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ABSTRACT 
 
 

EDIL DEMIREL. Flexible planning methods and procedures with Flexibility 
Requirements Profile. (Under the direction of Dr. E. C. OZELKAN and Dr. C.LIM) 

 
 

Uncertainties in supply and/or demand combined with rolling horizon planning 

necessitate flexibility in a dynamic production planning process. In rolling horizon 

planning, production plans are revised when new information becomes available after time 

rolls forward on the planning horizon. Frequent adjustments to production plans can lead 

to the increase of instability in the production system, and result in a surplus or deficiency 

in production resources. These frequent replanning adjustments and extra efforts to cope 

with uncertainties in the system lead to syndrome referred to as nervousness.  

Frozen horizon and other planning approaches attempt to provide insights on how 

to mitigate nervousness. However, most of the existing studies do not consider the 

flexibility aspect in production plans, or provide only partial flexibility to handle the 

fluctuating demand. In this research, we propose to study mathematical optimization for 

Flexibility Requirements Profile (FRP) that is designed to mitigate nervousness by 

enforcing bounds on production plans in order to maintain a desired degree of flexibility. 

Instead of 0% flexibility in the frozen horizon planning and 100% flexibility in the make 

to order planning, the proposed FRP optimization model allows the trade-off between 

conflicting planning objectives, stability and responsiveness of the production system. 

In this dissertation, we first evaluate the effectiveness of the proposed mathematical 

optimization having FRP constraints by comparing its performance with that of ad-hoc 
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implementation of FRP under a variety of experimental scenarios when conducting 

aggregate planning. In specific, we compare the production plans in a rolling horizon 

environment by evaluating the total costs and plan stability over the evaluation horizon. 

Then we extend our research to a mathematical optimization model that simultaneously 

optimizes conflicting objectives. Although FRP has been discussed in aggregate planning 

problems without optimization, none of the existing studies analyze the tradeoff between 

cost and plan stability under the presence of FRP. We fill these gaps by developing a bi-

objective mixed-integer linear programming model using a compromise programming 

approach. Finally, we utilize these mathematical optimization models to demonstrate how 

stability in planning can facilitate leanness in system operations. 

The numerical results show that aggregate planning with FRP can consistently 

identify stable production plans without significantly sacrificing the cost objective. 

Flexibility bounds increase the responsiveness to demand fluctuations, provide 

manufacturers and suppliers a better visibility in forecasting, and have a smoothing effect 

on production and inventory levels. Overall, this dissertation research aims to contribute to 

the production planning area by introducing new optimization models to mitigate 

nervousness and help practitioners and researchers to build optimal and responsive 

planning systems by creating balanced trade-offs between those conflicting planning 

objectives. 
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CHAPTER 1: INTRODUCTION 
 
 
1.1 Background and Motivation 

In recent years, the supply chain management problems have gained a great deal of 

attention due to increasing market competition, shortened product lifecycles, and rapid 

technology changes (Kouvelis et al., 2006). The global nature of the markets have forced 

companies to move towards decentralized supply chain networks that require more 

responsiveness to changing market conditions and requirements.  A traditional supply chain 

network is made up of many diverse players including suppliers, manufacturers, 

distribution centers, retailers, etc. These players have different goals depending on their 

function within the supply chain, and many of these goals are conflicting by nature. For 

example, manufacturers prefer to maintain a steady production rate and predictable 

throughput levels, whereas retailers’ main focus is on responding to changing demand 

quickly to meet customer requirements as well as avoiding backorders or piled-up 

inventories. Due to the fluctuations in demand, the retailer (customer) will not be willing 

to commit to long term purchasing, and in turn, this might require frequent changes in the 

production rates (Figure 1.1). This typical conflict is a good indicator of how difficult it is 

to simultaneously optimize supply chain operations. In order to return higher profit margins 

while maintaining high customer service levels, organizations are required to have optimal, 
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adaptable, and robust supply chain planning strategies that can find balanced trade-offs 

between those conflicting planning objectives. 

 

Figure 1.1: Supply chain players & objectives. 

A fundamental source of uncertainty in a supply chain network is demand volatility. 

The variation in demand causes a propagating information distortion (upstream) in supply 

chains, also known as bullwhip effect, and creates adverse effects such as excess 

inventories, backorders and inefficient use of resources (Lee et al., 1997). One area that 

bullwhip effect causes serious cost implications is production planning and scheduling 

(Metters, 1997; Lee et al., 1997). Most production planning systems operate in this type of 

an uncertain world, and are exposed to a great deal of demand uncertainty. As planning 

organizations get more visibility and obtain accurate information about future demand, 

they tend to revise and update their production plans.  Especially in rapidly changing 

markets, demand uncertainty causes excessive plan changes in short periods and leads to a 

general state of confusion and anxiety. This phenomenon is called as nervousness, or lack 

of planning stability, and increases the frequency of replanning activities, which induces 
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further uncertainty into the production plan (de Kok and Inderfurth, 1997). Frequent 

adjustments to the production plans changes can typically lead to increases in production 

costs, reduced productivity, lower customer service level and responsiveness to demand, 

and a general state of confusion at the shop floor (Hayes and Clark, 1985). On a greater 

scale, excessive changes can hinder Material Requirements Planning (MRP) systems and 

leverage bullwhip effect (Lee et al., 1997). 

The uncertainties in planning make organizations’ efforts inefficient. To address 

those issues, organizations have developed numerous strategies, which require 

considerable amount of internal resources. A traditional attempt to cope with uncertainties 

is to build inventories or have excessive production capacity. This is known as make to 

stock, where the demand uncertainty is handled by inventories. The make to stock 

production strategy increases the inventory holding costs. Another approach is to freeze 

the master production schedule (MPS), where no changes are allowed in the MPS for a 

predetermined time period, called frozen period, to avoid disruption in production 

planning. While implementing a frozen horizon can reduce the manufacturer’s 

nervousness, it is poorly responsive to changing demand, and hence, can easily result in 

pile-up or adversely allow shortages.  

A similar concept to frozen horizon is time fences (Costanza, 1996). The idea is to 

establish limits on the amount of change to MPS. Time fences are usually employed in 

combination with frozen horizons, where MPS is frozen for a prespecified time period and 

then, beyond the horizon time fences with varying limits are established. We propose the 

application of an alternative approach to mitigate the nervousness syndrome. Flexibility 

Requirements Profile (FRP) is an alternative stabilizing approach that enforces flexibility 
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bounds on production plans so that planned production quantities remain within a lower 

and upper bounds. When time rolls to the next planning period, those bounds are 

dynamically updated to reflect revised demand forecasts and plans.  

In this dissertation, we focus on developing planning models that are robust yet 

responsive to changing customer demand while avoiding anxiety within the organization 

due to large plan changes from one planning period to another. Although the main emphasis 

will be on production planning problems, we believe that the contributions will not be 

limited to production environments. The frameworks developed here are generic and can 

be applied to any planning problem. The rest of this chapter is organized as follows. In the 

next section, we first provide a list of expected contributions of our research, and then give 

an overview of previous work about production planning problems under rolling horizon 

models. Section 1.3 gives further background of Mixed Integer Linear Programming 

(MILP) that will be used throughout this dissertation. In the last section of this chapter, we 

outline the rest of the thesis. 

1.2 Summary of Expected Research Contributions 

Developing FRP-based flexible planning models in rolling-horizon environments 

can be considered as the main research contribution of this dissertation. In particular, the 

following research accomplishments are made: 

Objective 1 & Contributions: 

 The first objective is to integrate mathematical optimization and the flexible 

production planning research to fill the gap between the conventional aggregate planning 

and practices of flexible production planning. Hence, proposed models provide a general 
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framework to achieve optimal production plans under FRP. Main contributions of this 

research objective are: 

• Develop a new mathematical programming model that incorporates FRP 

constraints. 

• Compare the FRP-based optimization scheme with the traditional aggregate 

production planning. 

• Assess the impact of flexibility bounds using a numerical study, and 

• Conduct a comparative study via an experimental design to analyze the tradeoff 

between the cost and production plan stability under various flexibility bound 

scenarios. 

Objective 2 & Contributions: 

The second objective is to incorporate two conflicting planning goals into a single 

criterion. As opposed to traditional production planning systems that rely on single 

criterion such as cost minimization or profit maximization, we formulate a model that 

integrates conflicting interests and seeks to reduce both of them simultaneously. 

Contributions of the second objective are:  

• Integrate FRP into the production plan using a multi-objective programming model 

and develop a bi-objective MILP model that considers cost and plan stability terms 

simultaneously.  

• Assess the efficacy of FRP under multiple conflicting criteria. 

• Present a comparative study of costs and stability performances among the single 

objective FRP model, the bi-objective approach without FRP, and the combination 

of two methods. 
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• Solve the problem with different set of flex-limits and observe how flex-limits 

with different magnitudes respond to uncertain demand.   

• Build a Pareto frontier for the decision maker by varying weights of objectives. 

• Apply statistical tests to identify the significant parameters in the FRP-based 

planning   process. 

Objective 3 & Contributions: 

As the third objective, we will discuss stability in planning from the lean thinking 

perspective and its use in achieving lean operation systems. To address this objective we 

will: 

• Explore stability’s role in planning and eliminating non-value added activities such 

as unnecessary inventory and overproduction through the utilization of FRP.  

• Compare FRP-embedded planning schemes with aggregate planning models that 

implement frozen horizon through a numerical study and analyze stability and 

FRP’s contributions to the lean value chain.  

• Investigate the relationship between the stability and lean systems. Assess the 

sensitivity of its impact under different manufacturing conditions and industry 

settings. 

1.3 Previous Work on Aggregate Production Planning (APP) 

APP problems concern about the allocation of available resources to respond 

demand requirements. The goal is to minimize the overall cost over a planning horizon by 

adjusting production, inventory and workforce levels while satisfying demand needs.  

APP’s goal is to anticipate customer needs and come up with an optimal set of decisions 

concerning the current and future resources (Sipper and Bulfin Jr., 1997). The aggregate 
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production plan provides guidelines for MPS. According to APICS, MPS expresses what 

to produce in a more detailed level and provides information related to production 

configurations, quantities, and dates. MPS then becomes an input for the MRP. Due to 

demand uncertainty and other external and internal anomalies (disruptions), the MRP 

system has to be regularly updated by replanning MPS. The effectiveness of MPS is 

positively correlated with the production efficiency on the shop floor. A well-established 

MPS will not only help companies to utilize their resources more efficiently but also reduce 

the overall production costs and increase their throughput. Due to its critical role in 

establishing production efficiency, APP has become a vital component in business 

operations. Many solution methodologies, from enumeration based ad-hoc methods to 

mathematical programming, are used to solve APP problems. We will provide more 

information regarding these solution approaches in Chapter 2. 

Two essential components in the production planning procedure are the forecast 

(time) horizon and the planning (study) horizon. In a traditional planning setting, forecast 

horizon is the total number of periods where future demands are estimated. On the other 

hand, planning horizon shows how distant in the future that the planning is concerned. 

Typically, the number of periods in the planning horizon is fixed for each decision point. 

Rolling horizon planning has been frequently used in production planning problems since 

the early 1950 to provide predictive guidance for planning environments (Modigliani and 

Hohn, 1955).  In rolling horizon planning production plans are revised and updated as new 

or more accurate information is available. This gives a chance to review plans on a 

continuous basis and increase the planning accuracy.  In rolling horizon planning, in each 

decision point, the planning problem is solved over a predetermined time period, by 
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considering the current state of production as well as the future demand events, but only 

the decisions in the initial period are actually implemented. In the next decision point, the 

production plans are revised as new information becomes available after time rolls forward 

on the planning horizon. 

Previous research efforts concerning rolling horizon planning provide a few 

different insights. First and foremost is the diminishing effect of forecast on production 

plans. Although longer planning horizons provide greater visibility to planners, the 

forecasts in the distant future tend to be less accurate and more expensive. This 

phenomenon is analyzed in many different studies (Wagner and Whitin, 1958; Baker and 

Peterson, 1979; Federgruen and Tzur, 1994) over the years and eventually formed the 

forecast horizon theory, which suggests that forecast in the distant future have no effect on 

the decisions of the current period. Another frequently discussed topic is the frequency of 

replanning. Frequent replanning increases the firm's chance to incorporate more recent 

information on a timely manner, which can be an important strategic advantage under 

uncertainty. However, frequent replanning will also cause frequent changes in production 

plans, and hence, may increase the instability. Main consensus on this issue is that frequent 

replanning is not desirable from the cost perspective.  However, there are a few contrary 

observations to this common belief.  Chung and Krajewski (1986) showed that less 

frequent planning vs. rolling one period at a time do not reflect a significant difference in 

terms of projected costs. Lin et al. (1994) added that the degree of efficacy of replanning 

frequency is based on multiple parameters such as product cost structure, MPS unit change 

cost, the cumulative lead time and the length of frozen interval.  
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1.4 Nervousness Syndrome 

(Lee et al., 1997) observed that the variation in demand causes a propagating 

information distortion towards upstream in supply chains, also known as bullwhip effect, 

and creates adverse effects such as higher costs, excess inventories/backorders and 

inefficient use of resources. The uncertainty and variability within the demand also cause 

excessive plan changes in short periods and leads to a general state of confusion, mistrust 

and loss of confidence in the planning system, which is referred to as nervousness (de Kok 

and Inderfurth, 1997). Frequent changes in plans cause various disruptions such as 

scheduling conflicts and capacity utilization issues in the production systems (Inman and 

Gonsalvez, 1997; Metters and Vargas, 1999). These changes in production plans not only 

increases inventory and material holding costs but also lead to under or overutilization of 

resources. There are two commonly applied concepts as a proactive tool against 

nervousness. These are Production Smoothness and Plan Stability (Graves, 2006). 

1) Production Smoothness is interested in the variability of the production output. It 

investigates the changes in the production over the planning horizon by measuring the 

variance of production output. Production smoothing is achieved through in advance 

production and inventory accumulation, which makes it preferable when inventory 

carrying costs are low. Another viable option to accomplish smoothing is to alter the 

demand pattern through efforts such as pricing and promotion. (Kamien and Li, 1990) 

2) Plan Stability is concerned with the variance of planned revision, and can be defined 

as the changes in the planned production versus actual production from one period to 

another as time rolls on the planning horizon.  
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The impacts of nervousness and the importance of having stable production plans 

are mentioned in several studies. Carlson et al. (1979) are one of the first to touch upon 

that issue in their study, where they used a modified Wagner-Whitin algorithm to increase 

the emphasis on stable production plans and schedules by including the cost of cancelled 

setups. As time has gone by, many researchers have agreed on the necessity of emphasizing 

and establishing stability even if that could mean having less optimal solutions in terms of 

cost. We will provide more information about the approaches that have been proposed to 

minimize the instability (nervousness) under rolling horizon plans in Chapter 2. 

Throughout this dissertation we will use the nervousness and instability terms 

interchangeably. 

1.5 Mixed-Integer Linear Programming in APP 

In this section, we briefly describe the usage of mixed integer-linear programming 

(MILP) in APP and include the important points that will be useful for the remainder of 

the dissertation.  MILP is an optimization problem with a linear objective function and 

linear constraints where some of the variables take only integer values. MILP formulations 

are used in many real-world supply chain and aggregate production planning problems. 

Most of those problems are formulated in accordance with the classical approach, where 

the planning horizon is divided into discrete time periods.  In each time period a set of 

constraints have to be satisfied. The first principal set of constraints is responsible from 

maintaining the conservation of material flow. The second set represents the total amount 

of capacity available for each resource in the system (Missbauer and Uzsoy, 2011). To 

visualize this formulation let us define the following parameters and variables. 

:tD  demand for product in period t  
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:tup  cost of producing one unit of product in period t  

:th  cost of holding one unit of product in period t  

:tC  production capacity available in period t  

:tP  total amount of product produced in period t  

:tI  total amount of product hold in inventory at the end of period t   

1,...,t T= index of time period  

Then the classical planning formulation can be shown as follows:  
 

 Minimize ( )
1

T

t t t t
t

up P h I
=

+∑    (1.1) 

 Subject to: 1t t t tD P I I t−= − + ∀    (1.2) 

 t tP C t≤ ∀  (1.3) 

 , 0t tP I t≥ ∀  (1.4) 
 
 
The objective function (1.1) considers minimizing the total production and inventory 

holding cost over a planning horizon. (1.2) is responsible from maintaining the inventory 

balance, whereas (1.3) ensures that production will not exceed the capacity. This finite 

horizon single product linear programming model is used as a basis for the production 

planning models developed throughout this dissertation.  

1.6 Multi-Objective Programming in APP 

An optimization problem, in which several objectives are considered, is called a 

multi-objective programming (optimization) problem. The classical multi-objective 

optimization problem can be described in the following form; 
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 Minimize { }1 2( ), ( )..... ( )Zf x f x f x  (1.5) 

         Subject to: ( ) 0, 1,2,...,ig x i j≥ =  (1.6) 

 x∈Ω  (1.7) 
 
 

Where { }1 2( ), ( )..... ( )Zf x f x f x  represent the attributes that are involved the decision making 

process and j is total number of inequality constraints. The underlying idea is to optimize 

all objectives simultaneously.   

Multi-objective optimization problems have been extensively investigated and 

multiple approaches were presented.  These approaches are usually classified according to 

the availability of preference information provided by the decision maker (Miettinen, 

1999). Solution methods for multi-objective optimization can be categorized as the 

following (Kalyanmoy, 2001). 

1) Preference methods 

Preference methods are divided into two. A priori methods are considered when the 

decision maker’s preferences are known in advance and these preferences are used to find 

one preferred Pareto-optimal solution. A posteriori methods use decision maker’s 

preferences over different objectives to generate a set of Pareto optimal solutions. They 

often rely on the idea of scalarization and transform the original multi-objective problem 

into a series of scalarized single objective sub problems. 

2) Non-preference methods  

Unlike the preference methods, non-preference methods do not require preferences 

articulated by DM and could generate one or more Pareto-optimal solutions without any 
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inputs from the DM. Let us review some of the most frequently used multi objective 

optimization methods in supply chain and production planning problems.  

1.6.1 Weighted-Sum Method 

In the weighted-sum method, multiple objectives are transformed to a one single 

overall objective by multiplying each objective with a decision maker supplied weight. It 

is easy to implement and produces good results within convex sets. For mixed optimization 

problems (min-max), we need to convert all the objectives into one type. Weighted- sum 

is often used when preferences are set in prior. The classical interpretation of the method 

is as follows: 

 Minimize ( )
1

k

i i
i

w f x
=
∑  (1.8) 

 Subject to: 1, 0, 1,...,
k

i i
i

w w i k= ≥ =∑  (1.9) 

 x∈Ω  (1.10) 

Where scalars iw  are the weights of each objective i and the multiple objectives are 

transformed to single objectives by varying the weight vector w.   

1.6.2 Compromise Programming 

Compromise programming seeks to find a solution point that is closest to a utopia 

(ideal) point. The utopia point is considered as infeasible in the decision space because of 

the conflicting nature of the individual objectives and the decision maker has to find a 

compromise solution between the final solution and the utopia point.  The utopia vector 

(point) contains the best possible values of each criterion, and as opposed to goal 

programming, the utopia point in compromise programming is not a target established by 
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the DM’s own views. The distance measure used in compromise programming is the family 

of pL  metrics. p  stands for the decision maker’s compensation between deviations, where 

p variates between 1 (full compensation) and ∞  (no compensation). The classical CP 

formulation can be formulated as (e.g., Chen et al., 1999): 

 Minimize ( )f x U−  (1.11) 

 Subject to: x∈Ω  (1.12) 

Where   denotes the metric of choice and U  corresponds to the utopia (ideal) point.  

For a weighted pL - metric, the formulation can be shown in the following form: 

 ( )
1/

1
Minimize ( )

pN p
i i i

i
w f x u

=

 − 
 
∑  (1.13) 

 subject to: ,x∈Ω  (1.14) 

Where p  is the compensation parameter and iw  are objective weights, 0, 1... .iw i N≥ =  

As shown in (1.13), in full compensation ( )i.e. 1p =  deviations from the ideal point are 

taken into account in direct proportion to the magnitude of that respective object. On the 

contrary, when the p is equal  ,∞  the pL  metric can be transformed into a linear 

programming model, which is also known as Tchebycheff distance. In this case, only the 

objective with the largest deviation is taken into account to generate non-dominated points.  

The transformation can be shown as following: 

 Minimize ( ) w
i if x u

∞
−  (1.15) 

 where ( ) ( ){ }
1,...,

max
w

i i i i ii M
f x u w f x u

∞ =
− = −    

 
(1.14) will reformulate as: 
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 Minimize *n  (1.16) 

 Subject to: ( )( ) *
i i iw f x u n− ≤  (1.17) 

 Subject to: ,x∈Ω  (1.18) 

Where ( ){ }*

1,...,
max i i ii M

n w f x u
=

= −  because we know that by construction

( ) ( )( ) 0, .i i i if x u f x u i M− = − ≥ ∈   

1.6.3 Epsilon-Constraint Method  

The epsilon-constraint (ε-constraint) approach, which is introduced by Haimes et 

al., 1971, keeps only one of the attributes in the objective function and treats all the 

remaining attributes as a set of inequality constraints that need to be satisfied. Each 

inequality constraint is bounded by an epsilon vector, and each vector corresponds to a 

point in the Pareto frontier. As the magnitude of the epsilon vector changes, tradeoffs 

between objectives can be reached and a pareto-front can be built. One significant 

advantage of ε-constraint over weighted-sum method is that it can deal with both convex 

and non-convex sets. As a drawback, choosing an appropriate value for epsilon vector can 

be a challenge and would require us to know the decision space of objectives in advance.  

The problem formulation appears below: 

 Minimize ( )if x  (1.19) 

 Subject to: ( ) ( ), 1, 2,..,n nf x n N n iε≤ = ≠  (1.20) 

 x∈Ω  (1.21) 
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1.7 Dissertation Outline 

The remainder of this dissertation is organized as follows. Chapter 2 provides a 

comprehensive review of the relevant literature. Specifically, we present a review of 

aggregate planning problems, rolling horizon procedures, and stability in production 

planning. The rest of the chapter discusses mathematical optimization and multi-objective 

programming in planning problems. In the beginning of Chapter 3, Flexibility 

Requirements Profile is introduced, and FRP-embedded aggregate planning is described 

with an illustrative example. The rest of the chapter presents our proposed MILP 

formulation integrated with FRP as well as the experimental design that we created to test 

the efficacy of the procedure in different industrial settings.      

Chapter 4 includes the implementation of multi-objective programming in rolling 

horizon models and the analysis of resulting FRP-embedded bi-objective optimization 

models.  A thorough analysis and discussion of an experimental design scheme is also 

presented.  Chapter 5 focuses on production plan stability and its integration to lean system 

operations. We, specifically analyzed lean waste items and reduce these items through the 

utilization of FRP.  Chapter 6 summarizes our work, as well as explains the limitations of 

our study and presents possible directions for future research.  

 
 

 

 

 

 

 

 
 



 

CHAPTER 2: LITERATURE REVIEW 
 
 
2.1 Introduction 

In this chapter, we review the literature on aggregate production planning problems 

and flexible planning under rolling horizons. In the first subsection, we talk about the use 

of mathematical programming in APP. Later, we provide information about rolling horizon 

models and the approaches that were presented to mitigate the instability (nervousness) in 

production plans. At the end of the chapter, we present the most frequently used multi-

objective optimization methods in APP problems.  

2.2 Mathematical Programming Models in Aggregate Planning Problems 

APP problems concern about the allocation of available resources to respond 

demand requirements. The goal is to minimize the overall cost over a finite time horizon 

by adjusting production, inventory and workforce levels while demand requirements are 

satisfied. The critical role of production planning in business operations has motivated 

practitioners and researchers to study production planning methodology. 

The use of mathematical programming in APP has started in the 1950’s. Holt et al. 

(1955) and Holt et al. (1956) applied linear decision rules to find optimal production and 

workforce levels while minimizing the total costs. Researchers have slowly built upon 

those models and, since then, a wide range of mathematical models for APP problems has 

been presented in the literature. 
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About this matter, Nam and Logendran (1992) provided a comprehensive study that 

cites more than 100 sources and classify the cited models as optimal and near-optimal 

solutions. Traditional APP problems are formulated to consider discrete periods over a 

planning horizon with the objectives of minimizing production-related (workforce, 

production, inventories and backorders) costs or maximizing profit. In each period, there 

are a set of decisions to be made while satisfying the constraints at an aggregate level.  

Although a great variety of approaches are available, linear programming (LP) and mixed 

integer-linear (MILP) are found to be the widely used approaches for APP problems (Hung 

and Leachman, 1996; Gnoni et al., 2003, Missbauer and Uzsoy, 2011). For further review, 

we refer readers to a recent study by Mula et al. (2010), where a comprehensive list of 

existing studies is provided. 

2.3 Rolling Horizon Models 

One of the most notable subjects in the area of planning literature is rolling horizon 

models.  Baker (1977) is one of the first studies to investigate the effectiveness of rolling 

horizon models in the context of production planning. The purpose of the study was to 

optimize finite horizon models in infinite horizons using concave costs and implementing 

the procedure on a rolling basis. The results suggested that rolling schedules are quite 

efficient but the demand pattern and length of the planning horizon had significant impact 

on the effectiveness of rolling schedules. McClain and Thomas (1977) further investigated 

the effect of the length of planning horizon through simulation and found that while the 

length of planning horizon has significant impact on cost performance, cost does not 

improve monotonically as the planning horizon is extended. Similarly, Baker and Peterson 

(1979) studied the effects of the length of planning horizon, forecast uncertainty and the 
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periodicity of demand in rolling schedules under uncertain demand. Carlson et al. (1982) 

analyzed the cost performance of a rolling procedure and observed better cost performance 

when the planning horizon length equals or multiple integers of the natural economical 

order quantity (EOQ) cycle.  

2.4 Mitigating Nervousness (Instability)  

Many studies have shown that the changes in demand propagates through the 

supply chain and creates undesirable effects such as bullwhip-effect or schedule 

nervousness (instability) (Inman and Gonsalvez, 1997; Niranjan et al., 2011). Rolling 

horizon models provide a vast body of literature regarding these issues. According to 

Chand et al. (2002) who present a classified bibliography about rolling horizon models, 

various approaches were applied to minimize the instability (nervousness). Some of these 

proposed approaches are presented below. 

2.4.1 Empirical Strategies 

Safety stock and safety lead times are examples of earlier methods, which are 

recommended to cope with demand variability. Safety stock let organizations to handle 

demand swings by absorbing the changes at the top level, which reduces the amount of 

instability at the lower levels of the product structure.  A high safety stock level could 

improve the stability of the MPS without degrading customer service, but it incurs high 

inventory holding cost. Yano and Carlson (1987) observed that safety stock is a viable 

option against demand variations if the frequency of rescheduling is low. Sridharan and 

LaForge (1989) concluded that although safety stock below certain levels could eliminate 

instability and reduce cost, nervousness can be seen if stock levels are not determined 
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carefully. Buzacott and Shanthikumar (1994) recommended using safety stock over safety 

lead time when forecast accuracy is low due to frequent input changes from customers. 

 Other strategies that have been investigated to handle instability include; lot sizing 

techniques (Zhao et al., 2001), forecasting beyond the planning horizon (Blackburn et al., 

1986), and incorporating cost of schedule changes (Carlson, 1979; Blackburn et al., 1986). 

A relatively recent study to by Pujawan (2004) considered modeling instability by directly 

looking into field observations in a manufacturing environment. While all of these 

empirical approaches have returned somewhat favorable results, they also underline the 

necessity of having high forecast quality and low levels of demand variability to obtain 

robustness in MRP models.  

2.4.2 Frozen Horizons 
 

Freezing the production schedule is another recommendation that is addressed in 

multiple studies. Blackburn et al. (1986), who proposes a simulation model, have found 

frozen horizons to be more effective than safety stock in rolling horizon plans. Sridharan 

and Berry (1990) provides a framework for comparing methods for freezing the MPS, and 

concludes choice of an appropriate method to freeze the MPS is critical. Kadipasaoglu and 

Sridharan (1995) have applied three strategies under demand uncertainty and found that 

freezing is the best approach to reduce nervousness in multi-level MRP systems. While 

frozen horizons are effective in establishing a certain degree of stability, costs are found to 

be dramatically increased when the frozen horizon is being applied over more than 50% of 

the planning horizon (Sridharan et al., 1987; Sridharan and Berry, 1990). Zhao and Lee 

(1993) further added that frozen horizons may increase costs in the presence of uncertain 

demand. A similar conclusion was derived by Meixell (2005), where frozen schedules were 
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not found cost effective in industries with highly optioned products like the automotive 

industry.   

2.4.3 Flexible Fences 
 

Planning-using “planning-flex fences” has been discussed in several industry 

oriented books. It has been conceptually discussed in Costanza’s work (1996), and later in 

an updated version of his book, fences are described as “the bounds that allow plus and 

minus percentage changes to a total demand within a particular time period”. Another 

conceptual example can be found in Graves’s (2006) study, where the frozen horizon is 

employed in the initial periods of the production schedule, and then time fences become 

effective for certain of period time. In Srinivasan’s book (2005), the same concept is called 

flexible requirements profile and the planning methodology is referred to as rate-based 

planning. While this book provides a basic computational example, none of these 

references took a research approach to investigate when FRP can be useful or not and they 

did not utilize planning-flex fences under an optimization scheme. 

2.5 Multi-Objective Optimization in APP 

The earliest works on APP have used conventional objectives such as minimizing 

production and distribution costs, or maximizing profits. The emphasis was on single, cost-

oriented objectives due to the difficulty in addressing and quantifying non-monetary 

objectives. Through the theoretical developments in multi-objective decision-making and 

multi-attribute utility theory (Keeney and Raiffa, 1976; Zeleny, 1982), multi-objective 

optimization in supply-chain planning has obtained considerable attention and a variety of 

relevant studies have been presented. Some examples are in production planning and 

scheduling (Loukil et al., 2005), operational supply chain planning (Sabri and Beamon, 
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2005), supplier selection (Amid et al., 2006), network capacity and design (Altiparmak et 

al., 2006).  

Goal programming is one of the earlier approaches to tackle the multiple conflicting 

criteria. Lee (1973) applied this approach with conventional goals such as minimizing 

inventory and overtime costs and maximizing sales. Masud and Hwang (1980) compared 

goal programming with other approaches including step method and sequential multiple 

objective problem solving. Lee and Hung (1989) considered goal programming in flexible 

manufacturing systems, where production rate, machine utilization, and throughput time 

minimization are considered as the conflicting criteria. More recently, Wang and Fang 

(2001) analyzed the trade-off between maximizing the profit and minimizing the changes 

in the workforce. Wang and Liang (2004) further considered minimizing the rate of change 

in labor levels and minimizing total production costs. Chern and Hsieh (2007) proposed a 

heuristic algorithm with the goals of minimizing delay, outsourcing and total costs in the 

supply chain. Other objectives that were considered in multi-objective problems include 

order fulfillment rates and total delivery time (Gjerdum et al., 2001; Liang, 2008). Among 

the several methods for solving multi-objective optimization problems, goal programming, 

the weighted sum, compromise programming and the epsilon-constraint methods are the 

most widely used and applied through different industries (Ozelkan and Duckstein, 2000; 

Cheng et al., 2004; Guillien et al., 2005). For further review, one can refer to a recent study 

by Mula et al. (2010), where a comprehensive list of existing studies in regard to 

mathematical programming models for supply chain production planning is presented. 
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2.6 Summary and Conclusions 
 

In this chapter, we briefly reviewed the literature pertaining to mathematical 

programming in production planning. Our primary focus was on the models that have 

utilized linear and integer programming. Next, we reviewed the rolling horizon decision 

making procedures as well as the studies related to the nervousness (instability) in 

production plans. Finally, we discussed the methods that are used to address the 

nervousness syndrome and showed the shortcomings of these approaches. A general 

observation we made is that the variety of existing studies related to flexible planning in 

rolling horizon models is quite limited. While existing research provides valuable insights 

into the nervousness phenomenon, the scope of previous studies is somewhat limited and 

only considers certain approaches. In the next chapter, we begin the formulation of our 

FRP-based mathematical optimization model and address those shortcomings. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 

CHAPTER 3: AGGREGATE PLANNING WITH FLEXIBILITY REQUIREMENTS 
PROFILE AND EMPIRICAL ANALYSIS 

 
 
3.1 Introduction 

In this chapter we describe FRP and its implementation on a rolling horizon 

procedure first. Following that, we present the dynamic formulation of mathematical 

models that we work with in our analysis. While the analysis in this chapter based on a 

single product setting, extension to multiple products can be easily achieved by following 

the framework we provided.  

3.2 Flexibility Requirements Profile (FRP) 

As briefly mentioned in the literature review section, FRP was conceptualized from 

the idea of planning fences, and is used to maintain production plans at certain levels with 

the utilization of certain lower/upper bounds. The bounds are based on parameters called 

flex-limits, and represented as iF±  such that 1 2 3 ..... ,NF F F F≤ ≤ ≤ ≤  where N is the 

number of periods in the planning horizon. While the initial implementation of FRP 

effectively enforces planning bounds in multiple periods, its use is limited to simple 

planning schemes (Srinivasan, 2005). 

Figure 3.1 illustrates how flex-limits are positioned as the time rolls on the planning 

horizon. The funnel-like shape of the limits addresses the manufacturer’s nervousness; and 

as the production plan rolls to the next period, the amount of flexibility provided gradually 

increases.
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The FRP will ensure that the deviations in the dynamic planning process stay within 

the specified ranges while rolling in the planning horizon. The amount of flexibility that 

is permitted will be higher in distant periods due to higher degrees of uncertainty. 

Percentages in flex-limits tell us the amount of incremental increase at each period as one 

move into the future. In the Figure 3.1, three flex-limits cases are provided for visual 

comparison. While 1% flex-limits provide less variability in production levels, due to lower 

responsiveness, we will likely see higher variations in inventory levels in the presence of 

fluctuating demand. Conversely, 5% flex-limits are capable of providing greater flexibility 

but also have less smoothing effect on production levels.  

 

 

Figure 3.1: Application of flex-limits in the planning horizon. 

To be more specific on how FRP works in aggregate planning, suppose that time 

rolled into a new planning period t from t – 1, where i = 0 represents the current period, 

while i > 0 corresponds to the i-step ahead plan. First the actual demand in period t, ,0td  
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is realized, and then the forecasts, ,t id , for i = 1, 2,..., N  for the next N periods are updated 

correspondingly.  

Given the updated demand forecasts, initial inventory, and safety stock values, the 

net requirement of period t is computed by 

 ,0 ,0 1,0 1,0 ,t t t tR d s I I+ −
− −= + − +  (3.1) 

Where ,0td  is the realized demand, s is the target level of safety stock, 1,0tI +
− is the 

inventory level at period t−1, and 1,0tI −
− is the backorder level at period t-1. With the net 

requirements on hand and the planned production levels bounds from the previous period, 

the current production is determined according to the following equation; 

 { },0 ,0 ,0 ,0max ,min , ,t t t tP LB UB R =    (3.2) 

Where ,t iLB and ,t iUB  are FRP bounds of the production level in the current period. As we 

will further discuss below in Equations (3.4) and (3.5), these bounds would have been 

calculated in the previous period according below. Then based on the production level, 

actual inventory level is calculated; 

 ,0 ,0 1,0 1,0 ,0.t t t t tI P I I d+ −
− −= + − −   (3.3) 

Starting from this inventory level and using demand forecast, net requirement ( ),t iR , 

planned production level ( ),t iP , and planned ending inventory level ( ),t iI  are computed as 

follows for future planning periods 1, 2,..., .i N=     

  , , , 1 , 1t i t i t i t iR d s I I+ −
− −= + − +    (3.4) 

 { }, ,i , ,max ,min ,t i t t i t iP LB UB R =    (3.5) 

 , , , 1 , 1 , .t i t i t i t i t iI P I I d+ −
− −= + − −  (3.6) 
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To complete the iteration at time t, the production bounds for 1t +  are updated as follows. 

 Lower Bounds: ( ){ }1, , 1 ,max , 1 0,1,..., 1t i t i t i iLB LB P F i N+ += − = −  (3.7) 

 Upper Bounds: ( ){ }1, , 1 ,min , 1 0,1,..., 1.t i t i t i iUB UB P F i N+ += + = −  (3.8) 

 The lower and upper bounds of  i N=  are set as 1,t NLB + = −∞  and 1, .t NUB + = +∞

With this update, the planning at t   is completed and the time rolls into the next period 

1.t +  

3.2.1 FRP- Illustrative Example 

 To aid understanding of the FRP scheme, we present an illustrative example next. 

Suppose that production plans and production bounds used at period t-1 are as given in 

Table 1. Furthermore, assume that that the flex-limit is increased by 3% per period. Before 

time rolls into the next period t, these bounds are updated according to Equations (3.4) and 

(3.5). For example, the lower bound of production plan for period t is either 3% below the 

previously planned production (i.e., (0.97)(350) = 340), or the old lower bound for period 

t (i.e., 338), whichever is larger. In this way, it is guaranteed that new production bounds 

are within the old bounds. 

Next, when the time rolls into period t, these new bounds are enforced when 

updating the production plan. At period t, suppose that that the initial inventory level is 50, 

(realized) demand at t is 380, and forecasted demands for next three periods are 440, 440, 

and 440 (see Table 3.2). Assume that the safety stock level is zero. In Table 2, columns 3-

5 are updated row by row. For example, the net requirement is computed by Equation (3.1). 

Then, production plan for period t is calculated using the net requirement as well as bounds 

in Table 3.1, which provides the ending inventory level at t. From this ending inventory 

level, the next row for period (t+1) is updated. Note that production plan for the last period 
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is unbounded (i.e., bounds are −∞  and +∞ ) as it is fed into the production plan for the first 

time.  

Table 3.1: Production plan at period t-1. 

Period Production 
Plan 

Old 
Lower 
Bound 

Old 
Upper 
Bound 

New 
Lower Bound 

New 
Upper Bound 

t-1 312 - - - - 

t 350 338 375 max{338, 350*(0.97)} 
= 340 

min{375,350*(1.03)} 
= 361 

t+1 416 370 416 max{370, 416*(0.94)} 
= 391 

min{416, 416*(1.06)} 
= 416 

t+2 388 388 420 max{388, 388*(0.91)} 
= 388 

min{420, 388*(1.09)} 
= 420 

 
Table 3.2: Production plan made at period t. 

Period Demand Net 
Requirement 

Production Plan Inventory 

t 380 380-50 = 330 max{340,min{330,361}}= 
340 10 

t+1 440 440-10 = 430 max{391,min{430,416}}= 
416 -14 

t+2 440 440-(-14) = 454 max{388,min{454,420}}= 
420 -34 

t+3 440 440-(-34) = 474 max{−∞,min{474,+∞}}= 
474 0 

 

After the production planning is complete, the bounds are updated according to 

Equations (3.4) and (3.5), so that they can be used for the production planning when time 

rolls into the next period (t+1). For example, the lower and upper bounds for (t+1) become 

max {391, 416*(0.97)} = 404 and min {416, 416*(1.03)} = 416, respectively. Similarly, 

the lower bound and upper bounds for (t+3) are max {−∞, 474*(0.91)} = 431 and min 

{+∞, 474*(1.09)} = 517, respectively. 

3.3 Mixed-Integer Linear Formulation 

The proposed approach is to solve the FRP-based production planning through 

mathematical optimization. Our underlying idea is to create a dynamic optimization plan 

under the presence of FRP that minimizes production-related costs. In specific, the 
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proposed model is an aggregate planning problem that employs a deterministic 

optimization model to find optimal values for production levels, workforce size, production 

quantities, and inventory and backorder levels for the current and next N periods under 

given flex-limits. The optimal plans are computed on a rolling basis, and there is an optimal 

plan for each period in the planning horizon. The following parameters and decision 

variables below are used in the model. 

Indices: 

i =  index of planning horizon, 0,1,...,i N=  

t =  index of planning period, 1, 2,...,t T=  

Parameters: 

:wc  labor cost of a regular worker per period  

:Oc  overtime labor cost of a regular worker per period  

, :H Lc c  hiring and layoff costs per worker, respectively  

:Pc  material cost per unit product  

:h  unit inventory holding cost per period 

:b  unit shortage cost per period 

:s  prespecified safety stock  

:th  total number of working hours in a week  

:Rm  maximum number of units produced per worker per period  

:Om  maximum number of units produced using overtime per worker per period 

:N  planning horizon 

, :t id  i-step ahead demand forecasted at period t   
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, :t iLB  i-step ahead lower bound on planned production updated at period t  

, :t iUB  i-step ahead upper bound on planned production updated at period t  

Variables: 

, :t iP  i-step ahead production level planned at period t  

, :t iO  i-step ahead overtime production hours planned at period t  

, :t iI +  i-step ahead inventory level planned at period t  

, :t iI −  i-step ahead backorder (shortage) level planned at period t 

, :t iW  i-step ahead workforce size planned at period t  

, :t iH  i-step ahead hire level planned at period t  

, :t iL  i-step ahead layoff level planned at period t  

Note that i = 0 represents the current period t and actual values, while i > 0 corresponds 

to future plans.  

Formulation: 

The MILP formulation of the FRP-based aggregate planning (FRP-AP) can be 

formulated as follows; 

 , , , , , , ,
0 0 0 0 0 0

Minimize )
N N N N N N

W O H L P
t i t i t i t i t i t i t i

i i i i i i
c W c O c H c L c P h I b I+ −

= = = = = =

+ + + + + +∑ ∑ ∑ ∑ ∑ ∑

 (3.6) 

 , , , , 1, 1,Inventory: 0,1,...,t i t i t i t i t i t iP d I I I I i N+ − + −
− −= + − − + =  (3.7) 

 , 1, , ,Workforce: 0,1,...,t i t i t i t iW W H L i N−= + − =  (3.8) 
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 , , ,Capacity: 0,1,...,R O
t i t i t iP m W m O i N≤ + =  (3.9) 

 1, 1 , 1, 1FRP: 0,1,...,t i t i t iLB P UB i N− + − +≤ ≤ =  (3.10) 

 , , , , , , ,, , , , , , 0 0,1,...,t i t i t i t i t i t i t iP I I W O H L i N+ − ≥ =  (3.11) 

 , , ,, , integert i t i t iW H L  (3.12) 

 At each time period t, the objective is to minimize the overall projected cost over 

the next N periods.  The objective function consists of the labor costs, hiring/layoff cost, 

material cost, backorder (shortage) cost, and inventory holding cost (3.6). For each t in the 

planning horizon, the following constraints apply; Inventory Balance is provided through 

constraint (3.7), where the realized demand in period t plus the inventory (or backorder) at 

the end of period t, equals to the total production in period t plus the inventory (or 

backorder) from the previous period t-1. Workforce constraint (3.8) ensures that the total 

workforce in period t equals to total workforce in the previous period (t-1), plus the net 

change in the workforce during period t. The net change is based on hiring or laying-off 

workers. While Capacity constraint (3.9) ensures that the total production in period t will 

not exceed the available production capacity, FRP constraint (3.10) stipulates that 

production will stay within the pre-defined lower and upper production bounds. Note that 

omission of constraint (3.10) in the APP formulation above would yield a classical APP 

without flex-limits.  

3.4 Rolling Horizon Implementation 

 In rolling horizon environments, planning is made in each decision period by 

considering the current state and future demand events but only the decisions of the initial 

period are actually implemented. Next period, planning process is updated and decisions 
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are revised as new demand information become available. The plans are modified as the 

horizon gets rolled over since the forecasts in the distant future are less reliable and more 

expensive than the near future. Figure 3.2 illustrates the relationship of planning elements 

between time t − 1 and time t. 

Period t-1 

0 1 2 …  i i+1 … N 

1,0tD −  1,1tD −  1,2tD −     1,t iD −  1, 1t iD − +   
1,t ND −  

1,0tP−  1,1tP−  1,2tP−    
1,t iP−  1, 1t iP− +   

1,t NP−  

1,0tI −  1,1tI −  1,2tI −    
1,t iI −  1, 1t iI − +   

1,t NI −  

 
1,1tLB −  1,2tLB −  

  
1,t iLB −  1, 1t iLB − +    

 
1,1tUB −  1,2tUB −  

  
1,t iUB −  1, 1t iUB − +    

 
 
 
Period t 

0 1  … i-1 i … N-1 N 

,0tD  1,1tD −    1, 1t iD − −  1,t iD −   , 1t ND −  1,t ND −  

,0tP  ,1tP    , 1t iP −  ,t iP   , 1t NP −  ,t NP  

,0tI  ,1tI    , 1t iI −  ,t iI   , 1t NI −  ,t NI  

,0tLB  ,1tLB    , 1t iLB −  ,t iLB   1, 1t NLB − −   

,0tUB  ,1tUB    , 1t iUB −  ,t iUB   , 1t NUB −   

 
Figure 3.2: Illustration of updates from period t-1 to t. 

3.5 Computational Study 

In what follows, we first provide a brief description of the underlying demand model 

and the forecasting method that we implement for our numerical study. An alternative 

simulation-based solution method to the proposed FRP-embedded APP method is 

described in Section 4.3. In Section 4.4 and 4.5, we present our experimental design 

framework and response variables, respectively. 
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3.5.1 Demand Model & Forecasting Method 

Phase 1: Demand Generation 

While cost structures were specified by these industry settings, we generated 

various demand scenarios as follows. Considering the fact that product demands vary over 

time, and are often subjected to trend and seasonality we assume that the demand series are 

represented by the multiplicative seasonal model. In specific, the following demand 

generation function is used to generate demands. 

 ( )t t tY a bt S ε= + +  (3.13) 

Where a is the baseline component, b  is the trend component, tS  is the multiplicative 

seasonal factor, and tε  is a random error component that is assumed to be normally 

distributed with a mean of zero and a standard deviation of σ. 

The initial baseline, trend, and/or magnitudes of the seasonal and noise 

components, and the period of the seasonal variation can be changed to generate various 

demand patterns and extent of uncertainties. As will be described in Section 4, demand 

scenario in this study is specified by combination of two levels and four demand 

components. Two levels, low and high, represent the magnitude of four demand 

components (baseline, trend, seasonality, and the variance of errors).  

Phase II: Forecasting parameter estimation  

Demand scenarios generated from this model with various parameter values, are 

assumed to be actual demands that are observed period by period, where future demands 

are forecasted based on observed demand data without knowing the underlying parameters. 

Observing the presence of trend and seasonal variations in the generated demand data, the 

Holt-Winters method (Chatfield, 1978) is employed as the forecasting method in this study, 
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where the smoothing constants for baseline ( ) ,α trend ( ) ,β and seasonality ( )γ  were 

identified using a sensitivity analysis as described under section 5.1. Previous studies have 

indicated that the Holt-Winters method adequately captures the trend patterns and/or 

seasonal swings in demand (Zhang, 2004).  

3.5.2 FRP-Based Chase Strategy 

To assess the value of the mathematical optimization on cost and stability 

performances, we also implement a traditional chase strategy (Stevenson, 2007) in 

conjunction with FRP, called FRP-based chase strategy (FRP-CS). The FRP-CS procedure 

starts with the realization of the current demand and utilizes the computed demand 

forecasts for the next   periods. The net production requirement is calculated by (3.1), and 

the current production is determined using the net production requirement and the 

previously computed lower and upper bounds as (3.2).  Then the actual inventory level is 

calculated using (3.3). If the workforce capacity is not sufficient to meet the demand 

requirements, we hire new employees as in the chase strategy. Conversely, if the current 

workforce level is able to meet the demand through regular or overtime hours, we lay off 

unnecessary employees.  The final workforce level is updated according to the workforce 

balance constraint in (3.8).  Similar to the optimization case, the production bounds are 

updated at the end of each decision period t. The FRP-CS approach was modelled using 

AMPL programming language with the same planning parameters, and demand and 

forecasting model introduced earlier. A more detailed pseudo code for the simulation 

procedure is provided in Appendix A. 
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3.5.3 Experimental Design 
 
 In order to investigate variations of performances with respect to problem 

parameters, we constructed an experimental design with seven factors, each of which two 

levels as shown in Table 3. A 27 full factorial experiment with 5 replications is used in this 

study. The experimental factors that are investigated consist of the following: solution 

method, flex-limits, demand components including baseline, trend, seasonality and error, 

and industry type. Two levels in demand components represent the high and low 

magnitudes, whereas the levels in flex-limits indicate whether the flex-limits is used or not. 

The first level, “None”, corresponds to the traditional aggregate planning method, where 

FRP constraints in equation (3.13) are omitted. “Enforced”, on the other hand, considers 

the implementation of flexibility bounds. The industry type refers to sample scenarios 

corresponding to automotive parts and textile cases. The corresponding cost and production 

rate parameters displayed in Table 5 and are compiled from the cases in Sillekens et al. 

(2011), Gnoni et al. (2003), and Leung et al. (2003). The original cost data in the literature 

is converted into American dollars to have a unified comparison with the following 

conversion rates: $1= HK$7.8= €0.7.  

 
Table 3.3: Experimental factors and their levels. 

Factors Levels 
Solution Method FRP-AP FRP-CS 

Flex Limits None Enforced 
Demand-Baseline Low (1000 units) High (3000 units) 
Demand- Trend Low  (20 units) High (100 units) 

Demand-Seasonality Low +/- 0.1 High  +/- 0.3 
Demand- Magnitude of Error Low (σ = 50) High (σ = 200) 

Industry Type Industry Type 1 Industry Type 2 
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Table 3.4: Demand scenarios. 
Scenario No. Baseline Trend Seasonality Magnitude of Error 

1 Low Low Low Low 
2 Low Low Low High 
3 Low Low High Low 
4 Low Low High High 
5 Low High Low Low 
6 Low High Low High 
7 Low High High Low 
8 Low High High High 
9 High Low Low Low 
10 High Low Low High 
11 High Low High Low 
12 High Low High High 
13 High High Low Low 
14 High High Low High 
15 High High High Low 
16 High High High High 

 
 

Table 3.5: Aggregate planning parameters for selected industries (single product 
considered). 

 Industry Type 1: Textile Industry Type 2: 
Automotive Parts 

Production/Inventory Costs (in 
$USD) 

  

Production cost ($/unit) $ 6.41 $ 1.80 
Inventory cost per unit per week $ 1.92 $ 0.18 
Backorder cost per unit per week $ 3.85 $ 3.60 

Labor Costs (in $USD)   
Labor Cost ($/person-hour) $ 0.80 $ 11.16 

Overtime labor Cost ($/person-
hour) $ 1.28 $ 12.28 

Hire cost ($/person) $ 12.82 $ 3,571 
Lay-off cost ($/person) $ 15.38 $ 14,286 

Production Rates   
Number of units produced 

(unit/person-hour) 0.57 16.67 
 

The planning horizon is set as 8,N = and the performance is evaluated over 12 

periods (i.e., T = 12). The production capacity is determined by the size of the workforce. 

It is assumed that there is an initial inventory of 100 units, and the initial workforce is set 
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according to the first realized demand in the planning horizon. Each employee works for 8 

hours per day. Each demand scenario is replicated five times using randomly generated 

demand variates. Hence, the total number of experimental runs is 7640 5 2 .= ×      

3.5.4 Performance measures  

 Two performance measures are used in this study. The first measure, Cost, 

considers the current total cost (t, 0) at each optimal plan and computes a final overall cost 

over the planning horizon. We would like to remark that the cost measure is different than 

the objective function described in Equation 3.6 since it only considers the actual realized 

(current) cost of each production plan in the overall time frame as follows: 

 ( ),0 ,0 ,0 ,0 ,0 ,0 ,0

T
W O H L P

t t t t t t t
t

c W c O c H c L c P h I b I+ −+ + + + + +∑  (3.14) 

 The second measure, called plan variability, is used to capture the nervousness in 

production plans. There have been a few attempts to quantify nervousness in production 

planning. In some of the earlier studies nervousness is defined in terms of cost, and 

included in the objective function (Carlson et al., 1979). Non-monetary nervousness 

measures have considered changes in production quantities and changes in number of 

setups extensively (Sridharan and LaForge 1989; Kimms, 1998; Jeunet and Jonard, 2000). 

Measures that consider multiple criteria simultaneously, such as changes in production 

quantities and differences between new and old order due dates, are also available (Ho and 

Ireland, 1998). We define plan stability as the difference between the planned production 

levels versus the actual production in a rolling horizon environment. The overall plan 

stability in the planning horizon is calculated according to the following formula; 
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 

×

∑
 (3.15) 

This definition is based on the Lm norm for production variability where m is the 

compensation parameter such that 1≤ m ≤ ∞. m=1 implies full compensation, yielding the 

sum of absolute deviations from the production plans, and m= ∞ yields max, meaning no 

compensation is allowed (De Kok and Inderfurth, 1997).  

3.6 Computational Results 

We conduct our numerical experiments using the AMPL programming language 

and the CPLEX solver. Comparisons between the APP models with and without FRP are 

made within the context of planning costs and stabilities. There are 16 (24) demand 

scenarios available that represent the two levels (low and high) of four demand factors 

(Table 3.4). The computations give different results for the automotive and textile 

industries, but in majority of the cases optimization-based FRP approach return more 

favorable outputs. Figure 3.3 displays the results of total cost for the textile industry for 

both approaches under the 16 demand scenarios. The cost gap among the flex-limits 

appears to be very small for both approaches. “No-flex-limits” case yields slightly lower 

costs in demand scenarios with high levels of trend and seasonality (scenarios 7-8 and 15-

16). While the difference is relatively small, in all five flex-limits categories, FRP-AP 

yields lower costs compared to FRP-CS. In this comparison, the highest difference is 

observed when 1% flex-limits are implemented, where 94% of the cases return results in 

favor of FRP-AP. The lowest percentage is obtained with 3% flex-limits, where FRP-AP 

still outperforms FRP-CS in 53% percent of the cases. Per our observations, FRP-AP 

 
 



39 
 

approach displays more favorable results in 75% of the scenarios with an average savings 

of $1,752. 

 

Figure 3.3: Cost Graphs in Industry Type 1: FRP-AP vs. FRP-CS. 

 By observing cost figures (Figure 3.4) in automotive parts industry we can see that 

FRP-AP surpasses the FRP-CS approach in terms of performance. Among a total of 480 

(i.e., 80 scenarios for each flex-limit case) scenarios, FRP-AP is able to achieve lower costs 

than those of FRP-CS in all of these, while having an average cost of $187,586. Using 
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FRP-AP provides $31,749 savings on average amongst all the flex-limits cases. While the 

savings for 5% flex-limits is $35,838, the savings for 1% flex-limits is found to be $28,332 

on average (Table 3.6). This demonstrates that there is a trade-off between the cost and the 

plan stability. In both approaches, smaller flex-limits yield lower costs in most cases. 

However, the lowest cost results are obtained in FRP-AP with no-flex limits, which 

represents the implementation of the traditional aggregate production planning (APP) 

without FRP. Traditional APP provides 16% and 19% lower costs on average in 

comparison to FRP-AP with 1% flex-limits and FRP-AP with 3% flex-limits, respectively. 

 
Table 3.6: Average aggregate costs of FRP-CS and FRP-AP for 16 demand scenarios and 

total amount of savings obtained through FRP-AP. 
 1%FL 2%FL 3%FL 4%FL 5%FL No-FL Average 

FRP-
CS $218,584 $221,329 $225,752 $226,291 $224,826 $199,229 $219,335 

FRP-
AP $190,251 $193,309 $195,604 $192,764 $188,988 $164,600 $187,586 

Savings $28,333 $28,020 $30,148 $33,527 $35,838 $34,629 $31,749 
 

 

Figure 3.4: Cost Graphs in Industry Type 2: FRP-AP vs. FRP-CS. 
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Figure 3.4 (Cont’d): Cost Graphs in Industry Type 2: FRP-AP vs. FRP-CS. 

 Cost components are highly pertinent to the industry scenarios. As discussed 

earlier, hiring and lay-off costs are significantly lower in the textile industry example, thus 

there are frequent changes in the workforce levels. On the other hand, automotive parts 

industry tries to avoid frequent changes in the workforce level as much as possible because 

of the high lay-off costs. In the automotive parts industry example, demand requirements 

are met through higher utilization of the workforce, and by allowing frequent changes in 

inventory levels. Figures 3.5 and 3.6 show the average operating costs for the automotive 

parts and textile industry examples, respectively. As reflected in Figure 3.5, three major 

cost drivers of the auto industry are the production, workforce, and shortage costs (54%, 

22%, and 14% of the total costs, respectively). When FRP-AP is being implemented, high 

costs associated with hiring and lay-off workers prevent frequent changes of the workforce. 

However, FRP-CS approach frequently changes the workforce size to cope with demand 

variability, which increases the hiring/lay-off costs drastically, from 1% to 17% of the total 
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costs to be precise. One noticeable observation for automotive parts industry is that the 

FRP-CS approach increases the shortage and overtime costs, especially when there is 

higher demand variability.  

 

(a) Costs in Industry Type 2: FRP-AP.  
 

  

(b) Costs in Industry Type 2: FRP-CS. 

Figure 3.5: Percentages of cost components in automotive parts industry. 
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 Observe that the production and workforce are the main cost drivers in the textile 

industry. Production costs make up 76% of the costs in textile industry, workforce costs 

follow that with 16%. Overall, FRP-AP and FRP-CS approaches produce similar levels of 

costs for the textile industry, most likely reflecting the fact that changes in workforce levels 

are not the main cost drivers for the industry. The only significant difference between two 

approaches is that the overtime costs are higher in FRP-CS solution since the main 

emphasis in FRP-CS is to fulfill the demand, if possible, rather than to minimize cost. In 

both industries, we observe low inventory costs (i.e., less than 1% and 1% of the total costs 

for automotive parts and textile, respectively), and demand variability also causes 

significant changes in cost distributions, which can be observed from both Figures 3.5 and 

3.6. 

 

(a) Costs in Industry Type 1: FRP-AP. 
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(b) Costs in Industry Type 1: FRP-CS. 

Figure 3.6: Percentages of cost components in textile industry. 

 The second performance measure, plan variability, is significantly impacted by the 

presence of flex-limits. As one can expect, the smaller flex-limits provide lower variability. 

Furthermore, using 5% flex-limits displays plan variability that is similar to that of no-flex 

limits for majority of the cases. This implies that production plan bounds with 5% flex-

limits tends to be redundant, and the problem becomes the ordinary aggregate production 

planning.  For Industry Type 1, in the FRP-AP approach, 3% flex-limits show 8% reduction 

on average in plan variability when compared to the no-flex-limits. This number increases 

to 42% with the implementation of 1% flex-limits (Figure 3.7). 
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Figure 3.7: Stability Graphs in Industry Type 1: FRP-AP vs. FRP-CS. 

  For Industry Type 2, Both FRP-AP and FRP-CS approaches return very similar 

variability results. For example, in FRP-AP, 3% flex-limits show 12% reduction in plan 

variability on average when compared to the no-flex-limits. Similarly, FRP-CS shows 10% 

reduction for the same 3% flex-limits. This number increases to 47% and 43% respectively, 

with the implementation of 1% flex-limits. Traditional aggregate production planning 
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without flex-limits constantly have the highest variability with an average value of 168 , 

which is twice as high as on average than FRP-AP with 1% flex-limits.  

 

Figure 3.8: Stability Graphs in Industry Type 2: FRP-AP vs. FRP-CS. 
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 When the behaviors among flex-limits are compared, it is observed that larger flex-

limits yield higher plan variability, higher production costs, and smaller inventory levels. 

Highly uncertain demands result in higher variation in cost, plan variability, and actual 

production levels ( ),0i.e., .tP Trend and seasonality are the major drivers of demand 

uncertainty. Scenarios 7-8 and 15-16 have high trend and seasonality patterns of demand, 

and flex-limits produce significant differences in stability performance for these scenarios. 

Scenarios 3-4 and 11-12 that have the low level of trend but the high level of seasonality 

also experience relatively large gaps between different flex-limits. On the other hand, when 

the high level trend but the low level of seasonality are present, as in scenarios 5-6 and 13-

14, industry type 1 behaves similarly in both FRP-AP and FRP-CS. The only distinctive 

result is observed when 1% flex-limits are used (Figures 3.7 and 3.8).  

3.7 Additional Industry Analyses  

We conduct more analyses to gain more insight into the application of FRP in 

different industry settings. We consider the aggregate planning parameters given in Table 

3.5, and create an experiment with 3 main factors each having 2 levels. Three main factors 

are the production/inventory costs, labor costs, and the production rates (Table 3.7). The 

high and low levels for each groups of factors are listed below (Table 3.8).  Scenario 4 

corresponds to the textile industry and scenario 7 results corresponds to automotive parts 

industry, whose results are previously shown. A center point is also added to our design, 

which is the average of two industries. A center point tell us whether the linear assumption 

that we use for the design is true.  
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Table 3.7: Factors and their corresponding levels. 
 

 

 

 
 
 

 
Table 3.8: Industry type scenarios. 

Scenario No. Production/Inventory 
Costs Labor Costs Production Rates 

1 Low Low High 
2 Low Low Low 
3 Low High Low 
4 High Low Low 
5 High High High 
6 High High Low 
7 Low High High 
8 High Low High 
9 Center Point Center Point Center Point 

 
 
 
There are several analyses we would like to do in this section. These include: 
 

• comparing the overall cost and plan variability levels of industry type scenarios 

and identifying whether there are meaningful patterns exist between them,  

• analyzing the impact of experimental factors and levels on our response variables,  
 

• examining the main and interaction effects. 

Figure 3.9 displays the average costs and plan variabilities of the industry type 

scenarios. As expected, the highest cost is observed in Scenario 6, where 

production/inventory and labor costs are high but the production rates are low. Scenario 6 

is followed by Scenario 3, where labor costs are high but the rest of factors are set to low. 

Factors Low Level High Level 

Production/Inventory Costs Automotive 
Parts Textile 

Labor Costs Textile Automotive 
Parts 

Production Rates Textile Automotive 
Parts 
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These two scenarios are also happen to have the lowest variability, which is another 

indicator of the trade-off between these two measures. The average plan variabilities are at 

similar levels with a single exception of Scenario 2, where all factors are set to the low 

levels. Scenario 1, where cost factors are low but production rate is high, returns the lowest 

cost per unit variability among all scenarios. 

 
 

 
 

 

Figure 3.9: Cost and plan variability levels under different industry scenarios. 
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These cost and plan variability levels are then statistically compared using analysis 

of variance (ANOVA) via Minitab. Table 3.9 provides the ANOVA results, obtained using 

Minitab. Per the F and p-values, Production rates is the only main effect that is found to be 

not statistically significant.  

Table 3.9: ANOVA results for industry factors. 
 Cost Plan Variability 

Source F-Value P-Value F-Value P-Value 
Model 109597.55 0 8.23 0 
Linear 204741.11 0 8.89 0 

Production/Inventory Costs 47132.21 0 5.98 0.019 
Labor Costs 268692.4 0 20.38 0 

Production Rates 298398.71 0 0.32 0.575 
2-Way Interactions 77973.11 0 11.16 0 

Production/Inventory Costs*Labor Costs 0.03 0.856 6.65 0.014 
Production/Inventory Costs*Production 

Rates 
0.41 0.524 6.97 0.012 

Labor Costs*Production Rates 233918.88 0 19.87 0 
3-Way Interactions 0.43 0.517 5.68 0.023 

Production/Inventory Costs*Labor 
Costs*Production Rates 

0.43 0.517 5.68 0.023 

 

The only significant interaction effect for cost variable is labor costs & production rates, 

which makes sense intuitively as the rates and labor costs comprise a majority portion of 

total costs. The interaction effects of production/inventory costs & labor costs and 

production/inventory costs & production rates show parallel lines in the plots, and hence 

are not found to be significant for the cost (Figure 3.10). On the other hand, interaction 

effects for plan variability show that there is no independence among variables (Figure 

3.11). Plan variability also possesses a three-way interaction, which represents that the 

main effects that are found to be significant should also be treated carefully due to having 

highly dependent relationships between the experimental factors.   
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Figure 3.10: Main and interaction effects plots of cost for industry factors. 
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Figure 3.11: Main and interaction effects plots of plan variability for industry factors. 
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3.8 Effect of Forecasting Parameters  

  As we pointed out in Section 3.5.1, the Holt-Winters method is employed as the 

forecasting method in this study, where smoothing constants , , andα β γ  are fixed at 0.2. 

Smoothing constants being close to 0 indicates that the forecasting model is less responsive 

to the changes in recent observations. In order to gain more insight how the smoothing 

parameters affect the overall results and conclusions, we conducted further analyses using 

the automotive parts industry data. Due to having a high number of demand runs, we chose 

to implement a fractional factorial design that consist of 2 levels and a center point. For 

each smoothing constant; 0.2 and 0.8 are set as low and high levels, respectively. In 

addition, 0.5 is used as the center point, which gives us a total of 5 runs. Figure 3.12 shows 

the average costs and plan variabilities for each of these runs along with our default 

parameters that are fixed at 0.2. When all constants are set at the low level (i.e.,

0.2, 0.2,and 0.2α β γ= = = ), the cost and stability levels are found $187,465 and 139, 

respectively. A very close alternative was when 0.2, 0.2,and 0.8,α β γ= = = which has 

attained the values $187,465 and 139.  These two similar cases have the lowest cost and 

highest stability results obtained in our runs but the variability per unit cost is smaller in 

the former case, when all smoothing constants are set at low levels. On the other hand, the 

highest variability was observed when all three smoothing parameters were at high levels 

(i.e., 0.8, 0.8,and 0.8α β γ= = = ), which aligns with the literature recommending the use 

lower values for smoothing constants (Chatfield, 1978). When all constants are set high, 

we obtain the highest cost and variability values: $372,848 and 706, which are significantly 

higher than the other runs. We would like to remark that in general, these smoothing 
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constants can be selected based on the forecast error using historical data. However, since 

the objective here is investigation of the sensitivity of the proposed FRP model results and 

conclusions with respect to different forecasting parameters (rather than identification of 

the best forecasting model) an experimental design approach has been taken.    

 

 
Figure 3.12: Cost and plan variability levels under different smoothing constants in FRP-

AP approach. 
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When we look at these smoothing constant scenarios individually, we see a few 

new patterns that hasn’t been observed in prior. As can be seen in Figures 3.13 and 3.14, 

the cost difference between flex-limits and no-flex limits increases when α  or β  are close 

to 1, which means favoring traditional aggregate planning without FRP. When α  is high, 

the gap between different flex-limits also gets widened (Figure 3.13).  In the two cases, 

where α  and β  values are the lowest, the behaviors of flex-limits are almost identical, 

which makes us conclude that the value of γ  becomes insignificant in the final cost 

structure (See Appendix C). 

 

Figure 3.13: Cost graphs of FRP-AP when ( )0.8, 0.2, 0.2α β γ= = = .  
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Figure 3.14: Cost graphs of FRP-AP when ( )0.2, 0.8, 0.2α β γ= = = . 

The amount of variability significantly increases when alpha and beta values are 

high (i.e., being more responsive to recent changes in the forecast). The highest variability 

is observed when all constants are set to 0.8. In that case, the comparison of no-flex limits 

vs. flex-limits reveal that flex-limits provide 62% less variability than the traditional 

aggregate planning without FRP (Figure 3.15).  Another noticeable observation is that 

when all smoothing constants are set to 0.5, 3%, 4% and 5% return the same stability 

results. In all of the five runs, we see the same consistent pattern among flex-limits, where 

larger flex-limits yield higher plan variability (Figure 3.16). 
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Figure 3.15: Stability graphs of FRP-AP when ( )0.8, 0.8, 0.8α β γ= = = . 

 

Figure 3. 16: Stability graphs of FRP-AP when ( )0.5, 0.5, 0.5α β γ= = = . 

Next, the output from the experimental design is examined by analysis of variance 

(ANOVA) using Minitab. For both response variables, smoothing constant for the level 

(baseline component), for the slope (trend component), and for the seasonal factor are 

found statistically significant. ANOVA results are presented in Tables 3.10 and 3.11. The 
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p-value of curvature is extremely high, which suggests that there is no evidence of 

curvature.  

Table 3.10: ANOVA results of smoothing constants for cost. 
Analysis of Variance 
 
Source       DF       Adj SS       Adj MS  F-Value  P-Value 
Model         4  1.06724E+11  26681117056    33.43    0.000 
  Linear      3  1.06712E+11  35570541025    44.56    0.000 
    Alpha     1  40711430507  40711430507    51.00    0.000 
    Beta      1  45265405526  45265405526    56.71    0.000 
    Gamma     1  20734787043  20734787043    25.98    0.000 
  Curvature   1     12845148     12845148     0.02    0.901 
Error        16  12771326768    798207923 
Total        20  1.19496E+11 
 
 
Model Summary 
 
      S    R-sq  R-sq(adj)  R-sq(pred) 
28252.6  89.31%     86.64%           * 

 

Table 3.11: ANOVA results of smoothing constants for plan variability. 
Analysis of Variance 
 
Source       DF  Adj SS   Adj MS  F-Value  P-Value 
Model         4  108241  27060.2   117.75    0.000 
  Linear      3  107869  35956.3   156.46    0.000 
    Alpha     1   44254  44253.8   192.56    0.000 
    Beta      1   57135  57135.4   248.62    0.000 
    Gamma     1    6480   6479.6    28.19    0.000 
  Curvature   1     372    372.1     1.62    0.221 
Error        16    3677    229.8 
Total        20  111918 
 
 
Model Summary 
 
      S    R-sq  R-sq(adj)  R-sq(pred) 
15.1596  96.71%     95.89%           * 

 

 
 



59 
 

To gain more insight about statistical significance of the smoothing constants and 

to compare their magnitude, we plot the normal probability plot of the effects, which is 

shown in Figure 3.17. As per the results, all smoothing constants have significant positive 

effects on the response variables. Among the three, smoothing constant for the trend 

component ( )i.e.,β , due to being located furthest from the fitted line, is the most significant 

effect for both cost and plan variability. Smoothing constant for the seasonal factor ( )i.e.,γ

, has the least significant impact on both, where its effect is slightly lesser for plan 

variability.    

 

Figure 3.17: Normal probability plots of the standardized effects. 
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Figure 3.17 (Cont’d): Normal probability plots of the standardized effects. 

3.9 Effect of Hiring and Layoff Costs in Textile Industry 

As mentioned earlier, Industry type 1 is based on data obtained from automotive 

parts industry, whereas Industry Type 2 features textile industry, a Hong-Kong based 

specialty items manufacturer in particular, which observes higher turnover rates as a result 

of having lower hiring and lay-off costs. Below, we present a sensitivity analysis to 

demonstrate the impact of the turnover rates and show how cost savings change when the 

hiring and layoff costs parameters change in the problem settings. We solved our aggregate 

planning problem using both FRP-AP and FRP-CS approaches with alternative cost 

parameters to demonstrate how the savings change when the hiring and lay-off cost 

parameters change in the problem settings. We gradually increased the cost of hiring/lay-

off from the base case, where they are set to 12.82 ($/person) and 15.38 ($/person), 

respectively, and the results have shown that when hiring and lay-off costs increase, the 
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amount of savings increases as well. When hiring/lay-off costs are increased to 120 

($/person) and 200 ($/person), respectively, the amount of savings has reached up to 

$9,262, which is five times greater than the amount we obtained in the initial scenario. 

Table 3.11 provides the complete list of alternative scenarios and their respective savings 

for each flex-limit case under different cost settings in the textile industry.  

Table 3.12: Average total savings for 16 demand scenarios with FRP-AP approach. 
Hiring/ Lay-off 
Cost ($/person) 1%FL 2%FL 3%FL 4%FL 5%FL No-FL Average 

Base Case $3,001 $3,232 $720 $948 $2,062 $552 $1,752 
= =30 / 50H Lc c  $3,096 $2,877 $509 $754 $2,010 $(500) $1,458 
= =60 / 100H Lc c  $3,654 $4,143 $2,598 $2,782 $4,197 $817 $3,032 
= =120 / 200H Lc c  $7,458 $8,374 $7,926 $9,241 $11,903 $10,670 $9,262 

 

3.10  Assumptions and Limitations 

 The numerical study that we presented here only considers a single product. Thus, 

the demand forecasts are assumed to be independent and would not experience the 

correlated demand among multiple products, a case where demand of a particular product 

may depend on the inventory of other products (Baykal-Gursoy and Erkip, 2010). Another 

major assumption is the availability of resources to adjust the workforce levels due to 

changing demand. This is especially important for FRP-CS since the main emphasis on 

this approach is to fulfill the demand rather than minimize the cost. In real-world 

manufacturing environments though, this might not always be attainable due to the budget 

restrictions and regulations in hiring/lay-off processes. Another limitation is on the 

smoothing constants. Given the high number of scenarios generated and the respective run-

time of each model, a fractional factorial experiment is considered in this study but 

performing a more detailed analysis on this subject would enhance our understanding of 
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the relationship between the FRP and the forecast quality. As we underlined in Section 3.4, 

the results obtained reflect the industry specifics, and should not necessarily represent the 

industry as a whole.  However, the results suggest strong room for growth in terms of plan 

stability and cost savings for both of these sample industry scenarios.  

3.11   Summary and Conclusions 

 In this chapter, we discuss the application of flexibility requirements profile (FRP) 

in aggregate production planning (APP) problems to trade-off between cost and plan 

stability.  A mixed-integer linear programming (MILP) model has been developed to solve 

the FRP-based APP (FRP-AP) problem in a rolling horizon setting, and the optimal 

production plans are determined. The model minimizes the overall costs related to 

production, workforce, inventory holding and backorder costs over the planning horizon, 

while incorporating additional constraints that reflect the FRP requirements. A 

computational study was carried out using experimental data corresponding to two industry 

types based on an automotive parts supplier case and a textile industry case. The conducted 

experimental designs and sensitivity analysis has shown how the change in certain 

parameters affect the efficacy of FRP. 

  The overall results suggest that the proposed FRP-AP method has given favorable 

results in production stability when flex-limits are enforced, without significantly 

sacrificing the cost production cost when compared with the traditional APP without FRP. 

The enforced flex-limits also acknowledge that the tight bounds provide better smoothing 

effect on production and inventory levels. In both industry cases, FRP-AP approach 

establishes high degrees of plan stability and provides higher cost-savings in comparison 

to the FRP-based chase strategy (FRP-CS). The results show that FRP-AP models may 
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help the organizations to establish a certain degree of stability without jeopardizing their 

economic interests. Especially, industries with shorter product lifecycles and those which 

are exposed to heavy demand fluctuations may thoroughly benefit from the implementation 

of the proposed FRP-AP approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

CHAPTER 4: BI-OBJECTIVE OPTIMIZATION FOR AGGREGATE PLANNING 
WITH FLEXIBILITY REQUIREMENTS PROFILE 

 
 
4.1 Introduction  

In this chapter, we extend our work in Chapter 3 and consider optimizing multiple 

conflicting objectives simultaneously. The proposed method employs multi-objective 

programming to FRP-based aggregate production planning. In the following sub-sections, 

first we present the compromise programming approach and the FRP-embedded bi-

objective MILP model. Then, we compare the proposed model’s results to those of the 

stand-alone bi-objective and the single objective FRP model. We wrap up the chapter with 

presenting the conclusions and the managerial benefits of stable production plans. 

4.2 Multi-Objective Optimization 

The goal of multi-objective optimization is to simultaneously optimize all the 

objectives (attributes) that are involved in the decision-making process and find an 

appropriate balance between them. These objectives are often conflicting and varying in 

nature; thus a unique feasible solution that optimizes all of them simultaneously often does 

not exist. Rather, there are multiple feasible solutions that are non-dominated with respect 

to each other. This is the notion of Pareto optimality. In Pareto optimality of real valued 

decision variables, there are infinitely many optimal solutions, where each of these 

solutions is superior in at least one of the objectives but inferior in the others. An optimal 

solution is established when there are no other feasible solutions that could improve at least 
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one of the objectives without deteriorating the rest of them. This optimality condition can 

also be interpreted as the tradeoff between the solutions. The final solution to the multi-

objective problem is the set of non-dominated solutions, also known as the Pareto front.  

The classical multi-objective optimization problem can be described in the following form; 
   
 Minimize ( ) ( ) ( ){ }1 2, ,....., Zf x f x f x  (4.1) 
  

 Subject to: ( ) 0, 1,2,..., jig x i≥ =  (4.2) 
 

Where ( ) ( ) ( ){ }1 2, ,....., Zf x f x f x  represent the attributes that are involved the decision 

making process and j  is total number of inequality constraints.  

4.3 Bi-Objective Compromise Programming 

Among the several methods for solving multi-objective optimization problems, 

compromise programming (CP) with additive utility functions is used in this study. CP is 

a distance-based technique to identify compromise solutions. It was first introduced by 

Zeleny (1973) and later used in various multi-objective programming problems. 

Compromise programming aims to obtain the set of solutions that are closest to an ideal 

point. The utopia point is considered as infeasible in the decision space because of the 

conflicting nature of the individual objectives and the decision maker (DM) has to find a 

compromise solution between the final solution and the utopia point. The utopia point 

(vector) contains the best possible values of each objective, and as opposed to goal 

programming, the utopia point in compromise programming is not a target established by 

the DM’s subjective preferences. Lp metrics is frequently used in CP as a distance measure 

and numerous applications can be found in the literature (Ozelkan et al., 2000; Ballestero, 

2007). 
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where jf  is the value of objective ,j jB  is the best (i.e., utopia) value of objective ,j jW  

is the worst (i.e., nadir) value of objective .j  jB  is called utopia point because this point 

is normally not feasible due to the conflicting nature of the individual objectives. The 

interval between nadir and utopia points locates all possible optimal values and avoids the 

bias generated by the different magnitude of each objective. jw  is the weight of the 

objective ,j  and p  stands for the decision maker’s compensation between deviations 

where 1 .p≤ ≤ ∞  Additive utility functions are based on the utility theory: an approach 

used for quantifying the preferences of the DM. The idea is to develop a new scale to 

describe the relative values of different outcomes to avoid discrepancies caused by 

monetary values. To describe the relative values of different objectives, each objective in 

the decision space is assigned a utility and the goal is to achieve the highest expected utility 

with respect to all the objectives. Additive utility function combines these utilities and 

transform to a single utility function. The additive utility function assumes that there exists 

independence between the objectives, and thus the outcomes of one objective do not 

depend on the level of the other objective (Keeney and Raiffa, 1976). In this study, we use 

full compensation, i.e., 1,p =  which results in an MILP formulation as presented in Section 

4.4. 1L  can be considered as a weighted average of linear utility functions such that: 

 1
1

( ) ( ) ( ) ( )where 
N

j j j j j j j j j
j

L w U f U f f B W B
=

= = − −∑  (4.4)  
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4.4 Mixed-Integer Linear Programming Formulation 

The objective of the proposed approach is to find the optimal production levels 

while considering cost and plan stability, simultaneously. At each time period t, the 

objective is to minimize the overall projected cost and the plan stability over the next N 

periods under given flex-limits. The first objective, cost, consists of the labor costs, 

hiring/layoff cost, material cost, backorder (shortage) cost, and inventory holding cost. The 

second objective, plan stability, considers the variability between forecasted (planned) 

production and the actual production. The parameters and decision variables that we 

introduced in Chapter 3 are also used in this bi-objective model. 

The proposed bi-objective MILP problem to be solved at period t can be represented 

as follows:  

 Minimize ( ) ( ) ( )1 2, , , , , , 1wU C W O H L P I I w U S P− +  + −      (4.5) 

Subject to:  

 Inventory: , , , , 1, 1, 0,1,...,t i t i t i t i t i t iP d I I I I i N+ + + −
− −= + − − + =  (4.6) 

 Workforce: , 1, , , 0,1,...,t i t i t i t iW W H L i N−= + − =  (4.7) 

 Capacity: , , , 0,1,...,R O
t i t i t iP m W m O i N≤ + =  (4.8) 

 FRP: 1, 1 , 1. 1 0,1,...,t i t i t iLB P UB i N− + − +≤ ≤ =  (4.9) 

 , , , , , , ,, , , , , , 0 0,1,...,t i t i t i t i t i t i t iP I I W O H L i N+ − ≥ =  (4.10) 

  t, , t,, ,i t i iW H L  are integers. (4.11)  

 Where , , , , ,W O H P I I− +   are decision vectors and   
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0

and ( ) .
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S P P P− −

=

 = − 
 
∑  (4.13) 

Expression (4.13) can be considered as the Lm norm for production variability 

where m is the compensation parameter such that 1 m≤ ≤ ∞ . 1m =  implies full 

compensation, yielding the sum of absolute deviations from the planned production levels. 

w  is between 0 and 1 determines the weights for the production cost and stability 

objectives. Solving for different w’s yields different non-dominated solutions on the Pareto 

frontier. Workforce constraint (4.7) ensures that the total workforce in period t  equals to 

total workforce in the previous period ( )1 ,t −   plus the net change in the workforce during 

period .t  The net change is based on hiring or laying-off workers. Inventory Balance is 

provided through constraint (4.6), where the realized demand in period t   plus the 

inventory (or backorder) at the end of period t  , equals to the total production in period t  

plus the inventory (or backorder) from the previous period ( )1 .t −  While Capacity 

constraint (4.8) ensures that the total production in period t will not exceed the available 

production capacity, FRP constraint (4.9) stipulates that production will stay within the 

pre-defined lower and upper production bounds, which are computed from (3.4) and (3.5) 

based on the FRP planning scheme. Since the proposed bi-objective problem already 

includes the stability metric in the objective function, one can consider a stand-alone bi-

objective problem without those FRP constraints in (4.9). In our numerical study, we 

compare the performance of the proposed formulation with that of the stand-alone bi-
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objective problem in order to see the impact of the FRP constraints. The performance 

comparison also includes the conventional single objective problem that minimizes only 

the cost function (4.12). 

The objective function (4.5) consists of two utility functions 1U  and 2 ,U  which 

represent the cost utility (4.12) and the stability utility (4.13), respectively. As mentioned 

in Section 3.2, utility functions are used when the decision criteria have uncertain payoffs 

and they translate decision values into an equivalent scale to have meaningful comparisons 

between conflicting cost and stability objectives. Each of these utility functions has their 

respective decision spaces, where the worst and best outcomes are assigned the values of 

0 and 1, respectively. Worst (Nadir) and Best (Ideal) values help us to determine the range 

of conceivable outcomes for each objective. In order to obtain the best and worst values, 

each objective in the problem should be minimized individually subject to the original 

constraints. To conceptualize this process, consider a multi-objective optimization problem 

as follows; 

 
{ }1Minimize ( ),...., ( )

subject to ,
Zf x f x

x∈Ω
 (4.14) 

where : n
if →   are the conflicting objectives and nΩ⊂    is the feasible region. Based 

on this classic formulation:  
 
 [ ] ( ){ }min : for 1,2,..., Z,i

x if f x x i= ∈Ω =  (4.15) 

will give us the Utopia point (the lower bounds of the Pareto optimal set) and,  

  [ ] ( )[ ]max ( ) , 1,..., .i j
i ig f x k= ∀ =  (4.16) 

will be the Nadir Point, and act as the upper bounds of the Pareto optimal set. Next, these 

values are placed in the weighted average of utility functions. More specifically, In order 
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to solve the bi-objective MILP model, at each period t in the planning horizon, the 

following steps are applied at each period in the evaluation horizon (i.e., 1, 2,...,t T= ).  

Step 1: Solve the single-cost objective MILP problem with constraints (4.6), (4.7), (4.8), 

(4.9), (4.10), (4.11) to identify the Best Cost and Worst Stability. 

, , , , , , ,
0 0 0 0 0 0

Minimize
N N N N N N

W O H L P
t i t i t i t i t i t i t i

i i i i i i
c W c O c H c L c P h I b I+ −

= = = = = =

 + + + + + + 
 
∑ ∑ ∑ ∑ ∑ ∑  

 Subject to: x X∈  (4.17) 

Step 2: Solve the single-cost objective MILP problem (4.17) with an additional constraint 

(4.18) to identify the Worst Cost. Note that the Best Stability is always zero, i.e., no change 

is made in the production plan.  

 Subject to:  1, 1 , t i t iP P− + =  (4.18)  
 

Step 3: Normalize both objectives by Equation 4.19, where the utopia and nadir values are 

found through Steps 1 and 2. 

 ( ) ,j j
j

j j

f B
U x

W B
−

=
−

   (4.19) 

where ( ) ( )0,1j jU f ∈  and j is the corresponding utility. 

Step 4: Solve the bi-objective model in (4.5-4.13) 

The optimal plans are computed on a rolling horizon basis, and there is an optimal 

plan for each period in the planning horizon. Since both cost and stability objectives are 

being minimized smaller values are desired for each objective. We would like to remark 

that it is also possible to select the best and worst values subjectively by identifying 
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meaningful upper and lower bounds for cost and stability based on decision maker’s 

subjective judgments.   

4.5 Numerical Study 

In this section, we present a numerical example to demonstrate the effectiveness of 

the proposed procedure. Our underlying idea is to create a dynamic optimization model 

under rolling horizon planning with presence of FRP. The production plans are computed 

on a rolling basis, and there is an optimal plan for each period in the planning horizon. In 

the production planning context, rolling horizon models entails periodical replanning 

activities and revision of MPS obtained in prior periods as more recent information become 

available. In this particular example, in each time period FRP-embedded bi-objective 

optimization model is solved over a prespecified planning horizon but only the initial 

period's decisions are implemented.  The same procedure repeats the next decision period; 

the model is resolved considering new information and decisions are modified accordingly. 

Cost parameters for this study are selected from an Asian textile industry (Table 4.1). The 

original cost data is converted into American dollars with the following conversion rate; 

1$=7.8HK. We generated 72 periods of demand data, where 48 of those are used as 

historical.  In each time period, a planning horizon (funnel) of 8 periods is maintained. 

Triple-exponential smoothing is used as the forecasting procedure with smoothing 

constants fixed at 0.2. For our example, we use the following assumptions. There is an 

initial inventory of 100 units, and the initial workforce is set according to the first realized 

demand in the planning horizon. Each employee in the workforce is scheduled to work for 

8 hours per day. The production capacity is determined by the size of the workforce. The 

inventory in the end of the planning horizon is set to 100 units.   
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4.5.1 Experimental Design 

For conducting a numerical study, we constructed an experimental design using 

various demand scenarios with the following demand components; baseline, trend, 

seasonality, Gaussian error with each having two levels. The magnitude of flex-limits ( )iF  

and objective weights ( )( ) & (1 )w w−  are the other experimental factors included in the 

design. The objective weight pair ( )( ) & (1 )w w−  corresponds to production cost and plan 

stability weights, respectively. A full factorial design is used and each experimental 

scenario is replicated five times to reduce random effects. The complete list of 

experimental factors and their levels is displayed in Table 4.2. 

Table 4.1: Cost data adapted from the textile industry (in $). 
Production Cost ($/unit) 6.41 

Inventory Cost per unit per week 1.92 
Backorder Cost per unit per week 3.85 

Labor Cost ($/person-hour) 0.80 
Overtime Labor Cost ($/person-hour) 

Hire Cost 
Lay-off Cost 

1.28 
12.82 
15.38 

Source: Leung et al., 2003 
 
 
 

 
Table 4.2: Experimental factors and levels. 

Factors Number of levels Values 
Demand-Baseline 2 Low (1000 units), High (3000 

units) 
Demand- Trend 2 Low  (20), High (100) 

Demand-Seasonality 2 Low +/- 0.1, High  +/- 0.3 
Demand- Magnitude of Error 2 Low (Std = 50), High (Std= 200) 

Flex-Limits 2 1% Incremental, 5% Incremental 
Objective Weights 5 0.9&  0.1, 0.7& 0.3, 0.5& 0.5,  

0.3& 0.7, 0.2& 0.8 
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4.5.2 Computational Analysis 

Comparisons between the single objective FRP, the stand alone bi-objective, and 

the bi-objective with FRP approaches are made within the context of planning costs and 

stabilities. In the full factorial design, there are a total of 800 experimental 

( )2 2 2 2 2 5 5× × × × × ×  scenarios available that represent the six experimental factors with 

multiple levels. The first 12 periods in the horizon is used as a warming period, and the 

next 12 periods’ results are analyzed.  The resulting mathematical formulation is modelled 

in the AMPL programming language and solved by using CPLEX 12.0 solver.  

Figure 4.1 displays the results of total cost for varying objective weights and flex-

limits under these 16 demand scenarios. When flex-limits are set to 1% incremental and 

cost weight is high with w = 0.9, we observe that both single cost minimization and bi-

objective model with FRP show similar cost results. The bi-objective formulation without 

FRP produces lower costs since there are no FRP bounds to maintain a certain degree of 

stability. The cost difference is higher in the scenarios 7-8 and 15-16, where demand has 

large trend and excessive seasonality. As more emphasis put on the stability (i.e., low w), 

it is observed that the cost gap between bi-objective approaches with and without FRP 

constraints is reduced. When the stability weight is 0.9 (i.e., w = 0.1), both bi-objective 

approaches produce identical results, whereas the single-objective cost minimization with 

FRP constraints displays the lowest cost among three approaches. However, although the 

single-objective model yields the lowest cost, the difference with other two approaches is 

relatively small. When flex-limits are wider (i.e., 5% incremental), the cost are significantly 

lower in the former case where the main emphasis is on cost (i.e., w = 0.9). The difference 

between bi-objective approaches (with and without FRP) is also significantly reduced 
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compared to the 1% incremental. In the latter case (i.e., w = 0.9), the cost results of the bi-

objective models are similar to what we observed in 1% incremental flex-limits, and the 

single objective approach distinctively becomes the cheapest approach. 

 

 
Figure 4.1: Cost comparison graphs (FL 1% incremental vs. FL 5% incremental). 
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Figure 4.1 (Cont’d): Cost comparison graphs (FL 1% incremental vs. FL 5% 
incremental). 

Production plan stability is significantly impacted as we move closer to higher state 

of stability. Figure 4.2 displays that the FRP embedded models produce high degrees of 

stability (i.e., low degrees of variability) when the emphasis on cost is high (i.e., w = 0.9).  
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Figure 4.2: Planning variability comparison graphs (FL 1% incremental vs. FL 5% 
incremental). 
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Figure 4.2 (Cont’d): Planning variability comparison graphs (FL 1% incremental vs. FL 

5% incremental). 
 

  When 1% incremental flex-limits are implemented, we observe that while the bi-

objective approach without FRP produces lower cost (see Figure 4.1), it is unable to keep 

a high degree of stability. The variability difference between the formulations with FRP 

and without FRP constraints is considerably lower in the scenarios where seasonality and 

trend are low (Scenarios 1-2 and 9-10), which indicates that FRP may be an effective tool 

when the variance in demand is higher. When stability weight is higher, both bi-objective 

approaches return better stability results, although the FRP-embedded model shows 

slightly better stability. Stability weight at 0.9 (i.e., w = 0.1) gives zero variability for both 

bi-objective approaches, which indicates that the FRP has no impact at that point of the 

Pareto set. A noticeable observation we made is that the bi-objective models with 5% 

incremental flex-limits result and cost weight at 0.9 return almost identical results, which 

means that the bounds enforced do not restrict the production levels. Nevertheless, the 

stability of these approaches is slightly higher than the single-objective approach due to 

the presence of a stability weight.  The overall results show that, while the tighter flex-

limits improve the stability, they also increase the total cost. This clearly demonstrates the 
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trade-off between two conflicting objectives as well as underlines the importance of the 

magnitude of the flex-limits. Figure 4.3 shows a sample Pareto optimal frontier found under 

these conflicting objectives. The red line depicts the Pareto optimal set, which contains all 

potentially optimal solutions. The next step in our analysis is to test hypotheses regarding 

the impact of experimental design factors on the cost and stability measures. 

 

Figure 4.3: Sample Pareto frontier. 

4.6 Research Hypotheses 

We proposed and tested the following hypotheses in this study: 

H1: Demand factors will influence the cost and plan stability levels. 

H2: The magnitude of flex-limits will have a significant impact on the amount of plan 

variability.  
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H3: Varying objective weights will have significant influence on the cost and plan stability 

levels.  

The hypotheses presented here are the alternative hypotheses. The first hypothesis 

investigates the impact of demand parameters on our proposed FRP-embedded bi-objective 

optimization model and determines their relative importance in terms of the impact they 

caused in cost and stability levels. The second hypothesis is concerned with the amount of 

flexibility permitted in production plans and it investigates whether the magnitude of the 

flex-limits influences the plan variability. Hypothesis 3 is concerned with the importance 

of objective weights and their impact on cost and stability performances. While the changes 

in response variables is directly related with the weights of each objective, the magnitude 

of the impact caused by changing these weights may give us a better interpretation of the 

trade-off between the objectives.  

4.6.1 Results 

We applied analysis of variance (ANOVA) procedure to test our hypotheses and to 

identify which factors have significant influence on the response variables. The values of 

the dependent variables are computed for each combination of independent variables. The 

data is analyzed using the General Linear Model (GLM) of Minitab software. Our main 

interest lies in the effect of the magnitude of flex-limits and the value of the assigned 

weights for teach objective. For that purpose, these factors were further grouped by using 

Tukey's procedure. The residual analysis from Minitab suggested that the plan variability 

data violates the assumption of normality and constant variance; hence, we applied a square 

root transformation. The analysis of the plan stability results was also restricted to the cases 

where plan variability is greater than zero. 
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Tables 4.3 and 4.4 provide the ANOVA results obtained using Minitab for cost plan 

stability, respectively. The results presented include the degree of freedom (DF), the sum 

of squares (SS), the adjusted mean square (MS), an F-ratio, and the significance level of 

the p-value. As can be seen, for both dependent variables, all main factors have p-values 

lower than 0.05 at 95% confidence level. Thus, all three null hypotheses can be rejected 

and it can be concluded that all experimental factors are statistically significant. Majority 

of the 2nd and 3rd degree interaction effects are also statistically significant impact for both 

cost and plan stability. However, some interaction factors showed no consensus. For 

example, interaction factors such as Baseline*Trend and Baseline*Error are found to have 

significant impact (p-value of 0.000) on plan variability but they have no impact on cost. 

Other higher degree interactions that are not listed have p-values significantly greater than 

0.05 and thus concluded to be non-significant.   
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Table 4.3: Selected ANOVA results for cost. 
Factors DF Seq SS Adj SS Adj MS F P 

Baseline 1 9.99E+1
2 

9.99E+1
2 9.99E+12 27086.2

2 0.000 

Trend 1 6.57E+1
3 

6.57E+1
3 6.57E+13 178057.

4 0.000 

Seasonality 1 2.98E+1
2 

2.98E+1
2 2.98E+12 8072.74 0.000 

Error 1 3.13E+1
0 

3.13E+1
0 3.13E+10 84.82 0.000 

Flex-Limits 1 6.70E+1
1 

6.70E+1
1 6.70E+11 1816.25 0.000 

Objective Weights 4 5.14E+1
1 

5.14E+1
1 1.28E+11 348.24 0.000 

Baseline*Seasonality 1 1.31E+1
1 

1.31E+1
1 1.31E+11 355.7 0.000 

Baseline*Flex-Limits 1 2.03E+1
0 

2.03E+1
0 2.03E+10 55.08 0.000 

Baseline*Objective Weights 4 1.49E+1
0 

1.49E+1
0 3.72E+09 10.08 0.000 

Trend*Seasonality 1 5.21E+1
1 

5.21E+1
1 5.21E+11 1413.54 0.000 

Trend*Error 1 1.57E+0
9 

1.57E+0
9 1.57E+09 4.26 0.039 

Trend*Flex-Limits 1 9.09E+1
0 

9.09E+1
0 9.09E+10 246.48 0.000 

Trend*Objective Weights 4 7.95E+1
0 

7.95E+1
0 1.99E+10 53.92 0.000 

Seasonality*Error 1 2.14E+0
9 

2.14E+0
9 2.14E+09 5.81 0.016 

Seasonality*Flex-Limits 1 1.25E+1
1 

1.25E+1
1 1.25E+11 338.65 0.000 

Seasonality*Objective Weights 4 2E+10 2E+10 5.01E+09 13.58 0.000 

Error*Flex-Limits 1 2.47E+0
9 

2.47E+0
9 2.47E+09 6.7 0.01 

Flex-Limits*Objective Weights 4 1.27E+1
1 

1.27E+1
1 3.18E+10 86.29 0.000 

Baseline*Seasonality*Flex-Limits 1 4.79E+0
9 

4.79E+0
9 4.79E+09 13 0.000 

Trend*Seasonality*Flex-Limits 1 2.84E+1
0 

2.84E+1
0 2.84E+10 77.08 0.000 

Trend*Seasonality*Objective 
Weights 4 4.27E+0

9 
4.27E+0

9 1.07E+09 2.89 0.022 

Trend*Flex-Limits*Objective 
Weights 4 1.66E+1

0 
1.66E+1

0 4.16E+09 11.28 0.000 

Seasonality*Flex-Limits*Objective 
Weights 4 2.92E+1

0 
2.92E+1

0 7.29E+09 19.77 0.000 

Trend*Seasonality*Flex-
Limits*Objective Weights 4 6.33E+0

9 
6.33E+0

9 1.58E+09 4.29 0.002 

Error 640 2.36E+1
1 

2.36E+1
1 3.69E+08   

Total 799 8.13E+1
3     
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Table 4.4: Selected ANOVA results for plan variability. 
Factors DF Seq SS Adj SS Adj 

MS F P 

Baseline 1 321.1 321.1 321.1 830.89 0.000 
Trend 1 2115.08 2115.08 2115.08 5473.02 0.000 

Seasonality 1 816.92 816.92 816.92 2113.88 0.000 
Error 1 30.58 30.58 30.58 79.12 0.000 

Flex-Limits 1 2325.5 2325.5 2325.5 6017.5 0.000 
Objective Weights 4 11785.05 11785.05 2946.26 7623.81 0.000 

Baseline*Trend 1 11.16 11.16 11.16 28.87 0.000 
Baseline*Seasonality 1 12.22 12.22 12.22 31.62 0.000 

Baseline*Error 1 2.45 2.45 2.45 6.33 0.012 
Baseline*Flex-Limits 1 13.84 13.84 13.84 35.82 0.000 

Baseline*Objective Weights 4 71.74 71.74 17.93 46.41 0.000 
Trend*Seasonality 1 106.56 106.56 106.56 275.74 0.000 

Trend*Error 1 13.4 13.4 13.4 34.67 0.000 
Trend*Flex-Limits 1 54.2 54.2 54.2 140.24 0.000 

Trend*Objective Weights 4 443.78 443.78 110.95 287.08 0.000 
Seasonality*Error 1 16.86 16.86 16.86 43.63 0.000 

Seasonality*Flex-Limits 1 846.95 846.95 846.95 2191.58 0.000 
Seasonality*Objective Weights 4 341.25 341.25 85.31 220.76 0.000 

Error*Flex-Limits 1 3.56 3.56 3.56 9.2 0.003 
Error*Objective Weights 4 6.91 6.91 1.73 4.47 0.001 

Flex-Limits*Objective Weights 4 216.03 216.03 54.01 139.75 0.000 
Baseline*Trend*Seasonality 1 2.23 2.23 2.23 5.78 0.016 

Baseline*Seasonality*Flex-Limits 1 20.04 20.04 20.04 51.86 0.000 
Baseline*Seasonality*Objective 

Weights 4 8.93 8.93 2.23 5.78 0.000 

Trend*Seasonality*Error 1 4.15 4.15 4.15 10.73 0.001 
Trend*Seasonality*Flex-Limits 1 103.62 103.62 103.62 268.13 0.000 
Trend*Seasonality*Objective 

Weights 4 54.26 54.26 13.56 35.1 0.000 

Trend*Error*Flex-Limits 1 2.25 2.25 2.25 5.82 0.016 
Trend*Error*Objective Weights 4 12.32 12.32 3.08 7.97 0.000 

Trend*Flex-Limits*Objective 
Weights 4 9.69 9.69 2.42 6.27 0.000 

Seasonality*Error*Flex-Limits 1 14.66 14.66 14.66 37.93 0.000 
Seasonality*Error*Objective 

Weights 4 12.82 12.82 3.21 8.3 0.000 

Seasonality*Flex-Limits*Objective 
Weights 4 122.21 122.21 30.55 79.06 0.000 

Error 710 274.38 274.38 0.39   
Total 799 20207.06     
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Tukey’s test has indicated that objective weights are 0.2&0.8 and 0.3&0.7 are 

significantly different than the other weight combinations when cost is considered. For plan 

variability, 0.9&0.1 and 0.7&0.3 are the only combinations that are grouped together. The 

rest of the means are significantly different than each other. For each response variable, 

1% incremental and 5% incremental flex-limits are also found to be significantly different 

(Table 4.5). 

Table 4.5: Pairwise comparisons using Tukey’s method (95.0% confidence level). 
COST 

Objective 
Weights N Mean Grouping  Flex-

Limits N Mean Grouping 

0.2&0.8 160 708814 A  1% 400 693239 A 
0.3&0.7 160 676508 B  5% 400 635373 B 
0.5&0.5 160 647737 C      
0.9&0.1 160 644290 C      
0.7&0.3 160 644180 C      

 

PLAN VARIABILITY 

Objective 
Weights N Mean Grouping  Flex-

Limits N Mean Grouping 

0.9&0.1 160 11.116 A  5% 400 9.352 A 
0.7&0.3 160 10.9 A  1% 400 5.942 B 
0.5&0.5 160 9.684 B      
0.3&0.7 160 5.334 C      
0.2&0.8 160 1.202 D      

* Means that do not share a letter are significantly different. 

 
Figures 4.4 and 4.5 present the main effects of the independent variables for each 

response variable. The line between the experimental levels reflects the statistical 

significance of the factors; when the line is less horizontal, different levels of the factor 

affect the response variable differently. In this case, cost response is impacted by baseline, 

trend and seasonality the most significantly. On the other hand, trend, flex-limits and 
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objective weights are the most influential factors for plan variability. Error is the least 

influential effect in both categories. The impact of the flex-limits is also larger for plan 

variability.  
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Figure 4.4: Main effects plot for cost. 
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Figure 4.5: Main effects plot for plan variability. 

4.7 Summary and Conclusions  

Supply chain systems are required to be responsive to market needs while 

maintaining high degrees of cost efficiency and customer service. However, the increase 

in production variability due to increased responsiveness is costly and it is difficult to 

determine how much emphasis should be placed on production plan stability against cost. 

In this paper, we focus on this trade-off and present a mixed-integer linear programming 

(MILP) model with compromise programming (CP) approach to solve a rolling horizon 

aggregate production planning (APP) problem. The conflicting objectives that are 

considered: (1) minimization of total realized cost on the planning horizon, (2) 

minimization of production variability. The developed bi-objective MILP formulation in 

conjunction with flexibility requirements profile (FRP) analyzes the trade-off between two 

conflicting objectives namely, cost and plan variability.  
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Frozen horizon and other solution approaches attempt to provide insights on how 

to mitigate nervousness but most of the existing studies do not consider the flexibility 

aspect in production planning research. Instead of 0% flexibility in the case of a frozen 

period or 100% flexibility in the case of plan to order, the proposed model allows the trade-

off of different levels of flexibility between conflicting planning objectives. The overall 

results show that the proposed FRP-based bi-objective aggregate planning is an effective 

way to analyze the trade-off between cost and stability objectives simultaneously and 

reduce the nervousness in organization by taking the plan stability into consideration. The 

comparisons among three approaches; the single objective FRP, the stand alone bi-

objective, and the bi-objective with FRP have also revealed that enforcement of FRP 

constraints has further positive impacts on plan stability. The ANOVA results further 

reveal that all system parameters and operating factors have significant effects on both cost 

and plan stability. Most of the interactions among these demand and planning parameters 

are also significant. However, the impacts of these parameters and their interactions on the 

response variables are varying. Trend, seasonality, flex-limits, and objective weights have 

the most impact on production plan stability, whereas the most influential parameters for 

total cost are found to be baseline, trend and seasonality. 

The proposed bi-objective formulation considers a wide range of solutions as 

objectives are traded-off against each other, and provides a great deal of flexibility to the 

decision makers. While the trade-off between these objectives is clearly significant, it 

should be noted that from the mathematical point of view every solution in the Pareto 

optimal set is equally acceptable, and the decision makers should be able to pick a point 
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between different solutions using their insights, priorities and subjective judgments. Our 

method allows the decision maker to select from a set of mathematically feasible solutions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

CHAPTER 5: EFFECT OF PRODUCTION PLAN STABILITY ON LEAN 
SYSTEM OPERATIONS 

 
 
5.1 Introduction 

Chapter 5 will discuss stability in planning from the lean thinking perspective and 

investigate its role in eliminating non-value added activities such as overproduction, 

unnecessary inventory and over/under-utilization of resources through the utilization of 

FRP. FRP successfully integrates external market constraint and internal capacity 

constraint into the planning process; not only to establish stability in planning but also to 

identify the constraint that is expected to be the bottleneck in the future.  In this chapter, 

we will demonstrate how stability in planning may help lean manufacturing and eliminate 

waste to establish leaner systems. We will specifically investigate how stability can 

contribute to leanness of a manufacturing operation and assess its sensitivity under 

different manufacturing conditions and environments.  

5.2 Lean Production Principles 

Lean methodology, pioneered by Toyota Motor Corporation, embraces the 

philosophy of eliminating all non-value added items and activities in the production 

operations as well as utilizing the employees’ capabilities to its fullest extent (Monden 

1998). The production system of Toyota led the development of key critical concepts in 

lean production such as Value Stream Mapping, 5S, and Kanban- pull systems, which are 

designed to increase the efficiency of systems and eliminate the muda (waste).  
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Leanness in production can be defined as creating production processes that deliver 

high quality products while using fewer resources and less time. In lean philosophy, any 

activity in a process, which does not add value to the customer, is called waste, which is 

classified into 8 categories (Table 5 .1) (Rother and Shook, 1999).  

Table 5.1: Eight Types of Waste: DOWNTIME (Rother and Shook, 1999). 
Types of Waste Definition 

Defects Products or materials that contains errors or lacks the desired customer 
value 

Over-production Producing more than customer demand, a system employs push rather than 
pull 

Waiting Waiting or idle time caused by people, equipment or capacity related issues 

Non-utilized 
Resources/Talent Not, or under, utilization of resources/labor 

Transportation Unnecessary movement of product, materials or information  

Inventory Excess products/ materials on hand that are not needed by the customers or 
employees  

Motion Unnecessary movement of labor 

Excess Processing Extra work and effort that are not valued by the customer 

 
Lean thinking allows companies to build a value chain where the delivery of 

products to your customers follows a link in a chain while those 8 waste categories are 

being eliminated. This philosophy eventually created the five principles of lean thinking 

(Womack and Jones, 1996).  One of these five main principles is to produce according to 

customer demand (Lean Enterprise Institute). According to this view, customer demand 

is the main driver in a production system and production should occur when there is 

demand from a downstream process.  Customer-driven (pull) systems are highly preferred 

due to higher turnarounds in production levels and reductions in inventory levels. 

However, in reality most production planning systems operate under uncertainty. 

Customer demand may not be easily predictable as well as may possess high degrees 

of variability. Lean touches upon the plan stability issue mainly through the practice of 

 
 



90 
 

Heijunka, which  intends to absorb fluctuations in customer demand by producing small 

batches of different types of products instead of large ones (Rother and Shook, 1999). 

Although lean philosophy utilizes stability through leveling techniques such as Heijunka, 

the studies concerning the relationship between stability in planning and lean systems could 

use further investigation. In this chapter, we focus on a sample set of the wastes listed in 

Table 5.1, namely inventory, overproduction, and non-utilized resources/talent and present 

how FRP-based production planning models can effectively eliminate them and contribute 

to the value chain. We utilize the mathematical optimization models presented in Chapter 

3 in order analyze their performance in terms of leanness through a numerical study.  

5.3 Numerical Study 

In order to reduce plan variability, traditional aggregate planning systems apply a 

frozen horizon. A frozen horizon does not allow any changes within the frozen period 

whereas changes outside the frozen horizon are 100% flexible. Note that a slow reaction 

(lead) time creates high variations in the inventory, which in turn results in stock-outs and 

overstocks [6]. A main goal of FRP is to provide flexibility to respond quickly to true 

changes in the demand level, while preventing excessive changes in production plans.  
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Figure 5.1: Illustrations of flex-limits and frozen horizon in the planning horizon. 

Table 5.2: Demand cases. 

Factors Low Variance High Variance 
Baseline 1000 units  2000 units  

Trend 50  100 
Seasonality +/- 0.1 +/- 0.3 

Magnitude of Error 50 150 
 

We provide an illustrative example that compares aggregate production planning 

utilizing FRP to a traditional frozen period approach under two demand cases. Considering 

customer demands that vary over time with a high degree of variability, we assume that the 

demand series are represented by a multiplicative seasonal model. Two demand scenarios, 

which are classified as low and high variance, are generated using the equation in 3.10. In 

this study we consider four measures in accordance with lean waste considerations; average 

production levels, average inventory levels, average over/under production levels, and 

capacity utilization. Figures 5.2 and 5.3 show the average demand, production, inventory, 

over/under production levels over the 24 period time frame for two approaches; APP with 

frozen horizon and FRP-based APP with 5% Incremental flex-limits. We observe that, for 
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both demand cases, planning with flex-limits displays a better performance than the frozen 

horizon in all three measures. When the demand variance is low (Figure 5.2), the inventory 

and over production levels of the FRP approach are 10 and 24 units on average, 

respectively, whereas the frozen horizon approach yield 254 and 283, respectively. When 

the demand variance is high (Figure 5.3), the frozen horizon shows considerably worse 

performances displaying  high degrees of inventory accumulation, 3679 units on average, 

between periods 14 and 20. On the other hand, FRP carries relatively lower inventory, 983 

units on average, during the same period. The difference of overall inventories between 

frozen horizon and FRP are also significant as the averages inventories over the 24 periods 

are 1410 and 494 units, respectively.  

 

Figure 5.2: Comparison of performance measures for the low demand variance scenario. 
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Figure 5.3: Comparison of performance measures for the high demand variance scenario. 

Figure 5.4 displays the standard deviations of the performance measures for low 

and high demand variance scenarios, respectively. FRP approach produces considerably 

lower variation in comparison to frozen horizon, thus, makes us conclude that the 

production and inventory plans using FRP are much smoother than those made by the 

frozen period approach. The difference between two approaches is even more significant 

when the demand possesses higher variability. The capacity is well utilized for both 

approaches, but flex-limits return slightly better results by having 360 units of unused 

production capacity, whereas frozen horizon had 376 units of unused capacity in total 

(Figure 5.5). 
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Figure 5.4: Standard deviations of leanness measures under low demand variance vs. high 
demand variance. 

 

Figure 5.5: Comparison of flex-limits vs. frozen horizon in total unused capacity. 
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5.4 Managerial Insights 

Nervousness has often been recognized as a major problem in the production 

environment, but many firms do not have not clear understanding of its effects on a greater 

scale. It is believed that a robust production plans that emphasizes stability will enhance 

not only organizations’ performance but also the overall supply chain’s performance due 

to a tighter collaboration (Van Landeghem and Vanmaele, 2002). As early support systems 

such as manufacturing resource planning (MRP) had evolved into more advanced systems 

such as enterprise resource planning (ERP), the importance of planning and the efficient 

utilization of internal resources became more important than ever before, which makes 

supply chain efficiency is vitally important for manufacturing firms (Olhager and Selldin, 

2004). In order to create leaner supply chains, the efforts to reduce nervousness should be 

extended beyond the internal organization and involve other players such as suppliers and 

customers. All of these players should work jointly against uncertainties that restrict 

operational performance. This enhanced collaboration and reduction in plan variability 

should also eliminate the bullwhip effect.  

5.5 Summary and Conclusions 

Many companies pursue the lean thinking to improve the efficiency of their 

processes.  The main objective of lean production is to eliminate non-value added items in 

a production process by minimizing variability related to demand, supply, lead times and 

processing times. In this chapter, we investigate the effect of production plan stability on 

lean systems. In specific, we compare the performance of FRP-embedded models in 

eliminating inventory and over/underproduction related wastes to those of a traditional 

aggregate planning model with frozen horizon under two separate demand scenarios. The 
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FRP-based aggregate planning and the enforced flex-limits have given favorable results in 

reducing average inventory and over/underproduction levels while providing smoothing 

effect on production levels. The results have validated that incorporating FRP as a part of 

the process planning would increase stability as well as contribute to leanness of a 

manufacturing operation. As a future research direction, different industry settings would 

be helpful to understand the sensitivity of the effect of plan stability. The components of 

the demand generation model can be altered to generate various demand patterns and extent 

of uncertainties to assess the relationship between the stability and lean systems. We also 

believe that the production system considered here and the corresponding mathematical 

formulations can be expanded to consider other lean waste items. Chapter 6 summarizes 

our findings in this dissertation and discusses related future research directions.   

 

 

 

 

 

 

 

 

 

 

 
 



 

CHAPTER 6: CONCLUSIONS AND FUTURE DIRECTIONS 
 
 
6.1 Conclusions 

Managing supply chain operations has become increasingly difficult due to highly 

volatile and fiercely competitive markets. Customer needs are diverse, which cause shorter 

product life cycles and demands that are difficult to predict. Many companies have 

embodied new strategies that exploit flexibility and responsiveness to stay competitive in 

the marketplace. Although Make to order (build to order) strategy provides the necessary 

flexibility to accommodate the market demand it is not economically feasible especially in 

highly varied product portfolios or products that have short lifecycles.  

In this dissertation, we discuss the application of flexibility requirements profile 

(FRP) in aggregate production planning problems. While FRP concept has been 

emphasized in the literature, mathematical optimization models for FRP-based production 

planning did not exist. As opposed to existing literature, which has shown limited interest 

at minimizing variability in production plans due to its high cost requirements, our findings 

have shown that establishing plan stability will not necessarily jeopardize the economic 

interests of manufacturing companies and can be a valuable tool against changing demand 

and market conditions.  

The results indicate that FRP-embedded mathematical optimization models may 

help the organizations to establish a certain degree of stability in their production plans 

without necessarily sacrificing the economic interests.



98 
 

 

Flexibility bounds increase the responsiveness to demand fluctuations, provide 

manufacturers and suppliers a better visibility in forecasting, and have a smoothing effect 

on production and inventory levels. Next, we extend the proposed optimization models to 

consider multiple conflicting criteria and to analyze the tradeoff between cost and plan 

stability under the presence of FRP. Specifically, we develop a bi-objective mixed-integer 

linear programming model using a compromise programming approach. Numerical 

experimentations reveal the trade-off between conflicting objectives and give the optimal 

cost and variability levels under changing weights. Our research also includes the ANOVA 

test of a selected set of planning parameters that would provide assistance to the decision 

maker in identifying parameters that are significantly impacting the production system and 

developing robust planning procedures and policies. Chapter 5 examines how planning 

stability can facilitate lean systems. Specifically, we provide insight about the relationship 

between stability in planning and the leanness of operations, and present a numerical study 

to assess the efficacy of FRP against the uncertainties in demand combined with rolling 

horizon planning. 

6.2 Future Directions 

The findings suggest several opportunities for further research. The proposed 

approach is generic in nature and can be considered for many types of APP problems. 

Especially industries with shorter product lifecycles and lead times and for those exposed 

to heavy demand fluctuations would thoroughly benefit from the application of flexibility 

bounds. In addition, the analysis and results should not only provide directions on better 

production planning policies and strategies but also can be extended to other planning 
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problems such as distribution and transportation planning and to planning problems in 

service industries. As an extension of the analyses presented in Chapter 4, different multi-

objective optimization approaches can be utilized to solve these APP problems and the 

results can be compared to those of compromise programming. This dissertation uses 

multiplicative seasonal model as the underlying demand model but these demand series 

may not be suitable for certain industries, hence investigating different demand patterns 

and forecasting techniques and comparing the responsiveness of FRP under those models 

would be a fruitful discussion topic.  

The purpose of this research is to be applicable to a wide array of planning 

problems. Further research can investigate applications concerning periodical resource 

planning in the service industry. Plan stability can be incorporated as an additional 

objective to deal with fluctuations related to the uncertain service demand. For example, 

an application in healthcare can search for the optimal patient mix while considering 

flexibility in resource planning; instead of a 0% flexibility in the case of a frozen period or 

a 100% flexibility in the case of plan to order, the proposed model will enable the trade-

off of different grades of flexibility with the traditional objectives of cost and service levels.  

The flex-limits in this study were assumed to be increasing incrementally and have 

fixed magnitudes. However, in real-world production environments, the magnitude of flex 

limits may need to be altered depending on circumstances, and a study that utilizes flex-

limits of varying magnitudes could be a useful addition to the literature.  

As stated earlier, this research only accounts a single product and future efforts 

may concentrate on multiple products, especially on the cases, where demand correlation 

exist among them. A final possible research direction is to focus on models that could result 
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in non-linear and large-scale optimization problems and to develop the appropriate solution 

algorithms to these problems.  
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APPENDIX A: PSEUDO CODE FOR THE SIMULATION OF FRP-EMBEDDED APP 
 
 
1: Realize the current demand and demand forecasts. 

2: Compute the net production requirement via Equation 3.1 

3: while i N<  do 

4: if  [ ] [ ] [ ] [ ]1 1 0P i D i I i S i− + − − − ≥   then 

5: [ ] [ ] [ ] [ ] [ ]1 1I i P i D i I i S i= − + − − −   and  [ ] 0S i =  

6: else 

7: [ ] 0I i = and  [ ] ( )[ ] [ ] [ 1] [ 1]S i P i D i I i S i= − − + − − −  

 8: end if 

9: if [ ] [ ]Regular Production Capacity* 1W i P i− ≥     then 

10:  [ ]
[ ]( ) [ ]( )

( )
Regular Production Capacity* -1 /

 floor 
 Regular Production Capacity+ Overtime Production Capacity

W i P i
La i

 −
 =
 
 

   

 and [ ] 0H i =  

11: else 

12:  if 

( ) [ ]( ) [ ]Regular Production Capacity+ Overtime Production Capacity * 1W i P i− ≥  

then  

13: [ ] [ ]( )( )* [ 1] /R OO i P i m W i m= − − , Set [ ] 0H i = and [ ] 0La i =  

  14: else  
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15: 

[ ]
[ ] [ ]

( )

Regular Production Capacity+ Overtime 
* -1  

Production Capacity

/ Regular Production Capacity+ Overtime Production Capacity

P i W i
H i ceil

   
−   =    

 
 

 
and [ ] 0La i =  

  16: end if 

17: Set [ ] [ ] [ ] [ ]1W i W i H i La i= − + −  

18: end while 

19: while i N=  do 

20: [ ] [ ]( ){ }max ,min , ReP N q N= −∞ +∞   

21: Repeat steps 4-17. 

22: end while 

23: [ ] [ ] [ ] [ ] [ ]Set 0 and 0 0W input W I input I S= = −  

24: for 0i =  to 2N −  do  

25: [ ] [ ] [ ] [ ]( )( )max 1 ,  1 * 1LB i LB i P i F i= + + − and

[ ] [ ] [ ] [ ]( )( )min 1 ,  1 * 1UB i UB i P i F i= + + +  

26: end for 

27: Set [ ] [ ] [ ]( )1  * 1 1LB N P N F N− = − − and [ ] [ ] [ ]( )1  * 1 1UB N P N F N− = + −    

28: Return performance measures. 
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APPENDIX B: AMPL .MOD AND .RUN FILES 
 
 
### MODEL FILE ### 

# Parameters # 

param cw; # the labor cost of a regular worker at regular time ($/ man-hour) 

param co; # overtime production cost per hour 

param ch; # hiring cost per worker 

param cl; # layoff cost per worker 

param cp; # material cost per unit product 

param h; #  unit inventory holding cost 

param mr; # number of units produced by a regular employee per hour 

param N ; # time period for which planning funnel is maintained ( )N T≤  

param s; # target safety stock 

param sc; # shortage cost  

param th; # total weekly working hours for each worker  
param F {i in 0..N} >=0, <=1; # i-step ahead flex limit  

param D {i in 0..N} ; # demand at time t ( )0,1,2,...i N=  

param Winput >=0 integer; 

param Iinput >=0 integer; 

param LowB {i in 0..N-1} >=0;  # i-step ahead lower bound on planned production at 
time t ( )0,1,2,... 1i N= −  

param UpB {i in 0..N-1} >=0;  # i-step ahead upper bound on planned production at time 
t ( )0,1,2,... 1i N= −  

param ph; # length of planning horizon 

param ei; # demanded ending inventory 

param hd; #end of historical (training) data 

# Variables # 

var W {i in 0..N}  >=0 integer  ; # i-step ahead workforce size at time t ( )0,1,2,...i N=  

var H {i in 0..N}  >=0 integer  ;  # i-step ahead number of employees hired at time t 
( )0,1,2,...i N=   
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var La {i in 0..N} >=0 integer ;  # i-step ahead number of employees laid off at time t 
( )0,1,2,...i N=  

var I {i in 0..N} >=0 ;    # i-step ahead inventory level at time t ( )0,1,2,...i N=  

var P {i in 0..N} >=0 ;    # i-step ahead production level at time t ( )0,1,2,...i N=  

var O {i in 0..N} >=0;     # i-step ahead overtime hours at time t ( )0,1,2,...i N=  

var S {i in 0..N} >=0 ;  # i-step ahead shortage units at time t ( )0,1,2,...i N=  

# Objective Function # 
minimize Cost: sum{i in 0..N} (cw*th*W[i] + ch*H[i] + cl*La[i] + h*I[i] + cp* P[i]+ 
co*O[i]+ sc*S[i]); 

# Constraints # 
subject to workforceinitial: W[0]=Winput+H[0]-La[0]; 
 
subject to workforce  {i in 1..N}: W[i]= W[i-1]+H[i]-La[i];  
 
subject to inventoryinitial: P[0]=  D[0]+I[0]-Iinput-S[0];  
 
subject to productioninitial: P[0] <= mr*th*W[0] + mr* O[0];  
 
subject to inventory {i in 1..N} : P[i]= D[i]+ I[i]-S[i]-I[i-1]+ S[i-1];  
 
subject to capacity  {i in 1..N}: P[i] <= mr*th*W[i] + mr* O[i];  
 
subject to ProductionBounds1 {i in 0..N-1}: LowB[i] <= P[i];  
 
subject to ProductionBounds2 {i in 0..N-1}: P[i] <= UpB[i];  
 
subject to overtimehours {i in 0..N}: O[i]<=W[i]*th*0.1; 
 
subject to endinginventory: I[N]= ei; 
 
subject to noshortage: S[N]= 0; 
 
### MODEL FILE ### 
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### RUN FILE ### 

reset; 

option solver cplexamp; # calling cplex solver 

# LOAD DEMAND AND FORECAST GENERATION FILES # 

model demand.mod; 

data demand.dat; 

# LOAD MODEL AND DATA FILES # 

model modelfile.mod;  

data datafile.dat; 

# START EXPERIMENTING WITH DIFFERENT DEMAND SCENARIOS # 

for {n in 1..L, j in 1..L, k in 1..L, e in 1..L, r in 1..R}  

{ 

let Winput:=round(demand[hd,n,j,k,e,r]/(mr*th));    #set initial workforce 

let Iinput:=100;     # set initial inventory 

for {i in 0..N-1} 

{ 

let LowB[i]:= fore[1,1+i,n,j,k,e,r]*(1-F[i]) ;   #set initial lower bound 

let UpB[i]:= fore[1,1+i,n,j,k,e,r]*(1+F[i]) ;    #set initial upper bound 

} 

# LOAD PLANNING HORIZON # 

for {t in 1..T}  

{ 

let D[0]:=demand[hd+t,n,j,k,e,r];     #assign the realized demand value  

for {i in 1..N}  

{ 

let D[i]:=fore[t,i,n,j,k,e,r];    # assign forecast values for the next N 
period 

} 

solve; 
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# SAVE THE CURRENT (REALIZED COSTS) # 

let obj_function[t]:=Cost; 

let currentcost[t]:= (cw*th*W[0] + co*O[0]+ ch*H[0] + cl*La[0] + h*I[0] + cp* 
P[0]+ sc*S[0]); 

let productioncost[t]:=cp*P[0];              

let workforcecost[t]:= cw*th*W[0]; 

let hiringcost[t]:= ch*H[0]; 

let layoffcost[t]:= cl*La[0]; 

let inventorycost[t]:= h*I[0]; 

let shortagecost[t]:= sc*S[0]; 

let overtimecost[t]:=co*O[0]; 

if (t==1) then 

{let delta := 0;} 

else 

{let delta := delta + sum{i in 1..N}(abs(pprev[i]-P[i-1]));} 

for {i in 1..N} 

{ 

let pprev[i]:=P[i]; 

} 

let Winput:= W[0]; #feeding input to next loop 

let Iinput:= I[0]-S[0]; #feeding input to next loop 

# UPDATING BOUNDS # 

for {i in 0..N-2}  

{ 

let LowB[i]:= max (LowB[i+1], P[i+1]*(1-F[i])) ; 

let UpB[i]:= min (UpB[i+1], P[i+1]*(1+F[i])) ; 

} 

let LowB[N-1]:= P[N]*(1-F[N-1]); 

let UpB[N-1]:= P[N]*(1+F[N-1]); 

} 

 
 



114 
 

# RESET COST OUTPUT #  

let finalcost[n,j,k,e,r]:= 0; 

let finalproductioncost[n,j,k,e,r]:=0;              

let finalworkforcecost[n,j,k,e,r]:=0; 

let finalhiringcost[n,j,k,e,r]:=0; 

let finallayoffcost[n,j,k,e,r]:=0; 

let finalinventorycost[n,j,k,e,r]:=0; 

let finalshortagecost[n,j,k,e,r]:=0; 

let finalovertimecost[n,j,k,e,r]:=0; 

# FINALIZE COST OUTPUT #  

for {t in 1..T} 

{ 

let finalcost[n,j,k,e,r]:=finalcost[n,j,k,e,r] + currentcost[t]; 

let finalproductioncost[n,j,k,e,r]:= 
finalproductioncost[n,j,k,e,r]+productioncost[t]; 

let finalworkforcecost[n,j,k,e,r]:= finalworkforcecost[n,j,k,e,r]+workforcecost[t]; 

let finalhiringcost[n,j,k,e,r]:= finalhiringcost[n,j,k,e,r]+ hiringcost[t]; 

let finallayoffcost[n,j,k,e,r]:= finallayoffcost[n,j,k,e,r]+layoffcost[t]; 

let finalinventorycost[n,j,k,e,r]:= finalinventorycost[n,j,k,e,r]+inventorycost[t]; 

let finalshortagecost[n,j,k,e,r]:= finalshortagecost[n,j,k,e,r]+shortagecost[t]; 

let finalovertimecost[n,j,k,e,r]:= finalovertimecost[n,j,k,e,r]+overtimecost[t]; 

} 

#COMPUTING FINAL AVERAGE PRODUCTION STABILITY # 

let finaldelta [n,j,k,e,r]:= delta/T*N; 

} 

### END OF RUN FILE ### 
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### BI-OBJECTIVE MODEL FILE ### 

# Objective Functions # 
minimize CostObj: sum{i in 0..N} (cw*th*W[i] + ch*H[i] + cl*La[i] + h*I[i] + cp* P[i]+ 
co*O[i]+ sc*S[i]); 

minimize StabObj: sum{i in 0..N} (cw*th*W[i] + ch*H[i] + cl*La[i] + h*I[i] + cp* P[i]+ 
co*O[i]+ sc*S[i])); 

minimize Objective1 {t in 1..1}: ((cweight* (sum{i in 0..N} (cw*th*W[i] + ch*H[i] + 
cl*La[i] + h*I[i] + cp* P[i]+ co*O[i]+ sc*S[i])-CB[t]))/(CW[t]-CB[t])); # Bi-objective 
function for the initial period where the plan stability component is omitted 

minimize Objective2: ((cweight* (sum{i in 0..N} (cw*th*W[i] + ch*H[i] + cl*La[i] + 
h*I[i] + cp* P[i]+ co*O[i]+ sc*S[i])-CostBest))/(CostWorst-CostBest))+  ((sweight*(sum 
{i in 1..N} (PA[i])-StabilityBest))/(StabilityWorst-StabilityBest)); # Bi-Objective 
function (excluding initial period) 

# Constraints # 
subject to workforceinitial: W[0]=Winput+H[0]-La[0]; 

subject to workforce  {i in 1..N}: W[i]= W[i-1]+H[i]-La[i]; 

subject to inventoryinitial: P[0]=  D[0]+I[0]-Iinput-S[0];  

subject to productioninitial: P[0] <= mr*th*W[0]+ mr*O[0];  

subject to inventory {i in 1..N} : P[i]= D[i]+ I[i]-S[i]-I[i-1]+ S[i-1];  

subject to capacity  {i in 1..N}: P[i] <= mr*th*W[i]+mr*O[i];  

subject to overtimehours {i in 0..N}: O[i]<=W[i]*th*0.1; 

subject to ProductionBounds1 {i in 0..N-1}: LowB[i] <= P[i];  

subject to ProductionBounds2 {i in 0..N-1}: P[i] <= UpB[i];  

subject to endinginventory: I[N]= 100; 

subject to noshortage: S[N]=0; 

subject to stabilityconstraint {i in 1..N}:pprev[i]=P[i-1]; # additional constraint for 
stability minimization 

subject to absolutevalue1 {i in 1..N}: PA[i]>= (pprev[i]-P[i-1]);  # Modeling absolute 
values  

subject to absolutevalue2 {i in 1..N}: PA[i]>=-(pprev[i]-P[i-1]); 

subject to WorstCostconstraint: sum{i in 0..N} (cw*th*W[i] + ch*H[i] + cl*La[i] + h*I[i] 
+ cp* P[i]+ co*O[i]+ sc*S[i]) <= CostWorst;  #For Bi-objective Formulation 

### END OF BI-OBJECTIVE MODEL FILE ### 
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### BI-OBJECTIVE RUN FILE ### 

option presolve 0; 

option cplex_options; 

model modelfileindustry.mod;  

data industry_data.dat; 

param EVSP; #evaluation time frame starting period 

param EVFP; #evaluation time frame ending period 

# FINAL TABLE DECLARATIONS # 

table output1 {w in 1..W} OUT "ODBC" "biobjectivetextile.xlsx" 
("Final_CostandDelta"&w): 

{n in 1..L,j in 1..L, k in 1..L, e in 1..L, r in 1..R}->[n~Baseline,j~Trend,k~Seasonality, 
e~Error,r~Replications],finalcost,finaldelta; 

table output2 {w in 1..W} OUT "ODBC" "biobjectivetextile.xlsx" ("Final_Costs"&w):  

{n in 1..L,j in 1..L, k in 1..L, e in 1..L, r in 1..R}->[n~Baseline,j~Trend,k~Seasonality, 
e~Error,r~Replications],finalproductioncost,finalworkforcecost, 
finalhiringcost,finallayoffcost, finalinventorycost, #finalshortagecost,finalovertimecost; 

table output3 {w in 1..W} OUT "ODBC" "biobjectivetextile.xlsx" 
("CostandDelta_perperiod"&w):  

{n in 1..L,j in 1..L, k in 1..L, e in 1..L, r in 1..R, t in EVSP..EVFP}-
>[n~Baseline,j~Trend,k~Seasonality, e~Error,r~Replications, 
t~TimePeriod],costperperiod,deltaperperiod; 

table output4 {w in 1..W} OUT "ODBC" "paretodiagrams.xlsx" ("Pareto"&w):  

{n in 1..L,j in 1..L, k in 1..L, e in 1..L, r in 1..R, t in EVSP..EVFP }-
>[n~Baseline,j~Trend,k~Seasonality, e~Error,r~Replications, t~TimePeriod],obj1,obj2; 

# PROBLEM DEFINITONS # 

problem CostMinimization: O,I,S,P,W,H,La,CostObj,workforceinitial, workforce, 
inventoryinitial, productioninitial, inventory, capacity, overtimehours, 
ProductionBounds1, ProductionBounds2, endinginventory, noshortage; 

problem StabilityMinimization : O,I,S,P,W,H,La,StabObj,workforceinitial, workforce, 
inventoryinitial, productioninitial, inventory, capacity, overtimehours, 
ProductionBounds1, ProductionBounds2, endinginventory, noshortage, 
stabilityconstraint; 
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problem BiObjective1: O,I,S,P,W,H,La,Objective1,workforceinitial, workforce, 
inventoryinitial, productioninitial, inventory, capacity, overtimehours, 
ProductionBounds1, ProductionBounds2, endinginventory, noshortage; 

problem BiObjective2: O,I,S,P,W,H,La,PA,Objective2,workforceinitial, workforce, 
inventoryinitial, productioninitial, inventory, capacity, overtimehours, 
ProductionBounds1, ProductionBounds2, endinginventory, 
noshortage,absolutevalue1,absolutevalue2, a1;  

# MAIN MODEL # 

for {w in 1..W} {  

 for {n in 1..L, j in 1..L, k in 1..L, e in 1..L, r in 1..R} { 

 let Winput:=round(demand[48,n,j,k,e,r]/(mr*th)); # set initial workforce 

 let Iinput:=100; #set initial inventory 

 for {i in 0..N-1} { 

 let LowB[i]:= round(fore[1,1+i,n,j,k,e,r]*(1-F[i])) ;   #set initial bounds 

 let UpB[i]:= round(fore[1,1+i,n,j,k,e,r]*(1+F[i])) ;}  

 #EVALUATION HORIZON #  

for {t in 1..24} { 

  let D[0]:=round(demand[48+t,n,j,k,e,r]); #set demand values 

  for {i in 1..8} { 

  let D[i]:=round(fore[t,i,n,j,k,e,r]);} # set forecast values 

  if (t==1) then { 

   for {i in 1..N} { 

    let pprev[i]:=0; 

} 

solve CostMinimization; 

let {i in 1..N} dPA[i]:=(abs(pprev[i]-P[i-1])); 

let delta:=0;  #Final Delta Initialization 

let CB[t]:= CostObj; 

let CW[t]:=CB[t]*1.5;    

# BI- OBJECTIVE PROBLEM 1 # 

let cweight:=1; 
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let sweight:=0; 

option cplex_options "absmipgap=0 mipgap=0 mipdisplay=2";   

solve BiObjective1; 

display BiObjective1.absmipgap; 

let currentcost[t]:= (cw*th*W[0] + co*O[0]+ ch*H[0] + cl*La[0] + 
h*I[0] + cp* P[0]+ sc*S[0]); 

let productioncost[t]:=cp*P[0];              

let workforcecost[t]:= cw*th*W[0]; 

let hiringcost[t]:= ch*H[0]; 

let layoffcost[t]:= cl*La[0]; 

let inventorycost[t]:= h*I[0]; 

let shortagecost[t]:= sc*S[0]; 

let overtimecost[t]:=co*O[0]; 

for {i in 1..N} 

{ 

let pprev[i]:=P[i]; 

} 

let Winput:= W[0]; #feeding input to next loop 

let Iinput:= I[0]-S[0]; #feeding input to next loop 

for {i in 0..N-2}  
  { 

   let LowB[i]:= max (LowB[i+1], P[i+1]*(1-F[i])) ; 

               let UpB[i]:= min (UpB[i+1], P[i+1]*(1+F[i])) ; 

} 

let LowB[N-1]:= P[N]*(1-F[N-1]); 

let UpB[N-1]:= P[N]*(1+F[N-1]); 

} 

     

if (t>=2) then { 

 option presolve 0; 
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 option cplex_options; 

 option cplex_options "absmipgap=0 mipgap=0 mipdisplay=2"; 

 solve CostMinimization;   # COST MINIMIZATION PROBLEM 

let {i in 1..N} dPA[i]:=(abs(pprev[i]-P[i-1])); #Compute plan 
variability 

 let CB[t]:=CostObj;   # Set the Best Cost 

let SW[t]:= sum{i in 1..N}(abs(pprev[i]-P[i-1]));  #Set the Worst 
Stability 

# VARIABILITY MINIMIZATION PROBLEM # 

display _varname, _var.astatus; 

display _conname, _con.astatus;  

option presolve 0; 

option cplex_options; 

solve StabilityMinimization;   

# BI- OBJECTIVE PROBLEM 2 # 

let cweight:=weight[w]; 

let sweight:=1-cweight; 

let CostBest:=CB[t]; 

let CostWorst:=CW[t]; 

let StabilityBest:=0; 

let StabilityWorst:=SW[t]; 

option presolve 0; 

if CostBest>=CostWorst then break; 

option cplex_options; 

solve BiObjective2; 

display BiObjective2.absmipgap; 
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# OUTPUT VARIABLES # 

let currentcost[t]:= (cw*th*W[0] + co*O[0]+ ch*H[0] + cl*La[0] + h*I[0] + cp* P[0]+ 
sc*S[0]); 

let productioncost[t]:=cp*P[0];              

let workforcecost[t]:= cw*th*W[0]; 

let hiringcost[t]:= ch*H[0]; 

let layoffcost[t]:= cl*La[0]; 

let inventorycost[t]:= h*I[0]; 

let shortagecost[t]:= sc*S[0]; 

let overtimecost[t]:=co*O[0]; 

let costperperiod[n,j,k,e,r,t]:=0; 

let costperperiod[n,j,k,e,r,t]:= costperperiod[n,j,k,e,r,t]+ sum{i in 0..N}(cw*th*W[i] + 
co*O[i]+ ch*H[i] + cl*La[i] + h*I[i] + cp* P[i]+ sc*S[i]); 

let deltaperperiod[n,j,k,e,r,t]:= 0; 

let deltaperperiod[n,j,k,e,r,t] := deltaperperiod[n,j,k,e,r,t] + sum{i in 1..N}(abs(pprev[i]-
P[i-1])); 

let obj1[n,j,k,e,r,t]:=(((sum{i in 0..N} (cw*th*W[i] + ch*H[i] + cl*La[i] + h*I[i] + cp* 
P[i]+ co*O[i]+ sc*S[i]))-(CB[t]-1))/(CW[t]-CB[t])); 

let obj2[n,j,k,e,r,t]:=(((sum {i in 1..N} (PA[i]))-SB[t])/(SW[t]-SB[t])); 

if (t>12) then {let delta:= delta+ sum{i in 1..N}(abs(pprev[i]-P[i-1])); 

 

for {i in 1..N}{let pprev[i]:=P[i];} 

let Winput:= W[0]; #feeding input to next loop 

let Iinput:= I[0]-S[0]; #feeding input to next loop 

for {i in 0..N-2} { 

let LowB[i]:= max (LowB[i+1], P[i+1]*(1-F[i])) ; 

 let UpB[i]:= min (UpB[i+1], P[i+1]*(1+F[i])) ;} 

let LowB[N-1]:= P[N]*(1-F[N-1]); 

let UpB[N-1]:= P[N]*(1+F[N-1]); }} 
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# WRITE OUTPUTS INTO EXCEL TABLE # 

write table output1[w]; 

write table output2[w]; 

write table output3[w]; 

write table output4[w]; 

### END OF BI-OBJECTIVE RUN FILE ### 
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APPENDIX C: COST AND STABILITY GRAPHS 
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