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ABSTRACT

DONG HYUN JEONG. Knowledge visualization: from theory to practice. (Under
the direction of DR. WILLIAM RIBARSKY)

Visualizations have been known as efficient tools that can help users analyze com-

plex data. However, understanding the displayed data and finding underlying knowl-

edge is still difficult. In this work, a new approach is proposed based on understanding

the definition of knowledge. Although there are many definitions used in different ar-

eas, this work focuses on representing knowledge as a part of a visualization and

showing the benefit of adopting knowledge representation. Specifically, this work be-

gins with understanding interaction and reasoning in visual analytics systems, then

a new definition of knowledge visualization and its underlying knowledge conversion

processes are proposed. The definition of knowledge is differentiated as either explicit

or tacit knowledge. Instead of directly representing data, the value of the explicit

knowledge associated with the data is determined based on a cost/benefit analysis.

In accordance to its importance, the knowledge is displayed to help the user under-

stand the complex data through visual analytical reasoning and discovery.
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CHAPTER 1: INTRODUCTION

Visualization is viewed as an important tool with which users can increase the

ability of exploring and discovering new patterns or relations in large-scale data. Be-

cause of this reason, there have been many research domains, such as bioinformatics,

chemistry, etc., that have adopted visualization techniques to maximize understand-

ing of data or to unveil hidden but important knowledge. However, for resolving the

problems that exist in different domains, a single visualization or visual analysis is

insufficient. There is rather the need for an analytical reasoning process where inter-

active visualization is an integral part. To address this need, the research agenda by

Thomas and Cook [136] outlines the fundamental research areas for the field of visual

analytics based on the considerations of data representations, interactive techniques,

perceptual effects, etc. However, there is a need to go beyond typical considerations of

visualization in terms of data representations, interactive techniques, and perceptual

effects. What is needed is a visualization approach in terms of knowledge products

that are closer to the reasoning artifacts needed in complex analytical processes. The

purpose of this thesis is to identify in more detail what is needed and to suggest an

initial path and structure to provide it. Our hypothesis is that since the goal of visual

analysis is in acquiring more knowledge, an approach that emphasizes the knowledge

products could be more direct and beneficial. We call this approach “knowledge vi-
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sualization.” In this thesis, we present the initial path and focus on identifying what

knowledge visualization is and what is needed to make it possible.

What is “knowledge visualization”? This will become clearer in subsequent sections

of this thesis, but, to begin with, it has to do with dealing with knowledge represen-

tations rather than data representations and then determining what is the highest

value knowledge representation for a given task. There are several difficulties in doing

this. The task, for one thing, is not usually well defined, at least initially. For the

complex reasoning processes discussed above, the user is exploring and attempting to

“discover the unexpected”, as stated in the visual analytics mission statement [136].

For another thing, the task can change, it can indeed evolve, which could cause the

knowledge visualization to change significantly and perhaps dynamically. (It will be

seen that the change is not just in terms of deciding what to display or not display,

but can be in terms of the visual representation itself.) We will address these issues

with examples and a concrete implementation for knowledge visualization.

In recent years, visualization experts have began to think about adopting knowledge

in visualization [19, 27]. We caution the reader that the term “knowledge visualiza-

tion” has been used before in different contexts [19, 45, 75, 126]. However, most of

these uses are fuzzy (some not even distinguishing clearly between information and

knowledge) and are all highly conceptual with no detailed vision of how to model

let alone implement knowledge visualizations and no clear idea about how they are

distinguished from other forms of visualization. Since we are starting fresh and mak-

ing a significant initial effort to do these things, we feel justified in taking the term

knowledge visualization for our own purposes. It is too good a term to leave to these



3

other, unfocused efforts. This thesis has the following significant outcomes.

• It starts with a definition of knowledge and its properties and shows how some

basic, general design considerations that emanate from these.

• It provides examples and study results on how people build and share knowledge

within visualization.

• It shows how a knowledge visualization framework can be built from this def-

inition, properties, and design considerations, and how one can calculate the

value of visualizations within this framework.

• It demonstrates how the knowledge framework can be used in a specific applica-

tion resulting in improved support of discovery, insight-building, and reasoning.

• It represents the usefulness of the knowledge visualization application by con-

ducting an evaluation study.



CHAPTER 2: DEFINITION OF KNOWLEDGE

As we mentioned in the previous chapter, to make a concrete knowledge visu-

alization framework, it is important to begin with understanding the definition of

knowledge. There are many definitions, of course, but we start with understanding

the existing definitions of knowledge into two categories: philosophical and scientific.

2.1 Philosophical Definition of Knowledge

The history of philosophy since the ancient Greek period has focused on seeking the

answer for the question, “what is knowledge?” This branch of philosophy that studies

the nature of knowledge is called epistemology. In epistemology, there are two op-

posing traditions as rationalism and empiricism. Rationalism argues that knowledge

can be obtained deductively by reasoning. In contrast, empiricism claims that knowl-

edge can be attained inductively from sensory experiences and no prior knowledge is

required. Although there are fundamental differences between rationalism and em-

piricism, philosophers generally agreed that knowledge is “justified true belief.” In

the 18th century, Kant believes that knowledge arises when both the logical thinking

of rationalism and sensory experience of empiricism work together. This philosophical

understanding of knowledge is continuously stretched to form scientific definition of

knowledge. Machlup [85] classified several types of knowledge based on his consider-

ation of “how knowledge can be ‘true,’ tested, and verified.” His work clarifies the
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distinctions between information, knowledge, and data, and has been broadly applied

to form the scientific definition of knowledge [146].

2.2 Scientific Definition of Knowledge

In knowledge management literature, the distinction between data, information,

and knowledge is believed to be important when designing knowledge management

programs [76]. Although it is not clearly known when and by whom the relationships

between data, information, knowledge and wisdom were presented as a DIKW hier-

archy, the DIKW has been a part of the language of information science for many

years. Based on understanding the relationships, Zeleny [159] proposes the DIKW

pyramid that presents data as the broad base of the pyramid and wisdom as its much

smaller summit. Ackoff [4] defines an additional component - “understanding”, to

the hierarchy, placing it between wisdom and knowledge. He claims that knowledge

become wisdom only through a human’s understanding process. By reviewing vari-

ous definitions and explanations of DIKW hierarchy, Syed and Shah [128] creates a

model to explicate the relationship between data, information, knowledge, and wis-

dom. Although many researchers have tried to find a clear definition of knowledge,

most people claimed that many of the definitions are neither concise nor precise and

the definition is relative and context dependent [128].

However, one of the most commonly quoted definitions is from Davenport and

Prusak [42]. They state that “knowledge derives from information as information de-

rives from data” and further define knowledge as “a fluid mix of framed experience,

contextual information, values and expert insight that provides a framework for eval-
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uating and incorporating new experiences and information.” From Davenport and

Prusak’s perspective, knowledge is the refined information in which human cognition

has added value. In other words, information becomes knowledge through cognitive

effort. Based on their definition, we think that knowledge can only result from human

cognitive process that includes perceiving, recognizing, conceiving judging, reasoning,

and imagining [1]. It also shows that knowledge fundamentally involves relationships

either among information or other pieces of knowledge.

Prior to that, Polanyi [107] creates a concept of tacit knowledge and further explains

the difference between tacit knowing and tacit knowledge. He specifically focuses on

perception that determines and shapes knowledge, and defines the tacit knowledge

that is valuable because it provides contexts for people, places, ideas, and experiences.

He believes that tacit knowledge can be built through a tacit knowing process, and

transferred between people. His concern falls into understanding the tacit knowing

is not just perceptually looking at an object, but also understanding the underlying

meaning from the object. It is somewhat related to combining the tacit knowing

process with other forms of perception and awareness. Since his primary interest is in

the process of scientific discovery, he believes that there is a clear distinction between

tacit knowledge and explicit knowledge. He specifically describes that “while tacit

knowledge can be processed by itself, explicit knowledge must rely on being tacitly

understood and applied.” Examples of explicit knowledge such as a document, a

recording, or a work of art can be meaningful only through the active process of

tacit knowing. However, his distinction between tacit and explicit knowledge has

not been broadly agreed by other philosophers because his did not provide sufficient
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justification on each term. Polanyi [107] believes that every knowledge is performed

personally through a personalized tacit knowing process. However, Popper [108] found

that Polanyi’s definition is not applicable to other types of knowledge and claims that

“scientific knowledge is independent of the mind of any particular individual and truly

exists in and belongs to the objective process of knowing.” Later, Crowley [37] defines

the definition of tacit knowledge as “tacit knowledge is highly personal and hard to

formalize, making it difficult to communicate or to share with others.” The definition

is completely different compared to the Polanyi’s understanding on tacit knowledge.

In 1995, Nonaka and Takeuchi [97] adopt Polyanyi’s definition of tacit knowledge to

understand how knowledge is shaped and how knowledge can be applied. Specifically,

they define two terms of knowledge: tacit and explicit. Tacit knowledge indicates per-

sonalized knowledge and explicit knowledge represents formalized knowledge. They

divide tacit knowledge into two dimensions - technical and cognitive. The techni-

cal dimension encapsulates the meaning of “know-how,” and the cognitive dimension

“consists of schemata, mental models, beliefs, and perceptions so ingrained that we

take them for granted.” Since tacit knowledge involves human cognitive understand-

ing, it can only be extracted by a human. However, explicit knowledge can be pro-

cessed by a computer, transmitted electronically, or stored in a database. Based on

understanding tacit and explicit knowledge, they define four knowledge conversion

processes: internalization, externalization, socialization, and combination. Internal-

ization is the process of understanding explicit knowledge to form tacit knowledge

by individuals. Externalization is considered to form explicit knowledge from tacit

knowledge. Socialization is to exchange tacit knowledge among members to create
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common mental models and abilities. And combination is the process of combin-

ing or reconfiguring bodies of existing explicit knowledge to generate new explicit

knowledge. In this thesis, we use Nonaka and Takeuchi’s two terms of knowledge

to form a knowledge visualization framework. Prior to designing the framework, we

uses the four knowledge conversion processes to understand how knowledge can be

converted in visualization and to build the knowledge visualization framework. A de-

tailed explanation how both tacit and explicit knowledge are applied to the knowledge

visualization framework is given in Chapter 3.

2.3 Properties of Knowledge

As we explained above, there are many similar and different definitions of knowl-

edge. But, we shall use a restricted definition that supports an implementation sup-

porting the analytical reasoning and discovery that we pursue here. In this view,

knowledge, as defined by John Locke [21], is the “perception of agreement or dis-

agreement of two ideas.” This definition indicates that knowledge is “a fluid mix of

framed experience, contextual information, values and expert insight that provides

a framework for evaluating and incorporating new experiences and information” [42]

and taking action [46]. From theses definitions, we understand that knowledge can

only result from human cognitive processing (that is, reasoning); raw, undigested

data does not qualify. It also is observed that knowledge fundamentally involves rela-

tionships, among ideas, processes, or other pieces of knowledge. Finally, knowledge is

contextual and is developed with a point of view and, perhaps, with a model or pro-

cess in mind. Thus, a principal use of knowledge is to build new knowledge and often
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to provide a basis for taking action (although the action may be tacit and mostly

intellectual, i.e., to understand).

One of the advantages of thinking about the knowledge visualization framework

is that we can consider and incorporate general properties of knowledge, which can

influence the way we approach knowledge visualizations, where we might expect pay-

offs or benefits, and even some general design choices we might make. We can do this

even before identifying a particular, detailed approach. With this in mind, we specify

the following general properties:

1. Knowledge is of higher value than information or data.

2. Knowledge begets knowledge.

3. Knowledge is compact.

4. Knowledge is connected (more connections, more value).

5. Labeling is important (also, captions, titles, text annotations).

6. Knowledge artifacts are the elements of reasoning.

7. Some knowledge is or can be made independent of user and context (including

domain).

Most of these properties are self-evident and require only a structure and process to

apply effectively. A couple of properties (knowledge is compact; labeling is important)

may need additional explanations (see the following) to sharpen the argument about
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their utility. In the following paragraphs, we will describe a structure and process

that provides an environment for embedding these properties.

To demonstrate that knowledge is compact, we present a real life example relating

to weather data and analysis. The National Weather Service uses Doppler Radar1

to track detailed weather patterns, including severe storms and tornadoes [96]. The

radar volume is collected in a sequence of conical scans at increasing angle every 5-7

minutes. There are over 140 overlapping radars in the continental U.S. Researchers

at the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) at the

University of Oklahoma have developed phenomenological analyses of the weather

that the Doppler radars reveal [135]. These analyses are completed in real-time as the

Doppler data are collected, and the products accompany the complete radar volumes

sent to meteorologists at the National Weather Service or to researchers for further

analysis. The analyses find mesocyclones (high shear cells), severe storm cells (local

areas of heavy precipitation), and even tornado signatures. As shown in Figure 1,

these track very well with storm fronts. Generally, an accumulation of mesocyclones

and severe storm cells show where significant storm activity is, and certain patterns

indicate the conditions for damaging storms or tornadoes. Further, the cells have

predictive capability in that their paths can be reasonably projected for an hour or

so. But these analysis products are of the order of 10s of KB, a factor of 1000 or

more smaller than the original Doppler volume. Thus these analysis products, the

concentrated outcomes of human reasoning and expertise about weather phenomena,

1Doppler radar is a method to produce data by beaming a microwave signal towards a desired
target object and listening for its reflection (i.e. doppler effect).
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can be used to make decisions (which radar volumes to look at more closely or to

save), form knowledge-based searches (for selected regions and time ranges, when are

there severe storms of certain types or that may possibly contain tornadoes), and

gain understanding (how do storm phenomena relate to each other under different

conditions or relate to topographic or man-made features over time).

Figure 1: Doppler radar reflectivities over North Georgia (left). Yellow and red splats
(left) indicate that there is a heavy rainfall along a front from the southwest towards
the center. With the property of doppler velocities, it can also be observed that the
winds are heading northeast (right) [111].

This utility of knowledge products and the fact that the higher the level of knowl-

edge, the more compact it is, are generally true. For example, the amount of pub-

lished material in books in the Library of Congress is, if digitized, more than 200

terabytes [81, 101]. Presumably published books are, roughly speaking, at the high-

est level of knowledge since they have been digested and synthesized, written, vetted,

and edited. In this sense, the Library of Congress is representative of all the knowl-

edge in the world, at least from the point of view of Western civilization. All media

in the Library (books, newspapers, film, images, sound recordings) would amount to

about 3-5,000 terabytes. The book content is just a fraction of this and is dwarfed
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by the amount of unpublished content we produce on paper [81, 101]. And the raw

data produced are orders of magnitude larger. The Doppler radars, for example,

collect approximately 1.5 terabytes of data in the U.S. per day, which would exceed

the digital capacity of all books in about 130 days. And the amount of data of all

forms-most of it undigested by humans-captured, stored, or replicated on digital me-

dia is estimated to be 161 exabytes (161 million terabytes) in 2006 alone. But this

does not address the very much larger amount of data that was digitally observed

by sensors or measuring devices of all types but wasn’t captured (though perhaps

a much more compact analysis, derived based on human reasoning and knowledge,

was captured). So it is clear from this example that knowledge is extraordinarily

compact and therefore in our visualizations, we should strive to represent relevant

knowledge-based analysis products along with or often in place of raw data.

(a) (b)

Figure 2: Street network (Kingsgate, WA) with (a) and without (b) labeling.

Although labeling is not directly connected to the definition of knowledge, labeling

is important for users to build their personalized knowledge by observing displayed
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labels. Figure 2 shows a street network with and without labeling. We see that an

abstracted network is immediately given meaning and context by the labels. Even

if one had a good mental model of an urban area and were familiar with the street

layout, it would take a while and some mental exertion to understand what one was

looking at and the neighborhood context. This observation extends to many other

visualizations, especially (but not only) those with annotations. Of course, text labels

need to be to the point and appropriate for the reasoning tasks. They also need to

be legible, too many can clutter a scene, and they require attention and cognitive

processing. Any design strategy needs to take these factors into account, too.

It is evident that the definition given here and the specific approach to implementing

a knowledge visualization framework described in this thesis are not the only ways to

define, create, and use knowledge visualizations. But the knowledge properties, design

considerations, and general approach to knowledge visualizations should be broadly

applicable. Whatever the approach, our perspective is that it is useful and (perhaps

fundamentally) important to directly depict the knowledge structure and to link it

interactively to the investigative visualizations produced for a particular problem or

task. The investigator should also be able to add to the knowledge structure as

she learns more about the problem. Since we emphasize exploration and knowledge

discovery, there will be important and perhaps essential aspects of the task that the

user does not initially know.



CHAPTER 3: KNOWLEDGE VISUALIZATION FRAMEWORK

Based on understanding the definition of knowledge, a knowledge visualization

framework is designed. In The Value of Visualization, van Wijk [144] presents an

operational model that demonstrates how the value of visualization can be quantified

and calculated in a deterministic fashion. We design a knowledge visualization model

with this operation model of visualization in mind, which adopts a technological view-

point to explain how the value of visualization is measured. In his model, it is assumed

that the user would continuously (interactively) create new knowledge in a visualiza-

tion based on their own (or initial) knowledge. This continuous knowledge creation

process is somewhat related to Polanyi’s tacit knowing process of continuously un-

derstanding the underlying meaning of objects (see section 2.2 for detail). Since van

Wijk’s visualization model is well designed and explains the user’s knowledge creation

process within visualization, we begin the design our knowledge visualization model

by adopting his. In section 3.1, a detailed explanation of the knowledge visualiza-

tion model is provided. Since knowledge visualization mainly focuses on representing

knowledge, maximizing the value of visualization is an important consideration. To

determine the value of existing knowledge artifacts in a visualization, a cost/benefit

analysis method is designed to maximize the benefit and minimize the cost (see sec-

tion 3.2). Two distinctive types of knowledge (tacit and explicit) are adopted to design
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our knowledge visualization framework based on understanding how knowledge might

exist differently in visualizations.

3.1 Knowledge Visualization Model

Supplementing van Wijk’s model, we add the two types of knowledge (explicit

and tacit). While van Wijk believes that “visualization is subjective” and extracting

knowledge from data is an objective process that is often not considered in visual-

ization, we propose that it is possible to incorporate general properties of knowledge

(explicit) and personal properties of knowledge (tacit) in visualization. We base our

modifications to van Wijk’s model on the beliefs that:

• Explicit knowledge is different from information.

• Tacit knowledge can only result from human cognitive processing (reasoning).

• Explicit knowledge exists in data, and is independent from the user or his tacit

knowledge.

• Explicit and tacit knowledge are related and can be connected through the use

of interactive visualization.

Figure 3 shows an operational model of knowledge visualization that includes our

consideration of knowledge (explicit Ke and tacit Kt). Explicit knowledge (Ke) ex-

tracted from data (D) is represented as a visualization (V ), which is received both

perceptually and cognitively (P ) by the user via an image (I). The cognitive pro-

cessing leads to understanding and an increase of user tacit knowledge (Kt) and

recursively affects subsequent perception and cognition. Tacit knowledge guides the
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Figure 3: A model of knowledge-based visualization that integrates van Wijk’s
model [144] with explicit and tacit knowledge

user’s interaction and exploration (E), so that the specifications (S) that control the

visualization change over time.

This model shows all the main operational aspects of interactive visualization,

which is to be used for the purpose of gaining insight and understanding. Further,

it shows that there is knowledge internal (Kt) and external to the user (Ke) and

that both should be used to gain the deepest insights. This means that the image is

now a function of both data and knowledge, as well as specifications and time; this

necessitates a generalization of van Wijk’s equations, as indicated below. The image

is perceived and understood by the user, resulting in an increase in user knowledge

(Kt) and the user knowledge can be externalized as an annotation (A). The central

tenet behind knowledge visualization is that the increase can be both faster and of a

different order than it is with data visualization alone. (Of course, if the visualization

was misleading, dKt
dt

could be negative.)

I(t) = V (D,Ke, S, t),
dKt

dt
= P (I,Kt) (1)
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van Wijk also establishes a rather insightful cost/ benefit analysis [144].

G = nmW (∆Kt) (2)

F = G− C = nm(W (∆Kt)− Cs − kCe)− Ci − nCu

where G is the return on investment, W is the value of the acquired knowledge,

and F is the profit. These quantities depend on the change in knowledge ∆Kt, the

number of users n, the number of times the data are visualized m, and the number

of exploratory steps per visualization k. Costs depend on the initial development

cost Ci, the initial cost per user Cu (e.g., for selecting, tailoring, and learning how

to use the visualization), the initial cost per session Cs (e.g., for converting data

and setting initial specifications), and the perception/ exploration/ cognition cost Ce

(i.e., the user must spend time watching and understanding the visualization as the

specifications are changed).

This set of equations neatly sum up several main issues related to the value of

visualization. For example, if development cost or initial costs per user/session (e.g.,

the tool is hard to use) are high the overall benefit of the visualization tool goes

down. Overall, the most beneficial visualizations will be those with lots of users who

use the tool often, as long as the value per session W is at a reasonable level, or

those visualizations that produce a large and important increase in knowledge, even

if only for a limited number of users. However, this operational approach, as far as it

goes, does not tell us anything about how to design the visualization to make it most

beneficial and valuable. Our approach in knowledge visualization is to look closely at
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W , determine a procedure to quantify it, and establish insight into how knowledge

visualizations should be designed and implemented to maximize value.

We consider the value of a piece of explicit knowledge to be a function of the

relationship between the data elements within the knowledge [80]. However, this value

is subject to the cost of displaying the knowledge in terms of rendering cost, clutter,

hysteresis, etc. A detailed explanation how to maximize the value of visualization is

included in the next section.

3.2 Maximizing the Value of Visualization

Based on the model, knowledge visualization is designed to maximize the value of

visualization by determining W . As we mentioned in section 2.3, knowledge is built

on relations between concepts or ideas and that knowledge is more valuable the more

discriminating these relations are. For our purposes, an idea is an inference between

two entities. (If no inference is made, no idea is expressed.) An ontology makes this

relational structure explicit; it provides a “specification of a conceptualization [61]”

in terms of concepts and logical relations.

Figure 4 shows a simple example of an ontology that illustrates its basic structure

of a geopolitical ontology. The simple inferences here are all “belongs to” for different

levels of the geopolitical structure. However, with this ontology, an inference engine

could reason through questions such as, “what countries are within the continent of

North America? or is Charlotte, NC on the state border and what state is it adjacent

to?” The ontology tells us that Rock Hill is a suburb of Charlotte and also in another

state (South Carolina). If the definition of the word “suburb” is clear, an inference
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Figure 4: Geopolitical ontology for a portion of states and cities in North America.

engine could determine that Charlotte is on the North and South Carolina border.

In addition, it could tell us that Raleigh is the state capitol of the North Carolina

and politically connected to the capitol of United States, Washington DC.

Figure 5 represents the gene ontology (hereafter referred to as the “GO” ontology)

structure of a particular gene (recombination nodule, GO:0005713). It represents the

gene and gene products across all species of the gene, recombination nodule. The

GO ontology is structured as a directed acyclic graph, and each term has defined

relationships to one or more other terms in the same domain, and sometimes to other

domains. From the GO ontology structure, it is easy for users to understand the

relationship between or among gene and gene products.

In knowledge visualization, the ontology graph topology (nodes and links) can be

used even if full inferential structure is not explicitly available. (It will often be
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Figure 5: Gene ontology for the gene of recombination nodule [134].
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implicitly available, especially if node entities are well-labeled.) In addition, we want

to apply importance weights to the links; the weights could change depending on

task or user interest. The reason for employing this simpler version of a knowledge

structure is that we can use this approach even if we don’t have a full, formal ontology.

Complete ontological structures can be difficult and quite time-consuming to generate.

On the other hand, there are now a variety of methods to generate relationship

structures for text documents, video, multimedia, etc. For example, tools such as

INSPIRE [98] generate and use keyword relations from document analyses, and Luo et

al. [83] have shown how a very strong concept graph can be generated from automated

broadcast news video analysis and then used in exploratory visual analyses of the

themes in the news. In addition, relationship structures and taxonomies exist and

have been used in many fields of knowledge. Finally, it is quite advantageous to

use knowledge structures, even if incomplete, since users can add they discover new

relations into the structures or can make explicit links between existing knowledge

fragments. We will thus concentrate on simpler knowledge structures, although the

ultimate goal of this research will be to use any structures including formal ontologies

and all the inferencing that they contain.

We start with the simplest evaluation of the knowledge structure topology. That

is, we assume that we have a graph of concept nodes with weighted links and then

determine the nodes with the largest accumulation of weights. These are assumed to

be the highest value nodes for the knowledge visualization. The calculation for node

k is:



22

Wk = Wt

R∑
i=1

Nk(i)∑
j=1

i∑
l=1

Nk(l)∑
m=1

Link(Nodek(i, j), Nodek(l,m)) (3)

where R is the number of rings of neighbors included (nearest, second nearest,

etc.), Nk(i) is the number of neighbor nodes for ring i, and Link connects the j’th

node in ring i with the m’th node in ring l. Wt is an overall weight factor. The

purpose of this equation is to sum up the contributions of all links within R rings

of node k, which includes both direct links to k and secondary links to nodes that

are ultimately linked to k. Conceptually, this construction is similar to the concept

of centrality from graph theory, and algorithms from that field could be substituted

here [13]. However, we will just use Eq. 3 here because it is straightforward and

easily understandable in an interactive system. Wong et al. [152] have shown how a

similar truncated analysis can be quite useful in understanding social network and

other graphs and have also considered other types of topological relations. We will

return to the question of other topological relations later.

Note that the weights in the above equation will change depending on the task or

user focus. One way to determine user focus is by depicting the graph or knowledge

structure visually and then permitting user interaction. If the user chooses certain

keywords or selects by rubber banding a certain section of the graph, the weights will

change accordingly. This will then result in a change in any accompanying knowledge

visualization; in the former case, knowledge associated not only with the selected

keyword but with associated keywords will be displayed. As discussed above, a direct

depiction of the knowledge structure with interactive linking between nodes and other
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knowledge visualizations and the ability for the user to add to the knowledge structure

is an essential part of any knowledge visualization system. We will show this for the

genomic visualization application described later. Finally, it is important to note

that one does not need an explicitly linked graph to carry out an analysis. If one

had, for example, a multidimensional scaling (MDS) clustering of keywords from an

unstructured analysis of a large document collection [150], virtual links could then

be established between keyword nodes with weights inversely proportional to the

distances between them (nearest neighbors could be assigned according to weights

above a given threshold), and weights could also be given to the nodes themselves

based on their importance.

So far we have described a method to determine the value of individual knowledge

artifacts, but we still don’t have a procedure for making a complete knowledge visu-

alization from these ranked artifacts. What we really want to do is to construct the

visualization in such a way that it maximizes some perceptual and cognitive benefit.

Maximizing the value of a visualization hence becomes an optimization problem of

maximizing the overall value of the displayed knowledge while minimizing their cost.

This relationship can be written as [79]:

maximize
n∑

i=1

bixi subject to
n∑

i=1

cixi ≤ tc, xi ∈ {0, 1} (4)

where n is the set of knowledge, b is the cognitive benefit, c is the cost, and xi is the

decision of whether or not a piece of knowledge Kei is to be displayed. This equation

is subject to a target cost tc, which could be the maximum resolution of a screen,
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the amount of memory a computer has, or whatever the constraint is that limits all

pieces of knowledge to be displayed.

Similarly, Funkhouser and Sequin [53] developed just such a procedure in terms of

a cost/benefit analysis and applied it to general rendering tasks. They maximized:

∑
S

Benefit(O,L,R) subject to
∑
S

Cost(O,L,R) ≤ TargetCost (5)

where S is the set of objects O to be visualized, each with a particular level of

detail L and rendering method R (e.g., Gouraud or Phong shading technique). Since

Funkhouser and Sequin focused on rendering a complex scene based on a fixed frame

rate, their benefit measure was mostly perceptual, and the cost was in terms of a

target rendering time. In particular, they used the following measure (see [53] for

a full description of each of these factors). Note that the Tidy term is not part of

Funkhouser and Sequin’s equation, and will be explained later.

Benefit(O,L,R) = Size(O)× Accuracy(O,L,R)× V alue(O)×

Motion(O)×Hysteresis× Tidy(O) (6)

Their measure emphasizes perception in that large objects are considered more

beneficial to render accurately, and if the objects in the scene are in motion, they

will appear blurred to the user and thus accurate depiction is less beneficial. In the

context of knowledge visualization, since we are interested in the cognitive aspects,

we emphasize the knowledge-derived Value term (essentially equivalent to W ), and
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Hysteresis (which is a “resistance to change” factor so that a scene does not change

too much from frame to frame). In addition, we have added the term Tidy, to control

clutter.

Tidy(O) = 1−Clutter(O), Clutter(O) =
min(Sizek,

∑n
i=2 Size(Oi) + Size(O))

Sizek + δ
(7)

where Sizek is the projected area of cell k that contains O, and n objects have

previously been inserted in this cell. The sum starts at 2 since the first object in the

cell should have clutter of zero, and the small increment δ is inserted so that the last

object added does not contribute zero. Tidy is a quick and easy way to control clutter

by using cell binning to insure focus on objects that are close to one another. It is

assumed that most objects are smaller than the cell and that care has been taken so

that objects are not placed on top of each other.

Choosing the optimal set of objects to render for each scene so that the benefit is

maximized is an NP-complete knapsack problem [79]. However, a greedy approxima-

tion can be used to maintain real-time computation. To strongly emphasize knowledge

content in knowledge visualization, we set Size and Motion in equation 6 equal to 1

for all objects.

This approach to rendering as proposed by Funkhouser and Sequin is remarkably

different than the usual approach. The content of each scene is decided at rendering

time, and in our case, depends not only on perceptual viewpoint but cognitive view-

point as well. It is not even clear at the outset how well this method retains coherence

for the viewer as viewpoint is changed; the amount of change over a series of frames
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might be hard to control. But Funkhouser and Sequin show that the method works

quite well for navigating complex 3D scenes with lots of objects (e.g., large classrooms

with many chairs), and we find the same thing for complex patterns of genomic data,

as described further below. In addition, in our approach, where value of displayed

knowledge dominates, any object within the scene is potentially viewable, no matter

what its size. There is no such thing as something being “too small to see” at a given

scale. Thus in our genomic visualization application, for example, if a particular or-

ganism contains annotated gene segments that are considered quite important for the

task at hand, they would be visible via glyphs decorating the organism object even

in zoomed out view (where they would be much too small to see in proportion to the

whole organism or in a view that shows a whole family of related genes). Finally, for

knowledge visualization, it is clear that it would be very useful to have a simulta-

neous view of the knowledge structure itself, including a set of related concepts and

keywords for possible tasks. As one interacts with this structure, importance weights

would change, as described earlier in this section, and the corresponding knowledge

visualization would change as well. A balanced and powerful visual analysis tool

will then have coordinated windows showing the data and showing the knowledge

structure for the application where interaction in one window will cause an update

in the other. After showing examples of understanding the knowledge conversion

processes in visualization, we are going to come back explaining how we applied the

cost/ benefit analysis in Chapter 5.



CHAPTER 4: KNOWLEDGE CONVERSION PROCESSES

Knowledge Visualization focuses on representing knowledge by determining the

values of knowledge through understanding the relations between concepts or ideas.

Based on the proposed definitions of tacit and explicit knowledge, we provide four

knowledge conversion processes in knowledge visualization: Internalization, Collabo-

ration, Externalization, and Combination. As shown in section 2.2, these four knowl-

edge conversions are first introduced by Nonaka and Takeuchi [97] in which they focus

on how knowledge can be processed and converted from one to another in business

models. However, for knowledge visualization, we propose that the four processes are

also applicable because the functions of an analysts in perceptually and cognitively

understanding represented information to create concrete knowledge using a visual-

ization is similar to that of analysts in business practices. In this chapter, we present

a detailed explanation about each knowledge conversion process and how each can be

applied to visualization.

4.1 Internalization

In psychology, internalization is defined as the process of accepting the established

set of norms, which are influential to the individual [91]. It is regarded as a cognitive

process of acquiring skill and knowledge. In knowledge visualization, we propose that

visually representing explicit knowledge would support analysts in understanding and
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Figure 6: Internalization process (indicated by the red arrows). It explains that the
user continuously builds tacit (internal) knowledge based on perceptually, cognitively,
and interactively incorporating the represented explicit knowledge in a knowledge
visualization.

transforming the explicit knowledge into tacit (internal) knowledge. As proposed by

Nonaka and Takeuchi [97] the internalization process starts with a user discovering

what the explicit knowledge is, followed by a series of steps in understanding why

the explicit knowledge is of value or why it makes sense, until finally the user accepts

the knowledge as their own viewpoint or internal knowledge (Figure 6). From a

visualization perspective, this process parallels the concept of “insight discovery” that

has been noted as the goal of visualization [26]. Since discovering insight is strongly

related to building a user’s tacit knowledge based on explicit knowledge in the data,

the internalization process can be thought of as the primary goal and process of using

a traditional (not knowledge) visualization.

To understand the internalization process of how people build tacit knowledge from

interactive visualization or visual analytics, two visualization systems are designed:

Pathway Visualization (section 4.1.1) and iPCA (section 4.1.2). The two systems

are designed to preserve the analytical procedures that people normally follow to

analyze or solve the problems with a rich set of interactions. With such interactions,
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users can interactively build tacit knowledge by looking at and interacting with the

visualization.

Specifically, Pathway Visualization focuses on assisting the user in understanding

gene interactions in time-series microarray data. As a preliminary step in analyzing

gene interactions, the method applies two different techniques, a clustering algorithm

and an Auto Regressive (AR) model. This two-pronged approach provides predictions

of the dynamic pathways involved in the biological process under study. However, at

this level, these two purely computational techniques lack the transparency required

for analysis and understanding of the gene interactions. To overcome the limitations,

a visual analysis system is designed with several visualization techniques, including

pixel-based gene representation, animation, and multi-dimensional scaling (MDS).

This visual analysis system allows the user to quickly and thoroughly search for and

find the dynamic interactions among genes, highlight interesting gene information,

show the detailed annotations of the selected genes, compare regulatory behaviors

for different genes, and support gene sequence analysis for the interesting genes. In

order to enhance these analysis capabilities, several methods are enabled, providing

a simple graph display, a pixel-based gene visualization technique, and a relation-

displaying technique among gene expressions and gene regulatory pathways. During

our evaluation of this visualization, we found that people can easily understand gene

interactions and find unknown, but important, knowledge.

Although the Pathway Visualization shows how people can interactively build in-

sights, it is still difficult to understand which features can assist users in understand-

ing the visual representation for creating tacit knowledge. Because of the reason, we
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looked at a complex analytical method called Principle Component Analysis (PCA).

It is a widely used mathematical technique in many fields for factor and trend anal-

ysis, dimension reduction, etc. However, it is often considered to be a “black box”

operation whose results are difficult to interpret and sometimes counter-intuitive to

the user. In order to assist the user in better understanding and utilizing PCA, we

have developed a system (called iPCA) that visualizes the results of principal com-

ponent analysis using multiple coordinated views and a rich set of user interactions

(section 4.1.2). Our design philosophy is to support analysis of multivariate datasets

through extensive interaction with the PCA output. To demonstrate the usefulness of

our system in terms of interactively building tacit knowledge in visualization, we per-

formed a comparative user study with a known commercial system, SAS/INSIGHT’s

Interactive Data Exploration. Participants in our study solved a number of high-

level analysis tasks with each interface and rated the systems on ease of learning and

usefulness. Based on the participants’ accuracy, speed, and qualitative feedback, we

observe that our system helps users to better understand relationships between the

data and the calculated eigenspace, which allows the participants to more accurately

analyze the data. We also observe that the participants build tacit knowledge easily

through interactions.

With the two systems, we found that users interactively create tacit knowledge in

visualization. From the Pathway Visualization, users can freely navigate through the

genomic space and understand the relationship between genes interactively. Specifi-

cally, the comparative understanding between genes is especially useful for them to

build the insights from the visualization. From the iPCA system, we noticed that
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people have a higher accuracy when solving the given tasks than using the commer-

cial system SAS/INSIGHT. As we will demonstrate in this section, we show that

interactivity is a key factor that makes it easy for users to understand the problems

and solve the tasks by building their own tacit knowledge.

4.1.1 Interactive Visual Analysis of Time-series Microarray Data

Improving medicine and human health is the primary goal of life scientists. To sig-

nificantly improve medicine and human health, a more detailed understanding of the

vast networks of molecules and interactions among these molecules as well as their

interactions with different types of drugs is required. A more quantitative knowl-

edge of dynamic gene regulatory pathways, i.e. the gene interactions through time,

can provide an understanding of the time-dependent enhancement and suppression of

gene activities and drug effectiveness. Dynamic modeling is a process through which

the future of a set of variables is predicted based on the present and past values of

the same variables as well as other variables. Such a modeling process not only allows

the investigation of time-based interactions among physical/biological phenomena but

also provides a framework to explore properties such as stability and dynamic net-

work connectivity. Using such a model one can predict, for instance, how a particular

drug can “turn on or off” a certain gene or group of genes and what combinations of

drugs may be more effective over a certain period of time. However, since dynamic

biological pathways involve highly complex interactions among the genes, visual rep-

resentations are necessary to facilitate the exploratory analysis and understanding of

these interactions.
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A clustering approach is the most popular method for discovering the global rela-

tionships among gene expressions or gene interactions [47, 43]. Even though it has

the advantage of having relatively low computational cost, it cannot be used to in-

vestigate and predict the time-dependent gene networks and interactions [95]. While

many different methods for DNA data analysis have been proposed (see details in

section 4.1.1.2), including several for microarray data, there is little work that has

been done on detailed analysis of time-series DNA microarray data [156].

In this section, we present a new visualization-based framework with emphasis

on temporal feature display and visual analysis on time-series microarray data. In

particular, the framework applies a gene regulatory pathway (e.g. gene regulatory

network) prediction method to predict the gene expressions over time. Although

similar in nature to the combined models in [92, 82], our method applies a clustering

method to group the gene pool into a number of biologically-meaningful clusters.

Then an Auto-Regressive (AR) model is used to relate the expression levels of each

prototype in time t to the expression levels of other prototypes in previous times.

The AR model is one of the broadly used linear prediction methods that predict the

output of a system based on its previous values [39, 40].

Based on our combined model (a mixture of clustering and AR model), the visual

analysis framework has been designed to support finding known and unknown gene

interactions as well as understanding individual genes in detail (The overall layout

of the visual analysis system is shown in Figure 7). In the framework design, we

define two steps: Visual Representation and Visual Analysis. Although both are

broadly used terms in the visualization domain, we define them as follows: Visual
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Representation serves the major role of displaying visual entities in a visual space (2D

or 3D) and Visual Analysis supports the user’s interactive understanding of visualized

entities and their relationships (see section 4.1.1.3 for detail).

In the following subsections, several design properties and techniques used in the

framework will be described further:

• Biological pathways and prediction techniques used in our model,

• Representation methods on gene interactions and clustered pathway information

over time,

• A novel overview and detail-view approach with which the user can employ

interactive analysis to create new understandings of dynamic pathways, gene

properties, and relationships,

• Design schemes used in the detail view to continuously reveal the patterns and

relations using simple graph drawing and pixel-based representation techniques,

• An integrated analysis tool that can be launched and whose results can then be

compared.

That this framework is both efficient and effective in the analysis of time-series mi-

croarray data as a complex multi-step process, is supported by the insights described

in section 4.1.1.8.

4.1.1.1 Related Work

There are a few studies focusing on the temporal regulatory properties of microar-

ray data. Some such approaches include: correlation analysis [47], Boolean Networks



34

Figure 7: The overall layout of the visual analysis system, which consists of two main
windows: one (left) is for showing regulatory pathway information depending on time,
and the other (right) is for providing interactive analysis of gene information using
pixel-based and line-graph visualizations and textual annotations.

[125], Bayesian Networks [52], Dynamic Bayesian Networks [100], etc. These methods

have proved to be useful in finding the regulatory network for certain applications.

However, considering the small number of time steps in typical microarray time series

and the large number of genes involved in many biological processes, the parameters

calculated in these methods may not be reliable [156]. Instead of using computa-

tionally complicated approaches, several researchers addressed the efficiency of using

signal processing models in understanding time-series microarray data [125, 39].

Although statistical methods and signal processing models are useful to under-

standing gene interactions and regulatory events, it is still difficult to utilize all fea-

tures in microarray analysis. To address this limitation, several pathway visualiza-

tion applications supporting the understanding of the functions of genes have been

designed. The most broadly used applications are KnowledgeEditor [139], GenMAPP
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[38], GeneSpring [124], PathwayStudio (Formerly known as PathwayAssist) [9], etc.

KnowledgeEditor is useful to model and analyze biological pathways directly creating

biomolecular network graphs in order to find molecular interactions, but it has no

prediction capability. GenMAPP is freely downloadable and widely distributed. It

visualizes gene expression data on maps representing biological pathways and group-

ings of genes. Commercial applications such as GeneSpring and PathwayStudio are

efficient at permitting the user to create her own gene pathways and find intercon-

nections between genes. Genespring in particular is designed to produce scatter plots

as well as correlation values. Although these tools are useful for certain microarray

analysis, they do not fully support understanding of gene interconnections in highly

interconnected pathways or analyzing time-series microarray data. Because of this

limitation, several researchers tried to design visualization applications supporting

the analysis of time-series microarray data.

Craig et al. [35] introduced a technique which displays all continuous temporal

features of microarray data. They designed a tool (called time-series explorer [36]),

with which users easily can find similar and important patterns on time-series data.

Peterson [102] addressed the difficulty of analyzing time-series microarray data by

proposing a technique which changes the coordinate system using principal com-

ponent analysis (PCA) in order to help in observing dynamic behaviors of the data.

Symeonidis et al. [129] designed a technique visualizing clusters of genes as a crossing-

free graph. Even though their work is good in understanding and finding the impor-

tant patterns on time-series microarray data, they have not addressed the needs of

predicting the pathway values and analyzing gene sequences.
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Due to the lack of suitable logical connections between existing analytical tools and

the visualization tools, the use of these visualization tools has not proved as insightful

as it could be. However, evaluation has been applied to provide the basic requirements

in considering HCI (Human Computer Interaction) methods for pathway visualiza-

tion systems [116]. Unfortunately, many of such requirements have not been followed

in existing visualization applications. Eisentein [48] described several technical fea-

tures that should be in microarray analysis applications and pointed out that “the

major objective of microarray experiments is not to generate endless spreadsheets and

scatter-plots, but to produce data that can be used to formulate an understanding

of biological events.” In designing our visualization system we have kept in mind all

these requirements and guidelines in order to maximize the user’s understanding of

biological interactions.

We use a signal processing model by combining an Auto Regressive (AR) model

[44] and a clustering method. In contrast to other methods, our model is useful

in analyzing and predicting the dynamic behaviors of time-series microarray data.

Even though the method is designed to predict the signal patterns and dynamic

interactions, understanding and analyzing the information produced by the model

may not be straightforward. In particular, concepts such as cluster prototypes, time

steps, and excitatory/inhibitory interactions need to be effectively presented to users

[156]. To address these needs, we use interactive visualization techniques to find

important patterns, preserve temporal features of time-series microarray data, and

analyze gene expressions interactively.
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4.1.1.2 A Dynamic Model

To develop a dynamic model of gene regulatory interactions, we have created a

combined technique consisting of Auto Regressive (AR) modeling [44] and a clustering

method. Since almost all biological pathways are composed of a large number of

genes, the approach of applying the AR model directly to the individual genes is

not computationally feasible. That is, the number of genes in a biological process is

often so large that it is impossible to develop reliable AR models for the typically

short time-series microarray data while directly incorporating all genes as individual

AR variables. To address this issue, we exploit the fact that many genes behave

very similarly in the biological sense and therefore can be clustered together before

dynamic modelling.

As a pre-processing step, K-means clustering is used to group the gene pool into

a number of biologically meaningful clusters. Each of these gene clusters is repre-

sented by a prototype that reflects the overall time trends of the cluster. After the

preprocessing step, the AR model is applied on each cluster as opposed to individual

genes. Since the number of clusters is small enough, the AR model can be reliably

developed for the prototypes. The model relates the future expression level of the

prototype clusters to the values of the prototypes in past time step (t). The model

also considers uncertainty inherent to the model by considering a noise factor (e). In

its most general form, the model is a linear system of difference equations:
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yi(t) = −ai11y1(t− 1)− . . .− ai1n1i
y1(t− n1i)

−ai21y2(t− 1)− . . .− ai2n2i
y1(t− n2i)

. . .

−aip1yp(t− 1)− . . .− aipnpi
y1(t− npi) + ei(t) (8)

where yi(t) is the expression level of prototype i at time t, nji is the maximum

time span of the interactions between prototype of cluster i and prototype of cluster

j, coefficients aikj’s are the parameters of the model, and ei(t) is the noise factor.

In here, we use a dataset containing the time-series expression values of approxi-

mately 200 genes involved in the cell cycle of the budding yeast S. Cerevisiae [29].

The gene expression values were collected in 17 time points. It is known that there

are five major phases in cell cycle development: Early G1 phase, late G1 phase, S

phase, G2 phase and M phase. In each phase only genes whose biological functions

correspond to the changes occurring in that phase are active. Based on the known

biologically-distinctive functions of these five phases, it is reasonable to cluster the

genes into five clusters. The results show that the model can very accurately predict

the expression values of almost all genes in the future steps (see [39] for detail).

The main application of this dynamic modeling method is twofold. First a dynamic

regulatory network governing the quantitative interactions among the prototypes of

the main biological trends can be obtained, i.e. the model discovers the effects of each

gene group on itself and on other groups in time. Secondly, by using the resulting
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dynamic network, the expression level of each gene at time t can be predicted based

on its expression level and expression level of other genes.

4.1.1.3 Designing a Visualization Model

We define several major steps to be followed and use them to form our system

(Figure 8).

Figure 8: Major steps in visual analysis of time-series microarray data.

In microarray data analysis, one must find the biological meanings of the discovered

genes. To support finding the biological meanings, two different approaches, gene

sequence analysis and statistical analysis, are typically used. Sequence analysis is

performed on the gene sequences to find similar sequential patterns or regulatory

sequences, some of which have been previously studied and annotated. Statistical

analysis is done using microarray data to identify the regulatory networks or cyclic

genes. While statistical analysis can be performed alone without understanding the

gene sequences, it is still necessary to consider the gene sequences because sequence

analysis can assist in finding the most related genes (regulatory sequences) to the

biological system and provide the molecular basis for understanding the detailed gene
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interactions. Therefore, gene sequence analysis and statistical analysis on microarray

data often have to be performed together to understand gene function in detail [127].

This process is usually followed iteratively until relevant knowledge is found. The

knowledge must then be generalized to help other research scientists understand fully

the meaning of the genes; identified cyclic genes, regulatory events of activation or

inhibition, etc.

In particular, we design methods supporting each analysis in Figure 8 and the

overall iterative process. Specifically, we define two steps as Visual Representation

and Visual Analysis in our system.

Visual Representation is a preliminary step which can provide the user a general

understanding of biological pathways in display space. Since biological pathways are

highly complicated, we use both 2D and 3D representations. These representations

are designed for interactive analysis. In the 3D view, the analyzed data (clustered

pathway information) are directly mapped to the visual attributes, while interactive

analysis of the genes is shown in the 2D view. Temporal attributes in time-series

microarray data are carefully managed by preserving clustered gene expressions in

the 3D view as well as each gene’s individual expressions in the 2D view. The major

advantage of using a 3D representation is to increase the possibility of integrating

additional visual relations and information into the representation [138]. Animation is

added to maximize efficiency and create a better understanding of data [112] because

it creates an additional display dimension [154]. However, 2D representation has

an advantage of understanding a gene’s detailed biological meanings. Pixel-based

gene representation and Positioning are applied to support discriminating a gene’s
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properties and understanding its relationships respectively.

Visual Analysis is necessary to support exploration of interactions among clusters,

to increase the capabilities of both exploratory and focused analyses of gene inter-

actions, and to overcome the limitation of cluttered displays. Four different visual

interactions are used to facilitate analysis: labeling, detailing, navigation, and fo-

cusing & linking. Labeling displays a simple description in areas of focus. It helps

in discriminating the information in highly cluttered display. Detailing interactively

provides the user with enriched knowledge when requested. Navigation gives the user

the ability to move through the visual layouts at different scales or extents. Focusing

& linking allows comparison between genomic data to find similar patterns [18].

Based on the above considerations, the visual interface is designed as shown in

Figure 7. It has two windows. The user starts with exploration of the cluster time

series in the 3D view. As the user focuses on time steps, clusters, or individual

genes, the 2D view is dynamically updated. The user moves back and forth between

these windows as she explores and analyzes. Detailed descriptions of visualization

approaches as well as this highly interactive, iterative process are provided in following

sections.

4.1.1.4 Visual Representation

4.1.1.4.1 Visualization of Clustered Gene Expressions

Most microarray visualization applications use a visual form (e.g., glyphs) to rep-

resent abstract information. But there are limitations to what can be accomplished

due to limited display space and the scale and richness of detail of the data [116].



42

Several information visualization techniques are relevant to this problem, such as

Overview+detail [138], Focus+context [106], and Pad++ [11]. Multi-scale visualiza-

tion techniques are appropriate to manage large and complex microarray data [116].

Following this path, our framework uses multi-scale visualization [65] to effectively

and efficiently manage and increase understanding of the large-amount of microar-

ray data. In this section, we will explain in detail how we use this framework for

displaying microarray data.

(a) (b) (c) (d)

Figure 9: (a) Sketch of time-series gene networks for analyzing cluster number 1; (b)
static graph prototype at 6th temporal point; (c) direct mapping onto 2D; (d) 3D
mapping in context of all time steps.

A 3D representation method is used to show the time-series microarray data. How-

ever, since the 3D display can produce clutter, the selected gene expression values

are laid out simultaneously in 2D (Figure 9). The 3D representation is efficient in

showing the gene expressions at the successive time step where the current expression

level of prototype i at time t has a regulatory relation (activation or inhibition) with

the prototype j at time t−1. Each prototype is regarded as a cluster and represented

as a 2D circle or 3D sphere respectively in 2D or 3D view. The perspective view

in 3D representation permits the user to maintain an overall context in time while

exploring dynamic interactions in detail.
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The radius of the cluster represents the normalized mean value of the clustered sig-

nal pattern. Thus a bigger sphere or circle represents stronger overall contributions

of the cluster to the regulatory network at that time step. Also each cluster makes

use of a color coding [119] to enhance visualization of cluster values. When selected,

a cluster changes color to blue. Transitional arrows colored blue indicate positive

transitional pathways (activation) between cluster spheres, and arrows colored red

indicate negative transitions (inhibition). That is, the transitional arrows show con-

trols of one cluster over another with blue indicating enhancement of gene expression

and red indicating suppression. The self-transitional loop indicates a control of the

cluster on itself. With this simple palette, users can quickly discern important path-

way differences and the state of the regulatory network over time. The user can also

select individual arrows for quantitative information.

As shown in Figure 7 (left), the layouts are accompanied by a temporal slider bar

at the bottom left that supports animation corresponding to time-series steps, in

particular dynamic animation of cluster pathways over time. The slider bar ranges

over all time steps in the dataset. In the bar, the time series is colored along a gray

scale from white (17th time step) to dark gray (1st time step). As Wright [154] points

out, animation can be an additional dimension to support displaying and analyzing

information datasets in 3D view. Also, it provides a natural mapping between time

and saturation that allows the user to identify positions in the temporal space while

permitting color to be used for other information display. When the user makes a

selection on the bar, a thin blue semi-transparent box appears at the selected time

step. If the user drags the mouse along the slider bar, the box moves accordingly
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along the time steps. Alternatively, the user can grab and drag the box directly.

In either case an animation showing changes over time is produced. In addition,

selections can be made within the box (e.g., a cluster is selected and its transitional

arrows displayed). These selections are then maintained at later or earlier time steps

as the box is moved around. By employing this animation capability, the user can

quickly analyze and compare behavior in time with minimal effort [112, 17].

4.1.1.4.2 Visualization of Individual Gene Expressions within Clusters

As mentioned earlier, finding biological meanings is important in microarray data

analysis. Even if the visual layout described above gives the user a quick overview

of the dynamics of the gene regulatory network, significantly more details (gene se-

quences, interactions, regulatory behaviors, etc) are needed to understand each gene.

In general, gene (or protein) sequences range about a few thousand units in length.

To manage data for a single protein sequence and provide contextual pattern infor-

mation in a useful way, a pixel-based gene representation method is used. To support

a better understanding on gene interactions and regulatory behaviors, MDS [5] is a

useful technique to effectively represent high dimensional data in lower dimensional

space. In display space, each gene is positioned depending on its interactions and

regulatory behaviors. All these representations are laid out in their own sub-windows

in the right window of Figure 1. The user can select and bring forward the particular

sub-windows desired for current exploration. Additionally, several interactive anal-

yses are provided to increase the understanding on time-series microarray data and

gene interactions. In this section, techniques used for designing this framework are
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described in detail.

4.1.1.5 Pixel-based Gene Representation

The pixel-based gene representation is designed to reveal the features of gene se-

quences. To map from gene sequences to pixels, space-filling methods [77] are quite

useful because they produce spatial patterns that have consistent locality, even for

long gene sequences. Several methods of this type have been designed. Here we use

a Hilbert curve ordering method [16] to arrange sequence information mapping with

color information, since it has the advantage of providing continuous curves while

maintaining good locality of sequence information.

For mapping with gene sequences, we set the Hilbert curve order to 12 which covers

212× 212 sizes of gene sequences. Color coding is then used to represent the sequence

information. DNA is a linear polymer made up of sequences of four nucleotide bases:

adenine, guanine, cytosine, and thymine - designated A, G, C, and T. Gene regulatory

pathways can involve hundreds or more genes from which different proteins can be

expressed. Hence, two different color mapping approaches have been made, one for

the gene sequence and the other for the expressed protein. Originally, pixel-based

visualizations on large scale of data were pioneered by Keim et al. [78, 77]. And a

pixel-based gene representation method has been suggested by Wong et al. [153]. But

they did not concern themselves with finding an efficient color coding for the gene

sequences.

For determining the correct color codes, four commonly used color maps used by

other researchers were tested on the gene transcription complex SWItching deficient
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(SWI4)2, a protein involved in the budding yeast S. Cerevisiae, in order to find the

best-mapped color codes. All images in Figure 10 are generated using Hilbert curve

ordering.

(a) (b) (c) (d)

Figure 10: Pixel-based gene (SWItching deficient (SWI4)) representation with several
different color codings; (a) A (white), C (yellow), G (orange), T (dark brown) [153],
(b) A (orange), C (blue), G (purple), T (yellow) [114], (c) A (green), C (blue), G
(black), T (red) [113], and (d) A (red), C (blue), G (green), T (yellow) [110]. Black
space located in left bottom of each image represents the empty part of the space-
filling curve.

Figure 10 shows mapped images with different color codes. But it is difficult to

understand clearly the represented patterns and features in the sequence. Therefore,

a pixel enhancement technique (initially proposed by Wong et al. [153]) is applied

in order to find the best color mapping method. The pixel enhancement technique

consists of three steps. First, a Gaussian filter is used to smooth the high-frequency

values. And then histogram equalization is applied to modify the dynamic range

and the contrast of an image depending on color channels (for example, R, G, and B

channels). Finally, saturation values are increased using extrapolation as a saturation

adjustment technique.

Even though all pixel-enhanced images have similar results (Figure 11) with respect

2SWI4 acts as a transcriptional activator to regulate late G1-specific transcripts in budding yeast
required for DNA synthesis and repair.
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Figure 11: Rows represent several image processing filters and a pixel enhancement
method are applied to pixel maps shown in Figure 10 (represented by columns). (a)
Gaussian filtering, (b) Histogram equalization on red channel, (c) Histogram equal-
ization on green channel, (d) Histogram equalization on blue channel, (e) Merged all
color channels, (f) Saturation adjustment is applied with the saturation value of 2.5
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to the patterns in terms of R, G, B color channels, the pixel representations in the

3rd column of Figure 11, using color codes from (c) in Figure 10 (A (green), C (blue),

G (black), T (red)), show consistent patterns in all 3 channels. Furthermore, merging

all channels and applying saturation adjustment (Figures 11(e) and 11(f)) show in

clearest detail which area of the image has denser information for adenine, guanine,

cytosine, or thymine, and what its shape is. We thus apply the result of Figure 11(f)

in the following. To arrange the gene images in 2D view, we must next apply MDS,

as discussed next.

It is important to note that this is a simple way to construct gene images. More so-

phisticated methods, which might take into account sequence structure and meaning,

could be applied. However, the pixel mapping would be the same.

4.1.1.6 Data Positioning in 2D View

In our framework, we use nonmetric multidimensional scaling [143]. Based on this

method, the dimensions of time-series data (17 dimensions of timestamps) and gene

sequences (4 dimensions of nucleotide bases) are changed to two dimensions.

In each case, the first step is to find a monotonic relationship between the dis-

similarities. The relationship is typically found using isotonic regression. In our

application, we use Kruskal’s nonmetric phase [143] as isotonic regression. For the

case of gene sequences, we opted for a simple approach that references the numbers of

nucleotides when finding the relationship. First, gene sequences are counted in terms

of adenine, guanine, cytosine, and thymine. Based on the counts, the relationship

is determined. Finally, all gene sequences are mapped onto 4 dimensional distance
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matrixes and MDS is applied to map pixel-represented genes (glyphs) to a 2D display

space. Even though more detailed measures of relationship on gene sequences could

be applied, this approach is quick and gives a rough idea of contextual similarity.

(a) (b)

Figure 12: Local similarities of time-series data within a cluster group (a) and global
similarities of all time-series data (b). Each circle indicates time-series data of each
gene and the highlighted circles in figure (b) indicate the data having the same clus-
tered group in figure (a).

Two different MDS representations are considered with respect to the time-series

data. One representation shows local differences among genes in the same cluster

group (Figure 12(a)), while the other shows global differences among all genes in all

the clusters (Figure 12(b)). Selections in Figure 12(a) are then highlighted in Figure

12(b). In this way the user always has a view available that emphasizes local and

global changes over time. The user can then switch attention to a more detailed view

for a selected time step (Figure 13), where the circles are replaced by glyphs.

In Figure 13, two different glyph forms are used, the pixel-based representation

of gene sequences and a simple line graph representing the time-series microarray

information. As described above, our visual analysis method is closely tied to the

dynamic pathway prediction model. The line graph display for each gene, where
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the gene expression level is plotted along the vertical axis and the time steps along

the horizontal axis, provides an option that emphasizes each gene’s time history.

Distances between genes are then measured according to the similarity of their line

graphs. Hence, there are 4 possible ways to construct gene expression patterns, as

indicated in Figure 13.

(a) (b)

(c) (d)

Figure 13: Glyph representations of (a, b) pixel-based gene sequences and (c, d)
graph-based DNA microarray time-series information. Both local analysis (a, c) and
global analysis (b, d) are given. Highlighted glyphs in (b, d) indicate the genes located
in the selected cluster with respect to other genes.

From Figures 13(a) and 13(b), it is seen that spatial distributions of the local and

global gene representations are not much different. But the spatial distribution of

the graph-based representations (Figures 13(c) and 13(d)), show major differences
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between local and global analysis, with the latter case producing highly clumped

results. It is thus clear that clustered data should be analyzed for both local and

global patterns, considering both gene sequence (pixel-based glyphs) and time series

(line graph representations), since these bring out different aspects that can be used

to bring out differences and similarities in gene structure, function, and regulatory

behavior. This point is illuminated further in section 4.1.1.7. Visual Analysis methods

discussed next enrich these capabilities.

4.1.1.7 Visual Analysis

Interaction is a very useful exploration and discovery tool for large scale or complex

data. In our visual analysis framework, we apply several interaction methods such

as labeling, navigation (panning, zooming, and scaling), detailing, and focusing &

linking. In this section, the interaction methods are described.

Labeling To heighten the knowledge content of the glyph representations in Figure

13, we need to have a way of showing brief annotations for specific genes such as sci-

entific name, gene expression values, regulatory events, etc. The method of excentric

labeling has been explored for textual labeling [50]. It uses the technique of directly

attaching a focus region to the cursor, and annotations are shown whenever the cur-

sor is passed over glyphs. Although several different excentric labeling techniques

have been proposed [50], there are still some drawbacks with respect to cluttering

due to annotations. Also, the method is not able to show the gene regulatory events,

and context may be lost since the annotations appear and disappear as the cursor

is moved. Therefore, we have designed a modified labeling technique which adopts
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the position-shifting operation [30] to show textual information without cluttering.

Manual position shifting is a broadly used technique because it is especially useful in

controlling labels in dense information visualizations. But it requires user efforts to

manually shift the annotations. Instead of using the manual operation, our approach

uses an automatic shifting method. The size of the overlapped region between labels

is measured, then, using a strength based on this size, each label has a repulsive force

against any overlapping label, so that the labels are pushed apart. This reduces the

need for user attention and effort and permits the high value annotation knowledge

to flow unimpeded to the user.

The labels can contain a variety of information. Here the labels contain gene names

and, in the case of the line graph representation, arrows indicating the point in the line

graph corresponding to the current time step (Figure 14) which supports analyzing

the microarray time-series details and relations.

Figure 14: A modified excentric labeling provides labels in a focus region. The focus
region dynamically changes its location while the cursor moves over the display. La-
bels of the objects located in the focus region are updated smoothly and dynamically
depending on the focus region.

Additionally, the labeling technique supports changing the size of the focus region

centered on the cursor, with which it is useful for showing labels when the scale of the

glyphs is modified or when the user is interested in a larger or smaller region. The
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effective rearrangements and smooth transitions caused by the force fields help the

user maintain context and keep track of new annotations even under continuous cursor

movement. All these capabilities are incorporated in the navigable view (Figure 15).

Navigation Zoom and pan navigation within the detail view is designed based on

the “Pad” [99] metaphor and its extension, Pad++ [11, 54]. In this metaphor, the

visual space is considered as an infinite 2D plane (called Pad), which can be stretched

by orders of magnitude at any point to investigate details. In our previous design of

a genomic visualization system, GVis [65], we found that the technique provides an

important capability for finding details and relations at all scales within a context of

thousands of genomic data.

Figure 15: Navigation in the zoomable space provides the capability for smoothly
finding and examining interesting data objects in overview (left) or close-up (right).

By using the Pad++ metaphor, a user can easily compare objects’ patterns and find

their differences over the whole object space and at multiple scales through successive

pans and zooms. Figure 15 shows zoomed-out and zoomed-in navigation states. When

the glyphs are in the zoomed-out state, we can find the overall arrangement of the

gene expressions with respect to each other. Upon zooming in, we can take a close
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look at the various glyphs to find complete details in the gene expressions.

Figure 16: Scaling makes it possible to see the detail of glyphs without disrupting
their location information.

Scaling is included in the navigation interactions and is quite useful since it shows

the glyphs at larger or smaller scale without changing their positions or the viewpoint

and retaining the overall pattern. Scaling can avoid or reduce overlaps, or increase

glyph sizes to show details, as shown in Figure 10. Even though navigation and

scaling work well in avoiding overlaps in the display space, there are still cluttering

problems where elements are highly correlated and thus close to one another. To

minimize this problem, we permit the reordering of overlapped glyphs in display

space. Selected glyphs can be moved to the front or back with respect to the user’s

viewing perspective. In this way a clear view of the details of a glyph can always be

obtained.

Detailing Since genomic data may contain large amounts of knowledge on sequence,

active sites, expressed proteins, etc., it is necessary to present this information as

needed. For best focus and efficiency, we provide these annotations in detailing win-

dows within the display and attached to the relevant gene glyphs. These pop up in a
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“details on demand” mode, upon selection. (See Figure 17(a)).

Figure 17: Representations of information about the selected genes. (a)Additional
information will be given for further understanding of the selected genes. (b and
c)pixel-based gene representations and line-graph visualization are used at the same
time when analyzing genes.

Each window has a standard format for the text record of the item, including

the standard name, the original DNA reference name, the sequence start and end,

the gene’s function, the proteins it creates, and so on (Figure 17(a)). By panning

or scrolling within the pop-up window, text of any length is accessible to the user.

The windows align themselves dynamically in the 2D space, near the glyphs they

represent, so that overlap is minimized as several boxes are opened. Each window

can be positioned into another location by dragging it. It also can be scaled up or

down to show the text information more clearly or to avoid overlaps.

Focusing & Linking To support gene analysis, the pop-up window has buttons for

pixel-based visualization, line-graph visualization, and BLAST. The BLAST but-

ton launches the sequence analyzing tool called BLAST (the Basic Local Alignment

Search Tool), as described further below.

Figure 17(b,c) shows that this provides a fast and comprehensive view of the avail-
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able gene sequence information permitting, for example, comparison between pixel-

based and line graph views for any gene or gene collection. This close comparison

can extend to two or more gene sequences.

Figure 18: The BLAST outputs are shown with protein and nucleotide sequences
(left); a close-up of BLAST output (right) shows similar sequences aligned for com-
parison. The window has a capability of scaling the output to show in detail.

As mentioned above, our application incorporates a widely used sequence matching

tool, BLAST, which detects relationships among sequences that share only isolated

regions of similarity [8]. The National Center for Biotechnology Information (NCBI)

provides BLAST utilities such as network-based BLAST, stand-alone BLAST, etc.

When the BLAST button is clicked, network-based BLAST is launched and searches

for similar alignments in the NCBI database. Depending on the option selected,

results are provided either in terms of alignments with the selected nucleotide sequence

or its expressed proteins, which are then displayed in the pop-up window (Figure 18).

The outputs are aligned in a graphical representation that permits the user to get

overviews or detailed comparisons by zooming in or out. This is especially useful

when finding regulatory elements among genes that were indicated in the time series

line graphs.
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To complete the interactive analysis framework, we have incorporated the GVis

system [65]. GVis supports in-depth study of the structure and function of the or-

ganisms, genes, and their expressed proteins involved in the dynamic regulatory path-

ways. This study provides the user with a natural, more detailed follow-on to the fast

exploratory analysis carried out with the above interactive tools. Thus GVis automat-

ically takes genes selected from the above analysis and provides detailed comparison of

their fully annotated gene environments with any other genome environment (which

may be selected by iterative applications of BLAST or other comparative analysis

tools). GVis is capable of permitting interactive exploration of tens of thousands (or

more) of genomic data from overviews down to the level of the annotated nucleotide

sequences.

4.1.1.8 Building up the Biological Insights

In this section, we explore what kinds of biological insights can be gained when

using our framework by presenting some results from visual exploration of the mi-

croarray analysis of gene regulation in budding yeast S. Cerevisiae.

The user starts by exploring the time series data using the left side of the interface

in Figure 7. When she focuses on particular genes, the predicted regulatory pathways

are displayed on the right side of the interface in Figure 7 in order to provide a

detailed view of dynamic gene regulation. As the user zooms in, the pathway values

are automatically shown when the scale of the window is large enough to display them

on screen. Figure 19 shows successfully predicted regulatory pathways alongside the

actual observations. This demonstrates that the predicted pathways can be used even



58

Figure 19: Two different ways of representing methods: gene expressions of CDC20
(Cell Division Cycle) in cluster 5 (left) and CLN2 (CycLiN ) in cluster 1 (right). Red
indicates the predicted values and black represents the original data.

in the absence of the observations. In the predicted pathways, it is important to note

that there is a one-step delay in computing the effect of all prototypes on time-series

microarray data (i.e. the prototypes determine the expression value of the cluster

prototype 1 in the next time point). Thus the predicted curve is shifted with respect

to the observations.

In the framework, we provided two different distance-based visualization approaches,

direct mapping with cluster information and data positioning with multidimensional

scaling. As she explores further, the user brings up these distance-based visualiza-

tions, which provide useful insights as described next.

Figure 20 shows two different visual layouts of gene expressions. Even though the

genes are nominally different from each other, the visualization indicates that the

genes in question have similar pathways or patterns. This is important knowledge for

directing further investigations. In the left-hand case, we find there is a close-relation

between the genes SEC2 (SECretory) and UNG1 (Uracil DNA N-Glycosylase). It is



59

Figure 20: Similar gene expressions (left) and sequence information (right) are posi-
tioned close to each other in visual space.

known that SEC2 and UNG1 have the same upstream3 of the ATG start codon [151].

On the other hand, in the right-hand case the genes PCL2 (PHO85 CycLin) and

RGT2 (Restores Glucose Transport) have different molecular functions even though

they have similar sequences [131].

This example shows how interactive visualization supports rapid and efficient ex-

ploration of the data followed by zooming in on subtle but important similarities

and differences. The user can then build on these insights by comparing with other

regulatory behavior, looking closely at the annotated gene sequencing or protein ex-

pressions, as in Figures 17-18, or launching BLAST to bring up other annotated genes

or proteins for comparative analysis.

Finally, we did some preliminary evaluations with bioinformaticists that found

some strengths and weakness about the application. Strengths are (1) the capability

of using both sequence analysis and pathway analysis in the microarray data, (2) the

ability of discriminating the gene interactions in terms of local similarity and global

similarity, and (3) predicting the pathway values in future time-stamps. Especially it

3Each strand of DNA or RNA has a 5’ end and a 3’ end. Upstream is the region towards the 5’
end of the strand relative to the position on the strand.
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has been noticed that sequence analysis while doing pathway analysis might usefully

lead to further analysis on the gene itself. But further study has to be performed

in determining the full use of sequence analysis in pathway analysis. Even though

predicting pathway values is quite useful to drug discovery, fully understanding the

concept of predictions in 3D and 2D visual layouts is difficult. Also 3D representation

is useful to understand the concept of pathway analysis, but it has some limitation

in the manipulating of the 3D visual layout with a 2D mouse.

4.1.1.9 Discussion

We designed an interactive analysis framework, with which the user can develop

understanding of the dynamic regulatory pathways among genes by using visual anal-

ysis coupled with a prediction method. The framework implements a powerful inte-

grated analysis that supports both understanding of the gene interactions over time

and the understanding of gene function and structure (through comparative anal-

ysis). To support the analyzing procedures, we developed visual analyses in terms

of two design steps, Visual Representation and Visual Analysis. In the framework,

several interactive analysis features are provided: time-based cluster visualization,

pixel-based visualization, simple line-graph layouts, multi-layered navigation tools,

and sequence analyzing features. With these features, a user can quickly and effec-

tively move among different perspectives to build an understanding of the time series

structure, the gene interactions, their annotations, and their functional meanings.

We have given a brief example of how these biological insights can be obtained for

a particular gene regulation analysis. This integrated approach is quite important
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because it supports what the analyst must do anyway and, up to now, has had to do

laboriously without an integrated set of tools.

4.1.2 iPCA: An Interactive System for PCA-based Visual Analytics

Principle Component Analysis (PCA) is a widely used mathematical technique

for high dimension data analysis. Just within the fields of computer graphics and

visualization alone, PCA has been used in many different research areas [74]. At

its core, PCA is a method that projects a dataset to a new coordinate system by

determining the eigenvectors and eigenvalues of a matrix (Figure 21). This method

finds the factors which explain the most variation among data points.

Although PCA is a powerful technique capable of reducing dimensions and revealing

relationships among data items, it has traditionally been viewed as a “black box”

approach that is difficult to grasp for many of its users [74, 122]. The process and

result of the coordinate transform from original data space into eigenspace in PCA

makes it challenging for the end user to identify the relationships between the input

data and the data after the projection into eigenspace. This is especially problematic

for novice users and students who need to use PCA but do not yet grasp how it

works. Without a certain amount of background knowledge in the math behind PCA,

it is often difficult for the user to perform effective analysis both in understanding

how the original data items transform between coordinate systems and how the data

dimensions relate to the principle components.

In order to assist the user in better understanding and utilizing PCA for analysis,

we have developed a system called iPCA (interactive PCA) that visualizes the results
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of principle component analysis using multiple coordinated views and a rich set of

user interactions. The four coordinated views in our system visualize the data items

in original data space (Data View), the data items in eigenspace (Eigenvector View),

the data items projected onto two principle components (Projection View), and the

correlations between all data dimensions (Correlation View). User interactions in one

view are immediately reflected in the others so that the user can easily identify a data

item or a data dimension in the original data space and its counterpart in eigenspace.

To demonstrate the effectiveness of iPCA, we performed a comparative user study

with a well-known commercial system called Interactive Data Exploration, which is

part of SAS/INSIGHT. The two systems are similar in that both systems use the

same mathematical functions for performing PCA calculations, but they differ in

their approaches to interface and interaction design. While the visualizations and

interactions in our system are fluid, dynamic, and coordinated, in SAS/INSIGHT, a

more traditional menu-driven and command-line approach forms the basis of inter-

action. Using SAS/INSIGHT, the user iteratively inputs parameters into the system

before clicking on a button (or typing in a command) to initiate the PCA process

and generate the results as static images and charts.

Our user study involved 12 participants performing complex analysis tasks on high

dimensional data using both iPCA and SAS/INSIGHT. We quantitatively measured

the accuracy and speed of the users’ analyses, and asked the participants for qualita-

tive feedback on ease of use, preference, and effectiveness. Based on the quantitative

results of the user study, we find that users were faster and more accurate in analysis

tasks using our system. Participants’ feedback indicates that our system better facili-
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tates the understanding of PCA, is more intuitive to use, and is unanimously preferred

over SAS/INSIGHT. Many participants attributed the success of our system to its

high interactivity and transparency, which suggests that our system is successful in

opening up the “black box” of principle component analysis.

(a) (b) (c)

Figure 21: Examples of PCA with public Iris dataset [10]. A generic representation
of data with the first two principal components (a), and 2D (b) and 3D (c) represen-
tations with principal components and the coefficients for each variable. The red dots
in (b) and (c) indicate individual data items and blue lines represent the coefficients.

4.1.2.1 Related Work

PCA has been applied in many disciplines for various purposes. In visualization,

PCA is used mostly for dimension reduction. For example, Hibbs et al. [64] apply

PCA to visually analyze microarray data. Wall et al. [145] demonstrate how to vi-

sualize gene expression data using PCA and how to interpret the results. However,

while PCA is popular and effective as a tool, there have been few available products

or research projects on assisting the understanding of PCA results. Mathematical

applications such as MATLAB [133] and SAS/INSIGHT [118] can perform PCA and

visualize its results accurately. An open-source visualization tool, GGobi [132], sup-

ports interactive analysis of data through PCA and can be linked to R (Statistical

Computing Software) for additional statistical methods. Müller and Alexa [93] de-
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veloped a system which allows the user to visually detect and create clusters of data

elements in the PCA space. Müller et al. [94] further enhanced conventional infor-

mation visualizations with PCA and demonstrated that this combination improved

data analysis. All these PCA-based tools are powerful and employ various visual-

ization techniques. However, they also share the same goal of utilizing PCA with

the assumption that users are experts at mentally transforming data elements from

their original space into the projected PCA space. Our work differs in that we intend

to use interaction to make the transformation of coordinate spaces intuitive to both

novices and experts, and to show that by opening this “black box,” users can gain a

deeper understanding of data analysis using PCA.

Interaction plays an important role in visualization for assisting users in under-

standing their data. Several user evaluations have found a benefit for interactive

visual systems over traditional iterative input systems in understanding and using

data. Ahlberg et al.[7] study the difference between using dynamic sliders and tradi-

tional text entry to visually explore periodic table data. They find that participants

are faster with the dynamic slider interface on some but not all of their tasks. How-

ever, they do not find a clear difference in the participants’ subjective evaluation of

the interfaces.

More recently, Callahan and Koenemann [23] compare an interactive visual tool,

InfoZoom, against two traditional interfaces for online catalog browsing. With Info-

Zoom, users are more likely to complete tasks faster. The users also report higher ease

of use and efficiency than traditional interfaces. In contrast, Combs and Bederson [32]

compare a zoomable image browser to a static image browser and find no difference in
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Figure 22: The system overview (left) showing the four views and the two control
panels with the E. Coli dataset, and three examples with the Iris dataset (right). (A)
Projection view. Data items are projected onto the two user-selected eigenvectors (in
this case, the primary and secondary principle components). (B) Eigenvector view.
Each eigenvector is treated as a dimension in this parallel coordinates view, and every
data item is drawn as a line. (C) Data view. Another parallel coordinates view, but
this time each dimension represents the dimensions in the original data, and each line
represents each data item. (D) Correlation view. Pearson-correlation coefficient and
the relationships (scatter plot) between each pair of variables are represented. (E)
Dimension sliders. Each slider controls the amount of contribution of a dimension in
the PCA calculation. (F) Control options. (G) shows the result of diminishing the
first dimension (Sepal length) of the Iris dataset from 100% to 0%. The trails show
how the data points move in PCA space in response to the change. The images (H)
and (I) show 10% uncertainty in the data (in all dimensions). The possible locations
for each data point are drawn in a hypercube (H) and in outlines (I) corresponding
to the number of data item(s) selected.

performance, although users tend to (non-significantly) prefer the zoomable browser.

Unfortunately, while these studies inform us of the value of interaction, the tasks are

simpler than asking users to perform complex analysis using PCA. Although some

research studies [117, 121] have been performed to understand the effects of inter-

actions in a more complex analysis task, these studies are narrowed to finding the

effectiveness and the limitations of their applications.
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4.1.2.2 Interface Design

The overall interface design of our system, iPCA, is based on multiple coordinated

views. Each of the four views in the system represents a specific aspect of the input

data either in data space or eigenspace, and are coordinated in such a way that any

interaction with one view is immediately reflected in all the other views (brushing

& linking). The coordination between the views depicts the same data item or data

dimension in both data space and eigenspace simultaneously, thus allowing the user

to infer the relationships between the two coordinate spaces.

Along with two control panels, iPCA contains four distinct views: the Projection

View (Figure 22A), the Eigenvector View (Figure 22B), the Data View (Figure 22C),

and the Correlation View (Figure 22D).

Projection View Two principal components (by default, the first and second most

dominant eigenvectors) are used to project data points onto a two-dimensional coor-

dinate system.

Data View The Data View is located below the Projection View, and shows a par-

allel coordinates visualization of all data points in the original data dimensions. In

this view, an auto-scaling function is applied to increase the readibility of data.

Eigenvector View In the Eigenvector View, data points are shown in the eigenspace.

The calculated eigenvectors and their eigenvalues are displayed in a vertically pro-

jected parallel coordinates visualization, with eigenvectors ranked from top to bottom

by dominance. The distances between eigenvectors in the parallel coordinate view

vary based on their eigenvalues, separating the eigenvectors based on their mathe-



67

matical weights.

Correlation View Pearson-correlation coefficients and relationships between vari-

ables are represented in the Correlation View as a matrix of scatter plots and values.

Since correlations between dimensions are symmetric, repetition is avoided by sep-

arating the matrix into three components: the diagonal, the bottom triangle, and

the top triangle. The diagonal displays the name of the dimension as a text string.

The bottom triangle shows the coefficient value between two dimensions with a color

indicating positive (red), neutral (white), and negative (blue) correlations. The top

triangle contains cells of scatter plots in which all data items are projected onto the

two intersecting dimensions. The colors of the data items are the same as the colors

used in the other three views so that clusters are easily identified.

It is relevant to note that the selection operation in all views and the zooming-in

mechanism in the Projection and Correlation views help users to focus their interest

on a data item or items. Also, the Projection View and the Correlation View can be

switched such that the Projection View takes up the lower right hand position and

the Correlation View fills the main display. This simple switch operation allows the

user to utilize the visual real estate for focusing either on a single projection of data

or to examine in detail all (or one) scatter plot(s) in the Correlation View.

The two control panels include a set of dimension sliders (Figure 22E) that can be

used to decrease or increase the contributions of each of the original data dimensions,

whose purpose will be discussed further in the following section (section 4.1.2.3).

Several additional modes can also be specified in the other control panel to enhance
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understanding of the visual changes during data analysis (Figure 22F). The user

can enable trails so that the path of each data point’s recent motion is painted to

the screen, making the movement of each point during interaction operations more

apparent. The user can also choose to show uncertainty (Figure 22H and I) by

setting a percentage of possible error in the dataset, which is reflected as bounding

boxes around data items in the Projection View.

4.1.2.3 Interaction

Since iPCA is designed with high interactivity in mind, the types of available

interactions are carefully considered. We categorize all the interactions in iPCA into

two groups: interactions with the views, and interactions with PCA. Interactions with

the views are operations that do not result in PCA calculations, and include brushing,

filtering, zooming and panning, etc; whereas interactions with PCA will result in new

PCA calculations, including operations that change the weights of dimensions, move

data points in either data space and eigenspace, and removal of data points. Both

types of interactions are embedded in the coordinated views such that all views react

to all interactions.

4.1.2.3.1 Interacting with the Views

Interactions in this category are operations that do not cause the system to re-

compute PCA. As mentioned above, these operations include brushing, filtering of

data items or dimensions, zooming and panning, etc. Although these interactions are

standard in most Infovis or visual analytics tools, they are nonetheless very impor-

tant, and are essential in multiple coordinated views. The ability to allow the user to
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select a cluster of data items in one coordinate space and immediately see the corre-

sponding items highlighted in the other coordinate space helps the user understand

the relationship between the two.

The most notable interactions in this category are the different types of selections

implemented in iPCA. iPCA allows the user to select data items in all four views. In

Data View and Eigenvector View, where the visualizations are parallel coordinates,

selection means clicking on a single line or brushing a range of items. In Projection

View and Correlation View, the user can either click on a single dot or draw an

enclosed space upon which all data items within the space will be selected.

4.1.2.3.2 Interacting with PCA

As mentioned previously, one of the biggest hurdles in effectively analyzing PCA re-

sults is in understanding the relationships between data space and eigenspace. While

the interactions provided in the previous section allow the user to see a data item

appear in different coordinate systems, the interactions do not immediately lead the

user to see the relationship between the coordinate spaces. Specifically, eigenvec-

tors are linear combinations of data dimensions, therefore, understanding which data

dimension contributes to an eigenvector is a key point in comprehending how the

coordinate spaces relate to each other.

In order to visually assist the user in recognizing how data space relates to eigenspace,

we create a set of interactions that allow the user to alter the values of the data items.

For example, if the user drags a data item in the Projection View towards the positive

direction along the x-axis (increasing the data points value in the first principle com-



70

ponent), the user should be able to immediately observe in the Data View how that

change affects the values of that data item in the original data space, thus shedding

light on the relationship between the first principle component and all dimensions in

the original data space.

Similarly, if there is an obvious cluster in the Projection View, the user can inter-

actively change the weights of a dimension to see its affect on the formation of the

cluster. For example, if diminishing the contribution of a data dimension in PCA

calculation down to 0% does not affect the clustering, then it should be clear that

the cluster does not depend on that particular dimension.

While the concept of encouraging interactions that directly alter the values of data

items seem counter-intuitive, the idea is not novel. Spotfire includes a “jitter” oper-

ation [6], and Dust and Magnet has a “dust shake” operation [158], both of which

are designed to reveal occluded data items. In medical visualization, deformation

or “cut-aways” modify the data to expose hidden structures underneath skin and

flesh [89]. The interactions in iPCA share a similar goal, but instead of revealing hid-

den or occluded information, our interactions assist the user in revealing relationships

between coordinate spaces.

Three specific interactions are implemented based on the concept of data alteration:

modifying dimension contribution, adjusting data items, and removal of data items.

Modifying Dimension Contribution Each slider in Figure 22E corresponds to a data

dimension. By modifying the slider, the user can change the contribution of the

data dimensions in the final PCA calculation. For instance, changing the dimension
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contribution to 50% indicates the weight change of the selected dimension to 0.5.

This interaction allows the user to observe which data dimensions contribute to the

projections of the data in eigenspace. By adjusting these sliders, a user can quickly

test hypotheses about how the analysis would be affected if a dimension or set of

dimensions were removed or considered less important. This makes it possible for a

user to observe the formation and dispersion of clusters and to identify the cause of

outliers.

Adjust Data Items Values of data items can be modified in either the Projection

View, Data View, or Eigenvector View. This interaction not only allows the user

to see the relationship between a principle component and the contributing data

dimensions as mentioned above, but also allows the user to test what-if scenarios. If

the user suspects that a data item should appear in a certain cluster, the user can

manually move the data item and see how the values of that data item would have

to be modified.

Removing Data Items In analysis using PCA, a common task is for the user to

remove outliers. iPCA supports direct removal of data items from the system so that

the user can observe how the projection from data space to eigenspace changes with

the removal.

One caveat of these interactions is that they are computationally expensive. Mod-

ifying any data requires the re-computation of PCA, and in the cases of interactively

adjusting sliders and moving data items on screen, PCA has to be re-calculated

quickly to avoid lag or flickering. For very large datasets, this type of interactions
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has the potential of becoming a bottleneck in usability. In iPCA, the scalability issue

is addressed by incorporating a faster version of singular value decomposition called

online-SVD [15] which trades precision for speed. Brand demonstrates how online-

SVD is faster than traditional SVD (see [15] for detail). The user has the option

to use either traditional SVD or online-SVD depending on the speed and accuracy

requirements as well as the scale of the data.

4.1.2.4 Evaluation

We conducted a comparative evaluation to assess the effectiveness of our system

in relation to a well-known commercial tool, SAS/INSIGHT’s Interactive Data Ex-

ploration. A total of 12 students (nine males) participated in the evaluation. Three

of the 12 participants were undergraduate students and nine were graduate students,

and 11 of the participants majored in computer science and one in management of in-

formation science. Based on self reported familiarity, we found that nine participants

were aware of PCA prior to the evaluation, and of the nine, three had used PCA in

the past.

At the start of the evaluation, all participants receive a detailed explanation about

PCA followed by a pre-evaluation background questionnaire. Each participant was

provided a total of ten minutes to train with the two systems prior to the evaluation.

The evaluation consisted of performing four analysis tasks using each system. The

participants were given five minutes to perform each task and were requested to

answer questions immediately after each task. The evaluation was conducted using

an online website, where time spent and answers were saved into a database.
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Figure 23: Results broken down by tasks for each of the two systems. (a) Number
of participants who answered the task question correctly. (b) Task difficulty and (c)
helpfulness of the system in solving the task, as reported by participants.

We performed the evaluation using three different datasets: the Iris dataset (150

data items × 4 dimensions), the E.Coli dataset (336 data items × 7 dimensions) and

the Wine dataset (179 data items × 13 dimensions). The Iris dataset was used in the

training session whereas the E.Coli and the Wine datasets were used in the actual

evaluation. All three datasets are scientific results that are publicly available at the

UCI Machine Learning Repository [10].

4.1.2.4.1 Procedure

Each participant was requested to use the two systems on different datasets. There-

fore, six participants used iPCA first and the rest of the participants began with

SAS/INSIGHT. The order in which datasets were given to each participant was coun-

terbalanced with system order, so that six participants used the E.Coli dataset first

and the rest used the Wine dataset first.

Four tasks were given to each participant during the evaluation of both systems:

• What is the most striking outlier you can find? An outlier is a point that does

not fit the overall patterns of the dataset.
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• Find a dimension that least affects the PCA outputs in the Projection View

using first and second principle components.

• Find two dimensions with a highly positive correlation. Also find the class name

and label of an outlier that does not follow that correlation.

• How does removing the first dimension affect the PCA results using the first

and second principle components? List as many observations as possible.

The first three tasks are related to finding exact answers and the last one is a

descriptive task asking the participant to describe the difference between including

and excluding a specific dimension. Five minutes were given to solve each task. If

time expired, partial answers were saved into the database. As soon as each task

was completed, a post-task questionnaire was given to participants to track how

they felt about the task. These questions included “How difficult was this task?” and

“How helpful was the interface in solving the task?” A post-application questionnaire

was given after a participant completed all four tasks. This questionnaire asked the

participant to give feedback on their overall subjective opinion about each system.

After a participant completed the evaluation using both systems, the participant

completed an additional set of questions (post-study questionnaire) that described

the preference, the ease of use, and the effectiveness of the system in analyzing data.

Finally, the participant graded each system on a scale of ‘A’ to ‘F’.
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4.1.2.4.2 Evaluation Results

We present the results of our evaluation based on accuracy, speed, difficulty and

usefulness, effectiveness, and preference. Both accuracy and speed are measured quan-

titatively; whereas the other three categories are analyzed based on the participants’

qualitative feedback.

Accuracy Figure 23(a) shows the results of the participants’ accuracy in solving

each task using both iPCA and SAS/INSIGHT. As shown, approximately 85% of

the participants answered correctly using iPCA. On the other hand, when using

SAS/INSIGHT, they were only able to answer correctly 62% of the time. Further-

more, when using SAS/INSIGHT, there were three instances in which a participant

could not complete the task. One of the instances was due to the fact that the par-

ticipant ran out of time. In the other two cases, the participants simply gave up and

claimed that they were unable to find the solutions (see Figure 23(a)). Note that the

accuracy difference is statistically significant across the two systems (p < 0.01).

Speed Table 1 shows the overall average time spent solving each task. Participants

spent less time in solving each task using iPCA except for task 4 (a descriptive

Table 1: Average time spent in solving each task.

Application Task Time Spent (seconds)

iPCA

Task 1 136.58 ± 90.91
Task 2 128.33 ± 93.83
Task 3 125.50 ± 50.57
Task 4 211.33 ± 71.15

SAS/INSIGHT

Task 1 177.67 ± 69.74
Task 2 165.58 ± 84.03
Task 3 142.92 ± 66.19
Task 4 197.08 ± 63.61
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Figure 24: Participants’ responses to a post-application questionnaire, filled out after
solving all four tasks using one of the systems. (a) How well do you understand the
application now? (b) How well do you understand PCA now? (c) How well do you
understand the data you worked with now? (d) How useful was the system? (e) How
difficult or easy was the system to learn?

question). This seems to be because participants tried to find as many differences as

possible through interaction with dimensions.

On average, participants spent about 150 seconds using iPCA, and 170 seconds

using SAS/INSIGHT. Although the difference is not statistically significant (p =

0.17), there is a trending effect towards a faster solution when using iPCA.

Difficulty & usefulness (post-task questionnaire) Figure 23(b) and (c) show how

participants rated the difficulty of each task when using iPCA or SAS/INSIGHT, as

well as how they rated the usefulness of each system in solving the task. Figure 23(b)

indicates that about 81% of the participants found the tasks to be easy when using

iPCA. On the other hand, only about 48% of the participants identified the tasks as

being easy when using SAS/INSIGHT. Interestingly, although more than half of the

participants mentioned that task 1 is easy to solve, Figure 23(a) indicates that the

accuracy in solving task 1 is low (58% iPCA and 41% SAS/INSIGHT). This might

be because most participants have little previous experience with finding outliers.

Figure 23(c) shows that about 90% of the participants identified iPCA to be helpful
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in solving the tasks; whereas only about 40% of the participants found SAS/INSIGHT

to be helpful. Furthermore, only two participants (participant D and I) rated iPCA to

be not helpful in solving a task (tasks 4 and 1, respectively); whereas ten participants

indicated that SAS/INSIGHT was unhelpful in solving some tasks (one participant

indicated SAS/INSIGHT was completely not helpful in solving all tasks).

Overall, we find that the more difficult a task was rated (very easy = 5, fairly easy

= 4, etc), the more time the participants spent on solving it (p < 0.0001). However,

solving a task with a “helpful” system (very helpful = 5, fairly helpful = 4, etc) did

not decrease the time spent on the task (p = 0.2586). With a helpful system, the

participants did solve the tasks more accurately (p = 0.0027), but participants did

not rate the tasks to be less difficult (p = 0.0966).

Effectiveness (post-application questionnaire) Figure 24 shows the results of the five

questions in the post-application questionnaire conducted right after the evaluation

of each system. Of particular significance are the questions asking the participants

how well they understood the application (Figure 24(a)), how well they understood

the data (Figure 24(c)), how useful was the system (Figure 24(d)), and how difficult

or easy was the system to learn (Figure 24(e)).

In answering how well the participants understood PCA, most participants did not

indicate that they understood PCA “very well.” However, the majority of the iPCA

users indicated that they understood PCA “fairly well”; whereas the majority of the

SAS/INSIGHT users only claimed “a little bit” of understanding.

In answering how well the participants understood the data, the majority of the
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iPCA users indicated that they understood the data either “fairly well” or “a little

bit”; whereas the SAS/INSIGHT users either understood the data “a little bit” or

“not at all.”

Lastly, in answering about the usefulness of the system, the majority of the iPCA

users found the system to be “very useful”; whereas SAS/INSIGHT users consistently

ranked the system to be “fairly useful” and below, with four participants claiming

the system to be “not very useful” or “not useful at all.”

Figure 25: At the end of the evaluation, each participant grades the systems on a
scale of ‘A’ to ‘F’.

Preference (post-study questionnaire) After the evaluation, each participant ranked

the two systems and described their pros and cons. Figure 25 clearly shows that most

participants preferred iPCA over SAS/INSIGHT, giving iPCA eight A’s and four B’s.

On the other hand, the majority of the participants gave SAS/INSIGHT a C or D

grade, with one participant failing it by giving it an F.

When describing the pros and cons of iPCA, eight participants specifically pointed

out the strength of iPCA as being “interactive,” and eight participants described

iPCA as “transparent.” While a few participants gave constructive feedback on how
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to further enhance the iPCA tool (e.g., add the ability to rearrange the dimensions in

the Correlation View), the only negative criticism for iPCA was that it did not gen-

erate printable reports similar to the static charts and numbers that SAS/INSIGHT

generates.

For SAS/INSIGHT, two participants who were previously familiar with the SAS

system pointed out that while they preferred iPCA over SAS/INSIGHT for analyzing

PCA results, SAS is still a far more comprehensive and complete numerical and

statistical analysis tool. One participant further noted that if he was allowed to use

additional features in SAS outside of the tools specific to PCA, deeper analysis on

the dataset could have been performed.

4.1.2.5 Discussion

Since our evaluation compared two systems (iPCA and SAS/INSIGHT) that use

the same mathematical methods for computing PCA, we can safely assume that the

increase in our participants’ performance in using iPCA is attributed solely to the

interface design and the set of interactions. Unfortunately, we are not able to further

isolate the specific factor(s). Based on our evaluation alone, we cannot determine if

the increase is due to the multiple coordinated views, the interactions, or the combi-

nation of the two. However, we do hypothesize that the “interactions with PCA” play

a significant role in that the user’s direct and continuous manipulation with PCA is

rewarded with immediate visual feedback. This allows the user to “play” with the

data and intuit the subtleties behind the coordinate transform between data space

and eigenspace in a way that less interactive visualizations such as SAS/INSIGHT
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cannot achieve.

The “interactions with PCA” are also the most unique set of the interactions in

iPCA. Unlike our other interactions that merely highlight or explore the data, the

design decision behind the “interactions with PCA” is to focus on reasoning. In

fact, we design the “interactions with PCA” to be less faithful to the data, but more

revealing in discovering relationships between coordinate spaces and data dimensions.

For example, most of our participants credited the rich interactions in iPCA to be

the primary strength of the system, but two of our participants pointed out the fact

that in modifying dimension contribution, moving a slider from 100% to 72% and

taking a snapshot of the Projection View was not meaningful as the projection was

not of the original data. Similarly, moving a data point across the screen seemed

counter-intuitive as it directly modified the values of the data. While these concerns

are valid, we contend that they miss the spirit of the interactions. It is true that

the resulting images from these interactions cannot be considered by themselves, but

it is during the direct manipulation of the data and coordinate spaces that the user

gains insight about their relations and how changes in one affects the other, which

is otherwise hidden. One very interesting future direction for our research will be to

further understand why these types of interactions are successful, and examine the

extent to which they can be applied.

4.2 Externalization

Externalization is the process of articulating tacit knowledge into explicit con-

cepts [97]. It is a generic knowledge creation process through which tacit knowledge
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Figure 26: Externalization process (indicated by the red arrow). It shows that the
internally created tacit knowledge can be extracted and saved into the knowledge base.
The explicit knowledge can later be reused to create further visual representations.

becomes explicit based on the user’s finding (insights), concepts, hypotheses, and

models. Since tacit knowledge cannot easily be shared with others as a result of

simply being written down, it should be converted to explicit knowledge by an exter-

nalization process beforehand to communicate and share with others.

In the visualization community, there have been a few applications that specifically

focus on the externalization of one’s tacit knowledge. Garg et al. [56] presented

a model-driven approach to extract Logic Programming (LP) rules through a user’s

interactions and reused the rules in further analysis processes. Xiao et al. [155] studied

how the knowledge-base could be used to improve understanding of complex network

traffic data. They found that about 80% of network traffic could be classified correctly

based on previously extracted experts’ knowledge-base. Chen et al. [27] showed an

example in which the user’s insights can be externalized into a knowledge base. These

applications have shown that not only is externalization in a visualization possible,

it is in fact a very powerful method for storing and reusing knowledge.

Figure 26 shows how tacit knowledge can be externalized into explicit knowledge. In
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this figure, explicit knowledge is used to assist the creations of visual representations.

Because of the complex nature of explicit knowledge, Nonaka and Takeuchi suggest

that externalization is the process of concept creation and is triggered by dialogue or

collective reflection [97]. They further explain that the concept creation process can be

expressed by applying analytical and non-analytical methods alike. The analytical

methods are deduction and induction through which appropriate concept can be

deduced and induced based on unorganized concepts. However, if applying analytical

methods is not feasible, non-analytical methods such as metaphors and/or analogies

could also be used. In visualization, we propose that both analytical and non-anlytical

methods should be considered for expressing explicit knowledge that can in turn be

stored into a knowledge base [155, 56].

As we show in section 4.1, interactive visualization techniques enable users to more

effectively form hypotheses, identify areas for more detailed investigation, and to

build tacit knowledge. However, there has been limited effort in connecting a user’s

interaction with his reasoning for the purpose of extracting the relationship between

the two. In section 4.2.1, we present an approach for capturing and analyzing user

interactions in a financial visual analytical tool and describe an exploratory user

study that examines these interaction strategies. To achieve this goal, we created

two visual tools to analyze raw interaction data captured during the user session.

With the tools, we performed a study in order to understand the analysts’ reasoning

process for solving complex problems. In our study, we record the interactions of

10 financial analysts in a fraud detection task. By examining their interactions, we

are able to quantitatively show that up to 60.10% of strategies, 60.08% of methods,
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and 79.03% of findings could be recovered through the use of a strategic and an

operational visual analytical tool. From the study, we found that users’ interaction

begets their reasoning.

In section 4.2.2, we present a system called Voting Viz. With this system, ana-

lysts can perform interactive exploration on wire transactions, vote on transaction(s)

as suspicious, unsuspicious, and inconclusive, and examine other analysts’ voting

information. Since analysts use their background knowledge (experience) to find sus-

picious activities on wire transactions, all their decisions could include their person-

alized knowledge. To integrate their knowledge into visualization, a voting method is

designed. With the voting method, each analyst can make decisions on transactions

as suspicious, unsuspicious, or inconclusive. In addition, an annotation method is

provided to document the analyst’s reasoning process.

From the two examples, we demonstrate how users continuously create personalized

tacit knowledge by using visualization or visual analytics applications, and that the

users’ tacit knowledge can be externalized and used to design a new visualization

representation.

4.2.1 Understanding experts’ reasoning process from interactions

In this section, we performed a study to show how an analyst performs a successful

investigation with a visual analytics system. Although there has been a recent increase

in activity in the VA community to help analysts document and communicate their

reasoning processes during investigations, there is still no clear method for capturing

the reasoning processes with minimal cognitive effort from the analyst. We seek to
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determine how much an analyst’s strategy, methods, and findings using a VA tool

can be recovered.

We hypothesize that when an analyst interacts with a well-designed VA tool, much

of that analyst’s reasoning process is embedded within his or her interactions with

the tool. Therefore, through careful examination of the analyst’s interaction logs, we

should be able to retrieve a great deal of the analyst’s reasoning process. To validate

our hypothesis, we designed a study to quantitatively measure whether an analyst’s

strategies, methods, and findings can be recovered through human examination of

these interaction logs.

4.2.1.1 Related Work

Although these publications have different emphases and different approaches, most

of them aim to measure and validate the effectiveness of visualization tools and visual

analytics as a science. Among this growing literature, the areas most relevant to our

work are efforts in capturing analysts’ reasoning processes into two groups: capturing

the user’s interactions and interactive construction of the reasoning process using a

visual tool.

4.2.1.1.1 Capturing User Interactions

Capturing user interactions for the purpose of understanding the user’s behavior is

common in both academics and industry. Some commercial-off-the-shelf applications

capture a user’s desktop activities (such as usability software), whereas others capture

interactions on a Web site (a common feature in most Web servers).

In the visualization field, Frank Greitzer’s Glass Box system is one of the most
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notable systems for capturing and analyzing user activities [59]. Its primary goal

is to capture, archive, and retrieve user interactions [33]. However, it is also an

effective tool for capturing specific types of interactions for the purpose of intelligence

analysis [34]. Although Glass Box and most usability software are effective tools for

capturing user activities, they focus primarily on low-level events (such as copy, paste,

mouse clicks, and window activation). The events captured in our system are at a

higher level that corresponds directly to the data (such as the transaction the user

clicked on). More information on the differences between these two approaches is

available elsewhere [63].

More recently, Jankun-Kelly et al. proposed a comprehensive model for capturing

user interactions within a visualization tool [70]. Their work is unique in that they

focus on capturing the effects of the interactions on the parameters of a visualization.

Although it is unclear how this framework supports higher-level event capturing,

the direction is interesting and could lead to a more uniform way of capturing user

interactions.

These systems and approaches are all innovative and effective. However, their

objectives differ from our goal in that none of them fully address how much of a

reasoning process can be recovered through the examination of interaction logs.

4.2.1.1.2 Interactive Construction of the Reasoning Process

An alternative approach to retrieving reasoning through interactions is for the

analyst to create a representation of the reasoning process (usually in the form of

a node-link diagram) while solving a complex task. Recent systems in this domain
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include the Aruvi framework [123], which contains three main views:

• The data view is the VA tool itself.

• The navigation view is a panel for visually tracking the user’s history.

• The knowledge view lets the user interactively record his or her reasoning pro-

cess through the creation of a node-link diagram.

The Scalable Reasoning System (SRS) also lets users record their reasoning pro-

cesses through the creation of node-link diagrams [103]. However, unlike the Aruvi

framework, SRS focuses on the collaborative aspects of organizing the reasoning pro-

cesses among multiple users and sharing their results across the Web.

Most recently, Jeffrey Heer and his colleagues4 created a tool for visualizing users

histories within the commercial visualization tool Tableau [86]. Although the work’s

emphasis is not on constructing or visualizing the reasoning process, the functionali-

ties within the tool that let users edit and modify their interaction history could be

used to effectively communicate their reasoning processes.

Although there has not been a formal comparison between interactively construct-

ing the reasoning process and our method of analyzing interaction logs, we hypothesize

that the cognitive load of having to perform analytical tasks while maintaining and

updating a representation of the reasoning process could be tiring [58]. The sys-

tems we describe here will have better representations of the user’s reasoning process.

However, a transparent, postanalysis approach offers an alternative that can achieve

comparable results without the analysts’ efforts. The best solution is most likely
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somewhere in between, and we look forward to analyzing the pros and cons of these

approaches.

Figure 27: Overview of WireVis. It consists of four views including a Heatmap view
(top left), a Strings and Beads view (bottom left), a Search by Example view (top
right), and a Keyword Relation View (bottom right) [25].

4.2.1.2 WireVis Interactions

We conducted our study using WireVis, a hierarchical, interactive VA tool that logs

all user interactions. WireVis was developed jointly with wire analysts at Bank of

America for discovering suspicious wire transactions. It is currently installed at Bank

of America’s wire-monitoring group, WireWatch, for beta testing. Although it has

not been officially deployed, WireVis has already revealed aspects of wire activities

that analysts were not previously able to analyze. Through a multiview approach,

the tool depicts the relationships among accounts, time, and transaction keywords

within wire transactions (see Figure 27).

To preserve the privacy of Bank of America and its individual account holders,
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we created a synthetic data set for the purpose of this study. Although none of

the transactions in the data set are real, we captured as many characteristics and

statistics from real financial transactions as we could and modeled the synthetic data

as closely to the real one as possible. The data set was designed to be simple enough

that users could look for suspicious transactions within the study’s time frame, but

complex enough that interesting and complicated patterns could be found. This data

set contained 300 financial transactions, with 29 keywords. Some keywords were

the names of countries, such as Mexico, and others were goods or services, such as

software or raw minerals.

In the data set, we developed four threat scenarios and injected a total of nine cases

we deemed suspicious into the data set. The threat scenarios included transactions

in which keywords should not appear together, accounts with dual roles, keywords

with unusually high transaction amounts, and accounts with suspicious transactional

patterns appearing over time. More details about the sample threat scenarios are:

• Incompatible Keywords in a Transaction: Transactions with two or more key-

words that do not belong together. For example, a transaction containing the

keywords “car parts” and “baby food”.

• Accounts with Dual Roles: An account that has had transactions of different

incompatible keywords is questionable. For example, an account that transacts

on “gems” at one time and “pharmaceuticals” at another.

• Keywords with Large Amounts: Transactions of certain keywords are expected

to have corresponding dollar amounts. For example, a transactions from a local
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store on “arts and crafts” should not be in the millions.

• Change in Amounts Over Time: An account with an established temporal and

amounts pattern receiving a large sum outside of its norm should be examined

further. For example, an account with a steady deposit of paychecks of fixed

amounts on regular intervals receiving a transaction of a large amount.

We also developed two tools for visualizing user interactions within WireVis to

help us explore analysts’ activities and reasoning processes [33]. Using the operation

analysis tool, we can analyze a participant’s interactions in accordance to his reason-

ing process; while using the strategy analysis tool, we can compare the strategies of

different participants or groups of participants. Together, these two tools provide the

means to discover the relationship between user interactions and reasoning processes

at all levels.

4.2.1.2.1 Operation Analysis Tool

The operation analysis tool is designed to support the analysis of a participant’s

operational interactions in relation to his annotations (Figure 28). The tool is im-

plemented in OpenGL, and is fully zoomable and pannable and supports selections

of interaction elements for detailed inspection. The x-axis of the main view repre-

sents time, with a striped background indicating the length of a fixed time duration

(defaulted to 60 seconds per strip). The y-axis is divided into 5 sections, with each

section supporting one aspect of the participant’s investigation process. Figure 28

(A)-(E) show the 5 perspectives, which are the participant’s annotations (A), the

participant’s interactions with the three views in WireVis (B), the depths of a par-
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ticipant’s investigation (C), the areas of the participant’s investigation (D), and the

time range of the investigation (E). The sliders in (F) allow the user to scale time,

while checkboxes in (G) control various visualization parameters. The detail view in

(H) depicts detailed information of a specific user-interaction element.

Figure 28: Overview of the operational-analysis tool: (a) a potential area for adding
annotations; (b) the participant’s interactions with the three views in WireVis (the
three rows, from top to bottom, correspond to the Heatmap, String & Beads, and
search-by-example views). Other highlighted areas include the (c) depths of a partic-
ipant’s investigation, (d) areas of the participant’s investigation, and (e) time range.
In addition, (f) sliders control the time scale, while (g) checkboxes change various
visualization parameters. Another view (h) shows detailed information about the
participant’s selected interaction element.

Annotation View The results of our participants’ think-aloud during the experiment

are recorded into separate files. These annotations to the participant’s investigation

are shown in this view. As can be seen, our participants often exhibit a hierarchical

structure in their reasoning process, with the highest level of reasoning depicting

strategies they employ such as “seek all keywords related to the keyword food” The

lower levels depict specific operations to execute those strategies, ranging from “search



91

for keywords other than food relating to account 154” to “identify the receiver of a

transaction (account 64) of account 154.” The hierarchical nature of the participants’

reasoning are represented in the annotation view, with the higher level annotations

shown above the lower ones as interactive floating text boxes [65]. The time range of

each annotation is drawn as nested boxes using different colors. The user can select

any particular annotation, and its corresponding time range is highlighted across all

the other views (Figure 28).

WireVis Interaction View WireVis uses multiple coordinated views to visualize dif-

ferent relationships within the data. In the WireVis Interaction view, we look to

display the participant’s usage pattern of the WireVis tool. The three rows in this

view correspond to the three main interactive views in WireVis: Heatmap, Strings and

Beads, and Search by Example. In each view, we can choose two different attributes of

the participant’s selection. In Figure 28 (B), the two attributes are keywords (shown

as red dots) and accounts (shown as green dots).

On first glance, it is easy to see which views in WireVis the participant interacts

with over time. On closer inspection, the distribution of the red (keywords) and green

dots (account) also reveal high-level patterns in the investigation. Scattered red dots

could indicate an exploration of keywords, whereas concentrated green dots (e.g., if

the green dots are aligned horizontally) could reveal the participant’s interest in a

specific account. When both red and green dots appear together and are connected

by a line, it denotes that the participant is investigating the relationship between the

two (such as a cell in the Heatmap view in WireVis).
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Depth View On top of visualizing a participant’s direct interactions with WireVis, it

is also important to see some semantic information regarding the participant’s inves-

tigation process. In this view, we visualize the “depth” of a participant’s investigation

by displaying the number of visible transactions in WireVis. For example, when the

participant is looking at the overview in WireVis, our Depth view will be completely

filled, indicating that all transactions are visible. As the participant zooms in to

investigate specific keywords or accounts, the Depth view will show a drop in visible

transactions (Figure 28 (C)).

The Depth view also indicates when a participant requests detailed information

for a specific account or transaction (such as double-clicking on a bead in the Strings

and Beads view). These interactions show up as a vertical line, which is easily dis-

tinguishable from a participant’s operations for zooming in or focusing on a specific

area in the data.

Areas View While the Depth view shows the number of visible transactions in Wire-

Vis, it is also relevant to indicate interactions that highlight areas that the user

has shown interests. These interactions are commonly used in WireVis through the

“mousingover” operation. As the participant mouses-over keywords, accounts, or

transactions in WireVis, the system displays information about the highlighted data

without requiring the user to change the zoom level or focus.

Using the mouse-over operation in WireVis is common, and often indicates an

exploration process in which the participant is looking for suspicious areas for further

investigation. In the Areas view, a high variation in a short amount of time could
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indicate such an exploration process, while a more leveled section suggests that the

participant is investigating specific activities (Figure 28 (D)).

Time Range View Time is an important aspect in discovering financial fraud, and

WireVis provides views to explore the temporal dimension. In the Time Range view,

we look to capture the participant’s time-based investigation. The y-axis of the Time

Range view denotes the dates represented in the data from more recent to least. A

fully colored section indicates that the participant’s investigation spans the entire

time range, whereas a change would denote that the participant has zoomed in to a

specific time period (Figure 28) (E).

The dots in the Time Range view indicate selections of transactions of a specific

date. In WireVis, this is done by either mousingover or double-clicking on a bead in

the Strings and Beads view. A high concentration of the appearance of these dots

often suggests that the participant has found some specific transactions and is looking

to find out the details of these transactions.

4.2.1.2.2 Strategy Analysis Tool

As opposed to operation, strategy is a long term plan of action designed to achieve

a particular goal. Most of our participants exhibit both strategic and operational

reasoning when investigating fraud. So besides addressing the question “what do the

participants actually do” using our operation analysis approach, we also look to in-

vestigate the high level strategies that the participants employ while approaching the

tasks. Through the use of our strategy analysis tool, we can identify each participant’s

areas of interest as well as comparing different participants’ strategies.
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We adopt treemap as the basis of our strategy analysis tool. The treemap vi-

sualization allows us to investigate similarities between our participants’ strategies

without considering the flow or speed in which our participants execute their strate-

gies. Our participants had varied preconceived knowledge about the keywords and

their meanings, and therefore approached the investigation tasks differently. Many

of them identified the same embedded fraud scenarios, but none of them shared the

same path in discovering these activities. Using our modified treemap visualization,

we can identify the participants’ strategies without regard to the paths they have

chosen.

Figure 29: Strategic-analysis tool views: transactions grouped by (a) time, (b) key-
words, and (c) accounts. The patterns in the account view indicate that the primary
strategy used by this participant was to examine two specific accounts (located on
the top of the view).

The initial layout of the strategy analysis tool shows three different treemap views

classifying the transaction data based on three attributes: time, keywords, and ac-

counts (Figure 29). The three views are coordinated such that highlighting a trans-

action in one view also highlights the same transaction in the other two views. We

choose transactions to represent the lowest level of the treemaps because they rep-

resent the lowest granularity of the data. A colored circle is displayed on each cell,
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and the size depicts the amount of time the participant’s investigation has included

that transaction. When comparing two participants or two groups of participants,

the color of the circle indicates which of the two participants spent more time on the

transaction.

Timeline View Transactions in this view are classified based by their date. Each

grouping contains transactions of the same month. As shown in Figure 29, the trans-

actions in our synthetic data set span a 13 month period. Note that the participant

depicted in this view did not perform his investigation based on the transaction dates

as the circles appear fairly evenly through all 13 months.

Keyword View This view applies two different classification criteria. On the top

level, transactions are grouped based on keywords (shown as yellow cells in Figure 29).

Each cell is then further subdivided by individual accounts (shown as green cells).

Since a transaction often contains multiple keywords, the same transaction could

appear in more than one keyword cells. Similarly, every transaction contains two

accounts, a sender and a receiver, so a transaction will always appear at least twice,

once for each account. Due to these two reasons, the total number of transaction cells

in this view are greater than those in the Time view. However, we find this layout

more intuitive for understanding a user’s strategy involving keywords. For example,

in Figure 29, it is easy to see that the participant focused on a few specific keywords,

but even more specifically on a few accounts relating to those keywords.

Account View The Account View orders the transactions based on their correspond-

ing sending accounts. As shown in Figure 29, this view makes clear that this partici-



96

pant’s strategy in discovering financial fraud using WireVis is almost entirely based

on the detailed investigation of one or two accounts. Time and keywords appear to

be secondary considerations during his investigation.

4.2.1.3 Evaluation

We conducted a user study to determine how much of an analyst’s reasoning process

can be recovered using only the captured user interactions. We evaluated this recovery

quantitatively by comparing the process that was inferred by a set of coders against

the ground truth determined from videos of the exploration process. The evaluation

consisted of four stages: user observation, transcribing, coding, and grading.

4.2.1.3.1 User Observation

To understand the user’s reasoning process through his or her interactions, we

conducted a qualitative, observational study of users analyzing data with WireVis.

We recruited 10 financial analysts with an average of 9.9 years (and a median of 8

years) of financial-analysis experience. All of the participants were either working as

financial analysts or had professional financial-analyst experience. Eight of the users

were professionally trained to analyze data or to detect fraud. Of the 10 analysts, six

were male and four were female.

At the beginning of the study session, participants were asked to fill out a de-

mographic form and were then trained on the use of WireVis for approximately 10

minutes. Participants were also provided with a one-page overview of the function-

ality of WireVis and encouraged to ask questions. After the training, participants

were asked to spend 20 minutes using WireVis to look through the data set for sus-
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picious activities. We asked participants to think aloud to reveal their strategies.

We specifically encouraged them to describe the steps they were taking, as well as

the information used to locate the suspicious activities. Once the users drilled down

to a specific transaction, they were asked to record and report their findings on a

discovery sheet. Once they documented a specific transaction, they were encouraged

to continue looking for others until they reached the time limit. After the exploration

process, participants were asked to describe their strategies and additional findings

in a post-session interview.

Several methods were used to capture each session as thoroughly as possible. Com-

mercial usability software captured the screen. A separate microphone recorded the

user’s audio during the session. Finally, functions built into the WireVis system cap-

tured the user’s interaction with the tool as information relevant only to the WireVis

system. Instead of recording every mouse movement or keystroke, WireVis captures

events that generate visual changes in the system. For example, a mouse movement

that highlights a keyword in the heatmap view will generate a time-stamped event.

4.2.1.3.2 Transcribing

Participants’ videos and “think-alouds” were used to create a detailed textual time-

line of what participants did during their sessions, along with their self reported

reasoning and thinking process. Although the created textual timeline is an interpre-

tation and might not perfectly reflect the participant’s (internal) reasoning process,

it was created on the basis of the facts recovered from video and audio with conscious

effort to minimize human bias. We therefore consider the resulting transcript to
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represent the ground truth of what each participant did during the WireVis analysis.

During the transcribing stage, we identified different findings, strategies, and meth-

ods analysts used when investigating fraudulent activities:

• A finding represents a decision that an analyst made after a discovery.

• A strategy is the means the analyst employed to arrive at the finding.

• A method captures the link between finding and strategy. It focuses on the

steps the analyst adopted to implement the strategy for discovering the finding.

In a typical investigation, an analyst’s strategy might be to search for a specific

suspicious keyword combination on the basis of his or her domain knowledge. For

example, the analyst might determine accounts and transactions involving two key-

words, “Mexico” and “pharmaceutical,” to be potentially suspicious. Using this strat-

egy, the methods employed by this analyst could consist of a series of actions such as

highlighting or filtering those keywords, and drilling down to specific accounts and

transactions. At the end of the investigation, the analyst would record his or her

findings based on the encountered account numbers and transaction IDs along with

the decision about whether the particular finding was suspicious.

Coding We asked several people familiar with WireVis to view each participants’

interactions and determine their reasoning. Specifically, we recruited four coders from

our university, all of whom were familiar with WireVis (three male, one female). They

used the operation and strategic-analysis tools to view participant interactions and

created an outline of what occurred.
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We gave all coders comprehensive training on how to use the operation and strategic-

analysis tools to examine analysts’ interaction logs. We also provided a guideline of

hierarchical coding procedures, asking coders to provide hierarchical annotations in

free-text format within the VA tools. The hierarchies are reflected as different levels

of decision points and strategies extracted by the coders. We asked coders to identify

and label findings, strategies, and methods for each analyst. In addition, coders were

encouraged to annotate the transitions if they could discover relationships between

each decision point, such as one strategy leads to multiple findings or one finding

transforms into a new strategy.

All findings from the coders were recorded as annotations and linked to correspond-

ing interaction events and time ranges. Each coder went through the 10 analysts’

interaction logs one by one using the VA tools, spending an average of 13.15 minutes

reconstructing each analyst’s reasoning process. Thus, at the end of the coding phase,

we collected 10 sets of annotations from each coder, resulting in 40 sets of annotations

overall.

Grading Our next step was to compare the annotations that the coders produced

to the ground truth to determine how much of the reasoning process the coders could

reconstruct. The comparisons are graded according to a set of predetermined criteria.

The categories we used in grading were in accordance with both transcribing and

coding: finding, strategy, and method. Generally speaking, strategy and finding do

not necessarily have a one-to-one mapping relationship because some strategies might

lead to multiple or null findings. But one finding always comes with a method in the
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sense that a method is always needed to make a decision.

For each finding, strategy, and method, we graded according to the following cri-

teria:

• correctly identified - that is, a coder both noticed and correctly identified a

meaningful finding, strategy, or method;

• incorrectly identified that is, a coder noticed some meaningful interactions but

incorrectly interpreted them;

• false detections - that is, a coder thought that a certain action took place when

in fact none had; and

• never identified that is, actions took place but were not noticed or annotated

by the coders.

We chose this combination because the four measurements cover all possible sce-

narios and yet are explicitly distinguishable.

Table 2 illustrates the overall grading criteria. We determined that a finding was

correct as long as the coders correctly identified that there was a decision made during

the analyst’s investigation. But we did not ask them to determine the outcome of

that decision (whether the transaction is suspicious, not suspicious, or inconclusive).

Additionally, if only a part of the coder’s annotation was correct - for example, if the

coder determined that a strategy was to look for five incompatible keywords but only

identified four keywords correctly we graded that annotation as incorrectly identified.

Such strict grading criteria minimizes potential bias in the grading process.
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4.2.1.4 Results

The quantitative and observational results obtained from grading are rich and

informative. We demonstrate quantitatively the amount of reasoning that can be

extracted from analyzing interaction logs and describe some of the coding process’s

trends and limitations.

4.2.1.4.1 How Much Reasoning Can We Infer?

Figure 30 shows the average accuracy of each coder’s reconstructed reasoning pro-

cesses for all participants. The results indicate that it is possible to infer reasoning

from user interaction logs. In fact, on average, 79 percent of the findings made during

the original investigation process could be recovered by analyzing the captured user

interactions. Similarly, 60 percent of the methods and 60 percent of the strategies

could be extracted, with reasonable deviation between the coders.

Across participants A different perspective from which to examine the results is to

look for variations in accuracy across the 10 participants. Figure 31 (next page) shows

Table 2: Average time spent in solving each task.

Analyst
activity

Ground
truth

Grading
criteria

Coder
1 2 3 4

Finding 6

Correctly identified 5 3 4 5
Incorrectly identified 0 1 0 1

False detections 0 0 2 0
Never identified 1 2 2 0

Strategy 3

Correctly identified 3 3 1 0
Incorrectly identified 0 0 1 3

False detections 0 0 1 1
Never identified 0 0 1 0

Method 6

Correctly identified 6 4 3 3
Incorrectly identified 0 0 1 2

False detections 0 0 0 0
Never identified 0 2 2 1

Time spent (minutes) 14.70 33.39 10.27 35.90
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Figure 30: The average accuracy of the four coders in correctly identifying findings,
strategies, and methods of the 10 participants. Analyzing the captured user interac-
tions recovers an average of 79 percent of the findings, 60 percent of the methods,
and 60 percent of the strategies, with reasonable deviation between coders.

the average accuracy of the coders in recovering the 10 participants’ reasoning pro-

cesses. This result indicates a noticeable difference between accuracies in extracting

reasoning processes for different participants. This finding leads us to conclude that

some analysis processes are more difficult to follow than others. Although there is

no definitive explanation for this difference, our investigation suggests two plausible

contributors.

The first factor is the difference in experience with financial fraud detection between

the participants and coders. Because our coders have no fraud detection training, it

is natural that some of the strategies and methods in investigative processes are lost

to them.

The second reason for this variation is manifested in the acute drop in accuracy

when extracting methods from the analyses of participants 2 and 4, as shown in

Figure 31. As the figure suggests, the coders were baffled by the methods of these

two participants. Upon investigating the video of these participants’ analysis process,
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Figure 31: The average accuracy of correctly identifying findings, strategies, and
methods based on the 10 participants. As the graph shows, accuracy levels in extract-
ing reasoning process for different participants varied significantly. We hypothesize
that this variance is due both to differences in experience between participants and
coders and to the difficulty of following some analysis processes.

we discovered that participants 2 and 4 focused on the irregularities in the WireVis

time series view. Specifically, they closely examined spikes in the view (see Figure 32),

which indicate sudden increases in amounts or frequencies of wire transactions. Our

coders had no way of seeing these visual patterns, so they could not identify the

methods behind the participants’ analyses.

Figure 32: The time series view in WireVis showing spikes that indicate sudden
increases in the amounts or frequencies of wire transactions. Because the coders
could not see these visual patterns, they could not determine the methods behind the
participants’ analysis processes.
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Considering false detections Because this study aims to determine how much of

the reasoning process can be extracted from interaction logs, we have reported the

accuracy based purely on the number of correctly identified elements. However, it is

relevant to note how often our coders’ detections turned out to be inaccurate. Under

our grading scheme, the number of annotations made by a coder often exceeded the

number of elements in the transcription because of the false detections. For example,

the grading result for Participant 1 in Table 2 shows that the number of findings

in the ground truth is 6; however, Coder 3 made a total of eight annotations. This

coder correctly identified four of the six elements, missed identifying two of the six

elements, and made two false detections.

With the false detections in mind, we reexamine the coders’ accuracy not on the

basis of how much of the reasoning process can be recovered, but on the basis of the

accuracy of their annotations. Figure 33 shows the result of the coders’ accuracies

that include the coders’ false detections. Not surprisingly, the accuracy of all the

coders decreases slightly. Their accuracy in extracting findings drops by 3 percent,

from 79 to 76 percent; strategies by 5 percent, from 60 to 55 percent; and finally

methods, by 2 percent from 60 to 58 percent.

4.2.1.4.2 Amount of Time Spent by Coders

One important aspect in extracting reasoning processes is the amount of time

needed to analyze the interaction logs.

Capturing time spent by a coder Built into our operation and strategy analysis tools

is the ability to track the amount of time that a coder spends using the tools. The
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Figure 33: The accuracy of the coder’s annotations in matching the analysts’ findings,
strategies, and methods. The semitransparent areas indicate the decrease in accuracy
compared to Figure 30. Whereas Figure 30 indicates the amount of reasoning that
can be recovered, this figure shows the accuracy of the coders’ annotations.

coders were made aware of this feature and were told not to take breaks during an

analysis. Because the coders directly annotated their discoveries into the operational-

analysis tool, the system was able to record the amount of time spent by each coder

when analyzing an interaction log.

Furthermore, the system tracked when the coder started and stopped the anno-

tations. The purpose of this feature was to separate the time spent analyzing the

interaction log from the time spent annotating. On average, the coders spent 23.9

minutes analyzing one interaction log. Of this amount, 10.75 minutes were spent on

annotation and the remaining 13.15 minutes on investigation.

Time spent versus accuracy Overall, there is no correlation between the time spent

by a coder and accuracy. Figure 34 plots the relationship between the coders’ time

spent in analysis (not including time spent for annotation) and their accuracy in

extracting findings. With the exception of the two outliers on the far right, it appears
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that the coders are consistently successful when spending anywhere from five to 15

minutes. This suggests that spending more time in the analysis does not always yield

better results. The two outliers represent the analysis of Coders 2 and 4 in their first

investigation (Participant 1). All coders became more proficient in their analysis as

they gained experience.

Figure 34: The accuracy of the coders in recovering findings of the participants and
the amount of time spent. The results show that coders generally can accurately
extract findings when they spend between five and 15 minutes on the analysis.

Increase in accuracy. As Figure 31 shows, the coders’ accuracy increases as they

gain experience investigating interaction logs. All four coders began with examin-

ing Participant 1’s interactions and ended with Participant 10’s. Using Pearson’s

correlation coefficient, we find that the number of participants a coder has exam-

ined is positively correlated to the coder’s accuracy. This correlation is statisti-

cally significant when extracting findings (r(40) = 0.37, p < 0.05) and methods

(r(40) = 0.52, p < 0.01). Only in extracting strategies is the correlation weaker

(r(40) = 0.21, p = 0.182). Although the sample size is relatively small, these statis-

tics imply a subtle but potentially important discovery: with more experience analyz-
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ing interaction logs, a coder could become more proficient in extracting an analyst’s

reasoning process.

4.2.1.5 Discussion

The study we’ve described is complex and intricate. Although many of the nuances

encountered during the study do not affect the results and therefore are not described

here, some findings might be of interest to the community. First, during our informal

debriefing, the coders discussed the strategies that they used in analyzing participants’

interaction logs. The coders often began their investigations by looking for gaps in

the operational-view timeline (Figure 28), which are the by-products of the analysts

taking time to write their findings on the discovery sheet. The coders used these gaps

to look for the analysts’ findings and then worked backward to discover the strategies

and methods used to derive the findings.

Although this strategy might seem specific to this study and non generalizable, in

a real-life scenario, analysts either directly make annotations in the visualization to

note a finding, or write their finding on a piece of paper for future reference. Either

way, there will exist a visible marker that suggests a relevant discovery by the analyst.

Therefore, although we did not anticipate this strategy by the coders, we found their

quick adoption of this method to identify the analysts’ findings to be effective and

relevant.

A second interesting trend pointed out by our coders concerns the usefulness of

our visual tools for depicting the analysis’s operational and strategic aspects. All of

the coders used the operational analysis tool first to get an overall impression of an
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analyst’s interactions. However, the strategic analysis tool is often used to examine

a specific sequence of interactions when the interactions appear random and jum-

bled. By presenting the results of the interactions from three perspectives (accounts,

keywords, and time) in the strategic tool, the coder could often identify the focus

and intent behind the series of interactions. This finding not only validates our de-

sign of the tools but also reconfirms the importance of visualizing both the strategic

and operational aspects of an analysis process. In fact, most of the coders began

their investigation by looking for gaps in the interactions to identify findings. Next,

they looked for strategies by examining the overall visual patterns in the strategic-

and operational-analysis tools without focusing on individual user interactions. Fi-

nally, methods were extracted using the operational analysis tool, in which specific

interactions were examined in detail.

One last relevant aspect of our study is the measurement of incorrectly identified

elements in the grading process. None of our results account for elements that have

been graded as incorrectly identified. As we mentioned earlier, any annotation by a

coder that does not perfectly match the transcription is considered to be incorrectly

identified. This includes scenarios in which a coder identifies the analyst’s strategy

to be examining four keywords when in fact the analyst was examining five, or when

a coder determines that the finding of the analyst is a transaction between Accounts

A and B instead of Accounts A and C. If we gave half a point to these incorrectly

identified elements, the overall accuracy of extracting strategies would increase dras-

tically from 60 to 71 percent, methods from 60 to 73 percent, and findings from 79

to 82 percent.
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We found that when analysts based their investigations purely on visual patterns,

our coders had a difficult time determining their methods. Although some of the

coders’ errors in extracting the analysts’ reasoning process can be attributed to op-

erator errors, the most consistent and common errors stem from the coders not being

able to see the same visual representations as the analysts. This observation reveals

a potential pitfall of examining interaction logs without considering the visual rep-

resentations. Our current approach is thus probably limited to highly interactive

visualization systems. Understanding how interactivity versus visual representation

affects reasoning extraction remains an open question.

One practical solution is to connect the operational-analysis tool directly to the

video of the analysis. With the operational-analysis tool functioning as an overview,

coders can review videos of segments of interactions that are ambiguous to them.

If analysts used the operational-analysis tool to aid the recall of their own analy-

sis process, the video could further serve as a record of the details of the original

investigation.

By combining video with the operational-analysis tool, we believe that coders can

achieve a higher degree of accuracy and in turn be able to derive winning strategies

of different analysts that lead to the same findings. By combining these winning

strategies, we hope to identify critical decision points that these strategies share and

uncover the necessary reasoning process for identifying a particular type of fraudulent

activity.

Finally, we plan to analyze the difference between groups of participants with di-

verse backgrounds. Our previous study involved participants who are not trained in
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financial fraud detection [33]. Although they were also able to point out suspicious

events and activities, we wish to compare their decisions with the findings of real

financial analysts. If we can discover some common pitfalls in novice analysts’ rea-

soning processes, we believe we can create better training tools to help these novices

become proficient more quickly.

4.2.2 Voting Viz: Perception of agreement or disagreement of two or more ideas

In recent years, several researchers have considered adopting knowledge in their

visualizations. Among them, Chen et al. [27] proposed a knowledge-assisted visu-

alization model based on the differentiation of data, information, and knowledge in

visualization, in which both existing and users’ personalized knowledge are used to

design a visualization application. While their model has been shown to be novel

and effective, it is not clear how such the model could be broadened to visualization

applications. In this section, we extend the spirit of incorporating knowledge into

visualizations and propose a new approach to incorporate users’ knowledge into visu-

alization. In here, we use a restricted definition that knowledge is the “perception of

agreement or disagreement of two ideas [21].” In this fashion, knowledge is regarded

as the perception of the connection of agreement, or disagreement and repugnancy of

any ideas.

Previously, we performed an expert evaluation to see how user interactions encode

experts’ reasoning (see section 4.2.1 for detail). From the study, we observed that fi-

nancial analysts have different opinions on each financial transaction. Although they

have different ideas and sometimes contradict each other on determining each trans-
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action as suspicious, unsuspicious, and inconclusive, all their ideas are important. To

preserve both the analysts’ interactive analysis and their understanding on financial

transactions, we designed a system called Voting Viz. In here, we consider represent-

ing both consistent and contradictory knowledge in our visualization application.

4.2.2.1 Interface Design

The overall interface of our system (Voting Viz) is designed on top of the WireVis

system [27]. The updated version of WireVis (called WireVis-CE, Figure 35 (left))

is used. Comparing to the original WireVis system, WireVis-CE consists of several

touchable buttons to be operated on a multi-touch table. Although the WireVis sys-

tem has been known to be a well-designed visual analytics system, it has the limitation

of only showing direct relationships between accounts, keywords, and transactions be-

cause the system focuses on representing the hierarchies of clusters. If the user wants

to see the relationship between a specific transaction and accounts or keywords, she

needs to browse the hierarchy from the highest-level down to the level of individual

transactions for the desired cluster of interest. A Relation Window (Figure 35 (right))

is designed differently, with which the user can directly observe the relationship by

simply performing a dragging operation on accounts, account, or keywords.

4.2.2.1.1 WireVis-CE

Similar to WireVis (Figure 27), WireVis-CE (Figure 35 (left)) consists of three

views including a Heatmap view (Figure 35 (F)), a Strings and Beads view (Figure 35

(G)), and a Keyword Relation View (Figure 35 (H)). All functionalities in WireVis are

embedded into WireVis-CE. The difference between the two is that instead of having
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Figure 35: Overview of Voting Viz. It consists of an updated version of WireVis
(called WireVis-CE (left)) and a Relation Window (right). WireVis-CE is designed
similar to WireVis system except of having buttons (A and B). And the Relation
Window consists of multiple coordinated views (I ∼ M) to show the relationships be-
tween keywords, accounts, and transactions. The Relation Window also has buttons
(C ∼ D) to control the interface.

a traditional menu system, WireVis-CE has touchable buttons to make it work on

both a desktop computer and a multi-touch table.

The Heatmap View and the Strings and Beads View can be switched such that

the Heatmap View takes up the lower left hand position and the Strings and Beads

View fills the main display. This simple switch operation allows the user to utilize the

visual real estate for focusing either on a hierarchical projection of data or to examine

in detail all transactions in the Strings and Beads View. In Voting Viz, each vote is

identified by the user’s name displayed above WireVis-CE. The user’s name also can

be changed by simply clicking the displayed name.

4.2.2.1.2 Relation Window

The design of the Relation Window is based on multiple coordinated views: the

Projection View (Figure 35 (I)), the Information View (Figure 35 (J ∼ L)), and the
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Data View (Figure 35 (M)). The Projection View represents a specific aspect of the

financial transaction data that are coordinated in such a way that any interaction

with one view is immediately reflected in all the other views (brushing & linking).

Projection View The Projection View projects all transaction data points onto a

two-dimensional coordinate system. By default, first two principal components (the

first and second most dominant eigenvectors) are used. To find the principal com-

ponents, Principle Component Analysis (PCA) is used. By default, all 8 dimensions

are used to find the principal components. Selectively, unwanted dimensions can be

excluded from the calculation of principal component analysis by toggling buttons

located at the bottom in the Data View. In this view, a zooming function is applied

to increase the readability of data.

Information View The Information View has three information panels as accounts

((Figure 35 (J))), keywords (Figure 35 (K)), and the amounts of the transactions

(Figure 35 (L)). Relevant information of highlighted or selected transactions are visu-

alized in these panels as connected lines. Showing the relationship can be selectively

enabled or disabled by pressing the check buttons located beside or above of each

information panel (Figure 35 (E)).

Data View The Data View is located below the Projection View, and shows a paral-

lel coordinates visualization of all transactions in the original data dimensions. There

are about 8 dimensions in financial transaction data as sender account, receiver ac-

count, the amounts of the transactions, date information (year, month, and day),

number of keywords, and actual keywords related to each transaction. To perform
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the principal component analysis, all keywords information (i.e. categorical informa-

tion) in each transaction are converted to a decimal format. To make the decimal

format, a simple “binning” technique is used. For instance, n bit patterns are gen-

erated depending on the total number of keyword (n). Each bit pattern represents

an individual keyword bin. All bit patterns are initialized with a binary number “0.”

Based on the keyword information, the corresponding bin is mapped with a binary

number “1.” Then, the mapped bit patterns are converted to a decimal number to

represent unique keyword identification number.

4.2.2.1.3 Menu buttons

As shown in Figure 35, a total of 10 menu buttons for WireVis-CE and 14 menu

buttons for the Relation Window are designed to support analysts’ interactive anal-

ysis.

In WireVis-CE, six buttons are for interacting with represented data items (Fig-

ure 35 (A)) and three buttons (Figure 35 (B)) for performing annotation operations.

And in the Relation Window, first three buttons in Figure 35 (C) are for interacting

with represented data elements, the last button in Figure 35 (C) is for showing ac-

count information for voted transactions, eight small buttons in Figure 35 (D) are for

controlling the Projection View, and toggle buttons in information panels (Figure 35

(D) are for showing detailed information about highlighted or selected items in the

Projection View.

Table 3 represents the menu buttons and their meanings. With each menu button,

the user can initiate an operation of selection, navigation, etc.
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(a)

(b)

Table 3: Menu buttons used in WireVis-CE (a) and the Relation Window (b).
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4.2.2.2 Voting and Preserving the Users’ Reasoning

In visual analytics, managing the users’ findings is as important as providing useful

analysis tools because their end goal is to find evidence that verifies or supports their

hypothesis. By investigating wire transactions, financial analysts often determine the

investigated transaction(s) as suspicious, unsuspicious, or inconclusive. Since their

decisions are often based on experiences, it is difficult to understand how they ended

up with their decisions. Voting Viz is designed to show their decisions as well as

their reasoning. The reasoning is managed as a screenshot or a detailed description

(annotation). The screenshot shows what has been found from the analysis and the

detailed description explains the reasoning.

Voting in Visualization As mentioned previously, Voting Viz allows the user to

explore the financial transaction data in WireVis-CE and examine the relationships

further in the Relation Window. From the analysis, it is important to preserve all

analysts’ decisions (fraudulent or not fraudulent) in visualization.

In the Relation Window, all expert analysts’ decisions (or findings) from the pre-

vious study (see Section 4.2.1 for detail) are embedded to the Relation Window. The

analysts’ diverse opinions on each transaction are displayed inside the Projection View

and colored as red (“suspicious”), blue (“unsuspicious”), and green (“inconclusive”).

As shown in Figure 36, a grid mapping method (n × n) is used. The value n is de-

termined by finding the smaller integral value that is not less than the square root of

the maximum number of findings (x) as:
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(a)

(b)

Figure 36: During the experts evaluation, financial analysts were requested to write
down their final findings in transaction discovery sheet. Figure (a) shows an expert’s
transaction discovery sheet. Experts’ findings in transaction discovery sheets are
displayed within each transaction in the Projection View (b). A simple color mapping
method is used to highlight suspicious (red), unsuspicious (blue), and inconclusive
(green) findings.
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[n] = max{ϕ ∈ Z|ϕ ≤ n} for all ϕ =
√
x (9)

where x and ϕ are real numbers and n is integer, and Z is the set of integers.

In Voting Viz, users can interactively vote on transaction(s) while performing in-

teractive exploration in WireVis-CE. To perform the voting in visualization, the user

can simply toggle the voting button (located at the bottom in Figure 35 (A)) and

determine the investigated transactions as suspicious, unsuspicious, or inconclusive.

With each voting action, the Projection View updates the voting information corre-

spondingly.

Managing the Reasoning Instead of simply voting on transaction data, it is impor-

tant to track analysts’ reasoning. A simple approach has been designed to capture a

screenshot with additional explanations. To capture screenshots within the collabora-

tive workspace, OpenGL frame buffer is saved. Two annotation methods are designed

and supported within the collaborative environment, text- and drawing-annotation.

Figure 37 shows two examples, in where the user describes what and how they found

directly on screen. For the text-annotation, a keyboard or a virtual keyboard can be

used, and a mouse (i.e. pointing device) is used for the drawing-annotation.

In Voting Viz, all users’ reasonings are managed in an XML format similar to the P-

Set model [70]. The parameter sets we used are similar to the sets defined in the P-Set

model. However, we define each parameter to work for our system. When the voting

action is performed, the current screen is captured and managed as an individual vote.

Since the user’s reasoning can easily be recreated with the parameter sets, each user
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(a) (b)

Figure 37: Annotations. (a) Text-annotation captures the typed annotation using a
keyboard or a virtual keyboard and (b) drawing-annotation allows users to directly
annotate onto the display with a drawing tool.

can easily grasp other analysts’ reasonings from the Relation Window and recreate

to see in WireVis-CE.

4.2.2.3 Interactions

Voting Viz is designed with high interactivity in mind. In both WireVis-CE and the

Relation Window, several types of interactions are designed. All these interactions

include selection, zooming, panning, etc. Although such interactions are standard in

most InfoVis or visual analytics tools, they are nonetheless very important, and are

essential in multiple coordinated views.

To support high or low-resolution display, the scale of WireVis-CE and the Relation

Window can be expanded or shrinked. With the supported interactions in Voting Viz,

the user can quickly move the mouse over the data to see detailed information (i.e.

mouse hovering). In WireVis-CE, for example, when the user moves the mouse over

the keyword names or account clusters in the heatmap, corresponding cells in the
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heatmap are highlighted along with the number of occurrences of the transactions

in each account cluster. At the same time, all the beads in Strings and Beads are

highlighted. Similarly, in the Relation Window, the user can move the mouse over the

data in the information panels and projected data elements in the Projection View.

This allows the user to focus on specific transactions and observe which accounts are

transacting over what keywords and amounts. Such tightly integrated interactions

are supported in the Information View, the Projection View, and the Data View.

All interactions in WireVis-CE allows the user to perform rapid exploration over

many accounts, keywords, and time ranges. In addition, in the Relation Window, the

interactions permit rapid examination through seeing relationships between accounts,

keywords, and the amounts of the transactions. The ability to select data items

in one view and immediately see the corresponding items highlighted in the other

coordinated views helps the user to understand the relationship between selected

items in more than two views.

The most notable interactions in this category are the different types of selections

implemented in the Relation Window. The user is allowed to select data items in

all three views. In the Projection View, selection means clicking on a single dot

(individual elements) or draw an enclosed space upon which all data items within the

space will be selected. In the Data View, the user can either click on a single line or

brushing a range of items. In the Information View, the user can only click on a single

item. Since account information (i.e. account number) are not displayed because of

the limited display space, selection in the account information panel is designed to be

performed with two mouse actions; first the user holds down the mouse left button
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and moves over the account information panel to see the detailed account information,

and then releases the mouse button to select.

Figure 38: Simple selection and dragging operations in a zoomed-in space. With
selecting an item (highlighted in green), the user can perform further analysis to find
similar transactional patterns (highlighted in orange).

Figure 38 shows an example of performing three operations in the Relation Window.

After performing a zooming operation to see voting information on a specific wire

transaction in detail, an item is selected by a single item selection operation to find

other transactions having similar patterns.

As shown in Figure 39, there are several additional features of interactive examina-

tions in the Relation Window. Figure 39 (a and b) show that the user examines the

transaction (from account 80 to account 9). From this view, the user sees the overall

transactions related to account 80 and account 9. After performing the zooming-in

operation, the user can observe that five voters had contradictory opinions on this
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specific transaction as two suspicious, one unsuspicious, and two inconclusive. From

the Figure 39 (b), it can also be observed that this particular transaction is of an

amount much larger than others.

In addition, the user can interactively examine transactions in the Data View. The

transparency of keyword names in this view is set based on the frequency of keywords

that occur in that transactions of the accounts (Figure 39 (a)). With this feature, the

use can verify that account 80 made a lot of wire transactions relating to the keyword

“Financial Service.” For this account, although the overall frequency of “Clothes”

and “Minerals & Gems” is a bit less than the keyword “Financial Service”, it can be

observed that two keywords “Clothes” and “Minerals & Gems” occur on numerous

occasions.

Since the purpose of designing Voting Viz is to help the users to understand the

voters’ analysis patterns on wire transactions, showing each voter’s analysis pattern

as a cluster is useful to understand voters’ behaviors. Figure 39 (c) shows that all 10

experts’ analysis patterns in the Projection View. From this figure, it can be observed

that each of their analysis patterns is concentrated in a certain region in the PCA

space. This is because most their analysis patterns began by exploring the number

of keywords and the amounts of the transactions in Heatmap or Strings and Beads

Views.

4.2.2.4 Discussion

In Voting Viz, financial analysts can perform exploration and examination of wire

transactions to make decisions on transactions as suspicious, unsuspicious, and incon-
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(a)

(b)

(c)

Figure 39: In the Relation Window, interactive examinations are performed. Both (a)
and (b) show that the user highlights the same transaction data (account 80 sending
money to account 9) in different scales. (c) By toggling a button (toggled button
is highlighted in blue) in the Projection View, clusters are created using the voters’
names to highlight the voters’ analysis patterns.
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clusive. The provided set of interaction techniques are useful to perform interactive

exploration as well as examination on wire transactions. Although their decisions

are diverse and sometimes contradictory to each other, all their decisions are impor-

tant. Instead of keeping only important decisions on transactions, Voting Viz focuses

on preserving all users’ decisions. In addition, their reasoning can be traced with

annotation techniques.

We believe that Voting Viz is well designed to address the analysts’ overall ana-

lytical processes. However, it is necessary to conduct an evaluation to validate the

system as well as our idea of preserving all users’ findings in visualization. In Voting

Viz, we adopt a simple approach (annotation) to capture the analysts’ reasoning.

However, how much the analysts’ reasoning can be recovered from the annotation is

unclear. Further study should be performed to understand the relationship between

annotation and analysts’ reasoning.

4.3 Combination

Combination is the process of systemizing explicit concepts into an explicit knowl-

edge system [97]. Since explicit knowledge exists everywhere in books, research pa-

pers, and communication networks (user groups), etc., the process of combining dif-

ferent bodies of explicit knowledge is important. For instance, genomic data have

been used in many different research areas: biology, bioinformatics, computer sci-

ence (including visualization), health & medical science, etc., and depending on the

domain, researchers have derived different, yet equally important findings. In order

to fully comprehend the knowledge associated with such genomic data, it is neces-
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sary to combine findings from different domains and integrate them into a cohesive

set of explicit knowledge. In visualization, there is no known system that supports

the combination process. However, there exist some institutions such as NCBI (The

National Center for Biotechnology Information) that provide and support the com-

bination process. Researchers can post their findings through the web site with their

journal publications. Based on the collection of the research works (findings), NCBI

summarizes (combines) and posts the findings as explicit knowledge on the web.

Figure 40: Combination process (indicated by the red arrow). Explicit knowledge can
be combined with existing explicit knowledge in a knowledge base to further enhance
a user’s visual analysis process.

Figure 40 shows a simple model of combining explicit knowledge into an existing

knowledge-base. Behind this simple diagram, however, additional considerations need

to be addressed in order to maintain the quality and integrity of the knowledge-base

when combining new explicit knowledge with an existing source. If unrelated or in-

correct knowledge is combined with the existing explicit knowledge, it could degrade

the overall trustworthiness of the knowledge-base as well as the benefits of represent-

ing knowledge in a visualization. While we are not aware of any known visualizations
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that support the verification and validation process when combining explicit knowl-

edge, in the Knowledge Engineering literature, researchers have long been studying

how to verify and validate underlying knowledge when developing a knowledge-based

system [140]. The specifics of knowledge management and engineering is outside the

scope of this section, but it should be considered.

If new knowledge is not carefully validated, inserting unrelated or incorrect knowl-

edge could potentially degrade the value of the ontological knowledge structure. How-

ever, verifying and validating diverse human knowledge is difficult in nature. Due to

individual experiences and understanding, different experts have their own ways of

representing and describing knowledge. In general, there are three potential issues in

inserting newly created knowledge into an existing knowledge database: duplicated,

partial-overlapped and conflicted knowledge.

• Duplicated knowledge is often created when different experts share the same

discoveries without realizing that one already exists. In such case, an expert

user should carefully address the issue by merging the two into one or creating

an identical one (but having a slightly different meaning).

• Partially overlapped knowledge in the knowledge database represents rules that

are mostly similar but contains subtle yet important differences. Since it is not

simple to decide if the newly added rules should be inserted or merged with

the existing one, verifying this type of relationship is difficult. One conservative

approach could be to provide multiple copies of the overlapped rules and group

them together for individual users to choose from.
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• Conflicted knowledge occurs when existing knowledge differs from newly created

knowledge. This happens when the knowledge was true in the past, but not any

more in the present time. Organizing the conflicted knowledge is challenging,

but it should be carefully resolved by collaborating with domain experts.

Understanding each of these relationships is imperative for maintaining the validity

and integrity of a knowledge-base that is used in real decision-making environments.

At present time, all three scenarios are handled by domain experts manually. How-

ever, in Knowledge Engineering literature, researchers proposed and designed several

verification and validation (V&V) techniques and tools [140]. Some of them support

the ability to automatically verifying and validating underlying knowledge. But with-

out a clear understanding of domain knowledge, most automatic techniques and tools

are not always reliable. In knowledge visualization, it remains an open research area

for us to create a semi-automated knowledge management system for organizing and

combining diverse knowledge.

In visualization, adopting existing knowledge is regarded as a common, but impor-

tant approach to strengthening the visualization. In this section, we provide several

examples to show how knowledge can be combined together in visualization.

4.3.1 Adopting Knowledge in Visualization

Most visualization applications are well designed by visualization experts, but un-

derstanding the data and the domain knowledge necessary for the appropriate filtering

and extracting algorithms are often beyond the expertise of the visualization designer.

Collaboration with domain experts alleviates some of these shortcomings, but often
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the domain experts’ knowledge cannot easily be transferred and directly integrated

into the visualizations (sometimes referred to as the “communication gap” [109]).

Therefore, it is important to combine existing knowledge into visualization instead of

only supporting either addition visualization techniques or redesigning visualization

representations. With this approach, the resulting visualization will be enhanced not

just visually, but also in actual use for solving domain specific tasks. In here, we pro-

vide two examples how we can combine knowledge and apply them to visualization.

4.3.1.1 Examples

Some researchers consider applying knowledge into visualization applications to

enhance their visual representations. Xiao et al. [155], for instance, present a network

traffic analysis system that reuses users’ knowledge (discoveries - the meanings of

each network traffic pattern) to change the visual representation in a meaningful way

(Figure 41). With limited knowledge about each network traffic pattern, the visually

represented network traffic patterns do not have enough information explaining what

each pattern means. If the application is modified by adopting users’ knowledge,

detecting and understanding the meanings of each network traffic pattern become a

trivial but meaningful task.

Also our genomic visualization application (called GVis [65]) shows how the existing

visualization application can be redesigned to incorporate domain knowledge and

enhance the understanding of complex genomic data and finding useful information

(Figure 42). The initial version of the application has been designed to represent

genomic data and to address biological analysis processes. It has been extended with
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Figure 41: A network traffic analysis system [155] is enhanced by adopting users’
discoveries. In here, a color representation technique is used to represent each network
traffic pattern such as mail (green), DNS (blue), scan (red), etc.

known biological knowledge structures such as general biological classification and

biological taxonomy structure from NCBI to enhance understanding of the biological

categorization.

Figure 42: A genomic visualization application (GVis) [65] is extended based on
adopting existing biological classification that mapped with each individual color.

The biological classification is a form of scientific taxonomy [90]. The classification

is created by biologists based on biological types, such as genus or species. In general,

the biological classification forms a hierarchical structure. As shown in Figure 42, the

color panel positioned in side of the window represents the biological classification.

About 21 color regions are created in the panel. Each color region indicates biological
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taxonomic rank such as “Domain,” “Kingdom,” etc. This predefined color maps

are used to represent all genomic data. Instead of simply displaying the biological

classification, the user can interactively select a region in the color panel to highlight

where the relevant genomic data are located in a hierarchical genomic space.

To create the hierarchical genomic space, the NCBI taxonomy structure [149] is

used. The NCBI taxonomy structure is designed to organize all GenBank data by ref-

erencing existing literatures. The taxonomy structures corresponding to each dataset

are fetched by creating a module to communicate with the NCBI server. With the

fetched information, all genomic data are organized to form a node-link tree struc-

ture. Each node in the structure is directly mapped with a circle in the genomic space

(A detailed description about the system is included in section 5.2.1.1). Within the

genomic space, the user can interactively navigate through to see the detail about the

genomic structures as well as the detailed explanations.

Adopting knowledge into visualizations is important and useful for finding impor-

tant information. However, identifying relevant and appropriate knowledge that could

be applied to a visualization application is difficult. One possible source of knowledge

could be extracted from the experts’ analysis. As we have shown in section 4.2.1,

the analysts’ analytical processes, strategies, methods, and findings, can be recov-

ered through only the examination of analysts’ interaction log [148]. In the study,

10 analysts’ interactions of analyzing financial fraud were captured in a financial vi-

sual analytics application (called WireVis [25]) and analyzed by four coders. The

study showed that up to 80% of the findings could be recovered from the interaction

logs through the use of specifically designed visual analytical tools [71]. This finding
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suggests that the users’ interaction logs (e.g. semantic-level interactions such as key-

words, accounts, and transactions) partially encode the users’ reasoning processes.

Therefore, the users’ reasoning processes (domain knowledge) can be used to enhance

understanding and analyzing data through a visualization application that considers

and incorporates the users’ interactions.

4.3.1.2 Discussion

As a part of the knowledge combination process, knowledge can be combined and

visualized. Visualization applications such as the network traffic analysis system and

the genomic visualization integrate knowledge into the existing visualization applica-

tions. In this case, the overall visual representation can be enhanced which in turn

can increase the users’ ability of understanding the data.

Visualization experts realize that combining knowledge and using them in visual-

izations is important, however the exact process is still unclear in terms of how to find

valuable knowledge and how to combine them. In the field of knowledge engineering,

researchers have been thinking about how to combine and how to validate knowledge

for many years. Although their final goal is different from knowledge visualization,

their solutions might be useful for the visualization community to combine, validate,

and apply knowledge in creating visual analytical systems.

4.4 Collaboration

Collaboration is the process of sharing tacit knowledge between people. In the

knowledge management literature, it is defined as socialization [97]. Although both

collaboration and socialization represent learning from others, we use the term collab-
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Figure 43: Collaboration process (indicated by the red arrows). Collaboration is a
process of sharing tacit knowledge through the use of a visualization or through direct
communication.

oration because it is commonly used in computer science and has a history of implying

sharing knowledge, learning, and building consensus through the use of computers.

In visualization, building collaborative visualization environments also has a long

history [31, 73]. Johnson [73] defined that collaborative visualization is a subset of

computer-supported cooperative work (CSCW) in which control over parameters or

products of the scientific visualization process is shared. Prior to that, Coleman et

al. [31] provided generalizable reasons why collaborative visualization is compelling:

(1) experts’ knowledge could be available any time and at any place. (2) The ex-

pertise is transferred to others, improving the local level of knowledge. (3) Based on

the supported accessibility, visualization products can be reviewed and modified as

they are produced, reducing turn-around time. (4) Remote accessibility also helps to

avoid relocating the expertise physically. More recently, Burkhard proposed a collab-

oration process of transferring knowledge between at least two persons or group of

persons [19]. Similarly, Ma [84] noted that sharing visualization resources will provide

the eventual support for a collaborative workspace. He discussed existing web-based

collaborative workspaces in terms of sharing high-performance visualization facilities
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and visualizations and findings such as using tools like TeraGrid [12], Many Eyes [66],

etc (see [84] for detail).

Figure 43 shows how two visualization users could collaborate and share their tacit

knowledge with each other. In this diagram, we show that the collaboration process

can occur through the use of collaborated visual environments. However, the most

natural method for sharing knowledge is still direct communication between the users

(via phone, email, instant messages, etc.). In either case, the users are actively sharing

their discoveries and tacit knowledge and incorporating each other’s domain expertise

into their own.

How collaborations take place within interactive visualization or visual analytics

has been studied - in visualization, designing collaborative visualization has focused

on two different modes: synchronous and asynchronous collaborations. The major

difference between synchronous and asynchronous collaborations is whether the users

are co-located within the environment or not. Since it is difficult to understand

how people share tacit knowledge within asynchronous collaborative visualizations,

we limit our study to co-located collaboration environments such as a multi-touch

surface (or sometimes referred to as a multi-touch table). In this section, we present

a system that has been designed to answer how users share their tacit knowledge

within such a collaborative environment.

Most visual analytics tools, with few exceptions, have been designed for single users

in desktop environments. While often effective on their own, most single-user systems

do not reflect the collaborative nature of solving real-world analytical tasks. Many

intelligence analysts, for example, have been observed to switch repeatedly between
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working alone and collaborating with members of a small team. In section 4.4.1,

we propose that a complete visual analytical system designed for solving real-world

tasks ought to have two integrated components: a single-user desktop system and a

mirroring system suitable for a collaborative environment. To demonstrate our view-

point, we adapt an existing single-user desktop analytical tool (iPCA) and convert

it to a collaborative touch-table system (iPCA-CE) using a user-centric approach.

Our two tools are designed to run concurrently, and are tightly integrated in that

the findings and system parameters of one tool can be exported to the other. Using

our two-pronged approach, an analyst can carry out an analytical task while switch-

ing between single-user and collaborative modes without losing track of the analysis

process.

During evaluations with iPCA-CE, we noted that the system does facilitate the

users in sharing ideas or knowledge with others. In section 4.4.2, we present the

details of the evaluation, which involves observing 12 participants using iPCA-CE in

order to understand their knowledge sharing behaviors within a a collaborative touch-

table environment. From the study, we noticed that their behaviors are different

when solving analytical questions within three different conditions: single, double,

and multiple.

In the following sections, we present both the iPCA-CE system, as well as the

evaluations performed using iPCA-CE to understand the users’ knowledge sharing

behaviors.
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4.4.1 A Continuous Analysis Process Between Desktop And Collaborative Visual

Analytics Environments

In real-world analysis, domain experts often work together to solve analytical prob-

lems in a collaborative setting [104]. It is generally accepted that collaboration is ben-

eficial for complicated tasks, and in the context of information visualization, groups

working together have been shown to solve problems faster and more accurately than

working alone [88]. However, it has been observed that real-world analysts typically

perform both individual and group tasks, and as a result must frequently transition

between single-user and multi-user collaborative workflows during the course of their

analysis [28, 51]. Despite this fact, most visual analytics solutions have been designed

either as standalone single-user applications or as purely collaborative systems, and

very few analytical tools have been developed to cohesively support both activities.

We designed a complete visual analytical system for solving real-world tasks ought

to have two integrated components: a single-user desktop system and a mirroring

system suitable for a collaborative environment. To demonstrate our viewpoint, we

adapted an existing single-user desktop analytical tool for exploring data using prin-

cipal component analysis (iPCA) into a collaborative touch-table system (iPCA-CE)

using a user-centric approach. The system parameters and analytical findings for

these tools are tightly integrated so that analysts may seamlessly transition back and

forth between single-user and collaborative work environments without losing track

of the analysis process.

Although data analysis is often considered to be a stand-alone task, previous re-
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search has shown that analysis of empirical data in collaborative environments is im-

portant and should be considered when developing visualization applications [24, 49].

While collaborative analytics can occur in a variety of interaction modalities, we fo-

cus specifically on collaboration using a multi-touch table based on existing work that

has demonstrated potential increases in analysis performance [69]. Additionally, it

has been observed in a case study that many experts consider collaboration to be a

process for sharing the results and findings of analyses [28]. To support the sharing of

analytical results, we defined an XML-based format for managing the findings from

analyses, which can be exported when the user transitions between the single-user

and collaborative environments.

Converting an existing desktop application into a collaborative touch-table environ-

ment introduces unique technical challenges. The inherent differences between mouse

and touch-based interaction require that the user interface must be redesigned, and

limitations may also be imposed by factors such as system performance and screen

resolution. However, despite the costs of converting an existing application into a new

interaction modality, we believe that supporting both single-user and collaborative

work in an integrated fashion provides important benefits for real-world analysis.

4.4.1.1 Related Work

While much notable research have been done for collaborative visualizations, stud-

ies pertaining to design and understanding for collaborative visual analytics has been

limited. To the best of our knowledge, there has not been any integrated visual

analytics system that supports switching between single-user and collaborative en-



137

(a)

(b)

Figure 44: (a) A single user performing an analysis of the Glass dataset (214 × 9
matrix) using iPCA. (b) Multiple users interactively collaborating on a multi-touch
table using iPCA-CE.

vironments. Cambiera is a visual analytics solution which partially addresses these

concerns and supports collaborative searching through large text document collec-

tions on a touch surface [69]. In addition to searching through documents, this sys-

tem is capable of tracking the findings from analyses and maintaining awareness of

collaborators’ work. However, while Cambiera might support both environments, it is

mainly designed for table-top collaborations and does not consider allowing analysts

to migrate their findings between collaborative and single-user contexts.

In the community of computer-supported cooperative work (CSCW), numerous

studies have been done. As a part of CSCW, building collaborative visualizations has

a long history. Recently, Grimstead et al. [60] reviewed 42 collaborative visualization
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systems in terms of five attributes: number of simultaneous users, user access con-

trol, communication architecture, type of transmitted data, and user synchronization.

However, most of existing collaborative visualization systems are designed as asyn-

chronous systems because a synchronous system is still limited in that people have

to be in front of computers at the same time. Because of this limitation, Marchese et

al. [87] emphasize the benefits of having an asynchronous collaborative system.

However, in visual analytics, a few studies have been done. Most of the studies

have been performed on top of a touch surface. Cambiera (mentioned above) is an

example supports collaborative search through large text document collections on a

touch surface. The system is designed by considering collaborative activities to involve

not just searching through documents, but also building individual’s findings and

maintaining awareness of another person’s work. In visual analytics, it is still unclear

how these systems should be designed, though guidelines have been suggested by

researchers. Heer and Agrawala have provided design considerations for asynchronous

collaboration in visual analytics environments [62]. However, to the best of our

knowledge, there is no study to extend analytic processes across both single-user and

collaborative modalities.

4.4.1.2 Converting a VA Tool From Desktop to Tabletop

Although supporting collaboration when solving real-world analytical tasks is im-

portant, most visual analytics tools, with few exceptions, have been designed as

single-user desktop systems. Several researchers performed studies by adopting exist-

ing desktop visualization systems in collaborative environments [88, 67]. We believe
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that they chose existing visualization systems because user-friendly visualizations in

a collaborative environment enable users to find results more accurately. In here,

we chose to extend a known and useful application to work in a collaborative touch-

table environment. Multi-touch surfaces support a rich set of interactions that allow

multiple users to work together to solve complex analytical problems interactively.

We selected the Interactive Principal Component Analysis (iPCA) application, which

has been shown to be an easy and effective desktop visualization for analyzing data

sets and interactively exploring the parameters of principal component analysis [72].

Adopting a user-centric approach, we developed iPCA-CE, a complementary collabo-

rative visualization designed specifically for multi-user interaction on a touch surface.

Together, iPCA and iPCA-CE form an integrated toolset which allows analysts

to switch back and forth between the two visualizations on separate hardware with-

out losing track of their current analysis tasks. While a single-user analysis could

technically be performed on the touch-table using the collaborative application, this

would not be as effective and productive as using the standalone desktop application.

Since experts often prefer to work alone and switch their analysis process into a col-

laborative group activity only when necessary [51], it is important to provide both

applications using hardware appropriate for the type of interaction required.

While iPCA is designed for use on a standard desktop computer, we deployed

iPCA-CE on a multi-touch display system designed at the Renaissance Computing

Institute (RENCI) [2]. It provides a 42′′× 46′′ work surface using two high resolution

projection displays (2160 × 1920 total). To notify the client system of input events,

the table uses a multi-touch engine which detects finger touches and transmits events
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using a networking protocol. Figure 44 shows examples of a single user performing an

analysis with iPCA (Figure 44(a)) and multiple users collaborating with iPCA-CE

(Figure 44(b)). These examples show the analysis of the Glass dataset, which is a

publicly available scientific result from the UCI Machine Learning Repository [10].

4.4.1.2.1 User-Centric Approach

To convert iPCA into a collaborative touch-surface environment, we adopted a user-

centric approach. Based on our observations of user behaviors when solving complex

analytical problems, along with studies of real-world analysts [28, 51], we developed

an informal model for the general analytical process that occurs as experts switch

back and forth between single-user and collaborative workflows. Figure 45 shows an

illustration of this process. In a desktop environment, a user performs a data analysis

and compiles a list of results. When enough interesting results are found, the user

meets with other experts in a collaborative setting to discuss the findings. Users

share their findings from individual analyses with each other, and then work together

interactively to perform a group analysis. Afterwards, the users take the findings

from the collaborative analysis back into a single-user setting and then repeat the

process. Thus, we designed our system so that users can continuously export their

findings and system parameters back and forth between iPCA and iPCA-CE as they

transition between single-user and collaborative contexts.

4.4.1.2.2 System Design

iPCA was designed with two goals in mind: (1) to help the user understand the

complicated black box operation of principal component analysis [74] and (2) to allow
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Figure 45: An illustration of users’ processes of solving complex analytical problems
and sharing analysis results (findings) within and between desktop and collaborative
environments.

the user to analyze complex data sets interactively [72]. We developed iPCA-CE to

support all of the original features provided by iPCA.

Figure 46 shows the two systems. The user interface for both applications was

developed using OpenGL. Similar to the original iPCA, the extended application

(iPCA-CE) consists of four views: Projection view (Figure 46(a-1), Eigenvector view

(Figure 46(a-2), Data view (Figure 46(a-3), and Correlation view (Figure 46(a-4)). In

the Projection view, all data items are projected based on the first and second prin-

cipal components by default. The Eigenvector view displays the calculated eigenvec-

tors and eigenvalues in a vertically projected parallel coordinate view. The distances

between the eigenvectors in the parallel coordinate view vary based on their eigen-

values, separating the eigenvectors based on their mathematical weights. The Data

view shows the original data points in parallel coordinates. The Correlation view

represents Pearson-correlation coefficients and relationships between variables as a

matrix of scatter plots and values. All views are closely connected, such that if the
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(a) (b)

Figure 46: The system overview showing (a) iPCA and (b) iPCA-CE with the Glass
dataset. Four views (1 ∼ 4) and a set of sliderbars (5) are shown in both applications.
Buttons and menus (6) in iPCA were converted to several touchable buttons (6 and
7). In iPCA-CE, the sliderbars can be expanded and collapsed by pressing the toggle
button (8), and tab buttons (9) were added to show users’ findings and annotations.
Both applications support changing the scale and manipulating the projected data
items.

user changes the elements in one view, its corresponding results are updated in other

views (brushing & linking). This interactivity allows the user to infer relationships

between the coordinated spaces (see section 4.1.2 for detail).

A total of 18 touchable buttons were designed for interaction in iPCA-CE: nine

buttons for interacting with represented data items (Figure 44(b-6)), six buttons for

controlling the application (Figure 44(b-7)), one toggle button (Figure 44(b-8)) for

expanding and collapsing the sliderbars panel, and two tab buttons (Figure 44(b-9))

for managing annotations and findings. Table 4 shows the touchable buttons and

their meanings.
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Table 4: Touchable buttons and their meanings.

4.4.1.3 Sharing Analytical Processes

In a single-user desktop environment, it is difficult to share analysis results with

others. Consequently, for visual analytics systems, managing users’ findings is as

important as providing useful analysis tools because their end goal is to discover

evidence that supports their hypotheses.

4.4.1.3.1 Managing Findings

A finding from visual analysis procedures may be represented as either a screenshot,

which shows what was found during the analysis, or as an annotation, which explains

in more detail what the screenshot represents. In iPCA and iPCA-CE, both screen-

shots and annotations are used to manage users’ findings. The applications provide

two methods for providing annotations: text and drawing. Text-annotation is an

indirect approach for explaining the details of a user’s finding. Drawing-annotation

allows users to directly indicate important elements or features visually on screen.

In iPCA, both methods of annotation are performed using a keyboard and mouse.
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However, in iPCA-CE, annotations needed to be supported differently because all in-

teractions are initiated by finger touches. Therefore, a virtual keyboard is displayed

for text-annotation, and a drawing tool is used for drawing-annotation. Figure 47

shows examples in which users try to describe what they found in iPCA and iPCA-

CE.

(a) (b)

Figure 47: Annotation examples in (a) iPCA and (b) iPCA-CE. Text-annotation (red
arrows) contains data inputted using either a desktop keyboard (iPCA) or a virtual
keyboard (iPCA-CE). Drawing-annotation (blue arrows) allows users to directly an-
notate onto the display using a drawing tool controlled by a mouse (iPCA) or finger
touches (iPCA-CE) .

Findings are stored in an XML format similar to the P-Set model [70]. However,

since our design philosophy does not require us to track all of a user’s exploration

procedures, we only describe each finding with parameter sets. The parameter sets

are similar to the sets defined in the P-Set model, though defined specifically for our

visual analytics system. Sets represent interactive operations (such as selection and

deletion), view, sliderbar control, text- and drawing-annotations, and a final result.

Since users’ findings can easily be recreated with the parameter sets, it is an important

and useful feature for sharing findings with others. Each finding is identified by the
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user’s name and a timestamp. Figure 48 represents an example of a finding definition

(Figure 48(a)) and a screenshot of the final result (Figure 48(b)).

(a) (b)

Figure 48: An example of (a) an analytical finding defined in an XML format and
(b) a screenshot of the final result. A user has selected eight possible outliers during
the analysis, which are highlighted in the screenshot.

Figure 49 shows how findings are managed in the two systems. In iPCA, all findings

are listed chronologically in a separate window, and the user is provided with buttons

for updating or deleting findings in the list 49(a). A finding is created using the

current view and annotations and added to the list by selecting a button in the main

window. In iPCA-CE, however, the differences in display and interaction require that

findings be managed differently than the desktop applications. Findings are managed

within a tabbed window activated by a button above each workspace 49(b). Each

finding is represented as a screenshot thumbnail identified with the user’s name and

timestamp. Findings are created by touching a capture button in the workspace (see

Table 4), and findings can be moved into the workspace for updating via a simple

drag-and-drop operation.

In iPCA, the user can continuously create findings and track the history of the
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(a) (b)

Figure 49: Management of findings in (a) iPCA and (b) iPCA-CE. Findings are
displayed chronologically and are identified by a timestamp and the creator’s name.

analysis by viewing the previously created findings (see Figure 50(a)). If the user

wants to share with collaborators, the XML file can be transmitted to others and

imported into their applications. In iPCA-CE, a finding can be directly transferred

to others by dragging it into their workspaces (see Figure 50(b)). Using this direct

passing operation, collaborators can easily become aware of each others’ analytical

processes and results, although they each still maintain an individual workspace for

performing their analyses. Since this sharing operation should be subject to the

agreement of the collaborator, a confirmation window is displayed to ask for permis-

sion to accept the finding being shared by another. Furthermore, the findings from

iPCA-CE can also be imported into iPCA. This feature is especially important when

a user leaves the collaborative environment and wants to continue the analysis in the

desktop application.

4.4.1.3.2 Sharing Findings

As illustrated in Figure 45, analysts may perform four distinct sharing processes:

(1) asynchronous self-sharing in the desktop environment, (2) synchronous sharing

in a collaborative environment, and (3 and 4) two asynchronous transitional shar-

ing processes between the desktop and collaborative environments. All four sharing
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(a) (b)

Figure 50: (a) Updating the workspace with a previously created finding in iPCA.
(b) The user performs a drag & drop operation to pass a finding from the original
workspace (bottom left) to the other collaborator’s workspace (top right) in iPCA-CE.

processes can be supported by passing the finding parameters between users and ap-

plications. Processes (1) and (2) form continuous loops within each environment,

while processes (3) and (4) form a global loop through which the entire analysis pro-

cess iterates over time. By providing support for all four sharing processes, we form

an integrated visual analytics system which reflects the analytical processes carried

out by real-world experts.

(1) Asynchronous self-sharing occurs in most single user desktop applications (Fig-

ure 45(a)). Previously saved findings can be displayed, which allows the user to track

the history of the analysis and continuously update previous findings based on re-

cent results. (2) Synchronous sharing in the collaborative environment provides users

with the capability of viewing others’ findings to gain understanding of collabora-

tors’ analytical processes (Figure 45(b)). This type of sharing allows users to work

together simultaneously to find new analytical results. (3) Transitional sharing from

the desktop application to the collaborative environment represents the process by
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which the results from a single user’s analysis are made public for the rest of the

group (Figure 45(c)). This is analogous to traditional procedures for sharing analysis

results, such as preparing presentation slides or written reports to present and discuss

in a group meeting. (4) Transitional sharing from the collaborative environment back

to the desktop application has not been considered in many previous collaborative

visual analytics systems (Figure 45(d)). However, we believe this is an important

method for users to further investigate interesting results that were shared during the

collaborative session.

4.4.1.4 Challenges

The process of converting a visual analytical tool from a desktop application (iPCA)

into a collaborative touch-table environment (iPCA-CE) introduces many unique

technical challenges. In this section, we explain the design issues that we consid-

ered when developing the collaborative application.

Performance Although Piringer et al. [105] emphasize the importance of adopt-

ing multi-threaded operation to control both continuous interactions and a massive

amount of data simultaneously, the multi-threaded operation is not always required

for desktop-based visual analytics applications since all interactions are based on sin-

gle mouse input. However, in a collaborative environment, threading is necessary to

manage the display and listen for incoming touch events.

Since iPCA was designed for operation on a desktop, the application was not

multi-threaded. However, as mentioned previously, the iPCA-CE application was

designed to support collaborative visual analysis using a multi-touch engine developed
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by RENCI [2], which detects finger touches and sends input event messages to the

client system using a networking protocol. As a result, it was necessary to design

iPCA-CE as a multi-threaded application to process all incoming touch messages and

initiate relevant interactions.

Unlike iPCA, which contains a single workspace, iPCA-CE supports creating mul-

tiple workspaces simultaneously. We followed a workspace-based design approach

for this application, with each workspace operating independently. Touch messages

are filtered based on the currently open workspaces and are not processed outside of

these areas. This technique is useful in supporting efficient simultaneous processing

of multiple touch inputs over multiple workspaces.

Interface iPCA supports mouse-based interactions to change parameters, select or

remove data items, and navigate within the display space. However, since mouse-

based interaction is not available in a touch-surface environment, these functionalities

need to be redesigned to work with finger-touch interactions. Since many interactions

were originally intended to be initiated by mouse hovering and button clicking, which

are not possible on the touch-surface, this poses a notable challenge in providing

the same functionality as the desktop application. Many interactions on the touch-

surface were accomplished by pressing touchable buttons which implemented the same

functionality for the mouse-based interactions as well as the static menus and icons

from the desktop application.

Some operations on the touch-surface were easily mapped to touchable buttons,

such as selection and deletion. The zooming operation, however, leverages the unique
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capabilities of the multi-touch surface, and is activated by moving two finger-touches

closer (zoom-in) or farther apart (zoom-out). The panning operation is initiated by

dragging a finger on the surface. However, it is difficult to provide intuitive support

for the rotation option simultaneously, so this functionality is activated by enabling

a touchable button and then controlled by finger dragging.

Screen Resolution As mentioned previously, we deployed iPCA-CE on a touch-

surface which provides a high-resolution display (2160 × 1920). The resolutions of

desktop environments vary widely, and usually do not provide such a high resolution

using a single display. Since iPCA is designed to work on a 19′′ monitor with a res-

olution of 1280 × 1024 or less, a direct conversion of the desktop application on the

tabletop is not feasible. Despite the high resolution, screen real estate is relatively

limited for the collaborative workspaces, so by default the sliderbars are hidden from

view, and can be displayed by touching the expand/collapse button (see Table 4).

Similarly, the tab regions for displaying findings as well as text annotations can be

expanded and collapsed.

In iPCA, mouse-based interactions allow precise selection of data elements. In

contrast to the desktop, precise finger input using a touch-surface is comparatively

difficult since users might have difficulty performing selection operations if a button

is smaller than their fingertips. To address this, the size of each touchable button

needed to be large enough to support convenient use. This is a common problem

for touch-based systems, especially handheld devices. However, the high-resolution

display provided by our touch-surface makes it possible enforce the minimum size for
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each button to be the size of an average fingertip.

4.4.1.5 Discussion

We believe that converting iPCA from a single-user desktop analytical tool to a col-

laborative touch-table system is important and provides many advantages. However,

since there is no one-to-one mapping between desktop-based systems and collabora-

tive touch-table systems, the benefits of this approach need to be balanced against

the costs of the conversion process.

Benefits The most promising benefit of developing both a single-user desktop ap-

plication and a multi-user collaborative system is that these tools more accurately

reflect the analytical processes carried out by real world experts. Analysts can transi-

tion between single-user and collaborative workflows seamlessly without losing track

of their current analysis. In the desktop application, users’ findings are described as

parameter sets which can be used for history management in a single-user context

or transmitted to others for sharing analysis results. Users can move their findings

back and forth between the desktop application and the collaborative environment to

perform group analyses. Additionally, in the collaborative environment, users can in-

tuitively share their findings with others using direct drag & drop operations between

multiple workspaces.

Costs Ideally, the desktop application and collaborative environment should mirror

each other as closely as possible in terms of visual representation, user interface, and

functionality. However, due to inherent differences between desktop and touch-table

environments, it is impossible for the two applications to be purely identical. Specif-



152

ically, the user interface for a desktop application will need to be altered to support

touch-based interaction instead of mouse-based interaction. Since a standard mouse

supports 2D motion as well as multiple buttons, mapping mouse-based interaction to

finger touches is a complicated procedure. Also, touch-based interaction is not precise

as mouse input, so the size of touchable components needs to be carefully adjusted.

Additionally, in desktop environments, menu systems are commonly used to manip-

ulate application system parameters. However, menus are difficult to implement in a

touch-table environment due to the lack of input precision, so the interface for this

functionality also has to be redesigned. Since screen real estate on a touch-surface is

limited, designers may want to consider including only the important and necessary

functionality from the desktop application in the collaborative environment.

Although many useful visual analysis applications have been developed to assist

users in understanding complicated relationships in large data sets, they are mostly

limited desktop applications designed for single-users. Collaborative visual analytics

environments have also been developed, which allow users to work together to solve

complex analytical problems. However, on their own, neither of these two environ-

ments accurately reflect the continuous analytic processes carried out by real world

experts. In this section, we converted a previously developed single-user desktop ana-

lytical tool to a collaborative touch-table environment using a user-centric approach.

The two tools are designed to run concurrently, and are tightly integrated in that

findings and system parameters of one tool can be exported to the other. Using this

approach, users can continuously carry out analytical tasks while switching between

single-user and collaborative modes without losing track of the analysis process.
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4.4.2 Understanding Users’ Knowledge Sharing Process

Understanding how people act when analyzing data is an important research topic

in visual analytics, but it is also extremely challenging [137]. In order to isolate the

problem, we focus our research on the understanding of analytical behavior to be

strictly within the context of a collaborative environment, specifically on a touch

table. Our work begins with understanding collaborative analysis procedures, which

attempts to understand users’ knowledge sharing process by observing 12 participants

using the iPCA-CE system.

4.4.2.1 Understanding Collaborative Analysis Procedures

In order to design our study procedures, we first need to understand the nature

of the collaborative analysis procedures. While a collaboration process can occur

through the use of collaborative visual environments, the most natural method for

sharing tacit knowledge is still direct verbal communication between users. Through

direct communication, the users actively share their discoveries and tacit knowledge

and incorporate each other’s domain expertise into their own. By reviewing existing

literatures, we classifies the users’ collaborative analysis procedures based on the

number of tasks and workspaces (Table 5).

Table 5: Collaborative analysis procedures for multiple users in collaborative envi-
ronments. Based on existing literature, synchronous analysis procedures and their
characteristics are classified in terms of the number of task(s) and workspace(s).

Task(s) Workspace(s) Cooperative Coupling Example(s)
Single Single Joint Tightly coupled [67, 88]
Single Multiple Joint Mostly Loosely coupled [69, 88]

Multiple Single Disjoint Loosely coupled [67, 130, 142]
Multiple Multiple Joint or Disjoint Tightly or Loosely coupled [20, 120]
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The term “cooperative” indicates whether users collaborate with each other to solve

given data analysis tasks. If users solve a task together, collaboration between them

might take place to increase the overall performance of solving the task (joint). If users

solve different tasks, it is not necessary to have collaboration between them (disjoint).

The “coupling” refers to the dependency of users on one another to make significant

progress [130]. If users need to interact frequently relative to the amount of work to

be done, the work is tightly coupled; conversely, when users have few interactions or

independently work for long period of time, the work is loosely coupled [115, 130].

A single task and a single workspace If multiple users work on solving the same task

within a co-located workspace (a single workspace), it has been shown that the users

prefer to collaborate with each other synchronously to solve the given task. However,

if one person manipulates the display, the others would simply observe the display to

build new ideas or strategies [130, 142].

A single task and multiple workspaces If each person has her own workspace to

solve the same given task (multiple workspaces), people tend not to collaborate syn-

chronously with each other. Instead, they prefer to collaborate with others only when

it is necessary. This is because when given individual workspaces, each user would

work mostly within their own workspace to build their understanding. Only after they

have gained some understanding of the problem would they begin to collaborate with

the others to share their findings and strategies. In this scenario, it might be useful

to have a separate shared workspace to facilitate the communication of independent

findings [68].
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Multiple tasks and a single workspace If the users are trying to perform multiple

tasks within a single workspace, visual awareness [142] of what other users are doing

within the workspace should be considered and managed. Users begin with their

own working regions within the shared workspace, but these regions can change and

overlap if their regions of interest are growing. In such case, unwanted interference

might occur. To solve such problems, Tang et al. [130] emphasize that fluid tran-

sitions between coupling styles should be considered when designing collaborative

environments.

Multiple tasks and multiple workspaces Having multiple tasks and multiple workspaces

is a common approach within asynchronous collaborative environments [62]. How-

ever, limited study has been done on multiple tasks and multiple workspaces within

synchronous collaborative environments. Scott et al. [120] observed tabletop collab-

oration in casual and formal settings and found participants would intuitively divide

their workspaces into three general types of interaction areas: personal, group, and

storage. People spend most of their time working within personal workspaces and

move to group or shared workspaces when they collaborate each other on the main

tasks that contribute toward the overall group’s goals. Also Butkiewicz et al. [20]

designed a probe-based geospatial collaborative environment having three types of

interaction areas similar to Scott et al.’s table collaborative environment. Since their

environment uses geospatial datasets, the group workspace (a map) is positioned in

the center area of the environment, within which users share their regions of interest.

Users privately analyze the contents of their regions of interest within their personal
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spaces. The periphery of the environment, i.e., areas along the edges and out of users’

easy reach, becomes a storage space for the result of completed analysis. To control

and manage different workspaces, they adopt probe interfaces that monitor and keep

track of each user’s analysis.

4.4.2.2 Conducting a Study

Based on our understanding of the characteristics of collaborative data analysis

procedures, we observed that all four analysis procedures are often considered in

collaborative visual analytics applications. In our study, we extend the characteristics

of collaborative analysis procedures to include three conditions. The three conditions

are designed based on the number of workspaces as single, double, and multiple

workspaces. In all conditions, two participants are requested to work together to

solve a given task. The single workspace condition dictates that two participants can

have only one workspace. The double workspace condition allows each participant to

have her own workspace. In the multiple workspace condition, the participants are

allowed to create as many workspaces as they want.

In the study, a collaborative visual analytics application (iPCA-CE) is used (see

section 4.4.1 for detail). Since the purpose of this study is to understand how par-

ticipants collaborate together and share knowledge in a collaborative environment,

all their interactions on a multi-touch table are screen-captured internally and exter-

nally. Internally, the screen is captured using a screen capturing software. Externally,

the screen is captured using a high-definition camera facing down from the ceiling.

Also their verbal communications are audio-recorded. Additionally, all participants’
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time-stamped interactions are captured by built-in functions of the system and saved

automatically into log files.

4.4.2.2.1 Procedure

12 participants (nine males and three females) participated in the study. All partic-

ipants are graduate students in computer science. Most participants self-reported that

they were familiar with visualization applications. About four participants claimed

that they do not have an experience of using a multi-touch table.

All participants were administered a questionnaire containing demographic ques-

tions about gender, major, and familiarities on visualization applications and a multi-

touch table. Before beginning the each of conditions, which were counterbalanced to

control for order effects, participants were given a tutorial about the tool they were

about to use, including how to utilize basic functionalities. Sufficient time is given to

each participant to be familiarized with each scenario and the visual analytics appli-

cation on the multi-touch table. Any questions the participant had were answered.

After the training, they were requested to solve a task question in each condition.

We performed the evaluation using four different datasets: the Iris dataset (150

data items × 4 dimensions), the E.Coli dataset (336 data items × 7 dimensions), the

Forest Fire dataset (517 data items × 11 dimensions) and the the Glass dataset (214

data items × 9 dimensions). The Iris dataset was used in the training session whereas

the E.Coli, the Forest Fire, and the Glass datasets were used in the actual evaluation.

All categorical variables in each dataset are removed for PCA calculation. All four

datasets are scientific results that are publicly available at the UCI Machine Learning



158

Repository [10]. All datasets are also counterbalanced.

The used task question is to find the most striking outlier(s). All participants were

requested to have a discussion with their colleagues to justify their findings. At the

same time, they were also requested to find evidence for their findings and provide

both their final answers and evidences by using both text and drawing annotation

methods (see section 4.4.1.3 for detail about annotation methods).

All participants’ time-stamped interactions were captured and saved into log-files

such that several variables relating to the use of the visualization were tracked. These

variables include completion time and time-duration for each touch interaction. The

number of touches are also tracked. Three types of interactions were tracked: basic

manipulation interactions (zooming, panning, and rotation), touchable-button inter-

action, and annotation interactions (text- and drawing-annotations). As soon as each

condition is completed, a post-interaction questionnaire was administered to evaluate

how easy and intuitive the visualization is for collaborating with the other. These

questions include “how easy or difficult was this method to share your ideas?,” “how

intuitive was this method to use?,” “how well did you communicate with your part-

ner?,” and “what aspects of the interaction made using the visualization more difficult

to use for collaborating with a colleague?” After a participant completed the evalua-

tion of all conditions, a post-study questionnaire was administered, which requested

feedback on the comparative ease of use of all conditions, including open-response

questions about the participants’ likes and dislikes.
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4.4.2.2.2 Evaluation Results

We present the results of our evaluation based on accuracy, easiness & intuitiveness,

usefulness, effectiveness, and preference. Time is measured quantitatively; whereas

the other categories are analyzed based on the participants’ qualitative feedback.

Accuracy Figure 51(a) shows the results of the participants’ completion time and

verbal communication time while solving the task question. As shown, the partici-

pants spent about 531.57 seconds on average to find the answer for the task question

in each condition. While solving the task question, they spent an average of 211.64

seconds to verbally communicate with each other to discuss their ideas or to justify

their findings. On average, they found about 4.5 findings in each condition (Fig-

ure 51(b)). Based on the statistical analysis (one-way ANOVA), we find that the

completion time (p = 0.28) and the verbal communication time (p = 0.86) are not

statistically significant across the condition. However, we find that the number of

findings across the condition is significant (F (2, 17) = 5.65, p = 0.01). As shown in

Figure 51, the participants spent less time to solve the task question in the single

condition. However, they spent more time to communicate each other in the single

condition. Since the participants prefer to discuss about their ideas and findings,

their overall findings are a bit less than the other two conditions.

By measuring how much time the participants spent to interact with the system

(iPCA-CE), we find that the total time spent to perform interactions (p = 0.54) is not

statistically significant across the conditions. Also the time-spent for the touchable-

button interaction (p = 0.17), the basic manipulation interactions (p = 0.07), and the
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(a) (b)

Figure 51: Average completion time and verbal communication time (a) and the
number of findings (b) across the condition.

annotation interactions (p = 0.52 for drawing-annotation interaction and p = 0.73

for text-annotation interaction) are not significant. Although we assumed that the

participants might spend less time interacting in the single workspace condition, these

results indicate that the participants spent similar amount of time to perform each

interaction (Table 6).

Table 6: Average time-spent (seconds) to perform each interaction.

Manipulation Finger-touch Touchable-button Drawing-annotation Text-annotation
Single 17.43 91.27 8.22 13.11 25.64
Double 16.84 154.60 10.06 16.92 48.90
Multiple 29.68 118.34 7.94 10.78 41.58

Easiness & intuitiveness (post-condition questionnaire) The participants were re-

quested to report the easiness and intuitiveness of the condition in solving the task

and communicating with their colleagues.

Figure 52(a) shows that most participants (86%) reported all three conditions to

be “easy” or “very easy” when solving the task question. Similarly, about 80% of

the participants identified the conditions as being “intuitive” or “very intuitive” to

solve the task question. In addition, the participants were requested to answer the



161

(a) (b)

Figure 52: Four study results. (a) Ease of use and intuitiveness of use for each
condition, and (b)“how well did you understand the data?” and “how well did you
communicate with your colleague?” are measured.

questions “how well did you feel like you understand the data?” and “how well did

you communicate with your partner?” About 83% of the participants indicated that

they communicated with their colleagues to share ideas “well” or “very well”. And

about 72% of the participants mentioned that they understood about the data they

used “well” or “very well’ (Figure 52(b)).

Interestingly, as shown in Figure 52, a participant indicated that the single workspace

condition made it difficult for her to use and communicate with her colleague because

they had contradictory ideas about the analysis procedure.

Preference (post-study questionnaire) After the evaluation, each participant ranked

the three conditions, provided their preference, and described their pros and cons.

Based on the description of the pros and cons, we find that most participants

pointed out the multi-touch table interactions as quite helpful to understand the data.

About three participants complained about the false-touches and the system delay.

Overall, the feedback we received for the collaborative visual analytics application

was very positive. All participants found the tool to be useful and intuitive to use,
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and efficient for collaborating with each other.

Figure 53: The participants’ preference to use and to communicate with others.

In regards to the participants’ preference (Figure 53), we find that the participants

preferred to have the multiple workspaces for solving problems. Interestingly, about

a half of the participants preferred having a single workspace for communicating and

sharing ideas with others.

4.4.2.3 Discussion

From this study, we find that the participants continuously shared their ideas in the

single workspace condition because they need to have an agreement before performing

an action. In the single workspace condition, we find that interference [141] occurred

between collaborators because their desired working areas often overlapped with the

other’s. We also observe that if one participant interacts with the display, the other

participant simply observes what the other participant is doing and tries to create

her own ideas or strategies. This pattern of collaboration alternated continuously

as different dominant users interacted with the display. In the double and multiple

workspace conditions, a participant pointed that he felt like he was racing with his
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colleague to find many possible answers.

As mention above, Scott et al. [120] noticed that people prefer to have three general

types of interaction areas: personal, group, and storage. However, in our study, we

noticed that they do not create a group (or shared) workspace. Instead, they prefer to

send their important findings directly from their workspaces to the other collaborator.

We postulate that the difference in the results is due to the fact that in the study

by Scott et al., the experiment was performed using a real table, which had divided

sections. In our study, our visualization design on the multi-touch table did not have

physically divided sections, which allowed the user to more directly interact with each

others’ workspaces.



CHAPTER 5: DESIGNING KNOWLEDGE VISUALIZATION

As we shown in Chapter 3, the knowledge visualization framework is designed

having general properties of knowledge (explicit) and personal properties of knowledge

(tacit) in visualization. With the knowledge visualization framework, several studies

have been conducted to understand knowledge conversion processes in visualization

(see Chapter 4). This chapter begins with providing a description how to design a

knowledge visualization application.

With using the knowledge visualization framework, we integrated the concept of

knowledge visualization to our existing visualization application called GVis [65].

GVis is developed to help bioinfomaticians investigate, analyze, and understand large

amounts of complex genomic data. The knowledge visualization framework we ap-

plied here is to make these difficult tasks easier by organizing and representing the

knowledge associated with the genomic data. In this chapter, we explain in detail how

we apply the knowledge visualization framework to the existing application and what

improvements have been accomplished. We begin with explaining the initial version

of GVis in terms of what features are supported and what visualization techniques

are provided. Then, we move to explaining the updated genomic visualization with

the knowledge visualization framework applied.
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5.1 Design Issues

In Chapter 3, the knowledge visualization framework is provided. Since knowledge

visualization mainly focuses on representing knowledge, it is important to consider

finding important knowledge and representing them in visualization. Prior to finding

the important knowledge, collections of explicit knowledge need to be managed by

referencing existing explicit knowledge. Alternatively, explicit knowledge Ke can be

extracted from data D based on some function f , the relationship between these

variables can also be expressed as a set of equations:

Ke = f(D); I(t) = V (Ke, S, t) (10)

Based on the explicit knowledge Ke, some specification S, an image at time t,

I(t), can be created through the visualization V . This image is then perceived and

understood by the user, resulting in an increase of the user’s tacit knowledge Kt.

While we believe the knowledge visualization model (shown in Figure 3) is accu-

rate conceptually, in practice, we have come to realize that the amount of explicit

knowledge Ke that is derived from a complex dataset D could be nearly infinite. The

process of converting explicit knowledge into visualization is thus limited by the screen

resolution and computer hardware and often cannot be displayed in its entirety. To

this end, we refine the knowledge visualization model and subdivide explicit knowl-

edge Ke into smaller collections of knowledge Ke1 to Ken (Figure 54). The challenge

of creating a visualization therefore becomes the determination of the most relevant

and valuable collection of knowledge to display to the user.



166

Figure 54: The refined model of the operational model in Figure 3 having the collec-
tions of explicit knowledge Ke1 to Ken .

To design a knowledge visualization application, it is important to consider and

follow the knowledge visualization framework. In addition, it is also necessary to

support the four knowledge conversion processes (see Chapter 4) in visualization. To

support the internalization process, it is important to provide a rich set of interac-

tions. With such interactions, users can continuously internalize tacit knowledge by

looking at and interacting with the visualization. Since their tacit knowledge can be

externalized and used to design or redesign a current visualization representation, the

visualization should have a capability of externalizing and integrating (reusing) their

tacit knowledge into visualization. As we mentioned above, the collections of explicit

knowledge can be created through the combining process. Although adopting exist-

ing knowledge is regarded as a common, but important approach to strengthening

the visualization, combined knowledge should be carefully validated because inserting

unrelated or incorrect knowledge could potentially degrade the value of visualization.

Visualization designers need to validate the combined knowledge by working with

domain experts. Lastly, the knowledge visualization application should be designed

having an ability of supporting the collaboration process. Although there are several
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issues need to be accomplished, a knowledge visualization application, in general,

can be designed by representing important knowledge and supporting the knowledge

conversion processes in visualization. In following sections, we provide an example of

knowledge visualization application.

5.2 Genomic Visualization (GVis)

GVis was developed to support the visual analysis of large-scale phylogeny hier-

archies populated with the genomic data of various organisms. It uses a publicly

available biological database (GenBank) from NCBI to create the phylogeny hierar-

chy and allows the user to quickly browse the hierarchy from the highest level down

to the level of an individual organism for the desired organism of interest. Roughly,

the GenBank currently holds more than 40,000 genomic data and about 18,000 pub-

lication citations. GVis consists of several interlinked windows that support the user

in visual exploration and detailed analysis of the genomic data without losing her

focus as she deals with multiple levels of information hierarchies. Several properties

provided in GVis include: (1) a multiscale structure based on the Pad++ “infinite

pan and zoom” paradigm [11, 54], (2) a general tree structure capable of providing

quick access to many thousands of organisms of any size, (3) a layout scheme for ar-

ranging genomic information, including annotations, at different scales that support

iterative analysis and comparison, (4) level-of-detail techniques to continuously reveal

increasing amounts of detail as one zooms in, (5) multiple interaction techniques for

presenting “details on demand” through direct interaction with the visual presenta-

tion, and (6) integrated analysis tools that can be launched within GVis and whose
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Figure 55: The overview of GVis. It has multiple windows: a zoomable window
(top left), two overview windows (bottom), and a working window (top right). These
windows are closely coordinated with each other to maintain interactivity within the
visualization.

results can then be compared.

5.2.1 GVis Framework

Figure 55 shows the overview of GVis. The overall GVis framework consists of a

main window, an overview window, an overview tree window, and a working win-

dow. The main window is a multi-resolution display of genomic information that

supports interaction features such as zooming, panning, and various mouse events.

The overview window is designed for showing the user’s positional information be-

cause the user can easily lose his way in a scalable visualization space. The overview

tree window serves a similar purpose as the overview window, but shows the overall

layout using a circular tree structure. Finally the working window is designed for
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comparing genomic data using a sequence analysis tool as described later. Although

the main window, the overview window, and the overview tree window use different

modes of interaction and visualization, they are tightly integrated. When the user

changes focus in one of the windows, the other two will automatically change their

viewing perspectives accordingly.

5.2.1.1 Representing the Phylogeny Structure

GVis builds a visualization structure based on a universal model containing com-

prehensive domain knowledge appropriate for genomic investigations. A universal

structure is quite important because it can be used everywhere, on servers or by

individual users collecting and annotating data, and is known a priori by everyone.

This means that everyone knows where to put a new genomic annotation or find an

existing piece of data. A universal structure means that genomic data can be highly

distributed and easily shared. Everybody knows the structure but nobody possesses

all the data. However, parts of the structure can easily be compared between users to

coordinate their contents. We choose the comprehensive phylogeny tree for all organ-

isms as the universal structure. This tree has a place for everything in its branches,

including archaea, bacteria, viruses, and eukaryotes. The phylogeny tree is widely

recognized by users. It tends to group genomic data with similar characteristics

in size and functional structures on nearby branches. The phylogeny classification

structure embodies how biologists tend to think about organisms. Nevertheless, it is

also true that no structure, even if comprehensive, can encompass all the relation-

ships that genomic scientists discover and investigate. Indeed, it is increasingly true
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that scientist compare quite disparate species (e.g., viruses and bacteria) to discover

common mechanisms. Finally, it is important to note that the data layout and or-

ganization mechanism does not depend on the details of the structure used. If a

universal structure other than a phylogeny tree were deemed more useful, the data

could be efficiently organized for this structure.

The embodiment of the phylogeny structure is a taxonomy tree based on the tax-

onomy structure defined in NCBI. In GVis, each node is represented by an ellipse and

each leaf node is represented by a genomic structure as shown in Figure 55. GVis

adopts a containment relationship between parent and children nodes, which is simi-

lar to a Venn Diagram. Figure 56 illustrates the conventional node link tree structure

in this representation. The location and size of child nodes inside the parent node

depends on the number of children nodes, with no child nodes overlapping. First,

locations are assigned randomly around the origin and then each of the locations is

considered as a particle that pushes others nearby. To prevent particles from moving

too far away, we add a counter-force that attract particles towards the origin (and

keeps them within the parent node). These two complementary forces move particles

in equilibrium positions eventually, and we then store them.

When GVis loads the tree structure, depending on the number of children, it reads

the location table and assigns this spatial coordinate into the node. In this way, it

accelerates the loading process because the system does not need to compute the

location of the children and the users can freely add or remove genomic data from a

directory without worrying about changing the spatial information. Because of the

containment relationships between parent and child nodes, the tree can be efficiently
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Figure 56: Translation from tree structure to Venn diagram. Each node in the tree
structure (left) is represented by an ellipse (right).

traversed. When the root node is put into the visual query, GVis will decide if the root

node needs to be drawn by checking whether the view window contains or intersects it.

If so, GVis traverses to the next level of the tree and applies the same test recursively.

At some level, the size of node on the screen will be too small compared to a screen-

space threshold, and this is the point when the traversal stops. In this way, the tree

can be traversed very quickly.

5.2.1.2 Interactions in GVis

Since the total size of the GVis gene database will grow significantly as users start

acquiring more data of interest to view, we have developed data management tech-

niques that apply a level of abstraction approach across the genomic data in the

database. Clearly, there is no point in drawing millions of nucleotides per organism

when we are viewing all of them at the broadest level of overview, since each nucleotide

would project to a small fraction of a pixel. For efficient navigation and exploration,

data should be stored in a spatial hierarchy for incremental access and multi-resolution

display such as “Pad” [99] metaphor and its extension, Pad++ [11, 54]. In GVis, we

have used the geographical layout to lay out this structure to satisfy the criterion that
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the contents of children be totally contained spatially in their parents and not overlap

each other (see Figure 57). This makes the domain-specific structure especially effi-

cient to traverse and query spatially. The domain-specific structure encompasses both

the 2D spatial extent and the scale dimension (through use of tree depth). It lends

itself to interactive navigation of the scalable data space, with incremental updates

from out-of-core data storage.

Figure 57: Zooming from root (all organisms) to a specific organism (Campylocater).

As mentioned above, GVis uses a collection of genomic information from NCBI.

For efficiently displaying this information (annotations about each gene) on screen,

a window-based approach is used. All the information is displayed and managed

in an annotation window (also called inner-window). In addition to displaying text

annotations, an inner-window also allows launching of sequence analysis tool through

clickable buttons and selection of gene sequences through mouse click-and-drag. A

detailed explanation about the gene sequence analysis in GVis is given in the following

section.
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5.2.1.3 Performing Sequence Analysis

GVis does not only represent the genomic information, but also supports interactive

gene sequence analysis. It integrates a network-based gene sequence matching tool by

NCBI called netBLAST. netBLAST is a publicly available gene sequence matching

program that emphasizes regions of local alignments in order to detect relationships

among sequences that share isolated regions of similarities. In the inner-window, a

user can select an arbitrary length of gene sequence and submit it to netBLAST.

Depending on the length and type of the query gene sequence, netBLAST could

return more than ten matching sequences of any length. Since there is no way for

the user to know a priori the number or the lengths of the resulting sequences, we

implement navigation features within the inner-window such as zooming, panning,

and scrolling to allow efficient visualization of the results. In addition, results can be

moved to the working window for closer comparison, as described below.

To support random selection of partial or whole genomic sequence in conjunction

with netBLAST, two different approaches are created. The user can either select

a gene sequence from a complete genomic sequence using a sequence guideline, or

from a partial sequence in an inner-window. Both methods can be accomplished by

dragging the mouse over the displayed sequence or sequence guideline.

In addition to displaying the netBLAST results, the working window also shows the

spatial correlation between similar sequences returned by netBLAST and their loca-

tions within the original genomic data. If the original genomic data is not present in

our local database, our system will directly connect to NCBI database and download
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it. The downloaded data will be integrated into the system through the steps such as

gathering taxonomy information, finding ORFs4 data, generating a binary file based

on collected data, and locating the file into one of the organism tree nodes. Thus GVis

provides a powerful capability to build databases that are specific to users’ needs and

analyses and that contain the users own annotations. The database contains a history

of the analysis for inspection by the user or sharing with others.

5.3 Knowledge Visualization

The knowledge visualization framework is applied to the initial version of GVis

to increase the user’s understanding of the represented knowledge and assist them

in building tacit knowledge interactively. Throughout the rest of this thesis, we are

going to use the same name “GVis” to represent the updated version of GVis. In the

following sections, we explain how the knowledge visualization framework is applied

and what features are supported.

We applied several features that are highly related to the knowledge visualization

framework. In particular, we displayed and interlinked a knowledge structure topol-

ogy (nodes and links) to provide improved support for discovery, insight-building, and

reasoning. We also provided interactions to build the user’s own knowledge into the

system, through new nodes or links, and to emphasize important knowledge, through

selection and weight change in the visual displays. This provides both perceptual and

cognitive benefits. Figure 58 shows the overview of GVis with the knowledge visual-

ization framework applied. Similar to the initial version of GVis, it has a zoomable

4Open Reading Frame (ORF) is a portion of an organism’s genome containing a sequence of
bases (start- and end-points) that encode a protein.
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window (Figure 58(1)) and two overview windows (Figure 58(3) and (4)). Additional

three windows are added to represent a knowledge structure topology and the cost

and benefit of each item. In the knowledge structure window (Figure 58(2)), the rela-

tionship between genomic data are represented through which a user can interactively

select data items to see their relationships closely. All the corresponding information

about the knowledge structure topology displayed on screen is represented in parallel

coordinates (Figure 58(6)). And the treemap view window (Figure 58(5)) shows the

values (the cost and the benefit) of each data item where a treemap representation

method is used to display the relative amount of cost (red-colored) and benefit (blue-

colored). As shown, the selected items are highlighted in the treemap view window

(see Figure 58(b)). A detailed explanation how to create the knowledge structure

topology and how to handle knowledge (e.g. by applying the cost/ benefit analysis)

in GVis are provided in the following sections.

5.3.1 Creating Knowledge Structure Topology

As we described in section 3.2, the knowledge visualization framework uses an

ontological structure through using nodes, links, and classifications to show the rela-

tionships between concepts and entities. Specifically, in GVis, the taxonomy structure

is represented as links in a hierarchical layout of organisms. Since the taxonomy does

not show detailed relations among genomic data, it is important to provide a set of

controlled terms (inferential structure) to describe gene and gene product attributes.

A common approach to creating ontology structure is to use an inference engine. Of-

ten statistical approaches are used to create a structure that represents the relations
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(a)

(b)

Figure 58: The overview of GVis with knowledge visualization framework applied.
Users can interactively navigate from the initial view (a) to see the detailed represen-
tation within the genomic space (b).
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among data [147, 57, 22]. In GVis, we use a statistical approach to build a graph

topology (nodes and links) to represent the relations among all the organisms and the

genomic data that augments the taxonomic layout. The data we use includes content

from annotations created by researchers such as paper publications (published year

and number of citations) or references to other organisms or to the taxonomy.

Based on more than 40,000 genomic entities, we applied three methods: PCA, Hi-

erarchical clustering, and a force-directed drawing algorithm. Given an n ×m data

matrix, PCA uses the first eigenvectors of the m×m covariance matrix as the axes of

the lower k-dimensional space [74]. The first two principal components are selected

to represent each organism. An approximation approach, on-line SVD [14], is used

to compute principal components in real-time. The data matrix can be computed in

O(mnr) time for r ≤
√

min(m,n). Within the principal components, a performance

guaranteed hierarchical clustering technique proposed by Dasgupta and Long [41] is

applied to build a hierarchical tree structure. It uses k-center algorithm and lev-

els of granularity to approximately create a hierarchical clustering. It guarantees

Ω(logk) lower bound on the approximation with small values of k. If k is not defined,

the complete linkage is computed in O(n2). However, representing the full graph

topology in a limited screen space is not feasible. Also it is not possible to support

interactive analysis of the graph topology [3]. Therefore, representative organisms are

selected based on a distance-based approach. The force-directed drawing algorithm,

GRIP [55], is used to efficiently organize each node (organism) to increase the user’s

awareness and understanding. Unnecessary or infeasible information automatically

becomes inactive depending on the user’s interest. This approach is useful to highlight
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and represent important knowledge instead of representing all information without

knowledge relations. It also shows that the creation of a knowledge structure takes

less than 3 seconds for 40,000 genomic entities. This approach is useful to highlight

and represent important knowledge instead of representing all information.

5.3.2 Labeling and Annotation

Labeling is important and highly connected to human cognitive processing. Con-

trolled and well organized labels increase the ability of understanding visual contexts.

5.3.2.1 Applying the Cost/ Benefit Analysis

As we explained in section 5.2.1.2, GVis uses the annotation window to display a

collection of genomic information (annotations about each gene). However, instead of

simply representing all information, knowledge visualization focuses on emphasizing

only important knowledge. To efficiently manage information and increase human’s

cognitive ability of understanding them, the cost/ benefit analysis (see section 3.2

for detail) is applied. In GVis, all available information is used to measure the

benefit and the cost. The information are the size of gene sequences, nucleotide

sequence identification numbers, a word or phrase describing about gene sequences,

publication information, descriptions of genes and gene produces, regional information

of biological significance related to gene sequences, etc. Among them, publications

and the number of citations are important information to determine the benefit.

Because of limited display space, the amount of information to be displayed on screen

is regarded as an important factor to determine the cost. To measure the cost and

the benefit, a greedy knapsack approach is used. If specific genomic data have a lot of
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recent publications, higher number of citations, and the small amount of information,

such genomic data as well as their corresponding annotations will be displayed on

screen.

The benefit and the cost are computed every frame. Once a specific annotation

window is displayed on screen, it is continuously shown on screen unless the user’s

viewing perspective has completely changed (see Figure 58(b)). If the visibility of

information is frequently changed frame to frame, it diminishes the user’s overall cog-

nitive ability (hysteresis) of understanding it. Therefore, the benefit of maintaining

displayed item on screen has a higher value than others. Since all genomic informa-

tion are managed within each annotation window, the user can manually close the

displayed annotation window. Once the annotation window is closed, the benefit and

the cost will be recomputed.

The cost/ benefit analysis is also applied to control labels of organisms. Although

many useful techniques have been proposed for rendering labels, most of the tech-

niques require a pre-processing to determine what to display. However, with the

cost/benefit analysis, all the labels of genomic data are managed on the fly when

each label is displayed. To control each label, all labels are maintained to have the

same value of benefit. And the cost is determined based on the length of each label

and the distance to the closest label. It also guarantees a real-time computation to

render the labels. With this approach, the user can navigate the scalable layout and

see the labels without encountering cluttering.
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5.3.2.2 Bringing Out the Information from the Bottom to the Top

In visualization, hierarchical clustering methods or taxonomy structures are often

used to organize data in a limited display space. Since GVis uses a scalable layout

based on a taxonomy tree to represent all genomic data, most raw data are posi-

tioned at the bottom layer. In such a layout, it is difficult for users to find useful

information without navigating through the space. A circular way of information

representation method is designed to remove this limitation. To initiate the action

of showing information located at the bottom layer in front, Interactive-Icon tool

is designed. Although the Interactive-Icon tool acts similarly to a traditional menu

system, a recent paper by Green et al. [58] on the development of a human cognition

model for visual analytics noted the importance of human interaction and flow of

cognition in the model. They specifically pointed out that traditional menus cause

considerable interruptions to an analyst’s flow.

The Interactive-Icon tool uses six icons, each placed around the circumference of

the organism’s sphere (see Figure 59). Unlike the traditional menu system, the icons

are dragged and dropped to the area of interest. For example, if the user wants to

see the relevant information related to organism A, then an icon needs to be dropped

in the region between the organism A and its subgroup organism(s). However, each

icon does not represent data itself nor its symbolic meaning the way traditional icons

do. Instead, it represents an operation to be performed. Four icons (see red arrows in

Figure 59) can be dragged to active the pre-defined functionalities. Two additional

icons (see green and blue arrows in Figure 59) used for sorting and for “canceling” the
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chosen functionality. If the represented information can be sorted, the icon is shown as

active; otherwise, it bears an “x” indicating its unavailability. The cancellation icon,

when dragged and dropped, returns to the visualization’s previous state so another

function can be used. Additionally, the visualization can be returned to its original

view by pulling the icon back into the sphere’s circumference.

(a)

(b)

Figure 59: The five icons defined in Interactive-Icon tool.

In GVis, the user’s focus is always changeable. Therefore, the Interactive-Icon

tool adopts a focus-dependent representation method. The icons are automatically

mapped on the circumference of interest. Also Interactive-Icon has an auto-hide

feature that automatically hides the icons when navigating the larger genomic space

in order to minimize visual clutter.
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5.3.2.2.1 Representing Information

Whenever an option or icon is selected in the Interactive-Icon, the relevant infor-

mation is represented around the organism circle’s circumference.

Figure 60: Search results are marked through use of color highlighting.

Figure 60 shows a simple example of how the information is represented in genomic

space. Each circle represents an organism and the blue lines located around the

organismic representation indicate the boundaries of each. The thickness of each blue

line only changes during a Boolean search to highlight where these search results are

located (see Figure 61(d)).

Figure 61 demonstrates how the each core functionality visualizes new information.

All information is automatically aggregated before it is represented. The number

of published and unpublished journal articles related to each organism is shown in

Figure 61(a). Published papers are highlighted in yellow, unpublished in green. Fig-

ure 61(b) and (c) show more complex data, such as publication year and the title of

the publishing journal. Tone mapping is used to delineate information. For example,

Figure 61(d) highlights the number and location of search results by using a different

line thickness in a high-contrast blue.
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(a) (b)

(c) (d)

Figure 61: Four representations based on the selected core functionality: (a) number
of published and unpublished articles, (b) year information about the publications, (c)
titles of the publishing journals, and (d) result of a search. Three options (a - c) adopt
a simple representation method to display information efficiently by representing the
relevant information around the organism circle circumference. However, the searched
result (d) shows the number of matched results by having different thickness of each
line of each organism circle. The example (d) shows the result based on the input
query “dales”, and indicate the matched result is found within the center organism
group.

In genomic space, representing all information is not feasible since the scale of the

visual space is limited. Because of this limitation, it always represents the information

located within two levels (sub-organisms) down from the currently focused organism.

Additionally, labeling is used to mitigate lexical clutter by continuously determining
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the possibility of one word or phrase being overlapped with others through the scalable

genomic space. By minimizing unnecessary clutter, the visualization design palliates

attentional interference.

5.3.3 Interaction Supports

Interaction is an essential part of visualization and necessary to be supported to

increase the users’ ability of understanding the data or visual representation (e.g.

static image) [157]. In knowledge visualization, similarly, interaction is regarded as

a key component of assisting the user in understanding the presented knowledge and

in building personalized knowledge. Within a scalable layout, the user can quickly

browse the genomic data interactively. In GVis, a rich set of interactions are sup-

ported for user to discover and build knowledge interactively.

5.3.3.1 Knowledge Discovering

Representing data in a useful way is extremely important for users to understand

the data. 2D or 3D representation methods are commonly used in visualization.

However in 3D space, even if a good design approach has been adopted, it is still

difficult for user to understand the data. This is because there is no one-to-one

mapping for users to interact with a 2D user interface (such as a mouse - a pointing

device) in 3D space. Since GVis is designed as a scalable layout (in 2.5D space),

it is difficult for users to interact with the data. To minimize this limitation, GVis

represent only important knowledge by measuring the values of knowledge. Also it

provides a set of interactions such as zooming, selection, navigation, searching, etc.

The selection and navigation are the basic interactions commonly adopted visual-
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ization applications. With the selection technique, users can perform selections on

visual elements of interest. A set of selection techniques (individual item selection and

group selection) are supported. Whenever the user select an item(s) in the genomic

space, all the selected items are highlighted in other corresponding windows (browsing

& linking). Since the genomic space in GVis is designed as a high-dimensional space,

the navigation technique is useful for users to navigate the space freely. By navigat-

ing through the genomic space, users can easily find useful and important knowledge

effectively. In addition, the Interactive-Icon tool (described in section 5.3.2) is an

useful tool, with which users can interactively find important knowledge located at

the bottom layer in the genomic space.

5.3.3.2 Knowledge Building

In knowledge visualization, building the user’s own knowledge is as important

as discovering knowledge. Instead of simply discovering knowledge in visualization,

building knowledge is important to acquire the visualized knowledge as their person-

alized knowledge. To support this feature, direct manipulation technique is provided.

After exploring the genomic space to discover knowledge, the user can manipulate

the represented knowledge by performing linking, grouping, and annotating tech-

niques. For instance, in the node-link diagram, users can change the representation

by adding new links between nodes based on their background knowledge. The rep-

resented knowledge can be grouped together to form a new concept of knowledge by

users. After knowledge building, the user can manage the representation by directly

putting her personalized knowledge into the visualization.



186

5.3.4 Evaluation

To understand the effectiveness of the designed knowledge visualization application

(GVis), we performed a study by comparing GVis with a well-known menu-driven web

application (called MapViewer, Figure 62). Both applications use the same under-

lying dataset (GenBank). The MapViewer utilizes a multiple-row-based hierarchical

representation and is manipulated through primary use of hyperlinks.

Figure 62: NCBI MapViewer

50 participants participated in the study. Among them only sixteen participants

claimed that they had prior experience using data visualization applications. To

minimize selection bias, we recruited college students who did not have expertise

in biology. Each participant was requested to use the two applications. Therefore,

twenty five participants used GVis first and the rest of the participants began with

MapViewer.
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5.3.4.1 Procedure

The study consists of four questionnaires including demographic, training, procedu-

ral, inferential, and post-study. All the questionnaires were managed using an on-line

website. The procedural and inferential questionnaires were time-monitored. After

completing the informed consent form, participants were requested to complete a de-

mographic survey. During the training session, a brief demonstration how to use the

evaluated tools was provided. Three training questions were used for the participants

to become familiar with the applications. After the training session, the procedural

and the inferential task questions were presented. The procedural questions asked

the participants to identify a piece of information located somewhere within the pre-

sented informational hierarchy. As soon as they found the answer, the participants

were requested to push a “Found It” button on the on-line website. Following the

procedural questions, the participants was administered a series of tasks designed to

test inferential performance. The list of questions for the applications is shown below.

[For GVis]

• Name another Pospiviroid that has the same number of total red groups and

number of red groups with known genes as Columnea Latent Viroid.

• Choose 2 ways that the Avsunviroidae are different from the Pospiviroidae.

1. Only one contains viroids that attach vine plants.

2. Only one has a known gene.

3. Only one contains viroids that attack fruit plants.

4. Only one has a known gene in every orange subgroup.
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5. Only one has 5 orange subgroups.

• Which of the following orange subgroups is the most similar in hierarchical

structure, characteristics, and labeling as the Citrus viroid IIIB?

1. Citrus exocortis viroid (CEVdg-S)

2. Apple scar skin viroid

3. Coleus blumei viroid 3-RL

4. Avocado sunblotch viroid V

[For MapViewer]

• Name another Betaproteobacteria organism that has the same number of or-

ganisms in its subgroups and same number of known genes in its subgroup as

Verminephrobactereiseniae EF01-2.

• Choose 2 ways that Bordetella is different from Ralstonia.

1. Only one contains organisms that cause respiratory ailments.

2. Only one has more than 2 subgroups.

3. Only one has a known gene in every subgroup.

4. Only one has 4 known genes.

5. Only one contains 4 or more subgroups with only 1 organism.

• Choose the organism in Betaproteobacteria that is the most similar in hierar-

chical structure, characteristics, and labeling to Ralstonia H16.

1. Burkholderia ambifaria AMMD

2. Palaromonas nephthalenivorans CJ2



189

3. Bordetella bronchiseptica RB50

4. Neisseria gonorrhoeae FA1090

Completion time and accuracy were recorded as outcome variables. After each

participant completed the tasks in both applications, a post-study questionnaire was

administered. Participants were asked to specify which interface they liked better

and in which interface they were more comfortable working. They were also asked

to freely respond to what they liked and disliked about each interface. Finally, they

were asked to give each application a letter grade on a scale of ‘A’ to ’F’.

5.3.4.2 Evaluation Results

To complete procedural task questions, the participant spent about 136±84 seconds

with MapViewer and about 162±111 seconds with GVis. A paired-sampled t-test be-

tween the total completion times in the procedural tasks across the interfaces achieved

only borderline significance (p = .057). This nonsignificant trend is not entirely con-

gruent with our expectation that we would not find a significant difference between

the procedural completion times across interfaces. Although the participants spent

less time to solve the procedural task questions, the trend was not strong enough to

rule out random chance as a factor. This is because most participants are new to the

visualization application.

However, for the inferential task, the participants spent less time with GVis. The

participant spent about 451±169 seconds with GVis and 922±521 seconds with

MapViewer. During the completion of the inferential tasks, participants answered

more questions correctly while using the GVis (M = 1.31, SD = .56) interface
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than while using the Mapviewer (M = .77, SD = .59). A paired-samples t-test

between total inferential completion times for each interface was significant ( t(49) =

−7.59, p < .01), as were the total completion times (all 6 tasks) in both interfaces

(t(49) = 6.99, p < .01). As shown in Table 7, all tasks completed in GVis were

done more efficiently and effectively than those completed in the web application

MapViewer.

Table 7: The number of participants who found the answer accurately for the infer-
ential questions over two applications.

Q1 Q2 Q3

GVis 40 (78%) 4(12%) 5 (10%)

MapViewer 2 (4%) 8 (16%) 2 (4%)

Correlations between total completion times were all significant: total procedural

completion scores in both interfaces (r(50) = .49, p < .01), total inferential completion

times in both interfaces (r(50) = .61, p < .01), and total completion times (all 6 tasks)

in both interfaces (r(50) = .63, p < .01). These data demonstrate that participants

who tended to take longer completing tasks in one interface also tended to take longer

completing tasks in the other.

Overall, participants preferred interacting with the visualization to interacting with

the web application. By asking the participants’ preference (Figure 63), 36 (71%) of

the participants gave the GVis an “A” or “B”; 18 (25%) gave an “A” or “B” to the

MapViewer. Additionally, when asked, 33(66%) reported that they both preferred

and were more comfortable in the visualization; 15 (30%) preferred and were more

comfortable in the web application.
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Figure 63: The participants’ preference to use and to communicate with others.

Participants were also asked to freely respond to prompts about likes and dislikes

in each interface. Common likes in GVis included the ease of use and use of color

and graphical groupings; dislikes included not always knowing where to look for in-

formation. Common likes in MapViewer included its alphabetical and hierarchical

organization; dislikes included difficult searches and the presentation of too much

data.

5.3.4.3 Discussion

In this study, we demonstrate how the knowledge visualization is beneficial for

learning and understanding knowledge. We did not find any statistically significant

factor for solving the procedural task questions. However, for solving the inferential

task questions, we noticed that the knowledge visualization is efficient to perform the

tasks fast and accurately. Overall, we can conclude that when the tasks became more

difficult, requiring the user to categorize, compare, and evaluate multiple choices

at once, participants worked more quickly and made fewer errors while using the

knowledge visualization.



CHAPTER 6: CONCLUSION AND FUTURE WORK

In this thesis, we propose a new research area “Knowledge Visualization.” Our work

begins with understanding the existing definitions of knowledge. From the knowledge

management literature, we found that knowledge can be classified as either tacit or

explicit knowledge. Tacit knowledge refers to personalized knowledge, while explicit

knowledge refers to formalized knowledge. We found that this distinction between

tacit and explicit knowledge to be a good fit for a visualization model since knowledge

visualization focuses on representing important knowledge instead of representing all

data elements. In knowledge visualization, interaction is a key component to help

users interactively understand the represented knowledge. Since knowledge visualiza-

tion focuses on representing and interacting with knowledge in a visual space, it is

necessary to clarify the definition of knowledge in visualization and to understand its

relevant conversion processes. There are four knowledge conversion processes to con-

sider: internalization, externalization, collaboration, and combination. To formalize

the new concept of knowledge visualization, several projects have been conducted to

understand each knowledge conversion process.

Based on the definitions of knowledge and the knowledge conversion processes in

visualization, we designed a knowledge visualization framework. In this framework,

a cost/benefit analysis method is defined to determine the value of knowledge as-
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sociated with a dataset. According to its importance, the selected knowledge (data

elements) is displayed to help the user understand complex data through visual ana-

lytical reasoning and discovery. Since this cost/benefit analysis is similar to a knap-

sack problem of maximizing benefit, a greedy knapsack approach is used. Overall,

when applying the cost/benefit analysis, factors such as accuracy, value, hysteresis,

and tidiness should be considered. Among them, two factors (hysteresis and tidiness)

are especially important in terms of increasing a human’s cognitive ability to under-

stand the represented information in a limited display space. If the visibility of an

object is frequently changed from frame to frame, it diminishes the users’ cognitive

ability to understand the object. Hysteresis is a “resistance to change” factor that

prevents a scene from changing too much from frame to frame. Tidiness is used to

control clutter (visual overlaps). It does this by using cell binning to concentrate on

objects that are close to one another. To increase a user’s ability to understand the

visual representation, interaction is used to help the user to understand the presented

knowledge and to build personalized knowledge from it.

We believe that the new concept of knowledge visualization promises a new paradigm

in visualization. However, it is necessary and important to expand this concept and

build it into a concrete model. Although the knowledge visualization application

(GVis) has been proven to be useful for users to perform inferential task questions

fast and accurately, it is important to perform an expert evaluation to examine the

benefits and limitations of knowledge visualization.
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