift, which allows them to interface constructively.   

This stack of dielectric layers is also called Distributed Bragg Reflector. 

For a given wavelength, the reflectance in air for this stack of layer is given by [58]: 

 



R 
1 (nH nL )2p (nH

2 nS )

1 (nH nL )2p (nH
2 nS )











2

(5)

 
 

 

Where nH, nL, and nS are the indices of refractive of the high index, low index and the 

substrate layers respectively, p is the pairs of high/low-index layers. 

The relationship between reflectivity and the number of stack layers is depicted in figure 

(5) below. 
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Figure 6.5: Reflectance with different number of stack layers. 

 

Dielectric mirrors are characterized by their robustness, low maintenance, and low 

absorption loss [58]. 



 

CHAPTER VII: FILTER DESIGN AND FABRICATION 

 

 

7.1 Filter Design 

Since the glucose wavelengths of interest are in the 7 to 10 µm ranget, the Fabry-

Perot filters were designed to resonate at the mid-infrared spectrum. The mirrors were 

designed for central wavelength of 9.2 µm, with the ability to be tuned at 8.4 µm and 

10.1 µm. 

 Table 1 below summarises the design parameters of the filter. Where m is the order 

number, λm is the center wavelength, and is the distance between mirrors. 

 

Table 7.1. Design parameters 

  
1 (um) 3 (um) 4 (um) 

λc 8.4 9.2 10.1 

λ/m 8.4 9.2 10.1 

Design Parameters (m=1) 

Value d/m d (um) 

1 4.2 4.2 

2 4.5 4.5 

3 5.05 5.05 
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7.1.1 Dielectric Mirror Design 

 

The dielectric mirros design is based on the Bragg reflector structure which 

consists of  alternating quarter wave optical thickness (QWOT) layers with low and high 

refractive index. In order to build high reflective mirrors in the desired wavelength range, 

without  stacking too many layers of thin films, the refractive index ratio nH/nL has to be 

as high as possible.  

Potential thin films to be used as a low refractive index material are zinc oxide 

(ZnO) or zinc sulfide (ZnS) and germanium (Ge) as high refractive index material.  

The refractive index n of Ge, ZnS, and ZnO are show in figures 6,7, and 8 respectively 

[60]. 

 

 
 

Figure 7.1: Refractive index of Germanium [60]. 
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Figure 7.2: Refractive index of Zinc Sulfide [60]. 

 

 

 

 
 

Figure 7.3: Refractive index of Zinc Oxide [60]. 
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Figure 7.4: Refractive index ratio of Ge/ZnO and Ge/ZnS 

 

 

Based on the plot of figure 9, the Ge/ZnO ration will give us higher reflectivity than the  

Ge/ZnS ratio. 

The ZnO layer is deposited by sputtering process and the Ge layer was deposited by the 

e-beam process. 

The layers thickness (d) was calculated according to the quarter wave optical thickness 

method: 



d 
c
4n

(6) 

Where 



  is the center wavelength, n is the refractive index of the material, and d is the 

layer thickness. 
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7.1.2 Mechanical Design 

 

The Fabry-Perot interferometer is designed with two fixed mirrors separated by a 

distance d. Each mirror consists of a stack of alternating layers of dielectric materials, Ge 

as a high index material, and ZnO as a low index material. The layers are deposited on a 

300 μm thick silicon substrate as illustrated in figure 10 below.  
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7.1.3 Fabrication 
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The silicon wafer must be clean of any contamination at all the fabrication stages. 

The wafer was first cleaned in a 2-3 solution of Hydrogen Peroxide (H2O2) and Sulfuric 

acid (H2SO4) to remove any organic and metallic materials. After that the wafer was 

rinsed in de-ionized (DI) water for 5 minutes. Then the wafer was dipped in a 10% 

Hydrofluoric Acid (HF) for 10 seconds, to remove any oxide impurities from the wafer. 

Step 1. Oxidation Process 

A dry and wet oxidation processes used to grow the SiO2 layer on the silicon wafer as 

follows: 

 

1- Si + N2 + O2                                  SiO2 + N2  (5 minutes, dry) 

 

2- Si + N2 + 2H2 + 2O2                             SiO2 + 2H2O + N2   (40 minutes, wet) 

 

3- Si + N2 + O2                                  SiO2 + N2  (5 minutes, dry) 

 

Step 2. Apply Photoresist 

A blob of positive photoresist (Microposit 1813) is applied on the wafer and then 

spun for 60 seconds at 4000 rpm, to give an evenly spread layer of photoresist. The wafer 

is then soft-baked on a hot plate (115 C) for 60 seconds, which allows for better adhesion 

of the photoresist to the silicon wafer. 
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Step 3.  Apply pattern and expose to UV Light                                                     

 

Align the mask/pattern on the silicon wafer, then expose to Ultra-Violet (UV) 

light for 40 seconds. This process allows the exposed photoresist to develop in the 

photoresist developer. 

Step 4.  Strip photo-resist 

After exposure to UV light, submerse the silicon wafer in the photoresist 

developer solution to wash away the exposed photoresist and copy the mask pattern to the 

silicon wafer. 

Step 5.  Remove the SiO2 

To remove the SiO2 layer, the wafer was submersed in a 10% HF for 20 seconds, 

then rinsed in DI water for 10 seconds. 

Step 6.  Etch of Si wafer 

The silicon was etched in a 45% Potassium hydroxide (KOH) at 70 C for 3 to 5 

minutes to get the required etch thickness.  

Step 7.  Strip photo-resist and SiO2 

After etching the Si it was time to remove the photoresist and the SiO2. 

The photoresist was stripped by submersing the wafer in Acetone for 5 minutes, then 

Methanol for 5 minutes, and finally rinsing in DI water for 5 minutes and then drying 

with nitrogen. 

The SiO2 was removed by submersing the wafer in 10% HF for 20 seconds, rinsing in DI 

water for 10 minutes and then drying with nitrogen. 
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Step 8.  ZnO deposition  

The ZnO film was deposited using sputtering deposition technique [72-74]. 

Sputtering technique is a process by which the Si wafer ( or any substrate where the film 

will be grown) is placed in a vacuum chamber filled with Argon gas. Then a high voltage 

is applied in the chamber to ionize the gas and create plasma. The Ar
+ 

ion accelerates 

towards the target at high speed and knock off atoms from its surface. These atoms hit the 

substrate and condense as a film. 

Step 9.  Ge deposition  

The Ge thin film was deposited by the E-beam deposition technique. The e-beam 

or electron beam evaporation process is an evaporation deposition technique where the 

substarte is placed in a vacuum chamber and the material to be deposited is a placed in 

graphite crucible. Inside the chamber there is a tungsten filament that is heated and when 

it gets too hot it starts emiting electrons. These electrons are deflected and focused on the 

material to be evaporated. Upon hitting the material, the electrons heat it up and cause it 

to evaporate and deposit on the substrate. 



 

CHAPTER VIII: TEST AND MEASUREMENT 

 

 

8.1 Layers Measurement 

 

The layers thicknesses were measured using a Scanning Electron Microscope 

(SEM) to determine the exact thickness of the ZnO and the Ge layers. 

8.1.1 Scanning Electron Microscope (SEM) 

 

SEM stands for Scanning Electron Microscope. SEM is different from a typical 

light microscope by the fact that it uses high energy electron beam instead of light which 

allows for much higher magnification.  

The main components of an SEM are Electron Source, Electron Lenses, vacuum 

chamber, detectors, signal processor, and a display. 

The electron source maintains a stream of high electron beam shooting at the sample 

under test, the electron lenses are made of magnets and they are used to control the 

electrons and make sure they are focused on the sample [77-82].
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Figure 8.1: Schematic of an SEM [77] 

 

 

 

 

 
Figure 8.2: Generated signals after the interaction of electrons with the sample atoms 

[78]. 
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Upon impinging on the sample the electrons interacts with the atoms of the 

sample, resulting in multiple signals: backscattered electrons, secondary electrons, X-

Rays, Auger electrons, cathadoluminescence. 

These signals are then captured by the corresponding detectors, processed by the 

signal processor and displayed for interpretation [77-82]. 

8.1.2 Layers Thicknesses 

 

 

 

 

                                      

                                     

                                       ZnO  

 

                                                   Ge 

 

 

 

 

Figure 8.3: The thicknesses of ZnO and Ge layers measured by SEM. 

Based on figure 7.3 the layer were not uniformely grown, in the case of ZnO the 

thickness was within 200 nm of the calculated value and the Ge layer within 60 nm of the 

calculated value. 
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8.2 Simulation and Test results 

 

The fabricated FP filter is tested using Fourrier-Transform Infra-Red 

Spectroscopy (FTIR), and the result then compared with the simulated data. 

8.2.1 FTIR Spectroscopy 

 

FT-IR spectrometer consists of an IR source, mirrors, interferometer, detector, 

and a signal processor. The interferometer is, typically, a Michelson interferometer which 

is composed of a beam splitter, a fixed mirror, and a movable mirror. Figure 1 below 

shows a typical layout of a spectrometer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4: Typical spectrometer layout [83]. 

 

 

The IR source shines on the interferometer where the incoming IR beam splits by 

the beam splitter to produce two beams. One beam reflects off a fixed mirror with a fixed 
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distance back to the splitter and the other beam reflects off a movable mirror with a 

variable distance back to the splitter [83,84].  

Both beams meet at the beam splitter where they interfere destructively or 

constructively and the resulting signal is called interferogram [83,84].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5: Michelson Interferometer schematic [84] 

 

 

 

Figure 8.6: An interferogram signal and the resulting spectra after FFT analysis [84]. 
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The interferogram, which contains different frequencies, passes through the 

sample which absorbs or transmits at specific frequencies and finally to the detector to 

measure the signal. After that the signal processor analyses the detected signal using 

Fourier Transform and plots the spectral characteristics for analysis. 
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8.2.2 Results  

 

 

Figure 8.7: Ge/ZnO (on a Si substrate) reflection spectra measured using  FTIR 

spectroscopy. 
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Figure 8.8: Simulated reflection of Ge/ZnO on Si substrate. Simulation performed using 

Freesnell Software. 
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Figure 8.9: Simulated FP filter with seperation air distance between mirror dair = 4.2 m. 

With this distance, the filter resonates at wavelenthg = 8.4 m. Simulation performed 

using Freesnell Software. 
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Figure 8.10: Simulated FP filter with seperation air distance between mirror dair = 4.5 m. 

With this distance, the filter resonates at wavelenthg = 9.2 m. Simulation performed 

using Freesnell Software. 
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Figure 8.11: Simulated FP filter with seperation air distance between mirror dair = 5.05 

m. With this distance, the filter resonates at wavelenthg and = 10.1 m. Simulation 

performed using Freesnell Software. 
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Figure 8.12: Simulated FP filter with all three different distances dair between the mirrors. 

The corresponding resonant wavelength of each distance is plotted as well. 
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Figure 8.13: Designed FP filter result with seperation distance between mirrors  dair= 4.38 

m and the corresponding resonant wavelength = 7.9 m. 
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Figure 8.14: Designed FP filter result with seperation distance between mirrors  dair= 4.77 

m   and the corresponding resonant wavelength = 9.2m. 
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Figure 8.15: Designed FP filter result with seperation distance between mirrors  dair= 5.4 

m and the corresponding resonant wavelength = 10.6 m. 
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Figure 8.16: Designed Simulated FP filter with all three different distances dair between 

the mirrors. The corresponding resonant wavelength of each distance is plotted as well. 

 

 

Table 8.2 below compares the results obtained from simulation and from the final fabry- 

 

perot filter design. 

 

 

Table 8.2. Comparison of the simulation and the final design results 

   Design and Simulation comparison 

  FP1 FP2  FP3  

  Simulation  Design Simulation  Design Simulation  Design 

dair  4.2 mm 4.38 mm 4.6 mm 4.77 mm 5.2 mm  5.41 mm 

λc 8.4 mm 7.9 mm 9.2 mm 9.2 mm 10.1 mm 10.6 mm 
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8.3 Result Analysis 

The overall performance of the FPI depends on the finesse 

~

F  of the filter. The 

finesse determines the bandpass and the sharpness of the transmitted peak. A high finesse 

filter results in sharp narrow peaks. However flatness, roughness, and smoothness of the 

mirror surface affect the optical property of the FPI filter. 

The simulation assumes ideal, flat, and smooth mirrors, perfection that is,practically, hard 

to achieve.  

In reality, fabrication imperfections cause deformation of the mirrors surfaces that 

leads to scattering and consequently reduced reflectivity and finesse [61,62].  

The figures below illustrate the effect of roughness on the transmitted peaks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.17: Transmission of an ideal Fabry-Perot interferometer [61]. 
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Figure 8.18: Transmission of a non-ideal Fabry-Perot interferometer [61]. 

 

 

Three types of defects could be introduced during the fabrication process, surface 

roughness RMS
 , surface spherical deviation from plane S

 , and plate deviation from 

parallelism 
P

  [62,68]. 

If all three types of defects are considered, then the overall finesse defect FD for a 

particular wavelength is given by equation (7) [62,63]. 
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Figure 8.19:  A comparaison between the result of FP with perfectly flat mirrors and non-

ideal mirrors that result in reflectance of 53%. 

 

 

The actual spectrum of the 10.6 μm wavelength is more related to a reflectance of 

approximately  53% which corresponds to a finesse of 4.86. The reduced finesse is 

mainly due to the surface roughness which can have been accured during the fabrication 

process specifically during the Si etching process [75,76].  

 



 

CHAPTER IX: CONCLUSION 

 

 

In this work we demontrated the possibility of fabricating a tunable optical filter 

based on Fabry-Perot interferometer, using ZnO and Ge as the mirrors dielectric 

materials. 

The filter was designed to work in the mid-infrared spectroscopy applications. 

One important application for such filter will be in the wavelength range between 8 m 

and 10 m which target the infrared signature of glucose molecule.  

This will, potentially, allow us to measure the glucose level in the blood without the need 

of pricking one‟s finger.  

There are, however, some concerns associated with spectroscopy that we need to 

further study. These concerns are outlined below. 

1- Molecules Interferences 

  

There are many molecules circulating in the bloodstream and each has its own IR 

signature, we don‟t know how many of these molecules may possibly cause an 

interference with measuring the glucose signal. 

2- Infrared Light Penetration depth 

 

The IR light in the mid-infrared region tends to have a short penetration depth. 

That is the light doesn‟t not penetrate too deep in the skin. One way to mitigate this 

problem will be to measure the reflected light as opposed to the transmitted light, or may 

be use an implantable device that is replaceable after certain period of time. 
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